51
|
Costa A, Cushman S, Haubner BJ, Derda AA, Thum T, Bär C. Neonatal injury models: integral tools to decipher the molecular basis of cardiac regeneration. Basic Res Cardiol 2022; 117:26. [PMID: 35503383 PMCID: PMC9064850 DOI: 10.1007/s00395-022-00931-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 01/31/2023]
Abstract
Myocardial injury often leads to heart failure due to the loss and insufficient regeneration of resident cardiomyocytes. The low regenerative potential of the mammalian heart is one of the main drivers of heart failure progression, especially after myocardial infarction accompanied by large contractile muscle loss. Preclinical therapies for cardiac regeneration are promising, but clinically still missing. Mammalian models represent an excellent translational in vivo platform to test drugs and treatments for the promotion of cardiac regeneration. Particularly, short-lived mice offer the possibility to monitor the outcome of such treatments throughout the life span. Importantly, there is a short period of time in newborn mice in which the heart retains full regenerative capacity after cardiac injury, which potentially also holds true for the neonatal human heart. Thus, in vivo neonatal mouse models of cardiac injury are crucial to gain insights into the molecular mechanisms underlying the cardiac regenerative processes and to devise novel therapeutic strategies for the treatment of diseased adult hearts. Here, we provide an overview of the established injury models to study cardiac regeneration. We summarize pioneering studies that demonstrate the potential of using neonatal cardiac injury models to identify factors that may stimulate heart regeneration by inducing endogenous cardiomyocyte proliferation in the adult heart. To conclude, we briefly summarize studies in large animal models and the insights gained in humans, which may pave the way toward the development of novel approaches in regenerative medicine.
Collapse
Affiliation(s)
- Alessia Costa
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany ,REBIRTH-Centre for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Sarah Cushman
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Bernhard J. Haubner
- Department of Internal Medicine III (Cardiology and Angiology), Innsbruck Medical University, Innsbruck, Austria ,Department of Cardiology, University Heart Center, University Hospital Zurich, Zürich, Switzerland
| | - Anselm A. Derda
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany ,Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany ,REBIRTH-Centre for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany ,Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany ,REBIRTH-Centre for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany ,Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| |
Collapse
|
52
|
Gao X, Li H, Wang X, Ren Z, Tian Y, Zhao J, Qi W, Wang H, Yu Y, Gong R, Chen H, Ji H, Yang F, Ma W, Liu Y. Light Emitting Diodes Irradiation Regulates miRNA-877-3p to Promote Cardiomyocyte Proliferation. Int J Med Sci 2022; 19:1254-1264. [PMID: 35928721 PMCID: PMC9346386 DOI: 10.7150/ijms.70743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/07/2022] [Indexed: 11/05/2022] Open
Abstract
Mammalian cardiomyocytes (CMs) maintain a low capacity for self-renewal in adulthood, therefore the induction of CMs cycle re-entry is an important approach to promote myocardial repair after injury. Recently, photobiomodulation (PBM) has been used to manipulate physiological activities of various tissues and organs by non-invasive means. Here, we demonstrate that conditioned PBM using light-emitting diodes with a wavelength of 630 nm (LED-Red) was capable of promoting the proliferation of neonatal CMs. Further studies showed that low-power LED-Red affected the expression of miR-877-3p and promoted the proliferation of CMs. In contrast, silencing of miR-877-3p partially abolished the pro-proliferative actions of LED-Red irradiation on CMs. Mechanistically, GADD45g was identified as a downstream target gene of miR-877-3p. Conditioned LED-Red irradiation also inhibited the expression of GADD45g in neonatal CMs. Moreover, GADD45g siRNA reversed the positive effect of LED-Red on the proliferation of neonatal CMs. Taken together, conditioned LED-Red irradiation increased miR-877-3p expression and promoted the proliferation of neonatal CMs by targeting GADD45g. This finding provides a new insight into the role of LED-Red irradiation in neonatal CMs biology and suggests its potential application in myocardial injury repair.
Collapse
Affiliation(s)
- Xinlu Gao
- Department of Laboratory Medicine at the Fourth Affiliated Hospital, and Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China.,Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Hanjing Li
- Department of Laboratory Medicine at the Fourth Affiliated Hospital, and Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China.,Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xiuxiu Wang
- Department of Laboratory Medicine at the Fourth Affiliated Hospital, and Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China.,Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhongyu Ren
- Department of Laboratory Medicine at the Fourth Affiliated Hospital, and Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China.,Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yanan Tian
- Department of Laboratory Medicine at the Fourth Affiliated Hospital, and Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China.,Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jingxuan Zhao
- Department of Laboratory Medicine at the Fourth Affiliated Hospital, and Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China.,Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Wenyi Qi
- Department of Laboratory Medicine at the Fourth Affiliated Hospital, and Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China.,Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Hongbo Wang
- Department of Laboratory Medicine at the Fourth Affiliated Hospital, and Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China.,Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ying Yu
- Department of Laboratory Medicine at the Fourth Affiliated Hospital, and Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China.,Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Rui Gong
- Department of Laboratory Medicine at the Fourth Affiliated Hospital, and Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China.,Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Hongyang Chen
- Department of Laboratory Medicine at the Fourth Affiliated Hospital, and Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China.,Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Haoyu Ji
- Department of Laboratory Medicine at the Fourth Affiliated Hospital, and Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China.,Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Fan Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China.,Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
| | - Wenya Ma
- Department of Laboratory Medicine at the Fourth Affiliated Hospital, and Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China.,Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yu Liu
- Department of Laboratory Medicine at the Fourth Affiliated Hospital, and Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
53
|
Park H, Kim D, Cho B, Byun J, Kim YS, Ahn Y, Hur J, Oh YK, Kim J. In vivo therapeutic genome editing via CRISPR/Cas9 magnetoplexes for myocardial infarction. Biomaterials 2021; 281:121327. [PMID: 34952262 DOI: 10.1016/j.biomaterials.2021.121327] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/17/2021] [Accepted: 12/17/2021] [Indexed: 12/26/2022]
Abstract
CRISPR/Cas9-mediated gene-editing technology has gained attention as a new therapeutic method for intractable diseases. However, the use of CRISPR/Cas9 for cardiac conditions such as myocardial infarction remains challenging due to technical and biological barriers, particularly difficulties in delivering the system and targeting genes in the heart. In the present study, we demonstrated the in vivo efficacy of the CRISPR/Cas9 magnetoplexes system for therapeutic genome editing in myocardial infarction. First, we developed CRISPR/Cas9 magnetoplexes that magnetically guided CRISPR/Cas9 system to the heart for efficient in vivo therapeutic gene targeting during heart failures. We then demonstrated that the in vivo gene targeting of miR34a via these CRISPR/Cas9 magnetoplexes in a mouse model of myocardial infarction significantly improved cardiac repair and regeneration to facilitate improvements in cardiac function. These results indicated that CRISPR/Cas9 magnetoplexes represent an effective in vivo therapeutic gene-targeting platform in the myocardial infarction of heart, and that this strategy may be applicable for the treatment of a broad range of cardiac failures.
Collapse
Affiliation(s)
- Hanseul Park
- Laboratory of Stem Cells & Cell Reprogramming, Department of Chemistry, Dongguk University, Seoul, 100715, Republic of Korea
| | - Dongyoon Kim
- College of Pharmacy, Seoul National University, 1 Kwanak-ro, Seoul, 08826, Republic of Korea
| | - Byounggook Cho
- Laboratory of Stem Cells & Cell Reprogramming, Department of Chemistry, Dongguk University, Seoul, 100715, Republic of Korea
| | - Junho Byun
- College of Pharmacy, Seoul National University, 1 Kwanak-ro, Seoul, 08826, Republic of Korea
| | - Yong Sook Kim
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju, 61469, Republic of Korea
| | - Youngkeun Ahn
- Department of Cardiology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Jin Hur
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Yu-Kyoung Oh
- College of Pharmacy, Seoul National University, 1 Kwanak-ro, Seoul, 08826, Republic of Korea.
| | - Jongpil Kim
- Laboratory of Stem Cells & Cell Reprogramming, Department of Chemistry, Dongguk University, Seoul, 100715, Republic of Korea.
| |
Collapse
|
54
|
Salamon I, Biagini E, Kunderfranco P, Roncarati R, Ferracin M, Taglieri N, Nardi E, Laprovitera N, Tomasi L, Santostefano M, Ditaranto R, Vitale G, Cavarretta E, Pisani A, Riccio E, Aiello V, Capelli I, La Manna G, Galiè N, Spinelli L, Condorelli G. Circulating miR-184 is a potential predictive biomarker of cardiac damage in Anderson-Fabry disease. Cell Death Dis 2021; 12:1150. [PMID: 34897278 PMCID: PMC8665928 DOI: 10.1038/s41419-021-04438-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 12/20/2022]
Abstract
Enzyme replacement therapy (ERT) is a mainstay of treatment for Anderson-Fabry disease (AFD), a pathology with negative effects on the heart and kidneys. However, no reliable biomarkers are available to monitor its efficacy. Therefore, we tested a panel of four microRNAs linked with cardiac and renal damage in order to identify a novel biomarker associated with AFD and modulated by ERT. To this end, 60 patients with a definite diagnosis of AFD and on chronic ERT, and 29 age- and sex-matched healthy individuals, were enrolled by two Italian university hospitals. Only miR-184 met both conditions: its level discriminated untreated AFD patients from healthy individuals (c-statistic = 0.7522), and it was upregulated upon ERT (P < 0.001). On multivariable analysis, miR-184 was independently and inversely associated with a higher risk of cardiac damage (odds ratio = 0.86; 95% confidence interval [CI] = 0.76-0.98; P = 0.026). Adding miR-184 to a comprehensive clinical model improved the prediction of cardiac damage in terms of global model fit, calibration, discrimination, and classification accuracy (continuous net reclassification improvement = 0.917, P < 0.001; integrated discrimination improvement [IDI] = 0.105, P = 0.017; relative IDI = 0.221, 95% CI = 0.002-0.356). Thus, miR-184 is a circulating biomarker of AFD that changes after ERT. Assessment of its level in plasma could be clinically valuable in improving the prediction of cardiac damage in AFD patients.
Collapse
Affiliation(s)
- Irene Salamon
- Humanitas Research Hospital - IRCCS, 20089, Rozzano, (MI), Italy
- Department of Biomedical Sciences, Humanitas University, 20090, Pieve Emanuele, (MI), Italy
| | - Elena Biagini
- Cardiology Unit, St. Orsola Hospital, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
| | | | - Roberta Roncarati
- Institute of Genetics and Biomedical Research - Milan Unit, National Research Council of Italy, 20089, Rozzano, (MI), Italy
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138, Bologna, Italy
| | - Nevio Taglieri
- Cardiology Unit, St. Orsola Hospital, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
| | - Elena Nardi
- Cardiology Unit, St. Orsola Hospital, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138, Bologna, Italy
| | - Noemi Laprovitera
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138, Bologna, Italy
| | - Luciana Tomasi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138, Bologna, Italy
| | - Marisa Santostefano
- Nephrology, Dialysis and Renal Transplant Unit, St. Orsola Hospital, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
| | - Raffaello Ditaranto
- Cardiology Unit, St. Orsola Hospital, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138, Bologna, Italy
| | - Giovanni Vitale
- Cardiology Unit, St. Orsola Hospital, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138, Bologna, Italy
| | - Elena Cavarretta
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, 04100, Latina, Italy
- Mediterranea Cardiocentro, 80122, Naples, Italy
| | - Antonio Pisani
- Department of Public Health - Nephrology Unit, University of Naples Federico II, 80131, Naples, Italy
| | - Eleonora Riccio
- Department of Public Health - Nephrology Unit, University of Naples Federico II, 80131, Naples, Italy
| | - Valeria Aiello
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138, Bologna, Italy
- Nephrology, Dialysis and Renal Transplant Unit, St. Orsola Hospital, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
| | - Irene Capelli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138, Bologna, Italy
- Nephrology, Dialysis and Renal Transplant Unit, St. Orsola Hospital, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
| | - Gaetano La Manna
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138, Bologna, Italy
- Nephrology, Dialysis and Renal Transplant Unit, St. Orsola Hospital, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
| | - Nazzareno Galiè
- Cardiology Unit, St. Orsola Hospital, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138, Bologna, Italy
| | - Letizia Spinelli
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131, Naples, Italy.
| | - Gianluigi Condorelli
- Humanitas Research Hospital - IRCCS, 20089, Rozzano, (MI), Italy.
