51
|
Saalfeld S, Stahl J, Korte J, Miller Marsh LM, Preim B, Beuing O, Cherednychenko Y, Behme D, Berg P. Can Endovascular Treatment of Fusiform Intracranial Aneurysms Restore the Healthy Hemodynamic Environment?–A Virtual Pilot Study. Front Neurol 2022; 12:771694. [PMID: 35140672 PMCID: PMC8818669 DOI: 10.3389/fneur.2021.771694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022] Open
Abstract
Numerous studies assess intracranial aneurysm rupture risk based on morphological and hemodynamic parameter analysis in addition to clinical information such as aneurysm localization, age, and sex. However, intracranial aneurysms mostly occur with a saccular shape located either lateral to the parent artery or at a bifurcation. In contrast, fusiform intracranial aneurysms (FIAs), i.e., aneurysms with a non-saccular, dilated form, occur in approximately 3–13% of all cases and therefore have not yet been as thoroughly studied. To improve the understanding of FIA hemodynamics, this pilot study contains morphological analyses and image-based blood flow simulations in three patient-specific cases. For a precise and realistic comparison to the pre-pathological state, each dilation was manually removed and the time-dependent blood flow simulations were repeated. Additionally, a validated fast virtual stenting approach was applied to evaluate the effect of virtual endovascular flow-diverter deployment focusing on relevant hemodynamic quantities. For two of the three patients, post-interventional information was available and included in the analysis. The results of this numerical pilot study indicate that complex flow structures, i.e., helical flow phenomena and the presence of high oscillating flow features, predominantly occur in FIAs with morphologically differing appearances. Due to the investigation of the individual healthy states, the original flow environment could be restored which serves as a reference for the virtual treatment target. It was shown that the realistic deployment led to a considerable stabilization of the individual hemodynamics in all cases. Furthermore, a quantification of the stent-induced therapy effect became feasible for the treating physician. The results of the morphological and hemodynamic analyses in this pilot study show that virtual stenting can be used in FIAs to quantify the effect of the planned endovascular treatment.
Collapse
Affiliation(s)
- Sylvia Saalfeld
- Research Campus STIMULATE, University of Magdeburg, Magdeburg, Germany
- Department of Simulation and Graphics, University of Magdeburg, Magdeburg, Germany
- *Correspondence: Sylvia Saalfeld
| | - Janneck Stahl
- Research Campus STIMULATE, University of Magdeburg, Magdeburg, Germany
- Department of Fluid Dynamics and Technical Flows, University of Magdeburg, Magdeburg, Germany
| | - Jana Korte
- Research Campus STIMULATE, University of Magdeburg, Magdeburg, Germany
- Department of Simulation and Graphics, University of Magdeburg, Magdeburg, Germany
| | - Laurel Morgan Miller Marsh
- Research Campus STIMULATE, University of Magdeburg, Magdeburg, Germany
- Department of Fluid Dynamics and Technical Flows, University of Magdeburg, Magdeburg, Germany
- Department of Mechanical Engineering, University of Washington, Seattle, WA, United States
| | - Bernhard Preim
- Department of Simulation and Graphics, University of Magdeburg, Magdeburg, Germany
| | - Oliver Beuing
- Department of Radiology, AMEOS Hospital Bernburg, Bernburg, Germany
| | - Yurii Cherednychenko
- Endovascular Centre, Dnipropetrovsk Regional Clinical Hospital named after I.I. Mechnikov, Dnipro, Ukraine
| | - Daniel Behme
- Research Campus STIMULATE, University of Magdeburg, Magdeburg, Germany
- Department of Neuroradiology, University Hospital Magdeburg, Magdeburg, Germany
| | - Philipp Berg
- Research Campus STIMULATE, University of Magdeburg, Magdeburg, Germany
- Department of Fluid Dynamics and Technical Flows, University of Magdeburg, Magdeburg, Germany
| |
Collapse
|
52
|
Zhai X, Wang Y, Fang G, Hu P, Zhang H, Zhu C. Case Report: Dynamic Changes in Hemodynamics During the Formation and Progression of Intracranial Aneurysms. Front Cardiovasc Med 2022; 8:775536. [PMID: 35127854 PMCID: PMC8814101 DOI: 10.3389/fcvm.2021.775536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/28/2021] [Indexed: 11/29/2022] Open
Abstract
Despite the devastating consequences of aneurysmal subarachnoid hemorrhage (SAH), the mechanisms underlying the formation, progression, and rupture of intracranial aneurysms (IAs) are complex and not yet fully clear. In a real-world situation, continuously observing the process of aneurysm development in humans appears unrealistic, which also present challenges for the understanding of the underlying mechanism. We reported the relatively complete course of IA development in two real patients. On this basis, computational fluid dynamics simulation (CFD) was performed to evaluate the changes in hemodynamics and analyze the mechanism underlying the formation, progression, and rupture of IAs. Our results suggested that the formation and progression of IAs can be a dynamic process, with constantly changing hemodynamic characteristics. CFD analysis based on medical imaging provides the opportunity to study the hemodynamic conditions over time. From these two rare cases, we found that concentrated high-velocity inflow jets, flows with vortex structures, extremely high WSS, and a very steep WSSG were correlated with the formation of IAs. Complex multi-vortex flows are possibly related to IAs prior to growth, and the rupture of IAs is possibly related to low WSS, extreme instability and complexity of flow patterns. Our findings provide unique insight into the theoretical hemodynamic mechanism underlying the formation and progression of IAs. Given the small sample size the findings of this study have to be considered preliminary and exploratory.
Collapse
|
53
|
Wang H, Uhlmann K, Vedula V, Balzani D, Varnik F. Fluid-structure interaction simulation of tissue degradation and its effects on intra-aneurysm hemodynamics. Biomech Model Mechanobiol 2022; 21:671-683. [PMID: 35025011 PMCID: PMC8940862 DOI: 10.1007/s10237-022-01556-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/04/2022] [Indexed: 12/03/2022]
Abstract
Tissue degradation plays a crucial role in vascular diseases such as atherosclerosis and aneurysms. Computational modeling of vascular hemodynamics incorporating both arterial wall mechanics and tissue degradation has been a challenging task. In this study, we propose a novel finite element method-based approach to model the microscopic degradation of arterial walls and its interaction with blood flow. The model is applied to study the combined effects of pulsatile flow and tissue degradation on the deformation and intra-aneurysm hemodynamics. Our computational analysis reveals that tissue degradation leads to a weakening of the aneurysmal wall, which manifests itself in a larger deformation and a smaller von Mises stress. Moreover, simulation results for different heart rates, blood pressures and aneurysm geometries indicate consistently that, upon tissue degradation, wall shear stress increases near the flow-impingement region and decreases away from it. These findings are discussed in the context of recent reports regarding the role of both high and low wall shear stress for the progression and rupture of aneurysms.
Collapse
|
54
|
Bershad EM, Suarez JI. Aneurysmal Subarachnoid Hemorrhage. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00029-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
55
|
Zhang J, Brindise MC, Rothenberger SM, Markl M, Rayz VL, Vlachos PP. A multi-modality approach for enhancing 4D flow magnetic resonance imaging via sparse representation. J R Soc Interface 2022; 19:20210751. [PMID: 35042385 PMCID: PMC8767185 DOI: 10.1098/rsif.2021.0751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
This work evaluates and applies a multi-modality approach to enhance blood flow measurements and haemodynamic analysis with phase-contrast magnetic resonance imaging (4D flow MRI) in cerebral aneurysms (CAs). Using a library of high-resolution velocity fields from patient-specific computational fluid dynamic simulations and in vitro particle tracking velocimetry measurements, the flow field of 4D flow MRI data is reconstructed as the sparse representation of the library. The method was evaluated with synthetic 4D flow MRI data in two CAs. The reconstruction enhanced the spatial resolution and velocity accuracy of the synthetic MRI data, leading to reliable pressure and wall shear stress (WSS) evaluation. The method was applied on in vivo 4D flow MRI data acquired in the same CAs. The reconstruction increased the velocity and WSS by 6-13% and 39-61%, respectively, suggesting that the accuracy of these quantities was improved since the raw MRI data underestimated the velocity and WSS by 10-20% and 40-50%, respectively. The computed pressure fields from the reconstructed data were consistent with the observed flow structures. The results suggest that using the sparse representation flow reconstruction with in vivo 4D flow MRI enhances blood flow measurement and haemodynamic analysis.
Collapse
Affiliation(s)
- Jiacheng Zhang
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907 USA
| | - Melissa C. Brindise
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907 USA
| | - Sean M. Rothenberger
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 USA
| | - Michael Markl
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA,McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Vitaliy L. Rayz
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907 USA,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 USA
| | - Pavlos P. Vlachos
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907 USA,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 USA
| |
Collapse
|
56
|
Hu B, Zhang G. A commentary on "The prognostic effects of hemodynamic parameters on rupture of intracranial aneurysm: A systematic review and meta-analysis" (Int J Surg. 2021; 86:15-23). Int J Surg 2022; 97:106195. [PMID: 34906735 DOI: 10.1016/j.ijsu.2021.106195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 10/19/2022]
Affiliation(s)
- Bimei Hu
- Department of Medical Nursing, Lianyungang TCM Higher Vocational and Technical School, Lianyungang TCM Branch of Jiangsu Union Technical Institute, Jiangsu, 222000, China Department of Neurology, Lianyungang Hospital Affiliated to Xuzhou Medical College, Jiangsu, 222002, China
| | | |
Collapse
|
57
|
Park SH, Kim K. Microplastics induced developmental toxicity with microcirculation dysfunction in zebrafish embryos. CHEMOSPHERE 2022; 286:131868. [PMID: 34399253 DOI: 10.1016/j.chemosphere.2021.131868] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) and nanoplastics (NPs) have attracted worldwide attention as potential environmental pollutants. However, toxic effects of exposure to MPs and NPs on organisms at developmental stages have not been elucidated yet. In this study, zebrafish embryos at early stage were used to evaluate potential toxic effects of exposure to MPs with diameter of 1 μm and NPs with diameter of 0.4 μm. Solution containing NPs was optically more transparent than solution containing MPs at the same mass concentration. However, exposure to NPs induced significantly higher mortality rate of zebrafish embryos than exposure to MPs. Exposure to MPs or NPs caused pathological changes of caudal vein plexus. In addition, caudal tissues were impaired with inhibition of intact growth of zebrafish embryos. Peripheral microcirculation at caudal region was significantly deteriorated by exposure to MPs or NPs. However, systematic perfusion was still maintained with preservation of RBC velocity profiles regardless of exposure to MPs or NPs. This study provides a new insight to the use of plastics, demonstrating that exposure to MPs or NPs can lead to developmental disorder with significant impairment of growth and peripheral microcirculation dysfunction.
Collapse
Affiliation(s)
- Sung Ho Park
- Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Kiwoong Kim
- Mechanical Engineering, Hannam University, Daejeon, 34430, South Korea.
| |
Collapse
|
58
|
Pathogenic Factors and Prognosis of De Novo Aneurysms vAfter Aneurysm Clipping. J Craniofac Surg 2021; 33:1800-1805. [PMID: 34974461 DOI: 10.1097/scs.0000000000008451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE To confirm this hypothesis, this study aimed to explore the pathogenic factors, prognosis, and their relationship in de novo aneurysms and to reach a consensus on their management. METHODS First, the clinical data of 5 patients with de novo aneurysms from April 1998 to October 2021 were analyzed retrospectively. Then, the English literature on de novo aneurysms reported in Pubmed from 1985 to 2021 was systematically reviewed, and 18 case reports from 17 articles and 16 case series were identified. Univariate and multivariate analyses and modified Fisher test were used to analyze the relationship between pathogenic factors and prognosis. RESULTS Hypertension was noted in 60% of our clinical cases, 50% of the case series identified in the literature review, and 66.7% of the case reports in the literature review. In the case reports identified from our literature review, the proportion of original aneurysms in the anterior circulation was 96.3%. Moreover, in our 5 cases, all original aneurysms occurred in the anterior circulation. The rupture rate of original aneurysms in our 5 cases was 100%, and that of the cases reported in the literature review was 88.9%. Univariate logistic analysis showed that the time interval was related to the prognosis of de novo aneurysms with a P value of 0.048 and an odds ratio of 0.968 (95% confidence interval 0.938-1.000). Modified Fisher exact tests showed that patient age at the occurrence of de novo aneurysm P = 0.029) was related to the prognosis of de novo aneurysms. CONCLUSIONS Hypertension, an original aneurysms located in the anterior circulation and rupture represent the pathogenic factors associated with de novo aneurysms. The time interval to de novo aneurysm and patient age at the occurrence of de novo aneurysm are predictive of prognosis. Based on the above information, we can prevent and improve the prognosis of de novo aneurysms.
