51
|
Yang SM, Li YB, Si HX, Wei Y, Ma FJ, Wang J, Chen T, Chen K. C-176 reduces inflammation-induced pain by blocking the cGAS-STING pathway in microglia. Int J Neurosci 2024:1-15. [PMID: 38738512 DOI: 10.1080/00207454.2024.2352025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024]
Abstract
OBJECTIVE Inflammatory pain, is caused by lesions or diseases of the somatosensory tissue, is a prevalent chronic condition that profoundly impacts the quality of life. However, clinical treatment for this type of pain remains limited. Traditionally, the stimulation of microglia and subsequent inflammatory reactions are considered crucial elements to promote the worsening of inflammatory pain. Recent research has shown the crucial importance of the cGAS-STING pathway in promoting inflammation. It is still uncertain if the cGAS-STING pathway plays the role in the fundamental cause of inflammatory pain. We aim to explore the treatment of inflammatory pain by interfering with cGAS-STING signaling pathway. METHODS In this study, we established an inflammatory pain model by CFA into the plantar of mice. Activation of microglia, various inflammatory factors and cGAS-STING protein in the spinal dorsal horn were evaluated. Immunofluorescence staining was used to observe the cellular localization of cGAS and STING. The cGAS-STING pathway proteins expression and mRNA expression of indicated microglial M1/M2 phenotypic markers in the BV2 microglia were detected. STING inhibitor C-176 was intrathecal injected into mice with inflammatory pain, and the pain behavior and microglia were observed. RESULTS This research showed that injecting CFA into the left hind paw of mice caused mechanical allodynia and increased inflammation in the spine. Our research results suggested that the cGAS-STING pathway had a function in the inflammation mediated by microglia in the spinal cord dorsal horn. Blocking the cGAS-STING pathway using STING antagonists (C-176) led to reduced release of inflammatory factors and prevented M1 polarization of BV2 microglia in a laboratory setting. Additionally, intrathecal administration of C-176 reduced the allodynia in CFA treated mice. CONCLUSION Our results suggest that inhibiting microglial polarization through the cGAS-STING pathway represents a potential novel therapeutic strategy for inflammatory pain.
Collapse
Affiliation(s)
- Shan-Ming Yang
- College of Life Science, Northwest University, Xi'an, China
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yuan-Bo Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Hua-Xing Si
- College of Life Science, Northwest University, Xi'an, China
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yi Wei
- College of Life Science, Northwest University, Xi'an, China
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Fu-Juan Ma
- College of Life Science, Northwest University, Xi'an, China
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Jian Wang
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Tao Chen
- College of Life Science, Northwest University, Xi'an, China
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Kun Chen
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
52
|
Huang Q, Wang Y, Chen S, Liang F. Glycometabolic Reprogramming of Microglia in Neurodegenerative Diseases: Insights from Neuroinflammation. Aging Dis 2024; 15:1155-1175. [PMID: 37611905 PMCID: PMC11081147 DOI: 10.14336/ad.2023.0807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023] Open
Abstract
Neurodegenerative diseases (ND) are conditions defined by progressive deterioration of the structure and function of the nervous system. Some major examples include Alzheimer's disease (AD), Parkinson's disease (PD), and Amyotrophic lateral sclerosis (ALS). These diseases lead to various dysfunctions, like impaired cognition, memory, and movement. Chronic neuroinflammation may underlie numerous neurodegenerative disorders. Microglia, an important immunocell in the brain, plays a vital role in defending against neuroinflammation. When exposed to different stimuli, microglia are activated and assume different phenotypes, participating in immune regulation of the nervous system and maintaining tissue homeostasis. The immunological activity of activated microglia is affected by glucose metabolic alterations. However, in the context of chronic neuroinflammation, specific alterations of microglial glucose metabolism and their mechanisms of action remain unclear. Thus, in this paper, we review the glycometabolic reprogramming of microglia in ND. The key molecular targets and main metabolic pathways are the focus of this research. Additionally, this study explores the mechanisms underlying microglial glucose metabolism reprogramming in ND and offers an analysis of the most recent therapeutic advancements. The ultimate aim is to provide insights into the development of potential treatments for ND.
Collapse
Affiliation(s)
- Qi Huang
- Department of Rehabilitation, The Central Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.
| | - Yanfu Wang
- Department of Rehabilitation, The Central Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.
| | - Shanshan Chen
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Fengxia Liang
- Department of Acupuncture and Moxibustion, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
53
|
You S, Ma Z, Zhang P, Xu W, Zhan C, Sang N, Xu J, Wang F, Zhang J. Neuroprotective effects of the salidroside derivative SHPL-49 via the BDNF/TrkB/Gap43 pathway in rats with cerebral ischemia. Biomed Pharmacother 2024; 174:116460. [PMID: 38520864 DOI: 10.1016/j.biopha.2024.116460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/04/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024] Open
Abstract
Ischemic stroke is a common intravascular disease and one of the leading causes of death and disability. The salidroside derivative SHPL-49, which we previously synthesized, significantly attenuates cerebral ischemic injury in a rat model of permanent middle cerebral artery occlusion. To explore the neuroprotective mechanism of SHPL-49, the effects of SHPL-49 on the expression levels of neurotrophic factors in neurons and microglia and the polarization of microglia were investigated in the present study. SHPL-49 activated the brain-derived neurotrophic factor (BDNF) pathway, decreased the number of degenerated neurons, and accelerated neurogenesis in rats with cerebral ischemia. In addition, SHPL-49 promoted the polarization of microglia toward the M2 phenotype to alleviate neuroinflammation. In BV2 cells, SHPL-49 upregulated CD206 mRNA and protein levels and inhibited CD86 mRNA and protein levels. SHPL-49 also increased neurotrophic factor secretion in BV2 cells, which indirectly promoted the survival of primary neurons after oxygen-glucose deprivation (OGD). Proteomics analysis revealed that SHPL-49 promoted growth-associated protein 43 (Gap43) expression. SHPL-49 enhanced synaptic plasticity and increased Gap43 protein levels via activation of the BDNF pathway in the OGD primary neuron model. These results indicate that SHPL-49 prevents cerebral ischemic injury by activating neurotrophic factor pathways and altering microglial polarization. Thus, SHPL-49 is a potential neuroprotective agent.
Collapse
Affiliation(s)
- Suxin You
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhouyun Ma
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Pei Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenwen Xu
- Shanghai Hutchison Pharmaceuticals Co., Ltd, Shanghai 201203, China
| | - Changsen Zhan
- Shanghai Hutchison Pharmaceuticals Co., Ltd, Shanghai 201203, China
| | - Nina Sang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiazhen Xu
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Feiyun Wang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiange Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
54
|
Duan M, Xu Y, Li Y, Feng H, Chen Y. Targeting brain-peripheral immune responses for secondary brain injury after ischemic and hemorrhagic stroke. J Neuroinflammation 2024; 21:102. [PMID: 38637850 PMCID: PMC11025216 DOI: 10.1186/s12974-024-03101-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024] Open
Abstract
The notion that the central nervous system is an immunologically immune-exempt organ has changed over the past two decades, with increasing evidence of strong links and interactions between the central nervous system and the peripheral immune system, both in the healthy state and after ischemic and hemorrhagic stroke. Although primary injury after stroke is certainly important, the limited therapeutic efficacy, poor neurological prognosis and high mortality have led researchers to realize that secondary injury and damage may also play important roles in influencing long-term neurological prognosis and mortality and that the neuroinflammatory process in secondary injury is one of the most important influences on disease progression. Here, we summarize the interactions of the central nervous system with the peripheral immune system after ischemic and hemorrhagic stroke, in particular, how the central nervous system activates and recruits peripheral immune components, and we review recent advances in corresponding therapeutic approaches and clinical studies, emphasizing the importance of the role of the peripheral immune system in ischemic and hemorrhagic stroke.
Collapse
Affiliation(s)
- Mingxu Duan
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ya Xu
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yuanshu Li
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hua Feng
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yujie Chen
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
55
|
Yang Y, Duan Y, Jiang H, Li J, Bai W, Zhang Q, Li J, Shao J. Bioinformatics-driven identification and validation of diagnostic biomarkers for cerebral ischemia reperfusion injury. Heliyon 2024; 10:e28565. [PMID: 38601664 PMCID: PMC11004763 DOI: 10.1016/j.heliyon.2024.e28565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/12/2024] Open
Abstract
Objective This article aims to identify genetic features associated with immune cell infiltration in cerebral ischemia-reperfusion injury (CIRI) development through bioinformatics, with the goal of discovering diagnostic biomarkers and potential therapeutic targets. Methods We obtained two datasets from the Gene Expression Omnibus (GEO) database to identify immune-related differentially expressed genes (IRDEGs). These genes' functions were analyzed via Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Tools such as CIBERSORT and ssGSEA assessed immune cell infiltration. The Starbase and miRDB databases predicted miRNAs interacting with hub genes, and Cytoscape software mapped mRNA-miRNA interaction networks. The ENCORI database was employed to predict RNA binding proteins interacting with hub genes. Key genes were identified using a random forest algorithm and constructing a Support Vector Machine (SVM) model. LASSO regression analysis constructed a diagnostic model for hub genes to determine their diagnostic value, and PCR analysis validated their expression in cerebral ischemia-reperfusion. Results We identified 10 IRDEGs (C1qa, Ccl4, Cd74, Cd8a, Cxcl10, Gmfg, Grp, Lgals3bp, Timp1, Vim). The random forest algorithm, and SVM model intersection revealed three key genes (Ccl4, Gmfg, C1qa) as diagnostic biomarkers for CIRI. LASSO regression analysis, further refined this to two key genes (Ccl4 and C1qa), With ROC curve, analysis confirming their diagnostic efficacy (C1qa AUC = 0.75, Ccl4 AUC = 0.939). PCR analysis corroborated these findings. Conclusions Our study elucidates immune and metabolic response mechanisms in CIRI, identifying two immune-related genes as key biomarkers and potential therapeutic targets in response to cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Yuan Yang
- Department of Anesthesiology, The First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Yushan Duan
- Department of Critical Care Medicine, The Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Huan Jiang
- Department of Anesthesiology, The First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Junjie Li
- Department of Anesthesiology, The First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Wenya Bai
- Department of Anesthesiology, The First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Qi Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Junming Li
- Department of Anesthesiology, The First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Jianlin Shao
- Department of Anesthesiology, The First Affiliated Hospital, Kunming Medical University, Kunming, China
| |
Collapse
|
56
|
Nishimura K, Sanchez-Molano J, Kerr N, Pressman Y, Silvera R, Khan A, Gajavelli S, Bramlett HM, Dietrich WD. Beneficial Effects of Human Schwann Cell-Derived Exosomes in Mitigating Secondary Damage After Penetrating Ballistic-Like Brain Injury. J Neurotrauma 2024. [PMID: 38445369 DOI: 10.1089/neu.2023.0650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
There is a growing body of evidence that the delivery of cell-derived exosomes normally involved in intracellular communication can reduce secondary injury mechanisms after brain and spinal cord injury and improve outcomes. Exosomes are nanometer-sized vesicles that are released by Schwann cells and may have neuroprotective effects by reducing post-traumatic inflammatory processes as well as promoting tissue healing and functional recovery. The purpose of this study was to evaluate the beneficial effects of human Schwann-cell exosomes (hSC-Exos) in a severe model of penetrating ballistic-like brain injury (PBBI) in rats and investigate effects on multiple outcomes. Human Schwann cell processing protocols followed Current Good Manufacturing Practices (cGMP) with exosome extraction and purification steps approved by the Food and Drug Administration for an expanded access single ALS patient Investigational New Drug. Anesthetized male Sprague-Dawley rats (280-350g) underwent PBBI surgery or Sham procedures and, starting 30 min after injury, received either a dose of hSC-Exos or phosphate-buffered saline through the jugular vein. At 48h after PBBI, flow cytometry analysis of cortical tissue revealed that hSC-Exos administration reduced the number of activated microglia and levels of caspase-1, a marker of inflammasome activation. Neuropathological analysis at 21 days showed that hSC-Exos treatment after PBBI significantly reduced overall contusion volume and decreased the frequency of Iba-1 positive activated and amoeboid microglia by immunocytochemical analysis. This study revealed that the systemic administration of hSC-Exos is neuroprotective in a model of severe TBI and reduces secondary inflammatory injury mechanisms and histopathological damage. The administration of hSC-Exos represents a clinically relevant cell-based therapy to limit the detrimental effects of neurotrauma or other progressive neurological injuries by impacting multiple pathophysiological events and promoting neurological recovery.
Collapse
Affiliation(s)
- Kengo Nishimura
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Juliana Sanchez-Molano
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Nadine Kerr
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Yelena Pressman
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Risset Silvera
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Aisha Khan
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, USA
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | - Helen M Bramlett
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, USA
- Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida, USA
| | - W Dalton Dietrich
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
57
|
Qin R, Huang L, Xu W, Qin Q, Liang X, Lai X, Huang X, Xie M, Chen L. Unveiling the role of HIST2H2AC in stroke through single-cell and transcriptome analysis. Funct Integr Genomics 2024; 24:76. [PMID: 38656411 DOI: 10.1007/s10142-024-01355-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
Stroke is a leading cause of death and disability, and genetic risk factors play a significant role in its development. Unfortunately, effective therapies for stroke are currently limited. Early detection and diagnosis are critical for improving outcomes and developing new treatment strategies. In this study, we aimed to identify potential biomarkers and effective prevention and treatment strategies for stroke by conducting transcriptome and single-cell analyses. Our analysis included screening for biomarkers, functional enrichment analysis, immune infiltration, cell-cell communication, and single-cell metabolism. Through differential expression analysis, enrichment analysis, and protein-protein interaction (PPI) network construction, we identified HIST2H2AC as a potential biomarker for stroke. Our study also highlighted the diagnostic role of HIST2H2AC in stroke, its relationship with immune cells in the stroke environment, and our improved understanding of metabolic pathways after stroke. Overall, our research provided important insights into the pathogenesis of stroke, including potential biomarkers and treatment strategies that can be explored further to improve outcomes for stroke patients.
