51
|
Kwong JQ, Huo J, Bround MJ, Boyer JG, Schwanekamp JA, Ghazal N, Maxwell JT, Jang YC, Khuchua Z, Shi K, Bers DM, Davis J, Molkentin JD. The mitochondrial calcium uniporter underlies metabolic fuel preference in skeletal muscle. JCI Insight 2018; 3:121689. [PMID: 30429366 DOI: 10.1172/jci.insight.121689] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 10/04/2018] [Indexed: 01/17/2023] Open
Abstract
The mitochondrial Ca2+ uniporter (MCU) complex mediates acute mitochondrial Ca2+ influx. In skeletal muscle, MCU links Ca2+ signaling to energy production by directly enhancing the activity of key metabolic enzymes in the mitochondria. Here, we examined the role of MCU in skeletal muscle development and metabolic function by generating mouse models for the targeted deletion of Mcu in embryonic, postnatal, and adult skeletal muscle. Loss of Mcu did not affect muscle growth and maturation or otherwise cause pathology. Skeletal muscle-specific deletion of Mcu in mice also did not affect myofiber intracellular Ca2+ handling, but it did inhibit acute mitochondrial Ca2+ influx and mitochondrial respiration stimulated by Ca2+, resulting in reduced acute exercise performance in mice. However, loss of Mcu also resulted in enhanced muscle performance under conditions of fatigue, with a preferential shift toward fatty acid metabolism, resulting in reduced body fat with aging. Together, these results demonstrate that MCU-mediated mitochondrial Ca2+ regulation underlies skeletal muscle fuel selection at baseline and under enhanced physiological demands, which affects total homeostatic metabolism.
Collapse
Affiliation(s)
- Jennifer Q Kwong
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA.,Department of Pediatrics, Division of Cardiovascular Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jiuzhou Huo
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Michael J Bround
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Justin G Boyer
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jennifer A Schwanekamp
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Nasab Ghazal
- Department of Pediatrics, Division of Cardiovascular Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Joshua T Maxwell
- Department of Pediatrics, Division of Cardiovascular Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Young C Jang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Zaza Khuchua
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA.,Sechenov University, Moscow, Russia
| | - Kevin Shi
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis, California, USA
| | - Jennifer Davis
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Jeffery D Molkentin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA.,Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
52
|
Cardiac-specific Conditional Knockout of the 18-kDa Mitochondrial Translocator Protein Protects from Pressure Overload Induced Heart Failure. Sci Rep 2018; 8:16213. [PMID: 30385779 PMCID: PMC6212397 DOI: 10.1038/s41598-018-34451-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 10/18/2018] [Indexed: 01/17/2023] Open
Abstract
Heart failure (HF) is characterized by abnormal mitochondrial calcium (Ca2+) handling, energy failure and impaired mitophagy resulting in contractile dysfunction and myocyte death. We have previously shown that the 18-kDa mitochondrial translocator protein of the outer mitochondrial membrane (TSPO) can modulate mitochondrial Ca2+ uptake. Experiments were designed to test the role of the TSPO in a murine pressure-overload model of HF induced by transverse aortic constriction (TAC). Conditional, cardiac-specific TSPO knockout (KO) mice were generated using the Cre-loxP system. TSPO-KO and wild-type (WT) mice underwent TAC for 8 weeks. TAC-induced HF significantly increased TSPO expression in WT mice, associated with a marked reduction in systolic function, mitochondrial Ca2+ uptake, complex I activity and energetics. In contrast, TSPO-KO mice undergoing TAC had preserved ejection fraction, and exhibited fewer clinical signs of HF and fibrosis. Mitochondrial Ca2+ uptake and energetics were restored in TSPO KO mice, associated with decreased ROS, improved complex I activity and preserved mitophagy. Thus, HF increases TSPO expression, while preventing this increase limits the progression of HF, preserves ATP production and decreases oxidative stress, thereby preventing metabolic failure. These findings suggest that pharmacological interventions directed at TSPO may provide novel therapeutics to prevent or treat HF.
Collapse
|
53
|
Wang P, Fernandez-Sanz C, Wang W, Sheu SS. Why don't mice lacking the mitochondrial Ca 2+ uniporter experience an energy crisis? J Physiol 2018; 598:1307-1326. [PMID: 30218574 DOI: 10.1113/jp276636] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/28/2018] [Indexed: 01/15/2023] Open
Abstract
Current dogma holds that the heart balances energy demand and supply effectively and sustainably by sequestering enough Ca2+ into mitochondria during heartbeats to stimulate metabolic enzymes in the tricarboxylic acid (TCA) cycle and electron transport chain (ETC). This process is called excitation-contraction-bioenergetics (ECB) coupling. Recent breakthroughs in identifying the mitochondrial Ca2+ uniporter (MCU) and its associated proteins have opened up new windows for interrogating the molecular mechanisms of mitochondrial Ca2+ homeostasis regulation and its role in ECB coupling. Despite remarkable progress made in the past 7 years, it has been surprising, almost disappointing, that germline MCU deficiency in mice with certain genetic background yields viable pups, and knockout of the MCU in adult heart does not cause lethality. Moreover, MCU deficiency results in few adverse phenotypes, normal performance, and preserved bioenergetics in the heart at baseline. In this review, we briefly assess the existing literature on mitochondrial Ca2+ homeostasis regulation and then we consider possible explanations for why MCU-deficient mice are spared from energy crises under physiological conditions. We propose that MCU and/or mitochondrial Ca2+ may have limited ability to set ECB coupling, that other mitochondrial Ca2+ handling mechanisms may play a role, and that extra-mitochondrial Ca2+ may regulate ECB coupling. Since the heart needs to regenerate a significant amount of ATP to assure the perpetuation of heartbeats, multiple mechanisms are likely to work in concert to match energy supply with demand.
Collapse
Affiliation(s)
- Pei Wang
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Celia Fernandez-Sanz
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Wang Wang
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Shey-Shing Sheu
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| |
Collapse
|
54
|
Rog-Zielinska EA, O'Toole ET, Hoenger A, Kohl P. Mitochondrial Deformation During the Cardiac Mechanical Cycle. Anat Rec (Hoboken) 2018; 302:146-152. [PMID: 30302911 PMCID: PMC6312496 DOI: 10.1002/ar.23917] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/22/2018] [Accepted: 05/11/2018] [Indexed: 12/17/2022]
Abstract
Cardiomyocytes both cause and experience continual cyclic deformation. The exact effects of this deformation on the properties of intracellular organelles are not well characterized, although they are likely to be relevant for cardiomyocyte responses to active and passive changes in their mechanical environment. In the present study we provide three‐dimensional ultrastructural evidence for mechanically induced mitochondrial deformation in rabbit ventricular cardiomyocytes over a range of sarcomere lengths representing myocardial tissue stretch, an unloaded “slack” state, and contracture. We also show structural indications for interaction of mitochondria with one another, as well as with other intracellular elements such as microtubules, sarcoplasmic reticulum and T‐tubules. The data presented here help to contextualize recent reports on the mechanosensitivity and cell‐wide connectivity of the mitochondrial network and provide a structural framework that may aide interpretation of mechanically‐regulated molecular signaling in cardiac cells. Anat Rec, 302:146–152, 2019. © 2018 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.
Collapse
Affiliation(s)
- E A Rog-Zielinska
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg, Bad Krozingen, and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - E T O'Toole
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado, USA
| | - A Hoenger
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado, USA
| | - P Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg, Bad Krozingen, and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
55
|
Bioenergetic Feedback between Heart Cell Contractile Machinery and Mitochondrial 3D Deformations. Biophys J 2018; 115:1603-1613. [PMID: 30274832 DOI: 10.1016/j.bpj.2018.08.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 08/12/2018] [Accepted: 08/29/2018] [Indexed: 12/21/2022] Open
Abstract
In the heart, mitochondria are arranged in pairs sandwiched between the contractile machinery, which is the major ATP consumer. Thus, in response to the contraction-relaxation cycle of the cell, the mitochondrial membrane should deform accordingly. Membrane deformations in isolated ATP synthesis or in isolated mitochondria affect ATP production. However, it is unknown whether physiological deformation of the mitochondrial membrane in response to the contraction-relaxation cycle can act as a bioenergetic signaling mechanism between ATP demand to supply. We used both experimental and computational tools to reveal whether bioenergetic feedback exists between heart cell contractile machinery and mitochondrial three-dimensional (3D) deformations. We measured the mitochondrial 3D deformation in contracting rabbit cardiac myocytes and used published data on rat cardiac myocytes. These measurements were an input to a novel biophysics model that includes a description of ionic molecules on the mitochondrial membrane, Ca2+ cycling, and mitochondrial membrane stress. As is the case for rat cardiomyocytes, in rabbit cardiomyocytes, the mitochondrial length contracted and expanded with a similar dynamic as the sarcomere length. In contrast, the mitochondrial width expanded and then contracted with a similar dynamic as the mitochondrial length. Differences in the extent of deformation and fractional deformation between the width- and thick-axes were quantified and interpreted as the degree anisotropy between those respective axes. Finally, the model predicts that significant bioenergetic feedback between heart cell contractile machinery and mitochondrial 3D deformations does exist in unloaded rabbit and rat cells. However, this feedback is not a dominant mechanism in ATP supply to demand matching.
Collapse
|
56
|
Giorgi C, Marchi S, Pinton P. The machineries, regulation and cellular functions of mitochondrial calcium. Nat Rev Mol Cell Biol 2018; 19:713-730. [PMID: 30143745 DOI: 10.1038/s41580-018-0052-8] [Citation(s) in RCA: 525] [Impact Index Per Article: 87.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Calcium ions (Ca2+) are some of the most versatile signalling molecules, and they have many physiological functions, prominently including muscle contraction, neuronal excitability, cell migration and cell growth. By sequestering and releasing Ca2+, mitochondria serve as important regulators of cellular Ca2+. Mitochondrial Ca2+ also has other important functions, such as regulation of mitochondrial metabolism, ATP production and cell death. In recent years, identification of the molecular machinery regulating mitochondrial Ca2+ accumulation and efflux has expanded the number of (patho)physiological conditions that rely on mitochondrial Ca2+ homeostasis. Thus, expanding the understanding of the mechanisms of mitochondrial Ca2+ regulation and function in different cell types is an important task in biomedical research, which offers the possibility of targeting mitochondrial Ca2+ machinery for the treatment of several disorders.
Collapse
Affiliation(s)
- Carlotta Giorgi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Saverio Marchi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy. .,Maria Cecilia Hospital, GVM Care and Research, Cotignola, Ravenna, Italy.
| |
Collapse
|
57
|
Yang Y, Zhao J, Qiu J, Li J, Liang X, Zhang Z, Zhang X, Fu H, Korantzopoulos P, Letsas KP, Tse G, Li G, Liu T. Xanthine Oxidase Inhibitor Allopurinol Prevents Oxidative Stress-Mediated Atrial Remodeling in Alloxan-Induced Diabetes Mellitus Rabbits. J Am Heart Assoc 2018; 7:JAHA.118.008807. [PMID: 29720500 PMCID: PMC6015332 DOI: 10.1161/jaha.118.008807] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background There are several mechanisms, including inflammation, oxidative stress and abnormal calcium homeostasis, involved in the pathogenesis of atrial fibrillation. In diabetes mellitus (DM), increased oxidative stress may be attributable to higher xanthine oxidase activity. In this study, we examined the relationship between oxidative stress and atrial electrical and structural remodeling, and calcium handling abnormalities, and the potential beneficial effects of the xanthine oxidase inhibitor allopurinol upon these pathological changes. Methods and Results Ninety rabbits were randomly and equally divided into 3 groups: control, DM, and allopurinol‐treated DM group. Echocardiographic and hemodynamic assessments were performed in vivo. Serum and tissue markers of oxidative stress and atrial fibrosis, including the protein expression were examined. Atrial interstitial fibrosis was evaluated by Masson trichrome staining. ICaL was measured from isolated left atrial cardiomyocytes using voltage‐clamp techniques. Confocal microscopy was used to detect intracellular calcium transients. The Ca2+ handling protein expression was analyzed by Western blotting. Mitochondrial‐related proteins were analyzed as markers of mitochondrial function. Compared with the control group, rabbits with DM showed left ventricular hypertrophy, increased atrial interstitial fibrosis, oxidative stress and fibrosis markers, ICaL and intracellular calcium transient, and atrial fibrillation inducibility. These abnormalities were alleviated by allopurinol treatment. Conclusions Allopurinol, via its antioxidant effects, reduces atrial mechanical, structural, ion channel remodeling and mitochondrial synthesis abnormalities induced by DM‐related increases in oxidative stress.
Collapse
Affiliation(s)
- Yajuan Yang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jianping Zhao
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jiuchun Qiu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jian Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xue Liang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhiwei Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xiaowei Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Huaying Fu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | | | - Konstantinos P Letsas
- Laboratory of Cardiac Electrophysiology, Second Department of Cardiology, Evangelismos General Hospital of Athens, Greece
| | - Gary Tse
- Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong, China.,Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, China
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
58
|
Xie A, Song Z, Liu H, Zhou A, Shi G, Wang Q, Gu L, Liu M, Xie LH, Qu Z, Dudley SC. Mitochondrial Ca 2+ Influx Contributes to Arrhythmic Risk in Nonischemic Cardiomyopathy. J Am Heart Assoc 2018; 7:e007805. [PMID: 29627768 PMCID: PMC6015427 DOI: 10.1161/jaha.117.007805] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 03/07/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Heart failure (HF) is associated with increased arrhythmia risk and triggered activity. Abnormal Ca2+ handling is thought to underlie triggered activity, and mitochondria participate in Ca2+ homeostasis. METHODS AND RESULTS A model of nonischemic HF was induced in C57BL/6 mice by hypertension. Computer simulations were performed using a mouse ventricular myocyte model of HF. Isoproterenol-induced premature ventricular contractions and ventricular fibrillation were more prevalent in nonischemic HF mice than sham controls. Isolated myopathic myocytes showed decreased cytoplasmic Ca2+ transients, increased mitochondrial Ca2+ transients, and increased action potential duration at 90% repolarization. The alteration of action potential duration at 90% repolarization was consistent with in vivo corrected QT prolongation and could be explained by augmented L-type Ca2+ currents, increased Na+-Ca2+ exchange currents, and decreased total K+ currents. Of myopathic ventricular myocytes, 66% showed early afterdepolarizations (EADs) compared with 17% of sham myocytes (P<0.05). Intracellular application of 1 μmol/L Ru360, a mitochondrial Ca2+ uniporter-specific antagonist, could reduce mitochondrial Ca2+ transients, decrease action potential duration at 90% repolarization, and ameliorate EADs. Furthermore, genetic knockdown of mitochondrial Ca2+ uniporters inhibited mitochondrial Ca2+ uptake, reduced Na+-Ca2+ exchange currents, decreased action potential duration at 90% repolarization, suppressed EADs, and reduced ventricular fibrillation in nonischemic HF mice. Computer simulations showed that EADs promoted by HF remodeling could be abolished by blocking either the mitochondrial Ca2+ uniporter or the L-type Ca2+ current, consistent with the experimental observations. CONCLUSIONS Mitochondrial Ca2+ handling plays an important role in EADs seen with nonischemic cardiomyopathy and may represent a therapeutic target to reduce arrhythmic risk in this condition.
