51
|
Ito S, Lu HS, Daugherty A, Sawada H. Embryonic Heterogeneity of Smooth Muscle Cells in the Complex Mechanisms of Thoracic Aortic Aneurysms. Genes (Basel) 2022; 13:genes13091618. [PMID: 36140786 PMCID: PMC9498804 DOI: 10.3390/genes13091618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
Smooth muscle cells (SMCs) are the major cell type of the aortic wall and play a pivotal role in the pathophysiology of thoracic aortic aneurysms (TAAs). TAAs occur in a region-specific manner with the proximal region being a common location. In this region, SMCs are derived embryonically from either the cardiac neural crest or the second heart field. These cells of distinct origins reside in specific locations and exhibit different biological behaviors in the complex mechanism of TAAs. The purpose of this review is to enhance understanding of the embryonic heterogeneity of SMCs in the proximal thoracic aorta and their functions in TAAs.
Collapse
Affiliation(s)
- Sohei Ito
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Saha Aortic Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Hong S. Lu
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Saha Aortic Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Alan Daugherty
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Saha Aortic Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Hisashi Sawada
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Saha Aortic Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Correspondence: ; Tel.: +1-(859)-218-1705
| |
Collapse
|
52
|
Joshi R, Han SB, Cho WK, Kim DH. The role of cellular traction forces in deciphering nuclear mechanics. Biomater Res 2022; 26:43. [PMID: 36076274 PMCID: PMC9461125 DOI: 10.1186/s40824-022-00289-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/28/2022] [Indexed: 11/10/2022] Open
Abstract
Cellular forces exerted on the extracellular matrix (ECM) during adhesion and migration under physiological and pathological conditions regulate not only the overall cell morphology but also nuclear deformation. Nuclear deformation can alter gene expression, integrity of the nuclear envelope, nucleus-cytoskeletal connection, chromatin architecture, and, in some cases, DNA damage responses. Although nuclear deformation is caused by the transfer of forces from the ECM to the nucleus, the role of intracellular organelles in force transfer remains unclear and a challenging area of study. To elucidate nuclear mechanics, various factors such as appropriate biomaterial properties, processing route, cellular force measurement technique, and micromanipulation of nuclear forces must be understood. In the initial phase of this review, we focused on various engineered biomaterials (natural and synthetic extracellular matrices) and their manufacturing routes along with the properties required to mimic the tumor microenvironment. Furthermore, we discussed the principle of tools used to measure the cellular traction force generated during cell adhesion and migration, followed by recently developed techniques to gauge nuclear mechanics. In the last phase of this review, we outlined the principle of traction force microscopy (TFM), challenges in the remodeling of traction forces, microbead displacement tracking algorithm, data transformation from bead movement, and extension of 2-dimensional TFM to multiscale TFM.
Collapse
Affiliation(s)
- Rakesh Joshi
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea
| | - Seong-Beom Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea
| | - Won-Ki Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea.
- Department of Integrative Energy Engineering, College of Engineering, Korea University, Seoul, South Korea.
| |
Collapse
|
53
|
Fang ZM, Feng X, Chen Y, Luo H, Jiang DS, Yi X. Targeting autophagy in aortic aneurysm and dissection. Biomed Pharmacother 2022; 153:113547. [PMID: 36076620 DOI: 10.1016/j.biopha.2022.113547] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 01/18/2023] Open
|
54
|
Chitwood CA, Shih ED, Amili O, Larson AS, Ogle BM, Alford PW, Grande AW. Biology and Hemodynamics of Aneurysm Rupture. Neurosurg Clin N Am 2022; 33:431-441. [DOI: 10.1016/j.nec.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
55
|
Rodrigues Bento J, Meester J, Luyckx I, Peeters S, Verstraeten A, Loeys B. The Genetics and Typical Traits of Thoracic Aortic Aneurysm and Dissection. Annu Rev Genomics Hum Genet 2022; 23:223-253. [PMID: 36044906 DOI: 10.1146/annurev-genom-111521-104455] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genetic predisposition and risk factors such as hypertension and smoking can instigate the development of thoracic aortic aneurysm (TAA), which can lead to highly lethal aortic wall dissection and/or rupture. Monogenic defects in multiple genes involved in the elastin-contractile unit and the TGFβ signaling pathway have been associated with TAA in recent years, along with several genetic modifiers and risk-conferring polymorphisms. Advances in omics technology have also provided significant insights into the processes behind aortic wall degeneration: inflammation, epigenetics, vascular smooth muscle phenotype change and depletion, reactive oxygen species generation, mitochondrial dysfunction, and angiotensin signaling dysregulation. These recent advances and findings might pave the way for a therapy that is capable of stopping and perhaps even reversing aneurysm progression.
Collapse
Affiliation(s)
- Jotte Rodrigues Bento
- Centre of Medical Genetics, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium;
| | - Josephina Meester
- Centre of Medical Genetics, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium;
| | - Ilse Luyckx
- Centre of Medical Genetics, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium; .,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Silke Peeters
- Centre of Medical Genetics, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium;
| | - Aline Verstraeten
- Centre of Medical Genetics, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium;
| | - Bart Loeys
- Centre of Medical Genetics, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium; .,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
56
|
Michel JB, Lagrange J, Regnault V, Lacolley P. Conductance Artery Wall Layers and Their Respective Roles in the Clearance Functions. Arterioscler Thromb Vasc Biol 2022; 42:e253-e272. [PMID: 35924557 DOI: 10.1161/atvbaha.122.317759] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Evolutionary organization of the arterial wall into layers occurred concomitantly with the emergence of a highly muscularized, pressurized arterial system that facilitates outward hydraulic conductance and mass transport of soluble substances across the arterial wall. Although colliding circulating cells disperse potential energy within the arterial wall, the different layers counteract this effect: (1) the endothelium ensures a partial barrier function; (2) the media comprises smooth muscle cells capable of endocytosis/phagocytosis; (3) the outer adventitia and perivascular adipocytic tissue are the final receptacles of convected substances. While the endothelium forms a physical and a biochemical barrier, the medial layer is avascular, relying on the specific permeability properties of the endothelium for metabolic support. Different components of the media interact with convected molecules: medial smooth muscle cells take up numerous molecules via scavenger receptors and are capable of phagocytosis of macro/micro particles. The outer layers-the highly microvascularized innervated adventitia and perivascular adipose tissue-are also involved in the clearance functions of the media: the adventitia is the seat of immune response development, inward angiogenesis, macromolecular lymphatic drainage, and neuronal stimulation. Consequently, the clearance functions of the arterial wall are physiologically essential, but also may favor the development of arterial wall pathologies. This review describes how the walls of large conductance arteries have acquired physiological clearance functions, how this is determined by the attributes of the endothelial barrier, governed by endocytic and phagocytic capacities of smooth muscle cells, impacting adventitial functions, and the role of these clearance functions in arterial wall diseases.
Collapse
|
57
|
Goswami S, Li DS, Rego BV, Latorre M, Humphrey JD, Karniadakis GE. Neural operator learning of heterogeneous mechanobiological insults contributing to aortic aneurysms. J R Soc Interface 2022; 19:20220410. [PMID: 36043289 PMCID: PMC9428523 DOI: 10.1098/rsif.2022.0410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/05/2022] [Indexed: 11/12/2022] Open
Abstract
Thoracic aortic aneurysm (TAA) is a localized dilatation of the aorta that can lead to life-threatening dissection or rupture. In vivo assessments of TAA progression are largely limited to measurements of aneurysm size and growth rate. There is promise, however, that computational modelling of the evolving biomechanics of the aorta could predict future geometry and properties from initiating mechanobiological insults. We present an integrated framework to train a deep operator network (DeepONet)-based surrogate model to identify TAA contributing factors using synthetic finite-element-based datasets. For training, we employ a constrained mixture model of aortic growth and remodelling to generate maps of local aortic dilatation and distensibility for multiple TAA risk factors. We evaluate the performance of the surrogate model for insult distributions varying from fusiform (analytically defined) to complex (randomly generated). We propose two frameworks, one trained on sparse information and one on full-field greyscale images, to gain insight into a preferred neural operator-based approach. We show that this continuous learning approach can predict the patient-specific insult profile associated with any given dilatation and distensibility map with high accuracy, particularly when based on full-field images. Our findings demonstrate the feasibility of applying DeepONet to support transfer learning of patient-specific inputs to predict TAA progression.
Collapse
Affiliation(s)
- Somdatta Goswami
- Division of Applied Mathematics, Brown University, Providence, RI, USA
| | - David S. Li
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Bruno V. Rego
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Marcos Latorre
- Centre for Research and Innovation in Bioengineering, Universitat Politècnica de València, València, Spain
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - George Em Karniadakis
- Division of Applied Mathematics, Brown University, Providence, RI, USA
- School of Engineering, Brown University, Providence, RI, USA
| |
Collapse
|
58
|
Weiss D, Long AS, Tellides G, Avril S, Humphrey JD, Bersi MR. Evolving Mural Defects, Dilatation, and Biomechanical Dysfunction in Angiotensin II-Induced Thoracic Aortopathies. Arterioscler Thromb Vasc Biol 2022; 42:973-986. [PMID: 35770665 PMCID: PMC9339505 DOI: 10.1161/atvbaha.122.317394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Thoracic aortopathy associates with extracellular matrix remodeling and altered biomechanical properties. We sought to quantify the natural history of thoracic aortopathy in a common mouse model and to correlate measures of wall remodeling such as aortic dilatation or localized mural defects with evolving microstructural composition and biomechanical properties of the wall. METHODS We combined a high-resolution multimodality imaging approach (panoramic digital image correlation and optical coherence tomography) with histopathologic examinations and biaxial mechanical testing to correlate spatially, for the first time, macroscopic mural defects and medial degeneration within the ascending aorta with local changes in aortic wall composition and mechanical properties. RESULTS Findings revealed strong correlations between local decreases in elastic energy storage and increases in circumferential material stiffness with increasing proximal aortic diameter and especially mural defect size. Mural defects tended to exhibit a pronounced biomechanical dysfunction that is driven by an altered organization of collagen and elastic fibers. CONCLUSIONS While aneurysmal dilatation is often observed within particular segments of the aorta, dissection and rupture initiate as highly localized mechanical failures. We show that wall composition and material properties are compromised in regions of local mural defects, which further increases the dilatation and overall structural vulnerability of the wall. Identification of therapies focused on promoting robust collagen accumulation may protect the wall from these vulnerabilities and limit the incidence of dissection and rupture.
Collapse
Affiliation(s)
- Dar Weiss
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Aaron S. Long
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - George Tellides
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| | - Stéphane Avril
- Mines Saint-Etienne, University of Lyon, University Jean Monnet, INSERM, Saint-Etienne, France
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| | - Matthew R. Bersi
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
59
|
Salmasi MY, Morris-Rosendahl D, Jarral OA, Rosendahl U, Asimakopoulos G, Raja S, Aragon-Martin JA, Child A, Pepper J, Oo A, Athanasiou T. Determining the genetic contribution in patients with non-syndromic ascending thoracic aortic aneurysms: Correlation with findings from computational pathology. Int J Cardiol 2022; 366:1-9. [PMID: 35830949 DOI: 10.1016/j.ijcard.2022.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/17/2022] [Accepted: 07/07/2022] [Indexed: 01/01/2023]
Abstract
OBJECTIVES This study aims to identify the clinical utility of targeted-genetic sequencing in a cohort of patients with TAA and establish a new method for regional histological characterisation of TAA disease. METHODS Fifty-four patients undergoing surgery for proximal TAA were recruited. EXCLUSIONS connective tissue disease, bicuspid aortic valves, redo surgery. All patients underwent next generation sequencing (NGS) using a custom gene panel containing 63 genes previously associated with TAA on Illumina MiSeqor NextSeq550 platforms. Explanted TAA tissue was obtained en-bloc from 34/54 patients, and complete circumferential strips of TAA tissue processed into whole slides which were subsequently digitalised. Computational pathology methods were employed to quantify elastin, cellularity and collagen in six equally divided regions across the whole aneurysm circumference. RESULTS Of 54 patients, clearly pathogenic or potentially pathogenic variants were found in 7.4%: namely LOX, PRKG1, TGFBR1 and SMAD3 genes. 55% had at least one variant of unknown significance (VUS) and seven of the VUSs were in genes with a strong disease association (category A) genes, whilst 15 were from moderate risk (category B) genes. Elastin and collagen abundance displayed high regional variation throughout the aneurysm circumference. In patients with <60% total elastin, the loss of elastin was more significant on the outer curve (38.0% vs 47.4%, p = 0.0094). The presence of VUS, higher pulse wave velocity and advancing age were predictors of elastin loss (regression analysis: p < 0.05). CONCLUSIONS These findings demonstrate the heterogeneity of TAA disease microstructure and the potential link between histological appearance and clinical factors, including genetic variation.