Collapse
Affiliation(s)
- Rongxing Qin
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Lijuan Huang
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
- National Center for International Research of Biological Targeting Diagnosis and Therapy (Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research), Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Wei Xu
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
- National Center for International Research of Biological Targeting Diagnosis and Therapy (Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research), Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Qingchun Qin
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
- National Center for International Research of Biological Targeting Diagnosis and Therapy (Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research), Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Xiaojun Liang
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Xinyu Lai
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Xiaoying Huang
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Minshan Xie
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Li Chen
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530021, China.
- National Center for International Research of Biological Targeting Diagnosis and Therapy (Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research), Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530021, China.
| |
Collapse
|
58
|
Pallarés-Moratalla C, Bergers G. The ins and outs of microglial cells in brain health and disease. Front Immunol 2024; 15:1305087. [PMID: 38665919 PMCID: PMC11043497 DOI: 10.3389/fimmu.2024.1305087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Microglia are the brain's resident macrophages that play pivotal roles in immune surveillance and maintaining homeostasis of the Central Nervous System (CNS). Microglia are functionally implicated in various cerebrovascular diseases, including stroke, aneurysm, and tumorigenesis as they regulate neuroinflammatory responses and tissue repair processes. Here, we review the manifold functions of microglia in the brain under physiological and pathological conditions, primarily focusing on the implication of microglia in glioma propagation and progression. We further review the current status of therapies targeting microglial cells, including their re-education, depletion, and re-population approaches as therapeutic options to improve patient outcomes for various neurological and neuroinflammatory disorders, including cancer.
Collapse
|
59
|
Jithoo A, Penny TR, Pham Y, Sutherland AE, Smith MJ, Petraki M, Fahey MC, Jenkin G, Malhotra A, Miller SL, McDonald CA. The Temporal Relationship between Blood-Brain Barrier Integrity and Microglial Response following Neonatal Hypoxia Ischemia. Cells 2024; 13:660. [PMID: 38667275 PMCID: PMC11049639 DOI: 10.3390/cells13080660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Blood-brain barrier (BBB) dysfunction and neuroinflammation are key mechanisms of brain injury. We performed a time-course study following neonatal hypoxia-ischemia (HI) to characterize these events. HI brain injury was induced in postnatal day 10 rats by single carotid artery ligation followed by hypoxia (8% oxygen, 90 min). At 6, 12, 24, and 72 h (h) post-HI, brains were collected to assess neuropathology and BBB dysfunction. A significant breakdown of the BBB was observed in the HI injury group compared to the sham group from 6 h in the cortex and hippocampus (p < 0.001), including a significant increase in albumin extravasation (p < 0.0033) and decrease in basal lamina integrity and tight-junction proteins. There was a decrease in resting microglia (p < 0.0001) transitioning to an intermediate state from as early as 6 h post-HI, with the intermediate microglia peaking at 12 h (p < 0.0001), which significantly correlated to the peak of microbleeds. Neonatal HI insult leads to significant brain injury over the first 72 h that is mediated by BBB disruption within 6 h and a transitioning state of the resident microglia. Key BBB events coincide with the appearance of the intermediate microglial state and this relationship warrants further research and may be a key target for therapeutic intervention.
Collapse
Affiliation(s)
- Arya Jithoo
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (A.J.); (T.R.P.); (Y.P.); (A.E.S.); (M.J.S.); (G.J.); (A.M.); (S.L.M.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Tayla R. Penny
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (A.J.); (T.R.P.); (Y.P.); (A.E.S.); (M.J.S.); (G.J.); (A.M.); (S.L.M.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Yen Pham
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (A.J.); (T.R.P.); (Y.P.); (A.E.S.); (M.J.S.); (G.J.); (A.M.); (S.L.M.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Amy E. Sutherland
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (A.J.); (T.R.P.); (Y.P.); (A.E.S.); (M.J.S.); (G.J.); (A.M.); (S.L.M.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Madeleine J. Smith
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (A.J.); (T.R.P.); (Y.P.); (A.E.S.); (M.J.S.); (G.J.); (A.M.); (S.L.M.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Maria Petraki
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (A.J.); (T.R.P.); (Y.P.); (A.E.S.); (M.J.S.); (G.J.); (A.M.); (S.L.M.)
| | - Michael C. Fahey
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia;
| | - Graham Jenkin
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (A.J.); (T.R.P.); (Y.P.); (A.E.S.); (M.J.S.); (G.J.); (A.M.); (S.L.M.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Atul Malhotra
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (A.J.); (T.R.P.); (Y.P.); (A.E.S.); (M.J.S.); (G.J.); (A.M.); (S.L.M.)
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia;
| | - Suzanne L. Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (A.J.); (T.R.P.); (Y.P.); (A.E.S.); (M.J.S.); (G.J.); (A.M.); (S.L.M.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Courtney A. McDonald
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (A.J.); (T.R.P.); (Y.P.); (A.E.S.); (M.J.S.); (G.J.); (A.M.); (S.L.M.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
60
|
Li MC, Li MZ, Lin ZY, Zhuang YM, Wang HY, Jia JT, Lu Y, Wang ZJ, Zou HY, Zhao H. Buyang Huanwu Decoction promotes neurovascular remodeling by modulating astrocyte and microglia polarization in ischemic stroke rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117620. [PMID: 38141792 DOI: 10.1016/j.jep.2023.117620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Buyang Huanwu Decoction (BYHWD), one of the most commonly utilized traditional Chinese medicine prescription for treatment of cerebral ischemic stroke. However, the understanding of BYHWD on neurovascular repair following cerebral ischemia is so far limited. AIM OF THE STUDY This research investigated the influence of BYHWD on neurovascular remodeling by magnetic resonance imaging (MRI) technology and revealed the potential neurovascular repair mechanism underlying post-treatment with BYHWD after ischemic stroke. MATERIALS AND METHODS Male Sprague-Dawley rats were utilized as an ischemic stroke model by permanent occlusion of the middle cerebral artery (MCAO). BYHWD was intragastrically administrated once daily for 30 days straight. Multimodal MRI was performed to detect brain tissue injuries, axonal microstructural damages, cerebral blood flow and intracranial vessels on the 30th day after BYHWD treatment. Proangiogenic factors, axonal/synaptic plasticity-related factors, energy transporters and adenosine monophosphate-activated protein kinase (AMPK) signal pathway were evaluated using western blot. Double immunofluorescent staining and western blot were applied to evaluate astrocytes and microglia polarization. RESULTS Administration of BYHWD significantly alleviated infarct volume and brain tissue injuries and ameliorated microstructural damages, accompanied with improved axonal/synaptic plasticity-related factors, axonal growth guidance factors and decreased axonal growth inhibitors. Meanwhile, BYHWD remarkably improved cerebral blood flow, cerebral vascular signal and promoted the expression of proangiogenic factors. Particularly, treatment with BYHWD obviously suppressed astrocytes A1 and microglia M1 polarization accompanied with promoted astrocyte A2 and microglia M2 polarization. Furthermore, BYHWD effectively improved energy transporters. Especially, BYHWD markedly increased expression of phosphorylated AMPK, cyclic AMP-response element binding protein (CREB) and brain-derived neurotrophic factor (BDNF) accompanied by inactivation of the NF-κB. CONCLUSION Taken together, these findings identified that the beneficial roles of BYHWD on neurovascular remodeling were related to AMPK pathways -mediated energy transporters and NFκB/CREB pathways.
Collapse
Affiliation(s)
- Ming-Cong Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Man-Zhong Li
- Department of pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China; Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, 100038, China
| | - Zi-Yue Lin
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Yu-Ming Zhuang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Han-Yu Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Jing-Ting Jia
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Yun Lu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Zhan-Jing Wang
- Medical Imaging laboratory of Core Facility Center, Capital Medical University, Beijing, 100069, China
| | - Hai-Yan Zou
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Hui Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China.
| |
Collapse
|
61
|
Wang X, Yu Z, Dong F, Li J, Niu P, Ta Q, Kan J, Ma C, Han M, Yu J, Zhao D, Li J. Clarifying the mechanism of apigenin against blood-brain barrier disruption in ischemic stroke using systems pharmacology. Mol Divers 2024; 28:609-630. [PMID: 36949297 DOI: 10.1007/s11030-023-10607-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/12/2023] [Indexed: 03/24/2023]
Abstract
Currently, recombinant tissue plasminogen activator (rtPA) is an effective therapy for ischemic stroke (IS). However, blood-brain barrier (BBB) disruption is a serious side effect of rtPA therapy and may lead to patients' death. The natural polyphenol apigenin has a good therapeutic effect on IS. Apigenin has potential BBB protection, but the mechanism by which it protects the BBB integrity is not clear. In this study, we used network pharmacology, bioinformatics, molecular docking and molecular dynamics simulation to reveal the mechanisms by which apigenin protects the BBB. Among the 146 targets of apigenin for the treatment of IS, 20 proteins were identified as core targets (e.g., MMP-9, TLR4, STAT3). Apigenin protects BBB integrity by inhibiting the activity of MMPs through anti-inflammation and anti-oxidative stress. These mechanisms included JAK/STAT, the toll-like receptor signaling pathway, and Nitrogen metabolism signaling pathways. The findings of this study contribute to a more comprehensive understanding of the mechanism of apigenin in the treatment of BBB disruption and provide ideas for the development of drugs to treat IS.
Collapse
Affiliation(s)
- Xu Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
- School of Public Health, Jilin University, Changchun, 130021, Jilin, China
| | - ZiQiao Yu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Fuxiang Dong
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Jinjian Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Ping Niu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Qiyi Ta
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - JunMing Kan
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Chunyu Ma
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Moxuan Han
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Junchao Yu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Dexi Zhao
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China.
| | - Jinhua Li
- School of Public Health, Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
62
|
Lian J, Liu W, Hu Q, Zhang X. Succinylation modification: a potential therapeutic target in stroke. Neural Regen Res 2024; 19:781-787. [PMID: 37843212 PMCID: PMC10664134 DOI: 10.4103/1673-5374.382229] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/27/2023] [Accepted: 06/26/2023] [Indexed: 10/17/2023] Open
Abstract
Stroke is a leading cause of mortality and disability worldwide. Ischemic cell death triggered by the compromised supply of blood oxygen and glucose is one of the major pathophysiology of stroke-induced brain injury. Impaired mitochondrial energy metabolism is observed minutes after stroke and is closely associated with the progression of neuropathology. Recently, a new type of post-translational modification, known as lysine succinylation, has been recognized to play a significant role in mitochondrial energy metabolism after ischemia. However, the role of succinylation modification in cell metabolism after stroke and its regulation are not well understood. We aimed to review the effects of succinylation on energy metabolism, reactive oxygen species generation, and neuroinflammation, as well as Sirtuin 5 mediated desuccinylation after stroke. We also highlight the potential of targeting succinylation/desuccinylation as a promising strategy for the treatment of stroke. The succinylation level is dynamically regulated by the nonenzymatic or enzymatic transfer of a succinyl group to a protein on lysine residues and the removal of succinyl catalyzed by desuccinylases. Mounting evidence has suggested that succinylation can regulate the metabolic pathway through modulating the activity or stability of metabolic enzymes. Sirtuins, especially Sirtuin 5, are characterized for their desuccinylation activity and have been recognized as a critical regulator of metabolism through desuccinylating numerous metabolic enzymes. Imbalance between succinylation and desuccinylation has been implicated in the pathophysiology of stroke. Pharmacological agents that enhance the activity of Sirtuin 5 have been employed to promote desuccinylation and improve mitochondrial metabolism, and neuroprotective effects of these agents have been observed in experimental stroke studies. However, their therapeutic efficacy in stroke patients should be validated.
Collapse
Affiliation(s)
- Jie Lian
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenwu Liu
- Department of Diving and Hyperbaric Medicine, Naval Medical Center, Naval Medical University, Shanghai, China
| | - Qin Hu
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohua Zhang
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
63
|
Khan MB, Alam H, Siddiqui S, Shaikh MF, Sharma A, Rehman A, Baban B, Arbab AS, Hess DC. Exercise Improves Cerebral Blood Flow and Functional Outcomes in an Experimental Mouse Model of Vascular Cognitive Impairment and Dementia (VCID). Transl Stroke Res 2024; 15:446-461. [PMID: 36689081 PMCID: PMC10363247 DOI: 10.1007/s12975-023-01124-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/14/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023]
Abstract
Vascular cognitive impairment and dementia (VCID) are a growing threat to public health without any known treatment. The bilateral common carotid artery stenosis (BCAS) mouse model is valid for VCID. Previously, we have reported that remote ischemic postconditioning (RIPostC) during chronic cerebral hypoperfusion (CCH) induced by BCAS increases cerebral blood flow (CBF), improves cognitive function, and reduces white matter damage. We hypothesized that physical exercise (EXR) would augment CBF during CCH and prevent cognitive impairment in the BCAS model. BCAS was performed in C57/B6 mice of both sexes to establish CCH. One week after the BCAS surgery, mice were randomized to treadmill exercise once daily or no EXR for four weeks. CBF was monitored with an LSCI pre-, post, and 4 weeks post-BCAS. Cognitive testing was performed for post-BCAS after exercise training, and brain tissue was harvested for histopathology and biochemical test. BCAS led to chronic hypoperfusion resulting in impaired cognitive function and other functional outcomes. Histological examination revealed that BCAS caused changes in neuronal morphology and cell death in the cortex and hippocampus. Immunoblotting showed that BCAS was associated with a significant downregulate of AMPK and pAMPK and NOS3 and pNOS3. BCAS also decreased red blood cell (RBC) deformability. EXR therapy increased and sustained improved CBF and cognitive function, muscular strength, reduced cell death, and loss of white matter. EXR is effective in the BCAS model, improving CBF and cognitive function, reducing white matter damage, improving RBC deformability, and increasing RBC NOS3 and AMPK. The mechanisms by which EXR improves CBF and attenuates tissue damage need further investigation.