- Department of Biomedical Sciences, Humanitas University, 20090, Pieve Emanuele, (MI), Italy.
| |
Collapse
|
55
|
Chen HY, Lu J, Wang ZK, Yang J, Ling X, Zhu P, Zheng SY. Hsa-miR-199a-5p Protect Cell Injury in Hypoxia Induces Myocardial Cells Via Targeting HIF1α. Mol Biotechnol 2021; 64:482-492. [PMID: 34843094 DOI: 10.1007/s12033-021-00423-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/28/2021] [Indexed: 11/29/2022]
Abstract
Myocardial infarction (MI) is one of the most common global diseases. Recently, microRNA 199a-5p (miR-199a-5p) has been recognized as a vital regulator in several human diseases. Nevertheless, the function of miR-199a-5p and the associated downstream molecular mechanisms in myocardial injury remain undescribed. Here, we assessed the relative expression of miR-199a-5p in an oxidative stress injury model of human myocardial cells. The effects of miR-199a-5p on myocardial cell viability were determined by cell counting kit-8 (CCK-8), terminal deoxynucleotidyl transferase UTP nick end labeling (TUNEL), flow cytometry, and western blot assays. Online bioinformatic analysis was used to predict the aim of miR-199a-5p in cardiomyocyte injury, which was confirmed by dual-luciferase reporter assays. miR-199a-5p increased the growth rate of cardiomyocytes after treatment with a hypoxic environment. miR-199a-5p acted as an inhibitor directly targeted hypoxia-inducible factor-1 (HIF1α) expression, which was higher in the cardiomyocyte injury model than that in healthy myocardial cells. Upregulated HIF1α expression abolished miR-199a-5p-induced cell proliferation in the cardiomyocyte hypoxia model. Our results suggest that miR-199a-5p is a potential prognostic biomarker in myocardial damage.
Collapse
Affiliation(s)
- Hui-Yong Chen
- Department of Cardiothoracic Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, People's Republic of China.,Department of Thoracic Surgery, Yuebei People's Hospital, Shantou University, Shaoguan, People's Republic of China
| | - Jun Lu
- Department of Cardiothoracic Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, People's Republic of China
| | - Zheng-Kang Wang
- Department of Cardiothoracic Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, People's Republic of China
| | - Jie Yang
- Department of Cardiothoracic Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, People's Republic of China
| | - Xiao Ling
- Department of Cardiothoracic Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, People's Republic of China
| | - Peng Zhu
- Department of Cardiothoracic Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, People's Republic of China. .,Department of Cardiothoracic Surgery, Nanfang hospital, Southern Medical University, 1838 Guangzhou Avenue North, Baiyun, Guangzhou, Guangdong, 510280, People's Republic of China.
| | - Shao-Yi Zheng
- Department of Cardiothoracic Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, People's Republic of China. .,Department of Cardiothoracic Surgery, Nanfang hospital, Southern Medical University, 1838 Guangzhou Avenue North, Baiyun, Guangzhou, Guangdong, 510280, People's Republic of China.
| |
Collapse
|
56
|
Majka M, Kleibert M, Wojciechowska M. Impact of the Main Cardiovascular Risk Factors on Plasma Extracellular Vesicles and Their Influence on the Heart's Vulnerability to Ischemia-Reperfusion Injury. Cells 2021; 10:3331. [PMID: 34943838 PMCID: PMC8699798 DOI: 10.3390/cells10123331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
The majority of cardiovascular deaths are associated with acute coronary syndrome, especially ST-elevation myocardial infarction. Therapeutic reperfusion alone can contribute up to 40 percent of total infarct size following coronary artery occlusion, which is called ischemia-reperfusion injury (IRI). Its size depends on many factors, including the main risk factors of cardiovascular mortality, such as age, sex, systolic blood pressure, smoking, and total cholesterol level as well as obesity, diabetes, and physical effort. Extracellular vesicles (EVs) are membrane-coated particles released by every type of cell, which can carry content that affects the functioning of other tissues. Their role is essential in the communication between healthy and dysfunctional cells. In this article, data on the variability of the content of EVs in patients with the most prevalent cardiovascular risk factors is presented, and their influence on IRI is discussed.
Collapse
Affiliation(s)
- Miłosz Majka
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
| | - Marcin Kleibert
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
| | - Małgorzata Wojciechowska
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
- Invasive Cardiology Unit, Independent Public Specialist Western Hospital John Paul II, Daleka 11, 05-825 Grodzisk Mazowiecki, Poland
| |
Collapse
|
57
|
Li S, Ma W, Cai B. Targeting cardiomyocyte proliferation as a key approach of promoting heart repair after injury. MOLECULAR BIOMEDICINE 2021; 2:34. [PMID: 35006441 PMCID: PMC8607366 DOI: 10.1186/s43556-021-00047-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/21/2021] [Indexed: 11/17/2022] Open
Abstract
Cardiovascular diseases such as myocardial infarction (MI) is a major contributor to human mortality and morbidity. The mammalian adult heart almost loses its plasticity to appreciably regenerate new cardiomyocytes after injuries, such as MI and heart failure. The neonatal heart exhibits robust proliferative capacity when exposed to varying forms of myocardial damage. The ability of the neonatal heart to repair the injury and prevent pathological left ventricular remodeling leads to preserved or improved cardiac function. Therefore, promoting cardiomyocyte proliferation after injuries to reinitiate the process of cardiomyocyte regeneration, and suppress heart failure and other serious cardiovascular problems have become the primary goal of many researchers. Here, we review recent studies in this field and summarize the factors that act upon the proliferation of cardiomyocytes and cardiac repair after injury and discuss the new possibilities for potential clinical treatment strategies for cardiovascular diseases.
Collapse
Affiliation(s)
- Shuainan Li
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
| | - Wenya Ma
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
| | - Benzhi Cai
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China. .,Institute of Clinical Pharmacy, the Heilongjiang Key Laboratory of Drug Research, Harbin Medical University, Harbin, 150086, China. .,Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, Harbin, 150086, China.
| |
Collapse
|
58
|
Naqvi N, Iismaa SE, Graham RM, Husain A. Mechanism-Based Cardiac Regeneration Strategies in Mammals. Front Cell Dev Biol 2021; 9:747842. [PMID: 34708043 PMCID: PMC8542766 DOI: 10.3389/fcell.2021.747842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/06/2021] [Indexed: 12/11/2022] Open
Abstract
Heart failure in adults is a leading cause of morbidity and mortality worldwide. It can arise from a variety of diseases, with most resulting in a loss of cardiomyocytes that cannot be replaced due to their inability to replicate, as well as to a lack of resident cardiomyocyte progenitor cells in the adult heart. Identifying and exploiting mechanisms underlying loss of developmental cardiomyocyte replicative capacity has proved to be useful in developing therapeutics to effect adult cardiac regeneration. Of course, effective regeneration of myocardium after injury requires not just expansion of cardiomyocytes, but also neovascularization to allow appropriate perfusion and resolution of injury-induced inflammation and interstitial fibrosis, but also reversal of adverse left ventricular remodeling. In addition to overcoming these challenges, a regenerative therapy needs to be safe and easily translatable. Failure to address these critical issues will delay the translation of regenerative approaches. This review critically analyzes current regenerative approaches while also providing a framework for future experimental studies aimed at enhancing success in regenerating the injured heart.
Collapse
Affiliation(s)
- Nawazish Naqvi
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Siiri E Iismaa
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | - Robert M Graham
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | - Ahsan Husain
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
59
|
Bongiovanni C, Sacchi F, Da Pra S, Pantano E, Miano C, Morelli MB, D'Uva G. Reawakening the Intrinsic Cardiac Regenerative Potential: Molecular Strategies to Boost Dedifferentiation and Proliferation of Endogenous Cardiomyocytes. Front Cardiovasc Med 2021; 8:750604. [PMID: 34692797 PMCID: PMC8531484 DOI: 10.3389/fcvm.2021.750604] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/13/2021] [Indexed: 12/27/2022] Open
Abstract
Despite considerable efforts carried out to develop stem/progenitor cell-based technologies aiming at replacing and restoring the cardiac tissue following severe damages, thus far no strategies based on adult stem cell transplantation have been demonstrated to efficiently generate new cardiac muscle cells. Intriguingly, dedifferentiation, and proliferation of pre-existing cardiomyocytes and not stem cell differentiation represent the preponderant cellular mechanism by which lower vertebrates spontaneously regenerate the injured heart. Mammals can also regenerate their heart up to the early neonatal period, even in this case by activating the proliferation of endogenous cardiomyocytes. However, the mammalian cardiac regenerative potential is dramatically reduced soon after birth, when most cardiomyocytes exit from the cell cycle, undergo further maturation, and continue to grow in size. Although a slow rate of cardiomyocyte turnover has also been documented in adult mammals, both in mice and humans, this is not enough to sustain a robust regenerative process. Nevertheless, these remarkable findings opened the door to a branch of novel regenerative approaches aiming at reactivating the endogenous cardiac regenerative potential by triggering a partial dedifferentiation process and cell cycle re-entry in endogenous cardiomyocytes. Several adaptations from intrauterine to extrauterine life starting at birth and continuing in the immediate neonatal period concur to the loss of the mammalian cardiac regenerative ability. A wide range of systemic and microenvironmental factors or cell-intrinsic molecular players proved to regulate cardiomyocyte proliferation and their manipulation has been explored as a therapeutic strategy to boost cardiac function after injuries. We here review the scientific knowledge gained thus far in this novel and flourishing field of research, elucidating the key biological and molecular mechanisms whose modulation may represent a viable approach for regenerating the human damaged myocardium.
Collapse
Affiliation(s)
- Chiara Bongiovanni
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy.,National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
| | - Francesca Sacchi
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
| | - Silvia Da Pra
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
| | - Elvira Pantano
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Carmen Miano
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
| | - Marco Bruno Morelli
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Gabriele D'Uva
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy.,National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
| |
Collapse
|
60
|
METTL3 improves cardiomyocyte proliferation upon myocardial infarction via upregulating miR-17-3p in a DGCR8-dependent manner. Cell Death Discov 2021; 7:291. [PMID: 34645805 PMCID: PMC8514505 DOI: 10.1038/s41420-021-00688-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/08/2021] [Accepted: 09/24/2021] [Indexed: 11/08/2022] Open
Abstract
Myocardial infarction (MI), one of the most severe types of heart attack, exerts a strong negative effect on heart muscle by causing a massive and rapid loss of cardiomyocytes. However, the existing therapies do little to improve cardiac regeneration. Due to the role of methyltransferase-like 3 (METTL3) in the physiological proliferation of cardiomyocytes, we aimed to determine whether METTL3 could also promote cardiomyocyte proliferation under pathological conditions and to elucidate the underlying mechanism. The effects of METTL3 on cardiomyocyte proliferation and apoptosis were investigated in an in vivo rat model of MI and in an in vitro model of neonatal rat cardiomyocytes (NRCMs) exposed to hypoxia. We found that METTL3 expression was downregulated in hypoxia-exposed NRCMs and MI-induced rats. Furthermore, METTL3 pretreatment enhanced cardiomyocyte proliferation and inhibited cardiomyocyte apoptosis under hypoxic or MI conditions, and silencing METTL3 had the opposite effects. Additionally, METTL3 overexpression upregulated miR-17-3p expression. The miR-17-3p agomir mimicked the pro-proliferative and antiapoptotic effects of METTL3 in hypoxia-exposed cells or rats with MI, while the miR-17-3p antagomir blocked these effects. Additionally, pretreatment with the RNA-binding protein DGCR8 also hampered the protective role of METTL3 in hypoxia-exposed cells. Overall, the current study indicated that METTL3 could improve cardiomyocyte proliferation and subsequently ameliorate MI in rats by upregulating proliferation-related miR-17-3p in a DGCR8-dependent pri-miRNA-processing manner.