Collapse
Affiliation(s)
| | | | - Omar A Jarral
- Department of Surgery and Cancer, Imperial College London, UK
| | | | | | - Shahzad Raja
- Royal Brompton and Harefield Foundation Trust, UK
| | | | - Anne Child
- Guy Scadding Building, Marfan Trust, London, UK; Sonalee Laboratory, Imperial College, London, UK
| | - John Pepper
- Royal Brompton and Harefield Foundation Trust, UK
| | - Aung Oo
- Aortovascular Unit, Barts Heart Centre, UK
| | | | | |
Collapse
|
60
|
Gene Expression Profiling in Abdominal Aortic Aneurysms. J Clin Med 2022; 11:jcm11123260. [PMID: 35743331 PMCID: PMC9225238 DOI: 10.3390/jcm11123260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022] Open
Abstract
Gene expression profiling of abdominal aortic aneurysms (AAA) indicates that chronic inflammatory responses, active matrix metalloproteinases, and degradation of the extracellular matrix components are involved in disease development and progression. This study investigates intra- and interpersonal RNA genome-wide expression profiling differences (Illumina HumanHT-12, BeadCHIP expression) of 24 AAA biopsies from 12 patients using a single gene and pathway (GeneOntology, GO enrichment) analysis. Biopsies were collected during open surgical AAA repair and according to prior finite element analysis (FEA) from regions with the highest and lowest wall stress. Single gene analysis revealed a strong heterogeneity of RNA expression parameters within the same and different AAA biopsies. The pathway analysis of all samples showed significant enrichment of genes from three different signaling pathways (integrin signaling pathway: fold change FC 1.63, p = 0.001; cholecystokinin receptor pathway: FC 1.60, p = 0.011; inflammation mediated by chemokine signaling pathway: FC 1.45, p = 0.028). These results indicate heterogeneous gene expression patterns within the AAA vascular wall. Single biopsy investigations do not permit a comprehensive characterization of activated molecular processes in AAA disease.
Collapse
|
61
|
Andreu I, Granero-Moya I, Chahare NR, Clein K, Molina-Jordán M, Beedle AEM, Elosegui-Artola A, Abenza JF, Rossetti L, Trepat X, Raveh B, Roca-Cusachs P. Mechanical force application to the nucleus regulates nucleocytoplasmic transport. Nat Cell Biol 2022; 24:896-905. [PMID: 35681009 PMCID: PMC7614780 DOI: 10.1038/s41556-022-00927-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 04/26/2022] [Indexed: 12/30/2022]
Abstract
Mechanical force controls fundamental cellular processes in health and disease, and increasing evidence shows that the nucleus both experiences and senses applied forces. Such forces can lead to the nuclear translocation of proteins, but whether force controls nucleocytoplasmic transport, and how, remains unknown. Here we show that nuclear forces differentially control passive and facilitated nucleocytoplasmic transport, setting the rules for the mechanosensitivity of shuttling proteins. We demonstrate that nuclear force increases permeability across nuclear pore complexes, with a dependence on molecular weight that is stronger for passive than for facilitated diffusion. Owing to this differential effect, force leads to the translocation of cargoes into or out of the nucleus within a given range of molecular weight and affinity for nuclear transport receptors. Further, we show that the mechanosensitivity of several transcriptional regulators can be both explained by this mechanism and engineered exogenously by introducing appropriate nuclear localization signals. Our work unveils a mechanism of mechanically induced signalling, probably operating in parallel with others, with potential applicability across signalling pathways.
Collapse
Affiliation(s)
- Ion Andreu
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain.
- Universidad de Navarra, TECNUN Escuela de Ingeniería, Donostia-San Sebastián, Spain.
| | - Ignasi Granero-Moya
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Nimesh R Chahare
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain
| | - Kessem Clein
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Marc Molina-Jordán
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Amy E M Beedle
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain
- Department of Physics, King's College London, London, UK
| | - Alberto Elosegui-Artola
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain
- Department of Physics, King's College London, London, UK
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Cell and Tissue Mechanobiology Laboratory, The Francis Crick Institute, London, UK
| | - Juan F Abenza
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain
| | - Leone Rossetti
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| | - Barak Raveh
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain.
- Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
62
|
Yong Y, Li J, Yu T, Fang B, Liu X, Yu Z, Ma X, Gooneratne R, El-Atye AA, Ju X. Overexpression of heat shock protein 70 induces apoptosis of intestinal epithelial cells in heat-stressed pigs: A proteomics approach. J Therm Biol 2022; 108:103289. [DOI: 10.1016/j.jtherbio.2022.103289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 06/11/2022] [Indexed: 12/28/2022]
|
63
|
Khasiyev F, Rundek T, Di Tullio MR, Wright CB, Sacco RL, Elkind MSV, Gutierrez J. Systemic Arterial Correlates of Cervical Carotid Artery Tortuosity : The Northern Manhattan Study. Clin Neuroradiol 2022; 32:435-443. [PMID: 34132845 PMCID: PMC8720277 DOI: 10.1007/s00062-021-01044-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/14/2021] [Indexed: 12/23/2022]
Abstract
INTRODUCTION The association between cervical internal carotid artery (cICA) tortuosity and atherosclerosis is a matter of debate. Additionally, some genetic syndromes characterized by connective tissue remodeling are associated with arterial tortuosity, raising the possibility that cICA tortuosity may not only be atherosclerotic. In this study, we hypothesized that cICA tortuosity is not associated with imaging biomarkers of atherosclerosis. METHODS The Northern Manhattan Study (NOMAS) was a prospective, multiethnic cohort of stroke-free individuals who underwent brain MRA, carotid ultrasound and transthoracic echocardiogram from 2003-2008. The cICA tortuosity was scored in each carotid as 0 = no tortuosity, 1 = tortuosity <90°, 2 = tortuosity ≥90°. A summary cICA tortuosity score (possible range 0-4) was created by adding up the tortuosity score from each carotid. Participants were assessed for atherosclerotic markers by using B‑mode carotid sonography and transthoracic echocardiography. RESULTS Of 558 participants 178 (31.9%) had any cervical ICA tortuosity (tortuosity score >0). The cICA tortuosity score was higher in women and was associated with diastolic and systolic blood pressures and height (all P < 0.05). In models adjusted for demographics and risk factors, only the association with diastolic blood pressure remained significant (β = 0.002, P = 0.02). Similarly, cICA tortuosity was associated with larger aortic root diameter (B = 1.03 ± 0.36, P = 0.004) but not with other markers of carotid or aortic atherosclerosis. CONCLUSION Cervical ICA tortuosity is associated with a higher diastolic blood pressure and larger aortic root diameter but not with other measures of atherosclerosis. Determining the risks of vascular events associated with this non-atherosclerotic phenotype may help for a better risk stratification for individuals with cICA tortuosity.
Collapse
Affiliation(s)
- Farid Khasiyev
- Department of Neurology, St. Louis University, St. Louis, MO, USA.
| | - Tatjana Rundek
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | - Clinton B Wright
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ralph L Sacco
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | - Jose Gutierrez
- Department of Neurology, Columbia University, New York, NY, USA
| |
Collapse
|
64
|
Linka K, Cavinato C, Humphrey JD, Cyron CJ. Predicting and understanding arterial elasticity from key microstructural features by bidirectional deep learning. Acta Biomater 2022; 147:63-72. [PMID: 35643194 DOI: 10.1016/j.actbio.2022.05.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 01/15/2023]
Abstract
Microstructural features and mechanical properties are closely related in all soft biological tissues. Both yet exhibit considerable inter-individual differences and are affected by factors such as aging and disease and its progression. Histological analysis, modern in situ imaging, and biomechanical testing have deepened our understanding of these complex interrelations, yet two key questions remain: (1) Given the specific microstructure, can one predict the macroscopic mechanical properties without mechanical testing? (2) Can one quantify individual contributions of the different microstructural features to the macroscopic mechanical properties in an automated, systematic and largely unbiased way? Here we propose a bidirectional deep learning architecture to address these two questions. Our architecture uses data from standard histological analyses, two-photon microscopy and biaxial biomechanical testing. Its capabilities are demonstrated by predicting with high accuracy (R2=0.92) the evolving mechanical properties of the murine aorta during maturation and aging. Moreover, our architecture reveals that the extracellular matrix composition and organization are the most prominent factors governing the macroscopic mechanical properties of the tissues studied herein. STATEMENT OF SIGNIFICANCE: .
Collapse
Affiliation(s)
- Kevin Linka
- Institute for Continuum and Material Mechanics, Hamburg University of Technology, Hamburg, Germany
| | - Cristina Cavinato
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| | - Christian J Cyron
- Institute for Continuum and Material Mechanics, Hamburg University of Technology, Hamburg, Germany; Institute of Material Systems Modeling, Helmholtz-Zentrum Hereon, Geesthacht, Germany.
| |
Collapse
|
65
|
Is Exercise Blood Pressure Putting the Brake on Exercise Rehabilitation after Acute Type A Aortic Dissection Surgery? J Clin Med 2022; 11:jcm11102931. [PMID: 35629057 PMCID: PMC9146528 DOI: 10.3390/jcm11102931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/12/2022] [Accepted: 05/19/2022] [Indexed: 02/05/2023] Open
Abstract
(1) Background: Exercise is recommended to improve physical fitness in patients recovering from acute type A aortic dissection (ATAAD). However, surgery corrects the diseased blood vessels and reduces the risk of ATAAD, but it does not redefine a safe exercise blood pressure (BP) threshold. This review aimed to discuss whether the safe threshold of exercise BP can be upregulated after ATAAD surgery to increase exercise intensity with additional benefits. (2) Data sources: The PubMed databases were searched with the keywords “type A acute aortic dissection surgery”, “exercise”, “BP”, “stress”, and variations of these terms. (3) Study selection: Data from clinical trials, guidelines, and recent reviews were selected for review. (4) Results: Regular exercise can be considered a cardioprotective intervention for aortic dissection patients by attenuating hemodynamic responses at rest and during exercise. Previous studies have mainly focused on moderate-intensity aerobic exercise. In practice, the exercise systolic BP of some patients was higher than 160 mm Hg without adverse events, which indicates that the training intensity may be underestimated for patients after ATAAD surgery. Limited studies suggest a light-to-moderate resistance training for selected patients because it may cause a greater increase in BP. (5) Conclusions: Moderate-intensity continuous aerobic exercise supplemented by low-intensity resistance training is appropriate for cardiac rehabilitation after ATAAD surgery. The BP increase based on the normal exercise BP response, corresponding to the moderate-intensity is relatively safe. For high-risk post-ATAAD patients, considering the overall volume of training, personalizing the exercise regimen to remain within “safe” BP limits, and avoiding excessive fluctuations in BP should be the primary considerations for exercise training.
Collapse
|
66
|
Rubin S, Bougaran P, Martin S, Abelanet A, Delobel V, Pernot M, Jeanningros S, Bats ML, Combe C, Dufourcq P, Debette S, Couffinhal T, Duplàa C. PHACTR-1 (Phosphatase and Actin Regulator 1) Deficiency in Either Endothelial or Smooth Muscle Cells Does Not Predispose Mice to Nonatherosclerotic Arteriopathies in 3 Transgenic Mice. Arterioscler Thromb Vasc Biol 2022; 42:597-609. [PMID: 35387477 DOI: 10.1161/atvbaha.122.317431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Genome-wide association studies have revealed robust associations of common genetic polymorphisms in an intron of the PHACTR-1 (phosphatase and actin regulator 1) gene (chr6p24), with cervical artery dissection, spontaneous coronary artery dissection, and fibromuscular dysplasia. The aim was to assess its role in the pathogenesis of cervical artery dissection or fibromuscular dysplasia. METHODS Using various tissue-specific Cre-driver mouse lines, Phactr1 was deleted either in endothelial cells using 2 tissue-specific Cre-driver (PDGFB [platelet-derived growth factor B]-CreERT2 mice and Tie2 [tyrosine kinase with immunoglobulin and EGF homology domains]-Cre) and smooth muscle cells (smooth muscle actin-CreERT2) with a third tissue-specific Cre-driver. RESULTS To test the efficacy of the Phactr1 deletion after cre-induction, we confirmed first, a decrease in Phactr1 transcription and Phactr1 expression in endothelial cell and smooth muscle cell isolated from Phactr1iPDGFB and Phactr1iSMA mice. Irrespective to the tissue or the duration of the deletion, mice did not spontaneously display pathological phenotype or vascular impairment: mouse survival, growth, blood pressure, large vessel morphology, or actin organization were not different in knockout mice than their comparatives littermates. Challenging vascular function and repair either by angiotensin II-induced hypertension or limb ischemia did not lead to vascular morphology or function impairment in Phactr1-deleted mice. Similarly, there were no more consequences of Phactr1 deletion during embryogenesis in endothelial cells. CONCLUSIONS Loss of PHACTR-1 function in the cells involved in vascular physiology does not appear to induce a pathological vascular phenotype. The in vivo effect of the intronic variation described in genome-wide association studies is unlikely to involve downregulation in PHACTR-1 expression.