Collapse
Affiliation(s)
- Mohammad Badruzzaman Khan
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15thStreet, CA 1053, Augusta, GA, 30912, USA.
| | - Haroon Alam
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15thStreet, CA 1053, Augusta, GA, 30912, USA
| | - Shahneela Siddiqui
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15thStreet, CA 1053, Augusta, GA, 30912, USA
| | - Muhammad Fasih Shaikh
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15thStreet, CA 1053, Augusta, GA, 30912, USA
| | - Abhinav Sharma
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15thStreet, CA 1053, Augusta, GA, 30912, USA
| | - Amna Rehman
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15thStreet, CA 1053, Augusta, GA, 30912, USA
| | - Babak Baban
- Department of Oral Biology, Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Ali S Arbab
- Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
| | - David C Hess
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15thStreet, CA 1053, Augusta, GA, 30912, USA
| |
Collapse
|
64
|
Yu Y, Liao X, Xie X, Li Q, Chen X, Liu R. The role of neuroglial cells communication in ischemic stroke. Brain Res Bull 2024; 209:110910. [PMID: 38423190 DOI: 10.1016/j.brainresbull.2024.110910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
Ischemic stroke is one of the leading causes of death and disability globally, but its treatment options are limited due to therapeutic window and reperfusion injury constraints. Microglia, astrocytes, and oligodendrocytes are the major components of the neurovascular unit, and there is substantial evidence suggesting their contributions to maintaining homeostasis in the central nervous system. Neuroglial cells participate in neuronal physiological functions and the repair of damaged neurons through various communication methods, including gap junctions, chemical signaling, and extracellular vesicles, in conjunction with other components of the neurovascular unit. Ischemia-induced microglia and astrocytes polarize into "M1/M2" and "A1/A2" phenotypes and exert neurotoxic or neuroprotective effects by releasing soluble factors, secreting extracellular vesicles, and forming syncytia networks in the acute (<72 h), subacute (>72 h), and chronic phases (>6 weeks). Apoptosis of oligodendrocytes due to ischemic hypoxia leads to white matter injury, causing long-term cognitive dysfunction, and promoting oligodendrogenesis is a crucial direction for achieving functional recovery in ischemic stroke. In this article, we summarize the cellular interactions following cerebral ischemia, analyze the roles of neuroglial cells through gap junctions, chemical signaling, and extracellular vesicles in different stages of ischemic stroke, and further explore strategies for intervening in ischemic stroke.
Collapse
Affiliation(s)
- Yunling Yu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China; School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Xinglan Liao
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China; School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Xinyu Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China; School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Qihua Li
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Xuehong Chen
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Ruizhen Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China; School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
65
|
Tian M, Zhan Y, Cao J, Gao J, Sun J, Zhang L. Targeting blood-brain barrier for sepsis-associated encephalopathy: Regulation of immune cells and ncRNAs. Brain Res Bull 2024; 209:110922. [PMID: 38458135 DOI: 10.1016/j.brainresbull.2024.110922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/14/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Sepsis causes significant morbidity and mortality worldwide, most surviving patients show acute or chronic mental disorders, which are known as sepsis-associated encephalopathy (SAE). SAE involves many pathological processes, including the blood-brain barrier (BBB) damage. The BBB is located at the interface between the central nervous system and the surrounding environment, which protects the central nervous system (CNS) from the invasion of exogenous molecules, harmful substances or microorganisms in the blood. Recently, a growing number of studies have indicated that the BBB destruction was involved in SAE and played an important role in SAE-induced brain injury. In the present review, we firstly reveal the pathological processes of SAE such as the neurotransmitter disorders, oxidative stress, immune dysfunction and BBB destruction. Moreover, we introduce the structure of BBB, and describe the immune cells including microglia and astrocytes that participate in the BBB destruction after SAE. Furthermore, in view of the current research on non-coding RNAs (ncRNAs), we explain the regulatory mechanism of ncRNAs including long noncoding RNAs (lncRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs) on BBB in the processes of SAE. Finally, we propose some challenges and perspectives of regulating BBB functions in SAE. Hence, on the basis of these effects, both immune cells and ncRNAs may be developed as therapeutic targets to protect BBB for SAE patients.
Collapse
Affiliation(s)
- Mi Tian
- Department of Anesthesiology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu Province, China
| | - Yunliang Zhan
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jinyuan Cao
- Department of Anesthesiology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu Province, China
| | - Jinqi Gao
- Department of Anesthesiology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu Province, China
| | - Jie Sun
- Department of Anesthesiology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu Province, China.
| | - Li Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
66
|
Yang X, Li W, Ding M, Liu KJ, Qi Z, Zhao Y. Contribution of zinc accumulation to ischemic brain injury and its mechanisms about oxidative stress, inflammation, and autophagy: an update. Metallomics 2024; 16:mfae012. [PMID: 38419293 DOI: 10.1093/mtomcs/mfae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/27/2024] [Indexed: 03/02/2024]
Abstract
Ischemic stroke is a leading cause of death and disability worldwide, and presently, there is no effective neuroprotective therapy. Zinc is an essential trace element that plays important physiological roles in the central nervous system. Free zinc concentration is tightly regulated by zinc-related proteins in the brain under normal conditions. Disruption of zinc homeostasis, however, has been found to play an important role in the mechanism of brain injury following ischemic stroke. A large of free zinc releases from storage sites after cerebral ischemia, which affects the functions and survival of nerve cells, including neurons, astrocytes, and microglia, resulting in cell death. Ischemia-triggered intracellular zinc accumulation also disrupts the function of blood-brain barrier via increasing its permeability, impairing endothelial cell function, and altering tight junction levels. Oxidative stress and neuroinflammation have been reported to be as major pathological mechanisms in cerebral ischemia/reperfusion injury. Studies have showed that the accumulation of intracellular free zinc could impair mitochondrial function to result in oxidative stress, and form a positive feedback loop between zinc accumulation and reactive oxygen species production, which leads to a series of harmful reactions. Meanwhile, elevated intracellular zinc leads to neuroinflammation. Recent studies also showed that autophagy is one of the important mechanisms of zinc toxicity after ischemic injury. Interrupting the accumulation of zinc will reduce cerebral ischemia injury and improve neurological outcomes. This review summarizes the role of zinc toxicity in cellular and tissue damage following cerebral ischemia, focusing on the mechanisms about oxidative stress, inflammation, and autophagy.
Collapse
Affiliation(s)
- Xueqi Yang
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing 100053, China
- Beijing Geriatric Medical Research Center, Beijing 100053, China
| | - Wei Li
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing 100053, China
- Beijing Geriatric Medical Research Center, Beijing 100053, China
| | - Mao Ding
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing 100053, China
| | - Ke Jian Liu
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Zhifeng Qi
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing 100053, China
- Beijing Geriatric Medical Research Center, Beijing 100053, China
| | - Yongmei Zhao
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing 100053, China
- Beijing Geriatric Medical Research Center, Beijing 100053, China
| |
Collapse
|
67
|
An Z, He Q, Jiang L, Wang Y, Zhang Y, Sun Y, Wang M, Yang S, Huang L, Li H, Hao Y, Liang X, Wang S. A One-Stone-Two-Birds Strategy of Targeting Microbubbles with "Dual" Anti-Inflammatory and Blood-Brain Barrier "Switch" Function for Ischemic Stroke Treatment. ACS Biomater Sci Eng 2024; 10:1774-1787. [PMID: 38420991 DOI: 10.1021/acsbiomaterials.3c01561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Inflammation is considered to be the main target of the development of new stroke therapies. There are three key issues in the treatment of stroke inflammation: the first one is how to overcome the blood-brain barrier (BBB) to achieve drug delivery, the second one is how to select drugs to treat stroke inflammation, and the third one is how to achieve targeted drug delivery. In this study, we constructed hydrocortisone-phosphatidylserine microbubbles and combined them with ultrasound (US)-targeted microbubble destruction technology to successfully open the BBB to achieve targeted drug delivery. Phosphatidylserine on the microbubbles was used for its "eat me" effect to increase the targeting of the microvesicles. In addition, we found that hydrocortisone can accelerate the closure of the BBB, achieving efficient drug delivery while reducing the entry of peripheral toxins into the brain. In the treatment of stroke inflammation, it was found that hydrocortisone itself has anti-inflammatory effects and can also change the polarization of microglia from the harmful pro-inflammatory M1 phenotype to the beneficial anti-inflammatory M2 phenotype, thus achieving dual anti-inflammatory effects and enhancing the anti-inflammatory effects in ischemic areas after stroke, well reducing the cerebellar infarction volume by inhibiting the inflammatory response after cerebral ischemia. A confocal microendoscope was used to directly observe the polarization of microglial cells in living animal models for dynamic microscopic visualization detection showing the advantage of being closer to clinical work. Taken together, this study constructed a multifunctional targeted US contrast agent with the function of "one-stone-two-birds", which can not only "on-off" the BBB but also have "two" anti-inflammatory functions, providing a new strategy of integrated anti-inflammatory targeted delivery and imaging monitoring for ischemic stroke treatment.
Collapse
Affiliation(s)
- Zhongbin An
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
- Ordos Central Hospital, Ordos, Inner Mongolia 017000, China
| | - Qiong He
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ling Jiang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Yuan Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Yongyue Zhang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Yang Sun
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Mengxin Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Shiyuan Yang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Lijie Huang
- Tsinghua University, Hai Dian, Beijing 017000, China
| | - Huiwen Li
- Ordos Central Hospital, Ordos, Inner Mongolia 017000, China
| | - Yu Hao
- Ordos Central Hospital, Ordos, Inner Mongolia 017000, China
| | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Shumin Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
68
|
Zhang Y, Li J, Zhao Y, Huang Y, Shi Z, Wang H, Cao H, Wang C, Wang Y, Chen D, Chen S, Meng S, Wang Y, Zhu Y, Jiang Y, Gong Y, Gao Y. Arresting the bad seed: HDAC3 regulates proliferation of different microglia after ischemic stroke. SCIENCE ADVANCES 2024; 10:eade6900. [PMID: 38446877 PMCID: PMC10917353 DOI: 10.1126/sciadv.ade6900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/30/2024] [Indexed: 03/08/2024]
Abstract
The accumulation of self-renewed polarized microglia in the penumbra is a critical neuroinflammatory process after ischemic stroke, leading to secondary demyelination and neuronal loss. Although known to regulate tumor cell proliferation and neuroinflammation, HDAC3's role in microgliosis and microglial polarization remains unclear. We demonstrated that microglial HDAC3 knockout (HDAC3-miKO) ameliorated poststroke long-term functional and histological outcomes. RNA-seq analysis revealed mitosis as the primary process affected in HDAC3-deficent microglia following stroke. Notably, HDAC3-miKO specifically inhibited proliferation of proinflammatory microglia without affecting anti-inflammatory microglia, preventing microglial transition to a proinflammatory state. Moreover, ATAC-seq showed that HDAC3-miKO induced closing of accessible regions enriched with PU.1 motifs. Overexpressing microglial PU.1 via an AAV approach reversed HDAC3-miKO-induced proliferation inhibition and protective effects on ischemic stroke, indicating PU.1 as a downstream molecule that mediates HDAC3's effects on stroke. These findings uncovered that HDAC3/PU.1 axis, which mediated differential proliferation-related reprogramming in different microglia populations, drove poststroke inflammatory state transition, and contributed to pathophysiology of ischemic stroke.
Collapse
Affiliation(s)
| | | | | | - Yichen Huang
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ziyu Shi
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Hailian Wang
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Hui Cao
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Chenran Wang
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yana Wang
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Di Chen
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Shuning Chen
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Shan Meng
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yangfan Wang
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yueyan Zhu
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yan Jiang
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ye Gong
- Corresponding author. (Y.Gao); (Y.Gong)
| | | |
Collapse
|
69
|
Stavchansky VV, Yuzhakov VV, Sevan'kaeva LE, Fomina NK, Koretskaya AE, Denisova AE, Mozgovoy IV, Gubsky LV, Filippenkov IB, Myasoedov NF, Limborska SA, Dergunova LV. Melanocortin Derivatives Induced Vascularization and Neuroglial Proliferation in the Rat Brain under Conditions of Cerebral Ischemia. Curr Issues Mol Biol 2024; 46:2071-2092. [PMID: 38534749 DOI: 10.3390/cimb46030133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Abstract
Stroke remains the second leading cause of death worldwide. The development of new therapeutic agents focused on restoring vascular function and neuroprotection of viable tissues is required. In this study the neuroprotective activity of melanocortin-like ACTH(4-7)PGP and ACTH(6-9)PGP peptides was investigated in rat brain at 24 h after transient middle cerebral artery occlusion (tMCAO). The severity of ischemic damage, changes in the proliferative activity of neuroglial cells and vascularization of rat brain tissue were analyzed. The administration of peptides resulted in a significant increase in the volume density of neurons in the perifocal zone of infarction compared to rats subjected to ischemia and receiving saline. Immunohistochemical analysis of the proliferative activity of neuroglia cells using PCNA antibodies showed a significant increase in the number of proliferating cells in the penumbra and in the intact cerebral cortex of rats receiving peptide treatment. The effect of peptides on vascularization was examined using CD31 antibodies under tMCAO conditions, revealing a significant increase in the volume density of vessels and their sizes in the penumbra after administration of ACTH(4-7)PGP and ACTH(6-9)PGP. These findings confirm the neuroprotective effect of peptides due to the activation of neuroglia proliferation and the enhancement of collateral blood flow.