Collapse
Affiliation(s)
- An Xie
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN
| | - Zhen Song
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA
| | - Hong Liu
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN
| | - Anyu Zhou
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN
| | - Guangbin Shi
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN
| | - Qiongying Wang
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN
| | - Lianzhi Gu
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN
| | - Man Liu
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN
| | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School Rutgers, The State University of New Jersey, Newark, NJ
| | - Zhilin Qu
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA
| | - Samuel C Dudley
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN
| |
Collapse
|
59
|
Suarez J, Cividini F, Scott BT, Lehmann K, Diaz-Juarez J, Diemer T, Dai A, Suarez JA, Jain M, Dillmann WH. Restoring mitochondrial calcium uniporter expression in diabetic mouse heart improves mitochondrial calcium handling and cardiac function. J Biol Chem 2018; 293:8182-8195. [PMID: 29626093 DOI: 10.1074/jbc.ra118.002066] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/26/2018] [Indexed: 01/11/2023] Open
Abstract
Diabetes mellitus is a growing health care problem, resulting in significant cardiovascular morbidity and mortality. Diabetes also increases the risk for heart failure (HF) and decreased cardiac myocyte function, which are linked to changes in cardiac mitochondrial energy metabolism. The free mitochondrial calcium level ([Ca2+] m ) is fundamental in activating the mitochondrial respiratory chain complexes and ATP production and is also known to regulate pyruvate dehydrogenase complex (PDC) activity. The mitochondrial calcium uniporter (MCU) complex (MCUC) plays a major role in mediating mitochondrial Ca2+ import, and its expression and function therefore have a marked impact on cardiac myocyte metabolism and function. Here, we investigated MCU's role in mitochondrial Ca2+ handling, mitochondrial function, glucose oxidation, and cardiac function in the heart of diabetic mice. We found that diabetic mouse hearts exhibit altered expression of MCU and MCUC members and a resulting decrease in [Ca2+] m , mitochondrial Ca2+ uptake, mitochondrial energetic function, and cardiac function. Adeno-associated virus-based normalization of MCU levels in these hearts restored mitochondrial Ca2+ handling, reduced PDC phosphorylation levels, and increased PDC activity. These changes were associated with cardiac metabolic reprogramming toward normal physiological glucose oxidation. This reprogramming likely contributed to the restoration of both cardiac myocyte and heart function to nondiabetic levels without any observed detrimental effects. These findings support the hypothesis that abnormal mitochondrial Ca2+ handling and its negative consequences can be ameliorated in diabetes by restoring MCU levels via adeno-associated virus-based MCU transgene expression.
Collapse
Affiliation(s)
- Jorge Suarez
- Department of Medicine, University of California, San Diego, La Jolla, California 92093-0671
| | - Federico Cividini
- Department of Medicine, University of California, San Diego, La Jolla, California 92093-0671
| | - Brian T Scott
- Department of Medicine, University of California, San Diego, La Jolla, California 92093-0671
| | - Kim Lehmann
- Departments of Medicine and Pharmacology, University of California, San Diego School of Medicine, La Jolla, California 92093
| | - Julieta Diaz-Juarez
- Department of Medicine, University of California, San Diego, La Jolla, California 92093-0671; Department of Pharmacology, Instituto Nacional de Cardiología, Juan Badiano 41, Barrio Belisario Domínguez Secc XVI, 14080 Tlalpan, DF, Mexico
| | - Tanja Diemer
- Department of Medicine, University of California, San Diego, La Jolla, California 92093-0671
| | - Anzhi Dai
- Department of Medicine, University of California, San Diego, La Jolla, California 92093-0671
| | - Jorge A Suarez
- Department of Medicine, University of California, San Diego, La Jolla, California 92093-0671
| | - Mohit Jain
- Departments of Medicine and Pharmacology, University of California, San Diego School of Medicine, La Jolla, California 92093
| | - Wolfgang H Dillmann
- Department of Medicine, University of California, San Diego, La Jolla, California 92093-0671.
| |
Collapse
|
60
|
Mammucari C, Raffaello A, Vecellio Reane D, Gherardi G, De Mario A, Rizzuto R. Mitochondrial calcium uptake in organ physiology: from molecular mechanism to animal models. Pflugers Arch 2018. [PMID: 29541860 PMCID: PMC6060757 DOI: 10.1007/s00424-018-2123-2] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mitochondrial Ca2+ is involved in heterogeneous functions, ranging from the control of metabolism and ATP production to the regulation of cell death. In addition, mitochondrial Ca2+ uptake contributes to cytosolic [Ca2+] shaping thus impinging on specific Ca2+-dependent events. Mitochondrial Ca2+ concentration is controlled by influx and efflux pathways: the former controlled by the activity of the mitochondrial Ca2+ uniporter (MCU), the latter by the Na+/Ca2+ exchanger (NCLX) and the H+/Ca2+ (mHCX) exchanger. The molecular identities of MCU and of NCLX have been recently unraveled, thus allowing genetic studies on their physiopathological relevance. After a general framework on the significance of mitochondrial Ca2+ uptake, this review discusses the structure of the MCU complex and the regulation of its activity, the importance of mitochondrial Ca2+ signaling in different physiological settings, and the consequences of MCU modulation on organ physiology.
Collapse
Affiliation(s)
| | - Anna Raffaello
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | | | - Gaia Gherardi
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Agnese De Mario
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padova, Padua, Italy.
| |
Collapse
|
61
|
Content of mitochondrial calcium uniporter (MCU) in cardiomyocytes is regulated by microRNA-1 in physiologic and pathologic hypertrophy. Proc Natl Acad Sci U S A 2017; 114:E9006-E9015. [PMID: 29073097 DOI: 10.1073/pnas.1708772114] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The mitochondrial Ca2+ uniporter complex (MCUC) is a multimeric ion channel which, by tuning Ca2+ influx into the mitochondrial matrix, finely regulates metabolic energy production. In the heart, this dynamic control of mitochondrial Ca2+ uptake is fundamental for cardiomyocytes to adapt to either physiologic or pathologic stresses. Mitochondrial calcium uniporter (MCU), which is the core channel subunit of MCUC, has been shown to play a critical role in the response to β-adrenoreceptor stimulation occurring during acute exercise. The molecular mechanisms underlying the regulation of MCU, in conditions requiring chronic increase in energy production, such as physiologic or pathologic cardiac growth, remain elusive. Here, we show that microRNA-1 (miR-1), a member of the muscle-specific microRNA (myomiR) family, is responsible for direct and selective targeting of MCU and inhibition of its translation, thereby affecting the capacity of the mitochondrial Ca2+ uptake machinery. Consistent with the role of miR-1 in heart development and cardiomyocyte hypertrophic remodeling, we additionally found that MCU levels are inversely related with the myomiR content, in murine and, remarkably, human hearts from both physiologic (i.e., postnatal development and exercise) and pathologic (i.e., pressure overload) myocardial hypertrophy. Interestingly, the persistent activation of β-adrenoreceptors is likely one of the upstream repressors of miR-1 as treatment with β-blockers in pressure-overloaded mouse hearts prevented its down-regulation and the consequent increase in MCU content. Altogether, these findings identify the miR-1/MCU axis as a factor in the dynamic adaptation of cardiac cells to hypertrophy.
Collapse
|
62
|
Abstract
Cardiac contractility is regulated by changes in intracellular Ca concentration ([Ca2+]i). Normal function requires that [Ca2+]i be sufficiently high in systole and low in diastole. Much of the Ca needed for contraction comes from the sarcoplasmic reticulum and is released by the process of calcium-induced calcium release. The factors that regulate and fine-tune the initiation and termination of release are reviewed. The precise control of intracellular Ca cycling depends on the relationships between the various channels and pumps that are involved. We consider 2 aspects: (1) structural coupling: the transporters are organized within the dyad, linking the transverse tubule and sarcoplasmic reticulum and ensuring close proximity of Ca entry to sites of release. (2) Functional coupling: where the fluxes across all membranes must be balanced such that, in the steady state, Ca influx equals Ca efflux on every beat. The remainder of the review considers specific aspects of Ca signaling, including the role of Ca buffers, mitochondria, Ca leak, and regulation of diastolic [Ca2+]i.
Collapse
Affiliation(s)
- David A Eisner
- From the Unit of Cardiac Physiology, Division of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, United Kingdom.
| | - Jessica L Caldwell
- From the Unit of Cardiac Physiology, Division of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, United Kingdom
| | - Kornél Kistamás
- From the Unit of Cardiac Physiology, Division of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, United Kingdom
| | - Andrew W Trafford
- From the Unit of Cardiac Physiology, Division of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, United Kingdom
| |
Collapse
|
63
|
Pahlavan S, Morad M. Total internal reflectance fluorescence imaging of genetically engineered ryanodine receptor-targeted Ca 2+ probes in rat ventricular myocytes. Cell Calcium 2017; 66:98-110. [PMID: 28807154 DOI: 10.1016/j.ceca.2017.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 12/11/2022]
Abstract
The details of cardiac Ca2+ signaling within the dyadic junction remain unclear because of limitations in rapid spatial imaging techniques, and availability of Ca2+ probes localized to dyadic junctions. To critically monitor ryanodine receptors' (RyR2) Ca2+ nano-domains, we combined the use of genetically engineered RyR2-targeted pericam probes, (FKBP-YCaMP, Kd=150nM, or FKBP-GCaMP6, Kd=240nM) with rapid total internal reflectance fluorescence (TIRF) microscopy (resolution, ∼80nm). The punctate z-line patterns of FKBP,2-targeted probes overlapped those of RyR2 antibodies and sharply contrasted to the images of probes targeted to sarcoplasmic reticulum (SERCA2a/PLB), or cytosolic Fluo-4 images. FKBP-YCaMP signals were too small (∼20%) and too slow (2-3s) to detect Ca2+ sparks, but the probe was effective in marking where Fluo-4 Ca2+ sparks developed. FKBP-GCaMP6, on the other hand, produced rapidly decaying Ca2+ signals that: a) had faster kinetics and activated synchronous with ICa3 but were of variable size at different z-lines and b) were accompanied by spatially confined spontaneous Ca2+ sparks, originating from a subset of eager sites. The frequency of spontaneously occurring sparks was lower in FKBP-GCaMP6 infected myocytes as compared to Fluo-4 dialyzed myocytes, but isoproterenol enhanced their frequency more effectively than in Fluo-4 dialyzed cells. Nevertheless, isoproterenol failed to dissociate FKBP-GCaMP6 from the z-lines. The data suggests that FKBP-GCaMP6 binds predominantly to junctional RyR2s and has sufficient on-rate efficiency as to monitor the released Ca2+ in individual dyadic clefts, and supports the idea that β-adrenergic agonists may modulate the stabilizing effects of native FKBP on RyR2.
Collapse
Affiliation(s)
- Sara Pahlavan
- Cardiac Signaling Center of University of South Carolina, Clemson University and Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Marin Morad
- Cardiac Signaling Center of University of South Carolina, Clemson University and Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
64
|
Altered Mitochondrial Metabolism and Mechanosensation in the Failing Heart: Focus on Intracellular Calcium Signaling. Int J Mol Sci 2017; 18:ijms18071487. [PMID: 28698526 PMCID: PMC5535977 DOI: 10.3390/ijms18071487] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/28/2017] [Accepted: 07/04/2017] [Indexed: 12/26/2022] Open
Abstract
The heart consists of millions of cells, namely cardiomyocytes, which are highly organized in terms of structure and function, at both macroscale and microscale levels. Such meticulous organization is imperative for assuring the physiological pump-function of the heart. One of the key players for the electrical and mechanical synchronization and contraction is the calcium ion via the well-known calcium-induced calcium release process. In cardiovascular diseases, the structural organization is lost, resulting in morphological, electrical, and metabolic remodeling owing the imbalance of the calcium handling and promoting heart failure and arrhythmias. Recently, attention has been focused on the role of mitochondria, which seem to jeopardize these events by misbalancing the calcium processes. In this review, we highlight our recent findings, especially the role of mitochondria (dys)function in failing cardiomyocytes with respect to the calcium machinery.
Collapse
|
65
|
Schönleitner P, Schotten U, Antoons G. Mechanosensitivity of microdomain calcium signalling in the heart. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017. [PMID: 28648626 DOI: 10.1016/j.pbiomolbio.2017.06.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In cardiac myocytes, calcium (Ca2+) signalling is tightly controlled in dedicated microdomains. At the dyad, i.e. the narrow cleft between t-tubules and junctional sarcoplasmic reticulum (SR), many signalling pathways combine to control Ca2+-induced Ca2+ release during contraction. Local Ca2+ gradients also exist in regions where SR and mitochondria are in close contact to regulate energetic demands. Loss of microdomain structures, or dysregulation of local Ca2+ fluxes in cardiac disease, is often associated with oxidative stress, contractile dysfunction and arrhythmias. Ca2+ signalling at these microdomains is highly mechanosensitive. Recent work has demonstrated that increasing mechanical load triggers rapid local Ca2+ releases that are not reflected by changes in global Ca2+. Key mechanisms involve rapid mechanotransduction with reactive oxygen species or nitric oxide as primary signalling molecules targeting SR or mitochondria microdomains depending on the nature of the mechanical stimulus. This review summarizes the most recent insights in rapid Ca2+ microdomain mechanosensitivity and re-evaluates its (patho)physiological significance in the context of historical data on the macroscopic role of Ca2+ in acute force adaptation and mechanically-induced arrhythmias. We distinguish between preload and afterload mediated effects on local Ca2+ release, and highlight differences between atrial and ventricular myocytes. Finally, we provide an outlook for further investigation in chronic models of abnormal mechanics (eg post-myocardial infarction, atrial fibrillation), to identify the clinical significance of disturbed Ca2+ mechanosensitivity for arrhythmogenesis.