Collapse
Affiliation(s)
- Sébastien Rubin
- University of Bordeaux, INSERM, Biologie des Maladies Cardiovasculaires, U1034, Pessac, France (S.R., P.B., S.M., A.A., V.D., M.P., S.J., M.-L.B., P.D., T.C., C.D.).,Service de Néphrologie, Transplantation, Dialyse et Aphérèses (S.R., C.C.), Hôpital Pellegrin, CHU de Bordeaux, France
| | - Pauline Bougaran
- University of Bordeaux, INSERM, Biologie des Maladies Cardiovasculaires, U1034, Pessac, France (S.R., P.B., S.M., A.A., V.D., M.P., S.J., M.-L.B., P.D., T.C., C.D.)
| | - Soizic Martin
- University of Bordeaux, INSERM, Biologie des Maladies Cardiovasculaires, U1034, Pessac, France (S.R., P.B., S.M., A.A., V.D., M.P., S.J., M.-L.B., P.D., T.C., C.D.)
| | - Alice Abelanet
- University of Bordeaux, INSERM, Biologie des Maladies Cardiovasculaires, U1034, Pessac, France (S.R., P.B., S.M., A.A., V.D., M.P., S.J., M.-L.B., P.D., T.C., C.D.)
| | - Valentin Delobel
- University of Bordeaux, INSERM, Biologie des Maladies Cardiovasculaires, U1034, Pessac, France (S.R., P.B., S.M., A.A., V.D., M.P., S.J., M.-L.B., P.D., T.C., C.D.)
| | - Mathieu Pernot
- University of Bordeaux, INSERM, Biologie des Maladies Cardiovasculaires, U1034, Pessac, France (S.R., P.B., S.M., A.A., V.D., M.P., S.J., M.-L.B., P.D., T.C., C.D.)
| | - Sylvie Jeanningros
- University of Bordeaux, INSERM, Biologie des Maladies Cardiovasculaires, U1034, Pessac, France (S.R., P.B., S.M., A.A., V.D., M.P., S.J., M.-L.B., P.D., T.C., C.D.)
| | - Marie-Lise Bats
- University of Bordeaux, INSERM, Biologie des Maladies Cardiovasculaires, U1034, Pessac, France (S.R., P.B., S.M., A.A., V.D., M.P., S.J., M.-L.B., P.D., T.C., C.D.).,Service de Biochimie (M.-L.B.), Hôpital Pellegrin, CHU de Bordeaux, France
| | - Christian Combe
- Service de Néphrologie, Transplantation, Dialyse et Aphérèses (S.R., C.C.), Hôpital Pellegrin, CHU de Bordeaux, France.,University of Bordeaux, Unité INSERM 1026, Université de Bordeaux, France (C.C.)
| | - Pascale Dufourcq
- University of Bordeaux, INSERM, Biologie des Maladies Cardiovasculaires, U1034, Pessac, France (S.R., P.B., S.M., A.A., V.D., M.P., S.J., M.-L.B., P.D., T.C., C.D.)
| | - Stéphanie Debette
- University of Bordeaux, INSERM, Bordeaux Population Health Center, UMR1219, France (S.D.).,Bordeaux University Hospital, Department of Neurology, Institute of Neurodegenerative Diseases, France (S.D.)
| | - Thierry Couffinhal
- University of Bordeaux, INSERM, Biologie des Maladies Cardiovasculaires, U1034, Pessac, France (S.R., P.B., S.M., A.A., V.D., M.P., S.J., M.-L.B., P.D., T.C., C.D.).,Service des Maladies Cardiaques et Vasculaires, Hôpital Haut-Léveque CHU de Bordeaux, Pessac, France (T.C.)
| | - Cécile Duplàa
- University of Bordeaux, INSERM, Biologie des Maladies Cardiovasculaires, U1034, Pessac, France (S.R., P.B., S.M., A.A., V.D., M.P., S.J., M.-L.B., P.D., T.C., C.D.)
| |
Collapse
|
67
|
Cikach FS, Germano E, Roselli EE, Svensson LG. Ascending aorta mechanics and dimensions in aortopathy – from science to application. Indian J Thorac Cardiovasc Surg 2022; 38:7-13. [PMID: 35463697 PMCID: PMC8980982 DOI: 10.1007/s12055-020-01092-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/04/2020] [Indexed: 10/22/2022] Open
Abstract
The ascending aorta has a unique microstructure and biomechanical properties that allow it to absorb energy during systole and return energy during diastole (Windkessel effect). Derangements in aortic architecture can result in changes to biomechanics and inefficiencies in function. Ultimately biomechanical failure may occur resulting in aortic dissection or rupture. By measuring aortic biomechanics with either in vivo or ex vivo methods, one may be able to predict tissue failure in patients with aortic disease such as aneurysms. An understanding of the biomechanical changes that lead to these tissue-level failures may help guide therapy, disease surveillance, surgical intervention, and aid in the development of new treatments for this deadly condition.
Collapse
|
68
|
Arrhythmia and impaired myocardial function in heritable thoracic aortic disease: An international retrospective cohort study. Eur J Med Genet 2022; 65:104503. [DOI: 10.1016/j.ejmg.2022.104503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/31/2022] [Accepted: 04/09/2022] [Indexed: 11/23/2022]
|
69
|
Fleischmann D, Afifi RO, Casanegra AI, Elefteriades JA, Gleason TG, Hanneman K, Roselli EE, Willemink MJ, Fischbein MP. Imaging and Surveillance of Chronic Aortic Dissection: A Scientific Statement From the American Heart Association. Circ Cardiovasc Imaging 2022; 15:e000075. [PMID: 35172599 DOI: 10.1161/hci.0000000000000075] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
All patients surviving an acute aortic dissection require continued lifelong surveillance of their diseased aorta. Late complications, driven predominantly by chronic false lumen degeneration and aneurysm formation, often require surgical, endovascular, or hybrid interventions to treat or prevent aortic rupture. Imaging plays a central role in the medical decision-making of patients with chronic aortic dissection. Accurate aortic diameter measurements and rigorous, systematic documentation of diameter changes over time with different imaging equipment and modalities pose a range of practical challenges in these complex patients. Currently, no guidelines or recommendations for imaging surveillance in patients with chronic aortic dissection exist. In this document, we present state-of-the-art imaging and measurement techniques for patients with chronic aortic dissection and clarify the need for standardized measurements and reporting for lifelong surveillance. We also examine the emerging role of imaging and computer simulations to predict aortic false lumen degeneration, remodeling, and biomechanical failure from morphological and hemodynamic features. These insights may improve risk stratification, individualize contemporary treatment options, and potentially aid in the conception of novel treatment strategies in the future.
Collapse
|
70
|
Ando J, Yamamoto K. Hemodynamic Forces, Endothelial Mechanotransduction, and Vascular Diseases. Magn Reson Med Sci 2022; 21:258-266. [PMID: 34024868 PMCID: PMC9680547 DOI: 10.2463/mrms.rev.2021-0018] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/23/2021] [Indexed: 11/09/2022] Open
Abstract
Cells in the tissues and organs of a living body are subjected to mechanical forces, such as pressure, friction, and tension from their surrounding environment. Cells are equipped with a mechanotransduction mechanism by which they perceive mechanical forces and transmit information into the cell interior, thereby causing physiological or pathogenetic mechano-responses. Endothelial cells (ECs) lining the inner surface of blood vessels are constantly exposed to shear stress caused by blood flow and a cyclic strain caused by intravascular pressure. A number of studies have shown that ECs are sensitive to changes in these hemodynamic forces and alter their morphology and function, sometimes by modifying gene expression. The mechanism of endothelial mechanotransduction has been elucidated, and the plasma membrane has recently been shown to act as a mechanosensor. The lipid order and cholesterol content of plasma membranes change immediately upon the exposure of ECs to hemodynamic forces, resulting in a change in membrane fluidity. These changes in a plasma membrane's physical properties affect the conformation and function of various ion channels, receptors, and microdomains (such as caveolae and primary cilia), thereby activating a wide variety of downstream signaling pathways. Such endothelial mechanotransduction works to maintain circulatory homeostasis; however, errors in endothelial mechanotransduction can cause abnormalities in vascular physiological function, leading to the initiation and progression of various vascular diseases, such as hypertension, thrombosis, aneurysms, and atherosclerosis. Recent advances in detailed imaging technology and computational fluid dynamics analysis have enabled us to evaluate the hemodynamic forces acting on vascular tissue accurately, contributing greatly to our understanding of vascular mechanotransduction and the pathogenesis of vascular diseases, as well as the development of new therapies for vascular diseases.
Collapse
Affiliation(s)
- Joji Ando
- Laboratory of Biomedical Engineering, School of Medicine, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Kimiko Yamamoto
- Laboratory of System Physiology, Department of Biomedical Engineering, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
71
|
Nicholson CJ, Xing Y, Lee S, Liang S, Mohan S, O'Rourke C, Kang J, Morgan KG. Ageing causes an aortic contractile dysfunction phenotype by targeting the expression of members of the extracellular signal-regulated kinase pathway. J Cell Mol Med 2022; 26:1456-1465. [PMID: 35181997 PMCID: PMC8899171 DOI: 10.1111/jcmm.17118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 11/30/2022] Open
Abstract
The extracellular signal-regulated kinase (ERK) pathway is a well-known regulator of vascular smooth muscle cell proliferation, but it also serves as a regulator of caldesmon, which negatively regulates vascular contractility. This study examined whether aortic contractile function requires ERK activation and if this activation is regulated by ageing. Biomechanical experiments revealed that contractile responses to the alpha1-adrenergic agonist phenylephrine are attenuated specifically in aged mice, which is associated with downregulation of ERK phosphorylation. ERK inhibition attenuates phenylephrine-induced contractility, indicating that the contractile tone is at least partially ERK-dependent. To explore the mechanisms of this age-related downregulation of ERK phosphorylation, we transfected microRNAs, miR-34a and miR-137 we have previously shown to increase with ageing and demonstrated that in A7r5 cells, both miRs downregulate the expression of Src and paxillin, known regulators of ERK signalling, as well as ERK phosphorylation. Further studies in aortic tissues transfected with miRs show that miR-34a but not miR-137 has a negative effect on mRNA levels of Src and paxillin. Furthermore, ERK phosphorylation is decreased in aortic tissue treated with the Src inhibitor PP2. Increases in miR-34a and miR-137 with ageing downregulate the expression of Src and paxillin, leading to impaired ERK signalling and aortic contractile dysfunction.
Collapse
Affiliation(s)
- Christopher J Nicholson
- Department of Health Sciences, Boston University, Boston, MA, USA.,Department of Medicine, Cardiology Division, Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yi Xing
- Department of Health Sciences, Boston University, Boston, MA, USA
| | - Sophie Lee
- Department of Health Sciences, Boston University, Boston, MA, USA
| | - Stephanie Liang
- Department of Health Sciences, Boston University, Boston, MA, USA
| | - Shivani Mohan
- Department of Health Sciences, Boston University, Boston, MA, USA
| | - Caitlin O'Rourke
- Department of Health Sciences, Boston University, Boston, MA, USA
| | - Joshua Kang
- Department of Health Sciences, Boston University, Boston, MA, USA
| | | |
Collapse
|
72
|
Metschl S, Bruder L, Paloschi V, Jakob K, Reutersberg B, Reeps C, Maegdefessel L, Gee M, Eckstein HH, Pelisek J. Changes in endocan and dermatan sulfate are associated with biomechanical properties of abdominal aortic wall during aneurysm expansion and rupture. Thromb Haemost 2022; 122:1513-1523. [PMID: 35170008 DOI: 10.1055/a-1772-0574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND AND AIMS The study aimed to assess the potential of proteoglycans (PG) and collagens as serological biomarkers in the abdominal aortic aneurysm (AAA). Furthermore, we investigated the underlying mechano-biological interactions and signaling pathways. METHODS Tissue and serum samples from patients with ruptured AAA (rAAA, n=29), elective AAA (eAAA, n=78), and healthy individuals (n=8) were evaluated by histology, immunohistochemistry and Enzyme-linked Immunosorbent Assay (ELISA), mechanical properties were assessed by tensile tests. Regulatory pathways were determined by membrane-based sandwich immunoassay. RESULTS In AAA samples, collagen type I and III (Col1, Col3), chondroitin sulfate (CS), and dermatan sulfate (DS) were significantly increased compared to controls (3.0-, 3.2-, 1.3-, and 53-fold; p<0.01). Col1 and endocan were also elevated in the serum of AAA patients (3.6- and 6.0-fold; p<0.01), while DS was significantly decreased (2.5-fold; p<0.01). Histological scoring showed increased total PGs and focal accumulation in rAAA compared to eAAA. Tissue β-stiffness was higher in rAAA compared to eAAA (2.0-fold, p=0.02). Serum Col1 correlated with maximum tensile force and failure tension (r=0.448 and 0.333; p<0.01 and =0.02), tissue endocan correlated with α-stiffness (r=0.340; p<0.01). Signaling pathways in AAA were associated with ECM synthesis and VSMC proliferation. In particular, Src family kinases, PDGF- and EGF-related proteins seem to be involved. CONCLUSIONS Our findings reveal a structural association between collagen and PGs and their response to changes in mechanical loads in AAA. Particularly Col1 and endocan reflect the mechano-biological conditions of the aortic wall also in the patient's serum and might serve for AAA risk stratification.
