51
|
Teng S, Wang Y, Li P, Liu J, Wei A, Wang H, Meng X, Pan D, Zhang X. Effects of R type and S type ginsenoside Rg3 on DNA methylation in human hepatocarcinoma cells. Mol Med Rep 2017; 15:2029-2038. [PMID: 28260016 PMCID: PMC5364960 DOI: 10.3892/mmr.2017.6255] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 01/09/2017] [Indexed: 12/23/2022] Open
Abstract
Ginsenoside Rg3, a bioactive constituent isolated from Panax ginseng, exhibits antitumorigenic, antioxidative, antiangiogenic, neuroprotective and other biological activities are associated with the regulation of multiple genes. DNA methylation patterns, particularly those in the promoter region, affect gene expression, and DNA methylation is catalyzed by DNA methylases. However, whether ginsenoside Rg3 affects DNA methylation is unknown. High performance liquid chromatography assay, MspI/HpaII polymerase chain reaction (PCR) and reverse transcription‑quantitative PCR were performed to assess DNA methylation. It was demonstrated that 20(S)‑ginsenoside Rg3 treatment resulted in increased inhibition of cell growth, compared with treatment with 20(R)‑ginsenoside Rg3 in the human HepG2 hepatocarcinoma cell line. It was additionally revealed that treatment with 20(S)‑ginsenoside Rg3 reduced global genomic DNA methylation, altered cystosine methylation of the promoter regions of P53, B cell lymphoma 2 and vascular endothelial growth factor, and downregulated the expression of DNA methyltransferase (DNMT) 3a and DNMT3b more than treatment with 20(R)‑ginsenoside Rg3 in HepG2 cells. These results revealed that the modulation of DNA methylation may be important in the pharmaceutical activities of ginsenoside Rg3.
Collapse
Affiliation(s)
- Siying Teng
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
- Department of Ophthalmology, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yi Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Pingya Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jinhua Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
- Jilin Entry-Exit Inspection and Quarantine Bureau, Changchun, Jilin 130062, P.R. China
| | - Anhui Wei
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Haotian Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiangkun Meng
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Di Pan
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xinmin Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
52
|
Bhat S, Kabekkodu SP, Varghese VK, Chakrabarty S, Mallya SP, Rotti H, Pandey D, Kushtagi P, Satyamoorthy K. Aberrant gene-specific DNA methylation signature analysis in cervical cancer. Tumour Biol 2017; 39:1010428317694573. [PMID: 28351298 DOI: 10.1177/1010428317694573] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024] Open
Abstract
Multicomponent molecular modifications such as DNA methylation may offer sensitive and specific cervical intraepithelial neoplasia and cervical cancer biomarkers. In this study, we tested cervical tissues at various stages of tumor progression for 5-methylcytosine and 5-hydroxymethylcytosine levels and also DNA promoter methylation profile of a panel of genes for its diagnostic potential. In total, 5-methylcytosine, 5-hydroxymethylcytosine, and promoter methylation of 33 genes were evaluated by reversed-phase high-performance liquid chromatography, enzyme-linked immunosorbent assay based technique, and bisulfate-based next generation sequencing. The 5-methylcytosine and 5-hydroxymethylcytosine contents were significantly reduced in squamous cell carcinoma and receiver operating characteristic curve analysis showed a significant difference in (1) 5-methylcytosine between normal and squamous cell carcinoma tissues (area under the curve = 0.946) and (2) 5-hydroxymethylcytosine levels among normal, squamous intraepithelial lesions and squamous cell carcinoma. Analyses of our next generation sequencing results and data from five independent published studies consisting of 191 normal, 10 low-grade squamous intraepithelial lesions, 21 high-grade squamous intraepithelial lesions, and 335 malignant tissues identified a panel of nine genes ( ARHGAP6, DAPK1, HAND2, NKX2-2, NNAT, PCDH10, PROX1, PITX2, and RAB6C) which could effectively discriminate among the various groups with sensitivity and specificity of 80%-100% (p < 0.05). Furthermore, 12 gene promoters (ARHGAP6, HAND2, LHX9, HEY2, NKX2-2, PCDH10, PITX2, PROX1, TBX3, IKBKG, RAB6C, and DAPK1) were also methylated in one or more of the cervical cancer cell lines tested. The global and gene-specific methylation of the panel of genes identified in our study may serve as useful biomarkers for the early detection and clinical management of cervical cancer.
Collapse
Affiliation(s)
- Samatha Bhat
- 1 Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Manipal, India
| | - Shama Prasada Kabekkodu
- 1 Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Manipal, India
| | - Vinay Koshy Varghese
- 1 Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Manipal, India
| | - Sanjiban Chakrabarty
- 1 Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Manipal, India
| | - Sandeep P Mallya
- 1 Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Manipal, India
| | - Harish Rotti
- 1 Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Manipal, India
| | - Deeksha Pandey
- 2 Department of Obstetrics & Gynaecology, Kasturba Medical College, Manipal University, Manipal, India
| | - Pralhad Kushtagi
- 3 Department of Obstetrics & Gynaecology, Kasturba Medical College, Manipal University, Mangalore, India
| | - Kapaettu Satyamoorthy
- 1 Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Manipal, India
| |
Collapse
|
53
|
Wang L, Huang X, Chai Y, Zou L, Chedrawe M, Ding Y. Octreotide inhibits the proliferation of gastric cancer cells through P300-HAT activity and the interaction of ZAC and P300. Oncol Rep 2017; 37:2041-2048. [PMID: 28260048 DOI: 10.3892/or.2017.5451] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 07/28/2016] [Indexed: 11/06/2022] Open
Abstract
Somatostatin (SST) exhibits a wide range of physiological functions, including the regulation of tumor cell growth. Octreotide (OCT) is a synthetic analogue of SST that can be used to slow gastrointestinal bleeding, inhibit the release of growth hormone and impede gastrointestinal tumor growth. The aim of the present study was to investigate the molecular mechanism of OCT underlying the inhibition of gastric cancer cell proliferation. Proteins of interest were detected using western blotting, and the zinc finger protein (ZAC)-P300 complex was quantified using co-immunoprecipitation. P300-histone acetyltransferase (P300-HAT) activity was determined spectrophotometrically. The results showed that OCT decreased the phosphorylation of Akt which caused the level of ZAC to increase. In turn, the interaction between ZAC and P300 increased the activity of P300-HAT; ultimately, the phosphorylation of serine 10 in histone H3 (pS10-H3) was decreased and the acetylation of lysine 14 in histone H3 (acK14-H3) was increased. These results suggest that OCT attenuates SGC-7901 cell proliferation by enhancing P300-HAT activity through the interaction of ZAC and P300, causing a reduction in pS10-H3 and an increase in acK14-H3. These findings provide insight for future research on OCT and further demonstrate the potential of OCT to be used as a therapeutic agent for gastric cancer.