Collapse
Affiliation(s)
- Vasily V Stavchansky
- National Research Center "Kurchatov Institute", Kurchatov Sq. 2, Moscow 123182, Russia
| | - Vadim V Yuzhakov
- A. Tsyb Medical Radiological Research Center-Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Koroleva Str. 4B, Obninsk 249036, Russia
| | - Larisa E Sevan'kaeva
- A. Tsyb Medical Radiological Research Center-Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Koroleva Str. 4B, Obninsk 249036, Russia
| | - Natalia K Fomina
- A. Tsyb Medical Radiological Research Center-Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Koroleva Str. 4B, Obninsk 249036, Russia
| | - Anastasia E Koretskaya
- A. Tsyb Medical Radiological Research Center-Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Koroleva Str. 4B, Obninsk 249036, Russia
| | - Alina E Denisova
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Ostrovitianov Str. 1, Moscow 117997, Russia
| | - Ivan V Mozgovoy
- National Research Center "Kurchatov Institute", Kurchatov Sq. 2, Moscow 123182, Russia
| | - Leonid V Gubsky
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Ostrovitianov Str. 1, Moscow 117997, Russia
| | - Ivan B Filippenkov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 2, Moscow 123182, Russia
| | - Nikolay F Myasoedov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 2, Moscow 123182, Russia
| | - Svetlana A Limborska
- National Research Center "Kurchatov Institute", Kurchatov Sq. 2, Moscow 123182, Russia
| | - Lyudmila V Dergunova
- National Research Center "Kurchatov Institute", Kurchatov Sq. 2, Moscow 123182, Russia
| |
Collapse
|
70
|
Koukalova L, Chmelova M, Amlerova Z, Vargova L. Out of the core: the impact of focal ischemia in regions beyond the penumbra. Front Cell Neurosci 2024; 18:1336886. [PMID: 38504666 PMCID: PMC10948541 DOI: 10.3389/fncel.2024.1336886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/08/2024] [Indexed: 03/21/2024] Open
Abstract
The changes in the necrotic core and the penumbra following induction of focal ischemia have been the focus of attention for some time. However, evidence shows, that ischemic injury is not confined to the primarily affected structures and may influence the remote areas as well. Yet many studies fail to probe into the structures beyond the penumbra, and possibly do not even find any significant results due to their short-term design, as secondary damage occurs later. This slower reaction can be perceived as a therapeutic opportunity, in contrast to the ischemic core defined as irreversibly damaged tissue, where the window for salvation is comparatively short. The pathologies in remote structures occur relatively frequently and are clearly linked to the post-stroke neurological outcome. In order to develop efficient therapies, a deeper understanding of what exactly happens in the exo-focal regions is necessary. The mechanisms of glia contribution to the ischemic damage in core/penumbra are relatively well described and include impaired ion homeostasis, excessive cell swelling, glutamate excitotoxic mechanism, release of pro-inflammatory cytokines and phagocytosis or damage propagation via astrocytic syncytia. However, little is known about glia involvement in post-ischemic processes in remote areas. In this literature review, we discuss the definitions of the terms "ischemic core", "penumbra" and "remote areas." Furthermore, we present evidence showing the array of structural and functional changes in the more remote regions from the primary site of focal ischemia, with a special focus on glia and the extracellular matrix. The collected information is compared with the processes commonly occurring in the ischemic core or in the penumbra. Moreover, the possible causes of this phenomenon and the approaches for investigation are described, and finally, we evaluate the efficacy of therapies, which have been studied for their anti-ischemic effect in remote areas in recent years.
Collapse
Affiliation(s)
- Ludmila Koukalova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Martina Chmelova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Zuzana Amlerova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Lydia Vargova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
71
|
Xie H, Tian Y, Li Z, Wang K, Li R, Yi S, Chen A, Chen J, Liu J, Wei X, Gao X. Activation of Beta-adrenergic Receptors Upregulates the Signal-to-Noise Ratio of Auditory Input in the Medial Prefrontal Cortex and Mediates Auditory Fear Conditioning. Mol Neurobiol 2024; 61:1833-1844. [PMID: 37787950 DOI: 10.1007/s12035-023-03667-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023]
Abstract
Norepinephrine (NE) is involved in auditory fear conditioning (AFC) in posttraumatic stress disorder (PTSD). However, it is still unclear how it acts on neurons. We aimed to investigate whether the activation of the β-adrenergic receptor (β-AR) improves AFC by sensitization of the prelimbic (PL) cortex at the animal, cellular, and molecular levels. In vivo single-cell electrophysiological recording was used to characterize the changes in neurons in the PL cortex after AFC. Then, PL neurons were locally administrated by the β-AR agonist isoproterenol (ISO), the GABAaR agonist muscimol, or intervened by optogenetic method, respectively. Western blotting and immunohistochemistry were finally used to assess molecular changes. Noise and low-frequency tones induced similar AFC. The expression of β-ARs in PL cortex neurons was upregulated after fear conditioning. Microinjection of muscimol into the PL cortex blocked the conformation of AFC, whereas ISO injection facilitated AFC. Moreover, PL neurons can be distinguished into two types, with type I but not type II neurons responding to conditioned sound and being regulated by β-ARs. Our results showed that β-ARs in the PL cortex regulate conditional fear learning by activating type I PL neurons.
Collapse
Affiliation(s)
- Haiting Xie
- Department of Neurology, Zhujiang Hospital of Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Yueqin Tian
- Department of Neurology, Zhujiang Hospital of Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Zhongli Li
- Respiratory Medicine, Zhujiang Hospital of Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Kaitao Wang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Runtong Li
- Department of Neurology, Zhujiang Hospital of Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Shang Yi
- Department of Neurology, Zhujiang Hospital of Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Aimin Chen
- Department of Neurology, Zhujiang Hospital of Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Jian Chen
- Department of Neurology, Zhujiang Hospital of Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Jun Liu
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, No. 250 Changgang road, Guangzhou, Guangdong, 510280, People's Republic of China.
| | - Xuhong Wei
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510282, People's Republic of China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510282, People's Republic of China.
| | - Xiaoya Gao
- Department of Neurology, Zhujiang Hospital of Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong, 510282, People's Republic of China.
- Department of Pediatric Neurology, Zhujiang Hospital, Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong, 510282, People's Republic of China.
| |
Collapse
|
72
|
Khassafi N, Azami Tameh A, Mirzaei H, Rafat A, Barati S, Khassafi N, Vahidinia Z. Crosstalk between Nrf2 signaling pathway and inflammation in ischemic stroke: Mechanisms of action and therapeutic implications. Exp Neurol 2024; 373:114655. [PMID: 38110142 DOI: 10.1016/j.expneurol.2023.114655] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/03/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
One of the major causes of long-term disability and mortality is ischemic stroke that enjoys limited treatment approaches. On the one hand, oxidative stress, induced by excessive generation of reactive oxygen species (ROS), plays a critical role in post-stroke inflammatory response. Increased ROS generation is one of the basic factors in the progression of stroke-induced neuroinflammation. Moreover, intravenous (IV) thrombolysis using recombinant tissue plasminogen activator (rtPA) as the only medication approved for patients with acute ischemic stroke who suffer from some clinical restrictions it could not cover the complicated episodes that happen after stroke. Thus, identifying novel therapeutic targets is crucial for successful preparation of new medicines. Recent evidence indicates that the transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2) contributes significantly to regulating the antioxidant production in cytosol, which causes antiinflammatory effects on neurons. New findings have shown a relationship between activation of the Nrf2 and glial cells, nuclear factor kappa B (NF-κB) pathway, the nucleotide-binding domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome signaling, and expression of inflammatory markers, suggesting induction of Nrf2 activation can represent a promising therapeutic alternative as the modulators of Nrf2 dependent pathways for targeting inflammatory responses in neural tissue. Hence, this review addresses the relationship of Nrf2 signaling with inflammation and Nrf2 activators' potential as therapeutic agents. This review helps to improve required knowledge for focused therapy and the creation of modern and improved treatment choices for patients with ischemic stroke.
Collapse
Affiliation(s)
- Negar Khassafi
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Abolfazl Azami Tameh
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Rafat
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Shirin Barati
- Department of Anatomy, Saveh University of Medical Sciences, Saveh, Iran
| | - Negin Khassafi
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zeinab Vahidinia
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
73
|
Chen XL, Tan QD, Chen KJ, Zheng DN, Deng HW, He S, Mao FK, Hao JL, Le WD, Yang J. CircRNA and Stroke: New Insight of Potential Biomarkers and Therapeutic Targets. Neurochem Res 2024; 49:557-567. [PMID: 38063946 DOI: 10.1007/s11064-023-04077-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/14/2023] [Accepted: 11/25/2023] [Indexed: 02/23/2024]
Abstract
Stroke, the second-largest cause of death and the leading cause of disability globally, presents significant challenges in terms of prognosis and treatment. Identifying reliable prognosis biomarkers and treatment targets is crucial to address these challenges. Circular RNA (circRNA) has emerged as a promising research biomarkers and therapeutic targets because of its tissue specificity and conservation. However, the potential role of circRNA in stroke prognosis and treatment remains largely unexplored. This review briefly elucidate the mechanism underlying circRNA's involvement in stroke pathophysiology. Additionally, this review summarizes the impact of circRNA on different forms of strokes, including ischemic stroke and hemorrhagic stroke. And, this article discusses the positive effects of circRNA on promoting cerebrovascular repair and regeneration, maintaining the integrity of the blood-brain barrier (BBB), and reducing neuronal injury and immune inflammatory response. In conclusion, the significance of circRNA as a potential prognostic biomarker and a viable therapeutic target was underscored.
Collapse
Affiliation(s)
- Xiao-Ling Chen
- School of Clinical Medicine, Southwest Medical University, Luzhou, 646000, China
- Department of Neurology, School of Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Quan-Dan Tan
- Department of Neurology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610072, China9, China
| | - Ke-Jie Chen
- School of Public Health, Chengdu Medical College, Chengdu, 610072, China
| | - Dan-Ni Zheng
- Brain Health Initiative, The George Institute for Global Health, University of New South Wales, Sydney, 2025, Australia
| | - Hong-Wei Deng
- Department of Neurology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610072, China9, China
| | - Song He
- Department of Neurology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610072, China9, China
| | - Feng-Kai Mao
- Department of Neurology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610072, China9, China
| | - Jun-Li Hao
- School of Biomedical Sciences and Technology, Chengdu Medical College, Chengdu, 610072, China
| | - Wei-Dong Le
- Institute of Neurology, School of Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Jie Yang
- School of Biomedical Sciences and Technology, Chengdu Medical College, Chengdu, 610072, China.
| |
Collapse
|
74
|
Fadoul G, Ikonomovic M, Zhang F, Yang T. The cell-specific roles of Nrf2 in acute and chronic phases of ischemic stroke. CNS Neurosci Ther 2024; 30:e14462. [PMID: 37715557 PMCID: PMC10916447 DOI: 10.1111/cns.14462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/17/2023] Open
Abstract
Ischemic stroke refers to the sudden loss of blood flow in a specific area of the brain. It is the fifth leading cause of mortality and the leading cause of permanent disability. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) controls the production of several antioxidants and protective proteins and it has been investigated as a possible pharmaceutical target for reducing harmful oxidative events in brain ischemia. Each cell type exhibits different roles and behaviors in different phases post-stroke, which is comprehensive yet important to understand to optimize management strategies and goals for care for stroke patients. In this review, we comprehensively summarize the protective effects of Nrf2 in experimental ischemic stroke, emphasizing the role of Nrf2 in different cell types including neurons, astrocytes, oligodendrocytes, microglia, and endothelial cells during acute and chronic phases of stroke and providing insights on the neuroprotective role of Nrf2 on each cell type throughout the long term of stroke care. We also highlight the importance of targeting Nrf2 in clinical settings while considering a variety of important factors such as age, drug dosage, delivery route, and time of administration.
Collapse
Affiliation(s)
- George Fadoul
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Pittsburgh Institute of Brain Disorders and RecoveryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Milos Ikonomovic
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare SystemPittsburghPennsylvaniaUSA
| | - Feng Zhang
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Pittsburgh Institute of Brain Disorders and RecoveryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Tuo Yang
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Pittsburgh Institute of Brain Disorders and RecoveryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Internal MedicineUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| |
Collapse
|
75
|
Zhao B, Zhang S, Amin N, Pan J, Wu F, Shen G, Tan M, Shi Z, Geng Y. Thymoquinone regulates microglial M1/M2 polarization after cerebral ischemia-reperfusion injury via the TLR4 signaling pathway. Neurotoxicology 2024; 101:54-67. [PMID: 38325603 DOI: 10.1016/j.neuro.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/18/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Acute ischemic stroke followed by microglia activation, and the regulation of neuroinflammatory responses after ischemic injury involves microglia polarization. microglia polarization is involved in the regulation of neuroinflammatory responses and ischemic stroke-related brain damage. Thymoquinone (TQ) is an anti-inflammatory agent following ischemic stroke onset. However, the significance of TQ in microglia polarization following acute ischemic stroke is still unclear. We predicted that TQ might have neuroprotective properties by modulating microglia polarization. In this work, we mimicked the clinical signs of acute ischemic stroke using a mouse middle cerebral artery ischemia-reperfusion (I/R) model. It was discovered that TQ treatment decreased I/R-induced infarct volume, cerebral oedema, and promoted neuronal survival, as well as improved the histopathological changes of brain tissue. The sensorimotor function was assessed by the Garica score, foot fault test, and corner test, and it was found that TQ could improve the motor deficits caused by I/R. Secondly, real-time fluorescence quantitative PCR, immuno-fluorescence, ELISA, and western blot were used to detect the expression of M1/M2-specific markers in microglia to explore the role of TQ in the modulation of microglial cell polarization after cerebral ischemia-reperfusion. We found that TQ was able to promote the polarization of microglia with extremely secreted inflammatory factors from M1 type to M2 type. Furthermore, TQ could block the TLR4/NF-κB signaling pathway via Hif-1α activation which subsequently may attenuate microglia differentiation following the cerebral ischemia, establishing a mechanism for the TQ's beneficial effects in the cerebral ischemia-reperfusion model.
Collapse
Affiliation(s)
- Bingxin Zhao
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Sheng Zhang
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Nashwa Amin
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China; Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China; Department of Zoology, Faculty of Science, Aswan University, Egypt
| | - Jie Pan
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Fei Wu
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Guanghong Shen
- Jinhua Maternal and Child Health Hospital, Jinhua, 321000, China
| | - Mingming Tan
- Department of Quality Management, Zhejiang Provincial People's Hospital, 158 Shangtang Road, Hangzhou, Zhejiang 310014, P.R. China
| | - Zongjie Shi
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Yu Geng
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
76
|
Wang N, Li F, Du J, Hao J, Wang X, Hou Y, Luo Z. Quercetin Protects Against Global Cerebral ischemia‒reperfusion Injury by Inhibiting Microglial Activation and Polarization. J Inflamm Res 2024; 17:1281-1293. [PMID: 38434580 PMCID: PMC10906675 DOI: 10.2147/jir.s448620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
Background This study aims to investigate the protective effect of quercetin against global cerebral ischemia‒reperfusion (GCI/R) injury in rats and elucidate the underlying mechanism. Methods A GCI/R injury rat model was established using a four-vessel occlusion (4-VO) method. An oxygen-glucose deprivation/reoxygenation (OGD/R) injury model was induced in BV2 cells. The extent of injury was assessed by evaluating neurological deficit scores (NDS) and brain water content and conducting behavioral tests. Pathomorphological changes in the prefrontal cortex were examined. Additionally, the study measured the levels of inflammatory cytokines, the degree of microglial activation and polarization, and the protein expression of Toll-like receptor 4 (TLR4) and TIR-domain-containing adaptor inducing interferon-β (TRIF). Results Quercetin pretreatment significantly ameliorated neurological impairment, improved learning and memory abilities, and reduced anxiety in rats subjected to GCI/R injury. Furthermore, quercetin administration effectively mitigated neuronal injury and brain edema. Notably, it suppressed microglial activation and hindered polarization toward the M1 phenotype. Simultaneously, quercetin downregulated the expression of TLR4 and TRIF proteins and attenuated the release of IL-1β and TNF-α. Conclusion This study highlights the novel therapeutic potential of quercetin in alleviating GCI/R injury. Quercetin demonstrates its neuroprotective effects by inhibiting neuroinflammation and microglial activation while impeding their transformation into the M1 phenotype through modulation of the TLR4/TRIF pathway.