Collapse
|
61
|
Zia A, Farkhondeh T, Sahebdel F, Pourbagher-Shahri AM, Samarghandian S. Key miRNAs in Modulating Aging and Longevity: A Focus on Signaling Pathways and Cellular Targets. Curr Mol Pharmacol 2021; 15:736-762. [PMID: 34533452 DOI: 10.2174/1874467214666210917141541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 05/02/2021] [Accepted: 05/24/2021] [Indexed: 11/22/2022]
Abstract
Aging is a multifactorial procedure accompanied by gradual deterioration of most biological procedures of cells. MicroRNAs (miRNAs) are a class of short non-coding RNAs that post-transcriptionally regulate the expression of mRNAs through sequence-specific binding, and contributing to many crucial aspects of cell biology. Several miRNAs are expressed differently in various organisms through aging. The function of miRNAs in modulating aging procedures has been disclosed recently with the detection of miRNAs that modulate longevity in the invertebrate model organisms, through the IIS pathway. In these model organisms, several miRNAs have been detected to both negatively and positively regulate lifespan via commonly aging pathways. miRNAs modulate age-related procedures and disorders in different mammalian tissues by measuring their tissue-specific expression in older and younger counterparts, including heart, skin, bone, brain, and muscle tissues. Moreover, several miRNAs have been contributed to modulating senescence in different human cells, and the roles of these miRNAs in modulating cellular senescence have allowed illustrating some mechanisms of aging. The review discusses the available data on miRNAs through the aging process and we highlight the roles of miRNAs as aging biomarkers and regulators of longevity in cellular senescence, tissue aging, and organism lifespan.
Collapse
Affiliation(s)
- Aliabbas Zia
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Faezeh Sahebdel
- Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, MN, United States
| | | | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
62
|
Zhuang Y, Cui W. Biomaterial-based delivery of nucleic acids for tissue regeneration. Adv Drug Deliv Rev 2021; 176:113885. [PMID: 34324886 DOI: 10.1016/j.addr.2021.113885] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/13/2022]
Abstract
Gene therapy is a promising novel method of tissue regeneration by stimulating or inhibiting key signaling pathways. However, their therapeutic applications in vivo are largely limited by several physiological obstacles, such as degradation of nucleases, impermeability of cell membranes, and transport to the desired intracellular compartments. Biomaterial-based gene delivery systems can overcome the problems of stability and local drug delivery, and can temporarily control the overexpression of therapeutic genes, leading to the local production of physiologically relevant levels of regulatory factors. But the gene delivery of biomaterials for tissue regeneration relies on multi-factor design. This review aims to outline the impact of gene delivery methods, therapeutic genes and biomaterials selection on this strategy, emphatically introduce the latest developments in the design of gene delivery vehicles based on biomaterials, summarize the mechanism of nucleic acid for tissue regeneration, and explore the strategies of nucleic acid delivery vehicles for various tissue regeneration.
Collapse
Affiliation(s)
- Yaping Zhuang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention, Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention, Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China.
| |
Collapse
|
63
|
Andolina D, Savi M, Ielpo D, Barbetti M, Bocchi L, Stilli D, Ventura R, Lo Iacono L, Sgoifo A, Carnevali L. Elevated miR-34a expression and altered transcriptional profile are associated with adverse electromechanical remodeling in the heart of male rats exposed to social stress. Stress 2021; 24:621-634. [PMID: 34227918 DOI: 10.1080/10253890.2021.1942830] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
This study investigated epigenetic risk factors that may contribute to stress-related cardiac disease in a rodent model. Experiment 1 was designed to evaluate the expression of microRNA-34a (miR-34a), a known modulator of both stress responses and cardiac pathophysiology, in the heart of male adult rats exposed to a single or repeated episodes of social defeat stress. Moreover, RNA sequencing was conducted to identify transcriptomic profile changes in the heart of repeatedly stressed rats. Experiment 2 was designed to assess cardiac electromechanical changes induced by repeated social defeat stress that may predispose rats to cardiac dysfunction. Results indicated a larger cardiac miR-34a expression after repeated social defeat stress compared to a control condition. This molecular modification was associated with increased vulnerability to pharmacologically induced arrhythmias and signs of systolic left ventricular dysfunction. Gene expression analysis identified clusters of differentially expressed genes in the heart of repeatedly stressed rats that are mainly associated with morphological and functional properties of the mitochondria and may be directly regulated by miR-34a. These results suggest the presence of an association between miR-34a overexpression and signs of adverse electromechanical remodeling in the heart of rats exposed to repeated social defeat stress, and point to compromised mitochondria efficiency as a potential mediator of this link. This rat model may provide a useful tool for investigating the causal relationship between miR-34a expression, mitochondrial (dys)function, and cardiac alterations under stressful conditions, which could have important implications in the context of stress-related cardiac disease.
Collapse
Affiliation(s)
- Diego Andolina
- Department of Psychology and Center "Daniel Bovet," Sapienza University, Rome, Italy
- IRCCS Fondazione Santa Lucia, Roma, Italy
| | - Monia Savi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Donald Ielpo
- Department of Psychology and Center "Daniel Bovet," Sapienza University, Rome, Italy
| | - Margherita Barbetti
- Department of Chemistry, Life Sciences and Environmental Sustainability, Stress Physiology Lab, University of Parma, Parma, Italy
| | - Leonardo Bocchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Donatella Stilli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Rossella Ventura
- Department of Psychology and Center "Daniel Bovet," Sapienza University, Rome, Italy
- IRCCS Fondazione Santa Lucia, Roma, Italy
| | - Luisa Lo Iacono
- Department of Psychology and Center "Daniel Bovet," Sapienza University, Rome, Italy
- IRCCS Fondazione Santa Lucia, Roma, Italy
| | - Andrea Sgoifo
- Department of Chemistry, Life Sciences and Environmental Sustainability, Stress Physiology Lab, University of Parma, Parma, Italy
| | - Luca Carnevali
- Department of Chemistry, Life Sciences and Environmental Sustainability, Stress Physiology Lab, University of Parma, Parma, Italy
| |
Collapse
|
64
|
Bär C, Chatterjee S, Falcão Pires I, Rodrigues P, Sluijter JPG, Boon RA, Nevado RM, Andrés V, Sansonetti M, de Windt L, Ciccarelli M, Hamdani N, Heymans S, Figuinha Videira R, Tocchetti CG, Giacca M, Zacchigna S, Engelhardt S, Dimmeler S, Madonna R, Thum T. Non-coding RNAs: update on mechanisms and therapeutic targets from the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart. Cardiovasc Res 2021; 116:1805-1819. [PMID: 32638021 DOI: 10.1093/cvr/cvaa195] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/15/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023] Open
Abstract
Vast parts of mammalian genomes are actively transcribed, predominantly giving rise to non-coding RNA (ncRNA) transcripts including microRNAs, long ncRNAs, and circular RNAs among others. Contrary to previous opinions that most of these RNAs are non-functional molecules, they are now recognized as critical regulators of many physiological and pathological processes including those of the cardiovascular system. The discovery of functional ncRNAs has opened up new research avenues aiming at understanding ncRNA-related disease mechanisms as well as exploiting them as novel therapeutics in cardiovascular therapy. In this review, we give an update on the current progress in ncRNA research, particularly focusing on cardiovascular physiological and disease processes, which are under current investigation at the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart. This includes a range of topics such as extracellular vesicle-mediated communication, neurohormonal regulation, inflammation, cardiac remodelling, cardio-oncology as well as cardiac development and regeneration, collectively highlighting the wide-spread involvement and importance of ncRNAs in the cardiovascular system.
Collapse
Affiliation(s)
- Christian Bär
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Shambhabi Chatterjee
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Inês Falcão Pires
- Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Patrícia Rodrigues
- Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Joost P G Sluijter
- Experimental Cardiology Laboratory, UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Reinier A Boon
- Department of Physiology, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands.,Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,Partner site Rhein/Main, German Center for Cardiovascular Research (DZHK), Frankfurt am Main, Germany
| | - Rosa M Nevado
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Marida Sansonetti
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.,Department of Molecular Genetics, Faculty of Science and Engineering, Maastricht University, Maastricht, The Netherlands.,Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Leon de Windt
- Department of Molecular Genetics, Faculty of Science and Engineering, Maastricht University, Maastricht, The Netherlands.,Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Italy
| | - Nazha Hamdani
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Stephane Heymans
- Department of Cardiology, Maastricht University Medical Centre, University Hospital Maastricht, The Netherlands.,Center for Heart Failure Research, Cardiovascular Research Institute Maastricht (CARIM), University Hospital Maastricht, The Netherlands
| | - Raquel Figuinha Videira
- Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Molecular Genetics, Faculty of Science and Engineering, Maastricht University, Maastricht, The Netherlands.,Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Carlo G Tocchetti
- Department of Translational Medical Sciences and Interdepartmental Center of Clinical and Translational Research (CIRCET), Federico II University, Naples, Italy
| | - Mauro Giacca
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.,School of Cardiovascular Medicine & Sciences, King's College London, London, UK.,Department of Medicine, Surgery and Health Sciences, University of Trieste, Italy
| | - Serena Zacchigna
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.,Department of Medicine, Surgery and Health Sciences, University of Trieste, Italy
| | - Stefan Engelhardt
- Institute of Pharmacology and Toxicology, Technische Universität München, Biedersteiner Str. 29, Munich 80802, Germany.,DZHK (German Center for Cardiovascular Research), Partner site Munich Heart Alliance, Biedersteiner Str. 29, Munich 80802, Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe University, Germany.,German Center for Cardiovascular Research (DZHK), Frankfurt, Germany.,Cardio-Pulmonary Institute (CPI), Frankfurt, Germany
| | - Rosalinda Madonna
- Institute of Cardiology, University of Pisa, Pisa, Italy.,Department of Internal Medicine, University of Texas Medical School, Houston, TX, USA
| | - Thomas Thum
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
65
|
Fan K, Huang W, Qi H, Song C, He C, Liu Y, Zhang Q, Wang L, Sun H. The Egr-1/miR-15a-5p/GPX4 axis regulates ferroptosis in acute myocardial infarction. Eur J Pharmacol 2021; 909:174403. [PMID: 34339707 DOI: 10.1016/j.ejphar.2021.174403] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 01/18/2023]
Abstract
Acute myocardial infarction (AMI) is a type of cardiovascular diseases that severely threatens human being, but the mechanisms have not been thoroughly clarified. Here, we detected that microRNA-15a-5p (miR-15a-5p) was up-regulated in AMI. Knockdown of miR-15a-5p reduced cell mortality in hypoxic-treated myocardial cells. In addition, we determined that glutathione peroxidase4 (GPX4) was the direct target of miR-15a-5p by luciferase reporter assay. Over-expression of miR-15a-5p strengthened ferroptosis, then aggravated myocardial cell hypoxia injury. Mechanistically, silencing transcription factor early growth response-1 (Egr-1) inhibited the level of miR-15a-5p, increased the protein expression of GPX4, accompanied by reduced ferroptosis and alleviated myocardial injury. In summary, these results provide a novel signaling pathway during the progression of acute myocardial infarction, namely Egr-1/miR-15a-5p/GPX4/ferroptosis.
