51
|
Kleinbongard P, Bøtker HE, Ovize M, Hausenloy DJ, Heusch G. Co-morbidities and co-medications as confounders of cardioprotection-Does it matter in the clinical setting? Br J Pharmacol 2020; 177:5252-5269. [PMID: 31430831 PMCID: PMC7680006 DOI: 10.1111/bph.14839] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/26/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023] Open
Abstract
The translation of cardioprotection from robust experimental evidence to beneficial clinical outcome for patients suffering acute myocardial infarction or undergoing cardiovascular surgery has been largely disappointing. The present review attempts to critically analyse the evidence for confounders of cardioprotection in patients with acute myocardial infarction and in patients undergoing cardiovascular surgery. One reason that has been proposed to be responsible for such lack of translation is the confounding of cardioprotection by co-morbidities and co-medications. Whereas there is solid experimental evidence for such confounding of cardioprotection by single co-morbidities and co-medications, the clinical evidence from retrospective analyses of the limited number of clinical data is less robust. The best evidence for interference of co-medications is that for platelet inhibitors to recruit cardioprotection per se and thus limit the potential for further protection from myocardial infarction and for propofol anaesthesia to negate the protection from remote ischaemic conditioning in cardiovascular surgery. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.23/issuetoc.
Collapse
Affiliation(s)
- Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular CenterUniversity of Essen Medical SchoolEssenGermany
| | - Hans Erik Bøtker
- Department of CardiologyAarhus University Hospital SkejbyAarhusDenmark
| | - Michel Ovize
- INSERM U1060, CarMeN Laboratory, Université de Lyon and Explorations Fonctionnelles Cardiovasculaires, Hôpital Louis Pradel, Hospices Civils de LyonLyonFrance
| | - Derek J. Hausenloy
- Cardiovascular and Metabolic Disorders ProgramDuke‐National University of Singapore Medical SchoolSingapore
- National Heart Research Institute SingaporeNational Heart CentreSingapore
- Yong Loo Lin School of MedicineNational University SingaporeSingapore
- The Hatter Cardiovascular InstituteUniversity College LondonLondonUK
- Research and DevelopmentThe National Institute of Health Research University College London Hospitals Biomedical Research CentreLondonUK
- Tecnologico de MonterreyCentro de Biotecnologia‐FEMSAMonterreyNuevo LeonMexico
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular CenterUniversity of Essen Medical SchoolEssenGermany
| |
Collapse
|
52
|
Comparison of infarction size, complete ST-segment resolution incidence, mortality and re-infarction and target vessel revascularization between remote ischemic conditioning and ischemic postconditioning in ST-segment elevation myocardial infarction patients undergoing primary percutaneous coronary intervention. ADVANCES IN INTERVENTIONAL CARDIOLOGY 2020; 16:278-286. [PMID: 33597992 PMCID: PMC7863805 DOI: 10.5114/aic.2020.99262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/06/2020] [Indexed: 11/30/2022] Open
Abstract
Introduction Due to higher morbidity and mortality, ST-segment elevation myocardial infarction (STEMI) causes many public health problems. Aim To observe effects of remote ischemic conditioning (RIC) and ischemic postconditioning (IPC) on patients diagnosed as STEMI undergoing primary percutaneous coronary intervention (pPCI). Material and methods This meta-analysis was conducted using indirect comparison by conducting a network meta-analysis (NMA). We conducted searches by utilizing PubMed and the other databases to identify randomized controlled trials (RCTs) that described IPC or RIC treated patients diagnosed with STEMI during processes of pPCI. Enzymatic infarct size and infarction size were evaluated and cardiac events were assessed during the follow-up. Results Pooled results showed that lower enzymatic infarction size was associated with the RIC group compared to the IPC group (IPC vs. RIC: standardized mean difference (SMD) = 1.126; 95% confidence interval (CI): 0.756–1.677). Compared with IPC, RIC significantly reduced infarction size, which was assessed using cardiac magnetic resonance (CMR) (SMD = 1.113; 95% CI: 0.674–1.837). We noted a potential toward greater complete ST-segment resolution in RIC patients compared with IPC patients (odds ratio (OR) = 0.821; 95% CI: 0.166–4.051). No significant difference existed in all-cause mortality (OR = 2.211; 95% CI: 0.845–5.784), Target vessel revascularization (TVR) (OR = 0.045; 95% CI: 0.001–.662) or re-infarction (OR = 1.763; 95% CI: 0.741–4.193). Conclusions This meta-analysis suggested RIC was correlated with significantly smaller infarction size compared to IPC. No significant superiority between RIC and IPC has been observed in this study on cSTR incidence, mortality and re-infarction or TVR.
Collapse
|
53
|
Giblett JP, Bulluck H. Cardioprotection for Acute MI in Light of the CONDI2/ERIC-PPCI Trial: New Targets Needed. ACTA ACUST UNITED AC 2020; 15:e13. [PMID: 32944081 PMCID: PMC7479528 DOI: 10.15420/icr.2020.01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023]
Abstract
Protection against ischaemia-reperfusion injury after revascularisation in acute myocardial infarction remains an enigma. Many targets have been identified, but after the failure of the recent Effect of Remote Ischaemic Conditioning on Clinical Outcomes in ST-elevation Myocardial Infarction Patients Undergoing Primary Percutaneous Coronary Intervention (CONDI2/ERIC-PPCI) trial to show translation to clinical benefit, there is still no pharmacological or mechanical strategy that has translated to clinical practice. This article addresses the results of the CONDI2/ERIC-PPCI trial in the context of previous studies of ischaemic conditioning, and then considers the prospects for other potential targets of cardioprotection. Finally, the authors examine the pitfalls and challenges in trial design for future investigation of cardioprotective strategies. In particular, this article highlights the need for careful endpoint and patient selection, as well as the need to pay attention to the biology of cardioprotection during the study.
Collapse
Affiliation(s)
- Joel P Giblett
- Department of Cardiology, Liverpool Heart and Chest Hospital Liverpool, UK
| | | |
Collapse
|
54
|
Dragasevic N, Jakovljevic V, Zivkovic V, Draginic N, Andjic M, Bolevich S, Jovic S. The role of aldosterone inhibitors in cardiac ischemia-reperfusion injury. Can J Physiol Pharmacol 2020; 99:18-29. [PMID: 32799671 DOI: 10.1139/cjpp-2020-0276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Myocardial ischaemia-reperfusion (I/R) injury is a well-known term for exacerbation of cellular destruction and dysfunction after the restoration of blood flow to a previously ischaemic heart. A vast number of studies that have demonstrated that the role of mineralocorticoids in cardiovascular diseases is based on the use of pharmacological mineralocorticoid receptor (MR) antagonists. This review paper aimed to summarize current knowledge on the effects of MR antagonists on myocardial I/R injury as well as postinfarction remodeling. Animal models, predominantly the Langendorff technique and left anterior descending coronary artery occlusion, have confirmed the potency of MR antagonists as preconditioning and postconditioning agents in limiting infarct size and postinfarction remodeling. Several preclinical studies in rodents have established and proved possible mechanisms of cardioprotection by MR antagonists, such as reduction of oxidative stress, reduction of inflammation, and apoptosis, therefore limiting the infarct zone. However, the results of some clinical trials are inconsistent, since they reported no benefit of MR antagonists in acute myocardial infarction. Due to this, further studies and the results of ongoing clinical trials regarding MR antagonist administration in patients with acute myocardial infarction are being awaited with great interest.
Collapse
Affiliation(s)
- Nevena Dragasevic
- University of Kragujevac, Faculty of Medical Sciences, Department of Physiology, Svetozara Markovica 69, 34 000 Kragujevac, Serbia
| | - Vladimir Jakovljevic
- University of Kragujevac, Faculty of Medical Sciences, Department of Physiology, Svetozara Markovica 69, 34 000 Kragujevac, Serbia.,1st Moscow State Medical University IM Sechenov, Department of Human Pathology, Trubetskaya street 8, 119991 Moscow, Russia
| | - Vladimir Zivkovic
- University of Kragujevac, Faculty of Medical Sciences, Department of Physiology, Svetozara Markovica 69, 34 000 Kragujevac, Serbia
| | - Nevena Draginic
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovica 69, 34 000 Kragujevac, Serbia
| | - Marijana Andjic
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovica 69, 34 000 Kragujevac, Serbia
| | - Sergey Bolevich
- 1 Moscow State Medical University IM Sechenov, Department of Human Pathology, Trubetskaya street 8, 119991 Moscow, Russia
| | - Slavoljub Jovic
- University of Belgrade, Department of Physiology and Biochemistry, Faculty of Veterinary Medicine, Bul. Oslobodjenja 18, Belgrade, Serbia
| |
Collapse
|
55
|
Chadet S, Ternant D, Roubille F, Bejan-Angoulvant T, Prunier F, Mewton N, Paintaud G, Ovize M, Dupuy AM, Angoulvant D, Ivanes F. Kinetic modelling of myocardial necrosis biomarkers offers an easier, reliable and more acceptable assessment of infarct size. Sci Rep 2020; 10:13597. [PMID: 32788683 PMCID: PMC7423884 DOI: 10.1038/s41598-020-70501-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/28/2020] [Indexed: 11/30/2022] Open
Abstract
Infarct size is a major prognostic factor in ST-segment elevation myocardial infarction (STEMI). It is often assessed using repeated blood sampling and the estimation of biomarker area under the concentration versus time curve (AUC) in translational research. We aimed at developing limited sampling strategies (LSS) to accurately estimate biomarker AUC using only a limited number of blood samples in STEMI patients. This retrospective study was carried out on pooled data from five clinical trials of STEMI patients (TIMI blood flow 0/1) studies where repeated blood samples were collected within 72 h after admission to assess creatine kinase (CK), cardiac troponin I (cTnI) and muscle-brain CK (CK-MB). Biomarker kinetics was assessed using previously described biomarker kinetic models. A number of LSS models including combinations of 1 to 3 samples were developed to identify sampling times leading to the best estimation of AUC. Patients were randomly assigned to either learning (2/3) or validation (1/3) subsets. Descriptive and predictive performances of LSS models were compared using learning and validation subsets, respectively. An external validation cohort was used to validate the model and its applicability to different cTnI assays, including high-sensitive (hs) cTnI. 132 patients had full CK and cTnI dataset, 49 patients had CK-MB. For each biomarker, 180 LSS models were tested. Best LSS models were obtained for the following sampling times: T4-16 for CK, T8-T20 for cTnI and T8-T16 for CK-MB for 2-sample LSS; and T4-T16-T24 for CK, T4-T12-T20 for cTnI and T8-T16-T20 for CK-MB for 3-sample LSS. External validation was achieved on 103 anterior STEMI patients (TIMI flow 0/1), and the cTnI model applicability to recommended hs cTnI confirmed. Biomarker kinetics can be assessed with a limited number of samples using kinetic modelling. This opens the way for substantial simplification of future cardioprotection studies, more acceptable for the patients.
Collapse
Affiliation(s)
- Stéphanie Chadet
- Loire Valley Cardiovascular Collaboration, Université de Tours, EA 4245 T2I & FHU SUPORT, Tours, France
| | - David Ternant
- Loire Valley Cardiovascular Collaboration, Université de Tours, EA 4245 T2I & FHU SUPORT, Tours, France
- Laboratory of Pharmacology-Toxicology, CHRU de Tours, Tours, France
| | - François Roubille
- Department of Cardiology, PhyMedExp, Université de Montpellier, INSERM U1046, CNRS UMR 9214, CHU de Montpellier, Montpellier, France
| | - Theodora Bejan-Angoulvant
- Loire Valley Cardiovascular Collaboration, Université de Tours, EA 4245 T2I & FHU SUPORT, Tours, France
- Department of Clinical Pharmacology, CHRU de Tours, Tours, France
| | | | - Nathan Mewton
- Université Claude Bernard Lyon 1, INSERM U1060 CarMeN, Lyon, France
| | - Gilles Paintaud
- Loire Valley Cardiovascular Collaboration, Université de Tours, EA 4245 T2I & FHU SUPORT, Tours, France
- Laboratory of Pharmacology-Toxicology, CHRU de Tours, Tours, France
| | - Michel Ovize
- Université Claude Bernard Lyon 1, INSERM U1060 CarMeN, Lyon, France
| | - Anne Marie Dupuy
- Department of Cardiology, PhyMedExp, Université de Montpellier, INSERM U1046, CNRS UMR 9214, CHU de Montpellier, Montpellier, France
| | - Denis Angoulvant
- Loire Valley Cardiovascular Collaboration, Université de Tours, EA 4245 T2I & FHU SUPORT, Tours, France
- Department of Cardiology & FACT, CHRU de Tours, Tours, France
| | - Fabrice Ivanes
- Loire Valley Cardiovascular Collaboration, Université de Tours, EA 4245 T2I & FHU SUPORT, Tours, France.
- Department of Cardiology & FACT, CHRU de Tours, Tours, France.
| |
Collapse
|
56
|
Abstract
Early metoprolol administration protects against myocardial ischemia–reperfusion injury, but its effect on infarct size progression (ischemic injury) is unknown. Eight groups of pigs (total n = 122) underwent coronary artery occlusion of varying duration (20, 25, 30, 35, 40, 45, 50, or 60 min) followed by reperfusion. In each group, pigs were randomized to i.v. metoprolol (0.75 mg/kg) or vehicle (saline) 20 min after ischemia onset. The primary outcome measure was infarct size (IS) on day7 cardiac magnetic resonance (CMR) normalized to area at risk (AAR, measured by perfusion computed tomography [CT] during ischemia). Metoprolol treatment reduced overall mortality (10% vs 26%, p = 0.03) and the incidence and number of primary ventricular fibrillations during infarct induction. In controls, IS after 20-min ischemia was ≈ 5% of the area AAR. Thereafter, IS progressed exponentially, occupying almost all the AAR after 35 min of ischemia. Metoprolol injection significantly reduced the slope of IS progression (p = 0.004 for final IS). Head-to-head comparison (metoprolol treated vs vehicle treated) showed statistically significant reductions in IS at 30, 35, 40, and 50-min reperfusion. At 60-min reperfusion, IS was 100% of AAR in both groups. Despite more prolonged ischemia, metoprolol-treated pigs reperfused at 50 min had smaller infarcts than control pigs undergoing ischemia for 40 or 45 min and similar-sized infarcts to those undergoing 35-min ischemia. Day-45 LVEF was higher in metoprolol-treated vs vehicle-treated pigs (41.6% vs 36.5%, p = 0.008). In summary, metoprolol administration early during ischemia attenuates IS progression and reduces the incidence of primary ventricular fibrillation. These data identify metoprolol as an intervention ideally suited to the treatment of STEMI patients identified early in the course of infarction and requiring long transport times before primary angioplasty.
