51
|
Buijs JT, van Beijnum R, Anijs RJS, Laghmani EH, Sensuk L, Minderhoud C, Ünlü B, Klok FA, Kuppen PJK, Cannegieter SC, Versteeg HH. The association of tumor-expressed REG4, SPINK4 and alpha-1 antitrypsin with cancer-associated thrombosis in colorectal cancer. J Thromb Thrombolysis 2024; 57:370-380. [PMID: 38066386 PMCID: PMC10961291 DOI: 10.1007/s11239-023-02907-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 03/26/2024]
Abstract
Novel biomarkers are needed to improve current imperfect risk prediction models for cancer-associated thrombosis (CAT). We recently identified an RNA-sequencing profile that associates with CAT in colorectal cancer (CRC) patients, with REG4, SPINK4, and SERPINA1 as the top-3 upregulated genes at mRNA level. In the current study, we investigated whether protein expression of REG4, SPINK4 and alpha-1 antitrypsin (A1AT, encoded by SERPINA1) in the tumor associated with CAT in an independent cohort of CRC patients. From 418 patients with resected CRC, 18 patients who developed CAT were age, sex, and tumor stage-matched to 18 CRC patients without CAT. Protein expression was detected by immunohistochemical staining and scored blindly by assessing the H-score (percentage positive cells*scoring intensity). The association with CAT was assessed by means of logistic regression, using patients with an H-score below 33 as reference group. The odds ratios (ORs) for developing CAT for patients with A1AThigh, REG4high, SPINK4high tumors were 3.5 (95%CI 0.8-14.5), 2.0 (95%CI 0.5-7.6) and 2.0 (95%CI 0.5-7.4) when compared to A1ATlow, REG4low, SPINK4low, respectively. The OR was increased to 24.0 (95%CI 1.1-505.1) when two proteins were combined (A1AThigh/REG4high). This nested case-control study shows that combined protein expression of A1AT and REG4 associate with CAT in patients with colorectal cancer. Therefore, REG4/A1AT are potential biomarkers to improve the identification of patients with CRC who may benefit from thromboprophylaxis.
Collapse
Affiliation(s)
- Jeroen T Buijs
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands.
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
| | - Robin van Beijnum
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Rayna J S Anijs
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - El Houari Laghmani
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Lily Sensuk
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Cas Minderhoud
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Betül Ünlü
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Frederikus A Klok
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Suzanne C Cannegieter
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Clinical Epidemiology, LUMC, Leiden, The Netherlands
| | - Henri H Versteeg
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
52
|
Mackman N. Tissue Factor and COVID-19 Associated Thrombosis. Arterioscler Thromb Vasc Biol 2024; 44:523-529. [PMID: 38381854 PMCID: PMC10883617 DOI: 10.1161/atvbaha.123.320144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/17/2024] [Indexed: 02/23/2024]
Abstract
Microbial infections activate the innate and adaptive immune systems.1 Pathogen-associated molecular patterns produced by microbes, such as double-stranded RNA, are detected by PRRs (pattern-recognition receptors), such as toll-like receptor 3, and this leads to the expression of interferons and cytokines.1,2.
Collapse
Affiliation(s)
- Nigel Mackman
- Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill
| |
Collapse
|
53
|
Senis YA. Mouse tissue factor enzyme-linked immunosorbent assays: a sensitive issue. Res Pract Thromb Haemost 2024; 8:102386. [PMID: 38617047 PMCID: PMC11015504 DOI: 10.1016/j.rpth.2024.102386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 04/16/2024] Open
Affiliation(s)
- Yotis A. Senis
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-S 1255, Strasbourg, France
| |
Collapse
|
54
|
Cheong MA, Leader A. Cancer and arterial thrombosis: therapeutic options. Res Pract Thromb Haemost 2024; 8:102393. [PMID: 38660456 PMCID: PMC11039399 DOI: 10.1016/j.rpth.2024.102393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024] Open
Abstract
A State of the Art lecture titled "Cancer and Arterial Thrombosis: Therapeutic Options" was presented at the International Society on Thrombosis and Haemostasis Congress in 2023. This State of the Art review delves into the complex relationship between cancer and arterial thromboembolism (ATE), encompassing acute coronary syndrome, ischemic strokes, and peripheral arterial disease. The burden of cancer-associated ATE is not well defined, but studies indicate elevated risks, particularly in the 6 months after a cancer diagnosis. Incidence varies among cancer subtypes, with lung cancer displaying the highest rates. Additionally, the pathophysiology of cancer-associated ATE involves a multifaceted interplay of cancer-induced hypercoagulopathy, cancer therapy-related thrombosis, and personal risk factor contributors. ATEs are clinically heterogeneous and in the context of cancer have particular mechanistic differences compared with ATE patients without cancer. This requires modifications in approach and tailored management considerations. Specific etiologies contributing to ATE, such as coronary vasospasm and non-bacterial-thrombotic endocarditis, need to be considered. The diagnosis of cancer alone usually does not contraindicate patients to standard guideline-based therapies for the management of ATE, although nuances in treatment may need to be considered in light of the underlying cancer. Atrial fibrillation in cancer patients further complicates the thrombotic landscape. Cancer patients with atrial fibrillation are at a higher risk of ATE, necessitating careful consideration of anticoagulation therapy as clinical benefits and bleeding risks need to be weighed. ATE may also be a presenting sign of underlying malignancy, which requires increased awareness and focused clinical evaluation for cancer in selected cases. Finally, we summarize relevant new data on this topic presented during the 2023 International Society on Thrombosis and Haemostasis Congress.
Collapse
Affiliation(s)
- May Anne Cheong
- Department of Haematology, Singapore General Hospital, Singapore
| | - Avi Leader
- Department of Medicine, Hematology Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
55
|
Stasi E, Sciascia S, Naretto C, Baldovino S, Roccatello D. Lymphatic System and the Kidney: From Lymphangiogenesis to Renal Inflammation and Fibrosis Development. Int J Mol Sci 2024; 25:2853. [PMID: 38474100 DOI: 10.3390/ijms25052853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
The lymphatic kidney system plays a crucial role in managing interstitial fluid removal, regulating fluid balance, and tuning immune response. It also assists in the reabsorption of proteins, electrolytes, cytokines, growth factors, and immune cells. Pathological conditions, including tissue damage, excessive interstitial fluid, high blood glucose levels, and inflammation, can initiate lymphangiogenesis-the formation of new lymphatic vessels. This process is associated with various kidney diseases, including polycystic kidney disease, hypertension, ultrafiltration challenges, and complications post-organ transplantation. Although lymphangiogenesis has beneficial effects in removing excess fluid and immune cells, it may also contribute to inflammation and fibrosis within the kidneys. In this review, we aim to discuss the biology of the lymphatic system, from its development and function to its response to disease stimuli, with an emphasis on renal pathophysiology. Furthermore, we explore how innovative treatments targeting the lymphatic system could potentially enhance the management of kidney diseases.
Collapse
Affiliation(s)
- Elodie Stasi
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-Net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley, ASL Città di Torino and Department of Clinical and Biological Sciences, University of Turin, 10154 Turin, Italy
| | - Savino Sciascia
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-Net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley, ASL Città di Torino and Department of Clinical and Biological Sciences, University of Turin, 10154 Turin, Italy
| | - Carla Naretto
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-Net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley, ASL Città di Torino and Department of Clinical and Biological Sciences, University of Turin, 10154 Turin, Italy
| | - Simone Baldovino
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-Net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley, ASL Città di Torino and Department of Clinical and Biological Sciences, University of Turin, 10154 Turin, Italy
| | - Dario Roccatello
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-Net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley, ASL Città di Torino and Department of Clinical and Biological Sciences, University of Turin, 10154 Turin, Italy
| |
Collapse
|
56
|
Noor Azlan NAB, Vitus V, Nor Rashid N, Nordin F, Tye GJ, Wan Kamarul Zaman WS. Human mesenchymal stem cell secretomes: Factors affecting profiling and challenges in clinical application. Cell Tissue Res 2024; 395:227-250. [PMID: 38244032 DOI: 10.1007/s00441-023-03857-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/21/2023] [Indexed: 01/22/2024]
Abstract
The promising field of regenerative medicine is thrilling as it can repair and restore organs for various debilitating diseases. Mesenchymal stem cells are one of the main components in regenerative medicine that work through the release of secretomes. By adopting the use of the secretome in cell-free-based therapy, we may be able to address the challenges faced in cell-based therapy. As one of the components of cell-free-based therapy, secretome has the advantage of a better safety and efficacy profile than mesenchymal stem cells. However, secretome has its challenges that need to be addressed, such as its bioprocessing methods that may impact the secretome content and its mechanisms of action in clinical settings. Effective and standardization of bioprocessing protocols are important to ensure the supply and sustainability of secretomes for clinical applications. This may eventually impact its commercialization and marketability. In this review, the bioprocessing methods and their impacts on the secretome profile and treatment are discussed. This improves understanding of its fundamental aspects leading to potential clinical applications.
Collapse
Affiliation(s)
| | - Vieralynda Vitus
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Centre for Innovation in Medical Engineering, Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nurshamimi Nor Rashid
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia
| | - Wan Safwani Wan Kamarul Zaman
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Centre for Innovation in Medical Engineering, Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
57
|
Catherine Prater M, Polley KR, Cooper JA. Improvements in markers of inflammation and coagulation potential following a 5-day high-fat diet rich in cottonseed oil vs. Olive oil in healthy males. Cytokine 2024; 175:156494. [PMID: 38171039 DOI: 10.1016/j.cyto.2023.156494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/14/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
Low-grade inflammation is believed to be a risk factor for chronic diseases and is nutritionally responsive. Cottonseed oil (CSO), which is rich in n-6 polyunsaturated fats, has been shown to lower cholesterol and other chronic disease risk factors. The purpose of this secondary analysis was to determine the comparative responses of markers of inflammation and coagulation potential of healthy adult males consuming diets rich in CSO vs. olive oil (OO). METHODS Fifteen normal-weight males, ages 21.7 ± 2.58y, completed a randomized crossover trial. Each intervention consisted of a 3-day lead-in diet and a 5-day outpatient, controlled feeding intervention (CSO or OO). There was a 2 to 4-week washout period between interventions. The 5-day intervention diets were 35 % carbohydrate, 15 % protein, and 50 % fat, enriched with either CSO or OO (44 % of total energy from oil). At pre- and post- diet intervention visits, a fasting blood draw was collected for analysis of markers of inflammation (Tumor Necrosis Factor Alpha (TNF-α), Interleukin-6 (IL-6), C-Reactive Protein (CRP)) and coagulation potential (Tissue Factor (TF), Plasminogen Activator Inhibitor-1 (PAI-1)). RESULTS The CSO-enriched diets reduced TNF-α (CSO: -0.12 ± 0.02 pg/ml, OO: -0.01 ± 0.05 pg/ml; p < 0.01) and TF (CSO: -0.59 ± 0.68 pg/ml, OO: 1.13 ± 0.83 pg/ml; p = 0.02) compared to OO diets. There were no differences in IL-6, CRP, or PAI-1 between diets. CONCLUSION A 5-day, CSO-enriched diet may be sufficient to reduce inflammation and coagulation potential compared to OO-enriched diets in a healthy male population which could have implications in chronic disease prevention.
Collapse
Affiliation(s)
- M Catherine Prater
- Department of Nutritional Sciences, University of Georgia, 305 Sanford Drive, Athens, GA 30602, USA
| | - Kristine R Polley
- Department of Nutritional Sciences, University of Georgia, 305 Sanford Drive, Athens, GA 30602, USA
| | - Jamie A Cooper
- Department of Kinesiology, University of Georgia, 330 River Road, Athens, GA 30602, USA.
| |
Collapse
|
58
|
Park JK, Brake MA, Schulman S. Human Genetic Variation in F3 and Its Impact on Tissue Factor-Dependent Disease. Semin Thromb Hemost 2024; 50:188-199. [PMID: 37201535 DOI: 10.1055/s-0043-1769079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Tissue factor (TF) is the primary initiator of blood coagulation in humans. As improper intravascular TF expression and procoagulant activity underlie numerous thrombotic disorders, there has been longstanding interest in the contribution of heritable genetic variation in F3, the gene encoding TF, to human disease. This review seeks to comprehensively and critically synthesize small case-control studies focused on candidate single nucleotide polymorphisms (SNPs), as well as modern genome-wide association studies (GWAS) seeking to discover novel associations between variants and clinical phenotypes. Where possible, correlative laboratory studies, expression quantitative trait loci, and protein quantitative trait loci are evaluated to glean potential mechanistic insights. Most disease associations implicated in historical case-control studies have proven difficult to replicate in large GWAS. Nevertheless, SNPs linked to F3, such as rs2022030, are associated with increased F3 mRNA expression, monocyte TF expression after endotoxin exposure, and circulating levels of the prothrombotic biomarker D-dimer, consistent with the central role of TF in the initiation of blood coagulation.
Collapse
Affiliation(s)
- Jin K Park
- Division of Health, Sciences, and Technology, Massachusetts Institute of Technology and Harvard Medical School, Boston, Massachusetts
| | - Marisa A Brake
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Sol Schulman
- Division of Health, Sciences, and Technology, Massachusetts Institute of Technology and Harvard Medical School, Boston, Massachusetts
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
- Division of Hematology and Hematologic Malignancies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
59
|
Hoang VT, Le DS, Hoang DM, Phan TTK, Ngo LAT, Nguyen TK, Bui VA, Nguyen Thanh L. Impact of tissue factor expression and administration routes on thrombosis development induced by mesenchymal stem/stromal cell infusions: re-evaluating the dogma. Stem Cell Res Ther 2024; 15:56. [PMID: 38414067 PMCID: PMC10900728 DOI: 10.1186/s13287-023-03582-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 11/22/2023] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Hyperactive coagulation might cause dangerous complications such as portal vein thrombosis and pulmonary embolism after mesenchymal stem/stromal cell (MSC) therapy. Tissue factor (TF), an initiator of the extrinsic coagulation pathway, has been suggested as a predictor of this process. METHODS The expression of TF and other pro- and anticoagulant genes was analyzed in xeno- and serum-free manufactured MSCs. Furthermore, culture factors affecting its expression in MSCs were investigated. Finally, coagulation tests of fibrinogen, D-dimer, aPPTs, PTs, and TTs were measured in patient serum after umbilical cord (UC)-MSC infusions to challenge a potential connection between TF expression and MSC-induced coagulant activity. RESULTS: Xeno- and serum-free cultured adipose tissue and UC-derived MSCs expressed the highest level of TF, followed by those from dental pulp, and the lowest expression was observed in MSCs of bone marrow origin. Environmental factors such as cell density, hypoxia, and inflammation impact TF expression, so in vitro analysis might fail to reflect their in vivo behaviors. MSCs also expressed heterogeneous levels of the coagulant factor COL1A1 and surface phosphatidylserine and anticoagulant factors TFPI and PTGIR. MSCs of diverse origins induced fibrin clots in healthy plasma that were partially suppressed by an anti-TF inhibitory monoclonal antibody. Furthermore, human umbilical vein endothelial cells exhibited coagulant activity in vitro despite their negative expression of TF and COL1A1. Patients receiving intravenous UC-MSC infusion exhibited a transient increase in D-dimer serum concentration, while this remained stable in the group with intrathecal infusion. There was no correlation between TF expression and D-dimer or other coagulation indicators. CONCLUSIONS The study suggests that TF cannot be used as a solid biomarker to predict MSC-induced hypercoagulation. Local administration, prophylactic intervention with anticoagulation drugs, and monitoring of coagulation indicators are useful to prevent thrombogenic events in patients receiving MSCs. Trial registration NCT05292625. Registered March 23, 2022, retrospectively registered, https://www. CLINICALTRIALS gov/ct2/show/NCT05292625?term=NCT05292625&draw=2&rank=1 . NCT04919135. Registered June 9, 2021, https://www. CLINICALTRIALS gov/ct2/show/NCT04919135?term=NCT04919135&draw=2&rank=1 .