Collapse
Affiliation(s)
- Kai Fan
- Department of Pathophysiology, Harbin Medical University-Daqing, No 39, Xin Yang Road, Daqing, Heilongjiang, 163319, China
| | - Wei Huang
- Department of Pharmacology, Harbin Medical University-Daqing, No 39, Xin Yang Road, Daqing, Heilongjiang, 163319, China
| | - Hanping Qi
- Department of Pharmacology, Harbin Medical University-Daqing, No 39, Xin Yang Road, Daqing, Heilongjiang, 163319, China
| | - Chao Song
- Department of Pharmacology, Harbin Medical University-Daqing, No 39, Xin Yang Road, Daqing, Heilongjiang, 163319, China
| | - Cong He
- Department of Pharmacology, Harbin Medical University-Daqing, No 39, Xin Yang Road, Daqing, Heilongjiang, 163319, China
| | - Yongsheng Liu
- Department of Pharmacology, Harbin Medical University-Daqing, No 39, Xin Yang Road, Daqing, Heilongjiang, 163319, China
| | - Qianlong Zhang
- Department of Physiology, Harbin Medical University-Daqing, No 39, Xin Yang Road, Daqing, Heilongjiang, 163319, China
| | - Lixin Wang
- Department of Pharmacology, Harbin Medical University-Daqing, No 39, Xin Yang Road, Daqing, Heilongjiang, 163319, China
| | - Hongli Sun
- Department of Pharmacology, Harbin Medical University-Daqing, No 39, Xin Yang Road, Daqing, Heilongjiang, 163319, China.
| |
Collapse
|
66
|
Abstract
Manipulation of microRNA (miRNA) expression has been shown to induce cardiac regeneration, consolidating their therapeutic potential. However, studies often validate only a few miRNA targets in each experiment and hold these targets entirely accountable for the miRNAs' action, ignoring the other potential molecular and cellular events involved. In this report, experimentally validated miRNAs are used as a window of discovery for the possible genes and signaling pathways that are implicated in cardiac regeneration. A thorough evidence search was conducted, and identified miRNAs were submitted for in silico dissection using reliable bioinformatics tools. A total of 46 miRNAs were retrieved from existing literature. Shared targets between miRNAs included well-recognized genes such as BCL-2, CCND1, and PTEN. Transcription factors that are possibly involved in the regeneration process such as SP1, CTCF, and ZNF263 were also identified. The analysis confirmed well-established signaling pathways involved in cardiac regeneration such as Hippo, MAPK, and AKT signaling, and revealed new pathways such as ECM-receptor interaction, and FoxO signaling on top of hormonal pathways such as thyroid, adrenergic, and estrogen signaling pathways. Additionally, a set of differentially expressed miRNAs were identified as potential future experimental candidates.
Collapse
|
67
|
Autophagy: A Novel Horizon for Hair Cell Protection. Neural Plast 2021; 2021:5511010. [PMID: 34306061 PMCID: PMC8263289 DOI: 10.1155/2021/5511010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022] Open
Abstract
As a general sensory disorder, hearing loss was a major concern worldwide. Autophagy is a common cellular reaction to stress that degrades cytoplasmic waste through the lysosome pathway. Autophagy not only plays major roles in maintaining intracellular homeostasis but is also involved in the development and pathogenesis of many diseases. In the auditory system, several studies revealed the link between autophagy and hearing protection. In this review, we aimed to establish the correlation between autophagy and hair cells (HCs) from the aspects of ototoxic drugs, aging, and acoustic trauma and discussed whether autophagy could serve as a potential measure in the protection of HCs.
Collapse
|
68
|
miRNA in cardiac development and regeneration. CELL REGENERATION (LONDON, ENGLAND) 2021; 10:14. [PMID: 34060005 PMCID: PMC8166991 DOI: 10.1186/s13619-021-00077-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
Ischemic heart disease is one of the main causes of morbidity and mortality in the world. In adult mammalian hearts, most cardiomyocytes are terminally differentiated and have extremely limited capacity of proliferation, making it impossible to regenerate the heart after injuries such as myocardial infarction. MicroRNAs (miRNAs), a class of non-coding single-stranded RNA, which are involved in mRNA silencing and the regulation of post-transcriptional gene expression, have been shown to play a crucial role in cardiac development and cardiomyocyte proliferation. Muscle specific miRNAs such as miR-1 are key regulators of cardiomyocyte maturation and growth, while miR-199-3p and other miRNAs display potent activity to induce proliferation of cardiomyocytes. Given their small size and relative pleiotropic effects, miRNAs have gained significant attraction as promising therapeutic targets or tools in cardiac regeneration. Increasing number of studies demonstrated that overexpression or inhibition of specific miRNAs could induce cardiomyocyte proliferation and cardiac regeneration. Some common targets of pro-proliferation miRNAs, such as the Hippo-Yap signaling pathway, were identified in multiple species, highlighting the power of miRNAs as probes to dissect core regulators of biological processes. A number of miRNAs have been shown to improve heart function after myocardial infarction in mice, and one trial in swine also demonstrated promising outcomes. However, technical difficulties, especially in delivery methods, and adverse effects, such as uncontrolled proliferation, remain. In this review, we summarize the recent progress in miRNA research in cardiac development and regeneration, examine the mechanisms of miRNA regulating cardiomyocyte proliferation, and discuss its potential as a new strategy for cardiac regeneration therapy.
Collapse
|
69
|
Therapies to prevent post-infarction remodelling: From repair to regeneration. Biomaterials 2021; 275:120906. [PMID: 34139506 DOI: 10.1016/j.biomaterials.2021.120906] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 05/02/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022]
Abstract
Myocardial infarction is the first cause of worldwide mortality, with an increasing incidence also reported in developing countries. Over the past decades, preclinical research and clinical trials continually tested the efficacy of cellular and acellular-based treatments. However, none of them resulted in a drug or device currently used in combination with either percutaneous coronary intervention or coronary artery bypass graft. Inflammatory, proliferation and remodelling phases follow the ischaemic event in the myocardial tissue. Only recently, single-cell sequencing analyses provided insights into the specific cell populations which determine the final fibrotic deposition in the affected region. In this review, ischaemia, inflammation, fibrosis, angiogenesis, cellular stress and fundamental cellular and molecular components are evaluated as therapeutic targets. Given the emerging evidence of biomaterial-based systems, the increasing use of injectable hydrogels/scaffolds and epicardial patches is reported both as acellular and cellularised/functionalised treatments. Since several variables influence the outcome of any experimented treatment, we return to the pathological basis with an unbiased view towards any specific process or cellular component. Thus, by evaluating the benefits and limitations of the approaches based on these targets, the reader can weigh the rationale of each of the strategies that reached the clinical trials stage. As recent studies focused on the relevance of the extracellular matrix in modulating ischaemic remodelling and enhancing myocardial regeneration, we aim to portray current trends in the field with this review. Finally, approaches towards feasible translational studies that are as yet unexplored are also suggested.
Collapse
|
70
|
MicroRNAs in the regulation of autophagy and their possible use in age-related macular degeneration therapy. Ageing Res Rev 2021; 67:101260. [PMID: 33516915 DOI: 10.1016/j.arr.2021.101260] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022]
Abstract
Age-related macular degeneration (AMD) is a progressive sight-impairing disease of the elderly. The pathogenic mechanisms of AMD are not well understood although both genetic and many environmental factors have been associated with the development of AMD. One clinical hallmark of AMD is the detrimental aggregation of damaged proteins. Recently, it has been suggested that the weakening of autophagy clearance is an important mechanism in the pathogenesis of AMD. Autophagy is important in the removal of damaged or no longer needed cellular material and its recycling. A considerable number of autophagy-targeting microRNAs (miRNAs), small RNA molecules and epigenetic regulators have been found to be either up- or down-regulated in AMD patients and experimental models. The important role of autophagy-targeting miRNAs is supported by several studies and can open the prospect of the use of these miRNAs in the therapy for AMD.
Collapse
|
71
|
Yuan T, Krishnan J. Non-coding RNAs in Cardiac Regeneration. Front Physiol 2021; 12:650566. [PMID: 33841185 PMCID: PMC8024481 DOI: 10.3389/fphys.2021.650566] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
The adult heart has a limited capacity to replace or regenerate damaged cardiac tissue following severe myocardial injury. Thus, therapies facilitating the induction of cardiac regeneration holds great promise for the treatment of end-stage heart failure, and for pathologies invoking severe cardiac dysfunction as a result of cardiomyocyte death. Recently, a number of studies have demonstrated that cardiac regeneration can be achieved through modulation and/or reprogramming of cardiomyocyte proliferation, differentiation, and survival signaling. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are reported to play critical roles in regulating key aspects of cardiomyocyte physiologic and pathologic signaling, including the regulation of cardiac regeneration both in vitro and in vivo. In this review, we will explore and detail the current understanding of ncRNA function in cardiac regeneration, and highlight established and novel strategies for the treatment of heart failure through modulation of ncRNAs-driven cardiac regeneration.
Collapse
Affiliation(s)
- Ting Yuan
- Institute of Cardiovascular Regeneration, Center for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jaya Krishnan
- Institute of Cardiovascular Regeneration, Center for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
72
|
Jakubik D, Fitas A, Eyileten C, Jarosz-Popek J, Nowak A, Czajka P, Wicik Z, Sourij H, Siller-Matula JM, De Rosa S, Postula M. MicroRNAs and long non-coding RNAs in the pathophysiological processes of diabetic cardiomyopathy: emerging biomarkers and potential therapeutics. Cardiovasc Diabetol 2021; 20:55. [PMID: 33639953 PMCID: PMC7916283 DOI: 10.1186/s12933-021-01245-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/13/2021] [Indexed: 02/08/2023] Open
Abstract
The epidemic of diabetes mellitus (DM) necessitates the development of novel therapeutic and preventative strategies to attenuate complications of this debilitating disease. Diabetic cardiomyopathy (DCM) is a frequent disorder affecting individuals diagnosed with DM characterized by left ventricular hypertrophy, diastolic and systolic dysfunction and myocardial fibrosis in the absence of other heart diseases. Progression of DCM is associated with impaired cardiac insulin metabolic signaling, increased oxidative stress, impaired mitochondrial and cardiomyocyte calcium metabolism, and inflammation. Various non-coding RNAs, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), as well as their target genes are implicated in the complex pathophysiology of DCM. It has been demonstrated that miRNAs and lncRNAs play an important role in maintaining homeostasis through regulation of multiple genes, thus they attract substantial scientific interest as biomarkers for diagnosis, prognosis and as a potential therapeutic strategy in DM complications. This article will review the different miRNAs and lncRNA studied in the context of DM, including type 1 and type 2 diabetes and the contribution of pathophysiological mechanisms including inflammatory response, oxidative stress, apoptosis, hypertrophy and fibrosis to the development of DCM .
Collapse
Affiliation(s)
- Daniel Jakubik
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland
| | - Alex Fitas
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland
| | - Joanna Jarosz-Popek
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland.,Doctoral School, Medical University of Warsaw, 02-091, Warsaw, Poland
| | - Anna Nowak
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland
| | - Pamela Czajka
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland
| | - Zofia Wicik
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland.,Centro de Matemática, Computação e Cognição, Universidade Federal Do ABC, São Paulo, Brazil
| | - Harald Sourij
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Jolanta M Siller-Matula
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland.,Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Salvatore De Rosa
- Division of Cardiology, Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy.,Cardiovascular Research Center, "Magna Graecia" University, Catanzaro, Italy
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland.
| |
Collapse
|
73
|
Braga L, Ali H, Secco I, Giacca M. Non-coding RNA therapeutics for cardiac regeneration. Cardiovasc Res 2021; 117:674-693. [PMID: 32215566 PMCID: PMC7898953 DOI: 10.1093/cvr/cvaa071] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/02/2020] [Accepted: 03/20/2020] [Indexed: 12/19/2022] Open
Abstract
A growing body of evidence indicates that cardiac regeneration after myocardial infarction can be achieved by stimulating the endogenous capacity of cardiomyocytes (CMs) to replicate. This process is controlled, both positively and negatively, by a large set of non-coding RNAs (ncRNAs). Some of the microRNAs (miRNAs) that can stimulate CM proliferation is expressed in embryonic stem cells and is required to maintain pluripotency (e.g. the miR-302∼367 cluster). Others also govern the proliferation of different cell types, including cancer cells (e.g. the miR-17∼92 cluster). Additional miRNAs were discovered through systematic screenings (e.g. miR-199a-3p and miR-590-3p). Several miRNAs instead suppress CM proliferation and are involved in the withdrawal of CMs from the cell cycle after birth (e.g. the let-7 and miR-15 families). Similar regulatory roles on CM proliferation are also exerted by a few long ncRNAs. This body of information has obvious therapeutic implications, as miRNAs with activator function or short antisense oligonucleotides against inhibitory miRNAs or lncRNAs can be administered to stimulate cardiac regeneration. Expression of miRNAs can be achieved by gene therapy using adeno-associated vectors, which transduce CMs with high efficiency. More effective and safer for therapeutic purposes, small nucleic acid therapeutics can be obtained as chemically modified, synthetic molecules, which can be administered through lipofection or inclusion in lipid or polymer nanoparticles for efficient cardiac delivery. The notion that it is possible to reprogramme CMs into a regenerative state and that this property can be enhanced by ncRNA therapeutics remains exciting, however extensive experimentation in large mammals and rigorous assessment of safety are required to advance towards clinical application.