Collapse
Affiliation(s)
- Patrick Schönleitner
- Dept of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| | - Uli Schotten
- Dept of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| | - Gudrun Antoons
- Dept of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands.
| |
Collapse
|
66
|
Periasamy M, Maurya SK, Sahoo SK, Singh S, Reis FCG, Bal NC. Role of SERCA Pump in Muscle Thermogenesis and Metabolism. Compr Physiol 2017. [DOI: 10.1002/cphy.c160030] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
67
|
Lopez-Crisosto C, Pennanen C, Vasquez-Trincado C, Morales PE, Bravo-Sagua R, Quest AFG, Chiong M, Lavandero S. Sarcoplasmic reticulum-mitochondria communication in cardiovascular pathophysiology. Nat Rev Cardiol 2017; 14:342-360. [PMID: 28275246 DOI: 10.1038/nrcardio.2017.23] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Repetitive, calcium-mediated contractile activity renders cardiomyocytes critically dependent on a sustained energy supply and adequate calcium buffering, both of which are provided by mitochondria. Moreover, in vascular smooth muscle cells, mitochondrial metabolism modulates cell growth and proliferation, whereas cytosolic calcium levels regulate the arterial vascular tone. Physical and functional communication between mitochondria and sarco/endoplasmic reticulum and balanced mitochondrial dynamics seem to have a critical role for optimal calcium transfer to mitochondria, which is crucial in calcium homeostasis and mitochondrial metabolism in both types of muscle cells. Moreover, mitochondrial dysfunction has been associated with myocardial damage and dysregulation of vascular smooth muscle proliferation. Therefore, sarco/endoplasmic reticulum-mitochondria coupling and mitochondrial dynamics are now viewed as relevant factors in the pathogenesis of cardiac and vascular diseases, including coronary artery disease, heart failure, and pulmonary arterial hypertension. In this Review, we summarize the evidence related to the role of sarco/endoplasmic reticulum-mitochondria communication in cardiac and vascular muscle physiology, with a focus on how perturbations contribute to the pathogenesis of cardiovascular disorders.
Collapse
Affiliation(s)
- Camila Lopez-Crisosto
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
| | - Christian Pennanen
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
| | - Cesar Vasquez-Trincado
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
| | - Pablo E Morales
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
| | - Roberto Bravo-Sagua
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile.,Instituto de Nutricion y Tecnologia de los Alimentos (INTA), Universidad de Chile, Avenida El Líbano 5524, Santiago 7830490, Chile
| | - Andrew F G Quest
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile.,Centro de Estudios Moleculares de la Celula (CEMC), Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile.,Centro de Estudios Moleculares de la Celula (CEMC), Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile.,Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75235, USA
| |
Collapse
|
68
|
Wüst RCI, Helmes M, Martin JL, van der Wardt TJT, Musters RJP, van der Velden J, Stienen GJM. Rapid frequency-dependent changes in free mitochondrial calcium concentration in rat cardiac myocytes. J Physiol 2017; 595:2001-2019. [PMID: 28028811 DOI: 10.1113/jp273589] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/16/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Calcium ions regulate mitochondrial ATP production and contractile activity and thus play a pivotal role in matching energy supply and demand in cardiac muscle. The magnitude and kinetics of the changes in free mitochondrial calcium concentration in cardiac myocytes are largely unknown. Rapid stimulation frequency-dependent increases but relatively slow decreases in free mitochondrial calcium concentration were observed in rat cardiac myocytes. This asymmetry caused a rise in the mitochondrial calcium concentration with stimulation frequency. These results provide insight into the mechanisms of mitochondrial calcium uptake and release that are important in healthy and diseased myocardium. ABSTRACT Calcium ions regulate mitochondrial ATP production and contractile activity and thus play a pivotal role in matching energy supply and demand in cardiac muscle. Little is known about the magnitude and kinetics of the changes in free mitochondrial calcium concentration in cardiomyocytes. Using adenoviral infection, a ratiometric mitochondrially targeted Förster resonance energy transfer (FRET)-based calcium indicator (4mtD3cpv, MitoCam) was expressed in cultured adult rat cardiomyocytes and the free mitochondrial calcium concentration ([Ca2+ ]m ) was measured at different stimulation frequencies (0.1-4 Hz) and external calcium concentrations (1.8-3.6 mm) at 37°C. Cytosolic calcium concentrations were assessed under the same experimental conditions in separate experiments using Fura-4AM. The increases in [Ca2+ ]m during electrical stimulation at 0.1 Hz were rapid (rise time = 49 ± 2 ms), while the decreases in [Ca2+ ]m occurred more slowly (decay half time = 1.17 ± 0.07 s). Model calculations confirmed that this asymmetry caused the rise in [Ca2+ ]m during diastole observed at elevated stimulation frequencies. Inhibition of the mitochondrial sodium-calcium exchanger (mNCE) resulted in a rise in [Ca2+ ]m at baseline and, paradoxically, in an acceleration of Ca2+ release. IN CONCLUSION rapid increases in [Ca2+ ]m allow for fast adjustment of mitochondrial ATP production to increases in myocardial demand on a beat-to-beat basis and mitochondrial calcium release depends on mNCE activity and mitochondrial calcium buffering.
Collapse
Affiliation(s)
- Rob C I Wüst
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Centre, Amsterdam, the Netherlands
| | - Michiel Helmes
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Centre, Amsterdam, the Netherlands.,IonOptix LLC, Milton, MA, USA
| | - Jody L Martin
- Cell and Molecular Physiology, Loyola University, Chicago, IL, USA
| | - Thomas J T van der Wardt
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Centre, Amsterdam, the Netherlands
| | - René J P Musters
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Centre, Amsterdam, the Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Centre, Amsterdam, the Netherlands
| | - Ger J M Stienen
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Centre, Amsterdam, the Netherlands.,Faculty of Science, Department of Physics and Astronomy, VU University, Amsterdam, the Netherlands
| |
Collapse
|
69
|
Revealing calcium fluxes by analyzing inhibition dynamics in action potential clamp. J Mol Cell Cardiol 2016; 100:93-108. [DOI: 10.1016/j.yjmcc.2016.08.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/19/2016] [Accepted: 08/22/2016] [Indexed: 11/29/2022]
|
70
|
De La Fuente S, Fernandez-Sanz C, Vail C, Agra EJ, Holmstrom K, Sun J, Mishra J, Williams D, Finkel T, Murphy E, Joseph SK, Sheu SS, Csordás G. Strategic Positioning and Biased Activity of the Mitochondrial Calcium Uniporter in Cardiac Muscle. J Biol Chem 2016; 291:23343-23362. [PMID: 27637331 PMCID: PMC5087749 DOI: 10.1074/jbc.m116.755496] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Indexed: 11/06/2022] Open
Abstract
Control of myocardial energetics by Ca2+ signal propagation to the mitochondrial matrix includes local Ca2+ delivery from sarcoplasmic reticulum (SR) ryanodine receptors (RyR2) to the inner mitochondrial membrane (IMM) Ca2+ uniporter (mtCU). mtCU activity in cardiac mitochondria is relatively low, whereas the IMM surface is large, due to extensive cristae folding. Hence, stochastically distributed mtCU may not suffice to support local Ca2+ transfer. We hypothesized that mtCU concentrated at mitochondria-SR associations would promote the effective Ca2+ transfer. mtCU distribution was determined by tracking MCU and EMRE, the proteins essential for channel formation. Both proteins were enriched in the IMM-outer mitochondrial membrane (OMM) contact point submitochondrial fraction and, as super-resolution microscopy revealed, located more to the mitochondrial periphery (inner boundary membrane) than inside the cristae, indicating high accessibility to cytosol-derived Ca2+ inputs. Furthermore, MCU immunofluorescence distribution was biased toward the mitochondria-SR interface (RyR2), and this bias was promoted by Ca2+ signaling activity in intact cardiomyocytes. The SR fraction of heart homogenate contains mitochondria with extensive SR associations, and these mitochondria are highly enriched in EMRE. Size exclusion chromatography suggested for EMRE- and MCU-containing complexes a wide size range and also revealed MCU-containing complexes devoid of EMRE (thus disabled) in the mitochondrial but not the SR fraction. Functional measurements suggested more effective mtCU-mediated Ca2+ uptake activity by the mitochondria of the SR than of the mitochondrial fraction. Thus, mtCU "hot spots" can be formed at the cardiac muscle mitochondria-SR associations via localization and assembly bias, serving local Ca2+ signaling and the excitation-energetics coupling.
Collapse
Affiliation(s)
- Sergio De La Fuente
- From the MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Celia Fernandez-Sanz
- the Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, and
| | - Caitlin Vail
- From the MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Elorm J Agra
- From the MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Kira Holmstrom
- the Center for Molecular Medicine, Laboratory of Molecular Biology, and
| | - Junhui Sun
- the Systems Biology Center, Laboratory of Cardiac Physiology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Jyotsna Mishra
- the Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, and
| | - Dewight Williams
- the Penn EM Resource Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Toren Finkel
- the Center for Molecular Medicine, Laboratory of Molecular Biology, and
| | - Elizabeth Murphy
- the Systems Biology Center, Laboratory of Cardiac Physiology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Suresh K Joseph
- From the MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Shey-Shing Sheu
- the Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, and
| | - György Csordás
- From the MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107,
| |
Collapse
|
71
|
Power ASC, Pham T, Loiselle DS, Crossman DH, Ward ML, Hickey AJ. Impaired ADP channeling to mitochondria and elevated reactive oxygen species in hypertensive hearts. Am J Physiol Heart Circ Physiol 2016; 310:H1649-57. [DOI: 10.1152/ajpheart.00050.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 04/12/2016] [Indexed: 01/20/2023]
Abstract
Systemic hypertension initially promotes a compensatory cardiac hypertrophy, yet it progresses to heart failure (HF), and energetic deficits appear to be central to this failure. However, the transfer of energy between the mitochondria and the myofibrils is not often considered as part of the energetic equation. We compared hearts from old spontaneously hypertensive rats (SHRs) and normotensive Wistar controls. SHR hearts showed a 35% depression in mitochondrial function, yet produced at least double the amount of reactive oxygen species (ROS) in all respiration states in left ventricular (LV) homogenates. To test the connectivity between mitochondria and myofibrils, respiration was further tested in situ with LV permeabilized fibers by addition of multiple substrates and ATP, which requires hydrolysis to mediate oxidative phosphorylation. By trapping ADP using a pyruvate kinase enzyme system, we tested ADP channeling towards mitochondria, and this suppressed respiration and elevated ROS production more in the SHR fibers. The ADP-trapped state was also less relieved on creatine addition, likely reflecting the 30% depression in total CK activity in the SHR heart fibers. Confocal imaging identified a 34% longer distance between the centers of myofibril to mitochondria in the SHR hearts, which increases transverse metabolite diffusion distances (e.g., for ATP, ADP, and creatine phosphate). We propose that impaired connectivity between mitochondria and myofibrils may contribute to elevated ROS production. Impaired energy exchange could be the result of ultrastructural changes that occur with hypertrophy in this model of hypertension.
Collapse
Affiliation(s)
- Amelia S. C. Power
- School of Biological Sciences, Faculty of Science, The University of Auckland, Auckland, New Zealand; and
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Toan Pham
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Denis S. Loiselle
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand; and
| | - David H. Crossman
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Marie-Louise Ward
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Anthony J. Hickey
- School of Biological Sciences, Faculty of Science, The University of Auckland, Auckland, New Zealand; and
- Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
72
|
Wescott AP, Jafri MS, Lederer WJ, Williams GSB. Ryanodine receptor sensitivity governs the stability and synchrony of local calcium release during cardiac excitation-contraction coupling. J Mol Cell Cardiol 2016; 92:82-92. [PMID: 26827896 PMCID: PMC4807626 DOI: 10.1016/j.yjmcc.2016.01.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/13/2016] [Accepted: 01/27/2016] [Indexed: 11/27/2022]
Abstract
Calcium-induced calcium release is the principal mechanism that triggers the cell-wide [Ca(2+)]i transient that activates muscle contraction during cardiac excitation-contraction coupling (ECC). Here, we characterize this process in mouse cardiac myocytes with a novel mathematical action potential (AP) model that incorporates realistic stochastic gating of voltage-dependent L-type calcium (Ca(2+)) channels (LCCs) and sarcoplasmic reticulum (SR) Ca(2+) release channels (the ryanodine receptors, RyR2s). Depolarization of the sarcolemma during an AP stochastically activates the LCCs elevating subspace [Ca(2+)] within each of the cell's 20,000 independent calcium release units (CRUs) to trigger local RyR2 opening and initiate Ca(2+) sparks, the fundamental unit of triggered Ca(2+) release. Synchronization of Ca(2+) sparks during systole depends on the nearly uniform cellular activation of LCCs and the likelihood of local LCC openings triggering local Ca(2+) sparks (ECC fidelity). The detailed design and true SR Ca(2+) pump/leak balance displayed by our model permits investigation of ECC fidelity and Ca(2+) spark fidelity, the balance between visible (Ca(2+) spark) and invisible (Ca(2+) quark/sub-spark) SR Ca(2+) release events. Excess SR Ca(2+) leak is examined as a disease mechanism in the context of "catecholaminergic polymorphic ventricular tachycardia (CPVT)", a Ca(2+)-dependent arrhythmia. We find that that RyR2s (and therefore Ca(2+) sparks) are relatively insensitive to LCC openings across a wide range of membrane potentials; and that key differences exist between Ca(2+) sparks evoked during quiescence, diastole, and systole. The enhanced RyR2 [Ca(2+)]i sensitivity during CPVT leads to increased Ca(2+) spark fidelity resulting in asynchronous systolic Ca(2+) spark activity. It also produces increased diastolic SR Ca(2+) leak with some prolonged Ca(2+) sparks that at times become "metastable" and fail to efficiently terminate. There is a huge margin of safety for stable Ca(2+) handling within the cell and this novel mechanistic model provides insight into the molecular signaling characteristics that help maintain overall Ca(2+) stability even under the conditions of high SR Ca(2+) leak during CPVT. Finally, this model should provide tools for investigators to examine normal and pathological Ca(2+) signaling characteristics in the heart.