Collapse
Affiliation(s)
- Van T Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, 458 Minh Khai, Hai Ba Trung District, Hanoi, 100000, Vietnam.
| | - Duc Son Le
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, 458 Minh Khai, Hai Ba Trung District, Hanoi, 100000, Vietnam
| | - Duc M Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, 458 Minh Khai, Hai Ba Trung District, Hanoi, 100000, Vietnam
| | - Trang Thi Kieu Phan
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, 458 Minh Khai, Hai Ba Trung District, Hanoi, 100000, Vietnam
| | - Lan Anh Thi Ngo
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, 458 Minh Khai, Hai Ba Trung District, Hanoi, 100000, Vietnam
- Center of Applied Science and Regenerative Medicine, Vinmec Health Care System, 458 Minh Khai, Hanoi, 10000, Vietnam
| | - Trung Kien Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, 458 Minh Khai, Hai Ba Trung District, Hanoi, 100000, Vietnam
| | - Viet Anh Bui
- Center of Applied Science and Regenerative Medicine, Vinmec Health Care System, 458 Minh Khai, Hanoi, 10000, Vietnam
| | - Liem Nguyen Thanh
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, 458 Minh Khai, Hai Ba Trung District, Hanoi, 100000, Vietnam.
- Vinmec International Hospital - Times City, Vinmec Health Care System, 458 Minh Khai, Hanoi, 11622, Vietnam.
- College of Health Science, VinUniversity, Vinhomes Ocean Park, Gia Lam District, Hanoi, 1310, Vietnam.
| |
Collapse
|
60
|
Frimat M, Gnemmi V, Stichelbout M, Provôt F, Fakhouri F. Pregnancy as a susceptible state for thrombotic microangiopathies. Front Med (Lausanne) 2024; 11:1343060. [PMID: 38476448 PMCID: PMC10927739 DOI: 10.3389/fmed.2024.1343060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
Pregnancy and the postpartum period represent phases of heightened vulnerability to thrombotic microangiopathies (TMAs), as evidenced by distinct patterns of pregnancy-specific TMAs (e.g., preeclampsia, HELLP syndrome), as well as a higher incidence of nonspecific TMAs, such as thrombotic thrombocytopenic purpura or hemolytic uremic syndrome, during pregnancy. Significant strides have been taken in understanding the underlying mechanisms of these disorders in the past 40 years. This progress has involved the identification of pivotal factors contributing to TMAs, such as the complement system, ADAMTS13, and the soluble VEGF receptor Flt1. Regardless of the specific causal factor (which is not generally unique in relation to the usual multifactorial origin of TMAs), the endothelial cell stands as a central player in the pathophysiology of TMAs. Pregnancy has a major impact on the physiology of the endothelium. Besides to the development of placenta and its vascular consequences, pregnancy modifies the characteristics of the women's microvascular endothelium and tends to render it more prone to thrombosis. This review aims to delineate the distinct features of pregnancy-related TMAs and explore the contributing mechanisms that lead to this increased susceptibility, particularly influenced by the "gravid endothelium." Furthermore, we will discuss the potential contribution of histopathological studies in facilitating the etiological diagnosis of pregnancy-related TMAs.
Collapse
Affiliation(s)
- Marie Frimat
- CHU Lille, Nephrology Department, Univ. Lille, Lille, France
- Inserm, Institut Pasteur de Lille, Univ. Lille, Lille, France
| | | | | | - François Provôt
- CHU Lille, Nephrology Department, Univ. Lille, Lille, France
| | - Fadi Fakhouri
- Service of Nephrology and Hypertension, CHUV and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
61
|
Sacchetti S, Puricelli C, Mennuni M, Zanotti V, Giacomini L, Giordano M, Dianzani U, Patti G, Rolla R. Research into New Molecular Mechanisms in Thrombotic Diseases Paves the Way for Innovative Therapeutic Approaches. Int J Mol Sci 2024; 25:2523. [PMID: 38473772 DOI: 10.3390/ijms25052523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/12/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Thrombosis is a multifaceted process involving various molecular components, including the coagulation cascade, platelet activation, platelet-endothelial interaction, anticoagulant signaling pathways, inflammatory mediators, genetic factors and the involvement of various cells such as endothelial cells, platelets and leukocytes. A comprehensive understanding of the molecular signaling pathways and cell interactions that play a role in thrombosis is essential for the development of precise therapeutic strategies for the treatment and prevention of thrombotic diseases. Ongoing research in this field is constantly uncovering new molecular players and pathways that offer opportunities for more precise interventions in the clinical setting. These molecular insights into thrombosis form the basis for the development of targeted therapeutic approaches for the treatment and prevention of thrombotic disease. The aim of this review is to provide an overview of the pathogenesis of thrombosis and to explore new therapeutic options.
Collapse
Affiliation(s)
- Sara Sacchetti
- Clinical Chemistry Laboratory, "Maggiore della Carità" University Hospital, Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy
| | - Chiara Puricelli
- Clinical Chemistry Laboratory, "Maggiore della Carità" University Hospital, Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy
| | - Marco Mennuni
- Division of Cardiology, "Maggiore della Carità" University Hospital, Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy
| | - Valentina Zanotti
- Clinical Chemistry Laboratory, "Maggiore della Carità" University Hospital, Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy
| | - Luca Giacomini
- Clinical Chemistry Laboratory, "Maggiore della Carità" University Hospital, Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy
| | - Mara Giordano
- Clinical Chemistry Laboratory, "Maggiore della Carità" University Hospital, Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy
| | - Umberto Dianzani
- Clinical Chemistry Laboratory, "Maggiore della Carità" University Hospital, Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy
| | - Giuseppe Patti
- Division of Cardiology, "Maggiore della Carità" University Hospital, Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy
| | - Roberta Rolla
- Clinical Chemistry Laboratory, "Maggiore della Carità" University Hospital, Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy
| |
Collapse
|
62
|
Valencia I, Lumpuy-Castillo J, Magalhaes G, Sánchez-Ferrer CF, Lorenzo Ó, Peiró C. Mechanisms of endothelial activation, hypercoagulation and thrombosis in COVID-19: a link with diabetes mellitus. Cardiovasc Diabetol 2024; 23:75. [PMID: 38378550 PMCID: PMC10880237 DOI: 10.1186/s12933-023-02097-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/14/2023] [Indexed: 02/22/2024] Open
Abstract
Early since the onset of the COVID-19 pandemic, the medical and scientific community were aware of extra respiratory actions of SARS-CoV-2 infection. Endothelitis, hypercoagulation, and hypofibrinolysis were identified in COVID-19 patients as subsequent responses of endothelial dysfunction. Activation of the endothelial barrier may increase the severity of the disease and contribute to long-COVID syndrome and post-COVID sequelae. Besides, it may cause alterations in primary, secondary, and tertiary hemostasis. Importantly, these responses have been highly decisive in the evolution of infected patients also diagnosed with diabetes mellitus (DM), who showed previous endothelial dysfunction. In this review, we provide an overview of the potential triggers of endothelial activation related to COVID-19 and COVID-19 under diabetic milieu. Several mechanisms are induced by both the viral particle itself and by the subsequent immune-defensive response (i.e., NF-κB/NLRP3 inflammasome pathway, vasoactive peptides, cytokine storm, NETosis, activation of the complement system). Alterations in coagulation mediators such as factor VIII, fibrin, tissue factor, the von Willebrand factor: ADAMST-13 ratio, and the kallikrein-kinin or plasminogen-plasmin systems have been reported. Moreover, an imbalance of thrombotic and thrombolytic (tPA, PAI-I, fibrinogen) factors favors hypercoagulation and hypofibrinolysis. In the context of DM, these mechanisms can be exacerbated leading to higher loss of hemostasis. However, a series of therapeutic strategies targeting the activated endothelium such as specific antibodies or inhibitors against thrombin, key cytokines, factor X, complement system, the kallikrein-kinin system or NETosis, might represent new opportunities to address this hypercoagulable state present in COVID-19 and DM. Antidiabetics may also ameliorate endothelial dysfunction, inflammation, and platelet aggregation. By improving the microvascular pathology in COVID-19 and post-COVID subjects, the associated comorbidities and the risk of mortality could be reduced.
Collapse
Affiliation(s)
- Inés Valencia
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, IIS Hospital Universitario de La Princesa, 28009, Madrid, Spain.
| | - Jairo Lumpuy-Castillo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz, 28040, Madrid, Spain
- Spanish Biomedical Research Centre On Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, Madrid, Spain
| | - Giselle Magalhaes
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, 28029, Madrid, Spain
| | - Carlos F Sánchez-Ferrer
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, 28029, Madrid, Spain
- Vascular Pharmacology and Metabolism (FARMAVASM), IdiPAZ, Madrid, Spain
| | - Óscar Lorenzo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz, 28040, Madrid, Spain.
- Spanish Biomedical Research Centre On Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, Madrid, Spain.
| | - Concepción Peiró
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, 28029, Madrid, Spain.
- Vascular Pharmacology and Metabolism (FARMAVASM), IdiPAZ, Madrid, Spain.
| |
Collapse
|
63
|
Schaubmayr W, Hochreiter B, Hunyadi-Gulyas E, Riegler L, Schmidt K, Tiboldi A, Moser B, Klein KU, Krenn K, Scharbert G, Mohr T, Schmid JA, Spittler A, Tretter V. The Proteome of Extracellular Vesicles Released from Pulmonary Microvascular Endothelium Reveals Impact of Oxygen Conditions on Biotrauma. Int J Mol Sci 2024; 25:2415. [PMID: 38397093 PMCID: PMC10889365 DOI: 10.3390/ijms25042415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
The lung can experience different oxygen concentrations, low as in hypoxia, high as under supplemental oxygen therapy, or oscillating during intermittent hypoxia as in obstructive sleep apnea or intermittent hypoxia/hyperoxia due to cyclic atelectasis in the ventilated patient. This study aimed to characterize the oxygen-condition-specific protein composition of extracellular vesicles (EVs) released from human pulmonary microvascular endothelial cells in vitro to decipher their potential role in biotrauma using quantitative proteomics with bioinformatic evaluation, transmission electron microscopy, flow cytometry, and non-activated thromboelastometry (NATEM). The release of vesicles enriched in markers CD9/CD63/CD81 was enhanced under intermittent hypoxia, strong hyperoxia and intermittent hypoxia/hyperoxia. Particles with exposed phosphatidylserine were increased under intermittent hypoxia. A small portion of vesicles were tissue factor-positive, which was enhanced under intermittent hypoxia and intermittent hypoxia/hyperoxia. EVs from treatment with intermittent hypoxia induced a significant reduction of Clotting Time in NATEM analysis compared to EVs isolated after normoxic exposure, while after intermittent hypoxia/hyperoxia, tissue factor in EVs seems to be inactive. Gene set enrichment analysis of differentially expressed genes revealed that EVs from individual oxygen conditions potentially induce different biological processes such as an inflammatory response under strong hyperoxia and intermittent hypoxia/hyperoxia and enhancement of tumor invasiveness under intermittent hypoxia.
Collapse
Affiliation(s)
- Wolfgang Schaubmayr
- Department of Anesthesia, General Intensive Care and Pain Medicine, Medical University of Vienna, 1090 Vienna, Austria (B.H.); (K.K.)
| | - Beatrix Hochreiter
- Department of Anesthesia, General Intensive Care and Pain Medicine, Medical University of Vienna, 1090 Vienna, Austria (B.H.); (K.K.)
| | - Eva Hunyadi-Gulyas
- Laboratory of Proteomics Research, HUN-REN Biological Research Centre, 6726 Szeged, Hungary;
| | - Louise Riegler
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Katy Schmidt
- Core Facility of Cell Imaging and Ultrastructure Research, University of Vienna, 1090 Vienna, Austria
| | - Akos Tiboldi
- Department of Anesthesia, General Intensive Care and Pain Medicine, Medical University of Vienna, 1090 Vienna, Austria (B.H.); (K.K.)
| | - Bernhard Moser
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Klaus U. Klein
- Department of Anesthesia, General Intensive Care and Pain Medicine, Medical University of Vienna, 1090 Vienna, Austria (B.H.); (K.K.)
| | - Katharina Krenn
- Department of Anesthesia, General Intensive Care and Pain Medicine, Medical University of Vienna, 1090 Vienna, Austria (B.H.); (K.K.)
| | - Gisela Scharbert
- Department of Anesthesia, General Intensive Care and Pain Medicine, Medical University of Vienna, 1090 Vienna, Austria (B.H.); (K.K.)
| | - Thomas Mohr
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Johannes A. Schmid
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, 1090 Vienna, Austria;
| | - Andreas Spittler
- Department of Surgery and Core Facility Flow Cytometry, Medical University of Vienna, 1090 Vienna, Austria;
| | - Verena Tretter
- Department of Anesthesia, General Intensive Care and Pain Medicine, Medical University of Vienna, 1090 Vienna, Austria (B.H.); (K.K.)
| |
Collapse
|
64
|
Zhang B, Wang M, Tian H, Cai H, Wu S, Jiao S, Zhao J, Li Y, Zhou H, Guo W, Qu W. Functional hemostatic hydrogels: design based on procoagulant principles. J Mater Chem B 2024; 12:1706-1729. [PMID: 38288779 DOI: 10.1039/d3tb01900d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Uncontrolled hemorrhage results in various complications and is currently the leading cause of death in the general population. Traditional hemostatic methods have drawbacks that may lead to ineffective hemostasis and even the risk of secondary injury. Therefore, there is an urgent need for more effective hemostatic techniques. Polymeric hemostatic materials, particularly hydrogels, are ideal due to their biocompatibility, flexibility, absorption, and versatility. Functional hemostatic hydrogels can enhance hemostasis by creating physical circumstances conducive to hemostasis or by directly interfering with the physiological processes of hemostasis. The procoagulant principles include increasing the concentration of localized hemostatic substances or establishing a physical barrier at the physical level and intervention in blood cells or the coagulation cascade at the physiological level. Moreover, synergistic hemostasis can combine these functions. However, some hydrogels are ineffective in promoting hemostasis or have a limited application scope. These defects have impeded the advancement of hemostatic hydrogels. To provide inspiration and resources for new designs, this review provides an overview of the procoagulant principles of hemostatic hydrogels. We also discuss the challenges in developing effective hemostatic hydrogels and provide viewpoints.