Collapse
Affiliation(s)
- Naigeng Wang
- Department of Anesthesiology, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Fei Li
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Jing Du
- Second Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People’s Republic of China
| | - Jianhong Hao
- Department of Anesthesiology, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Xin Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Yueru Hou
- Second Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People’s Republic of China
| | - Zhenguo Luo
- Department of Anesthesiology, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| |
Collapse
|
77
|
Chen Y, Zhang C, Zhao L, Chen R, Zhang P, Li J, Zhang X, Zhang X. Eriocalyxin B alleviated ischemic cerebral injury by limiting microglia-mediated excessive neuroinflammation in mice. Exp Anim 2024; 73:124-135. [PMID: 37839867 PMCID: PMC10877152 DOI: 10.1538/expanim.23-0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/26/2023] [Indexed: 10/17/2023] Open
Abstract
Excessive neuroinflammation mediated by microglia has a detrimental effect on the progression of ischemic stroke. Eriocalyxin B (EriB) was found with a neuroprotective effect in mice with Parkinson's disease via the suppression of microglial overactivation. This study aimed to investigate the roles of EriB in permanent middle cerebral artery occlusion (pMCAO) mice. The pMCAO was induced in the internal carotid artery of the mice by the intraluminal filament method, and EriB (10 mg/kg) was administered immediately after surgery by intraperitoneal injection. The behavior score, 2,3,5-triphenyltetrazole chloride staining, Nissl staining, TUNEL, immunohistochemistry, immunofluorescence, PCR, ELISA, and immunoblotting revealed that EriB administration reduced brain infarct and neuron death and ameliorated neuroinflammation and microglia overactivation in pMCAO mice, manifested by alterations of TUNEL-positive cell numbers, ionized calcium binding adaptor molecule 1 (Iba-1)-positive cell numbers, and expression of tumor necrosis factor-α, interleukin 6, IL-1β, inducible nitric oxide synthase, and arginase 1. In addition, EriB suppressed ischemia-induced activation of nuclear factor kappa B (NF-κB) signaling in the brain penumbra, suggesting the involvement of NF-κB in EriB function. In conclusion, EriB exerted anti-inflammatory effects in ischemia stroke by regulating the NF-κB signaling pathway, and this may provide insights into the neuroprotective effect of EriB in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yanqiang Chen
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
- Department of Neurology, Hebei Chest Hospital, 372 Shengli North Street, Shijiazhuang, 050000, Hebei, P.R. China
| | - Cong Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 309 Zhonghua North Street, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, 215 Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
| | - Liming Zhao
- Department of Neurology, Hebei Chest Hospital, 372 Shengli North Street, Shijiazhuang, 050000, Hebei, P.R. China
| | - Rong Chen
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 309 Zhonghua North Street, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, 215 Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
| | - Peipei Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 309 Zhonghua North Street, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, 215 Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
| | - Junxia Li
- Department of Neurology, Hebei Chest Hospital, 372 Shengli North Street, Shijiazhuang, 050000, Hebei, P.R. China
| | - Xueping Zhang
- Department of Neurology, Hebei Chest Hospital, 372 Shengli North Street, Shijiazhuang, 050000, Hebei, P.R. China
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 309 Zhonghua North Street, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, 215 Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
| |
Collapse
|
78
|
Pandya CD, Vekaria HJ, Zamorano M, Trout AL, Ritzel RM, Guzman GU, Bolden C, Sullivan PG, Gensel JC, Miller BA. Azithromycin reduces hemoglobin-induced innate neuroimmune activation. Exp Neurol 2024; 372:114574. [PMID: 37852468 DOI: 10.1016/j.expneurol.2023.114574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/11/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023]
Abstract
Neonatal intraventricular hemorrhage (IVH) releases blood products into the lateral ventricles and brain parenchyma. There are currently no medical treatments for IVH and surgery is used to treat a delayed effect of IVH, post-hemorrhagic hydrocephalus. However, surgery is not a cure for intrinsic brain injury from IVH, and is performed in a subacute time frame. Like many neurological diseases and injuries, innate immune activation is implicated in the pathogenesis of IVH. Innate immune activation is a pharmaceutically targetable mechanism to reduce brain injury and post-hemorrhagic hydrocephalus after IVH. Here, we tested the macrolide antibiotic azithromycin, which has immunomodulatory properties, to reduce innate immune activation in an in vitro model of microglial activation using the blood product hemoglobin (Hgb). We then utilized azithromycin in our in vivo model of IVH, using intraventricular blood injection into the lateral ventricle of post-natal day 5 rat pups. In both models, azithromycin modulated innate immune activation by several outcome measures including mitochondrial bioenergetic analysis, cytokine expression and flow cytometric analysis. This suggests that azithromycin, which is safe for neonates, could hold promise for modulating innate immune activation after IVH.
Collapse
Affiliation(s)
- Chirayu D Pandya
- Center for Advanced Translational Stroke Science (CATSS), Department of Neurosurgery, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America
| | - Hemendra J Vekaria
- Spinal Cord and Brain Injury Research Center (SCoBIRC), Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America
| | - Miriam Zamorano
- Department of Pediatric Surgery, University of Texas Health Science Center at Houston, 77030, United States of America
| | - Amanda L Trout
- Center for Advanced Translational Stroke Science (CATSS), Department of Neurosurgery, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America
| | - Rodney M Ritzel
- Lexington Veterans' Affairs Healthcare System, Lexington, KY 40502, United States of America
| | - Gary U Guzman
- Lexington Veterans' Affairs Healthcare System, Lexington, KY 40502, United States of America
| | - Christopher Bolden
- Department of Pediatric Surgery, University of Texas Health Science Center at Houston, 77030, United States of America
| | - Patrick G Sullivan
- Spinal Cord and Brain Injury Research Center (SCoBIRC), Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America; Lexington Veterans' Affairs Healthcare System, Lexington, KY 40502, United States of America
| | - John C Gensel
- Spinal Cord and Brain Injury Research Center (SCoBIRC), Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America
| | - Brandon A Miller
- Department of Pediatric Surgery, University of Texas Health Science Center at Houston, 77030, United States of America.
| |
Collapse
|
79
|
Liu X, Hao Y, Huang Z, Shi Y, Su C, Zhao L. Modulation of microglial polarization by sequential targeting surface-engineered exosomes improves therapy for ischemic stroke. Drug Deliv Transl Res 2024; 14:418-432. [PMID: 37587291 DOI: 10.1007/s13346-023-01408-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2023] [Indexed: 08/18/2023]
Abstract
Microglia are important cells that act on regulating neuroinflammation and neurofunction after the induction of ischemic stroke (IS). Consequently, the efficient accumulation of drugs within ischemic regions, particularly in microglia, serves as a valuable approach for achieving effective therapy by attenuating microglia-mediated cerebral ischemic injury. In this study, we designed mannose (man)-conjugated luteolin (lut)-loaded platelet-derived exosomes (lut/man-pEXO) as surface engineered multifunctional cascade-delivery drug carriers to target ischemic blood vessels and subsequent microglia to enhance drug accumulation and induce neuroprotection of neurovascular unit (NVU) against IS. The results revealed that as platelets naturally gathered in pathological ischemic cerebral vessels, lut/man-pEXO could bind to platelets and efficiently target ischemic injury sites. Moreover, owing to the selective binding affinity of mannose present in lut/man-pEXO towards the mannose receptor expressed on microglia, lut/man-pEXO exhibited superior microglia-targeting properties, inducing the increased uptake of lut by microglia. As a result, lut/man-pEXO regulated microglia by inhibiting the activation of detrimental M1 and promoting the transition towards the anti-inflammatory type (M2), thus attenuating ischemic damage of NVU by reducing the infarct area, rescuing the damage of blood-brain barrier (BBB) and preventing inflammatory transformation of astrocytes.
Collapse
Affiliation(s)
- Xintong Liu
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, People's Republic of China
| | - Yunni Hao
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, People's Republic of China
| | - Zhixuan Huang
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, People's Republic of China
| | - Yijie Shi
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, People's Republic of China
| | - Chang Su
- School of Veterinary Medicine, Jinzhou Medical University, Jinzhou, 121000, People's Republic of China
| | - Liang Zhao
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, People's Republic of China.
| |
Collapse
|
80
|
Fu R, Zhao L, Guo Y, Qin X, Xu W, Cheng X, Zhang Y, Xu S. AIM2 inflammasome: A potential therapeutic target in ischemic stroke. Clin Immunol 2024; 259:109881. [PMID: 38142900 DOI: 10.1016/j.clim.2023.109881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Ischemic stroke (IS) is a significant global public health issue with a high incidence, disability, and mortality rate. A robust inflammatory cascade with complex and wide-ranging mechanisms occurs following ischemic brain injury. Inflammasomes are multiprotein complexes in the cytoplasm that modulate the inflammatory response by releasing pro-inflammatory cytokines and inducing cellular pyroptosis. Among these inflammasomes, the Absent in Melanoma 2 (AIM2) inflammasome shows the ability to detect a wide range of pathogen DNAs, thereby triggering an inflammatory response. Recent studies have indicated that the aberrant expression of AIM2 inflammasome in various cells is closely associated with the pathological processes of ischemic brain injury. This paper summarizes the expression and regulatory role of AIM2 in CNS and peripheral immune cells and discusses current therapeutic approaches targeting AIM2 inflammasome. These findings aim to serve as a reference for future research in this field.
Collapse
Affiliation(s)
- Rong Fu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Linna Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Yuying Guo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Xiaoli Qin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenzhe Xu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xueqi Cheng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yunsha Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shixin Xu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.
| |
Collapse
|
81
|
Kijima C, Inaba T, Hira K, Miyamoto N, Yamashiro K, Urabe T, Hattori N, Ueno Y. Astrocytic Extracellular Vesicles Regulated by Microglial Inflammatory Responses Improve Stroke Recovery. Mol Neurobiol 2024; 61:1002-1021. [PMID: 37676390 PMCID: PMC10861643 DOI: 10.1007/s12035-023-03629-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023]
Abstract
There are no effective treatments for post-stroke glial scar formation, which inhibits axonal outgrowth and functional recovery after stroke. We investigated whether astrocytic extracellular vesicles (AEVs) regulated by microglia modulate glial scars and improve stroke recovery. We found that peri-infarct glial scars comprised reactive astrocytes with proliferating C3d and decreased S100A10 expression in chronic stroke. In cultured astrocytes, microglia-conditioned media and treatment with P2Y1 receptor antagonists increased and reduced the area of S100A10- and C3d-expressing reactive astrocytes, respectively, by suppressing mitogen-activated protein kinase/nuclear factor-κβ (NF-κB)/tumor necrosis factor-α (TNF-α)/interleukin-1β signaling after oxygen-glucose deprivation. Intracerebral administrations of AEVs enriched miR-146a-5p, downregulated NF-κB, and suppressed TNF-α expressions, by transforming reactive astrocytes to those with S100A10 preponderance, causing functional recovery in rats subjected to middle cerebral artery occlusion. Modulating neuroinflammation in post-stroke glial scars could permit axonal outgrowth, thus providing a basis for stroke recovery with neuroprotective AEVs.
Collapse
Affiliation(s)
- Chikage Kijima
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Toshiki Inaba
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Kenichiro Hira
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Nobukazu Miyamoto
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Kazuo Yamashiro
- Department of Neurology, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Takao Urabe
- Department of Neurology, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, Saitama, Japan
| | - Yuji Ueno
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan.
| |
Collapse
|
82
|
Islam R, Ahlfors JE, Siu R, Noman H, Akbary R, Morshead CM. Inhibition of Apoptosis in a Model of Ischemic Stroke Leads to Enhanced Cell Survival, Endogenous Neural Precursor Cell Activation and Improved Functional Outcomes. Int J Mol Sci 2024; 25:1786. [PMID: 38339065 PMCID: PMC10855341 DOI: 10.3390/ijms25031786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Stroke results in neuronal cell death, which causes long-term disabilities in adults. Treatment options are limited and rely on a narrow window of opportunity. Apoptosis inhibitors demonstrate efficacy in improving neuronal cell survival in animal models of stroke. However, many inhibitors non-specifically target apoptosis pathways and high doses are needed for treatment. We explored the use of a novel caspase-3/7 inhibitor, New World Laboratories (NWL) 283, with a lower IC50 than current caspase-3/7 inhibitors. We performed in vitro and in vivo assays to determine the efficacy of NWL283 in modulating cell death in a preclinical model of stroke. In vitro and in vivo assays show that NWL283 enhances cell survival of neural precursor cells. Delivery of NWL283 following stroke enhances endogenous NPC migration and leads to increased neurogenesis in the stroke-injured cortex. Furthermore, acute NWL283 administration is neuroprotective at the stroke injury site, decreasing neuronal cell death and reducing microglia activation. Coincident with NWL283 delivery for 8 days, stroke-injured mice exhibited improved functional outcomes that persisted following cessation of the drug. Therefore, we propose that NWL283 is a promising therapeutic warranting further investigation to enhance stroke recovery.