Collapse
|
59
|
Bappoo N, Syed MBJ, Khinsoe G, Kelsey LJ, Forsythe RO, Powell JT, Hoskins PR, McBride OMB, Norman PE, Jansen S, Newby DE, Doyle BJ. Low Shear Stress at Baseline Predicts Expansion and Aneurysm-Related Events in Patients With Abdominal Aortic Aneurysm. Circ Cardiovasc Imaging 2021; 14:1112-1121. [PMID: 34875845 DOI: 10.1161/circimaging.121.013160] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Low shear stress has been implicated in abdominal aortic aneurysm (AAA) expansion and clinical events. We tested the hypothesis that low shear stress in AAA at baseline is a marker of expansion rate and future aneurysm-related events. METHODS Patients were imaged with computed tomography angiography at baseline and followed up every 6 months >24 months with ultrasound measurements of maximum diameter. From baseline computed tomography angiography, we reconstructed 3-dimensional models for automated computational fluid dynamics simulations and computed luminal shear stress. The primary composite end point was aneurysm repair and/or rupture, and the secondary end point was aneurysm expansion rate. RESULTS We included 295 patients with median AAA diameter of 49 mm (interquartile range, 43-54 mm) and median follow-up of 914 (interquartile range, 670-1112) days. There were 114 (39%) aneurysm-related events, with 13 AAA ruptures and 98 repairs (one rupture was repaired). Patients with low shear stress (<0.4 Pa) experienced a higher number of aneurysm-related events (44%) compared with medium (0.4-0.6 Pa; 27%) and high (>0.6 Pa; 29%) shear stress groups (P=0.010). This association was independent of known risk factors (adjusted hazard ratio, 1.72 [95% CI, 1.08-2.73]; P=0.023). Low shear stress was also independently associated with AAA expansion rate (β=+0.28 mm/y [95% CI, 0.02-0.53]; P=0.037). CONCLUSIONS We show for the first time that low shear stress (<0.4 Pa) at baseline is associated with both AAA expansion and future aneurysm-related events. Aneurysms within the lowest tertile of shear stress, versus those with higher shear stress, were more likely to rupture or reach thresholds for elective repair. Larger prospective validation trials are needed to confirm these findings and translate them into clinical management.
Collapse
Affiliation(s)
- Nikhilesh Bappoo
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and the UWA Centre for Medical Research (N.B., G.K., L.J.K., P.E.N., B.J.D.), The University of Western Australia, Perth.,School of Engineering (N.B., G.K., L.J.K., B.K.D.), The University of Western Australia, Perth
| | - Maaz B J Syed
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, United Kingdom (M.B.J.S., R.O.F., P.R.H., O.M.B.M., D.E.N., B.J.D.)
| | - Georgia Khinsoe
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and the UWA Centre for Medical Research (N.B., G.K., L.J.K., P.E.N., B.J.D.), The University of Western Australia, Perth.,School of Engineering (N.B., G.K., L.J.K., B.K.D.), The University of Western Australia, Perth
| | - Lachlan J Kelsey
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and the UWA Centre for Medical Research (N.B., G.K., L.J.K., P.E.N., B.J.D.), The University of Western Australia, Perth.,School of Engineering (N.B., G.K., L.J.K., B.K.D.), The University of Western Australia, Perth
| | - Rachael O Forsythe
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, United Kingdom (M.B.J.S., R.O.F., P.R.H., O.M.B.M., D.E.N., B.J.D.)
| | - Janet T Powell
- Vascular Surgery Research Group, Imperial College London, London, United Kingdom (J.T.P.)
| | - Peter R Hoskins
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, United Kingdom (M.B.J.S., R.O.F., P.R.H., O.M.B.M., D.E.N., B.J.D.).,Biomedical Engineering, Dundee University, United Kingdom (P.R.H.)
| | - Olivia M B McBride
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, United Kingdom (M.B.J.S., R.O.F., P.R.H., O.M.B.M., D.E.N., B.J.D.)
| | - Paul E Norman
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and the UWA Centre for Medical Research (N.B., G.K., L.J.K., P.E.N., B.J.D.), The University of Western Australia, Perth.,Medical School (P.E.N., S.J.), The University of Western Australia, Perth
| | - Shirley Jansen
- Medical School (P.E.N., S.J.), The University of Western Australia, Perth.,Heart and Vascular Research Institute, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Perth, Australia (S.J.).,Department of Vascular and Endovascular Surgery, Sir Charles Gairdner Hospital, Perth, Australia (S.J.).,Curtin Medical School, Curtin University, Perth, Australia (S.J.)
| | - David E Newby
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, United Kingdom (M.B.J.S., R.O.F., P.R.H., O.M.B.M., D.E.N., B.J.D.)
| | - Barry J Doyle
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and the UWA Centre for Medical Research (N.B., G.K., L.J.K., P.E.N., B.J.D.), The University of Western Australia, Perth.,School of Engineering (N.B., G.K., L.J.K., B.K.D.), The University of Western Australia, Perth.,Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, United Kingdom (M.B.J.S., R.O.F., P.R.H., O.M.B.M., D.E.N., B.J.D.).,Australian Research Council Centre for Personalised Therapeutics Technologies (B.J.D.)
| |
Collapse
|
60
|
Yong KW, Janmaleki M, Pachenari M, Mitha AP, Sanati-Nezhad A, Sen A. Engineering a 3D human intracranial aneurysm model using liquid-assisted injection molding and tuned hydrogels. Acta Biomater 2021; 136:266-278. [PMID: 34547516 DOI: 10.1016/j.actbio.2021.09.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/30/2022]
Abstract
Physiologically relevant intracranial aneurysm (IA) models are crucially required to facilitate testing treatment options for IA. Herein, we report the development of a new in vitro tissue-engineered platform, which recapitulates the microenvironment, structure, and cellular complexity of native human IA. A new modified liquid-assisted injection molding technique was developed to fabricate a three-dimensional hollow IA model with clinically relevant IA dimensions within a mechanically tuned Gelatin Methacryloyl (GelMA) hydrogel. An endothelium lining was created inside the IA model by culturing human umbilical vein endothelial cells over pre-cultured human brain vascular smooth muscle cells. These cellularized IA models were subjected to medium perfusion at flow rates between 6.3 and 15.75 mL/min for inducing biomimetic vessel wall shear stress (10-25 dyn/cm2) to the cells for ten days. Both cell types maintained their secretome profiles and showed more than 96% viability, demonstrating the biocompatibility of the hydrogel during perfusion cell culture at such flow rates. Based on the characterized viscoelastic properties of the GelMA hydrogel and with the aid of a fluid-structure interaction model, the capability of the IA model in predicting the response of the IA to different fluid flow profiles was mathematically shown. With physiologically relevant behavior, our developed in vitro human IA model could allow researchers to better understand the pathophysiology and treatment of IA. STATEMENT OF SIGNIFICANCE: A three-dimensional intracranial aneurysm (IA) tissue model recapitulating the microenvironment, structure, and cellular complexity of native human IA was developed. • An endothelium lining was created inside the IA model over pre-cultured human brain vascular smooth muscle cells over at least 10-day successful culture. • The cells maintained their secretome profiles, demonstrating the biocompatibility of hydrogel during a long-term perfusion cell culture. • The IA model showed its capability in predicting the response of IA to different fluid flow profiles. • The cells in the vessel region behaved differently from cells in the aneurysm region due to alteration in hemodynamic shear stress. • The IA model could allow researchers to better understand the pathophysiology and treatment options of IA.
Collapse
|
61
|
Cornelissen BMW, Leemans EL, Slump CH, van den Berg R, Marquering HA, Majoie CBLM. Hemodynamic changes after intracranial aneurysm growth. J Neurosurg 2021:1-7. [PMID: 34715660 DOI: 10.3171/2021.6.jns204155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 06/07/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE For accurate risk assessment of unruptured intracranial aneurysms, it is important to understand the underlying mechanisms that lead to rupture. It is known that hemodynamic anomalies contribute to aneurysm growth and rupture, and that growing aneurysms carry higher rupture risks. However, it is unknown how growth affects hemodynamic characteristics. In this study, the authors assessed how hemodynamic characteristics change over the course of aneurysm growth. METHODS The authors included patients with observed aneurysm growth on longitudinal MRA in the period between 2012 and 2016. Patient-specific vascular models were created from baseline and follow-up images. Subsequently, intraaneurysmal hemodynamic characteristics were computed using computational fluid dynamics. The authors computed the normalized wall shear stress, oscillatory shear index, and low shear area to quantify hemodynamic characteristics. Differences between baseline and follow-up measurements were analyzed using paired t-tests. RESULTS Twenty-five patients with a total of 31 aneurysms were included. The aneurysm volume increased by a median (IQR) of 26 (9-39) mm3 after a mean follow-up period of 4 (range 0.4-10.9) years. The median wall shear stress decreased significantly after growth. Other hemodynamic parameters did not change significantly, although large individual changes with large variability were observed. CONCLUSIONS Hemodynamic characteristics change considerably after aneurysm growth. On average, wall shear stress values decrease after growth, but there is a large variability in hemodynamic changes between aneurysms.
Collapse
Affiliation(s)
- Bart M W Cornelissen
- 1Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam.,2Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Amsterdam; and.,3Technical Medical Center, University of Twente, Enschede, The Netherlands
| | - Eva L Leemans
- 1Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam.,2Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Amsterdam; and
| | - Cornelis H Slump
- 3Technical Medical Center, University of Twente, Enschede, The Netherlands
| | - René van den Berg
- 1Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam
| | - Henk A Marquering
- 1Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam.,2Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Amsterdam; and
| | - Charles B L M Majoie
- 1Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam
| |
Collapse
|
62
|
Yevtushenko P, Goubergrits L, Gundelwein L, Setio A, Ramm H, Lamecker H, Heimann T, Meyer A, Kuehne T, Schafstedde M. Deep Learning Based Centerline-Aggregated Aortic Hemodynamics: An Efficient Alternative to Numerical Modelling of Hemodynamics. IEEE J Biomed Health Inform 2021; 26:1815-1825. [PMID: 34591773 DOI: 10.1109/jbhi.2021.3116764] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Image-based patient-specific modelling of hemodynamics are gaining increased popularity as a diagnosis and outcome prediction solution for a variety of cardiovascular diseases. While their potential to improve diagnostic capabilities and thereby clinical outcome is widely recognized, these methods require considerable computational resources since they are mostly based on conventional numerical methods such as computational fluid dynamics (CFD). As an alternative to the numerical methods, we propose a machine learning (ML) based approach to calculate patient-specific hemodynamic parameters. Compared to CFD based methods, our approach holds the benefit of being able to calculate a patient-specific hemodynamic outcome instantly with little need for computational power. In this proof-of-concept study, we present a deep artificial neural network (ANN) capable of computing hemodynamics for patients with aortic coarctation in a centerline aggregated (i.e. locally averaged) form. Considering the complex relation between vessels shape and hemodynamics on the one hand and the limited availability of suitable clinical data on the other, a sufficient accuracy of the ANN may however not be achieved with available data only. Another key aspect of this study is therefore the successful augmentation of available clinical data. Using a statistical shape model, additional training data was generated which substantially increased the ANNs accuracy, showcasing the ability of ML based methods to perform in-silico modelling tasks previously requiring resource intensive CFD simulations.
Collapse
|
63
|
Pandey PK, Das MK. Effect of foam insertion in aneurysm sac on flow structures in parent lumen: relating vortex structures with disturbed shear. Phys Eng Sci Med 2021; 44:1231-1248. [PMID: 34581959 DOI: 10.1007/s13246-021-01058-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 09/05/2021] [Indexed: 11/26/2022]
Abstract
Numerous studies suggest that disturbed shear, causing endothelium dysfunction, can be related to neighboring vortex structures. With this motivation, this study presents a methodology to characterize the vortex structures. Precisely, we use mapping and characterization of vortex structures' changes to relate it with the hemodynamic indicators of disturbed shear. Topological features of vortex core lines (VCLs) are used to quantify the changes in vortex structures. We use the Sujudi-Haimes algorithm to extract the VCLs from the flow simulation results. The idea of relating vortex structures with disturbed shear is demonstrated for cerebral arteries with aneurysms virtually treated by inserting foam in the sac. To get physiologically realistic flow fields, we simulate blood flow in two patient-specific geometries before and after foam insertion, with realistic velocity waveform imposed at the inlet, using the Carreau-Yasuda model to mimic the shear-thinning behavior. With homogenous porous medium assumption, flow through the foam is modeled using the Forchheimer-Brinkman extended Darcy model. Results show that foam insertion increases the number of VCLs in the parent lumen. The average length of VCL increases by 168.9% and 55.6% in both geometries. For both geometries under consideration, results demonstrate that the region with increased disturbed shear lies in the same arterial segment exhibiting an increase in the number of oblique VCLs. Based on the findings, we conjecture that an increase in oblique VCLs is related to increased disturbed shear at the neighboring portion of the arterial wall.