Collapse
Affiliation(s)
- Boxiang Zhang
- Department of Colorectal & Anal Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Min Wang
- Department of Colorectal & Anal Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Heng Tian
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China.
| | - Hang Cai
- Department of Pharmacy, The Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Siyu Wu
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China.
| | - Simin Jiao
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China
| | - Jie Zhao
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, P. R. China
| | - Yan Li
- Trauma and Reparative Medicine, Karolinska University Hospital, Stockholm, Sweden
- The Division of Orthopedics and Biotechnology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Huidong Zhou
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China.
| | - Wenlai Guo
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China.
| | - Wenrui Qu
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China.
| |
Collapse
|
65
|
Doubre H, Monnet I, Azarian R, Girard P, Meyer G, Trichereau J, Devillier P, Van Dreden P, Couderc LJ, Chouaid C, Vasse M. Plasma tissue factor activity in lung cancer patients predicts venous thromboembolism and poor overall survival. Res Pract Thromb Haemost 2024; 8:102359. [PMID: 38666062 PMCID: PMC11043639 DOI: 10.1016/j.rpth.2024.102359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/18/2024] [Accepted: 02/09/2024] [Indexed: 04/28/2024] Open
Abstract
Background Biomarkers to identify lung cancer (LC) patients with high risk of venous thromboembolism (VTE) are needed. Objectives To evaluate the usefulness of plasma tissue factor activity (TFA) and D-dimer levels for the prediction of VTE and overall survival in patients with LC. Methods In a prospective multicenter observational cohort of consecutive LC patients, TFA and D-dimer levels were measured at diagnosis before any cancer treatment (V1) and between 8 and 12 weeks after diagnosis (V2). Results Among 302 patients, 38 (12.6%) experienced VTE within the first year after diagnosis. V1-TFA and V1-D-dimer levels were significantly (P = .02) higher in patients who presented VTE within 3 months than in patients without VTE: V1-TFA was 2.02 (25th-75th percentiles, 0.20-4.01) vs 0.49 (0.20-3.09) ng/mL and V1-D-dimer was 1.42 (0.64-4.40) vs 0.69 (0.39-1.53) μg/mL, respectively. Cutoffs of 1.92 ng/mL for TFA and 1.26 μg/mL for D-dimer could discriminate both groups of patients. In multivariate analysis, V1-TFA > 1.92 ng/mL was the only significant predictor of VTE risk at 1 year (hazard ratio, 2.10; 95% CI, 1.06-4.16; P = .03). V2-TFA, quantified in 251 patients, decreased significantly compared with V1-TFA (0.20 vs 0.56 ng/mL, P < .05), but a V2-TFA level > 0.77 ng/mL could predict VTE in the following 3 months. Median overall survival was worse for patients with V1-TFA > 1.92 ng/mL (14.6 vs 23.8 months) and V1-D-dimer > 1.26 μg/mL (13.8 vs 24 months, P < .001). Conclusion High plasma TFA levels are associated with the occurrence of VTE within the next 3 months after each visit (V1 or V2) and poor survival.
Collapse
Affiliation(s)
- Helene Doubre
- Service de Pneumologie, Hôpital Foch, Suresnes, France
| | - Isabelle Monnet
- Service de Pneumologie, Centre Hospitalier Intercommunal, Creteil, France
| | - Reza Azarian
- Service de Pneumologie, Centre Hospitalier Versailles, Le Chesnay, France
| | - Philippe Girard
- Département de pneumologie, Institut du Thorax Curie-Montsouris, Institut Mutualiste Montsouris, Paris, France
| | - Guy Meyer
- Service de Pneumologie, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Julie Trichereau
- Direction Recherche Clinique et Innovation, Hôpital Foch, Suresnes, France
| | - Philippe Devillier
- Service de Pneumologie, Hôpital Foch, Suresnes, France
- VIM Suresnes, UMR 0892, Pôle des Maladies Respiratoires, Hopital Foch, Université Paris Saclay, Suresnes, France
| | | | | | - Christos Chouaid
- Service de Pneumologie, Centre Hospitalier Intercommunal, Creteil, France
| | - Marc Vasse
- Biology Department, Hôpital Foch, Suresnes, France
- UMRS-1176, Le Kremlin-Bicêtre, France
| |
Collapse
|
66
|
Janubová M, Žitňanová I. The effects of vitamin D on different types of cells. Steroids 2024; 202:109350. [PMID: 38096964 DOI: 10.1016/j.steroids.2023.109350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 11/24/2023] [Accepted: 12/07/2023] [Indexed: 12/25/2023]
Abstract
Vitamin D is neccessary for regulation of calcium and phosphorus metabolism in bones, affects imunity, the cardiovascular system, muscles, skin, epithelium, extracellular matrix, the central nervous system, and plays arole in prevention of aging-associated diseases. Vitamin D receptor is expressed in almost all types of cells and its activation leads to modulation of different signaling pathways. In this review, we have analysed the current knowledge of 1,25-dihydroxyvitamin D3 or 25-hydroxyvitamin D3 effects on metabolism of cells important for the function of the cardiovascular system (endothelial cells, vascular smooth muscle cells, cardiac cells and pericytes), tissue healing (fibroblasts), epithelium (various types of epithelial cells) and the central nervous system (neurons, astrocytes and microglia). The goal of this review was to compare the effects of vitamin D on the above mentioned cells in in vitro conditions and to summarize what is known in this field of research.
Collapse
Affiliation(s)
- Mária Janubová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Comenius University, 813 72 Bratislava, Slovakia.
| | - Ingrid Žitňanová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Comenius University, 813 72 Bratislava, Slovakia
| |
Collapse
|
67
|
Zhang Y, Liu L, Pei J, Ren Z, Deng Y, Yu K. Tissue factor overexpression promotes resistance to KRAS-G12C inhibition in non-small cell lung cancer. Oncogene 2024; 43:668-681. [PMID: 38191673 PMCID: PMC10890931 DOI: 10.1038/s41388-023-02924-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/10/2024]
Abstract
The recently approved KRASG12C mutation-specific inhibitors sotorasib and adagrasib (KRASG12C-I) represent a promising therapy for KRASG12C-driven non-small cell lung cancer (NSCLC). However, many eligible patients do not benefit due to intrinsic or acquired drug resistance. Tissue factor (TF) is overexpressed in KRAS-mutated (KRASmut) NSCLC and is the target of the FDA-approved ADC Tivdak. Here, we employed HuSC1-39, the parent antibody of a clinical stage TF-ADC (NCT04843709), to investigate the role of TF in KRASmut NSCLC. We found that patients with TF-overexpression had poor survival, elevated P-ERK/P-AKT activity levels and low immune effector cell infiltration in the tumor. In a panel of KRASG12C cell lines, KRASG12C-I response correlated with suppression of TF mRNA, which was not observed in resistant cells. In the drug resistant cells, TF-overexpression relied on an mTORC2-mediated and proteasome-dependent pathway. Combination treatment of HuSC1-39 or mTORC1/2 inhibitor MTI-31 with KRASG12C-I each produced synergistic antitumor efficacy in cell culture and in an orthotopic lung tumor model. TF-depletion in the resistant cells diminished epithelial mesenchymal transition, reduced tumor growth and greatly sensitized KRASG12C-I response. Moreover, employing immunohistochemistry and coculture studies, we demonstrated that HuSC1-39 or MTI-31 reset the tumor microenvironment and restore KRASG12C-I sensitivity by reshaping an M1-like macrophage profile with greatly enhanced phagocytic capacity toward tumor cell killing. Thus, we have identified the TF/mTORC2 axis as a critical new mechanism for triggering immunosuppression and KRASG12C-I resistance. We propose that targeting this axis with HuSC1-39 or MTI-31 will improve KRASG12C-I response in KRAS-driven NSCLC.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China
| | - Liang Liu
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China
| | - Jinpeng Pei
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China
| | - Zhiqiang Ren
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China
| | - Yan Deng
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China
| | - Ker Yu
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China.
| |
Collapse
|
68
|
Gando S, Levi M, Toh CH. Trauma-induced innate immune activation and disseminated intravascular coagulation. J Thromb Haemost 2024; 22:337-351. [PMID: 37816463 DOI: 10.1016/j.jtha.2023.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/12/2023]
Abstract
Dysregulated innate immunity participates in the pathomechanisms of disseminated intravascular coagulation (DIC) in trauma-induced coagulopathy. Accidental and regulated cell deaths and neutrophil extracellular traps release damage-associated molecular patterns (DAMPs), such as histones, nuclear and mitochondrial DNA, and high-mobility group box 1, into circulation immediately after trauma. DAMP-induced inflammation activation releases tissue factor-bearing procoagulant extracellular vesicles through gasdermin D-mediated pore formation and plasma membrane rupture by regulated cell death. DAMPs also evoke systemic inflammation, platelet, coagulation activation, and impaired fibrinolysis associated with endothelial injury, leading to the dysfunction of anticoagulation systems, which are the main pathophysiological mechanisms of DIC. All these processes induce systemic thrombin generation in vivo, not restricted to the injury sites immediately after trauma. Thrombin generation at the site of injury stops bleeding and maintains homeostasis. However, DIC associated with endothelial injury generates massive thrombin, enhancing protease-activated, receptor-mediated bidirectional interplays between inflammation and coagulation, aggravating the diverse actions of thrombin and disturbing homeostasis. Insufficiently regulated thrombin causes disseminated microvascular thrombosis, resulting in tissue hypoxia due to reduced oxygen delivery, and mitochondrial dysfunction due to DAMPs causes tissue dysoxia. In addition, DAMP-induced calcium influx and overload, as well as neutrophil activation, play a role in endothelial cell injury. Tissue hypoxia and cytotoxicity result in multiple organ dysfunction in DIC after trauma. Controls against dysregulated innate immunity evoking systemic inflammation, thrombin generation, and cytotoxicity are key issues in improving the prognosis of DIC in trauma-induced coagulopathy.
Collapse
Affiliation(s)
- Satoshi Gando
- Department of Acute and Critical Care Medicine, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan; Division of Acute and Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan.
| | - Marcel Levi
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands; Department of Medicine, University College London Hospitals NHS Foundation Trust, and Cardio-Metabolic Program - NIHR UCLH/UCL BRC London, London, United Kingdom
| | - Cheng-Hock Toh
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom; Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| |
Collapse
|
69
|
Badulescu OV, Badescu MC, Bojan IB, Vladeanu M, Filip N, Dobreanu S, Tudor R, Ciuntu BM, Tanevski A, Ciocoiu M. Thrombotic Disease in Hemophilic Patients: Is This a Paradox in a State of Hypocoagulability? Diagnostics (Basel) 2024; 14:286. [PMID: 38337802 PMCID: PMC10854955 DOI: 10.3390/diagnostics14030286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Hemophilia patients have a deficiency in or dysfunction of clotting factors, which can lead to a bleeding tendency. However, paradoxically, some hemophilia patients may also be at an increased risk of developing thrombotic events such as deep vein thrombosis or pulmonary embolism. The pathophysiology of thrombosis in hemophilia patients is not fully understood, but it is thought to involve a complex interplay of various factors, including the severity of the hemophilia, the presence of other risk factors such as obesity, smoking, or the use of hormonal therapies, and the presence of certain genetic mutations that increase the risk of thrombosis. In addition, it has been suggested that the use of clotting factor replacement therapy, which is a standard treatment for hemophilia, may also contribute to the development of thrombosis in some cases.
Collapse
Affiliation(s)
- Oana Viola Badulescu
- Department of Pathophysiology, Morpho-Functional Sciences (II), Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (O.V.B.); (M.V.); (M.C.)
| | - Minerva Codruta Badescu
- Department of Internal Medicine, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Iris Bararu Bojan
- Department of Pathophysiology, Morpho-Functional Sciences (II), Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (O.V.B.); (M.V.); (M.C.)
| | - Maria Vladeanu
- Department of Pathophysiology, Morpho-Functional Sciences (II), Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (O.V.B.); (M.V.); (M.C.)
| | - Nina Filip
- Department of Biochemistry, Morpho-Functional Sciences (II), Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Stefan Dobreanu
- Institute of Cardiovascular Diseases, G.I.M. Georgescu, 700503 Iasi, Romania
| | - Razvan Tudor
- Department of Orthopedics and Traumatology, Surgical Science (II), Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Bogdan-Mihnea Ciuntu
- Department of General Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (B.-M.C.); (A.T.)
| | - Adelina Tanevski
- Department of General Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (B.-M.C.); (A.T.)
| | - Manuela Ciocoiu
- Department of Pathophysiology, Morpho-Functional Sciences (II), Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (O.V.B.); (M.V.); (M.C.)
| |
Collapse
|
70
|
Manoharan J, Rana R, Kuenze G, Gupta D, Elwakiel A, Ambreen S, Wang H, Banerjee K, Zimmermann S, Singh K, Gupta A, Fatima S, Kretschmer S, Schaefer L, Zeng-Brouwers J, Schwab C, Al-Dabet MM, Gadi I, Altmann H, Koch T, Poitz DM, Baber R, Kohli S, Shahzad K, Geffers R, Lee-Kirsch MA, Kalinke U, Meiler J, Mackman N, Isermann B. Tissue factor binds to and inhibits interferon-α receptor 1 signaling. Immunity 2024; 57:68-85.e11. [PMID: 38141610 DOI: 10.1016/j.immuni.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/02/2023] [Accepted: 11/28/2023] [Indexed: 12/25/2023]
Abstract
Tissue factor (TF), which is a member of the cytokine receptor family, promotes coagulation and coagulation-dependent inflammation. TF also exerts protective effects through unknown mechanisms. Here, we showed that TF bound to interferon-α receptor 1 (IFNAR1) and antagonized its signaling, preventing spontaneous sterile inflammation and maintaining immune homeostasis. Structural modeling and direct binding studies revealed binding of the TF C-terminal fibronectin III domain to IFNAR1, which restricted the expression of interferon-stimulated genes (ISGs). Podocyte-specific loss of TF in mice (PodΔF3) resulted in sterile renal inflammation, characterized by JAK/STAT signaling, proinflammatory cytokine expression, disrupted immune homeostasis, and glomerulopathy. Inhibiting IFNAR1 signaling or loss of Ifnar1 expression in podocytes attenuated these effects in PodΔF3 mice. As a heteromer, TF and IFNAR1 were both inactive, while dissociation of the TF-IFNAR1 heteromer promoted TF activity and IFNAR1 signaling. These data suggest that the TF-IFNAR1 heteromer is a molecular switch that controls thrombo-inflammation.