Collapse
Affiliation(s)
- Susanne Metschl
- Vascular and Endovascular Surgery, Technical University of Munich School of Medicine, Munchen, Germany
| | - Lukas Bruder
- Mechanics & High Performance Computing Group, Technical University of Munich, Munchen, Germany
| | - Valentina Paloschi
- Vascular and Endovascular surgery, Klinikum rechts der Isar der Technischen Universitat Munchen, Munchen, Germany
| | - Katharina Jakob
- Vascular and Endovascular Surgery, Technical University of Munich School of Medicine, Munchen, Germany
| | | | - Christian Reeps
- Visceral, Thoracic, and Vascular Surgery, Medizinische Fakultät an der TU-Dresden, Dresden, Germany
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar der Technischen Universitat Munchen, Munchen, Germany
| | - Michael Gee
- Mechanics & High Performance Computing Group, Technical University of Munich, Munchen, Germany
| | - Hans-Henning Eckstein
- Vascular and Endovascular Surgery, Technical University of Munich School of Medicine, Munchen, Germany
| | - Jaroslav Pelisek
- Experimental Vascular Surgery, University of Zurich, Zurich, Switzerland
| |
Collapse
|
73
|
Van Hoof L, Verbrugghe P, Jones EAV, Humphrey JD, Janssens S, Famaey N, Rega F. Understanding Pulmonary Autograft Remodeling After the Ross Procedure: Stick to the Facts. Front Cardiovasc Med 2022; 9:829120. [PMID: 35224059 PMCID: PMC8865563 DOI: 10.3389/fcvm.2022.829120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
The Ross, or pulmonary autograft, procedure presents a fascinating mechanobiological scenario. Due to the common embryological origin of the aortic and pulmonary root, the conotruncus, several authors have hypothesized that a pulmonary autograft has the innate potential to remodel into an aortic phenotype once exposed to systemic conditions. Most of our understanding of pulmonary autograft mechanobiology stems from the remodeling observed in the arterial wall, rather than the valve, simply because there have been many opportunities to study the walls of dilated autografts explanted at reoperation. While previous histological studies provided important clues on autograft adaptation, a comprehensive understanding of its determinants and underlying mechanisms is needed so that the Ross procedure can become a widely accepted aortic valve substitute in select patients. It is clear that protecting the autograft during the early adaptation phase is crucial to avoid initiating a sequence of pathological remodeling. External support in the freestanding Ross procedure should aim to prevent dilatation while simultaneously promoting remodeling, rather than preventing dilatation at the cost of vascular atrophy. To define the optimal mechanical properties and geometry for external support, the ideal conditions for autograft remodeling and the timeline of mechanical adaptation must be determined. We aimed to rigorously review pulmonary autograft remodeling after the Ross procedure. Starting from the developmental, microstructural and biomechanical differences between the pulmonary artery and aorta, we review autograft mechanobiology in relation to distinct clinical failure mechanisms while aiming to identify unmet clinical needs, gaps in current knowledge and areas for further research. By correlating clinical and experimental observations of autograft remodeling with established principles in cardiovascular mechanobiology, we aim to present an up-to-date overview of all factors involved in extracellular matrix remodeling, their interactions and potential underlying molecular mechanisms.
Collapse
Affiliation(s)
- Lucas Van Hoof
- Department of Cardiac Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Peter Verbrugghe
- Department of Cardiac Surgery, University Hospitals Leuven, Leuven, Belgium
| | | | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Stefan Janssens
- Department of Cardiology, University Hospitals Leuven, Leuven, Belgium
| | - Nele Famaey
- Biomechanics Section, KU Leuven, Leuven, Belgium
| | - Filip Rega
- Department of Cardiac Surgery, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
74
|
Petit C, Karkhaneh Yousefi AA, Guilbot M, Barnier V, Avril S. AFM Stiffness Mapping in Human Aortic Smooth Muscle Cells. J Biomech Eng 2022; 144:1133331. [DOI: 10.1115/1.4053657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Indexed: 11/08/2022]
Abstract
Abstract
Aortic Smooth Muscle Cells (SMCs) play a vital role in maintaining mechanical homeostasis in the aorta. We recently found that SMCs of aneurysmal aortas apply larger traction forces than SMCs of healthy aortas. This result was explained by the significant increase of hypertrophic SMCs abundance in aneurysms. In the present study, we investigate whether the cytoskeleton stiffness of SMCs may also be altered in aneurysmal aortas. For that, we use Atomic Force Microscopy (AFM) nanoindentation with a specific mode that allows subcellular-resolution mapping of the local stiffness across a specified region of interest of the cell. Aortic SMCs from a commercial human lineage (AoSMCs, Lonza) and primary aneurysmal SMCs (AnevSMCs) are cultured in conditions promoting the development of their contractile apparatus, and seeded on hydrogels with stiffness properties of 12kPa and 25kPa. Results show that all SMC exhibit globally a lognormal stiffness distribution, with medians in the range 10-30 kPa. The mean of stiffness distributions is slightly higher in aneurysmal SMCs than in healthy cells (16 kPa versus 12 kPa) but the differences are not statistically significant due to the large dispersion of AFM nanoindentation stiffness. We conclude that the possible alterations previously found in aneurysmal SMCs do not affect significantly the AFM nanoindentation stiffness of their cytoskeleton.
Collapse
Affiliation(s)
- Claudie Petit
- Mines Saint-Etienne, Université de Lyon, INSERM, U 1059 SAINBIOSE, F - 42023 Saint-Etienne France
| | | | - Marine Guilbot
- Mines Saint-Etienne, Université de Lyon, INSERM, U 1059 SAINBIOSE, F - 42023 Saint-Etienne France
| | - Vincent Barnier
- Mines Saint-Etienne, Université de Lyon, CNRS, UMR 5307 LGF, F - 42023 Saint-Etienne France
| | - Stephane Avril
- Mines Saint-Etienne, Université de Lyon, INSERM, U 1059 SAINBIOSE, F - 42023 Saint-Etienne France
| |
Collapse
|
75
|
Integrative analysis of transcriptome-wide association study and mRNA expression profile identified candidate genes and pathways associated with aortic aneurysm and dissection. Gene 2022; 808:145993. [PMID: 34626721 DOI: 10.1016/j.gene.2021.145993] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Aortic aneurysm and dissection (AAD) are a set of life-threatening diseases. This study aimed to investigate the genetic mechanisms of AAD by integrating transcriptome-wide association study (TWAS) and mRNA expression profile. METHODS The genome-wide association study (GWAS) summary data of AAD was obtained from the UK Biobank, which contains 452,264 White British individuals, including 1470 AAD patients. The TWAS analysis was performed by integrating expression quantitative trait loci (eQTL) data of aorta and the GWAS dataset of AAD using the FUSION software. The TWAS significant genes and differentially expressed genes (DEGs) identified by mRNA expression profile of aortic dissection were integrated to find common genes and biological process. For TWAS significant genes, protein-protein interaction (PPI) network analysis was further conducted based on STRING database. RESULTS TWAS identified 423 genes with P < 0.05. After comparing the results of TWAS and mRNA expression profile, 11 overlapping genes (PDE8B, IKBKE, HMGA1, PKM, CHST1, DUS3L, S100A16, PTGS1, RAB38, PDLIM5, NOL6) and 15 common gene ontology (GO) terms (including extracellular matrix organization, external encapsulating structure organization, cell-substrate adhesion, actin filament-based process, focal adhesion, protein kinase activity) were identified. 9 hub genes of the TWAS results were identified via PPI network analysis, including RPS9, RPS18, RSRC1, DNAJC3, HBS1L, PRKCA, NCAM1, ITGB3, FTSJ3. CONCLUSION Multiple candidate genes and biological processes associated with AAD were identified by the present integrative study of TWAS and mRNA expression profile. Further studies are needed to elucidate the genetic mechanisms of AAD.
Collapse
|
76
|
Rooprai J, Boodhwani M, Beauchesne L, Chan KL, Dennie C, Wells GA, Coutinho T. Central Hypertension in Patients With Thoracic Aortic Aneurysms: Prevalence and Association With Aneurysm Size and Growth. Am J Hypertens 2022; 35:79-86. [PMID: 33759993 DOI: 10.1093/ajh/hpaa183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/26/2020] [Accepted: 03/04/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Hypertension (HTN) has the greatest population-attributable risk for aortic dissection and is highly prevalent among patients with thoracic aortic aneurysms (TAAs). Although HTN is diagnosed based on brachial blood pressure (bBP), central HTN (central systolic blood pressure [cSBP] ≥130 mm Hg) is of interest as it better reflects blood pressure (BP) in the aorta. We aimed to (i) evaluate the prevalence of central HTN among TAA patients without a diagnosis of HTN, and (ii) assess associations of bBP vs. central blood pressure (cBP) with aneurysm size and growth. METHODS One hundred and five unoperated subjects with TAAs were recruited. With validated methodology, cBP was assessed with applanation tonometry. Aneurysm size was assessed at baseline and follow-up using imaging modalities. Aneurysm growth rate was calculated in mm/year. Multivariable linear regression adjusted for potential confounders assessed associations of bBP and cBP with aneurysm size and growth. RESULTS Seventy-seven percent of participants were men and 49% carried a diagnosis of HTN. Among participants without diagnosis of HTN, 15% had central HTN despite normal bBP ("occult central HTN"). In these patients, higher central systolic BP (cSBP) and central pulse pressure (cPP) were independently associated with larger aneurysm size (β ± SE = 0.28 ± 0.11, P = 0.014 and cPP = 0.30 ± 0.11, P = 0.010, respectively) and future aneurysm growth (β ± SE = 0.022 ± 0.008, P = 0.013 and 0.024 ± 0.009, P = 0.008, respectively) while bBP was not (P > 0.05). CONCLUSIONS In patients with TAAs without a diagnosis of HTN, central HTN is prevalent, and higher cBP is associated with larger aneurysms and faster aneurysm growth.