Collapse
|
57
|
Cardioprotection by early metoprolol- attenuation of ischemic vs. reperfusion injury? Basic Res Cardiol 2020; 115:54. [PMID: 32748009 PMCID: PMC7399676 DOI: 10.1007/s00395-020-0814-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022]
|
58
|
de Almeida GKM, Jesus ICGD, Mesquita T, Miguel-Dos-Santos R, Dos Santos PH, de Moraes ER, Lauton-Santos S. Post-ischemic reperfusion with diosmin attenuates myocardial injury through a nitric oxidase synthase-dependent mechanism. Life Sci 2020; 258:118188. [PMID: 32755623 DOI: 10.1016/j.lfs.2020.118188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/14/2020] [Accepted: 07/29/2020] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Thassio Mesquita
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, United States.
| | | | | | | | | |
Collapse
|
59
|
Heusch G, Rassaf T. Left Ventricular Unloading in Myocardial Infarction. J Am Coll Cardiol 2020; 76:700-702. [DOI: 10.1016/j.jacc.2020.06.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 11/25/2022]
|
60
|
Abstract
Despite the increasing use and success of interventional coronary reperfusion strategies, morbidity and mortality from acute myocardial infarction are still substantial. Myocardial infarct size is a major determinant of prognosis in these patients. Therefore, cardioprotective strategies aim to reduce infarct size. However, a perplexing gap exists between the many preclinical studies reporting infarct size reduction with mechanical and pharmacological interventions and the poor translation into better clinical outcomes in patients. This Review revisits the pathophysiology of myocardial ischaemia-reperfusion injury, including the role of autophagy and forms of cell death such as necrosis, apoptosis, necroptosis and pyroptosis. Other cellular compartments in addition to cardiomyocytes are addressed, notably the coronary microcirculation. Preclinical and clinical research developments in mechanical and pharmacological approaches to induce cardioprotection, and their signal transduction pathways, are discussed. Additive cardioprotective interventions are advocated. For clinical translation into treatments for patients with acute myocardial infarction, who typically are of advanced age, have comorbidities and are receiving several medications, not only infarct size reduction but also attenuation of coronary microvascular obstruction, as well as longer-term targets including infarct repair and reverse remodelling, must be considered to improve patient outcomes. Future clinical trials must focus on patients who really need adjunct cardioprotection, that is, those with severe haemodynamic alterations.
Collapse
|
61
|
Li J, Sun D, Li Y. Novel Findings and Therapeutic Targets on Cardioprotection of Ischemia/ Reperfusion Injury in STEMI. Curr Pharm Des 2020; 25:3726-3739. [PMID: 31692431 DOI: 10.2174/1381612825666191105103417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/30/2019] [Indexed: 12/19/2022]
Abstract
Acute ST-segment elevation myocardial infarction (STEMI) remains a leading cause of morbidity and mortality around the world. A large number of STEMI patients after the infarction gradually develop heart failure due to the infarcted myocardium. Timely reperfusion is essential to salvage ischemic myocardium from the infarction, but the restoration of coronary blood flow in the infarct-related artery itself induces myocardial injury and cardiomyocyte death, known as ischemia/reperfusion injury (IRI). The factors contributing to IRI in STEMI are complex, and microvascular obstruction, inflammation, release of reactive oxygen species, myocardial stunning, and activation of myocardial cell death are involved. Therefore, additional cardioprotection is required to prevent the heart from IRI. Although many mechanical conditioning procedures and pharmacological agents have been identified as effective cardioprotective approaches in animal studies, their translation into the clinical practice has been relatively disappointing due to a variety of reasons. With new emerging data on cardioprotection in STEMI over the past few years, it is mandatory to reevaluate the effectiveness of "old" cardioprotective interventions and highlight the novel therapeutic targets and new treatment strategies of cardioprotection.
Collapse
Affiliation(s)
- Jianqiang Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Danghui Sun
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Yue Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| |
Collapse
|
62
|
Lau JK, Pennings GJ, Reddel CJ, Campbell H, Liang HPH, Traini M, Gardiner EE, Yong AS, Chen VM, Kritharides L. Remote ischemic preconditioning inhibits platelet α IIb β 3 activation in coronary artery disease patients receiving dual antiplatelet therapy: A randomized trial. J Thromb Haemost 2020; 18:1221-1232. [PMID: 32056358 DOI: 10.1111/jth.14763] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/06/2020] [Indexed: 01/26/2023]
Abstract
OBJECTIVES We investigated whether remote ischemic preconditioning (RIPC) inhibits agonist-induced conformational activation of platelet αIIb β3 in patients with coronary artery disease already receiving conventional antiplatelet therapy. PATIENTS/METHODS Consecutive patients with angiographically confirmed coronary artery disease were randomized to RIPC or sham treatment. Venous blood was collected before and immediately after RIPC/sham. Platelet aggregometry (ADP, arachidonic acid) and whole blood platelet flow cytometry was performed for CD62P, CD63, active αIIb β3 (PAC-1 binding) before and after stimulation with ADP, thrombin ± collagen, or PAR-1 thrombin receptor agonist. RESULTS Patients (25 RIPC, 23 sham) were well matched, 83% male, age (mean ± standard deviation) 63.3 ± 13.2 years, 95% aspirin, 81% P2Y12 inhibitor. RIPC did not affect platelet aggregation, nor agonist-induced expression of CD62P, but selectively and significantly decreased αIIb β3 activation after stimulation with either PAR-1 agonist peptide or the combination of thrombin + collagen, but not after ADP nor thrombin alone. The effect of RIPC on platelet αIIb β3 activation was evident in patients receiving both aspirin and P2Y12 inhibitor, and was not associated with an increase in vasodilator-stimulated phosphoprotein phosphorylation. CONCLUSIONS Remote ischemic preconditioning inhibits conformational activation of platelet αIIb β3 in response to exposure to thrombin and collagen in patients with coronary artery disease receiving dual antiplatelet therapy. These findings indicate agonist-specific inhibition of platelet activation by RIPC in coronary artery disease that is not obviated by the prior use of P2Y12 inhibitors.
Collapse
Affiliation(s)
- Jerrett K Lau
- Department of Cardiology, Concord Hospital, University of Sydney, Concord, NSW, Australia
- ANZAC Research Institute, University of Sydney, Concord, NSW, Australia
| | | | - Caroline J Reddel
- ANZAC Research Institute, University of Sydney, Concord, NSW, Australia
| | - Heather Campbell
- ANZAC Research Institute, University of Sydney, Concord, NSW, Australia
| | - Hai Po H Liang
- ANZAC Research Institute, University of Sydney, Concord, NSW, Australia
| | - Mathew Traini
- ANZAC Research Institute, University of Sydney, Concord, NSW, Australia
| | - Elizabeth E Gardiner
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Andy S Yong
- Department of Cardiology, Concord Hospital, University of Sydney, Concord, NSW, Australia
- ANZAC Research Institute, University of Sydney, Concord, NSW, Australia
| | - Vivien M Chen
- ANZAC Research Institute, University of Sydney, Concord, NSW, Australia
- Department of Hematology, Concord Hospital, University of Sydney, Concord, NSW, Australia
| | - Leonard Kritharides
- Department of Cardiology, Concord Hospital, University of Sydney, Concord, NSW, Australia
- ANZAC Research Institute, University of Sydney, Concord, NSW, Australia
| |
Collapse
|
63
|
(E)-N'-(1-(7-Hydroxy-2-Oxo-2H-Chromen-3-Yl) Ethylidene) Benzohydrazide, a Novel Synthesized Coumarin, Ameliorates Isoproterenol-Induced Myocardial Infarction in Rats through Attenuating Oxidative Stress, Inflammation, and Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2432918. [PMID: 32215169 PMCID: PMC7079259 DOI: 10.1155/2020/2432918] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/06/2020] [Accepted: 01/16/2020] [Indexed: 12/22/2022]
Abstract
The present study was directed to investigate the effect of precotreatment with (E)-N'-(1-(7-hydroxy-2-oxo-2H-chromen-3-yl) ethylidene) benzohydrazide (7-hyd.HC), a novel potent synthesized coumarin, on isoproterenol- (ISO-) induced myocardial infarction (MI) in rats. The hydrazone compound was characterized by IR, 1D, and 2D NMR analyses. Experimental induction of MI in rats was established by ISO (85 mg/kg/day, s.c) for two consecutive days (6th and 7th days). 7-hyd.HC or sintrom was given for 7 days prior and simultaneous to ISO injection. 7-hyd.HC offered a cardiopreventive effect by preventing heart injury marker leakage (LDH, ALT, AST, CK-MB, and cTn-I) from cardiomyocytes and normalizing cardiac function and ECG pattern, as well as improving lipid profile (TC, TG, LDL-C, and HDL-C), which were altered by ISO administration. Moreover, 7-hyd.HC precotreatment significantly mitigated the oxidative stress biomarkers, as evidenced by the decrease of lipid peroxidation and the increased level of the myocardial GSH level together with the SOD, GSH-Px, and catalase activities. 7-hyd.HC inhibited the cardiac apoptosis by upregulating the expression of Bcl-2 and downregulating the expression of Bax and caspase-3 genes. In addition, 7-hyd.HC reduced the elevated fibrinogen rate and better prevented the myocardial necrosis and improved the interstitial edema and neutrophil infiltration than sintrom. Overall, 7-hyd.HC ameliorated the severity of ISO-induced myocardial infarction through improving the oxidative status, attenuating apoptosis, and reducing fibrinogen production. The 7-hyd.HC actions could be mediated by its antioxidant, antiapoptotic, and anti-inflammatory capacities.
Collapse
|
64
|
Stiermaier T, Jensen JO, Rommel KP, de Waha-Thiele S, Fuernau G, Desch S, Thiele H, Eitel I. Combined Intrahospital Remote Ischemic Perconditioning and Postconditioning Improves Clinical Outcome in ST-Elevation Myocardial Infarction. Circ Res 2020; 124:1482-1491. [PMID: 30929570 DOI: 10.1161/circresaha.118.314500] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RATIONALE Remote ischemic conditioning (RIC) or ischemic postconditioning (PostC) may protect the myocardium from ischemia-reperfusion injury in patients with ST-segment-elevation myocardial infarction. OBJECTIVE To determine whether combined intrahospital RIC and PostC or PostC alone in addition to primary percutaneous coronary intervention (PCI) reduce long-term clinical events after ST-segment-elevation myocardial infarction. METHODS AND RESULTS The present study is a post hoc analysis of a prospective trial which randomized 696 ST-segment-elevation myocardial infarction patients with symptoms <12 hours 1:1:1 to either combined RIC and PostC in addition to primary PCI, PostC alone in addition to primary PCI, or conventional PCI (control). Three cycles of RIC were performed by inflation of an upper arm blood pressure cuff for 5 minutes followed by deflation for 5 minutes. PostC was performed after primary PCI via 4 cycles of 30 seconds balloon occlusions followed by 30 seconds of reperfusion. Major adverse cardiac events consisting of cardiac death, reinfarction, and new congestive heart failure were assessed during long-term follow-up. Follow-up data were obtained in 97% of patients in median 3.6 years after the index event (interquartile range, 2.9-4.2 years). Major adverse cardiac events occurred in 10.2% of patients in the combined RIC and PostC group and in 16.9% in the control group (odds ratio, 0.56; 95% CI, 0.32-0.97; P=0.04). The difference was driven by a significantly reduced rate of new congestive heart failure in the RIC and PostC group (2.7% versus 7.8%; odds ratio, 0.32; 95% CI, 0.13-0.84; P=0.02). In contrast, PostC alone did not reduce major adverse cardiac events compared with controls (14.1% versus 16.9%; odds ratio, 0.81; 95% CI, 0.48-1.35; P=0.41), and the reduction of new congestive heart failure was not statistically significant (3.5% versus 7.8%; odds ratio, 0.43; 95% CI, 0.18-1.03; P=0.05). CONCLUSIONS Cardioprotection by combined intrahospital RIC and PostC in addition to primary PCI significantly reduced the rate of major adverse cardiac events and new congestive heart failure after ST-segment-elevation myocardial infarction. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov . Unique identifier: NCT02158468.
Collapse
Affiliation(s)
- Thomas Stiermaier
- From the University Heart Center Lübeck, Medical Clinic II (Cardiology/Angiology/Intensive Care Medicine), Germany (T.S., J.-O.J., S.d.W.-T., G.F., I.E.).,German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany (T.S., J.-O.J., S.d.W.-T., G.F., S.D., I.E.)
| | - Jan-Oluf Jensen
- From the University Heart Center Lübeck, Medical Clinic II (Cardiology/Angiology/Intensive Care Medicine), Germany (T.S., J.-O.J., S.d.W.-T., G.F., I.E.).,German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany (T.S., J.-O.J., S.d.W.-T., G.F., S.D., I.E.)
| | - Karl-Philipp Rommel
- Heart Center Leipzig, University Hospital, Department of Internal Medicine/Cardiology, Germany (K.-P.R., S.D., H.T.)
| | - Suzanne de Waha-Thiele
- From the University Heart Center Lübeck, Medical Clinic II (Cardiology/Angiology/Intensive Care Medicine), Germany (T.S., J.-O.J., S.d.W.-T., G.F., I.E.).,German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany (T.S., J.-O.J., S.d.W.-T., G.F., S.D., I.E.)
| | - Georg Fuernau
- From the University Heart Center Lübeck, Medical Clinic II (Cardiology/Angiology/Intensive Care Medicine), Germany (T.S., J.-O.J., S.d.W.-T., G.F., I.E.).,German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany (T.S., J.-O.J., S.d.W.-T., G.F., S.D., I.E.)
| | - Steffen Desch
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany (T.S., J.-O.J., S.d.W.-T., G.F., S.D., I.E.).,Heart Center Leipzig, University Hospital, Department of Internal Medicine/Cardiology, Germany (K.-P.R., S.D., H.T.)
| | - Holger Thiele
- Heart Center Leipzig, University Hospital, Department of Internal Medicine/Cardiology, Germany (K.-P.R., S.D., H.T.)
| | - Ingo Eitel
- From the University Heart Center Lübeck, Medical Clinic II (Cardiology/Angiology/Intensive Care Medicine), Germany (T.S., J.-O.J., S.d.W.-T., G.F., I.E.).,German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany (T.S., J.-O.J., S.d.W.-T., G.F., S.D., I.E.)
| |
Collapse
|
65
|
Anna R, Rolf R, Mark C. Update of the organoprotective properties of xenon and argon: from bench to beside. Intensive Care Med Exp 2020; 8:11. [PMID: 32096000 PMCID: PMC7040108 DOI: 10.1186/s40635-020-0294-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 01/19/2020] [Indexed: 02/07/2023] Open
Abstract
The growth of the elderly population has led to an increase in patients with myocardial infarction and stroke (Wajngarten and Silva, Eur Cardiol 14: 111–115, 2019). Patients receiving treatment for ST-segment-elevation myocardial infarction (STEMI) highly profit from early reperfusion therapy under 3 h from the onset of symptoms. However, mortality from STEMI remains high due to the increase in age and comorbidities (Menees et al., N Engl J Med 369: 901–909, 2013). These factors also account for patients with acute ischaemic stroke. Reperfusion therapy has been established as the gold standard within the first 4 to 5 h after onset of symptoms (Powers et al., Stroke 49: e46-e110, 2018). Nonetheless, not all patients are eligible for reperfusion therapy. The same is true for traumatic brain injury patients. Due to the complexity of acute myocardial and central nervous injury (CNS), finding organ protective substances to improve the function of remote myocardium and the ischaemic penumbra of the brain is urgent. This narrative review focuses on the noble gases argon and xenon and their possible cardiac, renal and neuroprotectant properties in the elderly high-risk (surgical) population. The article will provide an overview of the latest experimental and clinical studies. It is beyond the scope of this review to give a detailed summary of the mechanistic understanding of organ protection by xenon and argon.