Collapse
Affiliation(s)
- Jayakumar Manoharan
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Rajiv Rana
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Georg Kuenze
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany
| | - Dheerendra Gupta
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Ahmed Elwakiel
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Saira Ambreen
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Hongjie Wang
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kuheli Banerjee
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Silke Zimmermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Kunal Singh
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Anubhuti Gupta
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Sameen Fatima
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Stefanie Kretschmer
- Department of Pediatrics, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt am Main, Germany
| | - Jinyang Zeng-Brouwers
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt am Main, Germany
| | - Constantin Schwab
- Tissue Bank of the National Center for Tumor Diseases, Heidelberg, Germany
| | - Moh'd Mohanad Al-Dabet
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Ihsan Gadi
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Heidi Altmann
- Dresden Integrated Liquid Biobank, Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; Medical Department I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Thea Koch
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - David M Poitz
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ronny Baber
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany; Leipzig Medical Biobank, Leipzig University, Leipzig, Germany
| | - Shrey Kohli
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Khurrum Shahzad
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Robert Geffers
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Min Ae Lee-Kirsch
- Department of Pediatrics, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany
| | - Jens Meiler
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany
| | - Nigel Mackman
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany.
| |
Collapse
|
71
|
Mormile R. Potential hypothesis for the increased risk of stroke in women with endometriosis. Eur J Obstet Gynecol Reprod Biol 2024; 292:270. [PMID: 38044255 DOI: 10.1016/j.ejogrb.2023.11.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Affiliation(s)
- Raffaella Mormile
- Division of Pediatrics and Neonatology, Moscati Hospital, Aversa, Italy.
| |
Collapse
|
72
|
Yeh S, Yeh T, Wang Y, Chao C, Tzeng S, Tang T, Hsieh J, Kan Y, Yang W, Hsieh S. Nerve pathology of microangiopathy and thromboinflammation in hereditary transthyretin amyloidosis. Ann Clin Transl Neurol 2024; 11:30-44. [PMID: 37902278 PMCID: PMC10791016 DOI: 10.1002/acn3.51930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/10/2023] [Indexed: 10/31/2023] Open
Abstract
OBJECTIVE Despite amyloid deposition as a hallmark of hereditary transthyretin amyloidosis (ATTRv) with polyneuropathy, this pathology could not completely account for nerve degeneration. ATTRv patients frequently have vasomotor symptoms, but microangiopathy hypothesis in ATTRv was not systemically clarified. METHODS This study examined the vascular pathology of sural nerves in ATTRv patients with transthyretin (TTR) mutation of p.Ala117Ser (TTR-A97S), focusing on morphometry and patterns of molecular expression in relation to nerve degeneration. We further applied human microvascular endothelial cell (HMEC-1) culture to examine the direct effect of TTR-A97S protein on endothelial cells. RESULTS In ATTRv nerves, there was characteristic microangiopathy compared to controls: increased vessel wall thickness and decreased luminal area; both were correlated with the reduction of myelinated fiber density. Among the components of vascular wall, the area of collagen IV in ATTRv nerves was larger than that of controls. This finding was validated in a cell model of HMEC-1 culture in which the expression of collagen IV was upregulated after exposure to TTR-A97S. Apoptosis contributed to the endothelial cell degeneration of microvasculatures in ATTRv endoneurium. ATTRv showed prothrombotic status with intravascular fibrin deposition, which was correlated with (1) increased tissue factor and coagulation factor XIIIA and (2) reduced tissue plasminogen activator. This cascade led to intravascular thrombin deposition, which was colocalized with upregulated p-selectin and thrombomodulin, accompanied by complement deposition and macrophages infiltration, indicating thromboinflammation in ATTRv. INTERPRETATION Microangiopathy with thromboinflammation is characteristic of advanced-stage ATTRv nerves, which provides an add-on mechanism and therapeutic target for nerve degeneration.
Collapse
Affiliation(s)
- Shin‐Joe Yeh
- Department of NeurologyNational Taiwan University HospitalTaipeiTaiwan
| | - Ti‐Yen Yeh
- Department of Anatomy and Cell BiologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Yi‐Shiang Wang
- Institute of Biochemistry and Molecular BiologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Chi‐Chao Chao
- Department of NeurologyNational Taiwan University HospitalTaipeiTaiwan
| | - Shiou‐Ru Tzeng
- Institute of Biochemistry and Molecular BiologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Tsz‐Yi Tang
- Department of UrologyKaohsiung Medical University Hospital, Kaohsiung Medical UniversityKaohsiungTaiwan
- Department of UrologyKaohsiung Municipal Siaogang HospitalKaohsiungTaiwan
| | - Jung‐Hsien Hsieh
- Department of SurgeryNational Taiwan University HospitalTaipeiTaiwan
| | - Yu‐Yu Kan
- Department of Anatomy and Cell Biology, School of MedicineCollege of Medicine, Taipei Medical UniversityTaipeiTaiwan
- School of Medicine, College of Medicine, National Sun Yat‐Sen UniversityKaohsiungTaiwan
| | - Wei‐Kang Yang
- Department of Anatomy and Cell BiologyNational Taiwan University College of MedicineTaipeiTaiwan
| | - Sung‐Tsang Hsieh
- Department of NeurologyNational Taiwan University HospitalTaipeiTaiwan
- Department of Anatomy and Cell BiologyNational Taiwan University College of MedicineTaipeiTaiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of MedicineTaipeiTaiwan
- Graduate Institute of Brain and Mind Sciences, National Taiwan University College of MedicineTaipeiTaiwan
- Center of Precision MedicineNational Taiwan University College of MedicineTaipeiTaiwan
| |
Collapse
|
73
|
Gao X, Chen H, Huang Z, Lin J, Huang J, Chen Q. Correlation Between Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio with Risk Stratification Indicators and Thrombus Burden in Patients with Moderate-to-High Risk Acute Pulmonary Embolism, and Changes After Treatment. Clin Appl Thromb Hemost 2024; 30:10760296241285446. [PMID: 39279323 PMCID: PMC11406580 DOI: 10.1177/10760296241285446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
OBJECTIVE To investigate the correlation between neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and risk stratification indicators as well as thrombus burden in patients with moderate-to-high risk acute pulmonary embolism (APE), and to assess the changes in these parameters following interventional therapy. METHODS This study retrospectively included patients with moderate-to-high risk APE who were admitted to the Department of Interventional Vascular Surgery at Putian First Hospital from May 2020 to May 2024. All patients received anticoagulation therapy, pulmonary artery catheter-directed thrombolysis, and/or mechanical thrombectomy. Patients were further divided into subgroup A if they did not present with any of the following conditions at admission: a) acute inflammatory diseases (including lung infections); b) malignant tumors; c) history of trauma or surgery within the past 2 months. Patients with any of the aforementioned conditions were classified as subgroup B. Additionally, 50 healthy individuals were randomly selected as the healthy control group. RESULTS The NLR and PLR in subgroup A were significantly lower than those in subgroup B (P < .01). Compared with the healthy control group, the NLR in the APE group and subgroup A was significantly higher (P < .001). There were no significant differences in NLR and PLR between the troponin I-negative and troponin I-positive groups (P > .05), or between the N-terminal pro-B-type natriuretic peptide (NT-proBNP)-negative and NT-proBNP-positive groups (P > .05). There were no significant correlations between NLR and PLR with risk stratification indicators and pulmonary artery embolism index (P > .05). Compared with before treatment, NLR, troponin I, NT-proBNP, right ventricular diameter/left ventricular diameter ratio, and pulmonary artery embolism index were significantly reduced after treatment (P < .05), while there was no significant difference in PLR before and after treatment (P > .05). CONCLUSION Elevated NLR in patients with APE, which decreases after effective treatment, may be used for assessing disease status and treatment efficacy. However, there is no correlation between NLR and risk stratification indicators or thrombus burden. PLR does not demonstrate significant value in assessing APE.
Collapse
Affiliation(s)
- Xiaojie Gao
- Department of Interventional Vascular Surgery, The First Hospital of Putian City, Teaching Hospital, Fujian Medical University, Putian, Fujian Province, People's Republic of China
| | - Huang Chen
- Department of Interventional Vascular Surgery, The First Hospital of Putian City, Teaching Hospital, Fujian Medical University, Putian, Fujian Province, People's Republic of China
| | - Zhongjie Huang
- Department of Interventional Vascular Surgery, The First Hospital of Putian City, Teaching Hospital, Fujian Medical University, Putian, Fujian Province, People's Republic of China
| | - Jianxiong Lin
- Department of Interventional Vascular Surgery, The First Hospital of Putian City, Teaching Hospital, Fujian Medical University, Putian, Fujian Province, People's Republic of China
| | - Jinqi Huang
- Department of Interventional Vascular Surgery, The First Hospital of Putian City, Teaching Hospital, Fujian Medical University, Putian, Fujian Province, People's Republic of China
| | - Qihong Chen
- Department of Interventional Vascular Surgery, The First Hospital of Putian City, Teaching Hospital, Fujian Medical University, Putian, Fujian Province, People's Republic of China
| |
Collapse
|
74
|
Martinelli N, Moruzzi S, Udali S, Castagna A, Di Santo L, Ambrosani F, Baroni M, Pattini P, Pizzolo F, Ruzzenente A, Conci S, Grusse M, Campagnaro T, Van Dreden P, Guglielmi A, Bernardi F, Olivieri O, Friso S. Tissue factor pathway-related biomarkers in liver cancer: activated factor VII-antithrombin complex and tissue factor mRNA levels are associated with mortality. Res Pract Thromb Haemost 2024; 8:102310. [PMID: 38282902 PMCID: PMC10818084 DOI: 10.1016/j.rpth.2023.102310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 01/30/2024] Open
Abstract
Background Tissue factor (TF), the main initiator of the coagulation cascade, plays a role in cancer progression and prognosis. Activated factor VII-antithrombin complex (FVIIa-AT) is considered an indirect marker of TF exposure by reflecting TF-FVIIa interaction. Objectives To assess the link between FVIIa-AT plasma levels, TF messenger RNA (mRNA) expression, and survival in cancer. Methods TF pathway-related coagulation biomarkers were assessed in 136 patients with cancer (52 with hepatocellular carcinoma, 41 with cholangiocarcinoma, and 43 with colon cancer) undergoing surgical intervention with curative intent. TF mRNA expression analysis in neoplastic vs nonneoplastic liver tissues was evaluated in a subgroup of 91 patients with primary liver cancer. Results FVIIa-AT levels were higher in patients with cancer than in 136 sex- and age-matched cancer-free controls. In patients with cancer, high levels of FVIIa-AT and total TF pathway inhibitor were associated with an increased mortality risk after adjustment for confounders, but only FVIIa-AT remained a predictor of mortality by including both FVIIa-AT and total TF pathway inhibitor in Cox regression (hazard ratio, 2.80; 95% CI, 1.23-6.39; the highest vs the lowest quartile). This association remained significant even after adjustment for extracellular vesicle-associated TF-dependent procoagulant activity. In the subgroup of patients with primary liver cancer, patients with high TF mRNA levels had an increased mortality risk compared with that for those with low TF mRNA levels (hazard ratio, 1.92; 95% CI, 1.03-3.57), and there was a consistent correlation among high FVIIa-AT levels, high TF mRNA levels, and increased risk of mortality. Conclusion High FVIIa-AT levels may allow the identification of patients with cancer involving high TF expression and predict a higher mortality risk in liver cancer.
Collapse
Affiliation(s)
| | - Sara Moruzzi
- Department of Medicine, University of Verona, Verona, Italy
| | - Silvia Udali
- Department of Medicine, University of Verona, Verona, Italy
| | | | - Laura Di Santo
- Department of Medicine, University of Verona, Verona, Italy
| | | | - Marcello Baroni
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | | | | | | | - Simone Conci
- Department of Surgery, University of Verona, Verona, Italy
| | - Matthieu Grusse
- Clinical Research Department, Diagnostica Stago, Gennevilliers, France
| | | | | | | | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | | | | |
Collapse
|
75
|
Sachetto ATA, Mackman N. Evaluation of the ability of commercial enzyme-linked immunosorbent assays to measure mouse tissue factor. Res Pract Thromb Haemost 2024; 8:102325. [PMID: 38404939 PMCID: PMC10883813 DOI: 10.1016/j.rpth.2024.102325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/29/2023] [Accepted: 01/04/2024] [Indexed: 02/27/2024] Open
Abstract
Background Tissue factor (TF) is the primary cellular initiator of the blood coagulation cascade. Increased levels of TF expression on circulating monocytes or on extracellular vesicles (EVs) are associated with thrombosis in a variety of diseases, including sepsis and COVID-19. Objectives Here, we aimed to evaluate the ability of 4 commercial TF enzyme-linked immunosorbent assays (ELISAs) to measure mouse TF in cells and plasma. Methods We used 4 commercial mouse TF ELISAs (SimpleStep, R&D Systems, MyBioSource [sandwich], and MyBioSource [competitive]). We used recombinant mouse TF (rmTF; 16-1000 pg/mL), cell lysates from a TF-expressing mouse pancreatic cancer cell line, and plasma and EVs isolated from plasma from mice injected with vehicle or bacterial lipopolysaccharide (LPS). Results The 2 MyBioSource kits failed to detect rmTF or TF in cell lysates. The SimpleStep and R&D kits detected rmTF in buffer or spiked into plasma in a concentration-dependent manner. These kits also detected TF in cell lysates from a mouse pancreatic cancer cell line. A higher signal was observed with the SimpleStep kit compared to the R&D kit. However, the SimpleStep and R&D kits failed to detect TF in plasma or EVs from LPS-treated mice. Conclusion Our results indicate that some commercial ELISAs can be used to measure mouse TF levels in cell lysates but they cannot detect TF in plasma or EVs from endotoxemic mice.