Collapse
Affiliation(s)
- Rehnuma Islam
- Institute of Medical Science, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 3E1, Canada
| | - Jan-Eric Ahlfors
- New World Laboratories, 275 Boul. Armand-Frappier, Laval, QC H7V 4A7, Canada
| | - Ricky Siu
- Department of Surgery, University of Toronto, 149 College Street, Toronto, ON M5T 1P5, Canada
| | - Humna Noman
- Institute of Medical Science, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 3E1, Canada
| | - Roya Akbary
- Department of Surgery, University of Toronto, 149 College Street, Toronto, ON M5T 1P5, Canada
| | - Cindi M. Morshead
- Institute of Medical Science, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 3E1, Canada
- Department of Surgery, University of Toronto, 149 College Street, Toronto, ON M5T 1P5, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| |
Collapse
|
83
|
Shen G, Lou C, Li Q, Zhao B, Luo Y, Wu F, Jiao D, Fang M, Geng Y. Edaravone dexborneol alleviates cerebral ischemia-reperfusion injury through NF-κB/NLRP3 signal pathway. Anat Rec (Hoboken) 2024; 307:372-384. [PMID: 37475155 DOI: 10.1002/ar.25296] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/25/2023] [Accepted: 07/08/2023] [Indexed: 07/22/2023]
Abstract
Inflammatory injury following ischemia-reperfusion (I/R) severely limits the efficacy of stroke treatment. Edaravone dexborneol (C.EDA) has been shown to reduce inflammation following a cerebral hemorrhage. However, the precise anti-inflammatory mechanism of C.EDA is unknown. In this study, we investigated whether C.EDA provides neuroprotection after I/R in rats, as well as the potential mechanisms involved. A middle cerebral artery occlusion/reperfusion (I/R) model was created using Sprague-Dawley rats. The blood flow of the central cerebral artery was monitored by a laser speckle imaging system. The neurological score was used to assess behavioral improvement. Cerebral infarction volume was measured by TTC staining. And the integrity of the blood-brain barrier was detected by Evan's blue staining. The expression of the nuclear factor kappa-B (NF-κB)/ the NOD-like receptor protein (NLRP3) inflammasome signal pathway and microglia polarization were detected by immunofluorescence and Western blotting. The cerebral blood flow ratio indicates that the cerebral I/R model was successfully established. After reperfusion for 72 h, the improvement of neurological scores, infarct volume reduction, and integrity of the blood-brain barrier was observed in I/R rats with C.EDA treatment. Meanwhile, the immunofluorescence result showed that the expression of iNOS, NLRP3, and NF-κB protein was decreased and the level of Arg1 was increased. Western blot analysis showed that the expression of NF-κB/NLRP3 signal pathway-related protein was decreased. In conclusion, this study indicates that C.EDA alleviates I/R injury by blocking the activation of the NLRP3 inflammasome and regulating the polarization of M1/M2 microglia via the NF-κB signal pathway.
Collapse
Affiliation(s)
- Guanghong Shen
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chengjian Lou
- Department of Neurosurgery, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Qunfeng Li
- Department of Medicine, QuZhou College of Technology, Quzhou, Zhejiang, China
| | - Bingxin Zhao
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuhuan Luo
- Department of Pediatric, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fei Wu
- Institute of System Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Dian Jiao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Marong Fang
- Institute of System Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yu Geng
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
84
|
Romaus-Sanjurjo D, Castañón-Apilánez M, López-Arias E, Custodia A, Martin-Martín C, Ouro A, López-Cancio E, Sobrino T. Neuroprotection Afforded by an Enriched Mediterranean-like Diet Is Modified by Exercise in a Rat Male Model of Cerebral Ischemia. Antioxidants (Basel) 2024; 13:138. [PMID: 38397735 PMCID: PMC10885962 DOI: 10.3390/antiox13020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
Ischemic stroke is an important cause of mortality and disability worldwide. Given that current treatments do not allow a remarkably better outcome in patients after stroke, it is mandatory to seek new approaches to preventing stroke and/or complementing the current treatments or ameliorating the ischemic insult. Multiple preclinical and clinical studies highlighted the potential beneficial roles of exercise and a Mediterranean diet following a stroke. Here, we investigated the effects of a pre-stroke Mediterranean-like diet supplemented with hydroxytyrosol and with/without physical exercise on male rats undergoing transient middle cerebral artery occlusion (tMCAO). We also assessed a potential synergistic effect with physical exercise. Our findings indicated that the diet reduced infarct and edema volumes, modulated acute immune response by altering cytokine and chemokine levels, decreased oxidative stress, and improved acute functional recovery post-ischemic injury. Interestingly, while physical exercise alone improved certain outcomes compared to control animals, it did not enhance, and in some aspects even impaired, the positive effects of the Mediterranean-like diet in the short term. Overall, these data provide the first preclinical evidence that a preemptive enriched Mediterranean diet modulates cytokines/chemokines levels downwards which eventually has an important role during the acute phase following ischemic damage, likely mediating neuroprotection.
Collapse
Affiliation(s)
- Daniel Romaus-Sanjurjo
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (D.R.-S.); (E.L.-A.); (A.C.); (T.S.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María Castañón-Apilánez
- Departament of Neurology, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Functional Biology, Universidad de Oviedo, 33003 Oviedo, Spain
| | - Esteban López-Arias
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (D.R.-S.); (E.L.-A.); (A.C.); (T.S.)
| | - Antía Custodia
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (D.R.-S.); (E.L.-A.); (A.C.); (T.S.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Cristina Martin-Martín
- Translational Immmunology, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
| | - Alberto Ouro
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (D.R.-S.); (E.L.-A.); (A.C.); (T.S.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Elena López-Cancio
- Departament of Neurology, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Functional Biology, Universidad de Oviedo, 33003 Oviedo, Spain
| | - Tomás Sobrino
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (D.R.-S.); (E.L.-A.); (A.C.); (T.S.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
85
|
Gong Z, Guo J, Liu B, Guo Y, Cheng C, Jiang Y, Liang N, Hu M, Song T, Yang L, Li H, Zhang H, Zong X, Che Q, Shi N. Mechanisms of immune response and cell death in ischemic stroke and their regulation by natural compounds. Front Immunol 2024; 14:1287857. [PMID: 38274789 PMCID: PMC10808662 DOI: 10.3389/fimmu.2023.1287857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Ischemic stroke (IS), which is the third foremost cause of disability and death worldwide, has inflammation and cell death as its main pathological features. IS can lead to neuronal cell death and release factors such as damage-related molecular patterns, stimulating the immune system to release inflammatory mediators, thereby resulting in inflammation and exacerbating brain damage. Currently, there are a limited number of treatment methods for IS, which is a fact necessitating the discovery of new treatment targets. For this review, current research on inflammation and cell death in ischemic stroke was summarized. The complex roles and pathways of the principal immune cells (microglia, astrocyte, neutrophils, T lymphocytes, and monocytes/macrophage) in the immune system after IS in inflammation are discussed. The mechanisms of immune cell interactions and the cytokines involved in these interactions are summarized. Moreover, the cell death mechanisms (pyroptosis, apoptosis, necroptosis, PANoptosis, and ferroptosis) and pathways after IS are explored. Finally, a summary is provided of the mechanism of action of natural pharmacological active ingredients in the treatment of IS. Despite significant recent progress in research on IS, there remain many challenges that need to be overcome.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Qianzi Che
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Nannan Shi
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
86
|
Wu L, Tan Z, Su L, Dong F, Xu G, Zhang F. Transcutaneous electrical acupoint stimulation alleviates cerebral ischemic injury through the TLR4/MyD88/NF-κ B pathway. Front Cell Neurosci 2024; 17:1343842. [PMID: 38273974 PMCID: PMC10808520 DOI: 10.3389/fncel.2023.1343842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
This study was to explore whether transcutaneous electrical acupoint stimulation (TEAS) treatment could mediate inflammation, apoptosis, and pyroptosis of neuronal cells and microglia activation through the TLR4/MyD88/NF-κB pathway in the early stage of ischemic stroke. TEAS treatment at Baihui (GV20) and Hegu (LI4) acupoints of the affected limb was administered at 24, 48, and 72 h following middle cerebral artery occlusion/reperfusion (MCAO/R), with lasting for 30 min each time. Neurological impairment scores were assessed 2 h and 72 h after ischemia/reperfusion (I/R). TTC staining was used to evaluate the volume of brain infarction. The histopathologic changes of hippocampus were detected by H&E staining. WB analysis was performed to assess the levels of TLR4, MyD88, p-NF-κB p65/NF-κB p65, and inflammation, apoptosis, pyroptosis-related proteins. TLR4 expression was measured using immunohistochemistry. The expression of inflammation-related proteins was also measured using ELISA. Immunofluorescence was used to detect the expression level of Iba1. Our findings demonstrated that TEAS intervention after I/R improved neurological function, reduced the volume of brain infarction, and mitigated pathological damage. Moreover, TEAS reduced the levels of TLR4, MyD88, p-NF-κB p65/NF-κB p65, TNF-α, IL-6, Bax, NLRP3, cleaved caspase-1/pro caspase-1, IL-1β, IL-18, GSDMD, and Iba1 while enhancing Bcl-2 expression. Moreover, the protective effects of TEAS could be counteracted by lipopolysaccharide (LPS, a TLR4 agonist). In conclusion, TEAS can reduce cerebral damage and suppress inflammation, cell death, and microglia activation after ischemic stroke via inhibiting the TLR4/MyD88/NF-κB pathway.
Collapse
Affiliation(s)
- Linyu Wu
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Zixuan Tan
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Lei Su
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding, China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Guangyu Xu
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| |
Collapse
|
87
|
Prescott K, Münch AE, Brahms E, Weigel MK, Inoue K, Buckwalter MS, Liddelow SA, Peterson TC. Blocking of microglia-astrocyte proinflammatory signaling is beneficial following stroke. Front Mol Neurosci 2024; 16:1305949. [PMID: 38240014 PMCID: PMC10794541 DOI: 10.3389/fnmol.2023.1305949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/01/2023] [Indexed: 01/22/2024] Open
Abstract
Microglia and astrocytes play an important role in the neuroinflammatory response and contribute to both the destruction of neighboring tissue as well as the resolution of inflammation following stroke. These reactive glial cells are highly heterogeneous at both the transcriptomic and functional level. Depending upon the stimulus, microglia and astrocytes mount a complex, and specific response composed of distinct microglial and astrocyte substates. These substates ultimately drive the landscape of the initiation and recovery from the adverse stimulus. In one state, inflammation- and damage-induced microglia release tumor necrosis factor (TNF), interleukin 1α (IL1α), and complement component 1q (C1q), together "TIC." This cocktail of cytokines drives astrocytes into a neurotoxic reactive astrocyte (nRA) substate. This nRA substate is associated with loss of many physiological astrocyte functions (e.g., synapse formation and maturation, phagocytosis, among others), as well as a gain-of-function release of neurotoxic long-chain fatty acids which kill neighboring cells. Here we report that transgenic removal of TIC led to reduction of gliosis, infarct expansion, and worsened functional deficits in the acute and delayed stages following stroke. Our results suggest that TIC cytokines, and likely nRAs play an important role that may maintain neuroinflammation and inhibit functional motor recovery after ischemic stroke. This is the first report that this paradigm is relevant in stroke and that therapies against nRAs may be a novel means to treat patients. Since nRAs are evolutionarily conserved from rodents to humans and present in multiple neurodegenerative diseases and injuries, further identification of mechanistic role of nRAs will lead to a better understanding of the neuroinflammatory response and the development of new therapies.
Collapse
Affiliation(s)
- Kimberly Prescott
- Department of Psychology, University of North Carolina Wilmington, Wilmington, NC, United States
| | - Alexandra E. Münch
- Neuroscience Department, Stanford University, Stanford, CA, United States
| | - Evan Brahms
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA, United States
| | - Maya K. Weigel
- Neuroscience Department, Stanford University, Stanford, CA, United States
| | - Kenya Inoue
- Department of Psychology, University of North Carolina Wilmington, Wilmington, NC, United States
| | - Marion S. Buckwalter
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA, United States
- Department of Neurosurgery, Stanford School of Medicine, Stanford, CA, United States
| | - Shane A. Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, United States
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY, United States
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, United States
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY, United States
| | - Todd C. Peterson
- Department of Psychology, University of North Carolina Wilmington, Wilmington, NC, United States
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA, United States
| |
Collapse
|
88
|
Boyle BR, Berghella AP, Blanco-Suarez E. Astrocyte Regulation of Neuronal Function and Survival in Stroke Pathophysiology. ADVANCES IN NEUROBIOLOGY 2024; 39:233-267. [PMID: 39190078 DOI: 10.1007/978-3-031-64839-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The interactions between astrocytes and neurons in the context of stroke play crucial roles in the disease's progression and eventual outcomes. After a stroke, astrocytes undergo significant changes in their morphology, molecular profile, and function, together termed reactive astrogliosis. Many of these changes modulate how astrocytes relate to neurons, inducing mechanisms both beneficial and detrimental to stroke recovery. For example, excessive glutamate release and astrocytic malfunction contribute to excitotoxicity in stroke, eventually causing neuronal death. Astrocytes also provide essential metabolic support and neurotrophic signals to neurons after stroke, ensuring homeostatic stability and promoting neuronal survival. Furthermore, several astrocyte-secreted molecules regulate synaptic plasticity in response to stroke, allowing for the rewiring of neural circuits to compensate for damaged areas. In this chapter, we highlight the current understanding of the interactions between astrocytes and neurons in response to stroke, explaining the varied mechanisms contributing to injury progression and the potential implications for future therapeutic interventions.
Collapse
Affiliation(s)
- Bridget R Boyle
- Department of Neuroscience, Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrea P Berghella
- Department of Neuroscience, Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Elena Blanco-Suarez
- Department of Neuroscience, Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
- Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA.