Collapse
Affiliation(s)
- Andrew P Wescott
- Center for Biomedical Engineering and Technology & Department of Physiology, University of Maryland, Baltimore, Baltimore, MD, United States
| | - M Saleet Jafri
- Center for Biomedical Engineering and Technology & Department of Physiology, University of Maryland, Baltimore, Baltimore, MD, United States; Molecular Neuroscience Department, George Mason University, Fairfax, VA, United States
| | - W J Lederer
- Center for Biomedical Engineering and Technology & Department of Physiology, University of Maryland, Baltimore, Baltimore, MD, United States
| | - George S B Williams
- Center for Biomedical Engineering and Technology & Department of Physiology, University of Maryland, Baltimore, Baltimore, MD, United States.
| |
Collapse
|
73
|
Motloch LJ, Larbig R, Gebing T, Reda S, Schwaiger A, Leitner J, Wolny M, Eckardt L, Hoppe UC. By Regulating Mitochondrial Ca2+-Uptake UCP2 Modulates Intracellular Ca2+. PLoS One 2016; 11:e0148359. [PMID: 26849136 PMCID: PMC4746117 DOI: 10.1371/journal.pone.0148359] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/19/2016] [Indexed: 12/31/2022] Open
Abstract
Introduction The possible role of UCP2 in modulating mitochondrial Ca2+-uptake (mCa2+-uptake) via the mitochondrial calcium uniporter (MCU) is highly controversial. Methods Thus, we analyzed mCa2+-uptake in isolated cardiac mitochondria, MCU single-channel activity in cardiac mitoplasts, dual Ca2+-transients from mitochondrial ((Ca2+)m) and intracellular compartment ((Ca2+)c) in the whole-cell configuration in cardiomyocytes of wild-type (WT) and UCP2-/- mice. Results Isolated mitochondria showed a Ru360 sensitive mCa2+-uptake, which was significantly decreased in UCP2-/- (229.4±30.8 FU vs. 146.3±23.4 FU, P<0.05). Single-channel registrations confirmed a Ru360 sensitive voltage-gated Ca2+-channel in mitoplasts, i.e. mCa1, showing a reduced single-channel activity in UCP2-/- (Po,total: 0.34±0.05% vs. 0.07±0.01%, P<0.05). In UCP2-/- cardiomyocytes (Ca2+)m was decreased (0.050±0.009 FU vs. 0.021±0.005 FU, P<0.05) while (Ca2+)c was unchanged (0.032±0.002 FU vs. 0.028±0.004 FU, P>0.05) and transsarcolemmal Ca2+-influx was inhibited suggesting a possible compensatory mechanism. Additionally, we observed an inhibitory effect of ATP on mCa2+-uptake in WT mitoplasts and (Ca2+)m of cardiomyocytes leading to an increase of (Ca2+)c while no ATP dependent effect was observed in UCP2-/-. Conclusion Our results indicate regulatory effects of UCP2 on mCa2+-uptake. Furthermore, we propose, that previously described inhibitory effects on MCU by ATP may be mediated via UCP2 resulting in changes of excitation contraction coupling.
Collapse
Affiliation(s)
- Lukas Jaroslaw Motloch
- Department of Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
- * E-mail:
| | - Robert Larbig
- Department of Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
- Division of Electrophysiology, Department of Cardiovascular Medicine, University Hospital Muenster, Muenster, Germany
| | - Tina Gebing
- Department of Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
| | - Sara Reda
- Department of Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
| | - Astrid Schwaiger
- Department of Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
| | - Johannes Leitner
- Department of Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
| | - Martin Wolny
- Department of Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
| | - Lars Eckardt
- Division of Electrophysiology, Department of Cardiovascular Medicine, University Hospital Muenster, Muenster, Germany
| | - Uta C. Hoppe
- Department of Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
74
|
Blomeyer CA, Bazil JN, Stowe DF, Dash RK, Camara AKS. Mg(2+) differentially regulates two modes of mitochondrial Ca(2+) uptake in isolated cardiac mitochondria: implications for mitochondrial Ca(2+) sequestration. J Bioenerg Biomembr 2016; 48:175-88. [PMID: 26815005 DOI: 10.1007/s10863-016-9644-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/12/2016] [Indexed: 12/14/2022]
Abstract
The manner in which mitochondria take up and store Ca(2+) remains highly debated. Recent experimental and computational evidence has suggested the presence of at least two modes of Ca(2+) uptake and a complex Ca(2+) sequestration mechanism in mitochondria. But how Mg(2+) regulates these different modes of Ca(2+) uptake as well as mitochondrial Ca(2+) sequestration is not known. In this study, we investigated two different ways by which mitochondria take up and sequester Ca(2+) by using two different protocols. Isolated guinea pig cardiac mitochondria were exposed to varying concentrations of CaCl2 in the presence or absence of MgCl2. In the first protocol, A, CaCl2 was added to the respiration buffer containing isolated mitochondria, whereas in the second protocol, B, mitochondria were added to the respiration buffer with CaCl2 already present. Protocol A resulted first in a fast transitory uptake followed by a slow gradual uptake. In contrast, protocol B only revealed a slow and gradual Ca(2+) uptake, which was approximately 40 % of the slow uptake rate observed in protocol A. These two types of Ca(2+) uptake modes were differentially modulated by extra-matrix Mg(2+). That is, Mg(2+) markedly inhibited the slow mode of Ca(2+) uptake in both protocols in a concentration-dependent manner, but not the fast mode of uptake exhibited in protocol A. Mg(2+) also inhibited Na(+)-dependent Ca(2+) extrusion. The general Ca(2+) binding properties of the mitochondrial Ca(2+) sequestration system were reaffirmed and shown to be independent of the mode of Ca(2+) uptake, i.e. through the fast or slow mode of uptake. In addition, extra-matrix Mg(2+) hindered Ca(2+) sequestration. Our results indicate that mitochondria exhibit different modes of Ca(2+) uptake depending on the nature of exposure to extra-matrix Ca(2+), which are differentially sensitive to Mg(2+). The implications of these findings in cardiomyocytes are discussed.
Collapse
Affiliation(s)
- Christoph A Blomeyer
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Jason N Bazil
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA.,Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - David F Stowe
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Biomedical Engineering, Marquette University, Milwaukee, WI, 53233, USA.,Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53295, USA
| | - Ranjan K Dash
- Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Biomedical Engineering, Marquette University, Milwaukee, WI, 53233, USA
| | - Amadou K S Camara
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
75
|
Miragoli M, Sanchez-Alonso JL, Bhargava A, Wright PT, Sikkel M, Schobesberger S, Diakonov I, Novak P, Castaldi A, Cattaneo P, Lyon AR, Lab MJ, Gorelik J. Microtubule-Dependent Mitochondria Alignment Regulates Calcium Release in Response to Nanomechanical Stimulus in Heart Myocytes. Cell Rep 2015; 14:140-151. [PMID: 26725114 PMCID: PMC4983655 DOI: 10.1016/j.celrep.2015.12.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 09/07/2015] [Accepted: 11/23/2015] [Indexed: 12/01/2022] Open
Abstract
Arrhythmogenesis during heart failure is a major clinical problem. Regional electrical gradients produce arrhythmias, and cellular ionic transmembrane gradients are its originators. We investigated whether the nanoscale mechanosensitive properties of cardiomyocytes from failing hearts have a bearing upon the initiation of abnormal electrical activity. Hydrojets through a nanopipette indent specific locations on the sarcolemma and initiate intracellular calcium release in both healthy and heart failure cardiomyocytes, as well as in human failing cardiomyocytes. In healthy cells, calcium is locally confined, whereas in failing cardiomyocytes, calcium propagates. Heart failure progressively stiffens the membrane and displaces sub-sarcolemmal mitochondria. Colchicine in healthy cells mimics the failing condition by stiffening the cells, disrupting microtubules, shifting mitochondria, and causing calcium release. Uncoupling the mitochondrial proton gradient abolished calcium initiation in both failing and colchicine-treated cells. We propose the disruption of microtubule-dependent mitochondrial mechanosensor microdomains as a mechanism for abnormal calcium release in failing heart. Nanomechanical pressure application changes mechanosensitivity in failing heart cells Microtubular network disorganization mediates the change in mechanosensitivity Mitochondria are displaced from their original location and trigger calcium release Uncoupling the mitochondrial proton gradient completely abolishes the phenomena
Collapse
Affiliation(s)
- Michele Miragoli
- National Heart and Lung Institute, Imperial College London, 4th floor, Imperial Centre for Translational and Experimental Medicine, Hammersmith Campus Du Cane Road, London W12 0NN, UK; Humanitas Clinical and Research Center, via Manzoni 56, Rozzano, 20090 Milan, Italy; Center of Excellence for Toxicological Research, INAIL exISPESL, University of Parma, via Gramsci 14, 43126 Parma, Italy.
| | - Jose L Sanchez-Alonso
- National Heart and Lung Institute, Imperial College London, 4th floor, Imperial Centre for Translational and Experimental Medicine, Hammersmith Campus Du Cane Road, London W12 0NN, UK
| | - Anamika Bhargava
- National Heart and Lung Institute, Imperial College London, 4th floor, Imperial Centre for Translational and Experimental Medicine, Hammersmith Campus Du Cane Road, London W12 0NN, UK; Department of Biotechnology, Indian Institute of Technology Hyderabad, Ordnance Factory Estate, Yeddumailaram, 502205 Telangana, India
| | - Peter T Wright
- National Heart and Lung Institute, Imperial College London, 4th floor, Imperial Centre for Translational and Experimental Medicine, Hammersmith Campus Du Cane Road, London W12 0NN, UK
| | - Markus Sikkel
- National Heart and Lung Institute, Imperial College London, 4th floor, Imperial Centre for Translational and Experimental Medicine, Hammersmith Campus Du Cane Road, London W12 0NN, UK
| | - Sophie Schobesberger
- National Heart and Lung Institute, Imperial College London, 4th floor, Imperial Centre for Translational and Experimental Medicine, Hammersmith Campus Du Cane Road, London W12 0NN, UK
| | - Ivan Diakonov
- National Heart and Lung Institute, Imperial College London, 4th floor, Imperial Centre for Translational and Experimental Medicine, Hammersmith Campus Du Cane Road, London W12 0NN, UK
| | - Pavel Novak
- National Heart and Lung Institute, Imperial College London, 4th floor, Imperial Centre for Translational and Experimental Medicine, Hammersmith Campus Du Cane Road, London W12 0NN, UK; School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS, UK
| | - Alessandra Castaldi
- Humanitas Clinical and Research Center, via Manzoni 56, Rozzano, 20090 Milan, Italy
| | - Paola Cattaneo
- Humanitas Clinical and Research Center, via Manzoni 56, Rozzano, 20090 Milan, Italy
| | - Alexander R Lyon
- National Heart and Lung Institute, Imperial College London, 4th floor, Imperial Centre for Translational and Experimental Medicine, Hammersmith Campus Du Cane Road, London W12 0NN, UK; NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, London SW36NP, UK
| | - Max J Lab
- National Heart and Lung Institute, Imperial College London, 4th floor, Imperial Centre for Translational and Experimental Medicine, Hammersmith Campus Du Cane Road, London W12 0NN, UK.
| | - Julia Gorelik
- National Heart and Lung Institute, Imperial College London, 4th floor, Imperial Centre for Translational and Experimental Medicine, Hammersmith Campus Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
76
|
Winslow RL, Walker MA, Greenstein JL. Modeling calcium regulation of contraction, energetics, signaling, and transcription in the cardiac myocyte. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2015; 8:37-67. [PMID: 26562359 DOI: 10.1002/wsbm.1322] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 12/11/2022]
Abstract
Calcium (Ca(2+)) plays many important regulatory roles in cardiac muscle cells. In the initial phase of the action potential, influx of Ca(2+) through sarcolemmal voltage-gated L-type Ca(2+) channels (LCCs) acts as a feed-forward signal that triggers a large release of Ca(2+) from the junctional sarcoplasmic reticulum (SR). This Ca(2+) drives heart muscle contraction and pumping of blood in a process known as excitation-contraction coupling (ECC). Triggered and released Ca(2+) also feed back to inactivate LCCs, attenuating the triggered Ca(2+) signal once release has been achieved. The process of ECC consumes large amounts of ATP. It is now clear that in a process known as excitation-energetics coupling, Ca(2+) signals exert beat-to-beat regulation of mitochondrial ATP production that closely couples energy production with demand. This occurs through transport of Ca(2+) into mitochondria, where it regulates enzymes of the tricarboxylic acid cycle. In excitation-signaling coupling, Ca(2+) activates a number of signaling pathways in a feed-forward manner. Through effects on their target proteins, these interconnected pathways regulate Ca(2+) signals in complex ways to control electrical excitability and contractility of heart muscle. In a process known as excitation-transcription coupling, Ca(2+) acting primarily through signal transduction pathways also regulates the process of gene transcription. Because of these diverse and complex roles, experimentally based mechanistic computational models are proving to be very useful for understanding Ca(2+) signaling in the cardiac myocyte.
Collapse
Affiliation(s)
- Raimond L Winslow
- Institute for Computational Medicine and Department of Biomedical Engineering, The Johns Hopkins University School of Medicine and Whiting School of Engineering, Baltimore, MD, USA
| | - Mark A Walker
- Institute for Computational Medicine and Department of Biomedical Engineering, The Johns Hopkins University School of Medicine and Whiting School of Engineering, Baltimore, MD, USA
| | - Joseph L Greenstein
- Institute for Computational Medicine and Department of Biomedical Engineering, The Johns Hopkins University School of Medicine and Whiting School of Engineering, Baltimore, MD, USA
| |
Collapse
|
77
|
Riojas-Hernández A, Bernal-Ramírez J, Rodríguez-Mier D, Morales-Marroquín FE, Domínguez-Barragán EM, Borja-Villa C, Rivera-Álvarez I, García-Rivas G, Altamirano J, García N. Enhanced oxidative stress sensitizes the mitochondrial permeability transition pore to opening in heart from Zucker Fa/fa rats with type 2 diabetes. Life Sci 2015; 141:32-43. [DOI: 10.1016/j.lfs.2015.09.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 08/18/2015] [Accepted: 09/22/2015] [Indexed: 12/13/2022]
|
78
|
Ping P, Gustafsson ÅB, Bers DM, Blatter LA, Cai H, Jahangir A, Kelly D, Muoio D, O'Rourke B, Rabinovitch P, Trayanova N, Van Eyk J, Weiss JN, Wong R, Schwartz Longacre L. Harnessing the Power of Integrated Mitochondrial Biology and Physiology: A Special Report on the NHLBI Mitochondria in Heart Diseases Initiative. Circ Res 2015; 117:234-8. [PMID: 26185209 DOI: 10.1161/circresaha.117.306693] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mitochondrial biology is the sum of diverse phenomena from molecular profiles to physiological functions. A mechanistic understanding of mitochondria in disease development, and hence the future prospect of clinical translations, relies on a systems-level integration of expertise from multiple fields of investigation. Upon the successful conclusion of a recent National Institutes of Health, National Heart, Lung, and Blood Institute initiative on integrative mitochondrial biology in cardiovascular diseases, we reflect on the accomplishments made possible by this unique interdisciplinary collaboration effort and exciting new fronts on the study of these remarkable organelles.