Collapse
Affiliation(s)
- Pawan Kumar Pandey
- Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India
| | - Malay Kumar Das
- Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India.
| |
Collapse
|
64
|
Swiatek VM, Neyazi B, Roa JA, Zanaty M, Samaniego EA, Ishii D, Lu Y, Sandalcioglu IE, Saalfeld S, Berg P, Hasan DM. Aneurysm Wall Enhancement Is Associated With Decreased Intrasaccular IL-10 and Morphological Features of Instability. Neurosurgery 2021; 89:664-671. [PMID: 34245147 PMCID: PMC8578742 DOI: 10.1093/neuros/nyab249] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 05/08/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND High-resolution vessel wall imaging plays an increasingly important role in assessing the risk of aneurysm rupture. OBJECTIVE To introduce an approach toward the validation of the wall enhancement as a direct surrogate parameter for aneurysm stability. METHODS A total of 19 patients harboring 22 incidental intracranial aneurysms were enrolled in this study. The aneurysms were dichotomized according to their aneurysm-to-pituitary stalk contrast ratio using a cutoff value of 0.5 (nonenhancing < 0.5; enhancing ≥ 0.5). We evaluated the association of aneurysm wall enhancement with morphological characteristics, hemodynamic features, and inflammatory chemokines directly measured inside the aneurysm. RESULTS Differences in plasma concentration of chemokines and inflammatory molecules, morphological, and hemodynamic parameters were analyzed using the Welch test or Mann-Whitney U test. The concentration ΔIL-10 in the lumen of intracranial aneurysms with low wall enhancement was significantly increased compared to aneurysms with strong aneurysm wall enhancement (P = .014). The analysis of morphological and hemodynamic parameters showed significantly increased values for aneurysm volume (P = .03), aneurysm area (P = .044), maximal diameter (P = .049), and nonsphericity index (P = .021) for intracranial aneurysms with strong aneurysm wall enhancement. None of the hemodynamic parameters reached statistical significance; however, the total viscous shear force computed over the region of low wall shear stress showed a strong tendency toward significance (P = .053). CONCLUSION Aneurysmal wall enhancement shows strong associations with decreased intrasaccular IL-10 and established morphological indicators of aneurysm instability.
Collapse
Affiliation(s)
- Vanessa M Swiatek
- Deparment of Neurosurgery, Otto-von-Guericke University, Magdeburg, Saxony Anhalt, Germany
| | - Belal Neyazi
- Deparment of Neurosurgery, Otto-von-Guericke University, Magdeburg, Saxony Anhalt, Germany
| | - Jorge A Roa
- Deparment of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
- Deparment of Neurology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Mario Zanaty
- Deparment of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Edgar A Samaniego
- Deparment of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
- Deparment of Neurology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Daizo Ishii
- Deparment of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Yongjun Lu
- Deparment of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - I Erol Sandalcioglu
- Deparment of Neurosurgery, Otto-von-Guericke University, Magdeburg, Saxony Anhalt, Germany
| | - Sylvia Saalfeld
- Deparment of Simulation and Graphics, University of Magdeburg, Magdeburg, Saxony Anhalt, Germany
- Research Campus STIMULATE, Magdeburg, Saxony Anhalt, Germany
| | - Philipp Berg
- Research Campus STIMULATE, Magdeburg, Saxony Anhalt, Germany
- Department of Fluid Dynamics and Technical Flows, University of Magdeburg, Magdeburg, Saxony Anhalt, Germany
| | - David M Hasan
- Deparment of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| |
Collapse
|
65
|
Bao Q, Meng X, Hu M, Xing J, Jin D, Liu H, Jiang J, Yin Y. Simulation analysis of aneurysm embolization surgery: Hemorheology of aneurysms with different embolization rates (CTA). Biomed Mater Eng 2021; 32:295-308. [PMID: 33998529 DOI: 10.3233/bme-211225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Embolization degree acts as an important factor affecting recurrence of aneurysm. OBJECTIVE To analyze the role of hemodynamics parameters of different degrees of embolization in the occurrence, development and post-treatment of aneurysms, and to determine the specific factors causing the occurrence and recurrence of aneurysms after hemodynamics treatment. Our study provides a theoretical basis for the prevention and treatment of aneurysms. METHODS Computed tomography angiography data of a patient with cerebral aneurysm was used to model 0%, 24%, 52%, 84% and 100% of endovascular embolization, respectively. The time average wall shear stress, time average wall shear stress, oscillatory shear index, hemodynamics formation index and relative retentive time were used to analyze the changes of hemodynamics indexes in different embolic models. RESULTS With the increase of embolic rate, the values of time average wall shear stress, time average wall shear stress grade and aneurysm index formation gradually increased, and the values of relative retention time gradually decreased. Oscillatory shear index was higher in patients with incomplete embolization and decreased in patients with complete embolization. CONCLUSIONS As the degree of embolization increased, the blood flow tended to stabilize, reducing the risk of cerebral aneurysm rupture, and finding that the wall of the vessel junction was susceptible to injury.
Collapse
Affiliation(s)
- Quan Bao
- Department of Image, Hongqi Hospital Affiliated with Mudanjiang Medical University, Mudanjiang, China
| | - Xin Meng
- Department of Image, No. 3 Hospital Affiliated with Qiqihaer Medical University, Qiqihaer, China
| | - Mingcheng Hu
- Department of Image, Hongqi Hospital Affiliated with Mudanjiang Medical University, Mudanjiang, China
| | - Jian Xing
- Department of Image, Hongqi Hospital Affiliated with Mudanjiang Medical University, Mudanjiang, China
| | - Dan Jin
- Department of Image, No. 2 Hospital of Mudanjiang, Mudanjiang, China
| | - He Liu
- Department of Image, Hongqi Hospital Affiliated with Mudanjiang Medical University, Mudanjiang, China
| | - Jie Jiang
- Department of Infectious Disease, Mudanjiang Forestry Center Hospital, Mudanjiang, China
| | - Yanwei Yin
- Department of Image, Hongqi Hospital Affiliated with Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
66
|
Molenberg R, Aalbers MW, Appelman APA, Uyttenboogaart M, van Dijk JMC. Intracranial aneurysm wall enhancement as an indicator of instability: a systematic review and meta-analysis. Eur J Neurol 2021; 28:3837-3848. [PMID: 34424585 PMCID: PMC9292155 DOI: 10.1111/ene.15046] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND PURPOSE Aneurysm wall enhancement (AWE) of intracranial aneurysms on magnetic resonance imaging has been described in previous studies as a surrogate marker of instability. With this study, an updated literature overview and summary risk estimates of the association between AWE and different specific outcomes (i.e., rupture, growth or symptomatic presentation) for both cross-sectional and longitudinal studies are provided. METHODS The PRISMA guideline was followed and a search was performed of PubMed and Embase to 1 January 2021 for studies that reported on AWE and aneurysm instability. In cross-sectional studies, AWE was compared between patients with stable and unstable aneurysms. In longitudinal studies, AWE of stable aneurysms was assessed at baseline after which patients were followed longitudinally. Risk ratios were calculated for longitudinal studies, prevalence ratios for cross-sectional studies and then the ratios were pooled in a random-effects meta-analysis. Also, the performance of AWE to differentiate between stable and unstable aneurysms was evaluated. RESULTS Twelve studies were included with a total of 1761 aneurysms. In cross-sectional studies, AWE was positively associated with rupture (prevalence ratio 11.47, 95% confidence interval [CI] 4.05-32.46) and growth or symptomatic presentation (prevalence ratio 4.62, 95% CI 2.85-7.49). Longitudinal studies demonstrated a positive association between AWE and growth or rupture (risk ratio 8.00, 95% CI 2.14-29.88). Assessment of the performance of AWE showed high sensitivities, mixed specificities, low positive predictive values and high negative predictive values. CONCLUSIONS Although AWE is positively associated with aneurysm instability, current evidence mostly supports the use of its absence as a surrogate marker of aneurysm stability.
Collapse
Affiliation(s)
- Rob Molenberg
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marlien W Aalbers
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Auke P A Appelman
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Maarten Uyttenboogaart
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - J Marc C van Dijk
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
67
|
Definition and extraction of 2D shape indices of intracranial aneurysm necks for rupture risk assessment. Int J Comput Assist Radiol Surg 2021; 16:1977-1984. [PMID: 34406578 PMCID: PMC8589826 DOI: 10.1007/s11548-021-02469-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/27/2021] [Indexed: 11/23/2022]
Abstract
Purpose Intracranial aneurysms are local dilations of brain vessels. Their rupture, as well as their treatment, is associated with high risk of morbidity and mortality. In this work, we propose shape indices for aneurysm ostia for the rupture risk assessment of intracranial aneurysms. Methods We analyzed 84 middle cerebral artery bifurcation aneurysms (27 ruptured and 57 unruptured) and their ostia, with respect to their size and shape. We extracted 3D models of the aneurysms and vascular trees. A semi-automatic approach was used to separate the aneurysm from its parent vessel and to reconstruct the ostium. We used known indices to quantitatively describe the aneurysms. For the ostium, we present new shape indices: the 2D Undulation Index (UI\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_\mathrm{2D}$$\end{document}2D), the 2D Ellipticity Index (EI\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_\mathrm{2D}$$\end{document}2D) and the 2D Noncircularity Index (NCI\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_\mathrm{2D}$$\end{document}2D). Results were analyzed using the Student t test, the Mann–Whitney U test and a correlation analysis between indices of the aneurysms and their ostia. Results Of the indices, none was significantly associated with rupture status. Most aneurysms have an NCI\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_\mathrm{2D}$$\end{document}2D below 0.2. Of the aneurysms that have an NCI\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_\mathrm{2D}$$\end{document}2D above 0.5, only one is ruptured, which indicates that ruptured aneurysms often have a circular-shaped ostium. Furthermore, the ostia of ruptured aneurysms tend to have a smaller area, which is also correlated with the aneurysm’s size. While also other variables were significantly correlated, strong linear correlations can only be seen between the area of the ostium with the aneurysm’s volume and surface. Conclusion The proposed shape indices open up new possibilities to quantitatively describe and compare ostia, which can be beneficial for rupture risk assessment and subsequent treatment decision. Additionally, this work shows that the ostium area and the size of the aneurysm are correlated. Further longitudinal studies are necessary to analyze whether stable and unstable aneurysms can be distinguished by their ostia.
Collapse
|
68
|
Kim T, Oh CW, Bang JS, Ban SP, Lee SU, Kim YD, Kwon OK. Higher oscillatory shear index is related to aneurysm recanalization after coil embolization in posterior communicating artery aneurysms. Acta Neurochir (Wien) 2021; 163:2327-2337. [PMID: 33037924 DOI: 10.1007/s00701-020-04607-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/02/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND The recurrence rate of posterior communicating artery (Pcom) aneurysms after endovascular treatment (EVT) is higher than that for aneurysms located in other sites. However, it is still unclear what mechanisms are responsible for the recanalization of cerebral aneurysms. In this investigation, we compared hemodynamic factors related with recanalization of Pcom aneurysms treated by endoluminal coiling using computational fluid dynamics (CFD) with high-resolution three-dimensional digital subtraction angiography images. METHODS Twenty patients were enrolled. A double-sinogram acquisition was performed with and without contrast injection after coil embolization to get true blood vessel lumen by relatively complementing the first sinogram with the second. Adaptive Cartesian meshing was performed to produce vascular wall objects for CFD simulation. The boundary condition for inlet (ICA) was set for dynamic velocity according to the cardiac cycle (0.8 s). Hemodynamic parameters were recorded at two specific points (branching point of Pcom and residual sac). The peak pressure, peak WSS, and oscillatory shear index (OSI) were recorded and analyzed. RESULTS The median age was 61.0 years, and 18 patients (90%) were female. During a median follow-up of 12 months, seven (35%) treated aneurysms showed recanalization. The median aneurysm volume was significantly higher, and aneurysm height and neck sizes were significantly longer in the recanalization group than those in the stable group. At the branching point of the Pcom, the peak pressure, peak WSS, or OSI did not significantly differ between the two groups. The only statistically significant hemodynamic parameter related with recanalization was the OSI at the aneurysm point. Multivariate logistic regression showed that with an increase of 0.01 OSI at the aneurysm point, the odds ratio for the aneurysm recanalization was 1.19. CONCLUSIONS A higher OSI is related with recanalization after coil embolization for a Pcom aneurysm.
Collapse
Affiliation(s)
- Tackeun Kim
- Department of Neurosurgery, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chang Wan Oh
- Department of Neurosurgery, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae Seung Bang
- Department of Neurosurgery, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung Pil Ban
- Department of Neurosurgery, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Si Un Lee
- Department of Neurosurgery, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Deok Kim
- Department of Neurosurgery, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - O-Ki Kwon
- Department of Neurosurgery, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea.