Collapse
Affiliation(s)
- Liping Wang
- Department of Histology and Embryology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Xin Huang
- Department of Histology and Embryology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yurong Chai
- Department of Histology and Embryology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Liyang Zou
- Department of Histology and Embryology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Matthew Chedrawe
- Department of Psychology and Neuroscience, Faculty of Science, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Yi Ding
- Department of Histology and Embryology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
54
|
Sarathy A, Qiu H, Leburton JP. Graphene Nanopores for Electronic Recognition of DNA Methylation. J Phys Chem B 2016; 121:3757-3763. [PMID: 28035832 DOI: 10.1021/acs.jpcb.6b11040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We investigate theoretically the ability of graphene nanopore membranes to detect methylated sites along a DNA molecule by electronic sheet current along the two-dimensional (2D) materials. Special emphasis is placed on the detection sensitivity changes due to pore size, shape, position, and the presence of defects around the nanopore in a membrane with constricted geometry. Enhanced sensitivity for detecting methylated CpG sites, labeled by methyl-CpG binding domain (MBD) proteins along a DNA molecule, is obtained for electronic transport through graphene midgap states caused by the constriction. A large square deviation from the graphene conductance with respect to the open nanopore is observed during the translocation of MBD proteins. This approach exhibits superior resolution in the detection of multiple methylated sites along the DNA compared to conventional ionic current blockade techniques.
Collapse
Affiliation(s)
- Aditya Sarathy
- Beckman Institute for Advanced Science and Technology, ‡Department of Electrical and Computer Engineering, and §Department of Physics, University of Illinois , Urbana, Illinois 61801, United States
| | - Hu Qiu
- Beckman Institute for Advanced Science and Technology, ‡Department of Electrical and Computer Engineering, and §Department of Physics, University of Illinois , Urbana, Illinois 61801, United States
| | - Jean-Pierre Leburton
- Beckman Institute for Advanced Science and Technology, ‡Department of Electrical and Computer Engineering, and §Department of Physics, University of Illinois , Urbana, Illinois 61801, United States
| |
Collapse
|
55
|
Hattinger CM, Tavanti E, Fanelli M, Vella S, Picci P, Serra M. Pharmacogenomics of genes involved in antifolate drug response and toxicity in osteosarcoma. Expert Opin Drug Metab Toxicol 2016; 13:245-257. [PMID: 27758143 DOI: 10.1080/17425255.2017.1246532] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Antifolates are structural analogs of folates, which have been used as antitumor drugs for more than 60 years. The antifolate drug most commonly used for treating human tumors is methotrexate (MTX), which is utilized widely in first-line treatment protocols of high-grade osteosarcoma (HGOS). In addition to MTX, two other antifolates, trimetrexate and pemetrexed, have been tested in clinical settings for second-line treatment of recurrent HGOS with patients unfortunately showing modest activity. Areas covered: There is clinical evidence which suggsest that, like other chemotherapeutic agents, not all HGOS patients are equally responsive to antifolates and do not have the same susceptibility to experience adverse drug-related toxicities. Here, we summarize the pharmacogenomic information reported so far for genes involved in antifolate metabolism and transport and in MTX-related toxicity in HGOS patients. Expert opinion: Identification and validation of genetic biomarkers that significantly impact clinical antifolate treatment response and related toxicity may provide the basis for a future treatment modulation based on the pharmacogenetic and pharmacogenomic features of HGOS patients.