Collapse
Affiliation(s)
- Roehl Anna
- Department of Anaesthesiology, Medical Faculty, RWTH Aachen University, Pauwelstrasse 30, 52072, Aachen, Germany.
| | - Rossaint Rolf
- Department of Anaesthesiology, Medical Faculty, RWTH Aachen University, Pauwelstrasse 30, 52072, Aachen, Germany
| | - Coburn Mark
- Department of Anaesthesiology, Medical Faculty, RWTH Aachen University, Pauwelstrasse 30, 52072, Aachen, Germany
| |
Collapse
|
66
|
Dai Y, Wang S, Chang S, Ren D, Shali S, Li C, Yang H, Huang Z, Ge J. M2 macrophage-derived exosomes carry microRNA-148a to alleviate myocardial ischemia/reperfusion injury via inhibiting TXNIP and the TLR4/NF-κB/NLRP3 inflammasome signaling pathway. J Mol Cell Cardiol 2020; 142:65-79. [PMID: 32087217 DOI: 10.1016/j.yjmcc.2020.02.007] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Reperfusion may cause injuries to the myocardium in ischemia situation. Emerging studies suggest that exosomes may serve as key mediators in myocardial ischemia/reperfusion (MI/R) injury. OBJECTIVE The study was conducted to figure out the mechanism of M2 macrophage-derived exosomes (M2-exos) in MI/R injury with the involvement of microRNA-148a (miR-148a). METHODS AND RESULTS M2 macrophages were prepared and M2-exos were collected and identified. Neonatal rat cardiomyocytes (NCMs) were extracted for in vitro hypoxia/reoxygenation (H/R) model establishment, while rat cardiac tissues were separated for in vivo MI/R model establishment. Differentially expressed miRNAs in NCMs and H/R-treated NCMs after M2-exos treatment were evaluated using microarray analysis. The target relation between miR-148a and thioredoxin-interacting protein (TXNIP) was identified using dual luciferase reporter gene assay. Gain- and loss- of function studies of miR-148a and TXNIP were performed to figure out their roles in MI/R injury. Meanwhile, the activation of the TLR4/NF-κB/NLRP3 inflammasome signaling pathway and pyroptosis of NCMs were evaluated. M2 macrophages carried miR-148a into NCMs. Over-expression of miR-148a enhanced viability of H/R-treated NCMs, reduced infarct size in vivo, and alleviated dysregulation of cardiac enzymes and Ca2+ overload in both models. miR-148a directly bound to the 3'-untranslated region (3'UTR) of TXNIP. Over-expressed TXNIP triggered the TLR4/NF-κB/NLRP3 signaling pathway activation and induced cell pyroptosis of NCMs, and the results were reproduced in in vivo studies. CONCLUSION This study demonstrated that M2-exos could carry miR-148a to mitigate MI/R injury via down-regulating TXNIP and inactivating the TLR4/NF-κB/NLRP3 inflammasome signaling pathway. This study may offer new insights into MI/R injury treatment.
Collapse
Affiliation(s)
- Yuxiang Dai
- Department of Cardiology, Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Shanghai 200032, China
| | - Shen Wang
- Department of Cardiology, the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, China
| | - Shufu Chang
- Department of Cardiology, Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Shanghai 200032, China
| | - Daoyuan Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Shanghai 200032, China
| | - Shalaimaiti Shali
- Department of Cardiology, Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Shanghai 200032, China
| | - Chenguang Li
- Department of Cardiology, Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Shanghai 200032, China
| | - Hongbo Yang
- Department of Cardiology, Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Shanghai 200032, China
| | - Zheyong Huang
- Department of Cardiology, Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Shanghai 200032, China
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Shanghai 200032, China.
| |
Collapse
|
67
|
Rossello X, Rodriguez-Sinovas A, Vilahur G, Crisóstomo V, Jorge I, Zaragoza C, Zamorano JL, Bermejo J, Ordoñez A, Boscá L, Vázquez J, Badimón L, Sánchez-Margallo FM, Fernández-Avilés F, Garcia-Dorado D, Ibanez B. CIBER-CLAP (CIBERCV Cardioprotection Large Animal Platform): A multicenter preclinical network for testing reproducibility in cardiovascular interventions. Sci Rep 2019; 9:20290. [PMID: 31889088 PMCID: PMC6937304 DOI: 10.1038/s41598-019-56613-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/19/2019] [Indexed: 02/07/2023] Open
Abstract
Despite many cardioprotective interventions have shown to protect the heart against ischemia/reperfusion injury in the experimental setting, only few of them have succeeded in translating their findings into positive proof-of-concept clinical trials. Controversial and inconsistent experimental and clinical evidence supports the urgency of a disruptive paradigm shift for testing cardioprotective therapies. There is a need to evaluate experimental reproducibility before stepping into the clinical arena. The CIBERCV (acronym for Spanish network-center for cardiovascular biomedical research) has set up the "Cardioprotection Large Animal Platform" (CIBER-CLAP) to perform experimental studies testing the efficacy and reproducibility of promising cardioprotective interventions based on a pre-specified design and protocols, randomization, blinding assessment and other robust methodological features. Our first randomized, control-group, open-label blinded endpoint experimental trial assessing local ischemic preconditioning (IPC) in a pig model of acute myocardial infarction (n = 87) will be carried out in three separate sets of experiments performed in parallel by three laboratories. Each set aims to assess: (A) CMR-based outcomes; (B) histopathological-based outcomes; and (C) protein-based outcomes. Three core labs will assess outcomes in a blinded fashion (CMR imaging, histopathology and proteomics) and 2 methodological core labs will conduct the randomization and statistical analysis.
Collapse
Affiliation(s)
- Xavier Rossello
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Antonio Rodriguez-Sinovas
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Laboratorio de Investigación en Enfermedades Cardiovasculares, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Gemma Vilahur
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Programa ICCC-Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Verónica Crisóstomo
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Centro de Cirugía de Mínima Invasión Jesús Usón, Cáceres, Spain
| | - Inmaculada Jorge
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Carlos Zaragoza
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Servicio de Cardiologia, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS, Madrid, Spain
- Universidad Francisco de Vitoria, Madrid, Spain
| | - José L Zamorano
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Servicio de Cardiologia, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS, Madrid, Spain
| | - Javier Bermejo
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón and Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Antonio Ordoñez
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Instituto de Biomedicina de Sevilla, Sevilla, Spain
| | - Lisardo Boscá
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain
| | - Jesús Vázquez
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Lina Badimón
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Programa ICCC-Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Francisco M Sánchez-Margallo
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Centro de Cirugía de Mínima Invasión Jesús Usón, Cáceres, Spain
| | - Francisco Fernández-Avilés
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón and Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - David Garcia-Dorado
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Laboratorio de Investigación en Enfermedades Cardiovasculares, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Borja Ibanez
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
- Cardiology Department, IIS-Fundación Jiménez Díaz Hospital, Madrid, Spain.
| |
Collapse
|
68
|
Traverse JH, Swingen CM, Henry TD, Fox J, Wang YL, Chavez IJ, Lips DL, Lesser JR, Pedersen WR, Burke NM, Pai A, Lindberg JL, Garberich RF. NHLBI-Sponsored Randomized Trial of Postconditioning During Primary Percutaneous Coronary Intervention for ST-Elevation Myocardial Infarction. Circ Res 2019; 124:769-778. [PMID: 30602360 DOI: 10.1161/circresaha.118.314060] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
RATIONALE Postconditioning at the time of primary percutaneous coronary intervention (PCI) for ST-segment-elevation myocardial infarction may reduce infarct size and improve myocardial salvage. However, clinical trials have shown inconsistent benefit. OBJECTIVE We performed the first National Heart, Lung, and Blood Institute-sponsored trial of postconditioning in the United States using strict enrollment criteria to optimize the early benefits of postconditioning and assess its long-term effects on left ventricular (LV) function. METHODS AND RESULTS We randomized 122 ST-segment-elevation myocardial infarction patients to postconditioning (4, 30 seconds PTCA [percutaneous transluminal coronary angioplasty] inflations/deflations)+PCI (n=65) versus routine PCI (n=57). All subjects had an occluded major epicardial artery (thrombolysis in myocardial infarction=0) with ischemic times between 1 and 6 hours with no evidence of preinfarction angina or collateral blood flow. Cardiac magnetic resonance imaging measured at 2 days post-PCI showed no difference between the postconditioning group and control in regards to infarct size (22.5±14.5 versus 24.0±18.5 g), myocardial salvage index (30.3±15.6% versus 31.5±23.6%), or mean LV ejection fraction. Magnetic resonance imaging at 12 months showed a significant recovery of LV ejection fraction in both groups (61.0±11.4% and 61.4±9.1%; P<0.01). Subjects randomized to postconditioning experienced more favorable remodeling over 1 year (LV end-diastolic volume =157±34 to 150±38 mL) compared with the control group (157±40 to 165±45 mL; P<0.03) and reduced microvascular obstruction ( P=0.05) on baseline magnetic resonance imaging and significantly less adverse LV remodeling compared with control subjects with microvascular obstruction ( P<0.05). No significant adverse events were associated with the postconditioning protocol and all patients but one (hemorrhagic stroke) survived through 1 year of follow-up. CONCLUSIONS We found no early benefit of postconditioning on infarct size, myocardial salvage index, and LV function compared with routine PCI. However, postconditioning was associated with improved LV remodeling at 1 year of follow-up, especially in subjects with microvascular obstruction. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov . Unique identifier: NCT01324453.
Collapse
Affiliation(s)
- Jay H Traverse
- From the Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, MN (J.H.T., T.D.H., J.F., Y.L.W., I.J.C., D.L.L., J.R.L., W.R.P., N.M.B., A.P., J.L.L., R.F.G.).,Cardiovascular Division, The University of Minnesota School of Medicine, Minneapolis (J.H.T., C.M.S.)
| | - Cory M Swingen
- Cardiovascular Division, The University of Minnesota School of Medicine, Minneapolis (J.H.T., C.M.S.)
| | - Timothy D Henry
- From the Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, MN (J.H.T., T.D.H., J.F., Y.L.W., I.J.C., D.L.L., J.R.L., W.R.P., N.M.B., A.P., J.L.L., R.F.G.)
| | - Jane Fox
- From the Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, MN (J.H.T., T.D.H., J.F., Y.L.W., I.J.C., D.L.L., J.R.L., W.R.P., N.M.B., A.P., J.L.L., R.F.G.)
| | - Yale L Wang
- From the Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, MN (J.H.T., T.D.H., J.F., Y.L.W., I.J.C., D.L.L., J.R.L., W.R.P., N.M.B., A.P., J.L.L., R.F.G.)
| | - Ivan J Chavez
- From the Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, MN (J.H.T., T.D.H., J.F., Y.L.W., I.J.C., D.L.L., J.R.L., W.R.P., N.M.B., A.P., J.L.L., R.F.G.)
| | - Daniel L Lips
- From the Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, MN (J.H.T., T.D.H., J.F., Y.L.W., I.J.C., D.L.L., J.R.L., W.R.P., N.M.B., A.P., J.L.L., R.F.G.)
| | - John R Lesser
- From the Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, MN (J.H.T., T.D.H., J.F., Y.L.W., I.J.C., D.L.L., J.R.L., W.R.P., N.M.B., A.P., J.L.L., R.F.G.)
| | - Wesley R Pedersen
- From the Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, MN (J.H.T., T.D.H., J.F., Y.L.W., I.J.C., D.L.L., J.R.L., W.R.P., N.M.B., A.P., J.L.L., R.F.G.)
| | - Nicholas M Burke
- From the Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, MN (J.H.T., T.D.H., J.F., Y.L.W., I.J.C., D.L.L., J.R.L., W.R.P., N.M.B., A.P., J.L.L., R.F.G.)
| | - Akila Pai
- From the Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, MN (J.H.T., T.D.H., J.F., Y.L.W., I.J.C., D.L.L., J.R.L., W.R.P., N.M.B., A.P., J.L.L., R.F.G.)
| | - Jana L Lindberg
- From the Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, MN (J.H.T., T.D.H., J.F., Y.L.W., I.J.C., D.L.L., J.R.L., W.R.P., N.M.B., A.P., J.L.L., R.F.G.)
| | - Ross F Garberich
- From the Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, MN (J.H.T., T.D.H., J.F., Y.L.W., I.J.C., D.L.L., J.R.L., W.R.P., N.M.B., A.P., J.L.L., R.F.G.)
| |
Collapse
|
69
|
Billah M, Ridiandries A, Rayner BS, Allahwala UK, Dona A, Khachigian LM, Bhindi R. Egr-1 functions as a master switch regulator of remote ischemic preconditioning-induced cardioprotection. Basic Res Cardiol 2019; 115:3. [PMID: 31823016 DOI: 10.1007/s00395-019-0763-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 11/27/2019] [Indexed: 12/15/2022]
Abstract
Despite improved treatment options myocardial infarction (MI) is still a leading cause of mortality and morbidity worldwide. Remote ischemic preconditioning (RIPC) is a mechanistic process that reduces myocardial infarction size and protects against ischemia reperfusion (I/R) injury. The zinc finger transcription factor early growth response-1 (Egr-1) is integral to the biological response to I/R, as its upregulation mediates the increased expression of inflammatory and prothrombotic processes. We aimed to determine the association and/or role of Egr-1 expression with the molecular mechanisms controlling the cardioprotective effects of RIPC. This study used H9C2 cells in vitro and a rat model of cardiac ischemia reperfusion (I/R) injury. We silenced Egr-1 with DNAzyme (ED5) in vitro and in vivo, before three cycles of RIPC consisting of alternating 5 min hypoxia and normoxia in cells or hind-limb ligation and release in the rat, followed by hypoxic challenge in vitro and I/R injury in vivo. Post-procedure, ED5 administration led to a significant increase in infarct size compared to controls (65.90 ± 2.38% vs. 41.00 ± 2.83%, p < 0.0001) following administration prior to RIPC in vivo, concurrent with decreased plasma IL-6 levels (118.30 ± 4.30 pg/ml vs. 130.50 ± 1.29 pg/ml, p < 0.05), downregulation of the cardioprotective JAK-STAT pathway, and elevated myocardial endothelial dysfunction. In vitro, ED5 administration abrogated IL-6 mRNA expression in H9C2 cells subjected to RIPC (0.95 ± 0.20 vs. 6.08 ± 1.40-fold relative to the control group, p < 0.05), resulting in increase in apoptosis (4.76 ± 0.70% vs. 2.23 ± 0.34%, p < 0.05) and loss of mitochondrial membrane potential (0.57 ± 0.11% vs. 1.0 ± 0.14%-fold relative to control, p < 0.05) in recipient cells receiving preconditioned media from the DNAzyme treated donor cells. This study suggests that Egr-1 functions as a master regulator of remote preconditioning inducing a protective effect against myocardial I/R injury through IL-6-dependent JAK-STAT signaling.
Collapse
Affiliation(s)
- M Billah
- Department of Cardiology, Kolling Institute, Northern Sydney Local Health District, Level 12, Royal North Shore Hospital, Cnr Reserve Rd and Westbourne, St Leonards, NSW, 2065, Australia.
- Sydney Medical School Northern, University of Sydney, Sydney, NSW, 2006, Australia.