Collapse
Affiliation(s)
- Luca Braga
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King’s College London, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Hashim Ali
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King’s College London, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Ilaria Secco
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King’s College London, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Mauro Giacca
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King’s College London, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
74
|
Liu B, Wang B, Zhang X, Lock R, Nash T, Vunjak-Novakovic G. Cell type-specific microRNA therapies for myocardial infarction. Sci Transl Med 2021; 13:eabd0914. [PMID: 33568517 PMCID: PMC8848299 DOI: 10.1126/scitranslmed.abd0914] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 01/19/2021] [Indexed: 12/13/2022]
Abstract
Current interventions fail to recover injured myocardium after infarction and prompt the need for development of cardioprotective strategies. Of increasing interest is the therapeutic use of microRNAs to control gene expression through specific targeting of mRNAs. In this Review, we discuss current microRNA-based therapeutic strategies, describing the outcomes and limitations of key microRNAs with a focus on target cell types and molecular pathways. Last, we offer a perspective on the outlook of microRNA therapies for myocardial infarction, highlighting the outstanding challenges and emerging strategies.
Collapse
Affiliation(s)
- Bohao Liu
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Bryan Wang
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Xiaokan Zhang
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Roberta Lock
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Trevor Nash
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Gordana Vunjak-Novakovic
- Department of Medicine, Columbia University, New York, NY 10032, USA.
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| |
Collapse
|
75
|
Li W, Jin S, Hao J, Shi Y, Li W, Jiang L. Metformin attenuates ischemia/reperfusion-induced apoptosis of cardiac cells by downregulation of p53/microRNA-34a via activation of SIRT1. Can J Physiol Pharmacol 2021; 99:875-884. [PMID: 33517853 DOI: 10.1139/cjpp-2020-0180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Metformin has been demonstrated to be beneficial for the treatment of an impaired myocardium as a result of ischemia/reperfusion (I/R) injury, and miR-34a may be involved in this process. The aim of the present study was to determine the mechanisms by which metformin attenuated myocardial I/R injury-induced apoptosis. In the in vivo I/R model using Sprague-Dawley rats, metformin reduced the area of damaged myocardium and serum creatine MB isoform (CKMB) activity resulting in protection of the myocardium. Metformin also reduced apoptosis and the expression of apoptosis associated proteins, including caspase 3 and cleaved caspase, and decreased the expression of miR-34a, which is upregulated during I/R injury, which in turn resulted in corresponding changes in expression of Bcl-2, a direct target of miR-34a both in vitro and in vivo. To further examine the role of miR-34a in this process, H9C2 cells were transfected by a miR-34a mimic and inhibitor. Overexpression of miR-34a increased apoptosis in H9C2 cells induced by oxygen-glucose deprivation/recovery and knockdown of miR-34a expression-reduced apoptosis under the same conditions. Therefore, the effect of metformin on miR-34a in vitro were assessed. Metformin decreased the deacetylation activity of silent information regulator 1 resulting in reduced Ac-p53 levels, which reduced the levels of pri-miR-34a, and thus in turn reduced miR-34a levels. To confirm these results clinically, 90 patients with ST-segment elevation myocardial infarction following percutaneous coronary intervention were recruited. Patients who took metformin regularly before infarction had lower miR-34a levels and lower serum CKMB activity. Metformin also improved the sum ST-segment recovery following I/R injury. In conclusion, metformin may be helpful in the treatment of myocardial I/R.
Collapse
Affiliation(s)
- Weiwei Li
- The Clinical Laboratory, The Second Hospital of Hebei Medical University, No. 215 West Heping Road, Shijiazhuang, Hebei 050000, China
| | - Sheng Jin
- The Department of Physiology, The Hebei Medical University, No. 361 of East Zhongshan Road, Shijiazhuang, Hebei 050011, China
| | - Jie Hao
- The Department of Cardiology, The Second Hospital of Hebei Medical University, No. 215 West Heping Road, Shijiazhuang, Hebei, 050000, China
| | - Yun Shi
- The Department of Biochemistry and Molecular Biology, The Hebei Medical University, No. 361 of East Zhongshan Road, Shijiazhuang, Hebei 050011, China
| | - Wenjie Li
- Anyang Centre for Disease Control and Prevention, No.01 Ziyou Road, Anyang, Henan, 455000, China
| | - Lingling Jiang
- The Department of Biochemistry and Molecular Biology, The Hebei Medical University, No. 361 of East Zhongshan Road, Shijiazhuang, Hebei 050011, China
| |
Collapse
|
76
|
Dong X, Dong X, Gao F, Liu N, Liang T, Zhang F, Fu X, Pu L, Chen J. Non-coding RNAs in cardiomyocyte proliferation and cardiac regeneration: Dissecting their therapeutic values. J Cell Mol Med 2021; 25:2315-2332. [PMID: 33492768 PMCID: PMC7933974 DOI: 10.1111/jcmm.16300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/05/2021] [Accepted: 01/09/2021] [Indexed: 12/23/2022] Open
Abstract
Cardiovascular diseases are associated with high incidence and mortality, contribute to disability and place a heavy economic burden on countries worldwide. Stimulating endogenous cardiomyocyte proliferation and regeneration has been considering as a key to repair the injured heart caused by ischaemia. Emerging evidence has proved that non‐coding RNAs participate in cardiac proliferation and regeneration. In this review, we focus on the observation and mechanism that microRNAs (or miRNAs), long non‐coding RNAs (or lncRNAs) and circular RNA (or circRNAs) regulate cardiomyocyte proliferation and regeneration to repair a damaged heart. Furthermore, we highlight the potential therapeutic role of some non‐coding RNAs used in stimulating CMs proliferation. Finally, perspective on the development of non‐coding RNAs therapy in cardiac regeneration is presented.
Collapse
Affiliation(s)
- Xiaoxuan Dong
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiuyun Dong
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, China
| | - Feng Gao
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Ning Liu
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Tian Liang
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Zhang
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuyang Fu
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Linbin Pu
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinghai Chen
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
77
|
Abstract
The regeneration capacity of cardiomyocytes (CMs) is retained in neonatal mouse hearts but is limited in adult mouse hearts. Myocardial infarction (MI) in adult hearts usually leads to the loss of large amounts of cardiac tissue, and then accelerates the process of cardiac remodeling and heart failure. Therefore, it is necessary to explore the potential mechanisms of CM regeneration in the neonates and develop potential therapies aimed at promoting CM regeneration and cardiac repair in adults. Currently, studies indicate that a number of mechanisms are involved in neonatal endogenous myocardial regeneration, including cell cycle regulators, transcription factors, non-coding RNA, signaling pathways, acute inflammation, hypoxia, protein kinases, and others. Understanding the mechanisms of regeneration in neonatal CMs after MI provides theoretical support for the studies related to the promotion of heart repair after MI in adult mammals. However, several difficulties in the study of CM regeneration still need to be overcome. This article reviews the potential mechanisms of endogenous CM regeneration in neonatal mouse hearts and discusses possible therapeutic targets and future research directions.
Collapse
|
78
|
Lan H, Xue Q, Liu Y, Jin K, Fang X, Shao H. The emerging therapeutic role of mesenchymal stem cells in anthracycline-induced cardiotoxicity. Cell Tissue Res 2021; 384:1-12. [PMID: 33433685 DOI: 10.1007/s00441-020-03364-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/24/2020] [Indexed: 12/22/2022]
Abstract
Mesenchymal stem cell (MSC)-based tissue regeneration therapy has been extensively investigated for cardiac regeneration over the past two decades. Numerous animal and clinical investigations demonstrated the efficacy of various types of MSCs towards myocardial protection and restoration against anthracycline-induced cardiotoxicity (AIC). It has been established that local or systemic administration of MSCs considerably improved the cardiac function, while ameliorating inflammatory responses and myocardial fibrosis. Several factors influence the outcomes of MSC treatment for AIC, including MSC types, dosages, and routes and duration of administration. In this review, we discuss the recent (from 2015 to 2020) experimental and clinical research on the preventive and regeneration efficacy of different types of MSCs (with or without supporting agents) against AIC, as well as the key factors responsible for MSC-mediated cardiac repair. In addition, challenges and future perspectives of MSC-based cardiac regeneration therapy are also outlined.
Collapse
Affiliation(s)
- Huanrong Lan
- Department of Breast and Thyroid Surgery, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, People's Republic of China
| | - Qi Xue
- Department of Cardiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, People's Republic of China
| | - Yuyao Liu
- Department of Colorectal Surgery, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, People's Republic of China
| | - Ketao Jin
- Department of Colorectal Surgery, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, People's Republic of China
| | - Xingliang Fang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Shaoxing University (Shaoxing Municipal Hospital), Shaoxing, 312000, Zhejiang Province, People's Republic of China
| | - Hong Shao
- Department of Cardiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, People's Republic of China.
| |
Collapse
|
79
|
Therapeutic Value of miRNAs in Coronary Artery Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8853748. [PMID: 33953838 PMCID: PMC8057887 DOI: 10.1155/2021/8853748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/25/2021] [Accepted: 03/29/2021] [Indexed: 12/14/2022]
Abstract
Atherosclerotic ischemic coronary artery disease (CAD) is a significant community health challenge and the principal cause of morbidity and mortality in both developed and developing countries for all ethnic groups. The progressive chronic coronary atherosclerosis is the main underlying cause of CAD. Although enormous progress occurred in the last three decades in the management of cardiovascular diseases, the prevalence of CAD continues to increase worldwide, indicating the need for discovery of deeper molecular insights of CAD mechanisms, biomarkers, and innovative therapeutic targets. Recently, several research groups established that microRNAs essentially regulate various cardiovascular development and functions, and a deregulated cardiac enriched microRNA profile plays a vital role in the pathogenesis of CAD and its biological aging. Numerous studies established that over- or downregulation of a single miRNA gene by ago-miRNA or anti-miRNA is enough to modify the CAD disease process, significantly prevent age-dependent cardiac cell death, and markedly improve cardiac function. In the light of more recent experimental and clinical evidences, we briefly reviewed and discussed the involvement of miRNAs in CAD and their possible diagnostic/therapeutic values. Moreover, we also focused on the role of miRNAs in the initiation and progression of the atherosclerosis plaque as the strongest risk factor for CAD.
Collapse
|
80
|
Florio MC, Magenta A, Beji S, Lakatta EG, Capogrossi MC. Aging, MicroRNAs, and Heart Failure. Curr Probl Cardiol 2020; 45:100406. [PMID: 30704792 PMCID: PMC10544917 DOI: 10.1016/j.cpcardiol.2018.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 12/23/2018] [Indexed: 12/12/2022]
Abstract
Aging is a major risk factor for heart failure, one of the leading causes of death in Western society. The mechanisms that underlie the different forms of heart failure have been elucidated only in part and the role of noncoding RNAs is still poorly characterized. Specifically, microRNAs (miRNAs), a class of small noncoding RNAs that can modulate gene expression at the posttranscriptional level in all cells, including myocardial and vascular cells, have been shown to play a role in heart failure with reduced ejection fraction. In contrast, miRNAs role in heart failure with preserved ejection fraction, the predominant form of heart failure in the elderly, is still unknown. In this review, we will focus on age-dependent miRNAs in heart failure and on some other conditions that are prevalent in the elderly and are frequently associated with heart failure with preserved ejection fraction.