Collapse
Affiliation(s)
- Claudia Maria Hattinger
- a Pharmacogenomics and Pharmacogenetics Research Unit, Laboratory of Experimental Oncology , Orthopaedic Rizzoli Institute , Bologna , Italy
| | - Elisa Tavanti
- a Pharmacogenomics and Pharmacogenetics Research Unit, Laboratory of Experimental Oncology , Orthopaedic Rizzoli Institute , Bologna , Italy
| | - Marilù Fanelli
- a Pharmacogenomics and Pharmacogenetics Research Unit, Laboratory of Experimental Oncology , Orthopaedic Rizzoli Institute , Bologna , Italy
| | - Serena Vella
- a Pharmacogenomics and Pharmacogenetics Research Unit, Laboratory of Experimental Oncology , Orthopaedic Rizzoli Institute , Bologna , Italy
| | - Piero Picci
- a Pharmacogenomics and Pharmacogenetics Research Unit, Laboratory of Experimental Oncology , Orthopaedic Rizzoli Institute , Bologna , Italy
| | - Massimo Serra
- a Pharmacogenomics and Pharmacogenetics Research Unit, Laboratory of Experimental Oncology , Orthopaedic Rizzoli Institute , Bologna , Italy
| |
Collapse
|
56
|
Shen C, Sheng Q, Zhang X, Fu Y, Zhu K. Hypermethylated APC in serous carcinoma based on a meta-analysis of ovarian cancer. J Ovarian Res 2016; 9:60. [PMID: 27670526 PMCID: PMC5037906 DOI: 10.1186/s13048-016-0271-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/01/2016] [Indexed: 12/18/2022] Open
Abstract
Background The reduced expression of the Adenomatous polyposis coli (APC) gene, a tumor suppressor gene, through promoter hypermethylation has been reported to play a key role in the carcinogenesis. However, the correlation between APC promoter hypermethylation and ovarian cancer (OC) remains to be clarified. Methods A comprehensive literature search was carried out in related research databases. The overall odds ratio (OR) and corresponding 95 % confidence interval (CI) were used to evaluate the effects of APC promoter hypermethylation on OC and clinicopathological characteristics. Results Ultimately, 12 eligible studies were used in our study, including 806 OC samples, 429 normal controls, 109 benign lesions and 75 LMP samples. The pooled OR showed that APC promoter hypermethylation was significantly higher in OC than in normal and benign controls (OR = 6.18 and OR = 3.26, respectively). No significant correlation was observed between OC and low malignant potential (LMP) tumors (P = 0.436). In the comparison of OC and normal controls, subgroup analysis based on race showed that the overall OR of APC promoter hypermethylation was significant and similar in Asians and Caucasians (OR = 8.34 and OR = 5.39, respectively). A subgroup analysis based on sample type found that the pooled OR was significantly higher in blood than in tissue (OR = 18.71 and OR = 5.74, respectively). A significant association was not observed between APC promoter hypermethylation and tumor grade or tumor stage. The pooled OR indicated that APC promoter hypermethylation was significantly lower in serous carcinoma than in non-serous carcinoma (OR = 0.56, P = 0.02). No obvious publication bias was detected by Egger’s test (all P > 0.05). Conclusions APC promoter hypermethylation may be linked to the increased risk of OC. It was associated with histological type, but not with tumor grade or tumor stage. Moreover, hypermethylated APC may be a noninvasive biomarker using blood samples. Future studies are required to validate these results.
Collapse
Affiliation(s)
- Chunyan Shen
- Obstetrics and Gynecology Department, The No. 2 Hospital of Yinzhou, Ningbo, 315040, Zhejiang, China
| | - Qifang Sheng
- Obstetrics and Gynecology Department, The No. 2 Hospital of Yinzhou, Ningbo, 315040, Zhejiang, China.
| | - Xiaojie Zhang
- Obstetrics and Gynecology Department, The No. 2 Hospital of Yinzhou, Ningbo, 315040, Zhejiang, China.
| | - Yuling Fu
- Obstetrics and Gynecology Department, The No. 2 Hospital of Yinzhou, Ningbo, 315040, Zhejiang, China
| | - Kemiao Zhu
- Obstetrics and Gynecology Department, The No. 2 Hospital of Yinzhou, Ningbo, 315040, Zhejiang, China
| |
Collapse
|
57
|
Increased expression of SET domain-containing proteins and decreased expression of Rad51 in different classes of renal cell carcinoma. Biosci Rep 2016; 36:BSR20160122. [PMID: 27170370 PMCID: PMC5293581 DOI: 10.1042/bsr20160122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 05/11/2016] [Indexed: 01/10/2023] Open
Abstract
Because of scant availability of tissue samples, we did not perform elaborate examination of chromatin immunoprecipitation and specific binding of SET domain-containing proteins to the promoters of Rad51. These remain avenues for future investigations. In the present study, we aimed to examine whether SET domain-containing methyltransferases are up-regulated in different classes of renal cell carcinoma. We immunoblotted against SET domain and quantified the expression of these modular domains. Furthermore, we examined the expression of Rad51, the key protein that confers genomic stability. There was enhanced expression of SET domain-containing histone methyltransferases in whole lysates of all classes of renal carcinoma. In metastatic high grade clear cell carcinoma, this expression was more pronounced. Though we could not demonstrate direct correlation, we showed that epigenetic modification by methylation is associated with decreased genomic translation of Rad51.
Collapse
|
58
|
Jeong HM, Lee S, Chae H, Kim R, Kwon MJ, Oh E, Choi YL, Kim S, Shin YK. Efficiency of methylated DNA immunoprecipitation bisulphite sequencing for whole-genome DNA methylation analysis. Epigenomics 2016; 8:1061-77. [PMID: 27266718 DOI: 10.2217/epi-2016-0038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
AIMS We compared four common methods for measuring DNA methylation levels and recommended the most efficient method in terms of cost and coverage. MATERIALS & METHODS The DNA methylation status of liver and stomach tissues was profiled using four different methods, whole-genome bisulphite sequencing (WG-BS), targeted bisulphite sequencing (Targeted-BS), methylated DNA immunoprecipitation sequencing (MeDIP-seq) and methylated DNA immunoprecipitation bisulphite sequencing (MeDIP-BS). We calculated DNA methylation levels using each method and compared the results. RESULTS MeDIP-BS yielded the most similar DNA methylation profile to WG-BS, with 20 times less data, suggesting remarkable cost savings and coverage efficiency compared with the other methods. CONCLUSION MeDIP-BS is a practical cost-effective method for analyzing whole-genome DNA methylation that is highly accurate at base-pair resolution.