Collapse
Affiliation(s)
- Ana T A Sachetto
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nigel Mackman
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
76
|
Fukui S, Wada H, Ikeda K, Kobayashi M, Shimada Y, Nakazawa Y, Mizutani H, Ichikawa Y, Nishiura Y, Moritani I, Yamanaka Y, Inoue H, Shimaoka M, Shimpo H, Shiraki K. Detection of a Prethrombotic State in Patients with Hepatocellular Carcinoma, Using a Clot Waveform Analysis. Clin Appl Thromb Hemost 2024; 30:10760296241246002. [PMID: 38591954 PMCID: PMC11005492 DOI: 10.1177/10760296241246002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/10/2024] Open
Abstract
Background: Although hepatocellular carcinoma (HCC) is frequently associated with thrombosis, it is also associated with liver cirrhosis (LC) which causes hemostatic abnormalities. Therefore, hemostatic abnormalities in patients with HCC were examined using a clot waveform analysis (CWA). Methods: Hemostatic abnormalities in 88 samples from HCC patients, 48 samples from LC patients and 153 samples from patients with chronic liver diseases (CH) were examined using a CWA-activated partial thromboplastin time (APTT) and small amount of tissue factor induced FIX activation (sTF/FIXa) assay. Results: There were no significant differences in the peak time on CWA-APTT among HCC, LC, and CH, and the peak heights of CWA-APTT were significantly higher in HCC and CH than in HVs and LC. The peak heights of the CWA-sTF/FIXa were significantly higher in HCC than in LC. The peak times of the CWA-APTT were significantly longer in stages B, C, and D than in stage A or cases of response. In the receiver operating characteristic (ROC) curve, the fibrin formation height (FFH) of the CWA-APTT and CWA-sTF/FIXa showed the highest diagnostic ability for HCC and LC, respectively. Thrombosis was observed in 13 HCC patients, and arterial thrombosis and portal vein thrombosis were frequently associated with HCC without LC and HCC with LC, respectively. In ROC, the peak time×peak height of the first derivative on the CWA-sTF/FIXa showed the highest diagnostic ability for thrombosis. Conclusion: The CWA-APTT and CWA-sTF/FIXa can increase the evaluability of HCC including the association with LC and thrombotic complications.
Collapse
Affiliation(s)
- Shunsuke Fukui
- Research Center, Mie Prefectural General Medical Center, Yokkaichi, Japan
| | - Hideo Wada
- Research Center, Mie Prefectural General Medical Center, Yokkaichi, Japan
- Department of General and Laboratory Medicine, Mie Prefectural General Medical Center, Yokkaichi, Japan
| | - Kohei Ikeda
- Research Center, Mie Prefectural General Medical Center, Yokkaichi, Japan
| | - Mayu Kobayashi
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, Japan
| | - Yasuaki Shimada
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, Japan
| | - Yuuichi Nakazawa
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, Japan
| | - Hiroki Mizutani
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, Japan
| | - Yuhuko Ichikawa
- Department of Central Laboratory Medicine, Mie Prefectural General Medical Center, Yokkaichi, Japan
| | - Yuuki Nishiura
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, Japan
| | - Isao Moritani
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, Japan
| | - Yutaka Yamanaka
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, Japan
| | - Hidekazu Inoue
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, Japan
| | - Motomu Shimaoka
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hideto Shimpo
- Mie Prefectural General Medical Center, Yokkaichi, Japan
| | - Katsuya Shiraki
- Research Center, Mie Prefectural General Medical Center, Yokkaichi, Japan
- Department of General and Laboratory Medicine, Mie Prefectural General Medical Center, Yokkaichi, Japan
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, Japan
| |
Collapse
|
77
|
Mackman N, Tawil N, Rak J. Tissue factor at the crossroads of coagulation and radiation response in glioblastoma. J Thromb Haemost 2024; 22:3-6. [PMID: 38173243 DOI: 10.1016/j.jtha.2023.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 01/05/2024]
Affiliation(s)
- Nigel Mackman
- Division of Hematology, Department of Medicine, The University of North Carolina at Chapel Hill, North Carolina, USA; University of North Carolina at Chapel Hill Blood Research Center, The University of North Carolina at Chapel Hill, North Carolina, USA.
| | - Nadim Tawil
- Department of Experimental Medicine, McGill University, Montreal, Quebec, Canada; Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Janusz Rak
- Department of Experimental Medicine, McGill University, Montreal, Quebec, Canada; Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
78
|
Nappi F. To Gain Insights into the Pathophysiological Mechanisms of the Thrombo-Inflammatory Process in the Atherosclerotic Plaque. Int J Mol Sci 2023; 25:47. [PMID: 38203218 PMCID: PMC10778759 DOI: 10.3390/ijms25010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/17/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Thromboinflammation, the interplay between thrombosis and inflammation, is a significant pathway that drives cardiovascular and autoimmune diseases, as well as COVID-19. SARS-CoV-2 causes inflammation and blood clotting issues. Innate immune cells have emerged as key modulators of this process. Neutrophils, the most predominant white blood cells in humans, are strategically positioned to promote thromboinflammation. By releasing decondensed chromatin structures called neutrophil extracellular traps (NETs), neutrophils can initiate an organised cell death pathway. These structures are adorned with histones, cytoplasmic and granular proteins, and have cytotoxic, immunogenic, and prothrombotic effects that can hasten disease progression. Protein arginine deiminase 4 (PAD4) catalyses the citrullination of histones and is involved in the release of extracellular DNA (NETosis). The neutrophil inflammasome is also required for this process. Understanding the link between the immunological function of neutrophils and the procoagulant and proinflammatory activities of monocytes and platelets is important in understanding thromboinflammation. This text discusses how vascular blockages occur in thromboinflammation due to the interaction between neutrophil extracellular traps and ultra-large VWF (von Willebrand Factor). The activity of PAD4 is important for understanding the processes that drive thromboinflammation by linking the immunological function of neutrophils with the procoagulant and proinflammatory activities of monocytes and platelets. This article reviews how vaso-occlusive events in thrombo-inflammation occur through the interaction of neutrophil extracellular traps with von Willebrand factor. It highlights the relevance of PAD4 in neutrophil inflammasome assembly and neutrophil extracellular traps in thrombo-inflammatory diseases such as atherosclerosis and cardiovascular disease. Interaction between platelets, VWF, NETs and inflammasomes is critical for the progression of thromboinflammation in several diseases and was recently shown to be active in COVID-19.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| |
Collapse
|
79
|
Liang P, Bi T, Zhou Y, Wang C, Ma Y, Xu H, Shen H, Ren W, Yang S. Carbonized Platycladus orientalis Derived Carbon Dots Accelerate Hemostasis through Activation of Platelets and Coagulation Pathways. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303498. [PMID: 37607318 DOI: 10.1002/smll.202303498] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/14/2023] [Indexed: 08/24/2023]
Abstract
Achieving rapid and effective hemostasis remains a multidisciplinary challenge. Here, distinctive functional carbon dots derived from carbonized Platycladus orientalis (CPO-CDs) are developed using one-step hydrothermal method. The negatively charged surface of CPO-CDs retains partial functional groups from CPO precursor, exhibiting excellent water solubility and high biocompatibility. Both rat liver injury model and tail amputation model have confirmed the rapid and effective hemostatic performance of CPO-CDs on exogenous hemorrhage. Further, on endogenous blood-heat hemorrhage syndrome rat model, CPO-CDs could inhibit hemorrhage and alleviate inflammation response. Interestingly, the excellent hemostasis performance of CPO-CDs is ascribed to activate exogenous coagulation pathway and common coagulation pathway. More importantly, metabolomics of rat plasma suggests that the hemostasis effect of CPO-CDs is closely related to platelet functions. Therefore, the designed in vitro experiments are performed and it is discovered that CPO-CDs significantly promote platelets adhesion, activation, and aggregation. Further, the underlying mechanism investigation suggests that Src/Syk signal pathway plays a key role in platelets activation triggered by CPO-CDs. Overall, CPO-CDs with rapid and excellent hemostatic performance are discovered for the first time, which could be an excellent candidate for the treatment of hemorrhagic diseases.
Collapse
Affiliation(s)
- Pan Liang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Tao Bi
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Yanan Zhou
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Chengmei Wang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Yining Ma
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Houping Xu
- Preventive Treatment Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Hongping Shen
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Wei Ren
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Sijin Yang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
80
|
Okusaka T, Saiura A, Shimada K, Ikeda M, Ioka T, Kimura T, Hosokawa J, Takita A, Oba MS. Incidence and risk factors for venous thromboembolism in the Cancer-VTE Registry pancreatic cancer subcohort. J Gastroenterol 2023; 58:1261-1271. [PMID: 37676492 PMCID: PMC10657787 DOI: 10.1007/s00535-023-02033-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND This substudy of the Cancer-VTE Registry estimated venous thromboembolism (VTE) incidence and risk factors in pancreatic cancer patients. METHODS The Cancer-VTE Registry was an observational study that collected VTE data from patients with solid tumors across Japan. We measured baseline VTE prevalence, and at 1-year follow-up, the cumulative incidence of symptomatic and composite VTE (symptomatic VTE and incidental VTE requiring treatment), bleeding, cerebral infarction/transient ischemic attack (TIA)/systemic embolic event (SEE), and all-cause death. RESULTS Of 1006 pancreatic cancer patients, 86 (8.5%) had VTE at baseline, and seven (0.7%) had symptomatic VTE. Significant risk factors of baseline VTE were Eastern Cooperative Oncology Group performance status (ECOG PS) of 1, body mass index (BMI) ≥ 25 kg/m2, history of VTE, D-dimer > 1.2 µg/mL, and hemoglobin < 10 g/dL. At 1-year follow-up, the cumulative incidence of events was higher for pancreatic cancer vs other cancers. Pancreatic cancer patients with VTE vs those without VTE had significantly higher incidences of bleeding, cerebral infarction/TIA/SEE, and all-cause death. No significant risk factors for composite VTE were identified. CONCLUSIONS The cumulative incidence of composite VTE during cancer treatment was higher in pancreatic cancer than in other cancer types. Some risk factors for VTE prevalence at cancer diagnosis were identified. Although VTE prevalence at cancer diagnosis did not predict the subsequent 1-year incidence of composite VTE, it was a significant predictor of other events such as all-cause death in pancreatic cancer patients. TRIAL REGISTRATION UMIN Clinical Trials Registry; UMIN000024942.
Collapse
Affiliation(s)
- Takuji Okusaka
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Akio Saiura
- Department of Hepatobiliary-Pancreatic Surgery, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Kazuaki Shimada
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Masafumi Ikeda
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Tatsuya Ioka
- Oncology Center, Yamaguchi University Hospital, Ube, Japan
| | - Tetsuya Kimura
- Primary Medical Science Department, Daiichi Sankyo Co., Ltd., Chuo-ku, Tokyo, Japan
| | - Jun Hosokawa
- Primary Medical Science Department, Daiichi Sankyo Co., Ltd., Chuo-ku, Tokyo, Japan
| | - Atsushi Takita
- Data Intelligence Department, Daiichi Sankyo Co., Ltd., Shinagawa-ku, Tokyo, Japan
| | - Mari S Oba
- Department of Medical Statistics, Toho University, Ota-ku, Tokyo, Japan
- Department of Clinical Data Science, Clinical Research & Education Promotion Division, National Center of Neurology and Psychiatry, Kodaira, Japan
| |
Collapse
|
81
|
Paul S, Das K, Ghosh A, Chatterjee A, Bhoumick A, Basu A, Sen P. Coagulation factor VIIa enhances programmed death-ligand 1 expression and its stability in breast cancer cells to promote breast cancer immune evasion. J Thromb Haemost 2023; 21:3522-3538. [PMID: 37579880 DOI: 10.1016/j.jtha.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND Immunotherapy for breast cancer has not gained significant success. Coagulation factor VIIa (FVIIa)-tissue factor (TF) mediated activation of protease-activated receptor 2 (PAR2) is shown to promote metastasis and secretion of the immune-modulatory cytokines but the role of FVIIa in cancer immunology is still not well understood. OBJECTIVES Here, we aim to investigate whether FVIIa protects breast cancer cells from CD8 T-cell-mediated killing. METHODS Peripheral blood mononuclear cell-derived CD8 T cells were cocultured with vehicle or FVIIa pretreated MDAMB468 cells. The proliferation and activity of CD8 T cells were measured by flow cytometry and ELISA. An allograft model, using wild-type or TF/PAR2-deleted 4T1 cells, was employed to determine the effect of FVIIa on breast cancer immune evasion in vivo. RESULTS Here, we demonstrate that TF-FVIIa induces programmed death-ligand 1 (PD-L1) in breast cancer cells by activating PAR2. PAR2 activation triggers large tumor suppressor kinase 1 (LATS1) inactivation leading to loss of yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) phosphorylation and subsequent nuclear localization of YAP/TAZ. YAP/TAZ inhibition reduces PD-L1 expression and increases CD8 T-cell activity. We further demonstrate that, apart from transcriptional induction of PD-L1, PAR2 activation also increases PD-L1 stability by enhancing its glycosylation through N-glycosyltransferases STT3A and STT3B. CONCLUSION In a mouse model of breast cancer, tumor cell-specific PAR2 depletion leads to PD-L1 downregulation and increases anti-PD-1 immunotherapy efficacy. In conclusion, we showed that FVIIa-mediated signaling cascade in cancer cells serves as a tumor intrinsic mechanism of immunosuppression to promote cancer immune evasion.