- Department of Neurological Surgery, Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
89
|
Yan H, Sasaki T, Gon Y, Nishiyama K, Kanki H, Mochizuki H. Driver gene KRAS aggravates cancer-associated stroke outcomes. Thromb Res 2024; 233:55-68. [PMID: 38029547 DOI: 10.1016/j.thromres.2023.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/04/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023]
Abstract
The incidence of cancer-associated stroke has increased with the prolonged survival times of cancer patients. Recent genetic studies have led to progress in cancer therapeutics, but relationships between oncogenic mutations and stroke remain elusive. Here, we focused on the driver gene KRAS, which is the predominant RAS isoform mutated in multiple cancer types, in cancer associated stroke study. KRASG13D/- and parental human colorectal carcinoma HCT116 cells were inoculated into mice that were then subjected to a photochemically-induced thrombosis model to establish ischemic stroke. We found that cancer inoculation exacerbated neurological deficits after stroke. Moreover, mice inoculated with KRASG13D/- cells showed worse neurological deficits after stroke compared with mice inoculated with parental cells. Stroke promoted tumor growth, and the KRASG13D/- allele enhanced this growth. Brain RNA sequencing analysis and serum ELISA showed that chemokines and cytokines mediating pro-inflammatory responses were upregulated in mice inoculated with KRASG13D/- cells compared with those inoculated with parental cells. STAT3 phosphorylation was promoted following ischemic stroke in the KRASG13D/- group compared with in the parental group, and STAT3 inhibition significantly ameliorated stroke outcomes by mitigating microglia/macrophage polarization. Finally, we compared the prognosis and mortality of colorectal cancer patients with or without stroke onset between 1 January 2007 and 31 December 2020 using a hospital-based cancer registry and found that colorectal cancer patients with stroke onset within 3 months after cancer diagnosis had a worse prognosis. Our work suggests an interplay between KRAS and ischemic stroke that may offer insight into future treatments for cancer-associated stroke.
Collapse
Affiliation(s)
- Haomin Yan
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Tsutomu Sasaki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan; Department of Neurotherapeutics, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Yasufumi Gon
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Kumiko Nishiyama
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Hideaki Kanki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| |
Collapse
|
90
|
Au NPB, Wu T, Kumar G, Jin Y, Li YYT, Chan SL, Lai JHC, Chan KWY, Yu KN, Wang X, Ma CHE. Low-dose ionizing radiation promotes motor recovery and brain rewiring by resolving inflammatory response after brain injury and stroke. Brain Behav Immun 2024; 115:43-63. [PMID: 37774892 DOI: 10.1016/j.bbi.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/24/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023] Open
Abstract
Traumatic brain injury (TBI) and stroke share a common pathophysiology that worsens over time due to secondary tissue injury caused by sustained inflammatory response. However, studies on pharmacological interventions targeting the complex secondary injury cascade have failed to show efficacy. Here, we demonstrated that low-dose ionizing radiation (LDIR) reduced lesion size and reversed motor deficits after TBI and photothrombotic stroke. Magnetic resonance imaging demonstrated significant reduction of infarct volume in LDIR-treated mice after stroke. Systems-level transcriptomic analysis showed that genes upregulated in LDIR-treated stoke mice were enriched in pathways associated with inflammatory and immune response involving microglia. LDIR induced upregulation of anti-inflammatory- and phagocytosis-related genes, and downregulation of key pro-inflammatory cytokine production. These findings were validated by live-cell assays, in which microglia exhibited higher chemotactic and phagocytic capacities after LDIR. We observed substantial microglial clustering at the injury site, glial scar clearance and reversal of motor deficits after stroke. Cortical microglia/macrophages depletion completely abolished the beneficial effect of LDIR on motor function recovery in stroke mice. LDIR promoted axonal projections (brain rewiring) in motor cortex and recovery of brain activity detected by electroencephalography recordings months after stroke. LDIR treatment delayed by 8 h post-injury still maintained full therapeutic effects on motor recovery, indicating that LDIR is a promising therapeutic strategy for TBI and stroke.
Collapse
Affiliation(s)
| | - Tan Wu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China; Department of Surgery, Chinese University of Hong Kong, Hong Kong, China
| | - Gajendra Kumar
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| | - Yuting Jin
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| | | | - Shun Lam Chan
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| | - Joseph Ho Chi Lai
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Kannie Wai Yan Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Kwan Ngok Yu
- Department of Physics, City University of Hong Kong, Hong Kong, China
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China; Department of Surgery, Chinese University of Hong Kong, Hong Kong, China
| | - Chi Him Eddie Ma
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China; City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
91
|
Long Y, Li XQ, Deng J, Ye QB, Li D, Ma Y, Wu YY, Hu Y, He XF, Wen J, Shi A, Yu S, Shen L, Ye Z, Zheng C, Li N. Modulating the polarization phenotype of microglia - A valuable strategy for central nervous system diseases. Ageing Res Rev 2024; 93:102160. [PMID: 38065225 DOI: 10.1016/j.arr.2023.102160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023]
Abstract
Central nervous system (CNS) diseases have become one of the leading causes of death in the global population. The pathogenesis of CNS diseases is complicated, so it is important to find the patterns of the disease to improve the treatment strategy. Microglia are considered to be a double-edged sword, playing both harmful and beneficial roles in CNS diseases. Therefore, it is crucial to understand the progression of the disease and the changes in the polar phenotype of microglia to provide guidance in the treatment of CNS diseases. Microglia activation may evolve into different phenotypes: M1 and M2 types. We focused on the roles that M1 and M2 microglia play in regulating intercellular dialogues, pathological reactions and specific diseases in CNS diseases. Importantly, we summarized the strategies used to modulate the polarization phenotype of microglia, including traditional pharmacological modulation, biological therapies, and physical strategies. This review will contribute to the development of potential strategies to modulate microglia polarization phenotypes and provide new alternative therapies for CNS diseases.
Collapse
Affiliation(s)
- Yu Long
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xiao-Qiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jie Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Qiao-Bo Ye
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yin Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yuan-Yuan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yue Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xiao-Fang He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jing Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Ai Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Shuang Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Lin Shen
- Second Teaching Hospital of Tianjin University of Traditional Chinese Medine, Tianjin, China.
| | - Zhen Ye
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Chuan Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Nan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
92
|
Gong L, Liang J, Xie L, Zhang Z, Mei Z, Zhang W. Metabolic Reprogramming in Gliocyte Post-cerebral Ischemia/ Reperfusion: From Pathophysiology to Therapeutic Potential. Curr Neuropharmacol 2024; 22:1672-1696. [PMID: 38362904 PMCID: PMC11284719 DOI: 10.2174/1570159x22666240131121032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 02/17/2024] Open
Abstract
Ischemic stroke is a leading cause of disability and death worldwide. However, the clinical efficacy of recanalization therapy as a preferred option is significantly hindered by reperfusion injury. The transformation between different phenotypes of gliocytes is closely associated with cerebral ischemia/ reperfusion injury (CI/RI). Moreover, gliocyte polarization induces metabolic reprogramming, which refers to the shift in gliocyte phenotype and the overall transformation of the metabolic network to compensate for energy demand and building block requirements during CI/RI caused by hypoxia, energy deficiency, and oxidative stress. Within microglia, the pro-inflammatory phenotype exhibits upregulated glycolysis, pentose phosphate pathway, fatty acid synthesis, and glutamine synthesis, whereas the anti-inflammatory phenotype demonstrates enhanced mitochondrial oxidative phosphorylation and fatty acid oxidation. Reactive astrocytes display increased glycolysis but impaired glycogenolysis and reduced glutamate uptake after CI/RI. There is mounting evidence suggesting that manipulation of energy metabolism homeostasis can induce microglial cells and astrocytes to switch from neurotoxic to neuroprotective phenotypes. A comprehensive understanding of underlying mechanisms and manipulation strategies targeting metabolic pathways could potentially enable gliocytes to be reprogrammed toward beneficial functions while opening new therapeutic avenues for CI/RI treatment. This review provides an overview of current insights into metabolic reprogramming mechanisms in microglia and astrocytes within the pathophysiological context of CI/RI, along with potential pharmacological targets. Herein, we emphasize the potential of metabolic reprogramming of gliocytes as a therapeutic target for CI/RI and aim to offer a novel perspective in the treatment of CI/RI.
Collapse
Affiliation(s)
- Lipeng Gong
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Junjie Liang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Letian Xie
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Zhanwei Zhang
- Department of Neurosurgery, First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410007, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Wenli Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| |
Collapse
|
93
|
Cipriani R, Domerq M, Martín A, Matute C. Role of Microglia in Stroke. ADVANCES IN NEUROBIOLOGY 2024; 37:405-422. [PMID: 39207705 DOI: 10.1007/978-3-031-55529-9_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Ischemic stroke is a complex brain pathology caused by an interruption of blood supply to the brain. It results in neurological deficits which that reflect the localization and the size of the compromised brain area and are the manifestation of complex pathogenic events triggered by energy depletion. Inflammation plays a prominent role, worsening the injury in the early phase and influencing poststroke recovery in the late phase. Activated microglia are one of the most important cellular components of poststroke inflammation, appearing from the first few hours and persisting for days and weeks after stroke injury. In this chapter, we will discuss the nature of the inflammatory response in brain ischemia, the contribution of microglia to injury and regeneration after stroke, and finally, how ischemic stroke directly affects microglia functions and survival.
Collapse
Affiliation(s)
| | - Maria Domerq
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU) and CIBERNED, Leioa, Spain
| | - Abraham Martín
- Achucarro Basque Center for Neuroscience, Leioa, Spain.
- Ikerbasque Basque Foundation for Science, Bilbao, Spain.
| | - Carlos Matute
- Achucarro Basque Center for Neuroscience, Leioa, Spain.
- Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU) and CIBERNED, Leioa, Spain.
| |
Collapse
|
94
|
Chen Y, Fei X, Liu G, Li X, Huang L, Yang LZ, Li Y, Xu B, Fang W. P-Glycoprotein Exacerbates Brain Injury Following Experimental Cerebral Ischemia by Promoting Proinflammatory Microglia Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:6916819. [PMID: 38144707 PMCID: PMC10748718 DOI: 10.1155/2023/6916819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/02/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023]
Abstract
Microglia are activated following cerebral ischemic insult. P-glycoprotein (P-gp) is an efflux transporter on microvascular endothelial cells and upregulated after cerebral ischemia. This study evaluated the effects and possible mechanisms of P-gp on microglial polarization/activation in mice after ischemic stroke. P-gp-specific siRNA and adeno-associated virus (p-AAV) were used to silence and overexpress P-gp, respectively. Middle cerebral artery occlusion/reperfusion (MCAO/R) and oxygen-glucose deprivation/reoxygenation (OGD/R) were performed in mice and cerebral microvascular endothelial cells (bEnd.3) in vitro, respectively. OGD/R-injured bEnd.3 cells were cocultured with mouse microglial cells (BV2) in Transwell. Influences on acute ischemic stroke outcome, the expression of inflammatory cytokines, and chemokines and chemokines receptors, microglial polarization, glucocorticoid receptor (GR) nuclear translocation, and GR-mediated mRNA decay (GMD) activation were evaluated via reverse transcription real-time polymerase chain reaction, western blot, or immunofluorescence. Silencing P-gp markedly alleviated experimental ischemia injury as indicated by reduced cerebral infarct size, improved neurological deficits, and reduced the expression of interleukin-6 (IL-6) and IL-12 expression. Silencing P-gp also mitigated proinflammatory microglial polarization and the expression of C-C motif chemokine ligand 2 (CCL2) and its receptor CCR2 expression, whereas promoted anti-inflammatory microglia polarization. Additionally, P-gp silencing promoted GR nuclear translocation and the expression of GMD relative proteins in endothelial cells. Conversely, overexpressing P-gp via p-AAV transfection offset all these effects. Furthermore, silencing endothelial GR counteracted all effects mediated by silencing or overexpressing P-gp. Elevated P-gp expression aggravated inflammatory response and brain damage after ischemic stroke by augmenting proinflammatory microglial polarization in association with increased endothelial CCL2 release due to GMD inhibition by P-gp.
Collapse
Affiliation(s)
- Yan Chen
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Xuan Fei
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Ge Liu
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Xiang Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Liangliang Huang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Lele Zixin Yang
- Penn State University, University Park, State College, PA 16802, USA
| | - Yunman Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Baohui Xu
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Weirong Fang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| |
Collapse
|
95
|
Xin W, Pan Y, Wei W, Gerner ST, Huber S, Juenemann M, Butz M, Bähr M, Huttner HB, Doeppner TR. TGF-β1 Decreases Microglia-Mediated Neuroinflammation and Lipid Droplet Accumulation in an In Vitro Stroke Model. Int J Mol Sci 2023; 24:17329. [PMID: 38139158 PMCID: PMC10743979 DOI: 10.3390/ijms242417329] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Hypoxia triggers reactive microglial inflammation and lipid droplet (LD) accumulation under stroke conditions, although the mutual interactions between these two processes are insufficiently understood. Hence, the involvement of transforming growth factor (TGF)-β1 in inflammation and LD accumulation in cultured microglia exposed to hypoxia were analyzed herein. Primary microglia were exposed to oxygen-glucose deprivation (OGD) injury and lipopolysaccharide (LPS) stimulation. For analyzing the role of TGF-β1 patterns under such conditions, a TGF-β1 siRNA and an exogenous recombinant TGF-β1 protein were employed. Further studies applied Triacsin C, an inhibitor of LD formation, in order to directly assess the impact of LD formation on the modulation of inflammation. To assess mutual microglia-to-neuron interactions, a co-culture model of these cells was established. Upon OGD exposure, microglial TGF-β1 levels were significantly increased, whereas LPS stimulation yielded decreased levels. Elevating TGF-β1 expression proved highly effective in suppressing inflammation and reducing LD accumulation in microglia exposed to LPS. Conversely, inhibition of TGF-β1 led to the promotion of microglial cell inflammation and an increase in LD accumulation in microglia exposed to OGD. Employing the LD formation inhibitor Triacsin C, in turn, polarized microglia towards an anti-inflammatory phenotype. Such modulation of both microglial TGF-β1 and LD levels significantly affected the resistance of co-cultured neurons. This study provides novel insights by demonstrating that TGF-β1 plays a protective role against microglia-mediated neuroinflammation through the suppression of LD accumulation. These findings offer a fresh perspective on stroke treatment, suggesting the potential of targeting this pathway for therapeutic interventions.