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
69
|
Schmidt S, Bruschewski M, Flassbeck S, John K, Grundmann S, Ladd ME, Schmitter S. Phase-contrast acceleration mapping with synchronized encoding. Magn Reson Med 2021; 86:3201-3210. [PMID: 34313340 DOI: 10.1002/mrm.28948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/14/2021] [Accepted: 07/15/2021] [Indexed: 11/12/2022]
Abstract
PURPOSE To develop a phase-contrast (PC) -based method for direct and unbiased quantification of the acceleration vector field by synchronization of the spatial and acceleration encoding time points. The proposed method explicitly aims at in-vitro applications, requiring high measurement accuracy, as well as the validation of clinically relevant acceleration-encoded sequences. METHODS A velocity-encoded sequence with synchronized encoding (SYNC SPI) was modified to allow direct acceleration mapping by replacing the bipolar encoding gradients with tripolar gradient waveforms. The proposed method was validated in two in-vitro flow cases: a rotation and a stenosis phantom. The thereby obtained velocity and acceleration vector fields were quantitatively compared to those acquired with conventional PC methods, as well as to theoretical data. RESULTS The rotation phantom study revealed a systematic bias of the conventional PC acceleration mapping method that resulted in an average pixel-wise relative angle between the measured and theoretical vector field of (7.8 ± 3.2)°, which was reduced to (-0.4 ± 2.7)° for the proposed SYNC SPI method. Furthermore, flow features in the stenosis phantom were displaced by up to 10 mm in the conventional PC data compared with the acceleration-encoded SYNC SPI data. CONCLUSIONS This work successfully demonstrates a highly accurate method for direct acceleration mapping. It thus complements the existing velocity-encoded SYNC SPI method to enable the direct and unbiased quantification of both the velocity and acceleration vector field for in vitro studies. Hence, this method can be used for the validation of conventional acceleration-encoded PC methods applicable in-vivo.
Collapse
Affiliation(s)
- Simon Schmidt
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany.,Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Sebastian Flassbeck
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, New York, New York, USA.,Center for Advanced Imaging Innovation and Research, New York University School of Medicine, New York, New York, USA
| | - Kristine John
- Institute of Fluid Mechanics, University of Rostock, Rostock, Germany
| | - Sven Grundmann
- Institute of Fluid Mechanics, University of Rostock, Rostock, Germany
| | - Mark E Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany.,Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Sebastian Schmitter
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| |
Collapse
|
70
|
Giotta Lucifero A, Baldoncini M, Bruno N, Galzio R, Hernesniemi J, Luzzi S. Shedding the Light on the Natural History of Intracranial Aneurysms: An Updated Overview. ACTA ACUST UNITED AC 2021; 57:medicina57080742. [PMID: 34440948 PMCID: PMC8400479 DOI: 10.3390/medicina57080742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022]
Abstract
The exact molecular pathways underlying the multifactorial natural history of intracranial aneurysms (IAs) are still largely unknown, to the point that their understanding represents an imperative challenge in neurovascular research. Wall shear stress (WSS) promotes the genesis of IAs through an endothelial dysfunction causing an inflammatory cascade, vessel remodeling, phenotypic switching of the smooth muscle cells, and myointimal hyperplasia. Aneurysm growth is supported by endothelial oxidative stress and inflammatory mediators, whereas low and high WSS determine the rupture in sidewall and endwall IAs, respectively. Angioarchitecture, age older than 60 years, female gender, hypertension, cigarette smoking, alcohol abuse, and hypercholesterolemia also contribute to growth and rupture. The improvements of aneurysm wall imaging techniques and the implementation of target therapies targeted against inflammatory cascade may contribute to significantly modify the natural history of IAs. This narrative review strives to summarize the recent advances in the comprehension of the mechanisms underlying the genesis, growth, and rupture of IAs.
Collapse
Affiliation(s)
- Alice Giotta Lucifero
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Matías Baldoncini
- Department of Neurological Surgery, Hospital San Fernando, Buenos Aires 1646, Argentina;
| | - Nunzio Bruno
- Division of Neurosurgery, Azienda Ospedaliero Universitaria Consorziale Policlinico di Bari, 70124 Bari, Italy;
| | - Renato Galzio
- Neurosurgery Unit, Maria Cecilia Hospital, 48032 Cotignola, Italy;
| | - Juha Hernesniemi
- Juha Hernesniemi International Center for Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450000, China;
| | - Sabino Luzzi
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy;
- Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Correspondence:
| |
Collapse
|
71
|
Eisenmenger LB, Junn JC, Cooke D, Hetts S, Zhu C, Johnson KM, Manunga JM, Saloner D, Hess C, Kim H. Presence of Vessel Wall Hyperintensity in Unruptured Arteriovenous Malformations on Vessel Wall Magnetic Resonance Imaging: Pilot Study of AVM Vessel Wall "Enhancement". Front Neurosci 2021; 15:697432. [PMID: 34366779 PMCID: PMC8334001 DOI: 10.3389/fnins.2021.697432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/28/2021] [Indexed: 01/06/2023] Open
Abstract
Purpose: High-resolution vessel wall magnetic resonance imaging (VW-MRI) could provide a way to identify high risk arteriovenous malformation (AVM) features. We present the first pilot study of clinically unruptured AVMs evaluated by high-resolution VW-MRI. Methods: A retrospective review of clinically unruptured AVMs with VW-MRI between January 1, 2016 and December 31, 2018 was performed documenting the presence or absence of vessel wall “hyperintensity,” or enhancement, within the nidus as well as perivascular enhancement and evidence of old hemorrhage (EOOH). The extent of nidal vessel wall “hyperintensity” was approximated into five groups: 0, 1–25, 26–50, 51–75, and 76–100%. Results: Of the nine cases, eight demonstrated at least some degree of vessel wall nidus “hyperintensity.” Of those eight cases, four demonstrated greater than 50% of the nidus with hyperintensity at the vessel wall, and three cases had perivascular enhancement adjacent to nidal vessels. Although none of the subjects had prior clinical hemorrhage/AVM rupture, of the six patients with available susceptibility weighted imaging to assess for remote hemorrhage, only two had subtle siderosis to suggest prior sub-clinical bleeds. Conclusion: Vessel wall “enhancement” occurs in AVMs with no prior clinical rupture. Additional studies are needed to further investigate the implication of these findings.
Collapse
Affiliation(s)
- Laura B Eisenmenger
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Jacqueline C Junn
- Department of Radiology, Mount Sinai Hospital, New York, NY, United States
| | - Daniel Cooke
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Steven Hetts
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Chengcheng Zhu
- Department of Radiology, University of Washington, Seattle, WA, United States
| | - Kevin M Johnson
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Jesse M Manunga
- Division of Vascular and Endovascular Surgery, Minneapolis Heart Institute, Abbott Northwestern Hospital, Minneapolis, MN, United States
| | - David Saloner
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Christopher Hess
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Helen Kim
- Department of Anesthesia, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
72
|
Abstract
Cells of the vascular wall are exquisitely sensitive to changes in their mechanical environment. In healthy vessels, mechanical forces regulate signaling and gene expression to direct the remodeling needed for the vessel wall to maintain optimal function. Major diseases of arteries involve maladaptive remodeling with compromised or lost homeostatic mechanisms. Whereas homeostasis invokes negative feedback loops at multiple scales to mediate mechanobiological stability, disease progression often occurs via positive feedback that generates mechanobiological instabilities. In this review, we focus on the cell biology, wall mechanics, and regulatory pathways associated with arterial health and how changes in these processes lead to disease. We discuss how positive feedback loops arise via biomechanical and biochemical means. We conclude that inflammation plays a central role in overriding homeostatic pathways and suggest future directions for addressing therapeutic needs.
Collapse
Affiliation(s)
- Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06520, USA;
| | - Martin A Schwartz
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06520, USA;
- Department of Cell Biology, Department of Internal Medicine (Cardiology), and Cardiovascular Research Center, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
73
|
Oliveira IL, Santos GB, Gasche JL, Militzer J, Baccin CE. Non-Newtonian Blood Modeling in Intracranial Aneurysm Hemodynamics: Impact on the Wall Shear Stress and Oscillatory Shear Index Metrics for Ruptured and Unruptured Cases. J Biomech Eng 2021; 143:071006. [PMID: 33729441 DOI: 10.1115/1.4050539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Indexed: 11/08/2022]
Abstract
When simulating blood flow in intracranial aneurysms (IAs), the Newtonian model seems to be ubiquitous. However, analyzing the results from the few studies on this subject, the doubt remains on whether it is necessary to use non-Newtonian models in computational fluid dynamics (CFD) simulations of cerebral vascular flows. The objective of this study is to investigate whether different rheology models would influence the hemodynamic parameters related to the wall shear stress (WSS) for ruptured and unruptured IA cases, especially because ruptured aneurysms normally have morphological features, such as lobular regions and blebs, that could trigger non-Newtonian phenomena in the blood flow due to low shear rates. Using CFD in an open-source framework, we simulated four ruptured and four unruptured patient-specific aneurysms to assess the influence of the blood modeling on the main hemodynamic variables associated with aneurysm formation, growth, and rupture. Results for WSS and oscillatory shear index (OSI) and their metrics were obtained using Casson and Carreau-Yasuda non-Newtonian models and were compared with those obtained using the Newtonian model. We found that all differences between non-Newtonian and the Newtonian models were consistent among all cases irrespective of their rupture status. We further found that the WSS at peak systole is overestimated by more than 50% by using the non-Newtonian models, but its metrics based on time and surface averaged values are less affected-the maximum relative difference among the cases is 7% for the Casson model. On the other hand, the surface-averaged OSI is underestimated by more than 30% by the non-Newtonian models. These results suggest that it is recommended to investigate different blood rheology models in IAs simulations when specific parameters to characterize the flow are needed, such as peak-systole WSS and OSI.
Collapse
Affiliation(s)
- Iago L Oliveira
- Mechanical Engineering Department, São Paulo State University (UNESP), Ilha Solteira, São Paulo 15385-000, Brazil
| | - Gabriel B Santos
- Mechanical Engineering Department, São Paulo State University (UNESP), Ilha Solteira, São Paulo 15385-000, Brazil
| | - José L Gasche
- Mechanical Engineering Department, São Paulo State University (UNESP), Ilha Solteira, São Paulo 15385-000, Brazil
| | - Julio Militzer
- Department of Mechanical Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Carlos E Baccin
- Interventional Neuroradiology, Hospital Israelita Albert Einstein, São Paulo, São Paulo 05652-900, Brazil
| |
Collapse
|
74
|
Morphological and Hemodynamic Changes during Cerebral Aneurysm Growth. Brain Sci 2021; 11:brainsci11040520. [PMID: 33921861 PMCID: PMC8073033 DOI: 10.3390/brainsci11040520] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 11/17/2022] Open
Abstract
Computational fluid dynamics (CFD) has grown as a tool to help understand the hemodynamic properties related to the rupture of cerebral aneurysms. Few of these studies deal specifically with aneurysm growth and most only use a single time instance within the aneurysm growth history. The present retrospective study investigated four patient-specific aneurysms, once at initial diagnosis and then at follow-up, to analyze hemodynamic and morphological changes. Aneurysm geometries were segmented via the medical image processing software Mimics. The geometries were meshed and a computational fluid dynamics (CFD) analysis was performed using ANSYS. Results showed that major geometry bulk growth occurred in areas of low wall shear stress (WSS). Wall shape remodeling near neck impingement regions occurred in areas with large gradients of WSS and oscillatory shear index. This study found that growth occurred in areas where low WSS was accompanied by high velocity gradients between the aneurysm wall and large swirling flow structures. A new finding was that all cases showed an increase in kinetic energy from the first time point to the second, and this change in kinetic energy seems correlated to the change in aneurysm volume.
Collapse
|
75
|
Identification of intra-individual variation in intracranial arterial flow by MRI and the effect on computed hemodynamic descriptors. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2021; 34:659-666. [PMID: 33839985 DOI: 10.1007/s10334-021-00917-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES To determine the intra-individual flow variation in serially acquired studies, and the influence of this variation on subsequent hemodynamic simulations using the inlet flow as a boundary condition. Author: Kindly check and confirm whether the corresponding authors are correctly identified.Confirmed. MATERIALS AND METHODS This prospective study included 51 patients (37 females and 14 males) with unruptured intracranial aneurysms who have received more than three times follow-up of 2D phase-contrast MR. The flow and velocity parameters were extracted to calculate the reproducibility and variation. Patient-specific computational fluid dynamics simulations were performed using the measured flows. RESULTS Intraclass correlation coefficients for mean and maximum velocity and flow parameters ranged from 0.77 to 0.90. A 10% CV of mean flow was identified. Variations of 10% in inlet flow resulted in hemodynamic changes including 41.41% of peak systolic wall shear stress; 39.13% of end-diastolic wall shear stress; 2.79% of low shear area at peak systole; 2.12% of low shear area at end diastole: 47.57% of time-averaged wall shear stress; and 0.17% of oscillatory shear index. CONCLUSION This study identified 10% of intra-individual mean flow variation on phase-contrast MR. Intra-individual flow variation resulted in a non-negligible variation in wall shear stress, but relatively small variation in low shear area in hemodynamic calculations.