Collapse
Affiliation(s)
- Subhojit Paul
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Kaushik Das
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Arnab Ghosh
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Akash Chatterjee
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Avinandan Bhoumick
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Abhimanyu Basu
- Department of General Surgery, Institute of Postgraduate Medical Education and Research, Kolkata, West Bengal, India
| | - Prosenjit Sen
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India.
| |
Collapse
|
82
|
Zelaya H, Arellano-Arriagada L, Fukuyama K, Matsumoto K, Marranzino G, Namai F, Salva S, Alvarez S, Agüero G, Kitazawa H, Villena J. Lacticaseibacillus rhamnosus CRL1505 Peptidoglycan Modulates the Inflammation-Coagulation Response Triggered by Poly(I:C) in the Respiratory Tract. Int J Mol Sci 2023; 24:16907. [PMID: 38069229 PMCID: PMC10707514 DOI: 10.3390/ijms242316907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Lacticaseibacillus rhamnosus CRL1505 beneficially modulates the inflammation-coagulation response during respiratory viral infections. This study evaluated the capacity of the peptidoglycan obtained from the CRL1505 strain (PG-Lr1505) to modulate the immuno-coagulative response triggered by the viral pathogen-associated molecular pattern poly(I:C) in the respiratory tract. Adult BALB/c mice were nasally treated with PG-Lr1505 for two days. Treated and untreated control mice were then nasally challenged with poly(I:C). Mice received three doses of poly(I:C) with a 24 h rest period between each administration. The immuno-coagulative response was studied after the last administration of poly(I:C). The challenge with poly(I:C) significantly increased blood and respiratory pro-inflammatory mediators, decreased prothrombin activity (PT), and increased von Willebrand factor (vWF) levels in plasma. Furthermore, tissue factor (TF), tissue factor pathway inhibitor (TFPI), and thrombomodulin (TM) expressions were increased in the lungs. PG-Lr1505-treated mice showed significant modulation of hemostatic parameters in plasma (PT in %, Control = 71.3 ± 3.8, PG-Lr1505 = 94.0 ± 4.0, p < 0.01) and lungs. Moreover, PG-Lr1505-treated mice demonstrated reduced TF in F4/80 cells from lungs, higher pro-inflammatory mediators, and increased IL-10 compared to poly(I:C) control mice (IL-10 in pg/mL, Control = 379.1 ± 12.1, PG-Lr1505 = 483.9 ± 11.3, p < 0.0001). These changes induced by PG-Lr1505 correlated with a significant reduction in lung tissue damage. Complementary in vitro studies using Raw 264.7 cells confirmed the beneficial effect of PG-Lr1505 on poly(I:C)-induced inflammation, since increased IL-10 expression, as well as reduced damage, production of inflammatory mediators, and hemostatic parameter expressions were observed. In addition, protease-activated receptor-1 (PAR1) activation in lungs and Raw 264.7 cells was observed after TLR3 stimulation, which was differentially modulated by PG-Lr1505. The peptidoglycan from L. rhamnosus CRL1505 is able to regulate inflammation, the procoagulant state, and PAR1 activation in mice and macrophages in the context of the activation of TLR3 signaling pathways, contributing to a beneficial modulation of inflammation-hemostasis crosstalk.
Collapse
Affiliation(s)
- Hortensia Zelaya
- Institute of Applied Biochemistry, Tucuman University, Tucuman 4000, Argentina; (H.Z.); (S.A.); (G.A.)
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina; (L.A.-A.); (G.M.); (S.S.)
| | - Luciano Arellano-Arriagada
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina; (L.A.-A.); (G.M.); (S.S.)
| | - Kohtaro Fukuyama
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan; (K.F.); (K.M.); (F.N.)
| | - Kaho Matsumoto
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan; (K.F.); (K.M.); (F.N.)
| | - Gabriela Marranzino
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina; (L.A.-A.); (G.M.); (S.S.)
- Facultad de Ciencias de la Salud, Universidad del Norte Santo Tomás de Aquino (UNSTA), Tucuman 4000, Argentina
| | - Fu Namai
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan; (K.F.); (K.M.); (F.N.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan
| | - Susana Salva
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina; (L.A.-A.); (G.M.); (S.S.)
| | - Susana Alvarez
- Institute of Applied Biochemistry, Tucuman University, Tucuman 4000, Argentina; (H.Z.); (S.A.); (G.A.)
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina; (L.A.-A.); (G.M.); (S.S.)
| | - Graciela Agüero
- Institute of Applied Biochemistry, Tucuman University, Tucuman 4000, Argentina; (H.Z.); (S.A.); (G.A.)
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan; (K.F.); (K.M.); (F.N.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina; (L.A.-A.); (G.M.); (S.S.)
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan; (K.F.); (K.M.); (F.N.)
| |
Collapse
|
83
|
Liu C, Liu C, Shi Z, Li Z, Wang X, Huang F. Trojan-horse mineralization of trigger factor to impregnate non-woven alginate fabrics for enhanced hemostatic efficacy. Carbohydr Polym 2023; 320:121213. [PMID: 37659813 DOI: 10.1016/j.carbpol.2023.121213] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/24/2023] [Accepted: 07/16/2023] [Indexed: 09/04/2023]
Abstract
Uncontrolled hemorrhage remains a leading cause of mortality after trauma. This work describes a facile mineralization strategy for enhancing hemostatic efficacy of alginate non-woven fabrics, involving the precipitation of amorphous CaCO3 induced by alginate fibers, along with Trojan-horse-like tissue factor (TF) encapsulation. The amorphous CaCO3 served as a transient carrier, capable of releasing Ca2+ and TF upon contact with blood. Coagulation test and rat tail cut and hemorrhaging liver models all revealed superior hemostatic capability of mineralized TF-in-alginate fabrics compared to bare fabrics, solely mineralized form, or commercial zeolite-modified gauze, benefiting from the combined hemostatic properties of alginate matrix and released Ca2+ and TF. Meanwhile, comprehensive biocompatibility and mechanical stability evaluations demonstrate the ternary composite's good biosafety. These results along with the extension study with chitosan- and cellulose-based dressings underline the great potential and versatility of polysaccharide-hemostat-mediated CaCO3 mineralization with TF integration for achieving rapid hemorrhage control.
Collapse
Affiliation(s)
- Chengkun Liu
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China
| | - Chang Liu
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China
| | - Zhuang Shi
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China
| | - Zi Li
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China
| | - Xiaoqiang Wang
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China.
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China
| |
Collapse
|
84
|
Hadjiagapiou MS, Krashias G, Christodoulou C, Pantzaris M, Lambrianides A. Serum Reactive Antibodies against the N-Methyl-D-Aspartate Receptor NR2 Subunit-Could They Act as Potential Biomarkers? Int J Mol Sci 2023; 24:16170. [PMID: 38003360 PMCID: PMC10671476 DOI: 10.3390/ijms242216170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Synaptic dysfunction and disrupted communication between neuronal and glial cells play an essential role in the underlying mechanisms of multiple sclerosis (MS). Earlier studies have revealed the importance of glutamate receptors, particularly the N-methyl-D-aspartate (NMDA) receptor, in excitotoxicity, leading to abnormal synaptic transmission and damage of neurons. Our study aimed to determine whether antibodies to the NR2 subunit of NMDAR are detected in MS patients and evaluate the correlation between antibody presence and clinical outcome. Furthermore, our focus extended to examine a possible link between NR2 reactivity and anti-coagulant antibody levels as pro-inflammatory molecules associated with MS. A cross-sectional study was carried out, including 95 patients with MS and 61 age- and gender-matched healthy controls (HCs). The enzyme-linked immunosorbent assay was used to detect anti-NR2 antibodies in serum samples of participants along with IgG antibodies against factor (F)VIIa, thrombin, prothrombin, FXa, and plasmin. According to our results, significantly elevated levels of anti-NR2 antibodies were detected in MS patients compared to HCs (p < 0.05), and this holds true when we compared the Relapsing-Remitting MS course with HCs (p < 0.05). A monotonically increasing correlation was found between NR2 seropositivity and advanced disability (rs = 0.30; p < 0.01), anti-NR2 antibodies and disease worsening (rs = 0.24; p < 0.05), as well as between antibody activity against NR2 and thrombin (rs = 0.33; p < 0.01). The presence of anti-NR2 antibodies in MS patients was less associated with anti-plasmin IgG antibodies [OR:0.96 (95%CI: 0.92-0.99); p < 0.05]; however, such an association was not demonstrated when analyzing only RRMS patients. In view of our findings, NR2-reactive antibodies may play, paving the way for further research into their potential as biomarkers and therapeutic targets in MS.
Collapse
Affiliation(s)
- Maria S. Hadjiagapiou
- Department of Neuroimmunology, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (M.S.H.); (M.P.)
| | - George Krashias
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (G.K.); (C.C.)
| | - Christina Christodoulou
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (G.K.); (C.C.)
| | - Marios Pantzaris
- Department of Neuroimmunology, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (M.S.H.); (M.P.)
| | - Anastasia Lambrianides
- Department of Neuroimmunology, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (M.S.H.); (M.P.)
| |
Collapse
|
85
|
Jiang Y, Hao M, Jiang F, Li J, Yang K, Li C, Ma L, Liu S, Kou X, Shi S, Ding X, Zhang X, Tang J. Lyophilized apoptotic vesicle-encapsulated adhesive hydrogel sponge as a rapid hemostat for traumatic hemorrhage in coagulopathy. J Nanobiotechnology 2023; 21:407. [PMID: 37924105 PMCID: PMC10623807 DOI: 10.1186/s12951-023-02128-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/24/2023] [Indexed: 11/06/2023] Open
Abstract
Rapid hemostasis of uncontrolled bleeding following traumatic injuries, especially accompanied by coagulopathies, remains a significant clinical challenge. Extracellular vesicles (EVs) show therapeutic effects for fast clotting. However, low yield, specific storage conditions, and lack of proper carriers have hindered EVs' clinical application. Herein, we establish an optimized procedure method to generate lyophilized mesenchymal stem cell-derived apoptotic vesicles (apoVs) with adhesive hydrogel sponge to show superior procoagulant activity for traumatic hemorrhage. Mechanistically, apoVs' procoagulant ability stems from their high tissue factor (TF) and phosphatidylserine (PS) expression independent of hemocytes and circulating procoagulant microparticles (cMPs). Their stable hemostatic capability was maintained after 2-month room temperature storage. Subsequently, we mixed apoVs with both phenylboronic acid grafted oxidized hyaluronic acid (PBA-HA) and poly(vinyl alcohol) (PVA) simultaneously, followed by lyophilization to construct a novel apoV-encapsulated hydrogel sponge (apoV-HS). Compared to commercial hemostats, apoV-HS exhibits rapid procoagulant ability in liver-laceration and femoral artery hemorrhage in rat and rabbit models of coagulopathies. The combination of high productivity, physiological stability, injectability, plasticity, excellent adhesivity, biocompatibility, and rapid coagulant property indicates that apoV-HS is a promising therapeutic approach for heavy hemorrhage in civilian and military populations.
Collapse
Affiliation(s)
- Yexiang Jiang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Meng Hao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Fenglin Jiang
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jiwu Li
- Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya School of Stomatology, Xiangya Stomatological Hospital, Central South University, Changsha, 410000, China
| | - Kunkun Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, NHC Key Laboratory of Digital Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, China
| | - Can Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Lan Ma
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Shiyu Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Xiaoxing Kou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Songtao Shi
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China.
| | - Xin Ding
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Xiao Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, NHC Key Laboratory of Digital Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, China.
| | - Jianxia Tang
- Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya School of Stomatology, Xiangya Stomatological Hospital, Central South University, Changsha, 410000, China.
| |
Collapse
|
86
|
Nurden AT. Molecular basis of clot retraction and its role in wound healing. Thromb Res 2023; 231:159-169. [PMID: 36008192 DOI: 10.1016/j.thromres.2022.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022]
Abstract
Clot retraction is important for the prevention of bleeding, in the manifestations of thrombosis and for tissue repair. The molecular mechanisms behind clot formation are complex. Platelet involvement begins with adhesion at sites of vessel injury followed by platelet aggregation, thrombin generation and fibrin production. Other blood cells incorporate into a fibrin mesh that is consolidated by FXIIIa-mediated crosslinking and platelet contractile activity. The latter results in the asymmetric redistribution of erythrocytes into a tighter central mass providing the clot with stability and resistance to fibrinolysis. Integrin αIIbβ3 on platelets is the key player in these events, bridging fibrin and the platelet cytoskeleton. Glycoprotein VI participates in thrombus formation but not in the retraction. Rheological and environmental factors influence clot construction with retraction driven by the platelet cytoskeleton with actomyosin acting as the motor. Activated platelets provide procoagulant activity stimulating thrombin generation together with the release of a plethora of biologically active proteins and substances from storage pools; many form chemotactic gradients within the fibrin or the underlying matrix. Also released are newly synthesized metabolites and lipid-rich vesicles that circulate within the vasculature and mimic platelet functions. Platelets and their released elements play key roles in wound healing. This includes promoting stem cell and mesenchymal stromal cell recruitment, fibroblast and endothelial cell migration, angiogenesis and matrix formation. These properties have led to the use of autologous clots in therapies designed to accelerate tissue repair while offering the potential for genetic manipulation in both inherited and acquired diseases.
Collapse
Affiliation(s)
- Alan T Nurden
- Institut Hospitalo-Universitaire LIRYC, Pessac, France.
| |
Collapse
|
87
|
Hamali HA. Hypercoagulability in Sickle Cell Disease: A Thrombo-Inflammatory Mechanism. Hemoglobin 2023; 47:205-214. [PMID: 38189099 DOI: 10.1080/03630269.2023.2301026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 12/28/2023] [Indexed: 01/09/2024]
Abstract
Sickle cell disease (SCD) is a group of inherited disorders characterized by the presence of abnormal hemoglobin S. Patients with SCD suffer from frequent episodes of anemia, chronic hemolysis, pain crisis, and vaso-occlusion. Additionally, SCD is associated with diverse and serious clinical complications, including thrombosis, which can lead to organ failure, increased morbidity, and eventually, mortality. SCD is known to be a hypercoagulable condition, and the cause of hypercoagulability is multifactorial, with the molecular basis of hemoglobin S being the main driver. The presence of hemoglobin S induces sickling of the RBCs and their subsequent hemolysis, as well as oxidative stress. Both of these processes can alter the hemostatic system, through the activation of platelets, coagulation system, and fibrinolysis, as well as depletion of coagulation inhibitors. These changes can also induce the formation of microvesicles and expression of tissue factor, leading to activation of WBCs, endothelial cell damage, and inflammatory response. Understanding the various factors that drive hypercoagulability as a thrombo-inflammatory mechanism in SCD can help provide explanations for the pathogenesis and other complications of the disease.