Collapse
Affiliation(s)
- Jasjit Rooprai
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Munir Boodhwani
- The Department of Surgery, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Luc Beauchesne
- The Department of Medicine, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Kwan-Leung Chan
- The Department of Medicine, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Carole Dennie
- The Department of Radiology, University of Ottawa, Ottawa, Ontario, Canada
| | - George A Wells
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- Cardiovascular Research Methods Centre, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Thais Coutinho
- The Department of Medicine, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- The Division of Cardiac Prevention and Rehabilitation, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| |
Collapse
|
77
|
Miron TR, Flood ED, Tykocki NR, Thompson JM, Watts SW. Identification of Piezo1 channels in perivascular adipose tissue (PVAT) and their potential role in vascular function. Pharmacol Res 2022; 175:105995. [PMID: 34818570 PMCID: PMC9301055 DOI: 10.1016/j.phrs.2021.105995] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 01/04/2023]
Abstract
The vasculature constantly experiences distension/pressure exerted by blood flow and responds to maintain homeostasis. We hypothesized that activation of the stretch sensitive, non-selective cation channel Piezo1 would directly increase vascular contraction in a way that might be modified by perivascular adipose tissue (PVAT). The presence and function of Piezo1 was investigated by RT-PCR, immunohistochemistry, and isolated tissue bath contractility. Superior and mesenteric resistance arteries, aortae, and their PVATs from male Sprague Dawley rats were used. Piezo1 mRNA was detected in aortic vessels, aortic PVAT, mesenteric vessels, and mesenteric PVAT. Both adipocytes and stromal vascular fraction of mesenteric PVAT expressed Piezo1 mRNA. In PVAT, expression of Piezo1 mRNA was greater in magnitude than that of Piezo2, transient receptor potential cation channel, subfamily V, member 4 (TRPV4), anoctamin 1, calcium activated chloride channel (TMEM16), and Pannexin1 (Panx1). Piezo1 protein was present in endothelium and PVAT of rat aortic and in PVAT of mesenteric artery. The Piezo1 agonists Yoda1 and Jedi2 (1 nM - 10 µM) did not stimulate aortic contraction [max < 10% phenylephrine (PE) 10 µM contraction] or relaxation in tissues + or -PVAT. Depolarizing the aorta by modestly elevated extracellular K+ did not unmask aortic contraction to Yoda1 (max <10% PE 10 µM contraction). Finally, the Piezo1 antagonist Dooku1 did not modify PE-induced aorta contraction + or -PVAT. Surprisingly, Dooku1 directly caused aortic contraction in the absence (Dooku1 =26 ± 11; Vehicle = 11 ± 11%PE contraction) but not in the presence of PVAT (Dooku1 = 2 ± 1; Vehicle = 8 ± 5% PE contraction). Thus, Piezo1 is present and functional in the isolated rat aorta but does not serve direct vascular contraction with or without PVAT. We reaffirmed the isolated mouse aorta relaxation to Yoda1, indicating a species difference in Piezo1 activity between mouse and rat.
Collapse
Affiliation(s)
- Taylor R Miron
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Emma D Flood
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Nathan R Tykocki
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Janice M Thompson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
78
|
Sunderland K, Jiang J, Zhao F. Disturbed flow's impact on cellular changes indicative of vascular aneurysm initiation, expansion, and rupture: A pathological and methodological review. J Cell Physiol 2022; 237:278-300. [PMID: 34486114 PMCID: PMC8810685 DOI: 10.1002/jcp.30569] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/06/2021] [Accepted: 08/16/2021] [Indexed: 01/03/2023]
Abstract
Aneurysms are malformations within the arterial vasculature brought on by the structural breakdown of the microarchitecture of the vessel wall, with aneurysms posing serious health risks in the event of their rupture. Blood flow within vessels is generally laminar with high, unidirectional wall shear stressors that modulate vascular endothelial cell functionality and regulate vascular smooth muscle cells. However, altered vascular geometry induced by bifurcations, significant curvature, stenosis, or clinical interventions can alter the flow, generating low stressor disturbed flow patterns. Disturbed flow is associated with altered cellular morphology, upregulated expression of proteins modulating inflammation, decreased regulation of vascular permeability, degraded extracellular matrix, and heightened cellular apoptosis. The understanding of the effects disturbed flow has on the cellular cascades which initiate aneurysms and promote their subsequent growth can further elucidate the nature of this complex pathology. This review summarizes the current knowledge about the disturbed flow and its relation to aneurysm pathology, the methods used to investigate these relations, as well as how such knowledge has impacted clinical treatment methodologies. This information can contribute to the understanding of the development, growth, and rupture of aneurysms and help develop novel research and aneurysmal treatment techniques.
Collapse
Affiliation(s)
- Kevin Sunderland
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931
| | - Jingfeng Jiang
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931,Corresponding Authors: Feng Zhao, 101 Bizzell Street, College Station, TX 77843-312, Tel : 979-458-1239, , Jingfeng Jiang, 1400 Townsend Dr., Houghton, MI 49931, Tel: 906-487-1943
| | - Feng Zhao
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843,Corresponding Authors: Feng Zhao, 101 Bizzell Street, College Station, TX 77843-312, Tel : 979-458-1239, , Jingfeng Jiang, 1400 Townsend Dr., Houghton, MI 49931, Tel: 906-487-1943
| |
Collapse
|
79
|
Lage JGB, Bortolotto AL, Scanavacca MI, Bortolotto LA, Darrieux FCDC. Arterial stiffness and atrial fibrillation: A review. Clinics (Sao Paulo) 2022; 77:100014. [PMID: 35248986 PMCID: PMC8903742 DOI: 10.1016/j.clinsp.2022.100014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/30/2021] [Indexed: 01/07/2023] Open
Abstract
Arterial stiffness has been investigated as part of the physiopathology of arterial hypertension since the 1970s. Its role in increasing the "pulsatile load" imposed over the Left Ventricle (LV) has been intensely studied recently and has helped in understanding the mechanisms of Atrial Fibrillation (AF) in hypertensive patients. This paper aims to review the main evidence on this issue and establish possible mechanisms involved in the development of AF in patients with arterial stiffness. A PubMed search was performed, and selected articles were searched for references focusing on this topic. In the long term, lower blood pressure levels allow for arterial wall remodeling, leading to a lower stiffness index. To this day, however, there are no available treatments that directly promote the lowering of arterial wall stiffness. Most classes of anti-hypertensive drugs ‒ with stronger evidence for beta-blockers and diuretics ‒ could be effective in reducing arterial stiffness. There is strong evidence demonstrating an association between arterial stiffness and AF. New studies focusing on arterial stiffness and pre-fibrillatory stages would strengthen this causality relation.
Collapse
Affiliation(s)
- João Gabriel Batista Lage
- Instituto do Coração (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil.
| | - Alexandre Lemos Bortolotto
- Instituto do Coração (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Mauricio Ibrahim Scanavacca
- Instituto do Coração (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Luiz Aparecido Bortolotto
- Instituto do Coração (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | | |
Collapse
|
80
|
Dawson A, Li Y, Li Y, Ren P, Vasquez HG, Zhang C, Rebello KR, Ageedi W, Azares AR, Mattar AB, Sheppard MB, Lu HS, Coselli JS, Cassis LA, Daugherty A, Shen YH, LeMaire SA. Single-Cell Analysis of Aneurysmal Aortic Tissue in Patients with Marfan Syndrome Reveals Dysfunctional TGF-β Signaling. Genes (Basel) 2021; 13:95. [PMID: 35052435 PMCID: PMC8774900 DOI: 10.3390/genes13010095] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 02/08/2023] Open
Abstract
The molecular and cellular processes leading to aortic aneurysm development in Marfan syndrome (MFS) remain poorly understood. In this study, we examined the changes of aortic cell populations and gene expression in MFS by performing single-cell RNA sequencing (scRNA seq) on ascending aortic aneurysm tissues from patients with MFS (n = 3) and age-matched non-aneurysmal control tissues from cardiac donors and recipients (n = 4). The expression of key molecules was confirmed by immunostaining. We detected diverse populations of smooth muscle cells (SMCs), fibroblasts, and endothelial cells (ECs) in the aortic wall. Aortic tissues from MFS showed alterations of cell populations with increased de-differentiated proliferative SMCs compared to controls. Furthermore, there was a downregulation of MYOCD and MYH11 in SMCs, and an upregulation of COL1A1/2 in fibroblasts in MFS samples compared to controls. We also examined TGF-β signaling, an important pathway in aortic homeostasis. We found that TGFB1 was significantly upregulated in two fibroblast clusters in MFS tissues. However, TGF-β receptor genes (predominantly TGFBR2) and SMAD genes were downregulated in SMCs, fibroblasts, and ECs in MFS, indicating impairment in TGF-β signaling. In conclusion, despite upregulation of TGFB1, the rest of the canonical TGF-β pathway and mature SMCs were consistently downregulated in MFS, indicating a potential compromise of TGF-β signaling and lack of stimulus for SMC differentiation.
Collapse
Affiliation(s)
- Ashley Dawson
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (A.D.); (Y.L.); (Y.L.); (P.R.); (H.G.V.); (C.Z.); (K.R.R.); (W.A.); (J.S.C.); (Y.H.S.)
| | - Yanming Li
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (A.D.); (Y.L.); (Y.L.); (P.R.); (H.G.V.); (C.Z.); (K.R.R.); (W.A.); (J.S.C.); (Y.H.S.)
| | - Yang Li
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (A.D.); (Y.L.); (Y.L.); (P.R.); (H.G.V.); (C.Z.); (K.R.R.); (W.A.); (J.S.C.); (Y.H.S.)
| | - Pingping Ren
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (A.D.); (Y.L.); (Y.L.); (P.R.); (H.G.V.); (C.Z.); (K.R.R.); (W.A.); (J.S.C.); (Y.H.S.)
| | - Hernan G. Vasquez
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (A.D.); (Y.L.); (Y.L.); (P.R.); (H.G.V.); (C.Z.); (K.R.R.); (W.A.); (J.S.C.); (Y.H.S.)
| | - Chen Zhang
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (A.D.); (Y.L.); (Y.L.); (P.R.); (H.G.V.); (C.Z.); (K.R.R.); (W.A.); (J.S.C.); (Y.H.S.)
| | - Kimberly R. Rebello
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (A.D.); (Y.L.); (Y.L.); (P.R.); (H.G.V.); (C.Z.); (K.R.R.); (W.A.); (J.S.C.); (Y.H.S.)
| | - Waleed Ageedi
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (A.D.); (Y.L.); (Y.L.); (P.R.); (H.G.V.); (C.Z.); (K.R.R.); (W.A.); (J.S.C.); (Y.H.S.)
| | - Alon R. Azares
- Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX 77030, USA;
| | - Aladdein Burchett Mattar
- Division of Cardiothoracic Transplantation and Circulatory Support, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Mary Burchett Sheppard
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA; (M.B.S.); (H.S.L.); (A.D.)
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Hong S. Lu
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA; (M.B.S.); (H.S.L.); (A.D.)
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Joseph S. Coselli
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (A.D.); (Y.L.); (Y.L.); (P.R.); (H.G.V.); (C.Z.); (K.R.R.); (W.A.); (J.S.C.); (Y.H.S.)
- Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX 77030, USA;
| | - Lisa A. Cassis
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA;
| | - Alan Daugherty
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA; (M.B.S.); (H.S.L.); (A.D.)
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Ying H. Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (A.D.); (Y.L.); (Y.L.); (P.R.); (H.G.V.); (C.Z.); (K.R.R.); (W.A.); (J.S.C.); (Y.H.S.)
- Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX 77030, USA;
| | - Scott A. LeMaire
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (A.D.); (Y.L.); (Y.L.); (P.R.); (H.G.V.); (C.Z.); (K.R.R.); (W.A.); (J.S.C.); (Y.H.S.)
- Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX 77030, USA;
| |
Collapse
|
81
|
Cavinato C, Chen M, Weiss D, Ruiz-Rodríguez MJ, Schwartz MA, Humphrey JD. Progressive Microstructural Deterioration Dictates Evolving Biomechanical Dysfunction in the Marfan Aorta. Front Cardiovasc Med 2021; 8:800730. [PMID: 34977201 PMCID: PMC8716484 DOI: 10.3389/fcvm.2021.800730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
Medial deterioration leading to thoracic aortic aneurysms arises from multiple causes, chief among them mutations to the gene that encodes fibrillin-1 and leads to Marfan syndrome. Fibrillin-1 microfibrils associate with elastin to form elastic fibers, which are essential structural, functional, and instructional components of the normal aortic wall. Compromised elastic fibers adversely impact overall structural integrity and alter smooth muscle cell phenotype. Despite significant progress in characterizing clinical, histopathological, and mechanical aspects of fibrillin-1 related aortopathies, a direct correlation between the progression of microstructural defects and the associated mechanical properties that dictate aortic functionality remains wanting. In this paper, age-matched wild-type, Fbn1 C1041G/+, and Fbn1 mgR/mgR mouse models were selected to represent three stages of increasing severity of the Marfan aortic phenotype. Ex vivo multiphoton imaging and biaxial mechanical testing of the ascending and descending thoracic aorta under physiological loading conditions demonstrated that elastic fiber defects, collagen fiber remodeling, and cell reorganization increase with increasing dilatation. Three-dimensional microstructural characterization further revealed radial patterns of medial degeneration that become more uniform with increasing dilatation while correlating strongly with increased circumferential material stiffness and decreased elastic energy storage, both of which comprise aortic functionality.