Collapse
|
76
|
Cai S, Li H, Zheng F, Kong F, Dao M, Karniadakis GE, Suresh S. Artificial intelligence velocimetry and microaneurysm-on-a-chip for three-dimensional analysis of blood flow in physiology and disease. Proc Natl Acad Sci U S A 2021; 118:e2100697118. [PMID: 33762307 PMCID: PMC8020788 DOI: 10.1073/pnas.2100697118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Understanding the mechanics of blood flow is necessary for developing insights into mechanisms of physiology and vascular diseases in microcirculation. Given the limitations of technologies available for assessing in vivo flow fields, in vitro methods based on traditional microfluidic platforms have been developed to mimic physiological conditions. However, existing methods lack the capability to provide accurate assessment of these flow fields, particularly in vessels with complex geometries. Conventional approaches to quantify flow fields rely either on analyzing only visual images or on enforcing underlying physics without considering visualization data, which could compromise accuracy of predictions. Here, we present artificial-intelligence velocimetry (AIV) to quantify velocity and stress fields of blood flow by integrating the imaging data with underlying physics using physics-informed neural networks. We demonstrate the capability of AIV by quantifying hemodynamics in microchannels designed to mimic saccular-shaped microaneurysms (microaneurysm-on-a-chip, or MAOAC), which signify common manifestations of diabetic retinopathy, a leading cause of vision loss from blood-vessel damage in the retina in diabetic patients. We show that AIV can, without any a priori knowledge of the inlet and outlet boundary conditions, infer the two-dimensional (2D) flow fields from a sequence of 2D images of blood flow in MAOAC, but also can infer three-dimensional (3D) flow fields using only 2D images, thanks to the encoded physics laws. AIV provides a unique paradigm that seamlessly integrates images, experimental data, and underlying physics using neural networks to automatically analyze experimental data and infer key hemodynamic indicators that assess vascular injury.
Collapse
Affiliation(s)
- Shengze Cai
- Division of Applied Mathematics, Brown University, Providence, RI 02912
| | - He Li
- Division of Applied Mathematics, Brown University, Providence, RI 02912
| | - Fuyin Zheng
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- School of Biological Sciences, Nanyang Technological University, 639798 Singapore
| | - Fang Kong
- School of Biological Sciences, Nanyang Technological University, 639798 Singapore
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139;
| | - George Em Karniadakis
- Division of Applied Mathematics, Brown University, Providence, RI 02912;
- School of Engineering, Brown University, Providence, RI 02912
| | - Subra Suresh
- Nanyang Technological University, 639798 Singapore
| |
Collapse
|
77
|
Steinlauf S, Hazan Shenberger S, Halak M, Liberzon A, Avrahami I. Aortic arch aneurysm repair - Unsteady hemodynamics and perfusion at different heart rates. J Biomech 2021; 121:110351. [PMID: 33794471 DOI: 10.1016/j.jbiomech.2021.110351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 02/22/2021] [Indexed: 11/27/2022]
Abstract
The aortic arch aneurysm is a complex disease that requires branching of one or more aortic arch vessels and can be fatal if left untreated. In this in vitro study, we examine the effect of the treatment approach on the unsteady hemodynamics and blood perfusion to the upper vessel's in models of an aortic arch aneurysm, and of the three common repair approaches: open-chest surgical repair, chimney, and hybrid approach. A particle image velocimetry method was used to quantify the unsteady hemodynamics in the four models simulated in a mock circulatory loop, to evaluate unsteady hemodynamic parameters and measure perfusion to the brain and the upper body. According to the findings, in terms of perfusion to the brain and upper body, the surgery model has the highest flow rate comparing to the other models in most heart-rate conditions. It also shows oscillatory parameters in the upper vessels which in normal arteries are correlated with a better arterial function. Between the two endovascular procedures, the hybrid model exhibits slightly better hemodynamic characteristics than the chimney model, with lower shear stresses and more oscillatory flow and WSS in the upper vessels. The hybrid model had lower perfusion flow rates to upper vessels during rest conditions (90BPM). However, unlike the other models, perfusion in the hybrid model increased with heart rate, thus at 135 BPM, it results in flow rate to upper vessels similar to that of the chimney model. The results of this study may shed light on future endograft' design and placement techniques.
Collapse
Affiliation(s)
- Shirly Steinlauf
- Department of Mechanical Engineering and Mechatronics, Ariel University, Israel; School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | | | - Moshe Halak
- Department of Vascular Surgery, the Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Alex Liberzon
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Idit Avrahami
- Department of Mechanical Engineering and Mechatronics, Ariel University, Israel.
| |
Collapse
|
78
|
Inflow Hemodynamics of Intracranial Aneurysms: A Comparison of Computational Fluid Dynamics and 4D Flow Magnetic Resonance Imaging. J Stroke Cerebrovasc Dis 2021; 30:105685. [PMID: 33662703 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 02/13/2021] [Indexed: 11/22/2022] Open
Abstract
PURPOSE Although the inflow hemodynamics of cerebral aneurysms are key factors in their rupture and recurrence after endovascular treatments, the most available method for inflow hemodynamics evaluation remains unestablished. We compared the efficacy of inflow hemodynamics evaluation using computational fluid dynamics (CFD) analysis and that using four-dimensional (4D) flow magnetic resonance imaging (MRI). METHODS In 23 unruptured cerebral aneurysms, the inflow hemodynamics was evaluated using both CFD and 4D flow MRI. The evaluated parameters included visually classified inflow jet patterns, the inflow rate ratio (the ratio of the inflow rate at the aneurysmal orifice to the flow rate in the proximal parent artery), and the velocity ratio (the ratio of the inflow velocity to the velocity in the proximal parent artery). The Shapiro-Wilk test was used to assess the normality of variable data, and logarithmic transformation was performed for variables with non-normal distributions. Data analysis was performed using Pearson correlation analyses and the chi-square test. RESULTS There was a significant correlation between inflow jet patterns evaluated by CFD and 4D flow MRI (p = 0.008). Moreover, there was a strong correlation between the inflow rate ratios evaluated by CFD and 4D flow MRI (r = 0.801; p <0.001). Furthermore, there was a moderate correlation between the velocity ratios measured by CFD and 4D flow MRI (r = 0.559; p = 0.008). CONCLUSION Inflow hemodynamics evaluated by CFD analysis and 4D flow MRI showed good correlations in inflow jet pattern, inflow rate ratio, and velocity ratio.
Collapse
|
79
|
Sun A, Zhao C, Gao Z, Deng X, Qiu H. A proposed design of flow diverter and it’s hemodynamic validation. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2021. [DOI: 10.1016/j.medntd.2020.100049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
80
|
Leng X, Wan H, Li G, Jiang Y, Huang L, Siddiqui AH, Zhang X, Xiang J. Hemodynamic effects of intracranial aneurysms from stent-induced straightening of parent vessels by stent-assisted coiling embolization. Interv Neuroradiol 2021; 27:181-190. [PMID: 33641496 DOI: 10.1177/1591019921995334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Straightening of parent vessels happens for stent-assisted coiling embolization (SACE) treatment of intracranial aneurysms. This study aims to investigate aneurysmal hemodynamic modifications caused by stent-induced vessel straightening. METHODS Stent and coil deployments of a SACE-treated distal bifurcation aneurysm by finite element method were performed first with the preoperative (not straightened, NS) and postoperative (straightened, S) vessel models respectively. Computational fluid dynamics were then performed for eight models, including (I) NS only model, (II) NS+stent model, (III) NS+coils model, (IV) NS+stent+coils model, (V) S only model, (VI) S+stent model, (VII) S+coils model, and (VIII) S+stent+coils model. Finally, changes in aneurysmal flow velocity, isovelocity surface and wall shear stress (WSS) were analyzed qualitatively and quantitatively. RESULTS The flow was less in the S models than that in the corresponding NS models. Coils blocked most of the flow into the aneurysm sac in both NS models and S models and vessel straightening had more profound effect on the high aneurysmal flow volume reduction than coiling, while stenting generated adverse effect on flow reduction. Taking the NS only model as baseline (100%), the sac-averaged velocities of models II to VIII were 112%, 36%, 42%, 45%, 39%, 12%, 13%, and high flow volumes were 119%, 21%, 30%, 10%, 8%, 3%, 3%, while the sac-averaged WSSs were 106%, 37%, 44%, 41%, 35%, 17% and 24%, respectively. CONCLUSIONS Stent-induced vessel straightening combined coil embolization has the best performance in hemodynamic modifications and may reduce the recurrence rate, whereas stenting may generate adverse effect on hemodynamic alterations.
Collapse
Affiliation(s)
- Xiaochang Leng
- ArteryFlow Technology Co., Ltd., Hangzhou, China.,School of Civil Engineering and Architecture, Nanchang University, Nanchang, China
| | - Hailin Wan
- Department of Radiology, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Gaohui Li
- ArteryFlow Technology Co., Ltd., Hangzhou, China
| | - Yeqing Jiang
- Department of Radiology, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Lei Huang
- Department of Radiology, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Adnan H Siddiqui
- Department of Neurosurgery and Radiology, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Xiaolong Zhang
- Department of Radiology, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | | |
Collapse
|
81
|
Zhang M, Peng F, Li Y, He L, Liu A, Li R. Associations between morphology and hemodynamics of intracranial aneurysms based on 4D flow and black-blood magnetic resonance imaging. Quant Imaging Med Surg 2021; 11:597-607. [PMID: 33532260 DOI: 10.21037/qims-20-440] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background Previous studies have hypothesized that intracranial aneurysm (IA) morphology interacts with hemodynamic conditions. Magnetic resonance imaging (MRI) provides a single image modality solution for both morphological and hemodynamic measurements for IA. This study aimed to explore the interaction between the morphology and hemodynamics of IA using black-blood MRI (BB-MRI) and 4D flow MRI. Methods A total of 97 patients with unruptured IA were recruited for this study. The IA size, size ratio (SR), and minimum wall thickness (mWT) were measured using BB-MRI. Velocity, blood flow, pulsatility index (PI), and wall shear stress (WSS) were measured with 4D flow MRI. The relationship between hemodynamic parameters and morphological indices was investigated by linear regression analysis and unpaired two-sample t-test. To determine the independent interaction, multiple linear regression analysis was further performed. Results The findings showed that mWT was negatively correlated with IA size (r=-0.665, P<0.001). Maximum blood flow in IA (FlowIA) was positively correlated with IA size (r=0.458, P<0.001). The average WSS (WSSavg) was negatively correlated with IA size (r=-0.650, P<0.001). The relationships remained the same after the multivariate analysis was adjusted for hemodynamic, morphologic, and demographic confounding factors. The WSSavg was positively correlated with mWT (r=0.528, P<0.001). In the unpaired two-sample t-test, mWT, WSSavg, and FlowIA were statistically significantly associated with the size and SR of IAs. Conclusions There is potential for BB-MRI and 4D flow MRI to provide morphological and hemodynamic information regarding IA. Blood flow, WSS, and mWT may serve as non-invasive biomarkers for IA assessments, and may contribute to a more comprehensive understanding of the mechanism of IA.
Collapse
Affiliation(s)
- Miaoqi Zhang
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Fei Peng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yunduo Li
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Le He
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Aihua Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Rui Li
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
82
|
Xu H, Baroli D, Veneziani A. Global Sensitivity Analysis for Patient-Specific Aortic Simulations: The Role of Geometry, Boundary Condition and Large Eddy Simulation Modeling Parameters. J Biomech Eng 2021; 143:021012. [PMID: 32879943 DOI: 10.1115/1.4048336] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Indexed: 11/08/2022]
Abstract
Numerical simulations for computational hemodynamics in clinical settings require a combination of many ingredients, mathematical models, solvers and patient-specific data. The sensitivity of the solutions to these factors may be critical, particularly when we have a partial or noisy knowledge of data. Uncertainty quantification is crucial to assess the reliability of the results. We present here an extensive sensitivity analysis in aortic flow simulations, to quantify the dependence of clinically relevant quantities to the patient-specific geometry and the inflow boundary conditions. Geometry and inflow conditions are generally believed to have a major impact on numerical simulations. We resort to a global sensitivity analysis, (i.e., not restricted to a linearization around a working point), based on polynomial chaos expansion (PCE) and the associated Sobol' indices. We regard the geometry and the inflow conditions as the realization of a parametric stochastic process. To construct a physically consistent stochastic process for the geometry, we use a set of longitudinal-in-time images of a patient with an abdominal aortic aneurysm (AAA) to parametrize geometrical variations. Aortic flow is highly disturbed during systole. This leads to high computational costs, even amplified in a sensitivity analysis -when many simulations are needed. To mitigate this, we consider here a large Eddy simulation (LES) model. Our model depends in particular on a user-defined parameter called filter radius. We borrowed the tools of the global sensitivity analysis to assess the sensitivity of the solution to this parameter too. The targeted quantities of interest (QoI) include: the total kinetic energy (TKE), the time-average wall shear stress (TAWSS), and the oscillatory shear index (OSI). The results show that these indexes are mostly sensitive to the geometry. Also, we find that the sensitivity may be different during different instants of the heartbeat and in different regions of the domain of interest. This analysis helps to assess the reliability of in silico tools for clinical applications.