Collapse
Affiliation(s)
- Hassan A Hamali
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Gizan, Saudi Arabia
| |
Collapse
|
88
|
Sachetto ATA, Mackman N. Monocyte Tissue Factor Expression: Lipopolysaccharide Induction and Roles in Pathological Activation of Coagulation. Thromb Haemost 2023; 123:1017-1033. [PMID: 37168007 PMCID: PMC10615589 DOI: 10.1055/a-2091-7006] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
The coagulation system is a part of the mammalian host defense system. Pathogens and pathogen components, such as bacterial lipopolysaccharide (LPS), induce tissue factor (TF) expression in circulating monocytes that then activates the coagulation protease cascade. Formation of a clot limits dissemination of pathogens, enhances the recruitment of immune cells, and facilitates killing of pathogens. However, excessive activation of coagulation can lead to thrombosis. Here, we review studies on the mechanism of LPS induction of TF expression in monocytes and its contribution to thrombosis and disseminated intravascular coagulation. Binding of LPS to Toll-like receptor 4 on monocytes induces a transient expression of TF that involves activation of intracellular signaling pathways and binding of various transcription factors, such as c-rel/p65 and c-Fos/c-Jun, to the TF promoter. Inhibition of TF in endotoxemia and sepsis models reduces activation of coagulation and improves survival. Studies with endotoxemic mice showed that hematopoietic cells and myeloid cells play major roles in the activation of coagulation. Monocyte TF expression is also increased after surgery. Activated monocytes release TF-positive extracellular vesicles (EVs) and levels of circulating TF-positive EVs are increased in endotoxemic mice and in patients with sepsis. More recently, it was shown that inflammasomes contribute to the induction of TF expression and activation of coagulation in endotoxemic mice. Taken together, these studies indicate that monocyte TF plays a major role in activation of coagulation. Selective inhibition of monocyte TF expression may reduce pathologic activation of coagulation in sepsis and other diseases without affecting hemostasis.
Collapse
Affiliation(s)
- Ana T. A. Sachetto
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Nigel Mackman
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| |
Collapse
|
89
|
Hisada Y, Archibald SJ, Bansal K, Chen Y, Dai C, Dwarampudi S, Balas N, Hageman L, Key NS, Bhatia S, Bhatia R, Mackman N, Gangaraju R. Biomarkers of bleeding and venous thromboembolism in patients with acute leukemia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.18.23297216. [PMID: 37905148 PMCID: PMC10615001 DOI: 10.1101/2023.10.18.23297216] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Background Coagulopathy and associated bleeding and venous thromboembolism (VTE) are major causes of morbidity and mortality in patients with acute leukemia. The underlying mechanisms of these complications have not been fully elucidated. Objectives To evaluate the associations between biomarker levels and bleeding and VTE in acute leukemia patients. Patients/Method We examined plasma levels of activators, inhibitors and biomarkers of the coagulation and fibrinolytic pathways in patients ≥18 years with newly diagnosed acute leukemia compared to healthy controls. Multivariable regression models were used to examine the association of biomarkers with bleeding and VTE in acute leukemia patients. The study included 358 patients with acute leukemia (29 acute promyelocytic leukemia [APL], 253 non-APL acute myeloid leukemia [AML] and 76 acute lymphoblastic leukemia [ALL]), and 30 healthy controls. Results Patients with acute leukemia had higher levels of extracellular vesicle (EV) tissue factor (TF) activity, phosphatidylserine-positive EVs, plasminogen activator inhibitor-1 (PAI-1), plasmin-antiplasmin complexes, cell-free DNA and lower levels of citrullinated histone H3-DNA complexes compared to healthy controls. APL patients had the highest levels of EVTF activity and the lowest levels of tissue plasminogen activator among the acute leukemia patients. There were 41 bleeding and 37 VTE events in acute leukemia patients. High EVTF activity was associated with increased risk of bleeding (sHR 2.30, 95%CI 0.99-5.31) whereas high PAI-1 was associated with increased risk of VTE (sHR 3.79, 95%CI 1.40-10.28) in these patients. Conclusions Our study shows alterations in several biomarkers in acute leukemia and identifies biomarkers associated with risk of bleeding and VTE.
Collapse
Affiliation(s)
- Yohei Hisada
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Sierra J. Archibald
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Karan Bansal
- Institute for Cancer Outcomes and Survivorship, School of Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Yanjun Chen
- Institute for Cancer Outcomes and Survivorship, School of Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Chen Dai
- Institute for Cancer Outcomes and Survivorship, School of Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Sindhu Dwarampudi
- Institute for Cancer Outcomes and Survivorship, School of Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Nora Balas
- Institute for Cancer Outcomes and Survivorship, School of Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Lindsey Hageman
- Institute for Cancer Outcomes and Survivorship, School of Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Nigel S. Key
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Smita Bhatia
- Institute for Cancer Outcomes and Survivorship, School of Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Ravi Bhatia
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Nigel Mackman
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Radhika Gangaraju
- Institute for Cancer Outcomes and Survivorship, School of Medicine, University of Alabama at Birmingham, Birmingham, USA
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, USA
| |
Collapse
|
90
|
Badimon L, Arderiu G. Atherosclerotic Plaque VASA Vasorum in Diabetic Macroangiopathy: WHEN IS Important, but also HOW IS Needed. Thromb Haemost 2023; 123:999-1002. [PMID: 37353212 DOI: 10.1055/a-2116-7261] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
Affiliation(s)
- Lina Badimon
- Cardiovascular Program-ICCC, IR-Hospital de la Santa Creu i Sant Pau, IIBSantPau, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV CB16/11/00226), Madrid, Spain
| | - Gemma Arderiu
- Cardiovascular Program-ICCC, IR-Hospital de la Santa Creu i Sant Pau, IIBSantPau, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV CB16/11/00226), Madrid, Spain
| |
Collapse
|
91
|
Gomchok D, Ge RL, Wuren T. Platelets in Renal Disease. Int J Mol Sci 2023; 24:14724. [PMID: 37834171 PMCID: PMC10572297 DOI: 10.3390/ijms241914724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Kidney disease is a major global health concern, affecting millions of people. Nephrologists have shown interest in platelets because of coagulation disorders caused by renal diseases. With a better understanding of platelets, it has been found that these anucleate and abundant blood cells not only play a role in hemostasis, but also have important functions in inflammation and immunity. Platelets are not only affected by kidney disease, but may also contribute to kidney disease progression by mediating inflammation and immune effects. This review summarizes the current evidence regarding platelet abnormalities in renal disease, and the multiple effects of platelets on kidney disease progression. The relationship between platelets and kidney disease is still being explored, and further research can provide mechanistic insights into the relationship between thrombosis, bleeding, and inflammation related to kidney disease, and elucidate targeted therapies for patients with kidney disease.
Collapse
Affiliation(s)
- Drolma Gomchok
- Research Center for High Altitude Medicine, School of Medicine, Qinghai University, Xining 810001, China; (D.G.); (R.-L.G.)
| | - Ri-Li Ge
- Research Center for High Altitude Medicine, School of Medicine, Qinghai University, Xining 810001, China; (D.G.); (R.-L.G.)
- Key Laboratory for Application for High Altitude Medicine, Qinghai University, Xining 810001, China
| | - Tana Wuren
- Research Center for High Altitude Medicine, School of Medicine, Qinghai University, Xining 810001, China; (D.G.); (R.-L.G.)
- Key Laboratory for Application for High Altitude Medicine, Qinghai University, Xining 810001, China
| |
Collapse
|
92
|
Hisada Y, Kawano T, Archibald SJ, Welch JS, Reeves BN, Mackman N. Tissue factor activates the coagulation cascade in mouse models of acute promyelocytic leukemia. Blood Adv 2023; 7:5458-5469. [PMID: 37450381 PMCID: PMC10515313 DOI: 10.1182/bloodadvances.2023010466] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023] Open
Abstract
Acute promyelocytic leukemia (APL) is associated with a high risk of bleeding and thrombosis. APL patients have an activated coagulation system, hyperfibrinolysis, and thrombocytopenia. APL cells express tissue factor (TF), a receptor and cofactor for factor VII/VIIa. This study had 2 goals. Firstly, we measured biomarkers of coagulation and fibrinolysis activation as well as platelet counts and bleeding in both mouse xenograft and allograft models of APL. Secondly, we determined the effect of inhibiting TF on the activation of coagulation in these models. We observed increased levels of plasma thrombin-antithrombin complexes (TAT), D-dimer, and plasmin-antiplasmin complexes, reduced platelet counts, and increased tail bleeding in both mouse models of APL. Fibrinogen levels decreased in the xenograft model but not in the allograft model. In contrast, the red blood cell count decreased in the allograft model but not in the xenograft model. Inhibition of APL-derived human TF with an anti-human TF monoclonal antibody reduced the level of TAT, increased platelet count, and normalized tail bleeding in a xenograft model. Inhibition of all sources of TF (APL cells and host cells) in the allograft model with a rat anti-mouse TF monoclonal antibody decreased the levels of TAT but did not affect the platelet count. Our study demonstrates that TF plays a central role in the activation of coagulation in both the xenograft and allograft mouse models of APL. These APL mouse models can be used to investigate the mechanisms of coagulopathy and thrombocytopenia in APL.
Collapse
Affiliation(s)
- Yohei Hisada
- University of North Carolina Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Tomohiro Kawano
- University of North Carolina Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Sierra J. Archibald
- University of North Carolina Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - John S. Welch
- Division of Oncology, Department of Internal Medicine, Washington University in St. Louis, St. Louis, MO
| | - Brandi N. Reeves
- University of North Carolina Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Nigel Mackman
- University of North Carolina Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
93
|
Poenou G, Heestermans M, Lafaie L, Accassat S, Moulin N, Rodière A, Petit B, Duvillard C, Mismetti P, Bertoletti L. Inhibition of Factor XI: A New Era in the Treatment of Venous Thromboembolism in Cancer Patients? Int J Mol Sci 2023; 24:14433. [PMID: 37833881 PMCID: PMC10572808 DOI: 10.3390/ijms241914433] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/03/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023] Open
Abstract
Direct oral anticoagulants against activated factor X and thrombin were the last milestone in thrombosis treatment. Step by step, they replaced antivitamin K and heparins in most of their therapeutic indications. As effective as the previous anticoagulant, the decreased but persistent risk of bleeding while using direct oral anticoagulants has created space for new therapeutics aiming to provide the same efficacy with better safety. On this basis, drug targeting factor XI emerged as an option. In particular, cancer patients might be one of the populations that will most benefit from this technical advance. In this review, after a brief presentation of the different factor IX inhibitors, we explore the potential benefit of this new treatment for cancer patients.
Collapse
Affiliation(s)
- Géraldine Poenou
- Therapeutic and Vascular Medecine Department, Saint-Etienne Universitary Hospital Center, F-42270 Saint-Priest en Jarez, France (C.D.)
- INSERM, U 1059 SAINBIOSE, Jean Monnet University, Mines Saint-Étienne, F-42023 Saint Priest en Jarez, France
| | - Marco Heestermans
- INSERM, U 1059 SAINBIOSE, Jean Monnet University, Mines Saint-Étienne, F-42023 Saint Priest en Jarez, France
- French Blood Establishement Auvergne-Rhône-Alpes, Research Department, F-42023 Saint-Etienne, France
| | - Ludovic Lafaie
- INSERM, U 1059 SAINBIOSE, Jean Monnet University, Mines Saint-Étienne, F-42023 Saint Priest en Jarez, France
- Geriatry Department, Saint-Etienne Universitary Hospital Center, F-42000 Saint-Etienne, France
| | - Sandrine Accassat
- Therapeutic and Vascular Medecine Department, Saint-Etienne Universitary Hospital Center, F-42270 Saint-Priest en Jarez, France (C.D.)
- INSERM, CIC-1408, Saint-Etienne Universitary Hospital Center, F-42055 Saint Priest en Jarez, France
| | - Nathalie Moulin
- Therapeutic and Vascular Medecine Department, Saint-Etienne Universitary Hospital Center, F-42270 Saint-Priest en Jarez, France (C.D.)
| | - Alexandre Rodière
- Therapeutic and Vascular Medecine Department, Saint-Etienne Universitary Hospital Center, F-42270 Saint-Priest en Jarez, France (C.D.)
| | - Bastien Petit
- Therapeutic and Vascular Medecine Department, Saint-Etienne Universitary Hospital Center, F-42270 Saint-Priest en Jarez, France (C.D.)
| | - Cécile Duvillard
- Therapeutic and Vascular Medecine Department, Saint-Etienne Universitary Hospital Center, F-42270 Saint-Priest en Jarez, France (C.D.)
| | - Patrick Mismetti
- Therapeutic and Vascular Medecine Department, Saint-Etienne Universitary Hospital Center, F-42270 Saint-Priest en Jarez, France (C.D.)
- INSERM, U 1059 SAINBIOSE, Jean Monnet University, Mines Saint-Étienne, F-42023 Saint Priest en Jarez, France
- INSERM, CIC-1408, Saint-Etienne Universitary Hospital Center, F-42055 Saint Priest en Jarez, France
- F-CRIN INNOVTE Network, F-42000 Saint-Etienne, France
| | - Laurent Bertoletti
- Therapeutic and Vascular Medecine Department, Saint-Etienne Universitary Hospital Center, F-42270 Saint-Priest en Jarez, France (C.D.)
- INSERM, U 1059 SAINBIOSE, Jean Monnet University, Mines Saint-Étienne, F-42023 Saint Priest en Jarez, France
- INSERM, CIC-1408, Saint-Etienne Universitary Hospital Center, F-42055 Saint Priest en Jarez, France
- F-CRIN INNOVTE Network, F-42000 Saint-Etienne, France
| |
Collapse
|
94
|
Wang C, Wen S, Zhou L. Splenic Infarction with Myocardial Injury in a Diabetic Patient: A Case Report. Diabetes Metab Syndr Obes 2023; 16:2929-2937. [PMID: 37771467 PMCID: PMC10522457 DOI: 10.2147/dmso.s427586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023] Open
Abstract
Splenic infarction (SI) is an uncommon complication of type 2 diabetes (T2D). Diabetes predisposes individuals to blood vessel abnormalities, such as atherosclerosis or thrombosis, increasing the risk of vessel occlusion and subsequent tissue infarction. If the diabetic patient has other serious diseases, such as a severe pneumonia infection and acute cardiac infarction, SI incidence may go unrecognized, making it challenging for physicians to identify. This case report discussed an 80-year-old hospitalized diabetic woman with a history of chronic bronchitis and 20 years of T2D who suffered an SI. The patient was at elevated risk for thrombosis of atrial fibrillation, manifested as an embolism of the spleen characterized by a high concentration of white blood cells. This patient also demonstrated a rapid increase in cardiac biomarkers troponin I, suggesting acute myocardial infarction (AMI) and increased amylase, which could not preclude the concern about the existence of acute pancreatitis. Abdominal CT displayed the calcification of only the splenic and other arteries, and low-density shadows were observed at the center portion of the spleen. This case demonstrated the significant occurrence of thrombotic complications in various blood vessels of multiple organs in T2D patients. Thus, clinicians should be aware of the possibility of simultaneous acute vascular infarction of several organs in diabetic patients with prior vascular constriction.