Collapse
Affiliation(s)
- Hae Min Jeong
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Sangseon Lee
- School of Computer Science & Engineering, Seoul National University, Seoul, Republic of Korea
| | - Heejoon Chae
- Computer Science Department, School of Informatics & Computing, Indiana University, Bloomington, IN, USA
| | - RyongNam Kim
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea.,Tumor Microenvironment Global Core Research Center, Seoul National University, Seoul, Republic of Korea
| | - Mi Jeong Kwon
- College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea.,Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Ensel Oh
- Department of Pathology & Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Health Sciences & Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Yoon-La Choi
- Department of Pathology & Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Health Sciences & Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea.,Laboratory of Cancer Genomics & Molecular Pathology, Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Sun Kim
- Department of Computer Science & Engineering, Seoul National University, Seoul, Republic of Korea.,Bioinformatics Institute, Seoul National University, Seoul, Republic of Korea.,Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Young Kee Shin
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea.,Tumor Microenvironment Global Core Research Center, Seoul National University, Seoul, Republic of Korea.,Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea.,The Center for Anti-Cancer Companion Diagnostics, School of Biological Science, Institutes of Entrepreneurial BioConvergence, Seoul National University, Seoul, Republic of Korea.,Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
59
|
Maushagen R, Reers S, Pfannerstill AC, Hahlbrock A, Stauber R, Rahmanzadeh R, Rades D, Pries R, Wollenberg B. Effects of paclitaxel on permanent head and neck squamous cell carcinoma cell lines and identification of anti-apoptotic caspase 9b. J Cancer Res Clin Oncol 2016; 142:1261-71. [PMID: 27038158 DOI: 10.1007/s00432-016-2150-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/18/2016] [Indexed: 11/25/2022]
Abstract
PURPOSE Paclitaxel is an effective chemotherapeutic agent against various human tumors inducing apoptosis via binding to β-tubulin of microtubules and arresting cells mainly in the G2/M phase of the cell cycle. However, the underlying specific molecular mechanisms of paclitaxel on head and neck squamous cell carcinoma (HNSCC) have not been identified yet. METHODS The apoptotic effects and mechanisms of paclitaxel on different permanent HPV-negative HNSCC cell lines (UT-SCC-24A, UT-SCC-24B, UT-SCC-60A and UT-SCC-60B) were determined by flow cytometry assays, polymerase chain reaction analysis, immunofluorescence-based assays and sequencing studies. RESULTS Paclitaxel induced a G2/M arrest in HNSCC cell lines followed by an increased amount of apoptotic cells. Moreover, the activation of caspase 8, caspase 10 and caspase 3, and the loss of the mitochondrial outer membrane potential could be observed, whereas an activation of caspase 9 could barely be detected. The efficient activation of caspase 9 was not affected by altered methylation patterns. Our results can show that the promoter region of apoptotic protease activating factor 1 (Apaf-1) was not methylated in the HNSCC cell lines. By sequencing analysis two isoforms of caspase 9, the pro-apoptotic caspase 9 and the anti-apoptotic caspase 9b were identified. The anti-apoptotic caspase 9b is missing the catalytic site and acts as an endogenous inhibitor of apoptosis by blocking the binding of caspase 9 to Apaf-1 to form the apoptosome. CONCLUSION Our data indicate the presence of anti-apoptotic caspase 9b in HNSCC, which may serve as a promising target to increase chemotherapeutic apoptosis induction.
Collapse
Affiliation(s)
- Regina Maushagen
- Department of Otorhinolaryngology, Clinic for ENT and HNS, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany.
| | - Stefan Reers
- Department of Cardiology and Angiology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Ann-Christin Pfannerstill
- Department for Nephrology and Hypertension, University Hospital of Schleswig-Holstein, Campus Kiel, Schittenhelmstrasse 12, 24105, Kiel, Germany
| | - Angelina Hahlbrock
- Department of Molecular Oncology, University Medical Center Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Roland Stauber
- Department of Molecular Oncology, University Medical Center Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Ramtin Rahmanzadeh
- Institute of Biomedical Optics, University of Lübeck, Peter-Monnik-Weg 4, 23562, Lübeck, Germany
| | - Dirk Rades
- Department of Radiation Oncology, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Ralph Pries
- Department of Otorhinolaryngology, Clinic for ENT and HNS, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Barbara Wollenberg
- Department of Otorhinolaryngology, Clinic for ENT and HNS, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| |
Collapse
|
60
|
Ye C, Tao R, Cao Q, Zhu D, Wang Y, Wang J, Lu J, Chen E, Li L. Whole-genome DNA methylation and hydroxymethylation profiling for HBV-related hepatocellular carcinoma. Int J Oncol 2016; 49:589-602. [PMID: 27221337 DOI: 10.3892/ijo.2016.3535] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/13/2016] [Indexed: 11/06/2022] Open
|
61
|
Coppedè F, Tannorella P, Stoccoro A, Chico L, Siciliano G, Bonuccelli U, Migliore L. Methylation analysis of DNA repair genes in Alzheimer's disease. Mech Ageing Dev 2016; 161:105-111. [PMID: 27080585 DOI: 10.1016/j.mad.2016.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/30/2016] [Accepted: 04/07/2016] [Indexed: 10/22/2022]
Abstract
There is substantial evidence of impaired DNA repair activities in Alzheimer's disease (AD) neurons and peripheral tissues, inducing some investigators to speculate that this could partially result from promoter hypermethylation of DNA repair genes, resulting in gene silencing in those tissues. In the present study a screening cohort composed by late-onset AD (LOAD) patients and healthy matched controls was evaluated with a commercially available DNA methylation array for the assessment of the methylation levels of a panel of 22 genes involved in major DNA repair pathways in blood DNA. We then applied a cost-effective PCR based methylation-sensitive high-resolution melting (MS-HRM) technique, in order to evaluate the promoter methylation levels of the following DNA repair genes: OGG1, PARP1, MRE11A, BRCA1, MLH1, and MGMT. The analysis was performed in blood DNA from 56 LOAD patients and 55 matched controls, including the samples previously assessed with the DNA methylation array as validating samples. Both approaches revealed that all the investigated genes were largely hypomethylated in LOAD and control blood DNA, and no difference between groups was observed. Collectively, present data do not support an increased promoter methylation of some of the major DNA repair genes in blood DNA of AD patients.