- School of Life Sciences, Independent University Bangladesh, Dhaka, Bangladesh.
| | - A Ridiandries
- Department of Cardiology, Kolling Institute, Northern Sydney Local Health District, Level 12, Royal North Shore Hospital, Cnr Reserve Rd and Westbourne, St Leonards, NSW, 2065, Australia
- Sydney Medical School Northern, University of Sydney, Sydney, NSW, 2006, Australia
| | - B S Rayner
- Inflammation Group, Heart Research Institute, University of Sydney, Sydney, NSW, Australia
| | - U K Allahwala
- Department of Cardiology, Kolling Institute, Northern Sydney Local Health District, Level 12, Royal North Shore Hospital, Cnr Reserve Rd and Westbourne, St Leonards, NSW, 2065, Australia
- Sydney Medical School Northern, University of Sydney, Sydney, NSW, 2006, Australia
| | - A Dona
- Department of Cardiology, Kolling Institute, Northern Sydney Local Health District, Level 12, Royal North Shore Hospital, Cnr Reserve Rd and Westbourne, St Leonards, NSW, 2065, Australia
- Sydney Medical School Northern, University of Sydney, Sydney, NSW, 2006, Australia
| | - L M Khachigian
- Vascular Biology and Translational Research, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - R Bhindi
- Department of Cardiology, Kolling Institute, Northern Sydney Local Health District, Level 12, Royal North Shore Hospital, Cnr Reserve Rd and Westbourne, St Leonards, NSW, 2065, Australia
- Sydney Medical School Northern, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
70
|
Corydon KK, Matchkov V, Fais R, Abramochkin D, Hedegaard ER, Comerma-Steffensen S, Simonsen U. Effect of ischemic preconditioning and a Kv7 channel blocker on cardiac ischemia-reperfusion injury in rats. Eur J Pharmacol 2019; 866:172820. [PMID: 31760069 DOI: 10.1016/j.ejphar.2019.172820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/30/2022]
Abstract
Recently, we found cardioprotective effects of ischemic preconditioning (IPC), and from a blocker of KCNQ voltage-gated K+ channels (KV7), XE991 (10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone), in isolated rat hearts. The purpose of the present study was to investigate the cardiovascular effects of IPC and XE991 and whether they are cardioprotective in intact rats. In conscious rats, we measured the effect of the KV7 channel blocker XE991 on heart rate and blood pressure by use of telemetry. In anesthetized rats, cardiac ischemia was induced by occluding the left coronary artery, and the animals received IPC (2 × 5 min of occlusion), XE991, or a combination. After a 2 h reperfusion period, the hearts were excised, and the area at risk and infarct size were determined. In both anesthetized and conscious rats, XE991 increased blood pressure, and the highest dose (7.5 mg/kg) of XE991 also increased heart rate, and 44% of conscious rats died. XE991 induced marked changes in the electrocardiogram (e.g., increased PR interval and prolonged QTC interval) without changing cardiac action potentials. The infarct size to area at risk ratio was reduced from 53 ± 2% (n = 8) in the vehicle compared to 36 ± 3% in the IPC group (P < 0.05, n = 9). XE991 (0.75 mg/kg) treatment alone or on top of IPC failed to reduce myocardial infarct size. Similar to the effect in isolated hearts, locally applied IPC was cardioprotective in intact animals exposed to ischemia-reperfusion. Systemic administration of XE991 failed to protect the heart against ischemia-reperfusion injury suggesting effects on the autonomic nervous system counteracting the cardioprotection in intact animals.
Collapse
Affiliation(s)
- Krestine Kjeldsen Corydon
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology and Physiology, Aarhus University, Wilhelm Meyers Allé 4, 8000, Aarhus C, Denmark
| | - Vladimir Matchkov
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology and Physiology, Aarhus University, Wilhelm Meyers Allé 4, 8000, Aarhus C, Denmark
| | - Rafael Fais
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology and Physiology, Aarhus University, Wilhelm Meyers Allé 4, 8000, Aarhus C, Denmark; Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Denis Abramochkin
- Department of Human and Animal Physiology, Biological Faculty, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia; Ural Federal University, Mira 19, Ekaterinburg, Russia; Department of Physiology, Russian National Research Medical University, Ostrovityanova 1, Moscow, Russia
| | - Elise Røge Hedegaard
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology and Physiology, Aarhus University, Wilhelm Meyers Allé 4, 8000, Aarhus C, Denmark
| | - Simon Comerma-Steffensen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology and Physiology, Aarhus University, Wilhelm Meyers Allé 4, 8000, Aarhus C, Denmark; Department of Biomedical Sciences/Animal Physiology, Veterinary Faculty, Central University of Venezuela, Maracay, Aragua, Venezuela
| | - Ulf Simonsen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology and Physiology, Aarhus University, Wilhelm Meyers Allé 4, 8000, Aarhus C, Denmark.
| |
Collapse
|
71
|
Lau JK, Roy P, Javadzadegan A, Moshfegh A, Fearon WF, Ng M, Lowe H, Brieger D, Kritharides L, Yong AS. Remote Ischemic Preconditioning Acutely Improves Coronary Microcirculatory Function. J Am Heart Assoc 2019; 7:e009058. [PMID: 30371329 PMCID: PMC6404904 DOI: 10.1161/jaha.118.009058] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Remote ischemic preconditioning (RIPC) attenuates myocardial damage during elective and primary percutaneous coronary intervention. Recent studies suggest that coronary microcirculatory function is an important determinant of clinical outcome. The aim of this study was to assess the effect of RIPC on markers of microcirculatory function. Methods and Results Patients referred for cardiac catheterization and fractional flow reserve measurement were randomized to RIPC or sham. Operators and patients were blinded to treatment allocation. Comprehensive physiological assessments were performed before and after RIPC/sham including the index of microcirculatory resistance and coronary flow reserve after intracoronary glyceryl trinitrate and during the infusion of intravenous adenosine. Thirty patients were included (87% male; mean age: 63.1±10.0 years). RIPC and sham groups were similar with respect to baseline characteristics. RIPC decreased the calculated index of microcirculatory resistance (median, before RIPC: 22.6 [interquartile range [IQR]: 17.9-25.6]; after RIPC: 17.5 [IQR: 14.5-21.3]; P=0.007) and increased coronary flow reserve (2.6±0.9 versus 3.8±1.7, P=0.001). These RIPC-mediated changes were associated with a reduction in hyperemic transit time (median: 0.33 [IQR: 0.26-0.40] versus 0.25 [IQR: 0.20-0.30]; P=0.010). RIPC resulted in a significant decrease in the calculated index of microcirculatory resistance compared with sham (relative change with treatment [mean±SD] was -18.1±24.8% versus +6.1±37.5; P=0.047) and a significant increase in coronary flow reserve (+41.2% [IQR: 20.0-61.7] versus -7.8% [IQR: -19.1 to 10.3]; P<0.001). Conclusions The index of microcirculatory resistance and coronary flow reserve are acutely improved by remote ischemic preconditioning. This raises the possibility that RIPC confers cardioprotection during percutaneous coronary intervention as a result of an improvement in coronary microcirculatory function. Clinical Trial Registration URL: www.anzctr.org.au/ . Unique identifier: CTRN12616000486426.
Collapse
Affiliation(s)
- Jerrett K Lau
- 1 Concord Repatriation General Hospital University of Sydney Australia.,2 ANZAC Research Institute University of Sydney Australia
| | - Probal Roy
- 1 Concord Repatriation General Hospital University of Sydney Australia
| | - Ashkan Javadzadegan
- 2 ANZAC Research Institute University of Sydney Australia.,4 Faculty of Medicine and Health Sciences Macquarie University Sydney Australia
| | - Abouzar Moshfegh
- 2 ANZAC Research Institute University of Sydney Australia.,4 Faculty of Medicine and Health Sciences Macquarie University Sydney Australia
| | - William F Fearon
- 5 Division of Cardiovascular Medicine Stanford University School of Medicine Stanford CA
| | - Martin Ng
- 3 Department of Cardiology Royal Prince Alfred Hospital University of Sydney Australia
| | - Harry Lowe
- 1 Concord Repatriation General Hospital University of Sydney Australia
| | - David Brieger
- 1 Concord Repatriation General Hospital University of Sydney Australia.,2 ANZAC Research Institute University of Sydney Australia
| | - Leonard Kritharides
- 1 Concord Repatriation General Hospital University of Sydney Australia.,2 ANZAC Research Institute University of Sydney Australia
| | - Andy S Yong
- 1 Concord Repatriation General Hospital University of Sydney Australia.,2 ANZAC Research Institute University of Sydney Australia.,4 Faculty of Medicine and Health Sciences Macquarie University Sydney Australia
| |
Collapse
|
72
|
Burda R, Morochovič R, Némethová M, Burda J. Remote ischemic postconditioning as well as blood plasma from double-conditioned donor ameliorate reperfusion syndrome in skeletal muscle. J Plast Surg Hand Surg 2019; 54:59-65. [PMID: 31702408 DOI: 10.1080/2000656x.2019.1688163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The aim of this study was to verify the possibility of preparation and effectiveness of the use of blood plasma containing an effector of ischemic tolerance activated by applying two sublethal stresses to a donor. As sublethal stresses, two periods of 20-minute hindlimb ischemia were used with a two-day interval between them. Active plasma was isolated six hours after the second hindlimb ischemia. The effectiveness of active plasma as well as remote postconditioning was tested after three hours of tourniquet-induced ischemia on the gastrocnemius muscle. The wet/dry ratio of gastrocnemius muscle (degree of tissue oedema), nitroblue tetrazolium reduction (tissue necrosis), and CatWalk test (hind limb functionality) were evaluated 24 h after the end of ischemia. Three hours of ischemia increased muscle oedema and necrosis in comparison to control by 26.72% (p < 0.001) and 41.58% (p < 0.001) respectively. Remote ischemic postconditioning as well as injection of conditioned blood plasma significantly prevented these changes, even when they were applied one or three hours after the end of ischemia. Equally effective double-conditioned plasma appears to have better prospects in life-threatening situations such as stroke and myocardial infarction.
Collapse
Affiliation(s)
- Rastislav Burda
- Department of Trauma Surgery, University Hospital of L. Pasteur, Košice, Slovakia
| | - Radoslav Morochovič
- Department of Trauma Surgery, University Hospital of L. Pasteur, Košice, Slovakia.,University of P.J. Šafarik, Košice, Slovakia
| | - Miroslava Némethová
- Institute of Neurobiology of Biomedical Research Center Slovak Academy of Sciences, Košice, Slovakia
| | - Jozef Burda
- Institute of Neurobiology of Biomedical Research Center Slovak Academy of Sciences, Košice, Slovakia
| |
Collapse
|
73
|
Wu Q, Wang T, Chen S, Zhou Q, Li H, Hu N, Feng Y, Dong N, Yao S, Xia Z. Cardiac protective effects of remote ischaemic preconditioning in children undergoing tetralogy of fallot repair surgery: a randomized controlled trial. Eur Heart J 2019; 39:1028-1037. [PMID: 28329231 PMCID: PMC6018784 DOI: 10.1093/eurheartj/ehx030] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 01/17/2017] [Indexed: 01/17/2023] Open
Abstract
Aims Remote ischaemic preconditioning (RIPC) by inducing brief ischaemia in distant tissues protects the heart against myocardial ischaemia-reperfusion injury (IRI) in children undergoing open-heart surgery, although its effectiveness in adults with comorbidities is controversial. The effectiveness and mechanism of RIPC with respect to myocardial IRI in children with tetralogy of Fallot (ToF), a severe cyanotic congenital cardiac disease, undergoing open heart surgery are unclear. We hypothesized that RIPC can confer cardioprotection in children undergoing ToF repair surgery. Methods and results Overall, 112 ToF children undergoing radical open cardiac surgery using cardiopulmonary bypass (CPB) were randomized to either a RIPC group (n = 55) or a control group (n = 57). The RIPC protocol consisted of three cycles of 5-min lower limb occlusion and 5-min reperfusion using a cuff-inflator. Serum inflammatory cytokines and cardiac injury markers were measured before surgery and after CPB. Right ventricle outflow tract (RVOT) tissues were collected during the surgery to assess hypoxia-inducible factor (Hif)-1α and other signalling proteins. Cardiac mitochondrial injury was assessed by electron microscopy. The primary results showed that the length of stay in the intensive care unit (ICU) was longer in the control group than in the RIPC group (52.30 ± 13.43 h vs. 47.55 ± 10.34 h, respectively, P = 0.039). Patients in the control group needed longer post-operative ventilation time compared to the RIPC group (35.02 ± 6.56 h vs. 31.96 ± 6.60 h, respectively, P = 0.016). The levels of post-operative serum troponin-T at 12 and 18 h, CK-MB at 24 h, as well as the serum h-FABP levels at 6 h, after CPB were significantly lower, which was coincident with significantly higher protein expression of cardiac Hif-1α, p-Akt, p-STAT3, p-STAT5, and p-eNOS and less vacuolization of mitochondria in the RIPC group compared to the control group. Conclusion In ToF children undergoing open heart surgery, RIPC attenuates myocardial IRI and improves the short-term prognosis.
Collapse
Affiliation(s)
- Qingping Wu
- Department of Anaesthesiology, Institute of Anaesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Tingting Wang
- Department of Anaesthesiology, Institute of Anaesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Shiqiang Chen
- Department of Anaesthesiology, Institute of Anaesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Quanjun Zhou
- Department of Anaesthesiology, Institute of Anaesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Haobo Li
- State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, 21 Sassoon Road, Hong Kong, China.,Department of Anaesthesiology, University of Hong Kong, 102 Pokfulam Road, Hong Kong SAR, China
| | - Na Hu
- Department of Anaesthesiology, Institute of Anaesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Yinglu Feng
- Department of Anaesthesiology, Institute of Anaesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Shanglong Yao
- Department of Anaesthesiology, Institute of Anaesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Zhengyuan Xia
- State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, 21 Sassoon Road, Hong Kong, China.,Department of Anaesthesiology, University of Hong Kong, 102 Pokfulam Road, Hong Kong SAR, China
| |
Collapse
|
74
|
Tong Q, Zhu PC, Zhuang Z, Deng LH, Wang ZH, Zeng H, Zheng GQ, Wang Y. Notoginsenoside R1 for Organs Ischemia/Reperfusion Injury: A Preclinical Systematic Review. Front Pharmacol 2019; 10:1204. [PMID: 31680976 PMCID: PMC6811647 DOI: 10.3389/fphar.2019.01204] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/17/2019] [Indexed: 12/20/2022] Open
Abstract
Notoginsenoside R1 (NGR1) exerts pharmacological actions for a variety of diseases such as myocardial infarction, ischemic stroke, acute renal injury, and intestinal injury. Here, we conducted a preclinical systematic review of NGR1 for ischemia reperfusion (I/R) injury. Eight databases were searched from their inception to February 23rd, 2019; Review Manager 5.3 was applied for data analysis. CAMARADES 10-item checklist and cell 10-item checklist were used to evaluate the methodological quality. Twenty-five studies with 304 animals and 124 cells were selected. Scores of the risk of bias in animal studies ranged from 3 to 8, and the cell studies ranged from 3 to 5. NGR1 had significant effects on decreasing myocardial infarct size in myocardial I/R injury, decreasing cerebral infarction volume and neurologic deficit score in cerebral I/R injury, decreasing serum creatinine in renal I/R injury, and decreasing Park/Chiu score in intestinal I/R injury compared with controls (all P < 0.05 or P < 0.01). The multiple organ protection of NGR1 after I/R injury is mainly through the mechanisms of antioxidant, anti-apoptosis, and anti-inflammatory, promoting angiogenesis and improving energy metabolism. The findings showed the organ protection effect of NGR1 after I/R injury, and NGR1 can potentially become a novel drug candidate for ischemic diseases. Further translation studies are needed.