Collapse
Affiliation(s)
- Congcong Wang
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, People’s Republic of China
| | - Song Wen
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, People’s Republic of China
| | - Ligang Zhou
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, People’s Republic of China
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
| |
Collapse
|
95
|
He S, He X, Pan S, Jiang W. Exploring the Mechanism of Chuanxiong Rhizoma against Thrombosis Based on Network Pharmacology, Molecular Docking and Experimental Verification. Molecules 2023; 28:6702. [PMID: 37764479 PMCID: PMC10535320 DOI: 10.3390/molecules28186702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Chuanxiong rhizoma (CX) has been utilized for centuries as a traditional herb to treat blood stasis syndromes. However, the pharmacological mechanisms are still not completely revealed. This research was aimed at exploring the molecular mechanisms of CX treatment for thrombosis. Network pharmacology was used to predict the potential anti-thrombosis mechanism after correlating the targets of active components with targets of thrombosis. Furthermore, we verified the mechanism of using CX to treat thrombosis via molecular docking and in vitro experiments. Network pharmacology results showed that a total of 18 active ingredients and 65 targets of CX treatment for thrombosis were collected, including 8 core compounds and 6 core targets. We revealed for the first time that tissue factor (TF) had a close relationship with most core targets of CX in the treatment of thrombosis. TF is a primary coagulation factor in physiological hemostasis and pathological thrombosis. Furthermore, core components of CX have strong affinity for core targets and TF according to molecular docking analysis. The in vitro experiments indicated that Ligustilide (LIG), the representative component of CX, could inhibit TF procoagulant activity, TF mRNA and protein over-expression in a dose-dependent manner in EA.hy926 cells through the PI3K/Akt/NF-κB signaling pathway. This work demonstrated that hemostasis or blood coagulation was one of the important biological processes in the treatment of thrombosis with CX, and TF also might be a central target of CX when used for treating thrombosis. The inhibition of TF might be a novel mechanism of CX in the treatment of thrombosis.
Collapse
Affiliation(s)
- Shasha He
- School of Pharmacy, Guizhou University, Guiyang 550025, China; (S.H.); (X.H.); (S.P.)
| | - Xuhua He
- School of Pharmacy, Guizhou University, Guiyang 550025, China; (S.H.); (X.H.); (S.P.)
| | - Shujuan Pan
- School of Pharmacy, Guizhou University, Guiyang 550025, China; (S.H.); (X.H.); (S.P.)
- Engineering Research Center of the Utilization for Characteristic Bio-Pharmaceutical Resources in Southwest, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Wenwen Jiang
- School of Pharmacy, Guizhou University, Guiyang 550025, China; (S.H.); (X.H.); (S.P.)
| |
Collapse
|
96
|
Vasudevan SO, Behl B, Rathinam VA. Pyroptosis-induced inflammation and tissue damage. Semin Immunol 2023; 69:101781. [PMID: 37352727 PMCID: PMC10598759 DOI: 10.1016/j.smim.2023.101781] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 06/25/2023]
Abstract
Pyroptosis is a programmed necrotic cell death executed by gasdermins, a family of pore-forming proteins. The cleavage of gasdermins by specific proteases enables their pore-forming activity. The activation of the prototype member of the gasdermin family, gasdermin D (GSDMD), is linked to innate immune monitoring by inflammasomes. Additional gasdermins such as GSDMA, GSDMB, GSDMC, and GSDME are activated by inflammasome-independent mechanisms. Pyroptosis is emerging as a key host defense strategy against pathogens. However, excessive pyroptosis causes cytokine storm and detrimental inflammation leading to tissue damage and organ dysfunction. Consequently, dysregulated pyroptotic responses contribute to the pathogenesis of various diseases, including sepsis, atherosclerosis, acute respiratory distress syndrome, and neurodegenerative disorders. This review will discuss the inflammatory consequences of pyroptosis and the mechanisms of pyroptosis-induced tissue damage and disease pathogenesis.
Collapse
Affiliation(s)
- Swathy O Vasudevan
- Department of Immunology, UConn Health School of Medicine, 263 Farmington Ave, Farmington, CT 06030, USA
| | | | - Vijay A Rathinam
- Department of Immunology, UConn Health School of Medicine, 263 Farmington Ave, Farmington, CT 06030, USA.
| |
Collapse
|
97
|
Langer F, Quick H, Beitzen-Heineke A, Janjetovic S, Mäder J, Lehr C, Bokemeyer C, Kuta P, Renné T, Fiedler W, Beckmann L, Klingler F, Rolling CC. Regulation of coagulation activation in newly diagnosed AML by the heme enzyme myeloperoxidase. Thromb Res 2023; 229:155-163. [PMID: 37473552 DOI: 10.1016/j.thromres.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
INTRODUCTION Patients with acute myeloid leukemia (AML) are at increased risk of thrombohemorrhagic complications. Overexpressed tissue factor (TF) on AML blasts contributes to systemic coagulation activation. We have recently shown that the heme enzyme myeloperoxidase (MPO) negatively regulates TF procoagulant activity (PCA) on myelomonocytic cells in vitro. We now aimed to further characterize the functional interaction of MPO and TF in AML in vivo. METHODS We prospectively recruited 66 patients with newly diagnosed AML. TF PCA of isolated peripheral blood mononuclear cells (PBMC) was assessed by single-stage clotting assay in the presence or absence of inhibitors against MPO catalytic activity (ABAH) or against MPO-binding integrins (anti-CD18). MPO in plasma and in AML blasts was measured by ELISA, and plasma D-dimers and prothrombin fragment F1+2 were quantified by automated immunoturbidimetric and chemiluminescence assays, respectively. RESULTS Patients with AML had significantly higher MPO plasma levels compared to healthy controls and exhibited increased levels of D-dimers and F1+2. In vivo thrombin generation was mediated by TF PCA on circulating PBMC. Ex vivo incubation of isolated PBMC with ABAH or anti-CD18 antibody resulted in either increased or decreased TF PCA. The strong and robust correlation of F1+2 with TF PCA of circulating PBMC was abrogated at MPO plasma levels higher than 150 ng/mL, indicating a modulatory role for MPO on TF-mediated in vivo thrombin generation above this threshold. CONCLUSION Our study indicates that catalytically active MPO released by circulating myeloblasts regulates TF-dependent coagulation in patients with newly diagnosed AML in a CD18-dependent manner.
Collapse
Affiliation(s)
- Florian Langer
- Oncology, Hematology and BMT with section of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hanna Quick
- Oncology, Hematology and BMT with section of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Antonia Beitzen-Heineke
- Oncology, Hematology and BMT with section of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Snjezana Janjetovic
- Klinik für Hämatologie und Zelltherapie, Helios Klinikum Berlin-Buch, Berlin, Germany
| | - Jonathan Mäder
- Oncology, Hematology and BMT with section of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carina Lehr
- Oncology, Hematology and BMT with section of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Bokemeyer
- Oncology, Hematology and BMT with section of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Piotr Kuta
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland; Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Walter Fiedler
- Oncology, Hematology and BMT with section of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lennart Beckmann
- Oncology, Hematology and BMT with section of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Felix Klingler
- Oncology, Hematology and BMT with section of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christina C Rolling
- Oncology, Hematology and BMT with section of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
98
|
Jo J, Diaz M, Horbinski C, Mackman N, Bagley S, Broekman M, Rak J, Perry J, Pabinger I, Key NS, Schiff D. Epidemiology, biology, and management of venous thromboembolism in gliomas: An interdisciplinary review. Neuro Oncol 2023; 25:1381-1394. [PMID: 37100086 PMCID: PMC10398809 DOI: 10.1093/neuonc/noad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023] Open
Abstract
Patients with diffuse glioma are at high risk of developing venous thromboembolism (VTE) over the course of the disease, with up to 30% incidence in patients with glioblastoma (GBM) and a lower but nonnegligible risk in lower-grade gliomas. Recent and ongoing efforts to identify clinical and laboratory biomarkers of patients at increased risk offer promise, but to date, there is no proven role for prophylaxis outside of the perioperative period. Emerging data suggest a higher risk of VTE in patients with isocitrate dehydrogenase (IDH) wild-type glioma and the potential mechanistic role of IDH mutation in the suppression of production of the procoagulants tissue factor and podoplanin. According to published guidelines, therapeutic anticoagulation with low molecular weight heparin (LMWH) or alternatively, direct oral anticoagulants (DOACs) in patients without increased risk of gastrointestinal or genitourinary bleeding is recommended for VTE treatment. Due to the elevated risk of intracranial hemorrhage (ICH) in GBM, anticoagulation treatment remains challenging and at times fraught. There are conflicting data on the risk of ICH with LMWH in patients with glioma; small retrospective studies suggest DOACs may convey lower ICH risk than LMWH. Investigational anticoagulants that prevent thrombosis without impairing hemostasis, such as factor XI inhibitors, may carry a better therapeutic index and are expected to enter clinical trials for cancer-associated thrombosis.
Collapse
Affiliation(s)
- Jasmin Jo
- Department of Internal Medicine, Division of Hematology and Oncology, East Carolina University, Greenville, NC, USA
| | - Maria Diaz
- Department of Neurology, Division of Neuro-Oncology, Columbia University, New York, NY, USA
| | - Craig Horbinski
- Department of Pathology, Northwestern University, Chicago, IL, USA
| | - Nigel Mackman
- Department of Medicine and UNC Blood Research Center, University of North Carolina, Chapel Hill, NC, USA
| | - Stephen Bagley
- Department of Medicine, University of Pennsylvania, Philadelphia PA, USA
| | - Marika Broekman
- Department of Neurosurgery, University Medical Center, Utrecht, The Netherlands
| | - Janusz Rak
- Department of Pediatrics, McGill University, Montreal, Canada
| | - James Perry
- Department of Neurology, Sunnybrook Health Sciences Center, Toronto, Canada
| | - Ingrid Pabinger
- Department of Medicine, Medical University of Vienna, Vienna, Austria
| | - Nigel S Key
- Department of Medicine and UNC Blood Research Center, University of North Carolina, Chapel Hill, NC, USA
| | - David Schiff
- Department of Neurology, Division of Neuro-Oncology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
99
|
Troisi R, Balasco N, Autiero I, Sica F, Vitagliano L. New insight into the traditional model of the coagulation cascade and its regulation: illustrated review of a three-dimensional view. Res Pract Thromb Haemost 2023; 7:102160. [PMID: 37727847 PMCID: PMC10506138 DOI: 10.1016/j.rpth.2023.102160] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 09/21/2023] Open
Abstract
The coagulation process relies on an intricate network of three-dimensional structural interactions and subtle biological regulations. In the present review, we illustrate the state of the art of the structural biology of the coagulation cascade by surveying the Protein Data Bank and the EBI AlphaFold databases. Investigations performed in the last decade have provided structural information on essentially all players involved in the process. Indeed, the initial characterization of specific and rather canonical domains has been progressively extended to complicated multidomain proteins. Recently, the application of cryogenic electron microscopy techniques has unraveled the structural features of highly complex coagulation factors, which has led to enhanced understanding. This review initially focuses on the structure of the individual factors as a function of their involvement in intrinsic, extrinsic, and common pathways. A specific emphasis is given to what is known or unknown on the structural basis of each step of the cascade. Available data providing clues on the structural recognition of the factors involved in the functional partnerships of the pathways are illustrated. Recent structures of important complexes formed by these proteins with regulators are described, focusing on the drugs used as anticoagulants and on their reversal agents. Finally, we highlight the different roles that innovative biomolecules such as aptamers may have in the regulation of the cascade.
Collapse
Affiliation(s)
- Romualdo Troisi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Naples, Italy
- Institute of Biostructures and Bioimaging, CNR, Naples, Italy
| | - Nicole Balasco
- Institute of Molecular Biology and Pathology, CNR c/o Department of Chemistry, University of Rome Sapienza, Rome, Italy
| | - Ida Autiero
- Institute of Biostructures and Bioimaging, CNR, Naples, Italy
| | - Filomena Sica
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Naples, Italy
| | | |
Collapse
|
100
|
Richards CM, McRae SA, Ranger AL, Klegeris A. Extracellular histones as damage-associated molecular patterns in neuroinflammatory responses. Rev Neurosci 2023; 34:533-558. [PMID: 36368030 DOI: 10.1515/revneuro-2022-0091] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/18/2022] [Indexed: 07/20/2023]
Abstract
The four core histones H2A, H2B, H3, H4, and the linker histone H1 primarily bind DNA and regulate gene expression within the nucleus. Evidence collected mainly from the peripheral tissues illustrates that histones can be released into the extracellular space by activated or damaged cells. In this article, we first summarize the innate immune-modulatory properties of extracellular histones and histone-containing complexes, such as nucleosomes, and neutrophil extracellular traps (NETs), described in peripheral tissues. There, histones act as damage-associated molecular patterns (DAMPs), which are a class of endogenous molecules that trigger immune responses by interacting directly with the cellular membranes and activating pattern recognition receptors (PRRs), such as toll-like receptors (TLR) 2, 4, 9 and the receptor for advanced glycation end-products (RAGE). We then focus on the available evidence implicating extracellular histones as DAMPs of the central nervous system (CNS). It is becoming evident that histones are present in the brain parenchyma after crossing the blood-brain barrier (BBB) or being released by several types of brain cells, including neurons, microglia, and astrocytes. However, studies on the DAMP-like effects of histones on CNS cells are limited. For example, TLR4 is the only known molecular target of CNS extracellular histones and their interactions with other PRRs expressed by brain cells have not been observed. Nevertheless, extracellular histones are implicated in the pathogenesis of a variety of neurological disorders characterized by sterile neuroinflammation; therefore, detailed studies on the role these proteins and their complexes play in these pathologies could identify novel therapeutic targets.
Collapse
Affiliation(s)
- Christy M Richards
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna V1V 1V7, BC, Canada
| | - Seamus A McRae
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna V1V 1V7, BC, Canada
| | - Athena L Ranger
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna V1V 1V7, BC, Canada
| | - Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna V1V 1V7, BC, Canada
| |
Collapse
|