Collapse
Affiliation(s)
- Fabio Coppedè
- Department of Translational Research and New Technologies in Medicine and Surgery, Section of Medical Genetics, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | - Pierpaola Tannorella
- Department of Translational Research and New Technologies in Medicine and Surgery, Section of Medical Genetics, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Andrea Stoccoro
- Department of Translational Research and New Technologies in Medicine and Surgery, Section of Medical Genetics, University of Pisa, Via Roma 55, 56126 Pisa, Italy; Doctoral School in Genetics Oncology and Clinical Medicine, University of Siena, Siena, Italy
| | - Lucia Chico
- Unit of Neurology, Department of Neuroscience, Pisa University Hospital, Via Roma 67, 56126 Pisa, Italy
| | - Gabriele Siciliano
- Unit of Neurology, Department of Neuroscience, Pisa University Hospital, Via Roma 67, 56126 Pisa, Italy; Department of Clinical and Experimental Medicine, University of Pisa, Neurological Clinic, Via Roma 67, 56126 Pisa, Italy
| | - Ubaldo Bonuccelli
- Unit of Neurology, Department of Neuroscience, Pisa University Hospital, Via Roma 67, 56126 Pisa, Italy; Department of Clinical and Experimental Medicine, University of Pisa, Neurological Clinic, Via Roma 67, 56126 Pisa, Italy
| | - Lucia Migliore
- Department of Translational Research and New Technologies in Medicine and Surgery, Section of Medical Genetics, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| |
Collapse
|
62
|
Abstract
Aberrant DNA methylation is considered to be one of the most common hallmarks of cancer. Several recent advances in assessing the DNA methylome provide great promise for deciphering the cancer-specific DNA methylation patterns. Herein, we present the current key technologies used to detect high-throughput genome-wide DNA methylation, and the available cancer-associated methylation databases. Additionally, we focus on the computational methods for preprocessing, analyzing and interpreting the cancer methylome data. It not only discusses the challenges of the differentially methylated region calling and the prediction model construction but also highlights the biomarker investigation for cancer diagnosis, prognosis and response to treatment. Finally, some emerging challenges in the computational analysis of cancer methylome data are summarized.
Collapse
|
63
|
Amacher DE. A 2015 survey of established or potential epigenetic biomarkers for the accurate detection of human cancers. Biomarkers 2016; 21:387-403. [PMID: 26983778 DOI: 10.3109/1354750x.2016.1153724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Context The silencing or activation of cancer-associated genes by epigenetic mechanisms can ultimately lead to the clonal expansion of cancer cells. Objective The aim of this review is to summarize all relevant epigenetic biomarkers that have been proposed to date for the diagnosis of some prevalent human cancers. Methods A Medline search for the terms epigenetic biomarkers, human cancers, DNA methylation, histone modifications and microRNAs was performed. Results One hundred fifty-seven relevant publications were found and reviewed. Conclusion To date, a significant number of potential epigenetic cancer biomarkers of human cancer have been investigated, and some have advanced to clinical implementation.
Collapse
|
64
|
Richter AM, Walesch SK, Dammann RH. Aberrant Promoter Methylation of the Tumour Suppressor RASSF10 and Its Growth Inhibitory Function in Breast Cancer. Cancers (Basel) 2016; 8:cancers8030026. [PMID: 26927176 PMCID: PMC4810110 DOI: 10.3390/cancers8030026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/03/2016] [Accepted: 02/19/2016] [Indexed: 01/07/2023] Open
Abstract
Breast cancer is the most common cancer in women, with 1.7 million new cases each year. As early diagnosis and prognosis are crucial factors in cancer treatment, we investigated potential DNA methylation biomarkers of the tumour suppressor family Ras-association domain family (RASSF). Promoter hypermethylation of tumour suppressors leads to their inactivation and thereby promotes cancer development and progression. In this study we analysed the tumour suppressors RASSF1A and RASSF10. Our study shows that RASSF10 is expressed in normal breast but inactivated by methylation in breast cancer. We observed a significant inactivating promoter methylation of RASSF10 in primary breast tumours. RASSF10 is inactivated in 63% of primary breast cancer samples but only 4% of normal control breast tissue is methylated (p < 0.005). RASSF1A also shows high promoter methylation levels in breast cancer of 56% vs. 8% of normal tissue (p < 0.005). Interestingly more than 80% of breast cancer samples harboured a hypermethylation of RASSF10 and/or RASSF1A promoter. Matching samples exhibited a strong tumour specific promoter methylation of RASSF10 in comparison to the normal control breast tissue. Demethylation treatment of breast cancer cell lines MCF7 and T47D reversed RASSF10 promoter hypermethylation and re-established RASSF10 expression. In addition, we could show the growth inhibitory potential of RASSF10 in breast cancer cell lines MCF7 and T47D upon exogenous expression of RASSF10 by colony formation. We could further show, that RASSF10 induced apoptotic changes in MCF7 and T47D cells, which was verified by a significant increase in the apoptotic sub G1 fraction by 50% using flow cytometry for MCF7 cells. In summary, our study shows the breast tumour specific inactivation of RASSF10 and RASSF1A due to DNA methylation of their CpG island promoters. Furthermore RASSF10 was characterised by the ability to block growth of breast cancer cell lines by apoptosis induction.