Collapse
|
81
|
Li B, Wang Z, Yang F, Huang J, Hu X, Deng S, Tian M, Si X. miR‑449a‑5p suppresses CDK6 expression to inhibit cardiomyocyte proliferation. Mol Med Rep 2020; 23:14. [PMID: 33179102 PMCID: PMC7673318 DOI: 10.3892/mmr.2020.11652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/02/2020] [Indexed: 12/27/2022] Open
Abstract
Induction of cardiomyocyte (CM) proliferation is a promising approach for cardiac regeneration following myocardial injury. MicroRNAs (miRs) have been reported to regulate CM proliferation. In particular, miR‑449a‑5p has been identified to be associated with CM proliferation in previous high throughput functional screening data. However, whether miR‑449a‑5p regulates CM proliferation has not been thoroughly investigated. This study aimed to explore whether miR‑449a‑5p modulates CM proliferation and to identify the molecular mechanism via which miR‑449a‑5p regulates CM proliferation. The current study demonstrated that miR‑449a‑5p expression levels were significantly increased during heart development. Furthermore, the results suggested that miR‑449a‑5p mimic inhibited CM proliferation <em>in vitro</em> as determined via immunofluorescence for ki67 and histone H3 phosphorylated at serine 10 (pH3), as well as the numbers of CMs. However, miR‑449a‑5p knockdown promoted CM proliferation. CDK6 was identified as a direct target gene of miR‑449a‑5p, and CDK6 mRNA and protein expression was suppressed by miR‑449a‑5p. Moreover, CDK6 gain‑of‑function increased CM proliferation. Overexpression of CDK6 also blocked the inhibitory effect of miR‑449a‑5p on CM proliferation, indicating that CDK6 was a functional target of miR‑449a‑5p in CM proliferation. In conclusion, miR‑449a‑5p inhibited CM proliferation by targeting CDK6, which provides a potential molecular target for preventing myocardial injury.
Collapse
Affiliation(s)
- Bing Li
- School of Medicine, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Zhi Wang
- Department of Emergency Medicine, Qingdao Municipal Hospital (Group), Qingdao, Shandong 266011, P.R. China
| | - Fan Yang
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Jing Huang
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Xingwei Hu
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Shiyan Deng
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Maobo Tian
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Xiaoyun Si
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
82
|
Kisby T, Lázaro I, Fisch S, Cartwright EJ, Cossu G, Kostarelos K. Adenoviral Mediated Delivery of OSKM Factors Induces Partial Reprogramming of Mouse Cardiac Cells In Vivo. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Thomas Kisby
- Nanomedicine Lab Faculty of Biology Medicine and Health AV Hill Building The University of Manchester Manchester M13 9PT UK
| | - Irene Lázaro
- Nanomedicine Lab Faculty of Biology Medicine and Health AV Hill Building The University of Manchester Manchester M13 9PT UK
- Harvard John A. Paulson School of Engineering and Applied Sciences 58 Oxford Street Cambridge MA 02138 USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University Center for Life Science 3 Blackfan Circle Boston MA 02115 USA
| | - Sudeshna Fisch
- Cardiovascular Physiology Core Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Elizabeth J. Cartwright
- Division of Cardiovascular Sciences Faculty of Biology Medicine and Health Manchester Academic Health Science Centre The University of Manchester Manchester M13 9PL UK
| | - Giulio Cossu
- Division of Cell Matrix Biology and Regenerative Medicine Faculty of Biology Medicine and Health The University of Manchester Manchester M13 9PT UK
| | - Kostas Kostarelos
- Nanomedicine Lab Faculty of Biology Medicine and Health AV Hill Building The University of Manchester Manchester M13 9PT UK
- Catalan Institute of Nanoscience and Nanotechnology (ICN2) Campus UAB Bellaterra Barcelona 08193 Spain
| |
Collapse
|
83
|
TRIF/miR-34a mediates aldosterone-induced cardiac inflammation and remodeling. Clin Sci (Lond) 2020; 134:1319-1331. [PMID: 32542395 DOI: 10.1042/cs20200249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/23/2022]
Abstract
Aldosterone, as a major product of renin-angiotensin-aldosterone system (RAAS), determines multiple pathophysiological processes in cardiovascular diseases. The excess inflammatory response is one of the key profiles in aldosterone-mediated cardiac remodeling. However, the potential mechanisms of aldosterone/inflammatory signaling were still not fully disclosed. The present study aimed to investigate whether TIR-domain-containing adapter-inducing interferon-β (Trif) participated in the aldosterone-induced cardiac remodeling, and to explore potential molecular mechanisms. Trif knockout mice and their littermates were osmotically administrated with aldosterone (50 μg/kg per day) for 21 and 42 days. The cardiac structural analysis, functional parameters, and mitochondrial function were measured. Aldosterone dose- or time-dependently increased the levels of TRIF in primary mouse cardiomyocytes or mouse heart tissues. Trif deficiency protected against aldosterone-induced cardiac hypertrophy, fibrosis and dysfunction. Moreover, Trif deficiency also suppressed aldosterone-induced cardiac inflammatory response and mitochondrial injuries. Mechanistically, overexpression of cardiac microRNAs (miR)-34a reversed the cardiac benefits of Trif deficiency in aldosterone-treated mice. Taken together, Trif/miR-34a axis could provide a novel molecular mechanism for explaining aldosterone-induced cardiac hypertrophy, fibrosis and functional disorders.
Collapse
|
84
|
Wang S, Cao N. Uncovering potential differentially expressed miRNAs and targeted mRNAs in myocardial infarction based on integrating analysis. Mol Med Rep 2020; 22:4383-4395. [PMID: 33000230 PMCID: PMC7533449 DOI: 10.3892/mmr.2020.11517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/25/2020] [Indexed: 01/08/2023] Open
Abstract
Myocardial infarction (MI) is one of the leading causes of death globally. The aim of the present study was to find valuable microRNAs (miRNAs/miRs) and target mRNAs in order to contribute to our understanding of the pathology of MI. miRNA and mRNA data were downloaded for differential expression analysis. Then, a regulatory network between miRNAs and mRNAs was established, followed by function annotation of target mRNAs. Thirdly, prognosis and diagnostic analysis of differentially methylated target mRNAs were performed. Finally, an in vitro experiment was used to validate the expression of selected miRNAs and target mRNAs. A total of 19 differentially expressed miRNAs and 1,007 differentially expressed mRNAs were identified. Several regulatory interaction pairs between miRNA and mRNAs were identified, such as hsa-miR-142-2p-long-chain-fatty-acid-CoA ligase 1 (ACSL1), hsa-miR-15a-3p-nicotinamide phosphoribosyltransferase (NAMPT), hsa-miR-33b-5p-regulator of G-protein signaling 2 (RGS2), hsa-miR-17-3p-Jun dimerization protein 2 (JDP2), hsa-miR-24-1-5p-aquaporin-9 (AQP9) and hsa-miR-34a-5p-STAT1/AKT3. Of note, it was demonstrated that ACSL1, NAMPT, RGS2, JDP2, AQP9, STAT1 and AKT3 had diagnostic and prognostic values for patients with MI. In addition, STAT1 was involved in the ‘chemokine signaling pathway’ and ‘Jak-STAT signaling pathway’. AKT3 was involved in both the ‘MAPK signaling pathway’ and ‘T cell receptor signaling pathway’. Reverse transcription-quantitative PCR validation of hsa-miR-142-3p, hsa-miR-15a-3p, hsa-miR-33b-5p, ACSL1, NAMPT, RGS2 and JDP2 expression was consistent with the bioinformatics analysis. In conclusion, the identified miRNAs and mRNAs may be involved in the pathology of MI.
Collapse
Affiliation(s)
- Shiai Wang
- Department of Cardiology, Jinan Jigang Hospital, Jinan, Shandong 250000, P.R. China
| | - Na Cao
- Department of Cardiology, Jinan Jigang Hospital, Jinan, Shandong 250000, P.R. China
| |
Collapse
|
85
|
Khan MJ, Singh P, Dohare R, Jha R, Rahmani AH, Almatroodi SA, Ali S, Syed MA. Inhibition of miRNA-34a Promotes M2 Macrophage Polarization and Improves LPS-Induced Lung Injury by Targeting Klf4. Genes (Basel) 2020; 11:genes11090966. [PMID: 32825525 PMCID: PMC7563942 DOI: 10.3390/genes11090966] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/05/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is an outcome of an accelerated immune response that starts initially as a defensive measure, however, due to non-canonical signaling, it later proves to be fatal not only to the affected tissue but to the whole organ system. microRNAs are known for playing a decisive role in regulating the expression of genes involved in diverse functions such as lung development, repair, and inflammation. In-silico analyses of clinical data and microRNA databases predicted a probable interaction between miRNA-34a (miR-34a), mitogen-activated protein kinase 1 (ERK), and kruppel like factor 4 (Klf4). Parallel to in silico results, here, we show that intra-tracheal instillation of lipopolysaccharides (LPS) to mice enhanced miR-34a expression in lung macrophages. Inhibition of miR-34a significantly improved lung histology, whereas over-expression of miR-34a worsened the lung injury phenotype. miR-34a over-expression in macrophages were also demonstrated to favour pro-inflammatory M1 phenotype and inhibition of M2 polarization. In a quest to confirm this likely interaction, expression profiles of Klf4 as the putative target were analyzed in different macrophage polarizing conditions. Klf4 expression was found to be prominent in the miR-34a inhibitor-treated group but down-regulated in the miR-34a mimic treated group. Immuno-histopathological analyses of lung tissue from the mice treated with miR-34a inhibitor also showed reduced inflammatory M1 markers as well as enhanced cell proliferation. The present study indicates that miR-34a intensified LPS-induced lung injury and inflammation by regulating Klf4 and macrophage polarization, which may serve as a potential therapeutic target for acute lung injury/ARDS.
Collapse
Affiliation(s)
- Mohd Junaid Khan
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Prithvi Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (P.S.); (R.D.); (R.J.)
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (P.S.); (R.D.); (R.J.)
| | - Rishabh Jha
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (P.S.); (R.D.); (R.J.)
| | - Arshad H. Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.H.R.); (S.A.A.)
| | - Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.H.R.); (S.A.A.)
| | - Shakir Ali
- Department of Biochemistry, School of Chemical and Life Sciences Jamia Hamdard, New Delhi 110025, India;
| | - Mansoor Ali Syed
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India;
- Correspondence: ; Tel.: +91-995-378-6440
| |
Collapse
|
86
|
Non-coding RNAs: emerging players in cardiomyocyte proliferation and cardiac regeneration. Basic Res Cardiol 2020; 115:52. [PMID: 32748089 PMCID: PMC7398957 DOI: 10.1007/s00395-020-0816-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023]
Abstract
Soon after birth, the regenerative capacity of the mammalian heart is lost, cardiomyocytes withdraw from the cell cycle and demonstrate a minimal proliferation rate. Despite improved treatment and reperfusion strategies, the uncompensated cardiomyocyte loss during injury and disease results in cardiac remodeling and subsequent heart failure. The promising field of regenerative medicine aims to restore both the structure and function of damaged tissue through modulation of cellular processes and regulatory mechanisms involved in cardiac cell cycle arrest to boost cardiomyocyte proliferation. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) are functional RNA molecules with no protein-coding function that have been reported to engage in cardiac regeneration and repair. In this review, we summarize the current understanding of both the biological functions and molecular mechanisms of ncRNAs involved in cardiomyocyte proliferation. Furthermore, we discuss their impact on the structure and contractile function of the heart in health and disease and their application for therapeutic interventions.