Collapse
Affiliation(s)
- Peipei Ping
- From the Departments of Physiology and Medicine, UCLA David Geffen School of Medicine (P.P., H.C., J.N.W.); Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla (Å.B.G.); Department of Pharmacology, UC Davis, Davis, CA (D.M.B.); Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL (L.A.B.); Center for Integrative Research on Cardiovascular Aging, Cardiovascular Services and Department of Research, Aurora Health Care, Milwaukee, WI (A.J.); Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL (D.K.); Department of Medicine, Duke University, Durham, NC (D.M.); Department of Medicine, Division of Cardiology (B.O.R.), Department of Biomedical Engineering (N.T.), and Department of Medicine, Division of Cardiology (J.V.E.), The Johns Hopkins University School of Medicine, Baltimore, MD (B.O'R., N.T., J.V.E.); Department of Pathology, University of Washington, Seattle (P.R.); and Heart Failure and Arrhythmia Branch, Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (R.W., L.S.L.)
| | - Åsa B Gustafsson
- From the Departments of Physiology and Medicine, UCLA David Geffen School of Medicine (P.P., H.C., J.N.W.); Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla (Å.B.G.); Department of Pharmacology, UC Davis, Davis, CA (D.M.B.); Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL (L.A.B.); Center for Integrative Research on Cardiovascular Aging, Cardiovascular Services and Department of Research, Aurora Health Care, Milwaukee, WI (A.J.); Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL (D.K.); Department of Medicine, Duke University, Durham, NC (D.M.); Department of Medicine, Division of Cardiology (B.O.R.), Department of Biomedical Engineering (N.T.), and Department of Medicine, Division of Cardiology (J.V.E.), The Johns Hopkins University School of Medicine, Baltimore, MD (B.O'R., N.T., J.V.E.); Department of Pathology, University of Washington, Seattle (P.R.); and Heart Failure and Arrhythmia Branch, Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (R.W., L.S.L.)
| | - Don M Bers
- From the Departments of Physiology and Medicine, UCLA David Geffen School of Medicine (P.P., H.C., J.N.W.); Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla (Å.B.G.); Department of Pharmacology, UC Davis, Davis, CA (D.M.B.); Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL (L.A.B.); Center for Integrative Research on Cardiovascular Aging, Cardiovascular Services and Department of Research, Aurora Health Care, Milwaukee, WI (A.J.); Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL (D.K.); Department of Medicine, Duke University, Durham, NC (D.M.); Department of Medicine, Division of Cardiology (B.O.R.), Department of Biomedical Engineering (N.T.), and Department of Medicine, Division of Cardiology (J.V.E.), The Johns Hopkins University School of Medicine, Baltimore, MD (B.O'R., N.T., J.V.E.); Department of Pathology, University of Washington, Seattle (P.R.); and Heart Failure and Arrhythmia Branch, Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (R.W., L.S.L.)
| | - Lothar A Blatter
- From the Departments of Physiology and Medicine, UCLA David Geffen School of Medicine (P.P., H.C., J.N.W.); Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla (Å.B.G.); Department of Pharmacology, UC Davis, Davis, CA (D.M.B.); Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL (L.A.B.); Center for Integrative Research on Cardiovascular Aging, Cardiovascular Services and Department of Research, Aurora Health Care, Milwaukee, WI (A.J.); Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL (D.K.); Department of Medicine, Duke University, Durham, NC (D.M.); Department of Medicine, Division of Cardiology (B.O.R.), Department of Biomedical Engineering (N.T.), and Department of Medicine, Division of Cardiology (J.V.E.), The Johns Hopkins University School of Medicine, Baltimore, MD (B.O'R., N.T., J.V.E.); Department of Pathology, University of Washington, Seattle (P.R.); and Heart Failure and Arrhythmia Branch, Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (R.W., L.S.L.)
| | - Hua Cai
- From the Departments of Physiology and Medicine, UCLA David Geffen School of Medicine (P.P., H.C., J.N.W.); Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla (Å.B.G.); Department of Pharmacology, UC Davis, Davis, CA (D.M.B.); Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL (L.A.B.); Center for Integrative Research on Cardiovascular Aging, Cardiovascular Services and Department of Research, Aurora Health Care, Milwaukee, WI (A.J.); Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL (D.K.); Department of Medicine, Duke University, Durham, NC (D.M.); Department of Medicine, Division of Cardiology (B.O.R.), Department of Biomedical Engineering (N.T.), and Department of Medicine, Division of Cardiology (J.V.E.), The Johns Hopkins University School of Medicine, Baltimore, MD (B.O'R., N.T., J.V.E.); Department of Pathology, University of Washington, Seattle (P.R.); and Heart Failure and Arrhythmia Branch, Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (R.W., L.S.L.)
| | - Arshad Jahangir
- From the Departments of Physiology and Medicine, UCLA David Geffen School of Medicine (P.P., H.C., J.N.W.); Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla (Å.B.G.); Department of Pharmacology, UC Davis, Davis, CA (D.M.B.); Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL (L.A.B.); Center for Integrative Research on Cardiovascular Aging, Cardiovascular Services and Department of Research, Aurora Health Care, Milwaukee, WI (A.J.); Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL (D.K.); Department of Medicine, Duke University, Durham, NC (D.M.); Department of Medicine, Division of Cardiology (B.O.R.), Department of Biomedical Engineering (N.T.), and Department of Medicine, Division of Cardiology (J.V.E.), The Johns Hopkins University School of Medicine, Baltimore, MD (B.O'R., N.T., J.V.E.); Department of Pathology, University of Washington, Seattle (P.R.); and Heart Failure and Arrhythmia Branch, Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (R.W., L.S.L.)
| | - Daniel Kelly
- From the Departments of Physiology and Medicine, UCLA David Geffen School of Medicine (P.P., H.C., J.N.W.); Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla (Å.B.G.); Department of Pharmacology, UC Davis, Davis, CA (D.M.B.); Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL (L.A.B.); Center for Integrative Research on Cardiovascular Aging, Cardiovascular Services and Department of Research, Aurora Health Care, Milwaukee, WI (A.J.); Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL (D.K.); Department of Medicine, Duke University, Durham, NC (D.M.); Department of Medicine, Division of Cardiology (B.O.R.), Department of Biomedical Engineering (N.T.), and Department of Medicine, Division of Cardiology (J.V.E.), The Johns Hopkins University School of Medicine, Baltimore, MD (B.O'R., N.T., J.V.E.); Department of Pathology, University of Washington, Seattle (P.R.); and Heart Failure and Arrhythmia Branch, Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (R.W., L.S.L.)
| | - Deborah Muoio
- From the Departments of Physiology and Medicine, UCLA David Geffen School of Medicine (P.P., H.C., J.N.W.); Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla (Å.B.G.); Department of Pharmacology, UC Davis, Davis, CA (D.M.B.); Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL (L.A.B.); Center for Integrative Research on Cardiovascular Aging, Cardiovascular Services and Department of Research, Aurora Health Care, Milwaukee, WI (A.J.); Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL (D.K.); Department of Medicine, Duke University, Durham, NC (D.M.); Department of Medicine, Division of Cardiology (B.O.R.), Department of Biomedical Engineering (N.T.), and Department of Medicine, Division of Cardiology (J.V.E.), The Johns Hopkins University School of Medicine, Baltimore, MD (B.O'R., N.T., J.V.E.); Department of Pathology, University of Washington, Seattle (P.R.); and Heart Failure and Arrhythmia Branch, Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (R.W., L.S.L.)
| | - Brian O'Rourke
- From the Departments of Physiology and Medicine, UCLA David Geffen School of Medicine (P.P., H.C., J.N.W.); Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla (Å.B.G.); Department of Pharmacology, UC Davis, Davis, CA (D.M.B.); Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL (L.A.B.); Center for Integrative Research on Cardiovascular Aging, Cardiovascular Services and Department of Research, Aurora Health Care, Milwaukee, WI (A.J.); Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL (D.K.); Department of Medicine, Duke University, Durham, NC (D.M.); Department of Medicine, Division of Cardiology (B.O.R.), Department of Biomedical Engineering (N.T.), and Department of Medicine, Division of Cardiology (J.V.E.), The Johns Hopkins University School of Medicine, Baltimore, MD (B.O'R., N.T., J.V.E.); Department of Pathology, University of Washington, Seattle (P.R.); and Heart Failure and Arrhythmia Branch, Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (R.W., L.S.L.)
| | - Peter Rabinovitch
- From the Departments of Physiology and Medicine, UCLA David Geffen School of Medicine (P.P., H.C., J.N.W.); Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla (Å.B.G.); Department of Pharmacology, UC Davis, Davis, CA (D.M.B.); Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL (L.A.B.); Center for Integrative Research on Cardiovascular Aging, Cardiovascular Services and Department of Research, Aurora Health Care, Milwaukee, WI (A.J.); Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL (D.K.); Department of Medicine, Duke University, Durham, NC (D.M.); Department of Medicine, Division of Cardiology (B.O.R.), Department of Biomedical Engineering (N.T.), and Department of Medicine, Division of Cardiology (J.V.E.), The Johns Hopkins University School of Medicine, Baltimore, MD (B.O'R., N.T., J.V.E.); Department of Pathology, University of Washington, Seattle (P.R.); and Heart Failure and Arrhythmia Branch, Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (R.W., L.S.L.)
| | - Natalia Trayanova
- From the Departments of Physiology and Medicine, UCLA David Geffen School of Medicine (P.P., H.C., J.N.W.); Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla (Å.B.G.); Department of Pharmacology, UC Davis, Davis, CA (D.M.B.); Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL (L.A.B.); Center for Integrative Research on Cardiovascular Aging, Cardiovascular Services and Department of Research, Aurora Health Care, Milwaukee, WI (A.J.); Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL (D.K.); Department of Medicine, Duke University, Durham, NC (D.M.); Department of Medicine, Division of Cardiology (B.O.R.), Department of Biomedical Engineering (N.T.), and Department of Medicine, Division of Cardiology (J.V.E.), The Johns Hopkins University School of Medicine, Baltimore, MD (B.O'R., N.T., J.V.E.); Department of Pathology, University of Washington, Seattle (P.R.); and Heart Failure and Arrhythmia Branch, Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (R.W., L.S.L.)
| | - Jennifer Van Eyk
- From the Departments of Physiology and Medicine, UCLA David Geffen School of Medicine (P.P., H.C., J.N.W.); Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla (Å.B.G.); Department of Pharmacology, UC Davis, Davis, CA (D.M.B.); Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL (L.A.B.); Center for Integrative Research on Cardiovascular Aging, Cardiovascular Services and Department of Research, Aurora Health Care, Milwaukee, WI (A.J.); Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL (D.K.); Department of Medicine, Duke University, Durham, NC (D.M.); Department of Medicine, Division of Cardiology (B.O.R.), Department of Biomedical Engineering (N.T.), and Department of Medicine, Division of Cardiology (J.V.E.), The Johns Hopkins University School of Medicine, Baltimore, MD (B.O'R., N.T., J.V.E.); Department of Pathology, University of Washington, Seattle (P.R.); and Heart Failure and Arrhythmia Branch, Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (R.W., L.S.L.)
| | - James N Weiss
- From the Departments of Physiology and Medicine, UCLA David Geffen School of Medicine (P.P., H.C., J.N.W.); Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla (Å.B.G.); Department of Pharmacology, UC Davis, Davis, CA (D.M.B.); Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL (L.A.B.); Center for Integrative Research on Cardiovascular Aging, Cardiovascular Services and Department of Research, Aurora Health Care, Milwaukee, WI (A.J.); Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL (D.K.); Department of Medicine, Duke University, Durham, NC (D.M.); Department of Medicine, Division of Cardiology (B.O.R.), Department of Biomedical Engineering (N.T.), and Department of Medicine, Division of Cardiology (J.V.E.), The Johns Hopkins University School of Medicine, Baltimore, MD (B.O'R., N.T., J.V.E.); Department of Pathology, University of Washington, Seattle (P.R.); and Heart Failure and Arrhythmia Branch, Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (R.W., L.S.L.)
| | - Renee Wong
- From the Departments of Physiology and Medicine, UCLA David Geffen School of Medicine (P.P., H.C., J.N.W.); Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla (Å.B.G.); Department of Pharmacology, UC Davis, Davis, CA (D.M.B.); Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL (L.A.B.); Center for Integrative Research on Cardiovascular Aging, Cardiovascular Services and Department of Research, Aurora Health Care, Milwaukee, WI (A.J.); Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL (D.K.); Department of Medicine, Duke University, Durham, NC (D.M.); Department of Medicine, Division of Cardiology (B.O.R.), Department of Biomedical Engineering (N.T.), and Department of Medicine, Division of Cardiology (J.V.E.), The Johns Hopkins University School of Medicine, Baltimore, MD (B.O'R., N.T., J.V.E.); Department of Pathology, University of Washington, Seattle (P.R.); and Heart Failure and Arrhythmia Branch, Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (R.W., L.S.L.)
| | - Lisa Schwartz Longacre
- From the Departments of Physiology and Medicine, UCLA David Geffen School of Medicine (P.P., H.C., J.N.W.); Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla (Å.B.G.); Department of Pharmacology, UC Davis, Davis, CA (D.M.B.); Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL (L.A.B.); Center for Integrative Research on Cardiovascular Aging, Cardiovascular Services and Department of Research, Aurora Health Care, Milwaukee, WI (A.J.); Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL (D.K.); Department of Medicine, Duke University, Durham, NC (D.M.); Department of Medicine, Division of Cardiology (B.O.R.), Department of Biomedical Engineering (N.T.), and Department of Medicine, Division of Cardiology (J.V.E.), The Johns Hopkins University School of Medicine, Baltimore, MD (B.O'R., N.T., J.V.E.); Department of Pathology, University of Washington, Seattle (P.R.); and Heart Failure and Arrhythmia Branch, Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (R.W., L.S.L.).
| |
Collapse
|
79
|
Kane C, Couch L, Terracciano CMN. Excitation-contraction coupling of human induced pluripotent stem cell-derived cardiomyocytes. Front Cell Dev Biol 2015; 3:59. [PMID: 26484342 PMCID: PMC4586503 DOI: 10.3389/fcell.2015.00059] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/11/2015] [Indexed: 01/17/2023] Open
Abstract
Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) hold enormous potential in many fields of cardiovascular research. Overcoming many of the limitations of their embryonic counterparts, the application of iPSC-CMs ranges from facilitating investigation of familial cardiac disease and pharmacological toxicity screening to personalized medicine and autologous cardiac cell therapies. The main factor preventing the full realization of this potential is the limited maturity of iPSC-CMs, which display a number of substantial differences in comparison to adult cardiomyocytes. Excitation–contraction (EC) coupling, a fundamental property of cardiomyocytes, is often described in iPSC-CMs as being more analogous to neonatal than adult cardiomyocytes. With Ca2+ handling linked, directly or indirectly, to almost all other properties of cardiomyocytes, a solid understanding of this process will be crucial to fully realizing the potential of this technology. Here, we discuss the implications of differences in EC coupling when considering the potential applications of human iPSC-CMs in a number of areas as well as detailing the current understanding of this fundamental process in these cells.