Collapse
Affiliation(s)
- Antje M Richter
- Institute for Genetics, University of Giessen, Giessen 35392, Germany.
| | - Sara K Walesch
- Institute for Genetics, University of Giessen, Giessen 35392, Germany.
| | | |
Collapse
|
65
|
Kulp JL, Mamillapalli R, Taylor HS. Aberrant HOXA10 Methylation in Patients With Common Gynecologic Disorders: Implications for Reproductive Outcomes. Reprod Sci 2016; 23:455-63. [PMID: 26865543 DOI: 10.1177/1933719116630427] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
HomeoboxA10 (HOXA10) is a transcription factor that is crucial for the development and patterning of the uterus during embryogenesis. In the adult endometrium, HOXA10 expression is regulated by steroid hormones and embryonic signals. Expression of sufficient HOXA10 messenger RNA is essential to endometrial receptivity and embryo implantation. Aberrant methylation is believed to alter the expression of HOXA10. Methylation of this gene may be associated with decreased fertility, implantation defects, and/or reproductive wastage seen in certain disease states that affect the female reproductive tract. This study describes the differences in methylation patterns of HOXA10 gene in uterine myomas, endometriosis, uterine septum, Asherman syndrome, or uterine polyps of women undergoing hysteroscopic surgery. In the endometrium of uteri with polyps, submucosal myomas, and intramural myomas, there were CpG sites within the HOXA10 gene that were highly methylated compared to controls. The HOXA10 gene in women with endometriosis was hypomethylated compared to controls. DNA methylation may be a common molecular mechanism that results in reproductive dysfunction seen in gynecologic disease.
Collapse
Affiliation(s)
- Jennifer L Kulp
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Ramanaiah Mamillapalli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
66
|
Lin X, Zhang W, Lu Q, Lei X, Wang T, Han X, Ma A. Effect of MTHFR Gene Polymorphism Impact on Atherosclerosis via Genome-Wide Methylation. Med Sci Monit 2016; 22:341-5. [PMID: 26828698 PMCID: PMC4743680 DOI: 10.12659/msm.895296] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/22/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Atherosclerosis seriously threats human health. Homocysteine is an independent risk factor closely related to DNA methylation. MTHFR C667T loci polymorphism is closely associated with homocysteine level. This study aimed to investigate the relationship among MTHFR C667T loci polymorphism, genome-wide methylation, and atherosclerosis. MATERIAL/METHODS Blood sample was collected from 105 patients with coronary atherosclerosis and 105 healthy controls. Pyrosequencing methylation was used to detect LINE-1 methylation level. Polymerase chain reaction-restriction enzyme fragment length polymorphism (PCR-RFLP) was used to test MTHFR. RESULTS LINE-1 methylation level in the patient group was significantly lower than in the controls (t=5.007, P<0.001). MTHFR C667T genotype distribution presented marked differences in the 2 groups. TT genotype carriers had significantly increased risk of atherosclerosis (OR=3.56, P=0.009). Three different genotypes of MTHFR C667T loci showed different LINE-1 methylation level between the 2 groups (P<0.01). LINE-1 methylation level in TT and CT genotype carriers was obviously lower than in CC genotype carriers (P<0.05). CONCLUSIONS MTHFR C667T loci polymorphism may affect atherosclerosis by regulating genome methylation level.
Collapse
Affiliation(s)
- Xuefeng Lin
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi’an Jiaotong University; Key Laboratory of Molecular Cardiology, Shanxi Province; Institute of Cardiovascular Channelopathy; Key Laboratory of Environment & Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, Shanxi, P.R. China
- Department of Cardiovascular Medicine, First Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia, P.R. China
| | - Wei Zhang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi’an Jiaotong University; Key Laboratory of Molecular Cardiology, Shanxi Province; Institute of Cardiovascular Channelopathy; Key Laboratory of Environment & Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, Shanxi, P.R. China
| | - Qun Lu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi’an Jiaotong University; Key Laboratory of Molecular Cardiology, Shanxi Province; Institute of Cardiovascular Channelopathy; Key Laboratory of Environment & Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, Shanxi, P.R. China
| | - Xinjun Lei
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi’an Jiaotong University; Key Laboratory of Molecular Cardiology, Shanxi Province; Institute of Cardiovascular Channelopathy; Key Laboratory of Environment & Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, Shanxi, P.R. China
| | - Tingzhong Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi’an Jiaotong University; Key Laboratory of Molecular Cardiology, Shanxi Province; Institute of Cardiovascular Channelopathy; Key Laboratory of Environment & Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, Shanxi, P.R. China
| | - Xuanmao Han
- Department of Cardiovascular Medicine, First Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia, P.R. China
| | - Aiqun Ma
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi’an Jiaotong University; Key Laboratory of Molecular Cardiology, Shanxi Province; Institute of Cardiovascular Channelopathy; Key Laboratory of Environment & Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, Shanxi, P.R. China
| |
Collapse
|
67
|
Tian Q, Sangar V, Price ND. Emerging Proteomic Technologies Provide Enormous and Underutilized Potential for Brain Cancer Research. Mol Cell Proteomics 2016; 15:362-7. [PMID: 26407994 PMCID: PMC4739660 DOI: 10.1074/mcp.r115.053884] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 09/22/2015] [Indexed: 01/11/2023] Open
Abstract
High-throughput technologies present immense opportunities to characterize brain cancer biology at a systems level. However, proteomic studies of brain cancers are still relatively scarce. Here we discuss the latest proteomic technologies, their application to profiling and quantitation of brain proteomes and how we expect these technologies will be applied to study brain cancer proteomes in the future. Mass spectrometry based proteomics with increased specificity, coverage and throughput will be pervasive in proteomics investigations of brain. Generated data needs to be captured by the curation of databases, and application of creative data analysis strategies is needed to provide meaningful insights into brain functions and associated pathologies. Overall, proteomics applications to brain cancers are in the earliest stages and the expanded use of these technologies holds enormous potential to improve our understanding of brain functions and pathologies.