Collapse
Affiliation(s)
- Cristina Cavinato
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Minghao Chen
- Cardiovascular Research Center and Department of Internal Medicine (Cardiology), Yale School of Medicine, New Haven, CT, United States
| | - Dar Weiss
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Maria Jesús Ruiz-Rodríguez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) and Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Martin A. Schwartz
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
- Cardiovascular Research Center and Department of Internal Medicine (Cardiology), Yale School of Medicine, New Haven, CT, United States
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
82
|
Estrada AC, Irons L, Rego BV, Li G, Tellides G, Humphrey JD. Roles of mTOR in thoracic aortopathy understood by complex intracellular signaling interactions. PLoS Comput Biol 2021; 17:e1009683. [PMID: 34898595 PMCID: PMC8700007 DOI: 10.1371/journal.pcbi.1009683] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/23/2021] [Accepted: 11/26/2021] [Indexed: 02/01/2023] Open
Abstract
Thoracic aortopathy–aneurysm, dissection, and rupture–is increasingly responsible for significant morbidity and mortality. Advances in medical genetics and imaging have improved diagnosis and thus enabled earlier prophylactic surgical intervention in many cases. There remains a pressing need, however, to understand better the underlying molecular and cellular mechanisms with the hope of finding robust pharmacotherapies. Diverse studies in patients and mouse models of aortopathy have revealed critical changes in multiple smooth muscle cell signaling pathways that associate with disease, yet integrating information across studies and models has remained challenging. We present a new quantitative network model that includes many of the key smooth muscle cell signaling pathways and validate the model using a detailed data set that focuses on hyperactivation of the mechanistic target of rapamycin (mTOR) pathway and its inhibition using rapamycin. We show that the model can be parameterized to capture the primary experimental findings both qualitatively and quantitatively. We further show that simulating a population of cells by varying receptor reaction weights leads to distinct proteomic clusters within the population, and that these clusters emerge due to a bistable switch driven by positive feedback in the PI3K/AKT/mTOR signaling pathway. Cell signaling drives changes across scales, from altered transcription at the single-cell level to tissue-level growth and remodeling. Studying complex interactions within cell signaling pathways can lead to a better understanding of the progression of disease. In particular, we are interested in how vascular cells can change their phenotype in a way that exacerbates aortopathy, namely, the development of aneurysms, dissections, and rupture. In this study we built a novel cell signaling network model of a vascular smooth muscle cell using archival data and used it to capture the effects of a genetic knock-out and subsequent pharmacologic rescue. We then used the model to simulate populations of smooth muscle cells and found that small perturbations to the strength of signaling can lead to distinct clusters of cells. With further analysis of the network substructures, we found that a positive feedback loop within the network was responsible for the distinct phenotypes we saw in our clusters of simulated cells. We believe that this work not only helps us to understand changes in smooth muscle cell phenotype but also opens the possibility to study other signaling perturbations associated with aortopathy.
Collapse
Affiliation(s)
- Ana C. Estrada
- Department of Biomedical Engineering, Yale University; New Haven, Connecticut, United States of America
| | - Linda Irons
- Department of Biomedical Engineering, Yale University; New Haven, Connecticut, United States of America
| | - Bruno V. Rego
- Department of Biomedical Engineering, Yale University; New Haven, Connecticut, United States of America
| | - Guangxin Li
- Department of Surgery, Yale School of Medicine; New Haven, Connecticut, United States of America
| | - George Tellides
- Department of Surgery, Yale School of Medicine; New Haven, Connecticut, United States of America
- Vascular Biology and Therapeutics Program, Yale School of Medicine; New Haven, Connecticut, United States of America
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University; New Haven, Connecticut, United States of America
- Vascular Biology and Therapeutics Program, Yale School of Medicine; New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
83
|
van Andel MM, Groenink M, van den Berg MP, Timmermans J, Scholte AJHA, Mulder BJM, Zwinderman AH, de Waard V. Genome-wide methylation patterns in Marfan syndrome. Clin Epigenetics 2021; 13:217. [PMID: 34895303 PMCID: PMC8665617 DOI: 10.1186/s13148-021-01204-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/27/2021] [Indexed: 12/29/2022] Open
Abstract
Background Marfan syndrome (MFS) is a connective tissue disorder caused by mutations in the Fibrillin-1 gene (FBN1). Here, we undertook the first epigenome-wide association study (EWAS) in patients with MFS aiming at identifying DNA methylation loci associated with MFS phenotypes that may shed light on the disease process. Methods The Illumina 450 k DNA-methylation array was used on stored peripheral whole-blood samples of 190 patients with MFS originally included in the COMPARE trial. An unbiased genome-wide approach was used, and methylation of CpG-sites across the entire genome was evaluated. Additionally, we investigated CpG-sites across the FBN1-locus (15q21.1) more closely, since this is the gene defective in MFS. Differentially Methylated Positions (DMPs) and Differentially Methylated Regions (DMRs) were identified through regression analysis. Associations between methylation levels and aortic diameters and presence or absence of 21 clinical features of MFS at baseline were analyzed. Moreover, associations between aortic diameter change, and the occurrence of clinical events (death any cause, type-A or -B dissection/rupture, or aortic surgery) and methylation levels were analyzed. Results We identified 28 DMPs that are significantly associated with aortic diameters in patients with MFS. Seven of these DMPs (25%) could be allocated to a gene that was previously associated with cardiovascular diseases (HDAC4, IGF2BP3, CASZ1, SDK1, PCDHGA1, DIO3, PTPRN2). Moreover, we identified seven DMPs that were significantly associated with aortic diameter change and five DMP’s that associated with clinical events. No significant associations at p < 10–8 or p < 10–6 were found with any of the non-cardiovascular phenotypic MFS features. Investigating DMRs, clusters were seen mostly on X- and Y, and chromosome 18–22. The remaining DMRs indicated involvement of a large family of protocadherins on chromosome 5, which were not reported in MFS before. Conclusion This EWAS in patients with MFS has identified a number of methylation loci significantly associated with aortic diameters, aortic dilatation rate and aortic events. Our findings add to the slowly growing literature on the regulation of gene expression in MFS patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01204-4.
Collapse
Affiliation(s)
- Mitzi M van Andel
- Department of Cardiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Maarten Groenink
- Department of Cardiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Department of Radiology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Maarten P van den Berg
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Janneke Timmermans
- Department of Cardiology, Radboud University Hospital, Nijmegen, The Netherlands
| | - Arthur J H A Scholte
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Barbara J M Mulder
- Department of Cardiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Aeilko H Zwinderman
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Vivian de Waard
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
84
|
Pilt K, May JM, Kyriacou PA. In-Vitro Investigation of Flow Profiles in Arteries Using the Photoplethysmograph. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:7211-7214. [PMID: 34892763 DOI: 10.1109/embc46164.2021.9629713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The flow profile in the artery reflects the health status of the vessel and generally the arterial system. The aim of this pilot study was to investigate in-vitro the effect of flow profiles on reflective photoplethysmography (PPG) signals at different steady state flow rates and levels of vessel constrictions. A simplified model of an arterial system was built, consisting of a steady state flow gear pump, PVC vinyl tubing, reservoir and a clamp with a micrometer gauge. The blood mimicking fluid (2.5% India ink and water solution) was pumped through the model. It was found that the waveforms of the PPG signals fluctuate irregularly and the magnitude of the frequency components was increased below 60 Hz in cases of turbulent flow (Re = 2503). These preliminary results suggest that PPG could be the basis for new technologies for assessing the profile of the blood flow in the artery. Future studies have to be carried out with pulsatile flow and more complex models that are more similar to the human arterial system.Clinical Relevance- The PPG signal reflects changes in the flow profile caused by the stenotic rigid vessel.
Collapse
|
85
|
Rolf-Pissarczyk M, Wollner MP, Pacheco DRQ, Holzapfel GA. Efficient computational modelling of smooth muscle orientation and function in the aorta. Proc Math Phys Eng Sci 2021. [DOI: 10.1098/rspa.2021.0592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Understanding the mechanical effects of smooth muscle cell (SMC) contraction on the initiation and the propagation of cardiovascular diseases such as aortic dissection is critical. Framed by elastic lamellar sheets in the lamellar unit, there are SMCs in the media with a distinct radial tilt, which indicates their contribution to the radial strength. However, the mechanical effects of this type of anisotropy have not been fully discussed. Therefore, in this study, we propose a constitutive framework that models the passive and active mechanics of the aorta, taking into account the dispersed nature of the aortic constituents by applying the discrete fibre dispersion method. We suggest an isoparametric approach by evaluating various numerical integration methods and introducing a non-uniform discretization of the unit hemisphere to increase its computational efficiency. Finally, the constitutive parameters are fitted to layer-specific experimental data and initial computational results are briefly presented. The radial tilt of SMCs is also analysed, which has a noticeable influence on the mechanical behaviour of the aorta. In the absence of sufficient experimental data, the results indicate that the active contribution of SMCs has a remarkable impact on the mechanics of the healthy aorta.
Collapse
Affiliation(s)
| | - Maximilian P. Wollner
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
- Institute for Solid Mechanics, Dresden University of Technology, Dresden, Germany
| | | | - Gerhard A. Holzapfel
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
- Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
86
|
Nicotine Exacerbates TAAD Formation Induced by Smooth Muscle-Specific Deletion of the TGF- β Receptor 2. J Immunol Res 2021; 2021:6880036. [PMID: 34646889 PMCID: PMC8505064 DOI: 10.1155/2021/6880036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/04/2021] [Indexed: 01/22/2023] Open
Abstract
Tobacco smoke is an established risk factor for thoracic aortic aneurysms and dissections (TAAD). However, little is known about its underlying mechanisms due to the lack of validated animal models. The present study developed a mouse model that may be utilized to investigate exacerbation of TAAD formation by mimetics of tobacco smoke. TAADs were created via inducible deletion of smooth muscle cell-specific Tgfbr2 receptors. Using this model, the first set of experiments evaluated the efficacy of nicotine salt (34.0 mg/kg/day), nicotine free base (NFB, 5.0 mg 90-day pellets), and cigarette smoke extract (0.1 ml/mouse/day). Compared with their respective control groups, only NFB pellets promoted TAAD dilation (23 ± 3% vs. 12 ± 2%, P = 0.014), and this efficacy was achieved at a cost of >50% acute mortality. Infusion of NFB with osmotic minipumps at extremely high, but nonlethal, doses (15.0 or 45.0 mg/kg/day) failed to accelerate TAAD dilation. Interestingly, costimulation with β-aminopropionitrile (BAPN) promoted TAAD dilation and aortic rupture at dosages of 3.0 and 45.0 mg/kg/day, respectively, indicating that BAPN sensitizes the response of TAADs to NFB. In subsequent analyses, the detrimental effects of NFB were associated with clustering of macrophages, neutrophils, and T-cells in areas with structural destruction, enhanced matrix metalloproteinase- (MMP-) 2 production, and pathological angiogenesis with attenuated fibrosis in the adventitia. In conclusion, modeling nicotine exacerbation of TAAD formation requires optimization of chemical form, route of delivery, and dosage of the drug as well as the pathologic complexity of TAADs. Under the optimized conditions of the present study, chronic inflammation and adventitial mal-remodeling serve as critical pathways through which NFB exacerbates TAAD formation.
Collapse
|
87
|
Chakraborty R, Chatterjee P, Dave JM, Ostriker AC, Greif DM, Rzucidlo EM, Martin KA. Targeting smooth muscle cell phenotypic switching in vascular disease. JVS Vasc Sci 2021; 2:79-94. [PMID: 34617061 PMCID: PMC8489222 DOI: 10.1016/j.jvssci.2021.04.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/01/2021] [Indexed: 12/26/2022] Open
Abstract
Objective The phenotypic plasticity of vascular smooth muscle cells (VSMCs) is central to vessel growth and remodeling, but also contributes to cardiovascular pathologies. New technologies including fate mapping, single cell transcriptomics, and genetic and pharmacologic inhibitors have provided fundamental new insights into the biology of VSMC. The goal of this review is to summarize the mechanisms underlying VSMC phenotypic modulation and how these might be targeted for therapeutic benefit. Methods We summarize findings from extensive literature searches to highlight recent discoveries in the mechanisms underlying VSMC phenotypic switching with particular relevance to intimal hyperplasia. PubMed was searched for publications between January 2001 and December 2020. Search terms included VSMCs, restenosis, intimal hyperplasia, phenotypic switching or modulation, and drug-eluting stents. We sought to highlight druggable pathways as well as recent landmark studies in phenotypic modulation. Results Lineage tracing methods have determined that a small number of mature VSMCs dedifferentiate to give rise to oligoclonal lesions in intimal hyperplasia and atherosclerosis. In atherosclerosis and aneurysm, single cell transcriptomics reveal a striking diversity of phenotypes that can arise from these VSMCs. Mechanistic studies continue to identify new pathways that influence VSMC phenotypic plasticity. We review the mechanisms by which the current drug-eluting stent agents prevent restenosis and note remaining challenges in peripheral and diabetic revascularization for which new approaches would be beneficial. We summarize findings on new epigenetic (DNA methylation/TET methylcytosine dioxygenase 2, histone deacetylation, bromodomain proteins), transcriptional (Hippo/Yes-associated protein, peroxisome proliferator-activity receptor-gamma, Notch), and β3-integrin-mediated mechanisms that influence VSMC phenotypic modulation. Pharmacologic and genetic targeting of these pathways with agents including ascorbic acid, histone deacetylase or bromodomain inhibitors, thiazolidinediones, and integrin inhibitors suggests potential therapeutic value in the setting of intimal hyperplasia. Conclusions Understanding the molecular mechanisms that underlie the remarkable plasticity of VSMCs may lead to novel approaches to treat and prevent cardiovascular disease and restenosis.