Collapse
Affiliation(s)
- Qiang Tong
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peng-Chong Zhu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhuang Zhuang
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Li-Hui Deng
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zi-Hao Wang
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hua Zeng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guo-Qing Zheng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan Wang
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
75
|
Heusch G. Coronary microvascular obstruction: the new frontier in cardioprotection. Basic Res Cardiol 2019; 114:45. [DOI: 10.1007/s00395-019-0756-8] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 12/16/2022]
|
76
|
Skyschally A, Hagelschuer H, Kleinbongard P, Heusch G. Larger infarct size but equal protection by ischemic conditioning in septum and anterior free wall of pigs with LAD occlusion. Physiol Rep 2019; 7:e14236. [PMID: 31599118 PMCID: PMC6785659 DOI: 10.14814/phy2.14236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/23/2019] [Accepted: 08/27/2019] [Indexed: 12/14/2022] Open
Abstract
The ischemic area at risk (AAR) is one major determinant of infarct size (IS). In patients, the largest AAR is seen with a proximal occlusion of the left anterior descending (LAD) coronary artery, which serves parts of the septum and of the anterior free wall. It is not clear, whether regional differences in the perfusion territories also impact on IS and the magnitude of cardioprotection by ischemic conditioning. We have retrospectively analyzed 132 experiments in pigs, which have a similar LAD perfusion territory as humans. The LAD was occluded for 60 min with subsequent 180 min reperfusion. Cardioprotection by either local ischemic pre- or postconditioning or remote ischemic pre- or perconditioning was induced in 93 pigs. The AAR was demarcated by blue dye staining, and IS was assessed by triphenyltetrazolium chloride (TTC) staining. Using digital planimetry, the AAR was separated into sections unequivocally located in the septum (AARS ) or the anterior free wall (AARAFW ). Relative IS was calculated for AARS or AARAFW . AARAFW was larger than AARS (51 ± 9% vs. 34 ± 8% of total AAR; mean ± SD, P < 0.001). Regional myocardial blood flow (microspheres) was not different between septum and anterior free wall. IS without ischemic conditioning tended to be larger in AARS than in AARAFW (50 ± 17% vs. 44 ± 19%; % of AARAWF or AARS , respectively; P = 0.075). Also, with robust IS reduction by ischemic conditioning, the difference in relative IS remained (AARS : 27 ± 16%; AARAFW : 21 ± 16%; P = 0.01). There is a somewhat greater susceptibility for infarction in septal than anterior free wall myocardium. However, ischemic conditioning still reduces IS in both septal and anterior free wall myocardium.
Collapse
Affiliation(s)
- Andreas Skyschally
- Institute for PathophysiologyWest German Heart and Vascular CenterUniversity of Essen Medical SchoolEssenGermany
| | - Helene Hagelschuer
- Institute for PathophysiologyWest German Heart and Vascular CenterUniversity of Essen Medical SchoolEssenGermany
| | - Petra Kleinbongard
- Institute for PathophysiologyWest German Heart and Vascular CenterUniversity of Essen Medical SchoolEssenGermany
| | - Gerd Heusch
- Institute for PathophysiologyWest German Heart and Vascular CenterUniversity of Essen Medical SchoolEssenGermany
| |
Collapse
|
77
|
Lieder HR, Kleinbongard P, Skyschally A, Hagelschuer H, Chilian WM, Heusch G. Vago-Splenic Axis in Signal Transduction of Remote Ischemic Preconditioning in Pigs and Rats. Circ Res 2019; 123:1152-1163. [PMID: 30359199 DOI: 10.1161/circresaha.118.313859] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
RATIONALE The signal transduction of remote ischemic conditioning is still largely unknown. OBJECTIVE Characterization of neurohumoral signal transfer and vago-splenic axis in remote ischemic preconditioning (RIPC). METHODS AND RESULTS Anesthetized pigs were subjected to 60 minutes of coronary occlusion and 180 minutes of reperfusion (placebo+ischemia/reperfusion [PLA+I/R]). RIPC was induced by 4×5/5 minutes of hindlimb I/R 90 minutes before coronary occlusion (RIPC+I/R). Arterial blood samples were taken after placebo or RIPC before I/R. In subgroups of pigs, bilateral cervical vagotomy, splenectomy, or splenic denervation were performed before PLA+I/R or RIPC+I/R, respectively. In pigs with RIPC+I/R, infarct size (percentage of area at risk) was less than in those with PLA+I/R (23±12% versus 45±8%); splenectomy or splenic denervation abrogated (splenectomy+RIPC+I/R: 38±15%; splenic denervation+RIPC+I/R: 43±5%), and vagotomy attenuated (vagotomy+RIPC+I/R: 36±11%) RIPC protection. RIPC increased phosphorylation of STAT3 (signal transducer and activator of transcription 3) in left ventricular biopsies taken at early reperfusion. Splenectomy or splenic denervation, but not vagotomy, abolished this increased phosphorylation. In rats with vagotomy, splenectomy, or splenic denervation, RIPC (3×5/5 minutes of hindlimb occlusion/reperfusion) or placebo was performed, respectively. Hearts were isolated, saline perfused, and subjected to 30/120-minute global I/R. With RIPC, infarct size (percentage of ventricular mass) was less (20±7%) than with placebo (37±6%), and vagotomy, splenectomy, or splenic denervation abrogated RIPC protection (38±12%, 36±9%, and 36±7%), respectively. Rat spleens were isolated, saline perfused, and splenic effluate (SEff) was sampled after infusion with carbachol (SEffcarbachol) or saline (SEffsaline). Pig plasma or SEff was infused into isolated perfused rat hearts subjected to global I/R. Infarct size was less with infusion of RIPC+I/Rplasma+ (24±6%) than with PLA+I/Rplasma (40±8%), vagotomy+PLA+I/Rplasma (39±11%), splenectomy+PLA+I/Rplasma (35±8%), vagotomy+RIPC+I/Rplasma (40±9%), splenectomy+RIPC+I/Rplasma (33±9%), or splenic denervation+RIPC+I/Rplasma (39±8%), respectively. With infusion of SEffcarbachol, infarct size was less than with infusion of SEffsaline (24 [19-27]% versus 35 [32-38]%). CONCLUSIONS Activation of a vago-splenic axis is causally involved in RIPC cardioprotection.
Collapse
Affiliation(s)
- Helmut Raphael Lieder
- From the Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Germany (H.R.L., P.K., A.S., H.H., G.H.)
| | - Petra Kleinbongard
- From the Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Germany (H.R.L., P.K., A.S., H.H., G.H.)
| | - Andreas Skyschally
- From the Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Germany (H.R.L., P.K., A.S., H.H., G.H.)
| | - Helene Hagelschuer
- From the Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Germany (H.R.L., P.K., A.S., H.H., G.H.)
| | | | - Gerd Heusch
- From the Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Germany (H.R.L., P.K., A.S., H.H., G.H.)
| |
Collapse
|
78
|
Affiliation(s)
- Gerd Heusch
- From the Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School
| | - Andreas Skyschally
- From the Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School
| | - Petra Kleinbongard
- From the Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School
| |
Collapse
|
79
|
Elgebaly SA, Poston R, Todd R, Helmy T, Almaghraby AM, Elbayoumi T, Kreutzer DL. Cyclocreatine protects against ischemic injury and enhances cardiac recovery during early reperfusion. Expert Rev Cardiovasc Ther 2019; 17:683-697. [PMID: 31483166 DOI: 10.1080/14779072.2019.1662722] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Introduction: A critical mechanism of how hypoxia/ischemia causes irreversible myocardial injury is through the exhaustion of adenosine triphosphate (ATP). Cyclocreatine (CCr) and its water-soluble salt Cyclocreatine-Phosphate (CCrP) are potent bioenergetic agents that preserve high levels of ATP during ischemia. Areas covered: CCr and CCrP treatment prior to the onset of ischemia, preserved high levels of ATP in ischemic myocardium, reduced myocardial cell injury, exerted anti-inflammatory and anti-apoptotic activities, and restored contractile function during reperfusion in animal models of acute myocardial infarction (AMI), global cardiac arrest, cardiopulmonary bypass, and heart transplantation. Medline and Embase (1970 - Feb 2019), the WIPO databank (up to Feb 2019); no language restriction. Expert opinion: This review provides the basis for a number of clinical applications of CCrP and CCr to minimize ischemic injury and necrosis. One strategy is to administer CCrP to AMI patients in the pre-hospital phase, as well as during, or after Percutaneous Coronary Intervention (PCI) procedure to potentially achieve protection of the myocardium, reduce infarcted-size, and, thus, limit the progression to heart failure. Another clinical applications are in predictable myocardial ischemia where pretreatment with CCrP would likely improve outcome and quality of life of patients who will undergo cardiopulmonary bypass for coronary revascularization and end-stage heart failure patients scheduled for heart transplantation.
Collapse
Affiliation(s)
| | - Robert Poston
- Cardiothoracic Surgery, SUNY Downstate University , Brooklyn , NY , USA
| | - Robert Todd
- ProChem International, LLC , Sheboygan , WI , USA
| | - Tarek Helmy
- Cardiology, St. Louis University School of Medicine , Saint Louis , MO , USA
| | - Abdallah M Almaghraby
- Cardiology, University of Alexandria Faculty of Medicine, University of Alexandria , Alexandria , Egypt
| | - Tamer Elbayoumi
- College of Pharmacy, Glendale/Nanomedicine Center of Excellence in Translational Cancer Research, Midwestern University , Glendale , AZ , USA
| | - Donald L Kreutzer
- Surgery department, University of Connecticut Faculty of Medicine , Farmington , CT , USA
| |
Collapse
|
80
|
Esposito ML, Zhang Y, Qiao X, Reyelt L, Paruchuri V, Schnitzler GR, Morine KJ, Annamalai SK, Bogins C, Natov PS, Pedicini R, Breton C, Mullin A, Mackey EE, Patel A, Rowin E, Jaffe IZ, Karas RH, Kapur NK. Left Ventricular Unloading Before Reperfusion Promotes Functional Recovery After Acute Myocardial Infarction. J Am Coll Cardiol 2019; 72:501-514. [PMID: 30049311 DOI: 10.1016/j.jacc.2018.05.034] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/08/2018] [Accepted: 05/15/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND Heart failure after an acute myocardial infarction (AMI) is a major cause of morbidity and mortality worldwide. We recently reported that activation of a transvalvular axial-flow pump in the left ventricle and delaying myocardial reperfusion, known as primary unloading, limits infarct size after AMI. The mechanisms underlying the cardioprotective benefit of primary unloading and whether the acute decrease in infarct size results in a durable reduction in LV scar and improves cardiac function remain unknown. OBJECTIVES This study tested the importance of LV unloading before reperfusion, explored cardioprotective mechanisms, and determined the late-term impact of primary unloading on myocardial function. METHODS Adult male swine were subjected to primary reperfusion or primary unloading after 90 min of percutaneous left anterior descending artery occlusion. RESULTS Compared with primary reperfusion, 30 min of LV unloading was necessary and sufficient before reperfusion to limit infarct size 28 days after AMI. Compared with primary reperfusion, primary unloading increased expression of genes associated with cellular respiration and mitochondrial integrity within the infarct zone. Primary unloading for 30 min further reduced activity levels of proteases known to degrade the cardioprotective cytokine, stromal-derived factor (SDF)-1α, thereby increasing SDF-1α signaling via reperfusion injury salvage kinases, which limits apoptosis within the infarct zone. Inhibiting SDF-1α activity attenuated the cardioprotective effect of primary unloading. Twenty-eight days after AMI, primary unloading reduced LV scar size, improved cardiac function, and limited expression of biomarkers associated with heart failure and maladaptive remodeling. CONCLUSIONS The authors report for the first time that first mechanically reducing LV work before coronary reperfusion with a transvalvular pump is necessary and sufficient to reduce infarct size and to activate a cardioprotective program that includes enhanced SDF-1α activity. Primary unloading further improved LV scar size and cardiac function 28 days after AMI.
Collapse
Affiliation(s)
- Michele L Esposito
- Molecular Cardiology Research Institute, Surgical and Interventional Research Laboratories, and the CardioVascular Center, Tufts Medical Center, Boston, Massachusetts
| | - Yali Zhang
- Molecular Cardiology Research Institute, Surgical and Interventional Research Laboratories, and the CardioVascular Center, Tufts Medical Center, Boston, Massachusetts
| | - Xiaoying Qiao
- Molecular Cardiology Research Institute, Surgical and Interventional Research Laboratories, and the CardioVascular Center, Tufts Medical Center, Boston, Massachusetts
| | - Lara Reyelt
- Molecular Cardiology Research Institute, Surgical and Interventional Research Laboratories, and the CardioVascular Center, Tufts Medical Center, Boston, Massachusetts
| | - Vikram Paruchuri
- Molecular Cardiology Research Institute, Surgical and Interventional Research Laboratories, and the CardioVascular Center, Tufts Medical Center, Boston, Massachusetts
| | - Gavin R Schnitzler
- Molecular Cardiology Research Institute, Surgical and Interventional Research Laboratories, and the CardioVascular Center, Tufts Medical Center, Boston, Massachusetts
| | - Kevin J Morine
- Molecular Cardiology Research Institute, Surgical and Interventional Research Laboratories, and the CardioVascular Center, Tufts Medical Center, Boston, Massachusetts
| | - Shiva K Annamalai
- Molecular Cardiology Research Institute, Surgical and Interventional Research Laboratories, and the CardioVascular Center, Tufts Medical Center, Boston, Massachusetts
| | - Courtney Bogins
- Molecular Cardiology Research Institute, Surgical and Interventional Research Laboratories, and the CardioVascular Center, Tufts Medical Center, Boston, Massachusetts
| | - Peter S Natov
- Molecular Cardiology Research Institute, Surgical and Interventional Research Laboratories, and the CardioVascular Center, Tufts Medical Center, Boston, Massachusetts
| | - Robert Pedicini
- Molecular Cardiology Research Institute, Surgical and Interventional Research Laboratories, and the CardioVascular Center, Tufts Medical Center, Boston, Massachusetts
| | - Catalina Breton
- Molecular Cardiology Research Institute, Surgical and Interventional Research Laboratories, and the CardioVascular Center, Tufts Medical Center, Boston, Massachusetts
| | - Andrew Mullin
- Molecular Cardiology Research Institute, Surgical and Interventional Research Laboratories, and the CardioVascular Center, Tufts Medical Center, Boston, Massachusetts
| | - Emily E Mackey
- Molecular Cardiology Research Institute, Surgical and Interventional Research Laboratories, and the CardioVascular Center, Tufts Medical Center, Boston, Massachusetts
| | - Ayan Patel
- Molecular Cardiology Research Institute, Surgical and Interventional Research Laboratories, and the CardioVascular Center, Tufts Medical Center, Boston, Massachusetts
| | - Ethan Rowin
- Molecular Cardiology Research Institute, Surgical and Interventional Research Laboratories, and the CardioVascular Center, Tufts Medical Center, Boston, Massachusetts
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Surgical and Interventional Research Laboratories, and the CardioVascular Center, Tufts Medical Center, Boston, Massachusetts
| | - Richard H Karas
- Molecular Cardiology Research Institute, Surgical and Interventional Research Laboratories, and the CardioVascular Center, Tufts Medical Center, Boston, Massachusetts
| | - Navin K Kapur
- Molecular Cardiology Research Institute, Surgical and Interventional Research Laboratories, and the CardioVascular Center, Tufts Medical Center, Boston, Massachusetts.