Collapse
Affiliation(s)
- Huijuan Xu
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332; Siemens Coporate Technology, Princeton, NJ 08540
| | - Davide Baroli
- Aachen Institute for Advanced Study in Computational Engineering Science, Aachen 52062, Germany
| | - Alessandro Veneziani
- Department of Mathematics, Emory University, Atlanta, GA 30322; Department of Computer Science, Emory University, Atlanta, GA 30322
| |
Collapse
|
83
|
Deshpande A, Jamilpour N, Jiang B, Michel P, Eskandari A, Kidwell C, Wintermark M, Laksari K. Automatic segmentation, feature extraction and comparison of healthy and stroke cerebral vasculature. Neuroimage Clin 2021; 30:102573. [PMID: 33578323 PMCID: PMC7875826 DOI: 10.1016/j.nicl.2021.102573] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 02/01/2023]
Abstract
Accurate segmentation of cerebral vasculature and a quantitative assessment of its morphology is critical to various diagnostic and therapeutic purposes and is pertinent to studying brain health and disease. However, this is still a challenging task due to the complexity of the vascular imaging data. We propose an automated method for cerebral vascular segmentation without the need of any manual intervention as well as a method to skeletonize the binary segmented map to extract vascular geometric features and characterize vessel structure. We combine a Hessian-based probabilistic vessel-enhancing filtering with an active-contour-based technique to segment magnetic resonance and computed tomography angiograms (MRA and CTA) and subsequently extract the vessel centerlines and diameters to calculate the geometrical properties of the vasculature. Our method was validated using a 3D phantom of the Circle-of-Willis region, demonstrating 84% mean Dice similarity coefficient (DSC) and 85% mean Pearson's correlation coefficient (PCC) with minimal modified Hausdorff distance (MHD) error (3 surface pixels at most), and showed superior performance compared to existing segmentation algorithms upon quantitative comparison using DSC, PCC and MHD. We subsequently applied our algorithm to a dataset of 40 subjects, including 1) MRA scans of healthy subjects (n = 10, age = 30 ± 9), 2) MRA scans of stroke patients (n = 10, age = 51 ± 15), 3) CTA scans of healthy subjects (n = 10, age = 62 ± 12), and 4) CTA scans of stroke patients (n = 10, age = 68 ± 11), and obtained a quantitative comparison between the stroke and normal vasculature for both imaging modalities. The vascular network in stroke patients compared to age-adjusted healthy subjects was found to have a significantly (p < 0.05) higher tortuosity (3.24 ± 0.88 rad/cm vs. 7.17 ± 1.61 rad/cm for MRA, and 4.36 ± 1.32 rad/cm vs. 7.80 ± 0.92 rad/cm for CTA), higher fractal dimension (1.36 ± 0.28 vs. 1.71 ± 0.14 for MRA, and 1.56 ± 0.05 vs. 1.69 ± 0.20 for CTA), lower total length (3.46 ± 0.99 m vs. 2.20 ± 0.67 m for CTA), lower total volume (61.80 ± 18.79 ml vs. 34.43 ± 22.9 ml for CTA), lower average diameter (2.4 ± 0.21 mm vs. 2.18 ± 0.07 mm for CTA), and lower average branch length (4.81 ± 1.97 mm vs. 8.68 ± 2.03 mm for MRA), respectively. We additionally studied the change in vascular features with respect to aging and imaging modality. While we observed differences between features as a result of aging, statistical analysis did not show any significant differences, whereas we found that the number of branches were significantly different (p < 0.05) between the two imaging modalities (201 ± 73 for MRA vs. 189 ± 69 for CTA). Our segmentation and feature extraction algorithm can be applied on any imaging modality and can be used in the future to automatically obtain the 3D segmented vasculature for diagnosis and treatment planning as well as to study morphological changes due to stroke and other cerebrovascular diseases (CVD) in the clinic.
Collapse
Affiliation(s)
- Aditi Deshpande
- Department of Biomedical Engineering, University of Arizona, United States
| | - Nima Jamilpour
- Department of Biomedical Engineering, University of Arizona, United States
| | - Bin Jiang
- Department of Radiology, Stanford University, United States
| | - Patrik Michel
- Department of Neurology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Ashraf Eskandari
- Department of Neurology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Chelsea Kidwell
- Department of Neurology, University of Arizona, United States
| | - Max Wintermark
- Department of Radiology, Stanford University, United States
| | - Kaveh Laksari
- Department of Biomedical Engineering, University of Arizona, United States; Department of Aerospace and Mechanical Engineering, University of Arizona, United States.
| |
Collapse
|
84
|
Mahrous SA, Sidik NAC, Saqr KM. Numerical study on the energy cascade of pulsatile Newtonian and power-law flow models in an ICA bifurcation. PLoS One 2021; 16:e0245775. [PMID: 33493237 PMCID: PMC7833255 DOI: 10.1371/journal.pone.0245775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 01/07/2021] [Indexed: 11/18/2022] Open
Abstract
The complex physics and biology underlying intracranial hemodynamics are yet to be fully revealed. A fully resolved direct numerical simulation (DNS) study has been performed to identify the intrinsic flow dynamics in an idealized carotid bifurcation model. To shed the light on the significance of considering blood shear-thinning properties, the power-law model is compared to the commonly used Newtonian viscosity hypothesis. We scrutinize the kinetic energy cascade (KEC) rates in the Fourier domain and the vortex structure of both fluid models and examine the impact of the power-law viscosity model. The flow intrinsically contains coherent structures which has frequencies corresponding to the boundary frequency, which could be associated with the regulation of endothelial cells. From the proposed comparative study, it is found that KEC rates and the vortex-identification are significantly influenced by the shear-thinning blood properties. Conclusively, from the obtained results, it is found that neglecting the non-Newtonian behavior could lead to underestimation of the hemodynamic parameters at low Reynolds number and overestimation of the hemodynamic parameters by increasing the Reynolds number. In addition, we provide physical insight and discussion onto the hemodynamics associated with endothelial dysfunction which plays significant role in the pathogenesis of intracranial aneurysms.
Collapse
Affiliation(s)
- Samar A. Mahrous
- Department of Thermo-Fluid Universiti Teknologi Malaysia, Skudai, Malaysia
- College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
- * E-mail:
| | - Nor Azwadi Che Sidik
- Department of Thermo-Fluid Universiti Teknologi Malaysia, Skudai, Malaysia
- Malaysia–Japan International Institute of Technology (MJIIT), University Teknologi Malaysia Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Khalid M. Saqr
- College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| |
Collapse
|
85
|
Zeng M, Huang Z, Tao W, Zeng F, Chen F. A retrospective longitudinal study of age-related shifts and deformations in the basilar artery bifurcation. Neuroradiology 2021; 63:1305-1311. [PMID: 33475769 DOI: 10.1007/s00234-021-02644-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/11/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE Previous studies have indicated that cerebral arterial morphology is linked to aging and some cerebrovascular diseases. However, the mechanisms of morphological changes remain unclear. This study evaluated age-related positional changes in the basilar artery (BA) bifurcation based on longitudinal computed tomography angiography (CTA) data. METHODS This retrospective study evaluated clinical and imaging data from 72 subjects who underwent two CTA scans between July 2011 and August 2019. Three-dimensional (3D) models were reconstructed for each subject based on the two CTA scans with the longest separating interval. Skull landmarks were used to fuse the two models, and the fused model was used to evaluate positional changes in the BA bifurcation. Univariable and multivariable analyses were used to identify variables that were correlated to BA bifurcation shifting. Pearson's correlation test was used to analyze the correlation between the shifting distance and change in the BA bifurcation angle. RESULTS Significant differences between aneurysm and non-aneurysm cases were observed in terms of sex (p = 0.004), CTA scan interval (p = 0.023), and BA bifurcation shifting distance (p = 0.007). Multivariable linear regression analysis revealed that the BA bifurcation shifting distance was significantly correlated with the CTA scan interval (p = 0.038) and the presence of aneurysms (p < 0.001). Furthermore, the shifting distance was positively correlated with widening of the BA bifurcation angle (p = 0.002). CONCLUSIONS Aging-related widening of the BA bifurcation angle may be related to distal shifting of the BA bifurcation's position, and larger distal shifting of the BA bifurcation may be associated with the risk of aneurysm formation.
Collapse
Affiliation(s)
- Ming Zeng
- Departments of Neurosurgery, Xiangya Hospital, Central South University, Xiangya Road 87, Kaifu District, Changsha, 410008, China
| | - Zheng Huang
- Departments of Neurosurgery, Xiangya Hospital, Central South University, Xiangya Road 87, Kaifu District, Changsha, 410008, China
| | - Wengui Tao
- Departments of Neurosurgery, Xiangya Hospital, Central South University, Xiangya Road 87, Kaifu District, Changsha, 410008, China
| | - Feiyue Zeng
- Department of Radiology, Xiangya Hospital, Central South University, Xiangya Road 87, Kaifu District, Changsha, 410008, China
| | - Fenghua Chen
- Departments of Neurosurgery, Xiangya Hospital, Central South University, Xiangya Road 87, Kaifu District, Changsha, 410008, China.
| |
Collapse
|
86
|
Schmidt S, Flassbeck S, Schmelter S, Schmeyer E, Ladd ME, Schmitter S. The impact of 4D flow displacement artifacts on wall shear stress estimation. Magn Reson Med 2021; 85:3154-3168. [PMID: 33421221 DOI: 10.1002/mrm.28641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 12/27/2022]
Abstract
PURPOSE To investigate the amplitude and spatial distribution of errors in wall shear stress (WSS) values derived from 4D flow measurements caused by displacement artifacts intrinsic to the 4D flow acquisition. METHODS Phase-contrast MRI velocimetry was performed in a model of a stenotic aorta using two different timing schemes, both of which are commonly applied in vivo but differ in their resulting displacement artifacts. Whereas one scheme is optimized to minimize the duration of the encoding gradients (herein called FAST), the other aims to specifically minimize displacement artifacts by synchronizing all three spatial-encoding time points (called ECHO). WSS estimates were calculated and compared to unbiased WSS values obtained by a 5-hour single-point imaging acquisition. In addition, MRI simulations based on computational fluid dynamics data were carried out to investigate the impact of gradient timings corresponding to different spatial resolutions. RESULTS 4D flow displacement artifacts were found to have an impact on the quantified WSS peak values, spatial location, and overall WSS pattern. FAST leads to the underestimation of local WSS values in the phantom arch by up to 90%. Moreover, the corresponding WSS estimates depend on the image orientation. This effect was avoided using ECHO, which, however, results in biased WSS values within the stenosis, yielding an underestimation of peak WSS by up to 17%. Computational fluid dynamics-based simulation results show that the bias in WSS due to displacement artifacts increases with increasing spatial resolution, thus counteracting the resolution benefit for WSS due to reduced partial volume effects and segmentation errors. CONCLUSIONS 4D flow displacement artifacts can significantly impact the WSS estimates and depend on the timing scheme as well as potentially the image orientation. Whereas FAST might allow correct WSS estimation for lower resolutions, ECHO is recommended especially when spatial resolutions of 1 mm and smaller are used. Users need to be aware of this nonnegligible effect, particularly when conducting inter-site studies or studies between vendors. The timing scheme should thus be explicitly mentioned in publications.
Collapse
Affiliation(s)
- Simon Schmidt
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Sebastian Flassbeck
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA.,Center for Advanced Imaging Innovation and Research, New York University School of Medicine, New York, NY, USA
| | - Sonja Schmelter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Ellen Schmeyer
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Mark E Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany.,Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Sebastian Schmitter
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| |
Collapse
|
87
|
Settecase F, Rayz VL. Advanced vascular imaging techniques. HANDBOOK OF CLINICAL NEUROLOGY 2021; 176:81-105. [DOI: 10.1016/b978-0-444-64034-5.00016-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
88
|
Ishida F, Tsuji M, Tanioka S, Tanaka K, Yoshimura S, Suzuki H. Computational Fluid Dynamics for Cerebral Aneurysms in Clinical Settings. ACTA NEUROCHIRURGICA. SUPPLEMENT 2021; 132:27-32. [PMID: 33973025 DOI: 10.1007/978-3-030-63453-7_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hemodynamics is thought to play an important role in the pathogenesis of cerebral aneurysms and recent development of computer technology makes it possible to simulate blood flow using high-resolution 3D images within several hours. A lot of studies of computational fluid dynamics (CFD) for cerebral aneurysms were reported; therefore, application of CFD for cerebral aneurysms in clinical settings is reviewed in this article.CFD for cerebral aneurysms using a patient-specific geometry model was first reported in 2003 and it has been revealing that hemodynamics brings a certain contribution to understanding aneurysm pathology, including initiation, growth and rupture. Based on the knowledge of the state-of-the-art techniques, this review treats the decision-making process for using CFD in several clinical settings. We introduce our CFD procedure using digital imaging and communication in medicine (DICOM) datasets of 3D CT angiography or 3D rotational angiography. In addition, we review rupture status, hyperplastic remodeling of aneurysm wall, and recurrence of coiled aneurysms using the hemodynamic parameters such as wall shear stress (WSS), oscillatory shear index (OSI), aneurysmal inflow rate coefficient (AIRC), and residual flow volume (RFV).