Collapse
Affiliation(s)
- Christopher Kane
- Laboratory of Cell Electrophysiology, National Heart and Lung Institute, Imperial College London London, UK
| | - Liam Couch
- Laboratory of Cell Electrophysiology, National Heart and Lung Institute, Imperial College London London, UK
| | - Cesare M N Terracciano
- Laboratory of Cell Electrophysiology, National Heart and Lung Institute, Imperial College London London, UK
| |
Collapse
|
80
|
Rajagopal V, Bass G, Walker CG, Crossman DJ, Petzer A, Hickey A, Siekmann I, Hoshijima M, Ellisman MH, Crampin EJ, Soeller C. Examination of the Effects of Heterogeneous Organization of RyR Clusters, Myofibrils and Mitochondria on Ca2+ Release Patterns in Cardiomyocytes. PLoS Comput Biol 2015; 11:e1004417. [PMID: 26335304 PMCID: PMC4559435 DOI: 10.1371/journal.pcbi.1004417] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 06/26/2015] [Indexed: 11/18/2022] Open
Abstract
Spatio-temporal dynamics of intracellular calcium, [Ca2+]i, regulate the contractile function of cardiac muscle cells. Measuring [Ca2+]i flux is central to the study of mechanisms that underlie both normal cardiac function and calcium-dependent etiologies in heart disease. However, current imaging techniques are limited in the spatial resolution to which changes in [Ca2+]i can be detected. Using spatial point process statistics techniques we developed a novel method to simulate the spatial distribution of RyR clusters, which act as the major mediators of contractile Ca2+ release, upon a physiologically-realistic cellular landscape composed of tightly-packed mitochondria and myofibrils. We applied this method to computationally combine confocal-scale (~ 200 nm) data of RyR clusters with 3D electron microscopy data (~ 30 nm) of myofibrils and mitochondria, both collected from adult rat left ventricular myocytes. Using this hybrid-scale spatial model, we simulated reaction-diffusion of [Ca2+]i during the rising phase of the transient (first 30 ms after initiation). At 30 ms, the average peak of the simulated [Ca2+]i transient and of the simulated fluorescence intensity signal, F/F0, reached values similar to that found in the literature ([Ca2+]i ≈1 μM; F/F0≈5.5). However, our model predicted the variation in [Ca2+]i to be between 0.3 and 12.7 μM (~3 to 100 fold from resting value of 0.1 μM) and the corresponding F/F0 signal ranging from 3 to 9.5. We demonstrate in this study that: (i) heterogeneities in the [Ca2+]i transient are due not only to heterogeneous distribution and clustering of mitochondria; (ii) but also to heterogeneous local densities of RyR clusters. Further, we show that: (iii) these structure-induced heterogeneities in [Ca2+]i can appear in line scan data. Finally, using our unique method for generating RyR cluster distributions, we demonstrate the robustness in the [Ca2+]i transient to differences in RyR cluster distributions measured between rat and human cardiomyocytes. Calcium (Ca2+) acts as a signal for many functions in the heart cell, from its primary role in triggering contractions during the heartbeat to acting as a signal for cell growth. Cellular function is tightly coupled to its ultra-structural organization. Spatially-realistic and biophysics-based computational models can provide quantitative insights into structure-function relationships in Ca2+ signaling. We developed a novel computational model of a rat ventricular myocyte that integrates structural information from confocal and electron microscopy datasets that were independently acquired and includes: myofibrils (protein complexes that contract during the heartbeat), mitochondria (organelles that provide energy for contraction), and ryanodine receptors (RyR, ion channels that release the Ca2+ required to trigger myofibril contraction from intracellular stores). Using this model, we examined [Ca2+]i dynamics throughout the cell cross-section at a much higher resolution than previously possible. We estimated the size of structural maladaptation that would cause disease-related alterations in [Ca2+]i dynamics. Using our methods for data integration, we also tested whether reducing the density of RyRs in human cardiomyocytes (~40% relative to rat) would have a significant effect on [Ca2+]i. We found that Ca2+ release patterns between the two species are similar, suggesting Ca2+ dynamics are robust to variations in cell ultrastructure.
Collapse
Affiliation(s)
- Vijay Rajagopal
- Department of Mechanical Engineering, University of Melbourne, Melbourne, Australia
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Systems Biology Laboratory, Melbourne School of Engineering, University of Melbourne, Melbourne, Australia
- * E-mail:
| | - Gregory Bass
- Systems Biology Laboratory, Melbourne School of Engineering, University of Melbourne, Melbourne, Australia
| | - Cameron G. Walker
- Department of Engineering Science, University of Auckland, Auckland, New Zealand
| | - David J. Crossman
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Amorita Petzer
- School of Biological Sciences, University of Auckland, Auckland. New Zealand
| | - Anthony Hickey
- School of Biological Sciences, University of Auckland, Auckland. New Zealand
| | - Ivo Siekmann
- Department of Mechanical Engineering, University of Melbourne, Melbourne, Australia
| | - Masahiko Hoshijima
- Department of Medicine, University of California San Diego, San Diego, United States of America
- National Center for Microscopy and Imaging Research, University of California San Diego, San Diego, United States of America
| | - Mark H. Ellisman
- National Center for Microscopy and Imaging Research, University of California San Diego, San Diego, United States of America
| | - Edmund J. Crampin
- Systems Biology Laboratory, Melbourne School of Engineering, University of Melbourne, Melbourne, Australia
- School of Mathematics and Statistics, Faculty of Science, University of Melbourne, Melbourne, Australia
- School of Medicine, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, Australia
| | - Christian Soeller
- Department of Physiology, University of Auckland, Auckland, New Zealand
- Biomedical Physics, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
81
|
Bernardi P, Di Lisa F, Fogolari F, Lippe G. From ATP to PTP and Back: A Dual Function for the Mitochondrial ATP Synthase. Circ Res 2015; 116:1850-62. [PMID: 25999424 DOI: 10.1161/circresaha.115.306557] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mitochondria not only play a fundamental role in heart physiology but are also key effectors of dysfunction and death. This dual role assumes a new meaning after recent advances on the nature and regulation of the permeability transition pore, an inner membrane channel whose opening requires matrix Ca(2+) and is modulated by many effectors including reactive oxygen species, matrix cyclophilin D, Pi (inorganic phosphate), and matrix pH. The recent demonstration that the F-ATP synthase can reversibly undergo a Ca(2+)-dependent transition to form a channel that mediates the permeability transition opens new perspectives to the field. These findings demand a reassessment of the modifications of F-ATP synthase that take place in the heart under pathological conditions and of their potential role in determining the transition of F-ATP synthase from and energy-conserving into an energy-dissipating device.
Collapse
Affiliation(s)
- Paolo Bernardi
- From the Department of Biomedical Sciences, University of Padova, Italy (P.B., F.D.L.); and Department of Medical and Biological Sciences (F.F) and Department of Food Science (G.L.), University of Udine, Udine, Italy.
| | - Fabio Di Lisa
- From the Department of Biomedical Sciences, University of Padova, Italy (P.B., F.D.L.); and Department of Medical and Biological Sciences (F.F) and Department of Food Science (G.L.), University of Udine, Udine, Italy
| | - Federico Fogolari
- From the Department of Biomedical Sciences, University of Padova, Italy (P.B., F.D.L.); and Department of Medical and Biological Sciences (F.F) and Department of Food Science (G.L.), University of Udine, Udine, Italy
| | - Giovanna Lippe
- From the Department of Biomedical Sciences, University of Padova, Italy (P.B., F.D.L.); and Department of Medical and Biological Sciences (F.F) and Department of Food Science (G.L.), University of Udine, Udine, Italy
| |
Collapse
|
82
|
Boyman L, Chikando AC, Williams GSB, Khairallah RJ, Kettlewell S, Ward CW, Smith GL, Kao JPY, Lederer WJ. Calcium movement in cardiac mitochondria. Biophys J 2015; 107:1289-301. [PMID: 25229137 DOI: 10.1016/j.bpj.2014.07.045] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/08/2014] [Accepted: 07/22/2014] [Indexed: 10/24/2022] Open
Abstract
Existing theory suggests that mitochondria act as significant, dynamic buffers of cytosolic calcium ([Ca(2+)]i) in heart. These buffers can remove up to one-third of the Ca(2+) that enters the cytosol during the [Ca(2+)]i transients that underlie contractions. However, few quantitative experiments have been presented to test this hypothesis. Here, we investigate the influence of Ca(2+) movement across the inner mitochondrial membrane during both subcellular and global cellular cytosolic Ca(2+) signals (i.e., Ca(2+) sparks and [Ca(2+)]i transients, respectively) in isolated rat cardiomyocytes. By rapidly turning off the mitochondria using depolarization of the inner mitochondrial membrane potential (ΔΨm), the role of the mitochondria in buffering cytosolic Ca(2+) signals was investigated. We show here that rapid loss of ΔΨm leads to no significant changes in cytosolic Ca(2+) signals. Second, we make direct measurements of mitochondrial [Ca(2+)] ([Ca(2+)]m) using a mitochondrially targeted Ca(2+) probe (MityCam) and these data suggest that [Ca(2+)]m is near the [Ca(2+)]i level (∼100 nM) under quiescent conditions. These two findings indicate that although the mitochondrial matrix is fully buffer-capable under quiescent conditions, it does not function as a significant dynamic buffer during physiological Ca(2+) signaling. Finally, quantitative analysis using a computational model of mitochondrial Ca(2+) cycling suggests that mitochondrial Ca(2+) uptake would need to be at least ∼100-fold greater than the current estimates of Ca(2+) influx for mitochondria to influence measurably cytosolic [Ca(2+)] signals under physiological conditions. Combined, these experiments and computational investigations show that mitochondrial Ca(2+) uptake does not significantly alter cytosolic Ca(2+) signals under normal conditions and indicates that mitochondria do not act as important dynamic buffers of [Ca(2+)]i under physiological conditions in heart.
Collapse
Affiliation(s)
- Liron Boyman
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Aristide C Chikando
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - George S B Williams
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland; School of Systems Biology, George Mason University, Fairfax, Virginia
| | - Ramzi J Khairallah
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland; University of Maryland School of Nursing, Baltimore, Maryland; Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois
| | - Sarah Kettlewell
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, G12 8QQ Glasgow, United Kingdom
| | - Christopher W Ward
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland; University of Maryland School of Nursing, Baltimore, Maryland
| | - Godfrey L Smith
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, G12 8QQ Glasgow, United Kingdom
| | - Joseph P Y Kao
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - W Jonathan Lederer
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
83
|
Williams GSB, Boyman L, Lederer WJ. Mitochondrial calcium and the regulation of metabolism in the heart. J Mol Cell Cardiol 2014; 78:35-45. [PMID: 25450609 DOI: 10.1016/j.yjmcc.2014.10.019] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/28/2014] [Accepted: 10/30/2014] [Indexed: 01/28/2023]
Abstract
Consumption of adenosine triphosphate (ATP) by the heart can change dramatically as the energetic demands increase from a period of rest to strenuous activity. Mitochondrial ATP production is central to this metabolic response since the heart relies largely on oxidative phosphorylation as its source of intracellular ATP. Significant evidence has been acquired indicating that Ca(2+) plays a critical role in regulating ATP production by the mitochondria. Here the evidence that the Ca(2+) concentration in the mitochondrial matrix ([Ca(2+)]m) plays a pivotal role in regulating ATP production by the mitochondria is critically reviewed and aspects of this process that are under current active investigation are highlighted. Importantly, current quantitative information on the bidirectional Ca(2+) movement across the inner mitochondrial membrane (IMM) is examined in two parts. First, we review how Ca(2+) influx into the mitochondrial matrix depends on the mitochondrial Ca(2+) channel (i.e., the mitochondrial calcium uniporter or MCU). This discussion includes how the MCU open probability (PO) depends on the cytosolic Ca(2+) concentration ([Ca(2+)]i) and on the mitochondrial membrane potential (ΔΨm). Second, we discuss how steady-state [Ca(2+)]m is determined by the dynamic balance between this MCU-based Ca(2+) influx and mitochondrial Na(+)/Ca(2+) exchanger (NCLX) based Ca(2+) efflux. These steady-state [Ca(2+)]m levels are suggested to regulate the metabolic energy supply due to Ca(2+)-dependent regulation of mitochondrial enzymes of the tricarboxylic acid cycle (TCA), the proteins of the electron transport chain (ETC), and the F1F0 ATP synthase itself. We conclude by discussing the roles played by [Ca(2+)]m in influencing mitochondrial responses under pathological conditions. This article is part of a Special Issue entitled "Mitochondria: From BasicMitochondrial Biology to Cardiovascular Disease."