| |
Collapse
|
81
|
Ng MW, Angerosa J, Konstantinov IE, Cheung MM, Pepe S. Remote ischaemic preconditioning modifies serum apolipoprotein D, met‐enkephalin, adenosine, and nitric oxide in healthy young adults. Clin Exp Pharmacol Physiol 2019; 46:995-1000. [DOI: 10.1111/1440-1681.13150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Michelle W. Ng
- Heart Research Murdoch Children's Research Institute Melbourne Australia
- Department of Paediatrics The University of Melbourne Melbourne Australia
| | - Julie Angerosa
- Heart Research Murdoch Children's Research Institute Melbourne Australia
| | - Igor E. Konstantinov
- Heart Research Murdoch Children's Research Institute Melbourne Australia
- Department of Paediatrics The University of Melbourne Melbourne Australia
| | - Michael M. Cheung
- Heart Research Murdoch Children's Research Institute Melbourne Australia
- Department of Paediatrics The University of Melbourne Melbourne Australia
| | - Salvatore Pepe
- Heart Research Murdoch Children's Research Institute Melbourne Australia
- Department of Paediatrics The University of Melbourne Melbourne Australia
| |
Collapse
|
82
|
Yu J, Chen K, Wu L, Liu X, Lu Y. Anesthetic propofol blunts remote preconditioning of trauma-induced cardioprotection via the TRPV1 receptor. Biomed Pharmacother 2019; 118:109308. [PMID: 31401396 DOI: 10.1016/j.biopha.2019.109308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/28/2019] [Accepted: 07/31/2019] [Indexed: 01/07/2023] Open
Abstract
Remote preconditioning of trauma (RPCT) by surgical incision is an effective cardioprotective strategy via the transient receptor potential vanilloid 1 (TRPV1) channel as a form of remote ischemic preconditioning (RIPC). However, cardioprotection by RIPC has been shown to be completely blocked by propofol. We thus hypothesized that propofol may interfere with RPCT induced cardioprotection, and that RPCT induces cardioprotection via the cardiac TRPV1 channel. Male Sprague-Dawley rats were subjected to 30 min of myocardial ischemia followed by 2 h of reperfusion. RPCT was achieved by a transverse abdominal incision. Additionally, propofol or the TRPV1 receptor inhibitor capsazepine (CPZ) was given before RPCT. Infarct size was assessed by triphenyltetrazolium staining. Heart TRPV1 expression was detected by Western blot and immunofluorescence. RPCT significantly reduced infarct size compared to control treatment (45.6 ± 4% versus 65.4 ± 2%, P < 0.01). This protective effect of RPCT was completely abolished by propofol and CPZ. TRPV1 channels are present in the heart. Therefore, cardioprotection by RPCT is also abolished by propofol, and cardiac TRPV1 mediates this cardioprotection.
Collapse
Affiliation(s)
- Junma Yu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, 230027, PR China; Department of Anesthesiology, The Third Affiliated Hospital of Anhui Medical University, Hefei, 230061, PR China
| | - Ke Chen
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China
| | - Lining Wu
- Department of Anesthesiology, The Third Affiliated Hospital of Anhui Medical University, Hefei, 230061, PR China
| | - Xuesheng Liu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China
| | - Yao Lu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China.
| |
Collapse
|
83
|
Kleinbongard P, Peters J, Jakob H, Heusch G, Thielmann M. Persistent Survival Benefit From Remote Ischemic Pre-Conditioning in Patients Undergoing Coronary Artery Bypass Surgery. J Am Coll Cardiol 2019; 71:252-254. [PMID: 29325645 DOI: 10.1016/j.jacc.2017.10.083] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/19/2017] [Accepted: 10/29/2017] [Indexed: 10/18/2022]
|
84
|
Niccoli G, Montone RA, Ibanez B, Thiele H, Crea F, Heusch G, Bulluck H, Hausenloy DJ, Berry C, Stiermaier T, Camici PG, Eitel I. Optimized Treatment of ST-Elevation Myocardial Infarction. Circ Res 2019; 125:245-258. [PMID: 31268854 DOI: 10.1161/circresaha.119.315344] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Primary percutaneous coronary intervention is nowadays the preferred reperfusion strategy for patients with acute ST-segment-elevation myocardial infarction, aiming at restoring epicardial infarct-related artery patency and achieving microvascular reperfusion as early as possible, thus limiting the extent of irreversibly injured myocardium. Yet, in a sizeable proportion of patients, primary percutaneous coronary intervention does not achieve effective myocardial reperfusion due to the occurrence of coronary microvascular obstruction (MVO). The amount of infarcted myocardium, the so-called infarct size, has long been known to be an independent predictor for major adverse cardiovascular events and adverse left ventricular remodeling after myocardial infarction. Previous cardioprotection studies were mainly aimed at protecting cardiomyocytes and reducing infarct size. However, several clinical and preclinical studies have reported that the presence and extent of MVO represent another important independent predictor of adverse left ventricular remodeling, and recent evidences support the notion that MVO may be more predictive of major adverse cardiovascular events than infarct size itself. Although timely and complete reperfusion is the most effective way of limiting myocardial injury and subsequent ventricular remodeling, the translation of effective therapeutic strategies into improved clinical outcomes has been largely disappointing. Of importance, despite the presence of a large number of studies focused on infarct size, only few cardioprotection studies addressed MVO as a therapeutic target. In this review, we provide a detailed summary of MVO including underlying causes, diagnostic techniques, and current therapeutic approaches. Furthermore, we discuss the hypothesis that simultaneously addressing infarct size and MVO may help to translate cardioprotective strategies into improved clinical outcome following ST-segment-elevation myocardial infarction.
Collapse
Affiliation(s)
- Giampaolo Niccoli
- From the Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy (G.N., R.A.M., F.C.).,Institute of Cardiology, Catholic University of the Sacred Heart, Rome, Italy (G.N., F.C.)
| | - Rocco A Montone
- From the Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy (G.N., R.A.M., F.C.)
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (B.I.).,Cardiology Department, IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain(B.I.).,CIBER de enfermedades CardioVasculares (CIBERCV), Madrid, Spain (B.I.)
| | - Holger Thiele
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at University of Leipzig and Leipzig Heart Institute, Germany (H.T.)
| | - Filippo Crea
- From the Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy (G.N., R.A.M., F.C.).,Institute of Cardiology, Catholic University of the Sacred Heart, Rome, Italy (G.N., F.C.)
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Germany (G.H.)
| | - Heerajnarain Bulluck
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, United Kingdom (H.B., D.J.H.)
| | - Derek J Hausenloy
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, United Kingdom (H.B., D.J.H.).,Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School (D.J.H.).,National Heart Research Institute Singapore, National Heart Centre (D.J.H.).,Yong Loo Lin School of Medicine, National University Singapore (D.J.H.).,The Hatter Cardiovascular Institute, University College London, United Kingdom (D.J.H.).,The National Institute of Health Research University College London Hospitals Biomedical Research Centre, Research and Development, United Kingdom (D.J.H.).,Department of Cardiology, Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Nuevo Leon, Mexico (D.J.H.)
| | - Colin Berry
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, United Kingdom (C.B.).,British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (C.B.)
| | - Thomas Stiermaier
- University Heart Center Lübeck, Medical Clinic II (Cardiology/Angiology/Intensive Care Medicine) and German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany (T.S., I.E.)
| | - Paolo G Camici
- Vita-Salute University and San Raffaele Hospital, Milan, Italy (P.G.C.)
| | - Ingo Eitel
- University Heart Center Lübeck, Medical Clinic II (Cardiology/Angiology/Intensive Care Medicine) and German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany (T.S., I.E.)
| |
Collapse
|
85
|
Wang Z, Wen J, Zhou C, Wang Z, Wei M. Gene expression profiling analysis to investigate the role of remote ischemic postconditioning in ischemia-reperfusion injury in rats. BMC Genomics 2019; 20:361. [PMID: 31072368 PMCID: PMC6509872 DOI: 10.1186/s12864-019-5743-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/29/2019] [Indexed: 12/23/2022] Open
Abstract
Background Blood flow restoration is a definitive therapy for salvaging the myocardium following ischemic injury. Nevertheless, the sudden restoration of blood flow to the ischemic myocardium can induce ischemia-reperfusion injury (IRI). Results Herein, we investigated the cardioprotective effect of remote ischemic postconditioning (RPostC) through our in vivo rat model of myocardial IRI. The study included three groups: the control group, the IRI group, and the IRI + RPostC group. Ischemia-reperfusion treatment led to an increase in the myocardial infarction area, which was inhibited by RPostC. In contrast to that in the control group, the myocardial apoptosis level was enhanced in the IRI group, whereas RPostC treatment decreased IRI-induced cellular apoptosis. Affymetrix Rat Gene 2.0 ST chip data identified a total of 265 upregulated genes and 267 downregulated genes between the IRI and IRI + RPostC groups. A group of differentially expressed noncoding RNAs (ncRNAs), such as MTA_TC0600002772.mm, MTA_TC1300002394.mm, U7 small nuclear RNA (Rnu7) and RGD7543256_1, were identified. Gene Ontology (GO) enrichment analysis indicated that the positive regulation of some molecular functions, such as GTPase activity, GTP binding, cyclic-nucleotide phosphodiesterase activity and cytokine activity, may contribute to the cardioprotective role of RPostC. Moreover, pathway enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) suggested the potential implication of the TNF signaling pathway and Toll-like receptor signaling pathway. Global signal transduction network analysis, co-expression network analysis and quantitative real-time polymerase chain reaction analysis further identified several core genes, including Pdgfra, Stat1, Lifr and Stfa3. Conclusion Remote ischemic postconditioning treatment can decrease IRI-mediated myocardial apoptosis by regulating multiple processes and pathways, such as GTPase activity, cytokine activity, and the TNF and Toll-like receptor signaling pathways. The potential role of the above ncRNAs and core genes in IRI-induced cardiac damage merits further study as well. Electronic supplementary material The online version of this article (10.1186/s12864-019-5743-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zanxin Wang
- Department of Cardiac Surgery, Fuwai Hospital Chinese Academy of Medical Sciences Shenzhen, 12 Langshan Road, Nanshan District, Shenzhen, 518057, Guangdong Province, People's Republic of China. .,Department of Cardiac Surgery, Shenzhen Sun Yat-sen Cardiovascular Hospital, Shenzhen, People's Republic of China. .,Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.
| | - Junmin Wen
- Department of Intensive Care, Fuwai Hospital Chinese Academy of Medical Sciences Shenzhen, Shenzhen, Guangdong, People's Republic of China.,Department of Intensive Care, Shenzhen Sun Yat-sen Cardiovascular Hospital, Shenzhen, People's Republic of China
| | - Chuzhi Zhou
- Department of Intensive Care, Fuwai Hospital Chinese Academy of Medical Sciences Shenzhen, Shenzhen, Guangdong, People's Republic of China.,Department of Intensive Care, Shenzhen Sun Yat-sen Cardiovascular Hospital, Shenzhen, People's Republic of China
| | - Zhiwei Wang
- Department of Cardiac Surgery, Fuwai Hospital Chinese Academy of Medical Sciences Shenzhen, 12 Langshan Road, Nanshan District, Shenzhen, 518057, Guangdong Province, People's Republic of China.,Department of Cardiac Surgery, Shenzhen Sun Yat-sen Cardiovascular Hospital, Shenzhen, People's Republic of China
| | - Minxin Wei
- Department of Cardiac Surgery, Fuwai Hospital Chinese Academy of Medical Sciences Shenzhen, 12 Langshan Road, Nanshan District, Shenzhen, 518057, Guangdong Province, People's Republic of China. .,Department of Cardiac Surgery, Shenzhen Sun Yat-sen Cardiovascular Hospital, Shenzhen, People's Republic of China. .,Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.
| |
Collapse
|
86
|
Tsibulnikov SY, Maslov LN, Gorbunov AS, Voronkov NS, Boshchenko AA, Popov SV, Prokudina ES, Singh N, Downey JM. A Review of Humoral Factors in Remote Preconditioning of the Heart. J Cardiovasc Pharmacol Ther 2019; 24:403-421. [PMID: 31035796 DOI: 10.1177/1074248419841632] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A humoral mechanism of cardioprotection by remote ischemic preconditioning (RIP) has been clearly demonstrated in various models of ischemia-reperfusion including upper and lower extremities, liver, and the mesenteric and renal arteries. A wide range of humoral factors for RIP have been proposed including hydrophobic peptides, opioid peptides, adenosine, prostanoids, endovanilloids, endocannabinoids, calcitonin gene-related peptide, leukotrienes, noradrenaline, adrenomedullin, erythropoietin, apolipoprotein, A-I glucagon-like peptide-1, interleukin 10, stromal cell-derived factor 1, and microRNAs. Virtually, all of the components of ischemic preconditioning's signaling pathway such as nitric oxide synthase, protein kinase C, redox signaling, PI3-kinase/Akt, glycogen synthase kinase β, ERK1/2, mitoKATP channels, Connexin 43, and STAT were all found to play a role. The signaling pattern also depends on which remote vascular bed was subjected to ischemia and on the time between applying the rip and myocardial ischemia occurs. Because there is convincing evidence for many seemingly diverse humoral components in RIP, the most likely explanation is that the overall mechanism is complex like that seen in ischemic preconditioning where multiple components are both in series and in parallel and interact with each other. Inhibition of any single component in the right circumstance may block the resulting protective effect, and selectively activating that component may trigger the protection. Identifying the humoral factors responsible for RIP might be useful in developing drugs that confer RIP's protection in a more comfortable and reliable manner.
Collapse
Affiliation(s)
- Sergey Y Tsibulnikov
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Leonid N Maslov
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Alexander S Gorbunov
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Nikita S Voronkov
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Alla A Boshchenko
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Sergey V Popov
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Ekaterina S Prokudina
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Nirmal Singh
- 2 Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - James M Downey
- 3 Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| |
Collapse
|
87
|
Dexmedetomidine preconditioning attenuates ischemia/reperfusion injury in isolated rat hearts with endothelial dysfunction. Biomed Pharmacother 2019; 114:108837. [PMID: 30965239 DOI: 10.1016/j.biopha.2019.108837] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/30/2019] [Accepted: 03/31/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND AND PURPOSES Dexmedetomidine preconditioning (DP) can mimic pharmacological preconditioning and induce cardiac protection. There are controversies on the roles of coronary endothelia in cardioprotection of dexmedetomidine. Herein, we tested the hypothesis that protection of dexmedetomidine is not endothelial dependent in heart against myocardial ischemia/reperfusion (I/R) injury. METHODS Langendorff-perfused rat hearts were pretreated by 60 mM of potassium to produce endothelial dysfunction (ED), then medicated with dexmedetomidine, and subsequently subjected to 30 min of global ischemia followed by 60 min of reperfusion. To investigate the cardioprotective effect of dexmedetomidine in heart with ED, isolated rat hearts were randomly divided into the following six groups: sham, I/R, DP, ED, ED + I/R, and ED + DP + I/R. Heart rates, left ventricular function, and coronary perfusion pressure were assessed for each heart. Infarct size was evaluated by triphenyltetrazolium chloride staining. High-sensitivity cardiac troponin T (hs-cTNT) of coronary flow perfusion was determined. RESULTS After the isolated hearts with pretreatment of 60 mM of potassium chloride, diastolic function of coronary endothelia in performance of response to histamine was significantly decreased (P < 0.05). DP attenuated I/R-induced infarct size of the left ventricle (P < 0.05) and decreased hs-cTNT (P < 0.05). Additionally, left ventricular developed pressure, +dp/dtmax, and -dp/dtmax were elevated in rat hearts pretreated with dexmedetomidine. Furthermore, dexmedetomidine-mediated cardiac protection against I/R injury was still remained in isolated hearts with coronary ED. CONCLUSION Continuous perfusion of 60 mM of potassium for 10 min can produce coronary ED in isolated rat hearts. Dexmedetomidine maintains its protective function against I/R injury in heart with coronary ED. Myocardial protection of dexmedetomidine is non-endothelial function dependent in alleviating I/R injury.