Collapse
Affiliation(s)
- Fujimaro Ishida
- Department of Neurosurgery, Mie Chuo Medical Center, NHO, Tsu, Japan.
| | - Masanori Tsuji
- Department of Neurosurgery, Mie Chuo Medical Center, NHO, Tsu, Japan
| | - Satoru Tanioka
- Department of Neurosurgery, Mie Chuo Medical Center, NHO, Tsu, Japan
| | - Katsuhiro Tanaka
- Department of Neurosurgery, Mie Chuo Medical Center, NHO, Tsu, Japan
| | | | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
89
|
Tian X, Cai G, Zhi D, Fan K, Song ZL, Qiu B, Jia L, Gao R. A Transparent Vessel-on-a-Chip Device for Hemodynamic Analysis and Early Diagnosis of Intracranial Aneurysms by CFD and PC-MRI. ACS Sens 2020; 5:4064-4071. [PMID: 33289559 DOI: 10.1021/acssensors.0c02164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hemodynamics plays a critical role in early diagnosis and investigating the growth mechanism of intracranial aneurysms (IAs), which usually induce hemorrhagic stroke, serious neurological diseases, and even death. We developed a transparent blood vessel-on-a-chip (VOC) device for magnetic resonance imaging (MRI) to provide characteristic flow fields of early IAs as the reference for early diagnosis. This VOC device takes advantage of the transparent property to clearly exhibit the internal structure and identify the needless air bubbles in the biomimetic fluid experiment, which significantly affects the MRI image quality. Furthermore, the device was miniaturized and easily assembled with arbitrary direction using a 3D-printed scaffold in a radiofrequency coil. Computational fluid dynamics (CFD) simulations of the flow field were greatly consistent with those data from MRI. Both internal flow and wall shear stress (WSS) exhibited very low levels during the IA growth, thus leading to the growth and rupture of IAs. PC-MRI images can also provide a reasonable basis for the early diagnosis of IAs. Therefore, we believed that this proposed VOC-based MR imaging technique has great potential for early diagnostic of intracranial aneurysms.
Collapse
Affiliation(s)
- Xin Tian
- School of Instrument Science and Opto-electronic Engineering, Hefei University of Technology, Hefei 230009, China
- Department of Medical Imaging and Neurology, Jincheng People’s Hospital, Jincheng 048000, China
| | - Guochao Cai
- School of Instrument Science and Opto-electronic Engineering, Hefei University of Technology, Hefei 230009, China
| | - Debo Zhi
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, China
| | - Ka Fan
- Department of Medical Imaging and Neurology, Jincheng People’s Hospital, Jincheng 048000, China
| | - Zhi-ling Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Bensheng Qiu
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, China
| | - Longbin Jia
- Department of Medical Imaging and Neurology, Jincheng People’s Hospital, Jincheng 048000, China
| | - Rongke Gao
- School of Instrument Science and Opto-electronic Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
90
|
Chu C, Xu G, Li X, Duan Z, Tao L, Cai H, Yang M, Zhang X, Chen B, Zheng Y, Shi H, Li X. Sustained expression of MCP-1 induced low wall shear stress loading in conjunction with turbulent flow on endothelial cells of intracranial aneurysm. J Cell Mol Med 2020; 25:110-119. [PMID: 33332775 PMCID: PMC7810920 DOI: 10.1111/jcmm.15868] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/30/2020] [Accepted: 08/24/2020] [Indexed: 12/28/2022] Open
Abstract
Shear stress was reported to regulate the expression of AC007362, but its underlying mechanisms remain to be explored. In this study, to isolate endothelial cells of blood vessels, unruptured and ruptured intracranial aneurysm (IA) tissues were collected from IA patients. Subsequently, quantitative real‐time PCR (qRT‐PCR), Western blot and luciferase assay were performed to investigate the relationships between AC007362, miRNAs‐493 and monocyte chemoattractant protein‐1 (MCP‐1) in human umbilical vein endothelial cells (HUVECs) exposed to shear stress. Reduced representation bisulphite sequencing (RRBS) was performed to assess the level of DNA methylation in AC007362 promoter. Accordingly, AC007362 and MCP‐1 were significantly up‐regulated while miR‐493 was significantly down‐regulated in HUVECs exposed to shear stress. AC007362 could suppress the miR‐493 expression and elevate the MCP‐1 expression, and miR‐493 was shown to respectively target AC007362 and MCP‐1. Moreover, shear stress in HUVECs led to the down‐regulated DNA methyltransferase 1 (DNMT1), as well as the decreased DNA methylation level of AC007362 promoter. Similar results were also observed in ruptured IA tissues when compared with unruptured IA tissues. In conclusion, this study presented a deep insight into the operation of the regulatory network of AC007362, miR‐493 and MCP‐1 upon shear stress. Under shear stress, the expression of AC007362 was enhanced by the inhibited promoter DNA methylation, while the expression of MCP‐1 was enhanced by sponging the expression of miR‐493.
Collapse
Affiliation(s)
- Cheng Chu
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Gang Xu
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xiaocong Li
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Zuowei Duan
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Lihong Tao
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Hongxia Cai
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Ming Yang
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xinjiang Zhang
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Bin Chen
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yanyu Zheng
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Hongcan Shi
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xiaoyu Li
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| |
Collapse
|
91
|
A review of hemodynamic parameters in cerebral aneurysm. INTERDISCIPLINARY NEUROSURGERY-ADVANCED TECHNIQUES AND CASE MANAGEMENT 2020. [DOI: 10.1016/j.inat.2020.100716] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
92
|
Youn SW, Lee J. From 2D to 4D Phase-Contrast MRI in the Neurovascular System: Will It Be a Quantum Jump or a Fancy Decoration? J Magn Reson Imaging 2020; 55:347-372. [PMID: 33236488 DOI: 10.1002/jmri.27430] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/16/2022] Open
Abstract
Considering the crosstalk between the flow and vessel wall, hemodynamic assessment of the neurovascular system may offer a well-integrated solution for both diagnosis and management by adding prognostic significance to the standard CT/MR angiography. 4D flow MRI or time-resolved 3D velocity-encoded phase-contrast MRI has long been promising for the hemodynamic evaluation of the great vessels, but challenged in clinical studies for assessing intracranial vessels with small diameter due to long scan times and low spatiotemporal resolution. Current accelerated MRI techniques, including parallel imaging with compressed sensing and radial k-space undersampling acquisitions, have decreased scan times dramatically while preserving spatial resolution. 4D flow MRI visualized and measured 3D complex flow of neurovascular diseases such as aneurysm, arteriovenous shunts, and atherosclerotic stenosis using parameters including flow volume, velocity vector, pressure gradients, and wall shear stress. In addition to the noninvasiveness of the phase contrast technique and retrospective flow measurement through the wanted windows of the analysis plane, 4D flow MRI has shown several advantages over Doppler ultrasound or computational fluid dynamics. The evaluation of the flow status and vessel wall can be performed simultaneously in the same imaging modality. This article is an overview of the recent advances in neurovascular 4D flow MRI techniques and their potential clinical applications in neurovascular disease. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY STAGE: 3.
Collapse
Affiliation(s)
- Sung Won Youn
- Department of Radiology, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Jongmin Lee
- Department of Radiology and Biomedical Engineering, Kyungpook National University School of Medicine, Daegu, Korea
| |
Collapse
|
93
|
Wan H, Lu G, Huang L, Ge L, Jiang Y, Li G, Leng X, Xiang J, Zhang X. Hemodynamic Effect of the Last Finishing Coils in Packing the Aneurysm Neck. Front Neurol 2020; 11:598412. [PMID: 33329354 PMCID: PMC7714910 DOI: 10.3389/fneur.2020.598412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/15/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Using the finishing coils to densely pack the aneurysm neck is necessary. However, the exact hemodynamic effect of finishing coils in packing the aneurysm neck is unknown. Objective: To evaluate the hemodynamic characteristics of finishing coils to densely pack the aneurysm neck, using finite element method simulation. Methods: A computational study was performed based on a 44-year-old female patient with an unruptured wide-necked carotid-ophthalmic artery aneurysm treated with low-profile visualized intraluminal support stent-assisted coil embolization. Four computational fluid dynamics models including pre-treatment, post-stenting, common stent-assisted coil embolization (SACE), and common SACE with finishing coils were evaluated qualitatively and quantitatively. Results: Compared with the baseline of pretreatment model (100%), sac-averaged velocity in post-stenting, common SACE, and common SACE with finishing coil models decreased to 95.68%, 24.38%, and 13.20%, respectively; high flow volume (>0.1 m/s) around the aneurysm neck decreased to 92.19%, 9.59%, and 5.57%, respectively; and mean wall shear stress increased or decreased to 107%, 25.94%, and 23.89%, respectively. Conclusion: Finishing coils to densely pack the aneurysm neck can generate favorable hemodynamic modifications, which may decrease the recurrence.
Collapse
Affiliation(s)
- Hailin Wan
- Huashan Hospital, Fudan University, Shanghai, China
| | - Gang Lu
- Huashan Hospital, Fudan University, Shanghai, China
| | - Lei Huang
- Huashan Hospital, Fudan University, Shanghai, China
| | - Liang Ge
- Huashan Hospital, Fudan University, Shanghai, China
| | - Yeqing Jiang
- Huashan Hospital, Fudan University, Shanghai, China
| | - Gaohui Li
- ArteryFlow Technology Co., Ltd, Hangzhou, China
| | | | | | - Xiaolong Zhang
- Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Xiaolong Zhang
| |
Collapse
|
94
|
Juffermans JF, Westenberg JJM, van den Boogaard PJ, Roest AAW, van Assen HC, van der Palen RLF, Lamb HJ. Reproducibility of Aorta Segmentation on 4D Flow MRI in Healthy Volunteers. J Magn Reson Imaging 2020; 53:1268-1279. [PMID: 33179389 PMCID: PMC7984392 DOI: 10.1002/jmri.27431] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022] Open
Abstract
Background Hemodynamic aorta parameters can be derived from 4D flow MRI, but this requires lumen segmentation. In both commercially available and research 4D flow MRI software tools, lumen segmentation is mostly (semi‐)automatically performed and subsequently manually improved by an observer. Since the segmentation variability, together with 4D flow MRI data and image processing algorithms, will contribute to the reproducibility of patient‐specific flow properties, the observer's lumen segmentation reproducibility and repeatability needs to be assessed. Purpose To determine the interexamination, interobserver reproducibility, and intraobserver repeatability of aortic lumen segmentation on 4D flow MRI. Study Type Prospective and retrospective. Population A healthy volunteer cohort of 10 subjects who underwent 4D flow MRI twice. Also, a clinical cohort of six subjects who underwent 4D flow MRI once. Field Strength/Sequence 3T; time‐resolved three‐directional and 3D velocity‐encoded sequence (4D flow MRI). Assessment The thoracic aorta was segmented on the 4D flow MRI in five systolic phases. By positioning six planes perpendicular to a segmentation's centerline, the aorta was divided into five segments. The volume, surface area, centerline length, maximal diameter, and curvature radius were determined for each segment. Statistical Tests To assess the reproducibility, the coefficient of variation (COV), Pearson correlation coefficient (r), and intraclass correlation coefficient (ICC) were calculated. Results The interexamination and interobserver reproducibility and intraobserver repeatability were comparable for each parameter. For both cohorts there was very good reproducibility and repeatability for volume, surface area, and centerline length (COV = 10–32%, r = 0.54–0.95 and ICC = 0.65–0.99), excellent reproducibility and repeatability for maximal diameter (COV = 3–11%, r = 0.94–0.99, ICC = 0.94–0.99), and good reproducibility and repeatability for curvature radius (COV = 25–62%, r = 0.73–0.95, ICC = 0.84–0.97). Data Conclusion This study demonstrated no major reproducibility and repeatability limitations for 4D flow MRI aortic lumen segmentation. Level of Evidence 3 Technical Efficacy Stage 2
Collapse
Affiliation(s)
- Joe F Juffermans
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jos J M Westenberg
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Arno A W Roest
- Department of Paediatric Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hans C van Assen
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Roel L F van der Palen
- Department of Paediatric Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hildo J Lamb
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
95
|
Munarriz PM, Bárcena E, Alén JF, Castaño-Leon AM, Paredes I, Moreno-Gómez LM, García-Pérez D, Jiménez-Roldán L, Gómez PA, Lagares A. Reliability and accuracy assessment of morphometric measurements obtained with software for three-dimensional reconstruction of brain aneurysms relative to cerebral angiography measures. Interv Neuroradiol 2020; 27:191-199. [PMID: 32996346 DOI: 10.1177/1591019920961588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To analyze the reliability and accuracy of morphological measurements of software employed to three-dimensionally reconstruct aneurysms and vessels (VMTKlab, version 1.6.1,) with computed tomography angiography (CTA) as the source of images. Agreement with measurements from three-dimensional digital subtraction angiography (3 D-DSA) was evaluated. METHODS We evaluated 40 patients presenting with aneurysmal subarachnoid hemorrhage (aSAH). We analyzed four main variables of the aneurysm morphology: absolute height (size), neck (maximum neck width), perpendicular height, and maximum width. The CTA images were uploaded to the software and then segmented to reconstruct the aneurysm. This new method was compared to the current gold standard-3D reconstruction of pretreatment cerebral angiography. We used intraclass correlation coefficient (ICC) and Bland-Altman plot analyses to evaluate the agreement between these methods. RESULTS The ICCs obtained for absolute height, neck, perpendicular height, and maximum width were 0.85, 0.57, 0.85, and 0.89, respectively. This implied good agreement except for the neck of the aneurysm (moderate agreement). Bland-Altman plots are presented for the four indexes. The average of the differences was not significant in terms of absolute height, perpendicular height, and maximum width indicating good agreement. However, it was significant for the neck of the aneurysm. CONCLUSIONS We report good agreement between the values generated using VMTKlab and cerebral angiography for three of the four main variables. Discrepancies in neck diameter are not surprising and its underestimation with a traditional delineation from cerebral angiography has been reported before.