Collapse
|
87
|
Hu B, Boakye‐Yiadom KO, Yu W, Yuan Z, Ho W, Xu X, Zhang X. Nanomedicine Approaches for Advanced Diagnosis and Treatment of Atherosclerosis and Related Ischemic Diseases. Adv Healthc Mater 2020; 9:e2000336. [PMID: 32597562 DOI: 10.1002/adhm.202000336] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/30/2020] [Indexed: 12/16/2022]
Abstract
Cardiovascular diseases (CVDs) remain one of the major causes of mortality worldwide. In response to this and other worldwide health epidemics, nanomedicine has emerged as a rapidly evolving discipline that involves the development of innovative nanomaterials and nanotechnologies and their applications in therapy and diagnosis. Nanomedicine presents unique advantages over conventional medicines due to the superior properties intrinsic to nanoscopic therapies. Once used mainly for cancer therapies, recently, tremendous progress has been made in nanomedicine that has led to an overall improvement in the treatment and diagnosis of CVDs. This review elucidates the pathophysiology and potential targets of atherosclerosis and associated ischemic diseases. It may be fruitful to pursue future work in the nanomedicine-mediated treatment of CVDs based on these targets. A comprehensive overview is then provided featuring the latest preclinical and clinical outcomes in cardiovascular imaging, biomarker detection, tissue engineering, and nanoscale delivery, with specific emphasis on nanoparticles, nanostructured scaffolds, and nanosensors. Finally, the challenges and opportunities regarding the future development and clinical translation of nanomedicine in related fields are discussed. Overall, this review aims to provide a deep and thorough understanding of the design, application, and future development of nanomedicine for atherosclerosis and related ischemic diseases.
Collapse
Affiliation(s)
- Bin Hu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Kofi Oti Boakye‐Yiadom
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Wei Yu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Zi‐Wei Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - William Ho
- Department of Chemical and Materials EngineeringNew Jersey Institute of Technology Newark NJ 07102 USA
| | - Xiaoyang Xu
- Department of Chemical and Materials EngineeringNew Jersey Institute of Technology Newark NJ 07102 USA
| | - Xue‐Qing Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| |
Collapse
|
88
|
Cardioprotective effects of miR-34a silencing in a rat model of doxorubicin toxicity. Sci Rep 2020; 10:12250. [PMID: 32704131 PMCID: PMC7378226 DOI: 10.1038/s41598-020-69038-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 07/07/2020] [Indexed: 12/11/2022] Open
Abstract
Cardiotoxicity remains a serious problem in anthracycline-treated oncologic patients. Therapeutic modulation of microRNA expression is emerging as a cardioprotective approach in several cardiovascular pathologies. MiR-34a increased in animals and patients exposed to anthracyclines and is involved in cardiac repair. In our previous study, we demonstrated beneficial effects of miR-34a silencing in rat cardiac cells exposed to doxorubicin (DOXO). The aim of the present work is to evaluate the potential cardioprotective properties of a specific antimiR-34a (Ant34a) in an experimental model of DOXO-induced cardiotoxicity. Results indicate that in our model systemic administration of Ant34a completely silences miR-34a myocardial expression and importantly attenuates DOXO-induced cardiac dysfunction. Ant34a systemic delivery in DOXO-treated rats triggers an upregulation of prosurvival miR-34a targets Bcl-2 and SIRT1 that mediate a reduction of DOXO-induced cardiac damage represented by myocardial apoptosis, senescence, fibrosis and inflammation. These findings suggest that miR-34a therapeutic inhibition may have clinical relevance to attenuate DOXO-induced toxicity in the heart of oncologic patients.
Collapse
|
89
|
Zhang C, Xiong Y, Zeng L, Peng Z, Liu Z, Zhan H, Yang Z. The Role of Non-coding RNAs in Viral Myocarditis. Front Cell Infect Microbiol 2020; 10:312. [PMID: 32754448 PMCID: PMC7343704 DOI: 10.3389/fcimb.2020.00312] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022] Open
Abstract
Viral myocarditis (VMC) is a disease characterized as myocardial parenchyma or interstitium inflammation caused by virus infection, especially Coxsackievirus B3 (CVB3) infection, which has no accurate non-invasive examination for diagnosis and specific drugs for treatment. The mechanism of CVB3-induced VMC may be related to direct myocardial damage of virus infection and extensive damage of abnormal immune response after infection. Non-coding RNA (ncRNA) refers to RNA that is not translated into protein and plays a vital role in many biological processes. There is expanding evidence to reveal that ncRNAs regulate the occurrence and development of VMC, which may provide new treatment or diagnosis targets. In this review, we mainly demonstrate an overview of the potential role of ncRNAs in the pathogenesis, diagnosis and treatment of CVB3-induced VMC.
Collapse
Affiliation(s)
- Cong Zhang
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory on Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Yan Xiong
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lijin Zeng
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory on Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Zhihua Peng
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory on Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Zhihao Liu
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hong Zhan
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhen Yang
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory on Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| |
Collapse
|
90
|
An Overview of Non-coding RNAs and Cardiovascular System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:3-45. [PMID: 32285403 DOI: 10.1007/978-981-15-1671-9_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease management and timely diagnosis remain a major dilemma. Delineating molecular mechanisms of cardiovascular diseases is opening horizon in the field of molecular medicines and in the development of early diagnostic markers. Non-coding RNAs are the highly functional and vibrant nucleic acids and are known to be involved in the regulation of endothelial cells, vascular and smooth muscles cells, cardiac metabolism, ischemia, inflammation and many processes in cardiovascular system. This chapter is comprehensively focusing on the overview of the non-coding RNAs including their discovery, generation, classification and functional regulation. In addition, overview regarding different non-coding RNAs as long non-coding, siRNAs and miRNAs involvement in the cardiovascular diseases is also addressed. Detailed functional analysis of this vast group of highly regulatory molecules will be promising for shaping future drug discoveries.
Collapse
|
91
|
Qiang J, Zhu XW, He J, Tao YF, Bao JW, Zhu JH, Xu P. miR-34a Regulates the Activity of HIF-1a and P53 Signaling Pathways by Promoting GLUT1 in Genetically Improved Farmed Tilapia (GIFT, Oreochromis niloticus) Under Hypoxia Stress. Front Physiol 2020; 11:670. [PMID: 32612542 PMCID: PMC7308589 DOI: 10.3389/fphys.2020.00670] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/25/2020] [Indexed: 12/21/2022] Open
Abstract
In fish under hypoxia stress, homeostasis can become imbalanced, leading to tissue and organ damage and decreased survival. Therefore, it is useful to explore the molecular and physiological regulation mechanisms that function in fish under hypoxia stress. The microRNA miR-34a is involved in fat and glycogen metabolism, and in apoptosis. In this study, we first verified that GLUT1, the gene encoding glucose transporter 1, is a potential target gene of miR-34a in genetically improved farmed tilapia (GIFT, Oreochromis niloticus) by dual luciferase reporter assays. Then, we clarified the regulatory relationship between miR-34a and GLUT1 by qRT-PCR analyses. We analyzed the regulatory effects of knockdown or promotion of GLUT1 expression in vitro and in vivo in GIFT under hypoxia stress. The results confirm that GLUT1 is a target gene of miR-34a in GIFT. Down-regulation of miR-34a significantly promoted GLUT1 expression. Knockdown of GLUT1 reduced the glycogen content in GIFT liver cells, inhibited HIF-1a gene expression, up-regulated the expression of genes involved in P53 signaling pathways (P53 and CASPASE-3 genes), and accelerated hepatocyte apoptosis under hypoxia stress. Compared with the control group, the group injected in the tail vein with miR-34a antagomir showed up-regulated expression of GLUT1 in the liver, increased liver glycogen content at 96 h of hypoxia stress, down-regulated expression of P53 and CASPASE-3, and decreased serum aspartate aminotransferase and alanine aminotransferase enzyme activities. Our results provide information about the molecular regulation mechanism of miRNAs and their target genes in fish during the response to hypoxia stress.
Collapse
Affiliation(s)
- Jun Qiang
- Fisheries College of Guangdong Ocean University, Zhanjiang, China.,Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Xiao-Wen Zhu
- Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - Jie He
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Yi-Fan Tao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Jin-Wen Bao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Jun-Hao Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| |
Collapse
|
92
|
Lock MC, Tellam RL, Darby JRT, Soo JY, Brooks DA, Seed M, Selvanayagam JB, Morrison JL. Identification of Novel miRNAs Involved in Cardiac Repair Following Infarction in Fetal and Adolescent Sheep Hearts. Front Physiol 2020; 11:614. [PMID: 32587529 PMCID: PMC7298149 DOI: 10.3389/fphys.2020.00614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/15/2020] [Indexed: 01/14/2023] Open
Abstract
Aims Animal models have been used to show that there are critical molecular mechanisms that can be activated to induce myocardial repair at specific times in development. For example, specific miRNAs are critical for regulating the response to myocardial infarction (MI) and improving the response to injury. Manipulating these miRNAs in small animal models provides beneficial effects post-MI; however it is not known if these miRNAs are regulated similarly in large mammals. Studying a large animal where the timing of heart development in relation to birth is similar to humans may provide insights to better understand the capacity to repair a developing mammalian heart and its application to the adult heart. Methods We used a sheep model of MI that included permanent ligation of the left anterior descending (LAD) coronary artery. Surgery was performed on fetuses (at 105 days gestation when all cardiomyocytes are mononucleated and proliferative) and adolescent sheep (at 6 months of age when all cardiomyocytes contribute to heart growth by hypertrophy). A microarray was utilized to determine the expression of known miRNAs within the damaged and undamaged tissue regions in fetal and adolescent hearts after MI. Results 73 miRNAs were up-regulated and 58 miRNAs were down-regulated significantly within the fetal infarct compared to remote cardiac samples. From adolescent hearts 69 non-redundant miRNAs were up-regulated and 63 miRNAs were down-regulated significantly in the infarct area compared to remote samples. Opposite differential expression profiles of 10 miRNAs within tissue regions (Infarct area, Border zone and Remote area of the left ventricle) occurred between the fetuses and adolescent sheep. These included miR-558 and miR-1538, which when suppressed using LNA anti-miRNAs in cell culture, increased cardiomyoblast proliferation. Conclusion There were significant differences in miRNA responses in fetal and adolescent sheep hearts following a MI, suggesting that the modulation of novel miRNA expression may have therapeutic potential, by promoting proliferation or repair in a damaged heart.
Collapse
Affiliation(s)
- Mitchell C Lock
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia
| | - Ross L Tellam
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia
| | - Jia Yin Soo
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia
| | - Doug A Brooks
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia.,Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Mike Seed
- Division of Cardiology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Joseph B Selvanayagam
- Cardiac Imaging Research, Department of Heart Health, South Australian Health & Medical Research Institute, Flinders University, Adelaide, SA, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
93
|
Wang Q, Liu B, Wang Y, Bai B, Yu T, Chu XM. The biomarkers of key miRNAs and target genes associated with acute myocardial infarction. PeerJ 2020; 8:e9129. [PMID: 32440375 PMCID: PMC7229769 DOI: 10.7717/peerj.9129] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Background Acute myocardial infarction (AMI) is considered one of the most prominent causes of death from cardiovascular disease worldwide. Knowledge of the molecular mechanisms underlying AMI remains limited. Accurate biomarkers are needed to predict the risk of AMI and would be beneficial for managing the incidence rate. The gold standard for the diagnosis of AMI, the cardiac troponin T (cTnT) assay, requires serial testing, and the timing of measurement with respect to symptoms affects the results. As attractive candidate diagnostic biomarkers in AMI, circulating microRNAs (miRNAs) are easily detectable, generally stable and tissue specific. Methods The Gene Expression Omnibus (GEO) database was used to compare miRNA expression between AMI and control samples, and the interactions between miRNAs and mRNAs were analysed for expression and function. Furthermore, a protein-protein interaction (PPI) network was constructed. The miRNAs identified in the bioinformatic analysis were verified by RT-qPCR in an H9C2 cell line. The miRNAs in plasma samples from patients with AMI (n = 11) and healthy controls (n = 11) were used to construct receiver operating characteristic (ROC) curves to evaluate the clinical prognostic value of the identified miRNAs. Results We identified eight novel miRNAs as potential candidate diagnostic biomarkers for patients with AMI. In addition, the predicted target genes provide insight into the molecular mechanisms underlying AMI.