Collapse
Affiliation(s)
- Wenqiang Xin
- Department of Neurology, University of Göttingen Medical School, 37075 Goettingen, Germany; (W.X.); (Y.P.); (W.W.); (M.B.)
| | - Yongli Pan
- Department of Neurology, University of Göttingen Medical School, 37075 Goettingen, Germany; (W.X.); (Y.P.); (W.W.); (M.B.)
| | - Wei Wei
- Department of Neurology, University of Göttingen Medical School, 37075 Goettingen, Germany; (W.X.); (Y.P.); (W.W.); (M.B.)
| | - Stefan T. Gerner
- Department of Neurology, University of Giessen Medical School, 35392 Giessen, Germany; (S.T.G.); (M.J.); (M.B.); (H.B.H.)
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University, 35032 Giessen, Germany
| | - Sabine Huber
- Department of Neurology, University of Giessen Medical School, 35392 Giessen, Germany; (S.T.G.); (M.J.); (M.B.); (H.B.H.)
| | - Martin Juenemann
- Department of Neurology, University of Giessen Medical School, 35392 Giessen, Germany; (S.T.G.); (M.J.); (M.B.); (H.B.H.)
| | - Marius Butz
- Department of Neurology, University of Giessen Medical School, 35392 Giessen, Germany; (S.T.G.); (M.J.); (M.B.); (H.B.H.)
- Heart and Brain Research Group, Kerckhoff Heart and Thorax Center, 61231 Bad Nauheim, Germany
| | - Mathias Bähr
- Department of Neurology, University of Göttingen Medical School, 37075 Goettingen, Germany; (W.X.); (Y.P.); (W.W.); (M.B.)
| | - Hagen B. Huttner
- Department of Neurology, University of Giessen Medical School, 35392 Giessen, Germany; (S.T.G.); (M.J.); (M.B.); (H.B.H.)
| | - Thorsten R. Doeppner
- Department of Neurology, University of Göttingen Medical School, 37075 Goettingen, Germany; (W.X.); (Y.P.); (W.W.); (M.B.)
- Department of Neurology, University of Giessen Medical School, 35392 Giessen, Germany; (S.T.G.); (M.J.); (M.B.); (H.B.H.)
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University, 35032 Giessen, Germany
- Department of Anatomy and Cell Biology, Medical University of Varna, 9238 Varna, Bulgaria
- Research Institute for Health Sciences and Technologies (SABITA), Medipol University, 100098 Istanbul, Turkey
| |
Collapse
|
96
|
Sun XR, Yao ZM, Chen L, Huang J, Dong SY. Metabolic reprogramming regulates microglial polarization and its role in cerebral ischemia reperfusion. Fundam Clin Pharmacol 2023; 37:1065-1078. [PMID: 37339781 DOI: 10.1111/fcp.12928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 05/12/2023] [Accepted: 06/07/2023] [Indexed: 06/22/2023]
Abstract
The brain is quite sensitive to changes in energy supply because of its high energetic demand. Even small changes in energy metabolism may be the basis of impaired brain function, leading to the occurrence and development of cerebral ischemia/reperfusion (I/R) injury. Abundant evidence supports that metabolic defects of brain energy during the post-reperfusion period, especially low glucose oxidative metabolism and elevated glycolysis levels, which play a crucial role in cerebral I/R pathophysiology. Whereas research on brain energy metabolism dysfunction under the background of cerebral I/R mainly focuses on neurons, the research on the complexity of microglia energy metabolism in cerebral I/R is just emerging. As resident immune cells of the central nervous system, microglia activate rapidly and then transform into an M1 or M2 phenotype to correspond to changes in brain homeostasis during cerebral I/R injury. M1 microglia release proinflammatory factors to promote neuroinflammation, while M2 microglia play a neuroprotective role by secreting anti-inflammatory factors. The abnormal brain microenvironment promotes the metabolic reprogramming of microglia, which further affects the polarization state of microglia and disrupts the dynamic equilibrium of M1/M2, resulting in the aggravation of cerebral I/R injury. Increasing evidence suggests that metabolic reprogramming is a key driver of microglial inflammation. For example, M1 microglia preferentially produce energy through glycolysis, while M2 microglia provide energy primarily through oxidative phosphorylation. In this review, we highlight the emerging significance of regulating microglial energy metabolism in cerebral I/R injury.
Collapse
Affiliation(s)
- Xiao-Rong Sun
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Zi-Meng Yao
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Lei Chen
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Jie Huang
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Shu-Ying Dong
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, China
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu, China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| |
Collapse
|
97
|
Dordoe C, Huang W, Bwalya C, Wang X, Shen B, Wang H, Wang J, Ye S, Wang P, Xiaoyan B, Li X, Lin L. The role of microglial activation on ischemic stroke: Modulation by fibroblast growth factors. Cytokine Growth Factor Rev 2023; 74:122-133. [PMID: 37573252 DOI: 10.1016/j.cytogfr.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 07/29/2023] [Indexed: 08/14/2023]
Abstract
Stroke is one of the devastating clinical conditions that causes death and permanent disability. Its occurrence causes the reduction of oxygen and glucose supply, resulting in events such as inflammatory response, oxidative stress, and apoptosis in the brain. Microglia are brain-resident immune cells in the central nervous system (CNS) that exert diverse roles and respond to pathological process after an ischemic insult. The discovery of fibroblast growth factors (FGFs) in mammals, resulted to the findings that they can treat experimental models of stroke in animals effectively. FGFs function as homeostatic factors that control cells and hormones involved in metabolism, and they also regulate the secretion of proinflammatory (M1) and anti-inflammatory (M2) cytokines after stroke. In this review, we outline current evidence of microglia activation in experimental models of stroke focusing on its ability to exacerbate damage or repair tissue. Also, our review sheds light on the pharmacological actions of FGFs on multiple targets to regulate microglial modulation and highlighted their theoretical molecular mechanisms to provide possible therapeutic targets, as well as their limitations for the treatment of stroke. DATA AVAILABILITY: Not applicable.
Collapse
Affiliation(s)
- Confidence Dordoe
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wenting Huang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Canol Bwalya
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xue Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Bixin Shen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hao Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jing Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shasha Ye
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Peng Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Bao Xiaoyan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaokun Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Research Units of Clinical Translation of Cell Growth Factors and Diseases Research, Chinese Academy of Medical Science, Wenzhou, Zhejiang 325035, China.
| | - Li Lin
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Research Units of Clinical Translation of Cell Growth Factors and Diseases Research, Chinese Academy of Medical Science, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
98
|
Han X, Li Y, Chen X, Pan D, Mo J, Qiu J, Li Y, Chen Y, Huang Y, Shen Q, Tang Y. Platelet-activating factor antagonist-based intensive antiplatelet strategy in acute ischemic stroke: A propensity score matched with network pharmacology analysis. CNS Neurosci Ther 2023; 29:4082-4092. [PMID: 37435773 PMCID: PMC10651968 DOI: 10.1111/cns.14331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/25/2023] [Accepted: 06/20/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Diterpene ginkgolides meglumine injection (DGMI) is a platelet-activating factor receptor (PAFR) antagonist that can be used to treat acute ischemic stroke (AIS). This study evaluated the efficacy and safety of an intensive antiplatelet strategy based on PAFR antagonists and explored the underlying mechanisms of PAFR antagonists in AIS treatment. METHODS This is a retrospective study applying propensity score methods to match AIS patients treated with DGMI to nontreated patients. The primary outcome was functional independence (modified Rankin Scale [mRS] 0-2) at 90 days. The safety outcome was bleeding risk. We used McNemar test to compare the efficacy outcome. Subsequently, the network pharmacology analysis was performed. RESULTS 161 AIS patients treated with DGMI in the study were matched with 161 untreated patients. Compared with untreated patients, DGMI-treated patients had a significantly higher rate of mRS ranking 0-2 at 90 days (82.0% vs. 75.8%, p < 0.001), without increased risk of bleeding. The gene enrichment analysis showed that the overlap genes of DGMI targeted and AIS-related enriched in thrombosis and inflammatory-related signaling pathways. CONCLUSIONS An intensive antiplatelet strategy of DGMI plus traditional antiplatelet agents is effective in treating AIS and may work by mediating post-stroke inflammation and thrombosis.
Collapse
Affiliation(s)
- Xiaoyan Han
- Department of NeurologyFirst People's Hospital of ZhaoqingZhaoqingPeople's Republic of China
- Department of Neurology, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Youjia Li
- Department of NeurologyFirst People's Hospital of ZhaoqingZhaoqingPeople's Republic of China
| | - Xuemin Chen
- Guangdong Medical UniversityZhanjiangPeople's Republic of China
| | - Dong Pan
- Department of Neurology, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Junning Mo
- Department of NeurologyFirst People's Hospital of ZhaoqingZhaoqingPeople's Republic of China
| | - Jiaming Qiu
- Department of NeurologyFirst People's Hospital of ZhaoqingZhaoqingPeople's Republic of China
| | - Yi Li
- Department of Neurology, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Yan Chen
- Department of NeurologyFirst People's Hospital of ZhaoqingZhaoqingPeople's Republic of China
| | - Yan Huang
- Department of NeurologyFirst People's Hospital of ZhaoqingZhaoqingPeople's Republic of China
| | - Qingyu Shen
- Department of Neurology, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Yamei Tang
- Department of Neurology, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouPeople's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouPeople's Republic of China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouPeople's Republic of China
| |
Collapse
|
99
|
Ruan Z, Cao G, Qian Y, Fu L, Hu J, Xu T, Wu Y, Lv Y. Single-cell RNA sequencing unveils Lrg1's role in cerebral ischemia‒reperfusion injury by modulating various cells. J Neuroinflammation 2023; 20:285. [PMID: 38037097 PMCID: PMC10687904 DOI: 10.1186/s12974-023-02941-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Cerebral ischemia‒reperfusion injury causes significant harm to human health and is a major contributor to stroke-related deaths worldwide. Current treatments are limited, and new, more effective prevention and treatment strategies that target multiple cell components are urgently needed. Leucine-rich alpha-2 glycoprotein 1 (Lrg1) appears to be associated with the progression of cerebral ischemia‒reperfusion injury, but the exact mechanism of it is unknown. METHODS Wild-type (WT) and Lrg1 knockout (Lrg1-/-) mice were used to investigate the role of Lrg1 after cerebral ischemia‒reperfusion injury. The effects of Lrg1 knockout on brain infarct volume, blood‒brain barrier permeability, and neurological score (based on 2,3,5-triphenyl tetrazolium chloride, evans blue dye, hematoxylin, and eosin staining) were assessed. Single-cell RNA sequencing (scRNA-seq), immunofluorescence, and microvascular albumin leakage tests were utilized to investigate alterations in various cell components in brain tissue after Lrg1 knockout. RESULTS Lrg1 expression was increased in various cell types of brain tissue after cerebral ischemia‒reperfusion injury. Lrg1 knockout reduced cerebral edema and infarct size and improved neurological function after cerebral ischemia‒reperfusion injury. Single-cell RNA sequencing analysis of WT and Lrg1-/- mouse brain tissues after cerebral ischemia‒reperfusion injury revealed that Lrg1 knockout enhances blood‒brain barrier (BBB) by upregulating claudin 11, integrin β5, protocadherin 9, and annexin A2. Lrg1 knockout also promoted an anti-inflammatory and tissue-repairing phenotype in microglia and macrophages while reducing neuron and oligodendrocyte cell death. CONCLUSIONS Our results has shown that Lrg1 mediates numerous pathological processes involved in cerebral ischemia‒reperfusion injury by altering the functional states of various cell types, thereby rendering it a promising therapeutic target for cerebral ischemia‒reperfusion injury.
Collapse
Affiliation(s)
- Zhaohui Ruan
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guosheng Cao
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yisong Qian
- School of Clinical Medicine, Nanchang University, Nanchang, China
| | - Longsheng Fu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jinfang Hu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tiantian Xu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yaoqi Wu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanni Lv
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
100
|
Chou V, Pearse RV, Aylward AJ, Ashour N, Taga M, Terzioglu G, Fujita M, Fancher SB, Sigalov A, Benoit CR, Lee H, Lam M, Seyfried NT, Bennett DA, De Jager PL, Menon V, Young-Pearse TL. INPP5D regulates inflammasome activation in human microglia. Nat Commun 2023; 14:7552. [PMID: 38016942 PMCID: PMC10684891 DOI: 10.1038/s41467-023-42819-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/20/2023] [Indexed: 11/30/2023] Open
Abstract
Microglia and neuroinflammation play an important role in the development and progression of Alzheimer's disease (AD). Inositol polyphosphate-5-phosphatase D (INPP5D/SHIP1) is a myeloid-expressed gene genetically-associated with AD. Through unbiased analyses of RNA and protein profiles in INPP5D-disrupted iPSC-derived human microglia, we find that reduction in INPP5D activity is associated with molecular profiles consistent with disrupted autophagy and inflammasome activation. These findings are validated through targeted pharmacological experiments which demonstrate that reduced INPP5D activity induces the formation of the NLRP3 inflammasome, cleavage of CASP1, and secretion of IL-1β and IL-18. Further, in-depth analyses of human brain tissue across hundreds of individuals using a multi-analytic approach provides evidence that a reduction in function of INPP5D in microglia results in inflammasome activation in AD. These findings provide insights into the molecular mechanisms underlying microglia-mediated processes in AD and highlight the inflammasome as a potential therapeutic target for modulating INPP5D-mediated vulnerability to AD.
Collapse
Affiliation(s)
- Vicky Chou
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Richard V Pearse
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Aimee J Aylward
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Nancy Ashour
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mariko Taga
- Center for Translational and Computational Neuroimmunology, Department of Neurology, and the Taub Institute for the Study of Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Gizem Terzioglu
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Masashi Fujita
- Center for Translational and Computational Neuroimmunology, Department of Neurology, and the Taub Institute for the Study of Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Seeley B Fancher
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alina Sigalov
- Center for Translational and Computational Neuroimmunology, Department of Neurology, and the Taub Institute for the Study of Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Courtney R Benoit
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Hyo Lee
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Matti Lam
- Center for Translational and Computational Neuroimmunology, Department of Neurology, and the Taub Institute for the Study of Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory School of Medicine, Atlanta, GA, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology, and the Taub Institute for the Study of Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Vilas Menon
- Center for Translational and Computational Neuroimmunology, Department of Neurology, and the Taub Institute for the Study of Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Tracy L Young-Pearse
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|