Collapse
Affiliation(s)
- Raja Chakraborty
- Department of Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Conn.,Department of Pharmacology, Yale University School of Medicine, New Haven, Conn
| | - Payel Chatterjee
- Department of Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Conn.,Department of Pharmacology, Yale University School of Medicine, New Haven, Conn
| | - Jui M Dave
- Department of Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Conn.,Department of Genetics, Yale University School of Medicine, New Haven, Conn
| | - Allison C Ostriker
- Department of Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Conn.,Department of Pharmacology, Yale University School of Medicine, New Haven, Conn
| | - Daniel M Greif
- Department of Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Conn.,Department of Genetics, Yale University School of Medicine, New Haven, Conn
| | - Eva M Rzucidlo
- Department Surgery, Section of Vascular Surgery, McLeod Regional Medical Center, Florence, SC
| | - Kathleen A Martin
- Department of Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Conn.,Department of Pharmacology, Yale University School of Medicine, New Haven, Conn
| |
Collapse
|
88
|
Dynamic Crosstalk between Vascular Smooth Muscle Cells and the Aged Extracellular Matrix. Int J Mol Sci 2021; 22:ijms221810175. [PMID: 34576337 PMCID: PMC8468233 DOI: 10.3390/ijms221810175] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 01/15/2023] Open
Abstract
Vascular aging is accompanied by the fragmentation of elastic fibers and collagen deposition, leading to reduced distensibility and increased vascular stiffness. A rigid artery facilitates elastin to degradation by MMPs, exposing vascular cells to greater mechanical stress and triggering signaling mechanisms that only exacerbate aging, creating a self-sustaining inflammatory environment that also promotes vascular calcification. In this review, we highlight the role of crosstalk between smooth muscle cells and the vascular extracellular matrix (ECM) and how aging promotes smooth muscle cell phenotypes that ultimately lead to mechanical impairment of aging arteries. Understanding the underlying mechanisms and the role of associated changes in ECM during aging may contribute to new approaches to prevent or delay arterial aging and the onset of cardiovascular diseases.
Collapse
|
89
|
Wortmann M, Peters AS, Erhart P, Körfer D, Böckler D, Dihlmann S. Inflammasomes in the Pathophysiology of Aortic Disease. Cells 2021; 10:cells10092433. [PMID: 34572082 PMCID: PMC8468335 DOI: 10.3390/cells10092433] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/26/2021] [Accepted: 08/29/2021] [Indexed: 12/27/2022] Open
Abstract
Aortic diseases comprise aneurysms, dissections, and several other pathologies. In general, aging is associated with a slow but progressive dilation of the aorta, along with increased stiffness and pulse pressure. The progression of aortic disease is characterized by subclinical development or acute presentation. Recent evidence suggests that inflammation participates causally in different clinical manifestations of aortic diseases. As of yet, diagnostic imaging and surveillance is mainly based on ultrasonography, computed tomography (CT), and magnetic resonance imaging (MRI). Little medical therapy is available so far to prevent or treat the majority of aortic diseases. Endovascular therapy by the introduction of covered stentgrafts provides the main treatment option, although open surgery and implantation of synthetic grafts remain necessary in many situations. Because of the risks associated with surgery, there is a need for identification of pharmaceutical targets interfering with the pathophysiology of aortic remodeling. The participation of innate immunity and inflammasome activation in different cell types is common in aortic diseases. This review will thus focus on inflammasome activities in vascular cells of different chronic and acute aortic diseases and discuss their role in development and progression. We will also identify research gaps and suggest promising therapeutic targets, which may be used for future medical interventions.
Collapse
|
90
|
Abstract
Marfan syndrome (MFS) is an autosomal dominant, age-related but highly penetrant condition with substantial intrafamilial and interfamilial variability. MFS is caused by pathogenetic variants in FBN1, which encodes fibrillin-1, a major structural component of the extracellular matrix that provides support to connective tissues, particularly in arteries, the pericondrium and structures in the eye. Up to 25% of individuals with MFS have de novo variants. The most prominent manifestations of MFS are asymptomatic aortic root aneurysms, aortic dissections, dislocation of the ocular lens (ectopia lentis) and skeletal abnormalities that are characterized by overgrowth of the long bones. MFS is diagnosed based on the Ghent II nosology; genetic testing confirming the presence of a FBN1 pathogenetic variant is not always required for diagnosis but can help distinguish MFS from other heritable thoracic aortic disease syndromes that can present with skeletal features similar to those in MFS. Untreated aortic root aneurysms can progress to life-threatening acute aortic dissections. Management of MFS requires medical therapy to slow the rate of growth of aneurysms and decrease the risk of dissection. Routine surveillance with imaging techniques such as transthoracic echocardiography, CT or MRI is necessary to monitor aneurysm growth and determine when to perform prophylactic repair surgery to prevent an acute aortic dissection.
Collapse
|
91
|
Arce C, Rodríguez-Rovira I, De Rycke K, Durán K, Campuzano V, Fabregat I, Jiménez-Altayó F, Berraondo P, Egea G. Anti-TGFβ (Transforming Growth Factor β) Therapy With Betaglycan-Derived P144 Peptide Gene Delivery Prevents the Formation of Aortic Aneurysm in a Mouse Model of Marfan Syndrome. Arterioscler Thromb Vasc Biol 2021; 41:e440-e452. [PMID: 34162229 DOI: 10.1161/atvbaha.121.316496] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective We investigated the effect of a potent TGFβ (transforming growth factor β) inhibitor peptide (P144) from the betaglycan/TGFβ receptor III on aortic aneurysm development in a Marfan syndrome mouse model. Approach and Results We used a chimeric gene encoding the P144 peptide linked to apolipoprotein A-I via a flexible linker expressed by a hepatotropic adeno-associated vector. Two experimental approaches were performed: (1) a preventive treatment where the vector was injected before the onset of the aortic aneurysm (aged 4 weeks) and followed-up for 4 and 20 weeks and (2) a palliative treatment where the vector was injected once the aneurysm was formed (8 weeks old) and followed-up for 16 weeks. We evaluated the aortic root diameter by echocardiography, the aortic wall architecture and TGFβ signaling downstream effector expression of pSMAD2 and pERK1/2 by immunohistomorphometry, and Tgfβ1 and Tgfβ2 mRNA expression levels by real-time polymerase chain reaction. Marfan syndrome mice subjected to the preventive approach showed no aortic dilation in contrast to untreated Marfan syndrome mice, which at the same end point age already presented the aneurysm. In contrast, the palliative treatment with P144 did not halt aneurysm progression. In all cases, P144 improved elastic fiber morphology and normalized pERK1/2-mediated TGFβ signaling. Unlike the palliative treatment, the preventive treatment reduced Tgfβ1 and Tgfβ2 mRNA levels. Conclusions P144 prevents the onset of aortic aneurysm but not its progression. Results indicate the importance of reducing the excess of active TGFβ signaling during the early stages of aortic disease progression.
Collapse
Affiliation(s)
- Cristina Arce
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, Spain (C.A., I.R.-R., K.D.R., V.C., G.E.)
| | - Isaac Rodríguez-Rovira
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, Spain (C.A., I.R.-R., K.D.R., V.C., G.E.)
| | - Karo De Rycke
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, Spain (C.A., I.R.-R., K.D.R., V.C., G.E.)
| | - Karina Durán
- Department of Cardiology, Hospital Clínic y Provincial de Barcelona, Spain (K.D.)
| | - Victoria Campuzano
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, Spain (C.A., I.R.-R., K.D.R., V.C., G.E.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Spain (V.C.)
| | - Isabel Fabregat
- Bellvitge Biomedical Research Institute (IDIBELL) and Centro de Investigación Biomédica en Red de Enfermedades Hepático-Digestivas (CIBEREHD), ISCIII, Spain (I.F.)
| | - Francesc Jiménez-Altayó
- Department of Therapeutic Pharmacology and Toxicology, School of Medicine, Neuroscience Institute, Autonomous University of Barcelona, Bellaterra, Spain (F.J.-A.)
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, CIMA University of Navarra, Pamplona, Spain (P.B.)
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain (P.B.)
| | - Gustavo Egea
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, Spain (C.A., I.R.-R., K.D.R., V.C., G.E.)
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (G.E.)
| |
Collapse
|
92
|
Ziegler SG, MacCarrick G, Dietz HC. Toward precision medicine in vascular connective tissue disorders. Am J Med Genet A 2021; 185:3340-3349. [PMID: 34428348 DOI: 10.1002/ajmg.a.62461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 11/11/2022]
Abstract
Tremendous progress has been made in understanding the etiology, pathogenesis, and treatment of inherited vascular connective tissue disorders. While new insights regarding disease etiology and pathogenesis have informed patient counseling and care, there are numerous obstacles that need to be overcome in order to achieve the full promise of precision medicine. In this review, these issues will be discussed in the context of Marfan syndrome and Loeys-Dietz syndrome, with additional emphasis on the pioneering contributions made by Victor McKusick.
Collapse
Affiliation(s)
- Shira G Ziegler
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gretchen MacCarrick
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Harry C Dietz
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
93
|
Deleeuw V, De Clercq A, De Backer J, Sips P. An Overview of Investigational and Experimental Drug Treatment Strategies for Marfan Syndrome. J Exp Pharmacol 2021; 13:755-779. [PMID: 34408505 PMCID: PMC8366784 DOI: 10.2147/jep.s265271] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/19/2021] [Indexed: 12/26/2022] Open
Abstract
Marfan syndrome (MFS) is a heritable connective tissue disorder caused by pathogenic variants in the gene coding for the extracellular matrix protein fibrillin-1. While the disease affects multiple organ systems, the most life-threatening manifestations are aortic aneurysms leading to dissection and rupture. Other cardiovascular complications, including mitral valve prolapse, primary cardiomyopathy, and arrhythmia, also occur more frequently in patients with MFS. The standard medical care relies on cardiovascular imaging at regular intervals, along with pharmacological treatment with β-adrenergic receptor blockers aimed at reducing the aortic growth rate. When aortic dilatation reaches a threshold associated with increased risk of dissection, prophylactic surgical aortic replacement is performed. Although current clinical management has significantly improved the life expectancy of patients with MFS, no cure is available and fatal complications still occur, underscoring the need for new treatment options. In recent years, preclinical studies have identified a number of potentially promising therapeutic targets. Nevertheless, the translation of these results into clinical practice has remained challenging. In this review, we present an overview of the currently available knowledge regarding the underlying pathophysiological processes associated with MFS cardiovascular pathology. We then summarize the treatment options that have been developed based on this knowledge and are currently in different stages of preclinical or clinical development, provide a critical review of the limitations of current studies and highlight potential opportunities for future research.
Collapse
Affiliation(s)
- Violette Deleeuw
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium
| | - Adelbert De Clercq
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium
| | - Julie De Backer
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, 9000, Belgium
| | - Patrick Sips
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium
| |
Collapse
|
94
|
Campisi S, Jayendiran R, Condemi F, Viallon M, Croisille P, Avril S. Significance of Hemodynamics Biomarkers, Tissue Biomechanics and Numerical Simulations in the Pathogenesis of Ascending Thoracic Aortic Aneurysms. Curr Pharm Des 2021; 27:1890-1898. [PMID: 33319666 DOI: 10.2174/1381612826999201214231648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/06/2020] [Indexed: 11/22/2022]
Abstract
Guidelines for the treatment of aortic wall diseases are based on measurements of maximum aortic diameter. However, aortic rupture or dissections do occur for small aortic diameters. Growing scientific evidence underlines the importance of biomechanics and hemodynamics in aortic disease development and progression. Wall shear stress (WWS) is an important hemodynamics marker that depends on aortic wall morphology and on the aortic valve function. WSS could be helpful to interpret aortic wall remodeling and define personalized risk criteria. The complementarity of Computational Fluid Dynamics and 4D Magnetic Resonance Imaging as tools for WSS assessment is a promising reality. The potentiality of these innovative technologies will provide maps or atlases of hemodynamics biomarkers to predict aortic tissue dysfunction. Ongoing efforts should focus on the correlation between these non-invasive imaging biomarkers and clinico-pathologic situations for the implementation of personalized medicine in current clinical practice.