Collapse
|
88
|
Kapur NK, Reyelt L, Swain L, Esposito M, Qiao X, Annamalai S, Meyns B, Smalling R. Mechanical Left Ventricular Unloading to Reduce Infarct Size During Acute Myocardial Infarction: Insight from Preclinical and Clinical Studies. J Cardiovasc Transl Res 2019; 12:87-94. [PMID: 31016553 PMCID: PMC7608694 DOI: 10.1007/s12265-019-09876-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 01/22/2019] [Indexed: 12/12/2022]
Abstract
Acute myocardial infarction (AMI) remains a leading cause of morbidity and mortality. Pioneering preclinical work reported by Peter Maroko and Eugene Braunwald in 1971 identified oxygen supply and demand are primary determinants of myocardial infarct size in the setting of a heart attack. Since the 1950s, advances in mechanical engineering led to the development of short-term circulatory support devices that range from pulsatile to continuous flow pumps. The primary objective of these pumps is to reduce native heart work, enhance coronary blood flow, and sustain systemic perfusion. Whether these pumps could reduce myocardial infarct size in the setting of AMI became an intense focus for preclinical investigation with variable animal models, experimental algorithms, and pump platforms being tested. In this review, we discuss the design of these preclinical studies and the evolution of mechanical support platforms and attempt to translate these experimental methods into clinical trials.
Collapse
Affiliation(s)
- Navin K Kapur
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, Box # 80, Boston, MA, 02111, USA.
- Surgical and Interventional Research Laboratories, Tufts Medical Center, 800 Washington Street, Box # 80, Boston, MA, 02111, USA.
- The CardioVascular Center, Tufts Medical Center, 800 Washington Street, Box # 80, Boston, MA, 02111, USA.
- Division of Cardiology, The University of Texas-Houston Medical School, Houston, TX, USA.
| | - Lara Reyelt
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, Box # 80, Boston, MA, 02111, USA
- Surgical and Interventional Research Laboratories, Tufts Medical Center, 800 Washington Street, Box # 80, Boston, MA, 02111, USA
- The CardioVascular Center, Tufts Medical Center, 800 Washington Street, Box # 80, Boston, MA, 02111, USA
| | - Lija Swain
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, Box # 80, Boston, MA, 02111, USA
- Surgical and Interventional Research Laboratories, Tufts Medical Center, 800 Washington Street, Box # 80, Boston, MA, 02111, USA
- The CardioVascular Center, Tufts Medical Center, 800 Washington Street, Box # 80, Boston, MA, 02111, USA
| | - Michele Esposito
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, Box # 80, Boston, MA, 02111, USA
- Surgical and Interventional Research Laboratories, Tufts Medical Center, 800 Washington Street, Box # 80, Boston, MA, 02111, USA
- The CardioVascular Center, Tufts Medical Center, 800 Washington Street, Box # 80, Boston, MA, 02111, USA
| | - Xiaoying Qiao
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, Box # 80, Boston, MA, 02111, USA
- Surgical and Interventional Research Laboratories, Tufts Medical Center, 800 Washington Street, Box # 80, Boston, MA, 02111, USA
- The CardioVascular Center, Tufts Medical Center, 800 Washington Street, Box # 80, Boston, MA, 02111, USA
| | - Shiva Annamalai
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, Box # 80, Boston, MA, 02111, USA
- Surgical and Interventional Research Laboratories, Tufts Medical Center, 800 Washington Street, Box # 80, Boston, MA, 02111, USA
- The CardioVascular Center, Tufts Medical Center, 800 Washington Street, Box # 80, Boston, MA, 02111, USA
| | - Bart Meyns
- Department of Cardiac Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Richard Smalling
- Division of Cardiology, The University of Texas-Houston Medical School, Houston, TX, USA
| |
Collapse
|
89
|
Affiliation(s)
- Gerd Heusch
- From the Institute for Pathophysiology (G.H., P.K.), West German Heart and Vascular Center, University of Essen Medical School, Germany
| | - Petra Kleinbongard
- From the Institute for Pathophysiology (G.H., P.K.), West German Heart and Vascular Center, University of Essen Medical School, Germany
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine (T.R.), West German Heart and Vascular Center, University of Essen Medical School, Germany
| |
Collapse
|
90
|
Maslov LN, Tsibulnikov SY, Prokudina ES, Popov SV, Boshchenko AA, Singh N, Zhang Y, Oeltgen PR. Trigger, Signaling Mechanism and End Effector of Cardioprotective Effect of Remote Postconditioning of Heart. Curr Cardiol Rev 2019; 15:177-187. [PMID: 30813880 PMCID: PMC6719390 DOI: 10.2174/1573403x15666190226095820] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 11/22/2022] Open
Abstract
The hypothetical trigger of remote postconditioning (RPost) of the heart is the high-molecular weight hydrophobic peptide(s). Nitric oxide and adenosine serve as intermediaries between the peptide and intracellular structures. The role of the autonomic nervous system in RPost requires further study. In signaling mechanism RPost, kinases are involved: protein kinase C, PI3, Akt, JAK. The hypothetical end effector of RPost is aldehyde dehydrogenase-2, the transcription factors STAT, Nrf2, and also the BKCa channel.
Collapse
Affiliation(s)
- Leonid N Maslov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russian Federation
| | - Sergey Y Tsibulnikov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russian Federation
| | - Ekaterina S Prokudina
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russian Federation
| | - Sergey V Popov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russian Federation
| | - Alla A Boshchenko
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russian Federation
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Yi Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Peter R Oeltgen
- Department of Pathology, University of Kentucky College of Medicine, Lexington, KY, United States
| |
Collapse
|
91
|
Heusch G. Vagal Cardioprotection in Reperfused Acute Myocardial Infarction. JACC Cardiovasc Interv 2019; 10:1521-1522. [PMID: 28797428 DOI: 10.1016/j.jcin.2017.05.063] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/09/2017] [Indexed: 10/19/2022]
Affiliation(s)
- Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany.
| |
Collapse
|
92
|
Sprick JD, Mallet RT, Przyklenk K, Rickards CA. Ischaemic and hypoxic conditioning: potential for protection of vital organs. Exp Physiol 2019; 104:278-294. [PMID: 30597638 DOI: 10.1113/ep087122] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 12/20/2018] [Indexed: 12/13/2022]
Abstract
NEW FINDINGS What is the topic of this review? Remote ischaemic preconditioning (RIPC) and hypoxic preconditioning as novel therapeutic approaches for cardiac and neuroprotection. What advances does it highlight? There is improved understanding of mechanisms and signalling pathways associated with ischaemic and hypoxic preconditioning, and potential pitfalls with application of these therapies to clinical trials have been identified. Novel adaptations of preconditioning paradigms have also been developed, including intermittent hypoxia training, RIPC training and RIPC-exercise, extending their utility to chronic settings. ABSTRACT Myocardial infarction and stroke remain leading causes of death worldwide, despite extensive resources directed towards developing effective treatments. In this Symposium Report we highlight the potential applications of intermittent ischaemic and hypoxic conditioning protocols to combat the deleterious consequences of heart and brain ischaemia. Insights into mechanisms underlying the protective effects of intermittent hypoxia training are discussed, including the activation of hypoxia-inducible factor-1 and Nrf2 transcription factors, synthesis of antioxidant and ATP-generating enzymes, and a shift in microglia from pro- to anti-inflammatory phenotypes. Although there is little argument regarding the efficacy of remote ischaemic preconditioning (RIPC) in pre-clinical models, this strategy has not consistently translated into the clinical arena. This lack of translation may be related to the patient populations targeted thus far, and the anaesthetic regimen used in two of the major RIPC clinical trials. Additionally, we do not fully understand the mechanism through which RIPC protects the vital organs, and co-morbidities (e.g. hypercholesterolemia, diabetes) may interfere with its efficacy. Finally, novel adaptations have been made to extend RIPC to more chronic settings. One adaptation is RIPC-exercise (RIPC-X), an innovative paradigm that applies cyclical RIPC to blood flow restriction exercise (BFRE). Recent findings suggest that this novel exercise modality attenuates the exaggerated haemodynamic responses that may limit the use of conventional BFRE in some clinical settings. Collectively, intermittent ischaemic and hypoxic conditioning paradigms remain an exciting frontier for the protection against ischaemic injuries.
Collapse
Affiliation(s)
- Justin D Sprick
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30307, USA.,Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Robert T Mallet
- Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Karin Przyklenk
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Caroline A Rickards
- Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| |
Collapse
|
93
|
Is there an effect of ischemic conditioning on myocardial contractile function following acute myocardial ischemia/reperfusion injury? Biochim Biophys Acta Mol Basis Dis 2019; 1865:822-830. [PMID: 30660684 DOI: 10.1016/j.bbadis.2018.12.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 10/27/2022]
Abstract
Ischemic conditioning induces cardioprotection; the final infarct size following a myocardial ischemic event is reduced. However, whether ischemic conditioning has long-term beneficial effects on myocardial contractile function following such an ischemic event needs further elucidation. To date, ex vivo studies have shown that ischemic conditioning improves the contractile recovery of isolated ventricular papillary muscle or atrial trabeculae following simulated ischemia. However, in vivo animal studies and studies in patients undergoing elective cardiac surgery show conflicting results. At the subcellular level, it is known that ischemic conditioning improved energy metabolism, preserved mitochondrial respiration, ATP production, and Ca2+ homeostasis in isolated mitochondria from the myocardium. Ischemic conditioning also presents with post-translational modifications of proteins in the contractile machinery of the myocardium. The beneficial effects on myocardial contractile function need further elucidation. This article is part of a Special Issue entitled: The power of metabolism: Linking energy supply and demand to contractile function edited by Torsten Doenst, Michael Schwarzer and Christine Des Rosiers.
Collapse
|
94
|
Yasue H, Mizuno Y, Harada E. Association of East Asian Variant Aldehyde Dehydrogenase 2 Genotype (ALDH2*2*) with Coronary Spasm and Acute Myocardial Infarction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1193:121-134. [PMID: 31368101 DOI: 10.1007/978-981-13-6260-6_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Coronary spasm plays an important role in the pathogenesis of ischemic heart disease, including angina pectoris, acute myocardial infarction (AMI), silent myocardial ischemia, and sudden death. The prevalence of coronary spasm is higher among East Asians probably due to genetic as well as environmental factors. ALDH2 eliminates toxic aldehydes including 4-hydroxy-2-nonenal (4-HNE) derived from lipid peroxidation and acrolein in tobacco smoking as well as ethanol-derived acetaldehyde and thereby protects tissues and cells from oxidative damage. Deficient variant ALDH2*2 genotype is prevalent among East Asians and is a significant risk factor for both coronary spasm and AMI through accumulation of toxic aldehydes, thereby contributing to oxidative stress, endothelial damage, vasoconstriction, and thrombosis. Toxic aldehydes are thus identified as risk factors to be targeted for the treatment of coronary spasm and AMI.
Collapse
Affiliation(s)
- Hirofumi Yasue
- Division of Cardiovascular Medicine, Kumamoto Kinoh Hospital, Kumamoto Aging Research Institute, Kumamoto City, Japan.
| | - Yuji Mizuno
- Division of Cardiovascular Medicine, Kumamoto Kinoh Hospital, Kumamoto Aging Research Institute, Kumamoto City, Japan
| | - Eisaku Harada
- Division of Cardiovascular Medicine, Kumamoto Kinoh Hospital, Kumamoto Aging Research Institute, Kumamoto City, Japan
| |
Collapse
|
95
|
Ren X, Roessler AE, Lynch TL, Haar L, Mallick F, Lui Y, Tranter M, Ren MH, Xie WR, Fan GC, Zhang JM, Kranias EG, Anjak A, Koch S, Jiang M, Miao Q, Wang Y, Cohen A, Rubinstein J, Weintraub NL, Jones WK. Cardioprotection via the skin: nociceptor-induced conditioning against cardiac MI in the NIC of time. Am J Physiol Heart Circ Physiol 2018; 316:H543-H553. [PMID: 30575436 DOI: 10.1152/ajpheart.00094.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Timely reperfusion is still the most effective approach to limit infarct size in humans. Yet, despite advances in care and reduction in door-to-balloon times, nearly 25% of patients develop heart failure postmyocardial infarction, with its attendant morbidity and mortality. We previously showed that cardioprotection results from a skin incision through the umbilicus in a murine model of myocardial infarction. In the present study, we show that an electrical stimulus or topical capsaicin applied to the skin in the same region induces significantly reduced infarct size in a murine model. We define this class of phenomena as nociceptor-induced conditioning (NIC) based on the peripheral nerve mechanism of initiation. We show that NIC is effective both as a preconditioning and postconditioning remote stimulus, reducing infarct size by 86% and 80%, respectively. NIC is induced via activation of skin C-fiber nerves. Interestingly, the skin region that activates NIC is limited to the anterior of the T9-T10 vertebral region of the abdomen. Cardioprotection after NIC requires the integrity of the spinal cord from the region of stimulation to the thoracic vertebral region of the origin of the cardiac nerves but does not require that the cord be intact in the cervical region. Thus, we show that NIC is a reflex and not a central nervous system-mediated effect. The mechanism involves bradykinin 2 receptor activity and activation of PKC, specifically, PKC-α. The similarity of the neuroanatomy and conservation of the effectors of cardioprotection supports that NIC may be translatable to humans as a nontraumatic and practical adjunct therapy against ischemic disease. NEW & NOTEWORTHY This study shows that an electrical stimulus to skin sensory nerves elicits a very powerful cardioprotection against myocardial infarction. This stimulus works by a neurogenic mechanism similar to that previously elucidated for remote cardioprotection of trauma. Nociceptor-induced conditioning is equally potent when applied before ischemia or at reperfusion and has great potential clinically.