Collapse
Affiliation(s)
- George S B Williams
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Liron Boyman
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - W Jonathan Lederer
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
84
|
Birkedal R, Laasmaa M, Vendelin M. The location of energetic compartments affects energetic communication in cardiomyocytes. Front Physiol 2014; 5:376. [PMID: 25324784 PMCID: PMC4178378 DOI: 10.3389/fphys.2014.00376] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 09/10/2014] [Indexed: 01/08/2023] Open
Abstract
The heart relies on accurate regulation of mitochondrial energy supply to match energy demand. The main regulators are Ca2+ and feedback of ADP and Pi. Regulation via feedback has intrigued for decades. First, the heart exhibits a remarkable metabolic stability. Second, diffusion of ADP and other molecules is restricted specifically in heart and red muscle, where a fast feedback is needed the most. To explain the regulation by feedback, compartmentalization must be taken into account. Experiments and theoretical approaches suggest that cardiomyocyte energetic compartmentalization is elaborate with barriers obstructing diffusion in the cytosol and at the level of the mitochondrial outer membrane (MOM). A recent study suggests the barriers are organized in a lattice with dimensions in agreement with those of intracellular structures. Here, we discuss the possible location of these barriers. The more plausible scenario includes a barrier at the level of MOM. Much research has focused on how the permeability of MOM itself is regulated, and the importance of the creatine kinase system to facilitate energetic communication. We hypothesize that at least part of the diffusion restriction at the MOM level is not by MOM itself, but due to the close physical association between the sarcoplasmic reticulum (SR) and mitochondria. This will explain why animals with a disabled creatine kinase system exhibit rather mild phenotype modifications. Mitochondria are hubs of energetics, but also ROS production and signaling. The close association between SR and mitochondria may form a diffusion barrier to ADP added outside a permeabilized cardiomyocyte. But in vivo, it is the structural basis for the mitochondrial-SR coupling that is crucial for the regulation of mitochondrial Ca2+-transients to regulate energetics, and for avoiding Ca2+-overload and irreversible opening of the mitochondrial permeability transition pore.
Collapse
Affiliation(s)
- Rikke Birkedal
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology Tallinn, Estonia
| | - Martin Laasmaa
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology Tallinn, Estonia
| | - Marko Vendelin
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology Tallinn, Estonia
| |
Collapse
|
85
|
Functional implications of mitofusin 2-mediated mitochondrial-SR tethering. J Mol Cell Cardiol 2014; 78:123-8. [PMID: 25252175 DOI: 10.1016/j.yjmcc.2014.09.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/09/2014] [Accepted: 09/13/2014] [Indexed: 11/23/2022]
Abstract
Cardiomyocyte mitochondria have an intimate physical and functional relationship with sarcoplasmic reticulum (SR). Under normal conditions mitochondrial ATP is essential to power SR calcium cycling that drives phasic contraction/relaxation, and changes in SR calcium release are sensed by mitochondria and used to modulate oxidative phosphorylation according to metabolic need. When perturbed, mitochondrial-SR calcium crosstalk can evoke programmed cell death. Physical proximity and functional interplay between mitochondria and SR are maintained in part through tethering of these two organelles by the membrane protein mitofusin 2 (Mfn2). Here we review and discuss findings from our two laboratories that derive from genetic manipulation of Mfn2 and closely related Mfn1 in mouse hearts and other experimental systems. By comparing the findings of our two independent research efforts we arrive at several conclusions that appear to be strongly supported, and describe a few areas of incomplete understanding that will require further study. In so doing we hope to clarify some misconceptions regarding the many varied roles of Mfn2 as both physical trans-organelle tether and mitochondrial fusion protein. This article is part of a Special Issue entitled "Mitochondria: From Basic Mitochondrial Biology to Cardiovascular Disease."
Collapse
|
86
|
Gong G, Liu X, Wang W. Regulation of metabolism in individual mitochondria during excitation-contraction coupling. J Mol Cell Cardiol 2014; 76:235-46. [PMID: 25252178 DOI: 10.1016/j.yjmcc.2014.09.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 09/11/2014] [Indexed: 01/03/2023]
Abstract
The heart is an excitable organ that undergoes spontaneous force generation and relaxation cycles driven by excitation-contraction (EC) coupling. A fraction of the oscillating cytosolic Ca(2+) during each heartbeat is taken up by mitochondria to stimulate mitochondrial metabolism, the major source of energy in the heart. Whether the mitochondrial metabolism is regulated individually during EC coupling and whether this heterogeneous regulation bears any physiological or pathological relevance have not been studied. Here, we developed a novel approach to determine the regulation of individual mitochondrial metabolism during cardiac EC coupling. Through monitoring superoxide flashes, which are stochastic and bursting superoxide production events arising from increased metabolism in individual mitochondria, we found that EC coupling stimulated the metabolism in individual mitochondria as indicated by significantly increased superoxide flash activity during electrical stimulation of the cultured intact myocytes or perfused heart. Mechanistically, cytosolic calcium transients promoted individual mitochondria to take up calcium via mitochondrial calcium uniporter, which subsequently triggered transient opening of the permeability transition pore and stimulated metabolism and bursting superoxide flash in that mitochondrion. The bursting superoxide, in turn, promoted local calcium release. In the early stage of heart failure, EC coupling regulation of superoxide flashes was compromised. This study highlights the heterogeneity in the regulation of cardiac mitochondrial metabolism, which may contribute to local redox signaling.
Collapse
Affiliation(s)
- Guohua Gong
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Xiaoyun Liu
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA; Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Wang Wang
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
87
|
Modelling mechanism of calcium oscillations in pancreatic acinar cells. J Bioenerg Biomembr 2014; 46:403-20. [DOI: 10.1007/s10863-014-9561-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 06/24/2014] [Indexed: 01/18/2023]
|
88
|
Kaestner L, Scholz A, Tian Q, Ruppenthal S, Tabellion W, Wiesen K, Katus HA, Müller OJ, Kotlikoff MI, Lipp P. Genetically encoded Ca2+ indicators in cardiac myocytes. Circ Res 2014; 114:1623-39. [PMID: 24812351 DOI: 10.1161/circresaha.114.303475] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Genetically encoded Ca(2+) indicators constitute a powerful set of tools to investigate functional aspects of Ca(2+) signaling in isolated cardiomyocytes, cardiac tissue, and whole hearts. Here, we provide an overview of the concepts, experiences, state of the art, and ongoing developments in the use of genetically encoded Ca(2+) indicators for cardiac cells and heart tissue. This review is supplemented with in vivo viral gene transfer experiments and comparisons of available genetically encoded Ca(2+) indicators with each other and with the small molecule dye Fura-2. In the context of cardiac myocytes, we provide guidelines for selecting a genetically encoded Ca(2+) indicator. For future developments, we discuss improvements of a broad range of properties, including photophysical properties such as spectral spread and biocompatibility, as well as cellular and in vivo applications.
Collapse
Affiliation(s)
- Lars Kaestner
- From the Institute for Molecular Cell Biology and Research Center for Molecular Imaging and Screening, School of Medicine, Saarland University, Homburg-Saar, Germany (L.K., A.S., Q.T., S.R., W.T., K.W., P.L.); Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany (H.A.K., O.J.M.); DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany (H.A.K., O.J.M.); and Biomedical Sciences Department, College of Veterinary Medicine, Cornell University, Ithaca, NY (M.I.K.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Diversity of mitochondrial Ca²⁺ signaling in rat neonatal cardiomyocytes: evidence from a genetically directed Ca²⁺ probe, mitycam-E31Q. Cell Calcium 2014; 56:133-46. [PMID: 24994483 DOI: 10.1016/j.ceca.2014.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 06/03/2014] [Accepted: 06/07/2014] [Indexed: 11/24/2022]
Abstract
I(Ca)-gated Ca(2+) release (CICR) from the cardiac SR is the main mechanism mediating the rise of cytosolic Ca(2+), but the extent to which mitochondria contribute to the overall Ca(2+) signaling remains controversial. To examine the possible role of mitochondria in Ca(2+) signaling, we developed a low affinity mitochondrial Ca(2+) probe, mitycam-E31Q (300-500 MOI, 48-72h) and used it in conjunction with Fura-2AM to obtain simultaneous TIRF images of mitochondrial and cytosolic Ca(2+) in cultured neonatal rat cardiomyocytes. Mitycam-E31Q staining of adult feline cardiomyocytes showed the typical mitochondrial longitudinal fluorescent bandings similar to that of TMRE staining, while neonatal rat cardiomyocytes had a disorganized tubular or punctuate appearance. Caffeine puffs produced rapid increases in cytosolic Ca(2+) while simultaneously measured global mitycam-E31Q signals decreased more slowly (increased mitochondrial Ca(2+)) before decaying to baseline levels. Similar, but oscillating mitycam-E31Q signals were seen in spontaneously pacing cells. Withdrawal of Na(+) increased global cytosolic and mitochondrial Ca(2+) signals in one population of mitochondria, but unexpectedly decreased it (release of Ca(2+)) in another mitochondrial population. Such mitochondrial Ca(2+) release signals were seen not only during long lasting Na(+) withdrawal, but also when Ca(2+) loaded cells were exposed to caffeine-puffs, and during spontaneous rhythmic beating. Thus, mitochondrial Ca(2+) transients appear to activate with a delay following the cytosolic rise of Ca(2+) and show diversity in subpopulations of mitochondria that could contribute to the plasticity of mitochondrial Ca(2+) signaling.
Collapse
|
90
|
Mitochondrial reactive oxygen species production and elimination. J Mol Cell Cardiol 2014; 73:26-33. [PMID: 24657720 DOI: 10.1016/j.yjmcc.2014.03.011] [Citation(s) in RCA: 227] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 02/24/2014] [Accepted: 03/14/2014] [Indexed: 12/31/2022]
Abstract
Reactive oxygen species (ROS) play an important role in cardiovascular diseases, and one important source for ROS are mitochondria. Emission of ROS from mitochondria is the net result of ROS production at the electron transport chain (ETC) and their elimination by antioxidative enzymes. Both of these processes are highly dependent on the mitochondrial redox state, which is dynamically altered under different physiological and pathological conditions. The concept of "redox-optimized ROS balance" integrates these aspects and implies that oxidative stress occurs when the optimal equilibrium of an intermediate redox state is disturbed towards either strong oxidation or reduction. Furthermore, mitochondria integrate ROS signals from other cellular sources, presumably through a process termed "ROS-induced ROS release" that involves mitochondrial ion channels. Here, we attempt to integrate these recent advances in our understanding of the control of mitochondrial ROS emission and develop a concept of how in heart failure, defects in ion handling can lead to mitochondrial oxidative stress. This article is part of a Special Issue entitled "Redox Signalling in the Cardiovascular System".
Collapse
|
91
|
Hill JM, De Stefani D, Jones AWE, Ruiz A, Rizzuto R, Szabadkai G. Measuring baseline Ca(2+) levels in subcellular compartments using genetically engineered fluorescent indicators. Methods Enzymol 2014; 543:47-72. [PMID: 24924127 DOI: 10.1016/b978-0-12-801329-8.00003-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Intracellular Ca(2+) signaling is involved in a series of physiological and pathological processes. In particular, an intimate crosstalk between bioenergetic metabolism and Ca(2+) homeostasis has been shown to determine cell fate in resting conditions as well as in response to stress. The endoplasmic reticulum and mitochondria represent key hubs of cellular metabolism and Ca(2+) signaling. However, it has been challenging to specifically detect highly localized Ca(2+) fluxes such as those bridging these two organelles. To circumvent this issue, various recombinant Ca(2+) indicators that can be targeted to specific subcellular compartments have been developed over the past two decades. While the use of these probes for measuring agonist-induced Ca(2+) signals in various organelles has been extensively described, the assessment of basal Ca(2+) concentrations within specific organelles is often disregarded, in spite of the fact that this parameter is vital for several metabolic functions, including the enzymatic activity of mitochondrial dehydrogenases of the Krebs cycle and protein folding in the endoplasmic reticulum. Here, we provide an overview on genetically engineered, organelle-targeted fluorescent Ca(2+) probes and outline their evolution. Moreover, we describe recently developed protocols to quantify baseline Ca(2+) concentrations in specific subcellular compartments. Among several applications, this method is suitable for assessing how changes in basal Ca(2+) levels affect the metabolic profile of cancer cells.
Collapse
Affiliation(s)
- Julia M Hill
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, United Kingdom
| | - Diego De Stefani
- Department of Biomedical Sciences, CNR Neuroscience Institute, University of Padua, Padua, Italy
| | - Aleck W E Jones
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, United Kingdom
| | - Asier Ruiz
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Achúcarro Basque Center for Neuroscience-UPV/EHU, Leioa, Spain; Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, (CIBERNED), Madrid, Spain
| | - Rosario Rizzuto
- Department of Biomedical Sciences, CNR Neuroscience Institute, University of Padua, Padua, Italy
| | - Gyorgy Szabadkai
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, United Kingdom; Department of Biomedical Sciences, CNR Neuroscience Institute, University of Padua, Padua, Italy.
| |
Collapse
|
92
|
Zhao Z, Gordan R, Wen H, Fefelova N, Zang WJ, Xie LH. Modulation of intracellular calcium waves and triggered activities by mitochondrial ca flux in mouse cardiomyocytes. PLoS One 2013; 8:e80574. [PMID: 24348912 PMCID: PMC3857829 DOI: 10.1371/journal.pone.0080574] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 10/04/2013] [Indexed: 12/23/2022] Open
Abstract
Recent studies have suggested that mitochondria may play important roles in the Ca(2+) homeostasis of cardiac myocytes. However, it is still unclear if mitochondrial Ca(2+) flux can regulate the generation of Ca(2+) waves (CaWs) and triggered activities in cardiac myocytes. In the present study, intracellular/cytosolic Ca(2+) (Cai (2+)) was imaged in Fluo-4-AM loaded mouse ventricular myocytes. Spontaneous sarcoplasmic reticulum (SR) Ca(2+) release and CaWs were induced in the presence of high (4 mM) external Ca(2+) (Cao (2+)). The protonophore carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP) reversibly raised basal Cai (2+) levels even after depletion of SR Ca(2+) in the absence of Cao (2+) , suggesting Ca(2+) release from mitochondria. FCCP at 0.01 - 0.1 µM partially depolarized the mitochondrial membrane potential (Δψ m ) and increased the frequency and amplitude of CaWs in a dose-dependent manner. Simultaneous recording of cell membrane potentials showed the augmentation of delayed afterdepolarization amplitudes and frequencies, and induction of triggered action potentials. The effect of FCCP on CaWs was mimicked by antimycin A (an electron transport chain inhibitor disrupting Δψ m ) or Ru360 (a mitochondrial Ca(2+) uniporter inhibitor), but not by oligomycin (an ATP synthase inhibitor) or iodoacetic acid (a glycolytic inhibitor), excluding the contribution of intracellular ATP levels. The effects of FCCP on CaWs were counteracted by the mitochondrial permeability transition pore blocker cyclosporine A, or the mitochondrial Ca(2+) uniporter activator kaempferol. Our results suggest that mitochondrial Ca(2+) release and uptake exquisitely control the local Ca(2+) level in the micro-domain near SR ryanodine receptors and play an important role in regulation of intracellular CaWs and arrhythmogenesis.