Collapse
Affiliation(s)
- Salvatore Campisi
- Department of Cardiovascular Surgery; University Hospistal of Saint Etienne, France
| | - Raja Jayendiran
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, F - 42023 Saint-Etienne, France
| | - Francesca Condemi
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, F - 42023 Saint-Etienne, France
| | - Magalie Viallon
- Department of Radiology, University Hospital of Saint Etienne, France
| | - Pierre Croisille
- Department of Radiology, University Hospital of Saint Etienne, France
| | - Stéphane Avril
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, F - 42023 Saint-Etienne, France
| |
Collapse
|
95
|
Humphrey JD. Constrained Mixture Models of Soft Tissue Growth and Remodeling - Twenty Years After. JOURNAL OF ELASTICITY 2021; 145:49-75. [PMID: 34483462 PMCID: PMC8415366 DOI: 10.1007/s10659-020-09809-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/29/2020] [Indexed: 05/06/2023]
Abstract
Soft biological tissues compromise diverse cell types and extracellular matrix constituents, each of which can possess individual natural configurations, material properties, and rates of turnover. For this reason, mixture-based models of growth (changes in mass) and remodeling (change in microstructure) are well-suited for studying tissue adaptations, disease progression, and responses to injury or clinical intervention. Such approaches also can be used to design improved tissue engineered constructs to repair, replace, or regenerate tissues. Focusing on blood vessels as archetypes of soft tissues, this paper reviews a constrained mixture theory introduced twenty years ago and explores its usage since by contrasting simulations of diverse vascular conditions. The discussion is framed within the concept of mechanical homeostasis, with consideration of solid-fluid interactions, inflammation, and cell signaling highlighting both past accomplishments and future opportunities as we seek to understand better the evolving composition, geometry, and material behaviors of soft tissues under complex conditions.
Collapse
Affiliation(s)
- J D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520 USA
| |
Collapse
|
96
|
Ramaekers MJFG, Adriaans BP, Juffermans JF, van Assen HC, Bekkers SCAM, Scholte AJHA, Kenjeres S, Lamb HJ, Wildberger JE, Westenberg JJM, Schalla S. Characterization of Ascending Aortic Flow in Patients With Degenerative Aneurysms: A 4D Flow Magnetic Resonance Study. Invest Radiol 2021; 56:494-500. [PMID: 33653992 DOI: 10.1097/rli.0000000000000768] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Degenerative thoracic aortic aneurysm (TAA) patients are known to be at risk of life-threatening acute aortic events. Guidelines recommend preemptive surgery at diameters of greater than 55 mm, although many patients with small aneurysms show only mild growth rates and more than half of complications occur in aneurysms below this threshold. Thus, assessment of hemodynamics using 4-dimensional flow magnetic resonance has been of interest to obtain more insights in aneurysm development. Nonetheless, the role of aberrant flow patterns in TAA patients is not yet fully understood. MATERIALS AND METHODS A total of 25 TAA patients and 22 controls underwent time-resolved 3-dimensional phase contrast magnetic resonance imaging with 3-directional velocity encoding (ie, 4-dimensional flow magnetic resonance imaging). Hemodynamic parameters such as vorticity, helicity, and wall shear stress (WSS) were calculated from velocity data in 3 anatomical segments of the ascending aorta (root, proximal, and distal). Regional WSS distribution was assessed for the full cardiac cycle. RESULTS Flow vorticity and helicity were significantly lower for TAA patients in all segments. The proximal ascending aorta showed a significant increase in peak WSS in the outer curvature in TAA patients, whereas WSS values at the inner curvature were significantly lower as compared with controls. Furthermore, positive WSS gradients from sinotubular junction to midascending aorta were most prominent in the outer curvature, whereas from midascending aorta to brachiocephalic trunk, the outer curvature showed negative WSS gradients in the TAA group. Controls solely showed a positive gradient at the inner curvature for both segments. CONCLUSIONS Degenerative TAA patients show a decrease in flow vorticity and helicity, which is likely to cause perturbations in physiological flow patterns. The subsequent differing distribution of WSS might be a contributor to vessel wall remodeling and aneurysm formation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sasa Kenjeres
- Department of Chemical Engineering, Transport Phenomena Section, Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands
| | - Hildo J Lamb
- Department of Radiology, Leiden University Medical Center
| | | | | | | |
Collapse
|
97
|
Bogunovic N, Meekel JP, Majolée J, Hekhuis M, Pyszkowski J, Jockenhövel S, Kruse M, Riesebos E, Micha D, Blankensteijn JD, Hordijk PL, Ghazanfari S, Yeung KK. Patient-Specific 3-Dimensional Model of Smooth Muscle Cell and Extracellular Matrix Dysfunction for the Study of Aortic Aneurysms. J Endovasc Ther 2021; 28:604-613. [PMID: 33902345 PMCID: PMC8276336 DOI: 10.1177/15266028211009272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Abdominal aortic aneurysms (AAAs) are associated with overall high mortality in case of rupture. Since the pathophysiology is unclear, no adequate pharmacological therapy exists. Smooth muscle cells (SMCs) dysfunction and extracellular matrix (ECM) degradation have been proposed as underlying causes. We investigated SMC spatial organization and SMC-ECM interactions in our novel 3-dimensional (3D) vascular model. We validated our model for future use by comparing it to existing 2-dimensional (2D) cell culture. Our model can be used for translational studies of SMC and their role in AAA pathophysiology. MATERIALS AND METHODS SMC isolated from the medial layer of were the aortic wall of controls and AAA patients seeded on electrospun poly-lactide-co-glycolide scaffolds and cultured for 5 weeks, after which endothelial cells (EC) are added. Cell morphology, orientation, mechanical properties and ECM production were quantified for validation and comparison between controls and patients. RESULTS We show that cultured SMC proliferate into multiple layers after 5 weeks in culture and produce ECM proteins, mimicking their behavior in the medial aortic layer. EC attach to multilayered SMC, mimicking layer interactions. The novel SMC model exhibits viscoelastic properties comparable to biological vessels; cytoskeletal organization increases during the 5 weeks in culture; increased cytoskeletal alignment and decreased ECM production indicate different organization of AAA patients' cells compared with control. CONCLUSION We present a valuable preclinical model of AAA constructed with patient specific cells with applications in both translational research and therapeutic developments. We observed SMC spatial reorganization in a time course of 5 weeks in our robust, patient-specific model of SMC-EC organization and ECM production.
Collapse
Affiliation(s)
- Natalija Bogunovic
- Amsterdam Cardiovascular Sciences, Department of Vascular Surgery, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Department of Clinical Genetics, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Jorn P. Meekel
- Amsterdam Cardiovascular Sciences, Department of Vascular Surgery, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Jisca Majolée
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Marije Hekhuis
- Amsterdam Cardiovascular Sciences, Department of Clinical Genetics, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | | | - Stefan Jockenhövel
- Aachen-Maastricht Institute for Biobased Materials, Faculty of Science and Engineering, Maastricht University, Geleen, The Netherlands
- Department of Biohybrid & Medical Textiles (Biotex), RWTH Aachen University, Aachen, Germany
| | - Magnus Kruse
- Department of Biohybrid & Medical Textiles (Biotex), RWTH Aachen University, Aachen, Germany
- Institut für Textiltechnik der RWTH Aachen University, Aachen, Germany
| | - Elise Riesebos
- Amsterdam Cardiovascular Sciences, Department of Clinical Genetics, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Dimitra Micha
- Amsterdam Cardiovascular Sciences, Department of Clinical Genetics, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Jan D. Blankensteijn
- Amsterdam Cardiovascular Sciences, Department of Vascular Surgery, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Peter L. Hordijk
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Samaneh Ghazanfari
- Aachen-Maastricht Institute for Biobased Materials, Faculty of Science and Engineering, Maastricht University, Geleen, The Netherlands
- Department of Biohybrid & Medical Textiles (Biotex), RWTH Aachen University, Aachen, Germany
| | - Kak K. Yeung
- Amsterdam Cardiovascular Sciences, Department of Vascular Surgery, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
98
|
Yanagisawa H, Yokoyama U. Extracellular matrix-mediated remodeling and mechanotransduction in large vessels during development and disease. Cell Signal 2021; 86:110104. [PMID: 34339854 DOI: 10.1016/j.cellsig.2021.110104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/08/2023]
Abstract
The vascular extracellular matrix (ECM) is synthesized and secreted during embryogenesis and facilitates the growth and remodeling of large vessels. Proper interactions between the ECM and vascular cells are pivotal for building the vasculature required for postnatal dynamic circulation. The ECM serves as a structural component by maintaining the integrity of the vessel wall while also regulating intercellular signaling, which involves cytokines and growth factors. The major ECM component in large vessels is elastic fibers, which include elastin and microfibrils. Elastin is predominantly synthesized by vascular smooth muscle cells (SMCs) and uses microfibrils as a scaffold to lay down and assemble cross-linked elastin. The absence of elastin causes developmental defects that result in the subendothelial proliferation of SMCs and inward remodeling of the vessel wall. Notably, elastic fiber formation is attenuated in the ductus arteriosus and umbilical arteries. These two vessels function during embryogenesis and close after birth via cellular proliferation, migration, and matrix accumulation. In dynamic postnatal mechano-environments, the elastic fibers in large vessels also serve an essential role in proper signal transduction as a component of elastin-contractile units. Disrupted mechanotransduction in SMCs leads to pathological conditions such as aortic aneurysms that exhibit outward remodeling. This review discusses the importance of the ECM-mainly the elastic fiber matrix-in large vessels during developmental remodeling and under pathological conditions. By dissecting the role of the ECM in large vessels, we aim to provide insights into the role of ECM-mediated signal transduction that can provide a basis for seeking new targets for intervention in vascular diseases.
Collapse
Affiliation(s)
- Hiromi Yanagisawa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, The University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8577, Japan.
| | - Utako Yokoyama
- Department of Physiology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan.
| |
Collapse
|
99
|
Wang Y, Luo K, Qiao Y, Fan J. An integrated fluid-chemical model toward modeling the thrombus formation in an idealized model of aortic dissection. Comput Biol Med 2021; 136:104709. [PMID: 34365279 DOI: 10.1016/j.compbiomed.2021.104709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/05/2021] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
Type B aortic dissection is a major aortic catastrophe that can be acutely complicated by rapid expansion, rupture, and malperfusion syndromes. The separation of the intima from aortic walls will form a second blood-filled lumen defined as "false lumen (FL)", where the thrombus is more likely to form due to the local stasis hemodynamic conditions. Complete thrombosis of FL is associated with a beneficial outcome while patency and partial thrombosis will lead to later complications. However, the thrombosis mechanism is still unclear and little is known about the impact of chemical species transported by blood flow on this process. The proteins involved in the coagulation cascade (CC) may play an important role in the process of thrombosis, especially in the activation and stabilization of platelets. Based on this hypothesis, a reduced-order fluid-chemical model was established to simulate CC in an aortic dissection phantom with two tears. A high level of fibrin is continuously observed at the top of the FL and some time-varying areas between two tears, indicating a high likelihood of thrombus formation there. This finding is consistent with the clinical observation. The time evolution of coagulation factors is greatly affected by local hemodynamics, especially in the high disturbance zone where the evolution has characteristics of periodic changes consistent with the flow field. The ability of the proposed model to reproduce the CC response provides a potential application to integrate with a model that can simulate platelet activities, forming a biochemical-based model which would help unveil the mechanisms of thrombosis in FL and the clinical decision of appropriate treatment.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China
| | - Kun Luo
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China.
| | - Yonghui Qiao
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China
| | - Jianren Fan
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China
| |
Collapse
|
100
|
Abstract
Cells of the vascular wall are exquisitely sensitive to changes in their mechanical environment. In healthy vessels, mechanical forces regulate signaling and gene expression to direct the remodeling needed for the vessel wall to maintain optimal function. Major diseases of arteries involve maladaptive remodeling with compromised or lost homeostatic mechanisms. Whereas homeostasis invokes negative feedback loops at multiple scales to mediate mechanobiological stability, disease progression often occurs via positive feedback that generates mechanobiological instabilities. In this review, we focus on the cell biology, wall mechanics, and regulatory pathways associated with arterial health and how changes in these processes lead to disease. We discuss how positive feedback loops arise via biomechanical and biochemical means. We conclude that inflammation plays a central role in overriding homeostatic pathways and suggest future directions for addressing therapeutic needs.
Collapse
Affiliation(s)
- Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06520, USA;
| | - Martin A Schwartz
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06520, USA;
- Department of Cell Biology, Department of Internal Medicine (Cardiology), and Cardiovascular Research Center, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|