Collapse
Affiliation(s)
- Qiang Tian
- From the ‡Institute for Systems Biology, Seattle, WA 98109
| | - Vineet Sangar
- From the ‡Institute for Systems Biology, Seattle, WA 98109
| | - Nathan D Price
- From the ‡Institute for Systems Biology, Seattle, WA 98109
| |
Collapse
|
68
|
Post-Transcriptional Modifications of RNA: Impact on RNA Function and Human Health. MODIFIED NUCLEIC ACIDS IN BIOLOGY AND MEDICINE 2016. [DOI: 10.1007/978-3-319-34175-0_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
69
|
Caviglia GP, Cabianca L, Fagoonee S, Gili FM. Colorectal cancer detection in an asymptomatic population: fecal immunochemical test for hemoglobin vs. fecal M2-type pyruvate kinase. Biochem Med (Zagreb) 2016; 26:114-120. [PMID: 26981025 PMCID: PMC4783085 DOI: 10.11613/bm.2016.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/16/2016] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Screening programs for colorectal cancer (CRC) are mainly based on a first-line fecal immunochemical test for hemoglobin (FIT). Fecal M2-type pyruvate kinase (M2-PK) has been evaluated in clinical settings showing promising results for early CRC detection. However, the impact of fecal M2-PK assessment on the performance of first-round CRC screening programs is not known. We investigated whether fecal M2-PK alone or in combination with FIT may improve CRC screening efficacy in the general population. MATERIALS AND METHODS A total of 1027 asymptomatic subjects (median age 66 [59-74] years; females 504 [49.1%]), identified through the general practitioners' rosters, were invited for the collection of 2 fecal samples for FIT and M2-PK evaluation. Participants with at least positive one fecal test were referred for colonoscopy. Quality indicators for screening performance were calculated and analyzed using Fisher's exact test. RESULTS Overall, 572 subjects underwent both FIT and M2-PK assessment (participation rate 55.7%): 93 participants showed positive results for at least one test (positivity rate 16.3%). Only 10 patients were positive for both tests. Attendance rate to colonoscopy was 86.0% and a total of 65 adenomas and 7 cancers were detected. Combined use of FIT and fecal M2-PK permitted the identification of 18 more neoplasm (25%) without improving colonoscopy workload, as deduced by the comparable number needed to scope (P = 0.402). CONCLUSION The addition of M2-PK testing to FIT offers the potential to detect additional neoplasms that either do not bleed or only bleed intermittently without reducing participation rate and without increasing endoscopy workload.
Collapse
Affiliation(s)
| | - Luca Cabianca
- Centro di Prevenzione Oncologica (CPO Piemonte), AOU Cittŕ della Salute e della Scienza, Turin, Italy
| | - Sharmila Fagoonee
- Institute for Biostructures and Bioimages-CNR c/o Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Fabrizio M Gili
- Centro di Prevenzione Oncologica (CPO Piemonte), AOU Cittŕ della Salute e della Scienza, Turin, Italy
| |
Collapse
|
70
|
Lin YL, Deng QK, Wang YH, Fu XL, Ma JG, Li WP. Aberrant Protocadherin17 (PCDH17) Methylation in Serum is a Potential Predictor for Recurrence of Early-Stage Prostate Cancer Patients After Radical Prostatectomy. Med Sci Monit 2015; 21:3955-690. [PMID: 26683656 PMCID: PMC4689382 DOI: 10.12659/msm.896763] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Prostate cancer is a one of the most common malignant diseases in men worldwide. Now it is a challenge to identify patients at higher risk for relapse and progression after surgery, and more novel prognostic biomarkers are needed. The aim of this study was to investigate the clinical significance of protocadherin17 (PCDH17) methylation in serum and its predictive value for biochemical recurrence (BCR) after radical prostatectomy. Material/Methods We evaluated the methylation status of PCDH17 in serum samples of 167 early-stage prostate cancer patients and 44 patients with benign prostatic hyperplasia (BPH) using methylation-specific PCR (MSP), and then evaluated the relationship between PCDH17 methylation and clinicopathologic features. Kaplan-Meier survival analysis and Cox analysis were used to evaluate its predictive value for BCR. Results The ratio of PCDH17 methylation in prostate cancer patients was higher than in patients with BPH. Moreover, PCDH17 methylation was significantly associated with advanced pathological stage, higher Gleason score, higher preoperative PSA levels, and BCR. Kaplan-Meier survival analysis indicated that patients with methylated PCDH17 had shorter BCR-free survival time compared to patients with unmethylated PCDH17. Cox regression analysis indicated that PCDH17 methylation was an independent predictive factor for the BCR of patients after radical prostatectomy. Conclusions PCDH17 methylation in serum is a frequent event in early-stage prostate cancer, and it is an independent predictor of BCR after radical prostatectomy.