Collapse
Affiliation(s)
- Xiaoping Ren
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Mawood, Illinois
| | - Anne E Roessler
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Mawood, Illinois
| | - Thomas L Lynch
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Mawood, Illinois
| | - Lauren Haar
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Mawood, Illinois
| | - Faryal Mallick
- Division of Cardiology, Department of Medicine, University of Cincinnati College of Medicine , Cincinnati, Ohio
| | - Yong Lui
- Division of Cardiology, Department of Medicine, University of Cincinnati College of Medicine , Cincinnati, Ohio
| | - Michael Tranter
- Division of Cardiology, Department of Medicine, University of Cincinnati College of Medicine , Cincinnati, Ohio
| | - Michelle Huan Ren
- Division of Cardiology, Department of Medicine, University of Cincinnati College of Medicine , Cincinnati, Ohio
| | - Wen Rui Xie
- Department of Anesthesiology and Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Guo-Chang Fan
- Department of Pharmacology, University of Cincinnati , Cincinnati, Ohio
| | - Jun-Ming Zhang
- Department of Anesthesiology and Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | | | - Ahmad Anjak
- Division of Cardiology, Department of Medicine, University of Cincinnati College of Medicine , Cincinnati, Ohio
| | - Sheryl Koch
- Division of Cardiology, Department of Medicine, University of Cincinnati College of Medicine , Cincinnati, Ohio
| | - Min Jiang
- Division of Cardiology, Department of Medicine, University of Cincinnati College of Medicine , Cincinnati, Ohio
| | - Qing Miao
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Mawood, Illinois
| | - Yang Wang
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Mawood, Illinois
| | - Albert Cohen
- Department of Mathematics, Michigan State University , East Lansing, Michigan
| | - Jack Rubinstein
- Division of Cardiology, Department of Medicine, University of Cincinnati College of Medicine , Cincinnati, Ohio
| | - Neal L Weintraub
- Division of Cardiology, Georgia Regents University, Augusta, Geogia
| | - W Keith Jones
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Mawood, Illinois
| |
Collapse
|
96
|
Kapur NK, Annamalai S, Reyelt L, Karmiy SJ, Razavi AA, Foroutanjazi S, Chennojwala A, Ishikawa K. From bedside to bench and back again: translational studies of mechanical unloading of the left ventricle to promote recovery after acute myocardial infarction. F1000Res 2018; 7:F1000 Faculty Rev-1852. [PMID: 30542612 PMCID: PMC6259487 DOI: 10.12688/f1000research.14597.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/23/2018] [Indexed: 11/20/2022] Open
Abstract
Heart failure is a major cause of global morbidity and mortality. Acute myocardial infarction (AMI) is a primary cause of heart failure due in large part to residual myocardial damage despite timely reperfusion therapy. Since the 1970's, multiple preclinical laboratories have tested whether reducing myocardial oxygen demand with a mechanical support pump can reduce infarct size in AMI. In the past decade, this hypothesis has been studied using contemporary circulatory support pumps. We will review the most recent series of preclinical studies in the field which led to the recently completed Door to Unload ST-segment Elevation Myocardial Infarction (DTU-STEMI) safety and feasibility pilot trial.
Collapse
Affiliation(s)
- Navin K. Kapur
- The Molecular Cardiology Research Institute, Tufts Medical Center and Tufts University School of Medicine, Boston, Massachusetts, USA
- The Acute Mechanical Circulatory Support Working Group, Tufts Medical Center and Tufts University School of Medicine, Boston, Massachusetts, USA
- The Cardiovascular Center, Tufts Medical Center and Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Shiva Annamalai
- The Molecular Cardiology Research Institute, Tufts Medical Center and Tufts University School of Medicine, Boston, Massachusetts, USA
- The Acute Mechanical Circulatory Support Working Group, Tufts Medical Center and Tufts University School of Medicine, Boston, Massachusetts, USA
- The Cardiovascular Center, Tufts Medical Center and Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Lara Reyelt
- The Molecular Cardiology Research Institute, Tufts Medical Center and Tufts University School of Medicine, Boston, Massachusetts, USA
- The Acute Mechanical Circulatory Support Working Group, Tufts Medical Center and Tufts University School of Medicine, Boston, Massachusetts, USA
- The Cardiovascular Center, Tufts Medical Center and Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Samuel J. Karmiy
- The Molecular Cardiology Research Institute, Tufts Medical Center and Tufts University School of Medicine, Boston, Massachusetts, USA
- The Acute Mechanical Circulatory Support Working Group, Tufts Medical Center and Tufts University School of Medicine, Boston, Massachusetts, USA
- The Cardiovascular Center, Tufts Medical Center and Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Allen A. Razavi
- The Molecular Cardiology Research Institute, Tufts Medical Center and Tufts University School of Medicine, Boston, Massachusetts, USA
- The Acute Mechanical Circulatory Support Working Group, Tufts Medical Center and Tufts University School of Medicine, Boston, Massachusetts, USA
- The Cardiovascular Center, Tufts Medical Center and Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Sina Foroutanjazi
- The Molecular Cardiology Research Institute, Tufts Medical Center and Tufts University School of Medicine, Boston, Massachusetts, USA
- The Acute Mechanical Circulatory Support Working Group, Tufts Medical Center and Tufts University School of Medicine, Boston, Massachusetts, USA
- The Cardiovascular Center, Tufts Medical Center and Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Aditya Chennojwala
- The Molecular Cardiology Research Institute, Tufts Medical Center and Tufts University School of Medicine, Boston, Massachusetts, USA
- The Acute Mechanical Circulatory Support Working Group, Tufts Medical Center and Tufts University School of Medicine, Boston, Massachusetts, USA
- The Cardiovascular Center, Tufts Medical Center and Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Kiyotake Ishikawa
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, New York, USA
| |
Collapse
|
97
|
Santana MNS, Souza DS, Miguel-Dos-Santos R, Rabelo TK, Vasconcelos CMLD, Navia-Pelaez JM, Jesus ICGD, Silva-Neto JAD, Lauton-Santos S, Capettini LDSA, Guatimosim S, Rogers RG, Santos MRVD, Santana-Filho VJ, Mesquita TRR. Resistance exercise mediates remote ischemic preconditioning by limiting cardiac eNOS uncoupling. J Mol Cell Cardiol 2018; 125:61-72. [PMID: 30339842 DOI: 10.1016/j.yjmcc.2018.10.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 10/10/2018] [Accepted: 10/15/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Currently viewed as a complementary non-pharmacological intervention for preventing cardiac disorders, long-term aerobic training produces cardioprotection through remote ischemic preconditioning (RIPC) mechanisms. However, RIPC triggered by acute exercise remains poorly understood. Although resistance exercise (RE) has been highly recommended by several public health guidelines, there is no evidence showing that RE mediates RIPC. Hence, we investigated whether RE induces cardiac RIPC through nitric oxide synthase (NOS)-dependent mechanism. METHODS AND RESULTS Acute RE at 40% of the maximal load augmented systemic nitrite levels, associated with increased cardiac eNOS phosphorylation, without affecting nNOS activity. Using an experimental model of myocardial infarction (MI) through ischemia-reperfusion (IR), RE fully prevented the loss of cardiac contractility and the extent of MI size compared to non-exercised (NE) rats. Moreover, RE mitigated aberrant ST-segment and reduced life-threatening arrhythmias induced by IR. Importantly, inhibition of NOS abolished the RE-mediated cardioprotection. After IR, NE rats showed increased cardiac eNOS activity, associated with reduced dimer/monomer ratio. Supporting the pivotal role of eNOS coupling during MI, non-exercised rats displayed a marked generation of reactive oxygen species (ROS) and oxidative-induced carbonylation of proteins, whereas RE prevented these responses. We validated our data demonstrating a restoration of physiological ROS levels in NE + IR cardiac sections treated with BH4, a cofactor oxidatively depleted during eNOS uncoupling, while cardiac ROS generation from exercised rats remained unchanged, suggesting no physiological needs of supplemental eNOS cofactors. CONCLUSION Together, our findings strongly indicate that RE mediates RIPC by limiting eNOS uncoupling and mitigates myocardial IR injury.
Collapse
Affiliation(s)
| | - Diego Santos Souza
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | | | | | | | | | | | - Julio Alves da Silva-Neto
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil; Department of Pharmacology, University of São Paulo, São Paulo, Brazil
| | | | | | - Silvia Guatimosim
- Departments of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Russell G Rogers
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, United States
| | | | | | - Thássio Ricardo Ribeiro Mesquita
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil; Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, United States.
| |
Collapse
|
98
|
Davidson SM, Arjun S, Basalay MV, Bell RM, Bromage DI, Bøtker HE, Carr RD, Cunningham J, Ghosh AK, Heusch G, Ibanez B, Kleinbongard P, Lecour S, Maddock H, Ovize M, Walker M, Wiart M, Yellon DM. The 10th Biennial Hatter Cardiovascular Institute workshop: cellular protection-evaluating new directions in the setting of myocardial infarction, ischaemic stroke, and cardio-oncology. Basic Res Cardiol 2018; 113:43. [PMID: 30310998 PMCID: PMC6182684 DOI: 10.1007/s00395-018-0704-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 12/13/2022]
Abstract
Due to its poor capacity for regeneration, the heart is particularly sensitive to the loss of contractile cardiomyocytes. The onslaught of damage caused by ischaemia and reperfusion, occurring during an acute myocardial infarction and the subsequent reperfusion therapy, can wipe out upwards of a billion cardiomyocytes. A similar program of cell death can cause the irreversible loss of neurons in ischaemic stroke. Similar pathways of lethal cell injury can contribute to other pathologies such as left ventricular dysfunction and heart failure caused by cancer therapy. Consequently, strategies designed to protect the heart from lethal cell injury have the potential to be applicable across all three pathologies. The investigators meeting at the 10th Hatter Cardiovascular Institute workshop examined the parallels between ST-segment elevation myocardial infarction (STEMI), ischaemic stroke, and other pathologies that cause the loss of cardiomyocytes including cancer therapeutic cardiotoxicity. They examined the prospects for protection by remote ischaemic conditioning (RIC) in each scenario, and evaluated impasses and novel opportunities for cellular protection, with the future landscape for RIC in the clinical setting to be determined by the outcome of the large ERIC-PPCI/CONDI2 study. It was agreed that the way forward must include measures to improve experimental methodologies, such that they better reflect the clinical scenario and to judiciously select combinations of therapies targeting specific pathways of cellular death and injury.
Collapse
Affiliation(s)
- Sean M Davidson
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Sapna Arjun
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Maryna V Basalay
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Robert M Bell
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Daniel I Bromage
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Richard D Carr
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
- MSD A/S, Copenhagen, Denmark
| | - John Cunningham
- Centre for Nephrology, UCL Medical School, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK
| | - Arjun K Ghosh
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Gerd Heusch
- West German Heart and Vascular Center, Institute for Pathophysiology, University of Essen Medical School, Essen, Germany
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades CardioVasculares, Madrid, Spain
- IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain
| | - Petra Kleinbongard
- West German Heart and Vascular Center, Institute for Pathophysiology, University of Essen Medical School, Essen, Germany
| | - Sandrine Lecour
- Cardioprotection Group, Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, Cape Town, South Africa
| | - Helen Maddock
- Centre for Sport, Exercise and Life Sciences, Faculty of Health and Life Sciences, Coventry University, Priory Street, Coventry, CV1 5FB, UK
| | - Michel Ovize
- INSERM U1060, CarMeN Laboratory, Université de Lyon and Service d'explorations Fonctionnelles Cardiovasculaires Groupement Hospitalier Est, 59 Boulevard Pinel, 69500, Bron, France
| | - Malcolm Walker
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Marlene Wiart
- INSERM U1060, CarMeN Laboratory, Université de Lyon and Service d'explorations Fonctionnelles Cardiovasculaires Groupement Hospitalier Est, 59 Boulevard Pinel, 69500, Bron, France
- CNRS, Lyon, France
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, 67 Chenies Mews, London, WC1E 6HX, UK.
| |
Collapse
|
99
|
Remote ischemic conditioning protects against endothelial ischemia-reperfusion injury via a glucagon-like peptide-1 receptor-mediated mechanism in humans. Int J Cardiol 2018; 274:40-44. [PMID: 30268384 DOI: 10.1016/j.ijcard.2018.09.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/03/2018] [Accepted: 09/17/2018] [Indexed: 02/04/2023]
Abstract
BACKGROUND Remote ischemic conditioning (RIC), i.e. short cycles of ischemia and reperfusion in remote tissue, is a novel approach to protect against myocardial ischemia-reperfusion injury in ST-elevation myocardial infarction. The nature of the factors transmitting the protective effect of RIC remains unknown, and both neuronal and hormonal mechanisms appear to be involved. A recent study indicated involvement of glucagon-like peptide-1 (GLP-1) regulated by the vagal nerve in RIC in rats. In the present study we aimed to investigate whether the protective effect of RIC is mediated by a GLP-1 receptor-dependent mechanism in humans. METHODS Endothelial function was determined from flow-mediated dilatation (FMD) of the brachial artery before and after 20 min of forearm ischemia and 20 min of reperfusion in twelve healthy subjects on three occasions: (A) ischemia-reperfusion without intervention, (B) ischemia-reperfusion + RIC and (C) iv administration of the GLP-1 receptor antagonist exendin(9-39) + ischemia-reperfusion + RIC. RESULTS Ischemia-reperfusion reduced FMD from 4.7 ± 0.8% at baseline to 1.5 ± 0.4% (p < 0.01). RIC protected from the impairment in FMD induced by ischemia-reperfusion (4.6 ± 1.1% at baseline vs. 5.0 ± 1.1% following ischemia-reperfusion). Exendin(9-39) abolished the protection induced by RIC (FMD 4.9 ± 0.9% at baseline vs. 1.4 ± 1.3% following ischemia-reperfusion; p < 0.01) but did not affect basal FMD. Plasma GLP-1 levels did not change significantly between examinations. CONCLUSION The present study is the first to suggest that RIC protects against endothelial ischemia-reperfusion injury via a GLP-1 receptor-mediated mechanism in humans.
Collapse
|
100
|
Bøtker HE, Hausenloy D, Andreadou I, Antonucci S, Boengler K, Davidson SM, Deshwal S, Devaux Y, Di Lisa F, Di Sante M, Efentakis P, Femminò S, García-Dorado D, Giricz Z, Ibanez B, Iliodromitis E, Kaludercic N, Kleinbongard P, Neuhäuser M, Ovize M, Pagliaro P, Rahbek-Schmidt M, Ruiz-Meana M, Schlüter KD, Schulz R, Skyschally A, Wilder C, Yellon DM, Ferdinandy P, Heusch G. Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection. Basic Res Cardiol 2018; 113:39. [PMID: 30120595 PMCID: PMC6105267 DOI: 10.1007/s00395-018-0696-8] [Citation(s) in RCA: 304] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/18/2018] [Accepted: 08/03/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, 8200, Aarhus N, Denmark.
| | - Derek Hausenloy
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
- The National Institute of Health Research, University College London Hospitals Biomedial Research Centre, Research and Development, London, UK
- National Heart Research Institute Singapore, National Heart Centre, Singapore, Singapore
- Yon Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, 8 College Road, Singapore, 169857, Singapore
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Salvatore Antonucci
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Kerstin Boengler
- Institute for Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Soni Deshwal
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Yvan Devaux
- Cardiovascular Research Unit, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Fabio Di Lisa
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Moises Di Sante
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Panagiotis Efentakis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Saveria Femminò
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - David García-Dorado
- Experimental Cardiology, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), IIS-Fundación Jiménez Díaz, CIBERCV, Madrid, Spain
| | - Efstathios Iliodromitis
- Second Department of Cardiology, Faculty of Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nina Kaludercic
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - Markus Neuhäuser
- Department of Mathematics and Technology, Koblenz University of Applied Science, Remagen, Germany
- Institute for Medical Informatics, Biometry, and Epidemiology, University Hospital Essen, Essen, Germany
| | - Michel Ovize
- Explorations Fonctionnelles Cardiovasculaires, Hôpital Louis Pradel, Lyon, France
- UMR, 1060 (CarMeN), Université Claude Bernard, Lyon1, Villeurbanne, France
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - Michael Rahbek-Schmidt
- Department of Cardiology, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Marisol Ruiz-Meana
- Experimental Cardiology, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | | | - Rainer Schulz
- Institute for Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Andreas Skyschally
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - Catherine Wilder
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany.
| |
Collapse
|