Collapse
Affiliation(s)
- Pablo M Munarriz
- Department of Neurosurgery, Hospital Universitario 12 de Octubre, Instituto de Investigación i±12, Madrid, Spain.,Department of Surgery, Universidad Complutense de Madrid, Madrid, Spain
| | - Eduardo Bárcena
- Department of Radiology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Jose F Alén
- Department of Radiology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Department of Neurosurgery, Hospital Universitario La Princesa, Madrid, Spain
| | - Ana M Castaño-Leon
- Department of Neurosurgery, Hospital Universitario 12 de Octubre, Instituto de Investigación i±12, Madrid, Spain.,Department of Surgery, Universidad Complutense de Madrid, Madrid, Spain
| | - Igor Paredes
- Department of Neurosurgery, Hospital Universitario 12 de Octubre, Instituto de Investigación i±12, Madrid, Spain.,Department of Surgery, Universidad Complutense de Madrid, Madrid, Spain
| | - Luis Miguel Moreno-Gómez
- Department of Neurosurgery, Hospital Universitario 12 de Octubre, Instituto de Investigación i±12, Madrid, Spain
| | - Daniel García-Pérez
- Department of Neurosurgery, Hospital Universitario 12 de Octubre, Instituto de Investigación i±12, Madrid, Spain
| | - Luis Jiménez-Roldán
- Department of Neurosurgery, Hospital Universitario 12 de Octubre, Instituto de Investigación i±12, Madrid, Spain.,Department of Surgery, Universidad Complutense de Madrid, Madrid, Spain
| | - Pedro A Gómez
- Department of Neurosurgery, Hospital Universitario 12 de Octubre, Instituto de Investigación i±12, Madrid, Spain.,Department of Surgery, Universidad Complutense de Madrid, Madrid, Spain
| | - Alfonso Lagares
- Department of Neurosurgery, Hospital Universitario 12 de Octubre, Instituto de Investigación i±12, Madrid, Spain.,Department of Surgery, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
96
|
Samaniego EA, Roa JA, Zhang H, Koscik TR, Ortega-Gutierrez S, Bathla G, Sonka M, Derdeyn C, Magnotta VA, Hasan D. Increased contrast enhancement of the parent vessel of unruptured intracranial aneurysms in 7T MR imaging. J Neurointerv Surg 2020; 12:1018-1022. [PMID: 32424006 DOI: 10.1136/neurintsurg-2020-015915] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/26/2020] [Accepted: 04/04/2020] [Indexed: 01/14/2023]
Abstract
BACKGROUND Inflammation of the arterial wall may lead to aneurysm formation. The presence of aneurysm enhancement on high-resolution vessel wall imaging (HR-VWI) is a marker of wall inflammation and instability. We aim to determine if there is any association between increased contrast enhancement in the aneurysmal wall and its parent artery. METHODS Patients with unruptured intracranial aneurysms (UIAs) prospectively underwent 7T HR-VWI. Regions of interest were selected manually and with a semi-automated protocol based on gradient algorithms of intensity patterns. Mean signal intensities in pre- and post-contrast T1-weighted sequences were adjusted to the enhancement of the pituitary stalk and then subtracted to objectively determine: circumferential aneurysmal wall enhancement (CAWE); parent vessel enhancement (PVE); and reference vessel enhancement (RVE). PVE was assessed over regions located 3- and 5 mm from the aneurysm's neck. RVE was assessed in arteries located in a different vascular territory. RESULTS Twenty-five UIAs were analyzed. There was a significant moderate correlation between CAWE and 5 mm PVE (Pearson R=0.52, P=0.008), whereas no correlation was found between CAWE and RVE (Pearson R=0.20, P=0.33). A stronger correlation was found between CAWE and 3 mm PVE (Pearson R=0.78, P<0.001). Intra-class correlation analysis demonstrated good reliability between measurements obtained using semi-automated and manual segmentation (ICC coefficient=0.790, 95% CI 0.58 to 0.90). CONCLUSION Parent arteries exhibit higher contrast enhancement in regions closer to the aneurysm's neck, especially in aneurysms≥7 mm. A localized inflammatory/vasculopathic process in the wall of the parent artery may lead to aneurysm formation and growth.
Collapse
Affiliation(s)
- Edgar A Samaniego
- Interventional Neuroradiology/Endovascular Neurosurgery Division Department of Neurology, Neurosurgery and Radiology, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Jorge A Roa
- Department of Neurology and Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Honghai Zhang
- Department of Electrical and Computer Engineering, Iowa Institute of Biomedical Imaging, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Timothy R Koscik
- Department of Psychiatry, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Santiago Ortega-Gutierrez
- Interventional Neuroradiology/Endovascular Neurosurgery Division Department of Neurology, Neurosurgery and Radiology, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Girish Bathla
- Radiology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Milan Sonka
- Department of Electrical and Computer Engineering, Iowa Institute of Biomedical Imaging, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Colin Derdeyn
- Radiology and Interventional Radiology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Vincent A Magnotta
- Radiology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - David Hasan
- Neurological Surgery, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| |
Collapse
|
97
|
|
98
|
Razavi A, Sachdeva S, Frommelt PC, LaDisa JF. Patient-Specific Numerical Analysis of Coronary Flow in Children With Intramural Anomalous Aortic Origin of Coronary Arteries. Semin Thorac Cardiovasc Surg 2020; 33:155-167. [PMID: 32858220 DOI: 10.1053/j.semtcvs.2020.08.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/21/2020] [Indexed: 11/11/2022]
Abstract
Unroofing surgery for anomalous aortic origin of a coronary artery (AAOCA) alters coronary anatomy by opening the intramural segment so that the anomalous coronary orifice arises perpendicularly from appropriate aortic sinus. Computational fluid dynamics modeling (CFD) allows for quantification of hemodynamics linked to morbidity such as wall shear stress (WSS), relative to patient-specific features like the angle of origin (AO). We hypothesize that CFD will reveal abnormal WSS indices in unroofed arteries that are related to AO. Six AAOCA patients (3 left, 3 right) status post unroofing (median = 13.5 years, range 9-17) underwent cardiac magnetic resonance imaging. CFD models were created from pre (n = 2) and postunroofing (n = 6) cardiac magnetic resonance imaging data, for the anomalous and contralateral normally-arising arteries. Downstream vasculature was represented by lumped parameter networks. Time-averaged WSS (TAWSS) and oscillatory shear index (OSI) were quantified relative to AO and measured hemodynamics. TAWSS was elevated along the outer wall of the normally-arising left vs right coronary arteries, as well as along unroofed left vs right coronary arteries (n = 6/group). No significant differences were noted when comparing unroofed and same-sided normally-arising coronaries. TAWSS was reduced after unroofing (eg, 276 ± 28 dyne/cm2 vs 91 ± 15 dyne/cm2; n = 2/group). Models with more acute preoperative AO indicated lower TAWSS at the proximity of ostium. Differences in OSI were not significant. Different flow patterns exist natively between right and left coronary arteries. Unroofing may normalize TAWSS but with variance related to the AO. This study suggests CFD may help stratify risk in AAOCA.
Collapse
Affiliation(s)
- Atefeh Razavi
- Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin.
| | | | - Peter C Frommelt
- Children's Hospital of Wisconsin, Milwaukee, Wisconsin; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - John F LaDisa
- Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin; Departments of Cardiovascular Medicine and Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
99
|
Dabagh M, Nair P, Gounley J, Frakes D, Gonzalez LF, Randles A. Hemodynamic and morphological characteristics of a growing cerebral aneurysm. Neurosurg Focus 2020; 47:E13. [PMID: 31261117 DOI: 10.3171/2019.4.focus19195] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/29/2019] [Indexed: 11/06/2022]
Abstract
The growth of cerebral aneurysms is linked to local hemodynamic conditions, but the driving mechanisms of the growth are poorly understood. The goal of this study was to examine the association between intraaneurysmal hemodynamic features and areas of aneurysm growth, to present the key hemodynamic parameters essential for an accurate prediction of the growth, and to gain a deeper understanding of the underlying mechanisms. Patient-specific images of a growing cerebral aneurysm in 3 different growth stages acquired over a period of 40 months were segmented and reconstructed. A unique aspect of this patient-specific case study was that while one side of the aneurysm stayed stable, the other side continued to grow. This unique case enabled the authors to examine their aims in the same patient with parent and daughter arteries under the same inlet flow conditions. Pulsatile flow in the aneurysm models was simulated using computational fluid dynamics and was validated with in vitro experiments using particle image velocimetry measurements. The authors' detailed analysis of intrasaccular hemodynamics linked the growing regions of aneurysms to flow instabilities and complex vortex structures. Extremely low velocities were observed at or around the center of the unstable vortex structure, which matched well with the growing regions of the studied cerebral aneurysm. Furthermore, the authors observed that the aneurysm wall regions with a growth greater than 0.5 mm coincided with wall regions of lower (< 0.5 Pa) time-averaged wall shear stress (TAWSS), lower instantaneous (< 0.5 Pa) wall shear stress (WSS), and high (> 0.1) oscillatory shear index (OSI). To determine which set of parameters can best identify growing and nongrowing aneurysms, the authors performed statistical analysis for consecutive stages of the growing CA. The results demonstrated that the combination of TAWSS and the distance from the center of the vortical structure has the highest sensitivity and positive predictive value, and relatively high specificity and negative predictive value. These findings suggest that an unstable, recirculating flow structure within the aneurysm sac created in the region adjacent to the aneurysm wall with low TAWSS may be introduced as an accurate criterion to explain the hemodynamic conditions predisposing the aneurysm to growth. The authors' findings are based on one patient's data set, but the study lays out the justification for future large-scale verification. The authors' findings can assist clinicians in differentiating stable and growing aneurysms during preinterventional planning.
Collapse
Affiliation(s)
| | - Priya Nair
- Schools of2Biological and Health Systems Engineering and
| | | | - David Frakes
- Schools of2Biological and Health Systems Engineering and.,3Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona
| | | | | |
Collapse
|
100
|
Soldozy S, Norat P, Elsarrag M, Chatrath A, Costello JS, Sokolowski JD, Tvrdik P, Kalani MYS, Park MS. The biophysical role of hemodynamics in the pathogenesis of cerebral aneurysm formation and rupture. Neurosurg Focus 2020; 47:E11. [PMID: 31261115 DOI: 10.3171/2019.4.focus19232] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 04/18/2019] [Indexed: 11/06/2022]
Abstract
The pathogenesis of intracranial aneurysms remains complex and multifactorial. While vascular, genetic, and epidemiological factors play a role, nascent aneurysm formation is believed to be induced by hemodynamic forces. Hemodynamic stresses and vascular insults lead to additional aneurysm and vessel remodeling. Advanced imaging techniques allow us to better define the roles of aneurysm and vessel morphology and hemodynamic parameters, such as wall shear stress, oscillatory shear index, and patterns of flow on aneurysm formation, growth, and rupture. While a complete understanding of the interplay between these hemodynamic variables remains elusive, the authors review the efforts that have been made over the past several decades in an attempt to elucidate the physical and biological interactions that govern aneurysm pathophysiology. Furthermore, the current clinical utility of hemodynamics in predicting aneurysm rupture is discussed.
Collapse
|