Collapse
Affiliation(s)
- Ying-Li Lin
- Department of Urology, Xuzhou Cancer Hospital, Affiliated Xuzhou Hospital of Jiangsu University, Xuzhou, Jiangsu, China (mainland)
| | - Qiu-Kui Deng
- Department of Orthopaedics, Qilu Hospital, Shandong University, Jinan, Shandong, China (mainland)
| | - Yu-Hao Wang
- Department of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Xing-Li Fu
- Health Science Center, Jiangsu University, Zhenjiang, Jiangsu, China (mainland)
| | - Jian-Guo Ma
- Department of Urology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Wen-Ping Li
- Department of Urology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| |
Collapse
|
71
|
Sun Y, Li S, Shen K, Ye S, Cao D, Yang J. DAPK1, MGMT and RARB promoter methylation as biomarkers for high-grade cervical lesions. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:14939-14945. [PMID: 26823825 PMCID: PMC4713611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/22/2015] [Indexed: 06/05/2023]
Abstract
Gene promoter methylation may be used a potential biomarker for detecting solid tumor including cervical cancer. Here, we used methylation sensitive-high resolution melting (MS-HRM) analysis to detecting promoter methylation ratios of DAPK1, MGMT and RARB gene in patients with different cervical disease grade. The detection of gene promoter methylation was conducted in two hundred fifty patients' samples including normal cytology (n=48), cervical intraepithelial neoplasia grade 1 (CIN1, n=54), cervical intraepithelial neoplasia grade 2 (CIN2, n=47), cervical intraepithelial neoplasia grade 3 (CIN3, n=56) and cervical squamous cell carcinomas (SCS, n=45). We found there were a significant positive correlation between the promoter methylation status of DAPK1 and cervical disease grade (P=0.022). In addition, the methylated promoters of DAPK1 combined with MGMT, MGMT combined with RARB, DAPK1 combined with RARB were positive correlated with cervical disease grade (P < 0.05). All three genes promoters methylated were positive correlated with cervical disease grade (P < 0.001). Receiver operating characteristic (ROC) curves was conducted to evaluate whether the three genes methylation could be used to be a potential marker for diagnosing high grade cervical disease (HSIL and SCC). The cutoff values for the methylation rates of all these genes were 0-5%. Regrettably, only the methylation of MGMT combined with DAPK1 gave 43.4% sensitivity and 68.6% specificity. The current results indicated that MS-HRM-based testing for DNA methylations of MGMT plus DAPK1 genes holds some promise for high grade cervical disease screening.
Collapse
Affiliation(s)
- Yin Sun
- Department of O&G, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science & Peking Union Medical CollegeChina
| | - Shu Li
- Department of O&G, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science & Peking Union Medical CollegeChina
| | - Keng Shen
- Department of O&G, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science & Peking Union Medical CollegeChina
| | - Shuang Ye
- Fudan University Shanghai Cancer Center, OncologyChina
| | - Dongyan Cao
- Fudan University Shanghai Cancer Center, OncologyChina
| | - Jiaxin Yang
- Fudan University Shanghai Cancer Center, OncologyChina
| |
Collapse
|
72
|
Wan D, Hou L, Zhang X, Han X, Chen M, Tang W, Liu R, Dong Z, Yu S. DNA methylation of RAMP1 gene in migraine: an exploratory analysis. J Headache Pain 2015; 16:90. [PMID: 26501962 PMCID: PMC4623078 DOI: 10.1186/s10194-015-0576-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 10/21/2015] [Indexed: 01/03/2023] Open
Abstract
Background Receptor activity modifying protein 1(RAMP1) is a key receptor subunit of calcitonin gene related peptide (CGRP) playing a critical role in migraine. But variations in RAMP1 gene have not been found to link with migraine. Still it is elusive that DNA methylation at RAMP1 promoter is associated with migraine. Methods A total of 51 blood DNA samples from 26 patients with migraine and 25 matched healthy controls were collected, extracted and treated with bisulfate. Subsequently DNA methylation levels at RAMP1 promoter region were measured using Sequenom Mass ARRAY systems. Results Among 13 detected CpG sites or units at RAMP1 promoter region, there were no significant differences between the migraine and control groups, but indicating a low methylation trend overall in migraine group (total average methylation level: 8.41 % ±1.92 % vs. 9.90 % ± 3.88 %, p = 0.197). Stratification analysis showed that methylation level at (+25, +27, +31, related to the transcription start site) CpG unit was higher in migraineurs with migraine family history compared to those without (13.92 % ± 5.97 % vs. 8.77 % ± 6.61 %, p = 0.034), and methylation level at (+89, +94, +96) CpG unit was lower in migraine female than that in healthy female (2.18 % ± 1.91 % vs. 5.85 % ± 5.41 %, p = 0.02). For female with methylation level at (+89, +94, +96) CpG unit below 3.50 %, the probability of being a migraine patient was significantly higher than those with methylation level above the threshold (OR: 7.313; 95%CI: 1.439-37.164). Conclusions This study provides the first evidence that DNA methylation at RAMP1 promoter might play a role in migraine. A low methylation trend overall was presented in migraine subjects, and two CpG units were observed to link with positive migraine family history and female migraine, respectively. Lower methlytion level at (+89, +94, +96) CpG unit may be a risk of migraine in females.
Collapse
Affiliation(s)
- Dongjun Wan
- Department of Neurology, Chinese PLA General Hospital, 28 Fuxing Road, Haidan District, Beijing, 100853, China
| | - Lei Hou
- Department of Neurology, Chinese PLA General Hospital, 28 Fuxing Road, Haidan District, Beijing, 100853, China
| | - Xiaofei Zhang
- Department of Neurology, Chinese PLA General Hospital, 28 Fuxing Road, Haidan District, Beijing, 100853, China
| | - Xun Han
- Department of Neurology, Chinese PLA General Hospital, 28 Fuxing Road, Haidan District, Beijing, 100853, China
| | - Min Chen
- Department of Neurology, Chinese PLA General Hospital, 28 Fuxing Road, Haidan District, Beijing, 100853, China
| | - Wenjing Tang
- Department of Neurology, Chinese PLA General Hospital, 28 Fuxing Road, Haidan District, Beijing, 100853, China
| | - Ruozhuo Liu
- Department of Neurology, Chinese PLA General Hospital, 28 Fuxing Road, Haidan District, Beijing, 100853, China
| | - Zhao Dong
- Department of Neurology, Chinese PLA General Hospital, 28 Fuxing Road, Haidan District, Beijing, 100853, China
| | - Shengyuan Yu
- Department of Neurology, Chinese PLA General Hospital, 28 Fuxing Road, Haidan District, Beijing, 100853, China.
| |
Collapse
|