51
|
Aghababaeian H, Dastoorpoor M, Ghasemi A, Kiarsi M, Khanjani N, Araghi Ahvazi L. Cardiovascular and respiratory emergency dispatch due to short-term exposure to ambient PM10 in Dezful, Iran. J Cardiovasc Thorac Res 2019; 11:264-271. [PMID: 31824607 PMCID: PMC6891034 DOI: 10.15171/jcvtr.2019.44] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 09/15/2019] [Indexed: 11/15/2022] Open
Abstract
Introduction: This study was conducted to determine the relation between exposure to particulate matter less than 10 microns (PM10) caused by dust storms and the risk of cardiovascular, respiratory and traffic accident missions carried out by Emergency Medical Services (EMS).
Methods: This was a time-series study conducted in Dezful city, Iran. Daily information on the number of missions by the EMS due to cardiovascular, respiratory and crash problems and data on PM10 were inquired from March 2013 until March 2016. A generalized linear model (GLM) with distributed lag models (DLMs) was used to evaluate the relation between the number of EMS missions and the average daily PM10. The latent effects of PM10 were estimated in single and cumulative lags, up to 14 days.
Results: In the adjusted model, for each IQR increase in the average daily PM10 concentration, the risk of EMS missions in the total population in single lags of 2 to 7 days, and the cumulative lags of 0-7 and 0-14 days after exposure had a 0.8, 0.8, 0.8, 0.8, 0.7, 0.6, 6.7 and 1.4% significant increase. Also, for each IQR increase in the daily mean concentration of PM10 in single 1 to 7, and cumulative lags of 0-2, 0-7, and 0-14 days after exposure, respectively, a 2.4, 2.7, 2.8, 2.9, 2.9, 2.7, 2.5, 7.4, 23.5 and 33. 3 % increase was observed in the risk of EMS cardiovascular missions.
Conclusion: Increase in daily PM10 concentrations in Dezful is associated with an increase in the risk of EMS missions in lags up to two weeks after exposure.
Collapse
Affiliation(s)
- Hamidreza Aghababaeian
- Nursing and Emergency Department, Dezful University of Medical Sciences, Dezful, Iran.,Department of Health in Emergencies and Disaster, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Dastoorpoor
- Department of Biostatistics and Epidemiology, Menopause Andropause Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Afsaneh Ghasemi
- Department of Public Health, School of Public Health, Fasa University of Medical Sciences, Fasa, Iran
| | - Maryam Kiarsi
- Nursing and Emergency Department, Dezful University of Medical Sciences, Dezful, Iran
| | - Narges Khanjani
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ladan Araghi Ahvazi
- Nursing and Emergency Department, Dezful University of Medical Sciences, Dezful, Iran
| |
Collapse
|
52
|
Ruzmyn Vilcassim MJ, Thurston GD, Chen LC, Lim CC, Gordon T. Exposure to Greater Air Pollution when Traveling Abroad Is Associated with Decreased Lung Function. Am J Respir Crit Care Med 2019; 199:1570-1572. [PMID: 30864816 PMCID: PMC6580676 DOI: 10.1164/rccm.201811-2235le] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
| | | | - Lung-Chi Chen
- New York University School of MedicineNew York, New York
| | - Chris C. Lim
- New York University School of MedicineNew York, New York
| | - Terry Gordon
- New York University School of MedicineNew York, New York
| |
Collapse
|
53
|
Magnusson P, Dziendzikowska K, Oczkowski M, Øvrevik J, Eide DM, Brunborg G, Gutzkow KB, Instanes C, Gajewska M, Wilczak J, Sapierzynski R, Kamola D, Królikowski T, Kruszewski M, Lankoff A, Mruk R, Duale N, Gromadzka-Ostrowska J, Myhre O. Lung effects of 7- and 28-day inhalation exposure of rats to emissions from 1st and 2nd generation biodiesel fuels with and without particle filter - The FuelHealth project. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 67:8-20. [PMID: 30685595 DOI: 10.1016/j.etap.2019.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/22/2018] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
Increased use of 1st and 2nd generation biofuels raises concerns about health effects of new emissions. We analyzed cellular and molecular lung effects in Fisher 344 rats exposed to diesel engine exhaust emissions (DEE) from a Euro 5-classified diesel engine running on B7: petrodiesel fuel containing 7% fatty acid methyl esters (FAME), or SHB20 (synthetic hydrocarbon biofuel): petrodiesel fuel containing 7% FAME and 13% hydrogenated vegetable oil. The Fisher 344 rats were exposed for 7 consecutive days (6 h/day) or 28 days (6 h/day, 5 days/week), both with and without diesel particle filter (DPF) treatment of the exhaust in whole body exposure chambers (n = 7/treatment). Histological analysis and analysis of cytokines and immune cell numbers in bronchoalveolar lavage fluid (BALF) did not reveal adverse pulmonary effects after exposure to DEE from B7 or SHB20 fuel. Significantly different gene expression levels for B7 compared to SHB20 indicate disturbed redox signaling (Cat, Hmox1), beta-adrenergic signaling (Adrb2) and xenobiotic metabolism (Cyp1a1). Exhaust filtration induced higher expression of redox genes (Cat, Gpx2) and the chemokine gene Cxcl7 compared to non-filtered exhaust. Exposure time (7 versus 28 days) also resulted in different patterns of lung gene expression. No genotoxic effects in the lungs were observed. Overall, exposure to B7 or SHB20 emissions suggests only minor effects in the lungs.