Collapse
Affiliation(s)
- Zhenghang Zhao
- Department of Pharmacology, School of Medicine, Xi’an Jiaotong University, Xi’an, China
- Department of Cell Biology and Molecular Medicine, Rutgers, New Jersey Medical School, Newark, New Jersey, United States of America
| | - Richard Gordan
- Department of Cell Biology and Molecular Medicine, Rutgers, New Jersey Medical School, Newark, New Jersey, United States of America
| | - Hairuo Wen
- Department of Cell Biology and Molecular Medicine, Rutgers, New Jersey Medical School, Newark, New Jersey, United States of America
- Department of Reproductive and Genetic Toxicology, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, P.R. China
| | - Nadezhda Fefelova
- Department of Cell Biology and Molecular Medicine, Rutgers, New Jersey Medical School, Newark, New Jersey, United States of America
| | - Wei-Jin Zang
- Department of Pharmacology, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, Rutgers, New Jersey Medical School, Newark, New Jersey, United States of America
| |
Collapse
|
93
|
O-Uchi J, Jhun BS, Hurst S, Bisetto S, Gross P, Chen M, Kettlewell S, Park J, Oyamada H, Smith GL, Murayama T, Sheu SS. Overexpression of ryanodine receptor type 1 enhances mitochondrial fragmentation and Ca2+-induced ATP production in cardiac H9c2 myoblasts. Am J Physiol Heart Circ Physiol 2013; 305:H1736-51. [PMID: 24124188 DOI: 10.1152/ajpheart.00094.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ca(+) influx to mitochondria is an important trigger for both mitochondrial dynamics and ATP generation in various cell types, including cardiac cells. Mitochondrial Ca(2+) influx is mainly mediated by the mitochondrial Ca(2+) uniporter (MCU). Growing evidence also indicates that mitochondrial Ca(2+) influx mechanisms are regulated not solely by MCU but also by multiple channels/transporters. We have previously reported that skeletal muscle-type ryanodine receptor (RyR) type 1 (RyR1), which expressed at the mitochondrial inner membrane, serves as an additional Ca(2+) uptake pathway in cardiomyocytes. However, it is still unclear which mitochondrial Ca(2+) influx mechanism is the dominant regulator of mitochondrial morphology/dynamics and energetics in cardiomyocytes. To investigate the role of mitochondrial RyR1 in the regulation of mitochondrial morphology/function in cardiac cells, RyR1 was transiently or stably overexpressed in cardiac H9c2 myoblasts. We found that overexpressed RyR1 was partially localized in mitochondria as observed using both immunoblots of mitochondrial fractionation and confocal microscopy, whereas RyR2, the main RyR isoform in the cardiac sarcoplasmic reticulum, did not show any expression at mitochondria. Interestingly, overexpression of RyR1 but not MCU or RyR2 resulted in mitochondrial fragmentation. These fragmented mitochondria showed bigger and sustained mitochondrial Ca(2+) transients compared with basal tubular mitochondria. In addition, RyR1-overexpressing cells had a higher mitochondrial ATP concentration under basal conditions and showed more ATP production in response to cytosolic Ca(2+) elevation compared with nontransfected cells as observed by a matrix-targeted ATP biosensor. These results indicate that RyR1 possesses a mitochondrial targeting/retention signal and modulates mitochondrial morphology and Ca(2+)-induced ATP production in cardiac H9c2 myoblasts.
Collapse
Affiliation(s)
- Jin O-Uchi
- Center for Translational Medicine, Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Yaniv Y, Juhaszova M, Sollott SJ. Age-related changes of myocardial ATP supply and demand mechanisms. Trends Endocrinol Metab 2013; 24:495-505. [PMID: 23845538 PMCID: PMC3783621 DOI: 10.1016/j.tem.2013.06.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/30/2013] [Accepted: 06/03/2013] [Indexed: 01/03/2023]
Abstract
In advanced age, the resting myocardial oxygen consumption rate (MVO2) and cardiac work (CW) in the rat remain intact. However, MVO2, CW and cardiac efficiency achieved at high demand are decreased with age, compared to maximal values in the young. Whether this deterioration is due to decrease in myocardial ATP demand, ATP supply, or the control mechanisms that match them remains controversial. Here we discuss evolving perspectives of age-related changes of myocardial ATP supply and demand mechanisms, and critique experimental models used to investigate aging. Specifically, we evaluate experimental data collected at the level of isolated mitochondria, tissue, or organism, and discuss how mitochondrial energetic mechanisms change in advanced age, both at basal and high energy-demand levels.
Collapse
Affiliation(s)
- Yael Yaniv
- Laboratory of Cardiovascular Science, Biomedical Research Center, Intramural Research Program, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | | | | |
Collapse
|
95
|
The mitochondrial Na+-Ca2+ exchanger, NCLX, regulates automaticity of HL-1 cardiomyocytes. Sci Rep 2013; 3:2766. [PMID: 24067497 PMCID: PMC3783885 DOI: 10.1038/srep02766] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 09/05/2013] [Indexed: 01/10/2023] Open
Abstract
Mitochondrial Ca2+ is known to change dynamically, regulating mitochondrial as well as cellular functions such as energy metabolism and apoptosis. The NCLX gene encodes the mitochondrial Na+-Ca2+ exchanger (NCXmit), a Ca2+ extrusion system in mitochondria. Here we report that the NCLX regulates automaticity of the HL-1 cardiomyocytes. NCLX knockdown using siRNA resulted in the marked prolongation of the cycle length of spontaneous Ca2+ oscillation and action potential generation. The upstrokes of action potential and Ca2+ transient were markedly slower, and sarcoplasmic reticulum (SR) Ca2+ handling were compromised in the NCLX knockdown cells. Analyses using a mathematical model of HL-1 cardiomyocytes demonstrated that blocking NCXmit reduced the SR Ca2+ content to slow spontaneous SR Ca2+ leak, which is a trigger of automaticity. We propose that NCLX is a novel molecule to regulate automaticity of cardiomyocytes via modulating SR Ca2+ handling.
Collapse
|
96
|
Eisner V, Csordás G, Hajnóczky G. Interactions between sarco-endoplasmic reticulum and mitochondria in cardiac and skeletal muscle - pivotal roles in Ca²⁺ and reactive oxygen species signaling. J Cell Sci 2013; 126:2965-78. [PMID: 23843617 DOI: 10.1242/jcs.093609] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are strategically and dynamically positioned in the cell to spatially coordinate ATP production with energy needs and to allow the local exchange of material with other organelles. Interactions of mitochondria with the sarco-endoplasmic reticulum (SR/ER) have been receiving much attention owing to emerging evidence on the role these sites have in cell signaling, dynamics and biosynthetic pathways. One of the most important physiological and pathophysiological paradigms for SR/ER-mitochondria interactions is in cardiac and skeletal muscle. The contractile activity of these tissues has to be matched by mitochondrial ATP generation that is achieved, at least in part, by propagation of Ca(2+) signals from SR to mitochondria. However, the muscle has a highly ordered structure, providing only limited opportunity for mitochondrial dynamics and interorganellar interactions. This Commentary focuses on the latest advances in the structure, function and disease relevance of the communication between SR/ER and mitochondria in muscle. In particular, we discuss the recent demonstration of SR/ER-mitochondria tethers that are formed by multiple proteins, and local Ca(2+) transfer between SR/ER and mitochondria.
Collapse
Affiliation(s)
- Verónica Eisner
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | |
Collapse
|
97
|
Abstract
Calcium (Ca(2+)) uptake into the mitochondrial matrix is critically important to cellular function. As a regulator of matrix Ca(2+) levels, this flux influences energy production and can initiate cell death. If large, this flux could potentially alter intracellular Ca(2+) ([Ca(2+)]i) signals. Despite years of study, fundamental disagreements on the extent and speed of mitochondrial Ca(2+) uptake still exist. Here, we review and quantitatively analyze mitochondrial Ca(2+) uptake fluxes from different tissues and interpret the results with respect to the recently proposed mitochondrial Ca(2+) uniporter (MCU) candidate. This quantitative analysis yields four clear results: (i) under physiological conditions, Ca(2+) influx into the mitochondria via the MCU is small relative to other cytosolic Ca(2+) extrusion pathways; (ii) single MCU conductance is ∼6-7 pS (105 mM [Ca(2+)]), and MCU flux appears to be modulated by [Ca(2+)]i, suggesting Ca(2+) regulation of MCU open probability (P(O)); (iii) in the heart, two features are clear: the number of MCU channels per mitochondrion can be calculated, and MCU probability is low under normal conditions; and (iv) in skeletal muscle and liver cells, uptake per mitochondrion varies in magnitude but total uptake per cell still appears to be modest. Based on our analysis of available quantitative data, we conclude that although Ca(2+) critically regulates mitochondrial function, the mitochondria do not act as a significant dynamic buffer of cytosolic Ca(2+) under physiological conditions. Nevertheless, with prolonged (superphysiological) elevations of [Ca(2+)]i, mitochondrial Ca(2+) uptake can increase 10- to 1,000-fold and begin to shape [Ca(2+)]i dynamics.
Collapse
|
98
|
Myocardial energetics in heart failure. Basic Res Cardiol 2013; 108:358. [PMID: 23740216 DOI: 10.1007/s00395-013-0358-9] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/24/2013] [Accepted: 05/09/2013] [Indexed: 12/12/2022]
Abstract
It has become common sense that the failing heart is an "engine out of fuel". However, undisputable evidence that, indeed, the failing heart is limited by insufficient ATP supply is currently lacking. Over the last couple of years, an increasingly complex picture of mechanisms evolved that suggests that potentially metabolic intermediates and redox state could play the more dominant roles for signaling that eventually results in left ventricular remodeling and contractile dysfunction. In the pathophysiology of heart failure, mitochondria emerge in the crossfire of defective excitation-contraction coupling and increased energetic demand, which may provoke oxidative stress as an important upstream mediator of cardiac remodeling and cell death. Thus, future therapies may be guided towards restoring defective ion homeostasis and mitochondrial redox shifts rather than aiming solely at improving the generation of ATP.
Collapse
|
99
|
Bay J, Kohlhaas M, Maack C. Intracellular Na⁺ and cardiac metabolism. J Mol Cell Cardiol 2013; 61:20-7. [PMID: 23727097 DOI: 10.1016/j.yjmcc.2013.05.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/08/2013] [Accepted: 05/20/2013] [Indexed: 12/13/2022]
Abstract
In heart failure, alterations of excitation-contraction underlie contractile dysfunction. One important defect is an elevation of the intracellular Na(+) concentration in cardiac myocytes ([Na(+)]i), which has an important impact on cytosolic and mitochondrial Ca(2+) homeostasis. While elevated [Na(+)]i is thought to compensate for decreased Ca(2+) load of the sarcoplasmic reticulum (SR), it yet negatively affects energy supply-and-demand matching and can even induce mitochondrial oxidative stress. Here, we review the mechanisms underlying these pathophysiological changes. The chain of events may constitute a vicious cycle of ion dysregulation, oxidative stress and energetic deficit, resembling characteristic cellular deficits that are considered key hallmarks of the failing heart. This article is part of a Special Issue entitled "Na(+) Regulation in Cardiac Myocytes".
Collapse
Affiliation(s)
- Johannes Bay
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg, Germany
| | | | | |
Collapse
|
100
|
Yaniv Y, Spurgeon HA, Ziman BD, Lyashkov AE, Lakatta EG. Mechanisms that match ATP supply to demand in cardiac pacemaker cells during high ATP demand. Am J Physiol Heart Circ Physiol 2013; 304:H1428-38. [PMID: 23604710 DOI: 10.1152/ajpheart.00969.2012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The spontaneous action potential (AP) firing rate of sinoatrial node cells (SANCs) involves high-throughput signaling via Ca(2+)-calmodulin activated adenylyl cyclases (AC), cAMP-mediated protein kinase A (PKA), and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII)-dependent phosphorylation of SR Ca(2+) cycling and surface membrane ion channel proteins. When the throughput of this signaling increases, e.g., in response to β-adrenergic receptor activation, the resultant increase in spontaneous AP firing rate increases the demand for ATP. We hypothesized that an increase of ATP production to match the increased ATP demand is achieved via a direct effect of increased mitochondrial Ca(2+) (Ca(2+)m) and an indirect effect via enhanced Ca(2+)-cAMP/PKA-CaMKII signaling to mitochondria. To increase ATP demand, single isolated rabbit SANCs were superfused by physiological saline at 35 ± 0.5°C with isoproterenol, or by phosphodiesterase or protein phosphatase inhibition. We measured cytosolic and mitochondrial Ca(2+) and flavoprotein fluorescence in single SANC, and we measured cAMP, ATP, and O₂ consumption in SANC suspensions. Although the increase in spontaneous AP firing rate was accompanied by an increase in O₂ consumption, the ATP level and flavoprotein fluorescence remained constant, indicating that ATP production had increased. Both Ca(2+)m and cAMP increased concurrently with the increase in AP firing rate. When Ca(2+)m was reduced by Ru360, the increase in spontaneous AP firing rate in response to isoproterenol was reduced by 25%. Thus, both an increase in Ca(2+)m and an increase in Ca(2+) activated cAMP-PKA-CaMKII signaling regulate the increase in ATP supply to meet ATP demand above the basal level.
Collapse
Affiliation(s)
- Yael Yaniv
- Laboratory of Cardiovascular Science, Gerontology Research Center, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|