Collapse
Affiliation(s)
- Qi Wang
- Department of Cardiology, The Affiliated hospital of Qingdao University, Qingdao, China
| | - Bingyan Liu
- School of Basic Medicine, Qingdao University, Qingdao, China.,Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Yuanyong Wang
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Baochen Bai
- Department of Cardiology, The Affiliated hospital of Qingdao University, Qingdao, China
| | - Tao Yu
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Xian-Ming Chu
- Department of Cardiology, The Affiliated hospital of Qingdao University, Qingdao, China.,Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
94
|
Ruiz-Meana M, Bou-Teen D, Ferdinandy P, Gyongyosi M, Pesce M, Perrino C, Schulz R, Sluijter JPG, Tocchetti CG, Thum T, Madonna R. Cardiomyocyte ageing and cardioprotection: consensus document from the ESC working groups cell biology of the heart and myocardial function. Cardiovasc Res 2020; 116:1835-1849. [DOI: 10.1093/cvr/cvaa132] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/25/2020] [Accepted: 04/30/2020] [Indexed: 12/12/2022] Open
Abstract
Abstract
Advanced age is a major predisposing risk factor for the incidence of coronary syndromes and comorbid conditions which impact the heart response to cardioprotective interventions. Advanced age also significantly increases the risk of developing post-ischaemic adverse remodelling and heart failure after ischaemia/reperfusion (IR) injury. Some of the signalling pathways become defective or attenuated during ageing, whereas others with well-known detrimental consequences, such as glycoxidation or proinflammatory pathways, are exacerbated. The causative mechanisms responsible for all these changes are yet to be elucidated and are a matter of active research. Here, we review the current knowledge about the pathophysiology of cardiac ageing that eventually impacts on the increased susceptibility of cells to IR injury and can affect the efficiency of cardioprotective strategies.
Collapse
Affiliation(s)
- Marisol Ruiz-Meana
- Department of Cardiology, Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autonoma de Barcelona and Centro de Investigación Biomédica en Red-CV, CIBER-CV, Madrid, Spain
| | - Diana Bou-Teen
- Department of Cardiology, Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autonoma de Barcelona and Centro de Investigación Biomédica en Red-CV, CIBER-CV, Madrid, Spain
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Mariann Gyongyosi
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Joost P G Sluijter
- Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Circulatory Health Laboratory, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Carlo G Tocchetti
- Department of Translational Medical Sciences and Interdepartmental Center of Clinical and Translational Sciences (CIRCET), Federico II University, Naples, Italy
| | - Thomas Thum
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Rosalinda Madonna
- Institute of Cardiology, University of Pisa, Pisa, Italy
- Department of Internal Medicine, University of Texas Medical School in Houston, Houston, TX, USA
| |
Collapse
|
95
|
Abstract
While clinical gene therapy celebrates its first successes, with several products already approved for clinical use and several hundreds in the final stages of the clinical approval pipeline, there is not a single gene therapy approach that has worked for the heart. Here, we review the past experience gained in the several cardiac gene therapy clinical trials that had the goal of inducing therapeutic angiogenesis in the ischemic heart and in the attempts at modulating cardiac function in heart failure. Critical assessment of the results so far achieved indicates that the efficiency of cardiac gene delivery remains a major hurdle preventing success but also that improvements need to be sought in establishing more reliable large animal models, choosing more effective therapeutic genes, better designing clinical trials, and more deeply understanding cardiac biology. We also emphasize a few areas of cardiac gene therapy development that hold great promise for the future. In particular, the transition from gene addition studies using protein-coding cDNAs to the modulation of gene expression using small RNA therapeutics and the improvement of precise gene editing now pave the way to applications such as cardiac regeneration after myocardial infarction and gene correction for inherited cardiomyopathies that were unapproachable until a decade ago.
Collapse
Affiliation(s)
- Antonio Cannatà
- From the King's College London, British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, United Kingdom (A.C., H.A., M.G.).,Department of Medical, Surgical and Health Sciences, University of Trieste, Italy (A.C., G.S., M.G.)
| | - Hashim Ali
- From the King's College London, British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, United Kingdom (A.C., H.A., M.G.).,Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy (H.A., M.G.)
| | - Gianfranco Sinagra
- Department of Medical, Surgical and Health Sciences, University of Trieste, Italy (A.C., G.S., M.G.)
| | - Mauro Giacca
- From the King's College London, British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, United Kingdom (A.C., H.A., M.G.).,Department of Medical, Surgical and Health Sciences, University of Trieste, Italy (A.C., G.S., M.G.).,Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy (H.A., M.G.)
| |
Collapse
|
96
|
Li C, Zhang Y, Tang Y, Xiao J, Gao F, Ouyang Y, Cheng X. LncRNA CRNDE modulates cardiac progenitor cells' proliferation and migration via the miR-181a/LYRM1 axis in hypoxia. J Thorac Dis 2020; 12:2614-2624. [PMID: 32642169 PMCID: PMC7330284 DOI: 10.21037/jtd.2020.03.22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Background The cardiac progenitor cells provide a valuable method for myocardial infarction related heart failure therapies. But cardiac progenitor cell quickly loses the proliferation abilities during the myocardial infarction. In this paper, we aim to explore the role of lncRNA CRNDE in the modulation of cardiac progenitor cell reproduction and migration. Methods Cardiac progenitor cells were isolated from neonatal adult Sprague-Dawley rats by removing the heart and homogenizing the tissue. Various siRNAs and RNA mimics were co-transfected to the cells. A list of characterization methods, including qRT-PCR, Western blotting, luciferase assay, CCK-8 assay, and EdU incorporation assay, were utilized to verify the roles and interactions of CRNDE, miR-181a, and LYRM1 in cardiac progenitor cells’ proliferation and migration potentials. Results LncRNA CRNDE expressions were substantially promoted in the CoCl2-related hypoxia cardiac progenitor cell model. CRNDE suppression inhibited cardiac progenitor cell reproduction and migration under hypoxic conditions. The miR-181a-inhibitor restored the reproduction and migration potentials of cardiac progenitor cells after CRNDE knockdown in hypoxia. LYR motif containing 1 (LYRM1) was a target of miR-181a, and miR-181a negatively modulated its expressions. LYRM1 knockdowns inhibited miR-181a-inhibitor's protective effects for cardiac progenitor cell functions in hypoxia. Conclusions Our experiments and analysis demonstrated that CRNDE could modulate cardiac progenitor cell proliferation and migration potentials via the miR-181a/LYRM1 axis in hypoxia.
Collapse
Affiliation(s)
- Chuanchuan Li
- Department of Cardiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China.,Department of Cardiology, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou 350009, China
| | - Yan Zhang
- Department of Cardiology, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou 350009, China
| | - Yuan Tang
- Department of Cardiology, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou 350009, China
| | - Jinwen Xiao
- Department of Cardiology, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou 350009, China
| | - Feng Gao
- Department of Cardiology, Affiliated Xiamen Zhongshan Hospital of Xiamen University, Xiamen 361004, China
| | - Yu Ouyang
- Department of Cardiology, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou 350009, China
| | - Xiao Cheng
- Department of Cardiology, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou 350009, China
| |
Collapse
|
97
|
|
98
|
Zhu Y, Qian X, Li J, Lin X, Luo J, Huang J, Jin Z. Astragaloside-IV protects H9C2(2-1) cardiomyocytes from high glucose-induced injury via miR-34a-mediated autophagy pathway. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:4172-4181. [PMID: 31713440 DOI: 10.1080/21691401.2019.1687492] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Diabetic cardiomyopathy (DCM) is an important cardiac disorder in patients with diabetes. High glucose (HG) levels lead to inflammation of cardiomyocytes, oxidative stress, and long-term activation of autophagy, resulting in myocardial fibrosis and remodelling. Astragaloside-IV (AS-IV) has a wide range of pharmacological effects. This study aimed to investigate the effects of AS-IV on injury induced by HG in rat cardiomyocytes (H9C2(2-1)) and the involvement of the miR-34a-mediated autophagy pathway. An AS-IV concentration of 100 μM was selected based on H9C2(2-1) cell viability using the cell counting kit-8 (CCK-8). We found that 33 mM HG induced a morphologic change in cells and caused excessive oxidative stress, whereas AS-IV inhibited lipid peroxidation and increased superoxide dismutase activity. In terms of mRNA expression, HG increased miR-34a and inhibited Bcl2 and Sirt1, whereas AS-IV and miR-34a-inhibitor reversed the above effects. Further, LC3-GFP adenovirus infection and western blotting showed that HG increased autophagy, which was reversed synergistically by AS-IV and miR-34a-inhibitor. Bcl2 and pAKT/AKT protein expressions in the HG group was significantly lower than that in controls, but AS-IV and miR-34a-inhibitor antagonized the process. Thus, AS-IV inhibits HG-induced oxidative stress and autophagy and protects cardiomyocytes from injury via the miR-34a/Bcl2/(LC3II/LC3I) and pAKT/Bcl2/(LC3II/LC3I) pathways.
Collapse
Affiliation(s)
- Yaobin Zhu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, P. R. China
| | - Xin Qian
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, P. R. China
| | - Jingjing Li
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, P. R. China
| | - Xing Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, P. R. China
| | - Jiewei Luo
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, P. R. China.,Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Fuzhou, P. R. China
| | - Jianbin Huang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, P. R. China
| | - Zhao Jin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, P. R. China
| |
Collapse
|
99
|
Huang D, Ren J, Li R, Guan C, Feng Z, Bao B, Wang W, Zhou C. Tooth Regeneration: Insights from Tooth Development and Spatial-Temporal Control of Bioactive Drug Release. Stem Cell Rev Rep 2020; 16:41-55. [PMID: 31834583 PMCID: PMC6987083 DOI: 10.1007/s12015-019-09940-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Tooth defect and tooth loss are common clinical diseases in stomatology. Compared with the traditional oral restoration treatment, tooth regeneration has unique advantages and is currently the focus of oral biomedical research. It is known that dozens of cytokines/growth factors and other bioactive factors are expressed in a spatial-temporal pattern during tooth development. On the other hand, the technology for spatial-temporal control of drug release has been intensively studied and well developed recently, making control release of these bioactive factors mimicking spatial-temporal pattern more feasible than ever for the purpose of tooth regeneration. This article reviews the research progress on the tooth development and discusses the future of tooth regeneration in the context of spatial-temporal release of developmental factors.
Collapse
Affiliation(s)
- Delan Huang
- Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Jianhan Ren
- Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Runze Li
- Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Chenyu Guan
- Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zhicai Feng
- Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Baicheng Bao
- Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Weicai Wang
- Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Chen Zhou
- Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
100
|
miR-19a/19b improves the therapeutic potential of mesenchymal stem cells in a mouse model of myocardial infarction. Gene Ther 2020; 28:29-37. [PMID: 31969696 DOI: 10.1038/s41434-020-0122-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/02/2020] [Accepted: 01/13/2020] [Indexed: 12/16/2022]
Abstract
Myocardial infarction (MI) is the cardiac emergency that may leads to myocardial necrosis. Mesenchymal stem cells (MSCs) could be used to induce myocardial differentiation. However, the efficiency remains low. The aim of this study is to explore whether miR-19a/19b could enhance the therapeutic potential of mesenchymal stem cells in MI. Myocardial infarction mouse model was established using coronary artery ligation. Cardiac functional recovery was detected by Masson's trichrome staining. Under hypoxic condition, miR-19a/19b expression levels decreased in bone marrow-derived MSCs (BM-MSCs). MiR-19a/19b suppressed the proliferation of MSCs under hypoxic condition. After cell engraftment, miR-19a/19b promoted survival of MSCs. Mechanically, miR-19a/19b inhibited inflammatory cells infiltration into myocardium cells. Moreover, MSCs-miR-19a/19b improves cardiac functional recovery in diabetic MI mice models. All the results indicated that miR-19a/19b improves the therapeutic potential of mesenchymal stem cells in a mouse model of myocardial infarction.
Collapse
|