Collapse
Affiliation(s)
- Pål Magnusson
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Norway
| | | | - Michał Oczkowski
- Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences, Poland
| | - Johan Øvrevik
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Norway
| | - Dag M Eide
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Norway
| | - Gunnar Brunborg
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Norway
| | - Kristine B Gutzkow
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Norway
| | - Christine Instanes
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Norway
| | | | - Jacek Wilczak
- Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Poland
| | - Rafał Sapierzynski
- Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Poland
| | - Dariusz Kamola
- Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Poland
| | - Tomasz Królikowski
- Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences, Poland
| | - Marcin Kruszewski
- Institute of Nuclear Chemistry and Technology, Warsaw, Poland; Department of Molecular Biology and Translational Research, Institute of Rural Health, Lublin, Poland
| | - Anna Lankoff
- Institute of Nuclear Chemistry and Technology, Warsaw, Poland; Jan Kochanowski University, Kielce, Poland
| | - Remigiusz Mruk
- Faculty of Production Engineering, Warsaw University of Life Sciences, Poland
| | - Nur Duale
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Norway
| | | | - Oddvar Myhre
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Norway.
| |
Collapse
|
54
|
Samadi MT, Khorsandi H, Bahrami Asl F, Poorolajal J, Tayebinia H. Long-term exposures to Hypersaline particles associated with increased levels of Homocysteine and white blood cells: A case study among the village inhabitants around the semi-dried Lake Urmia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:631-639. [PMID: 30496995 DOI: 10.1016/j.ecoenv.2018.11.074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/16/2018] [Accepted: 11/18/2018] [Indexed: 06/09/2023]
Abstract
The dried bed of the world's second largest permanent Hypersaline lake, Lake Urmia, acts as a Hypersaline particle emission source. In the present study we aim to assess the health impact of this disaster and examine the association of Hypersaline particles with total and differential white blood cell counts (WBC) and homocysteine (Hcy), the biomarkers of cardiovascular diseases, in the residents around Lake Urmia. Based on the previous study three regions were selected as clean and polluted regions for ambient particulate matter (APM) from 2008 to 2015. Concentration of APM (PM10, PM2.5 and PM1; particulate matter with aerodynamic diameter of less than 10, 2.5 and 1 µm, respectively) was measured in the selected regions and totally, 123 participants were selected randomly from villagers who have lived in the selected regions for at least eight years. Biomarkers and covariates were measured in the selected regions and were analyzed using multiple linear regression models. We found a statistically significant association between APM and selected biomarkers (Hcy, total WBC, neutrophil, monocyte, lymphocyte and basophile) in the polluted regions. These results are consistent with our hypothesis that long-term exposure to Hypersaline particles originated from drying Urmia Hypersaline Lake is related to increased cardiovascular risk biomarkers.
Collapse
Affiliation(s)
- Mohammad Taghi Samadi
- Research Center for Health Sciences and Department of Environmental Health Engineering, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Hassan Khorsandi
- Department of Environmental Health Engineering, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran.
| | - Farshad Bahrami Asl
- Department of Environmental Health Engineering, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Jalal Poorolajal
- Research Center for Health Sciences and Department of Epidemiology, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Heidar Tayebinia
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
55
|
Dastoorpoor M, Sekhavatpour Z, Masoumi K, Mohammadi MJ, Aghababaeian H, Khanjani N, Hashemzadeh B, Vahedian M. Air pollution and hospital admissions for cardiovascular diseases in Ahvaz, Iran. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 652:1318-1330. [PMID: 30586817 DOI: 10.1016/j.scitotenv.2018.10.285] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/16/2018] [Accepted: 10/21/2018] [Indexed: 04/13/2023]
Abstract
Cardiovascular disease is one of the main causes of death in Iran. The aim of this study was to determine the relation between air pollution and cardiovascular hospital admissions in Ahwaz, Iran. Daily information about cardiovascular hospital admissions (based on the ICD-10) and data on air pollutants during 2008-2018 were inquired. A quasi-Poisson regression combined with linear distributed lag models; adjusted for trend, seasonality, temperature, relative humidity, weekdays and holidays was used to assess the relation between hospital admission for cardiovascular diseases and the average daily air pollution. The results of this study showed a significant increase in cardiovascular hospital admissions in the total population and women's population in relation to O3. There was a significant increase in hospital admissions for cardiovascular diseases in the whole population as well as gender and age groups associated with NO2 and NO. A significant increase was found in hospital admissions for cardiovascular diseases in relation to CO in the 65-74-year-old population. Finally, the results of this study showed that there was a significant increase in hospital admissions for cardiovascular disease associated with SO2. The main results of the present study confirm the deleterious short term impact of air pollution on cardiovascular morbidity in Ahvaz city. This evidence empasizes the need to implement policies for reducing air pollution.
Collapse
Affiliation(s)
- Maryam Dastoorpoor
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Epidemiology and Biostatistics, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zohreh Sekhavatpour
- Department of Anesthesiology, School of Paramedicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Kambiz Masoumi
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Emergency Medicine, Imam Khomeini General Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | | | - Narges Khanjani
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Mostafa Vahedian
- Research Center for Environmental Pollutants, Qom University of Medical Sciences, Qom, Iran.
| |
Collapse
|
56
|
Yen YC, Yang CY, Mena KD, Cheng YT, Yuan CS, Chen PS. Jumping on the bed and associated increases of PM 10, PM 2.5, PM 1, airborne endotoxin, bacteria, and fungi concentrations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 245:799-809. [PMID: 30502709 DOI: 10.1016/j.envpol.2018.11.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/16/2018] [Accepted: 11/17/2018] [Indexed: 06/09/2023]
Abstract
Jumping on the bed is a favorite behavior of children; however, no study has investigated the increased air pollutants resulting from jumping on the bed. Therefore, we aimed to investigate the elevated concentrations of particulate matter (PM) and bioaerosols from jumping on the bed and making the bed. Simulation of jumping on the bed and making the bed was performed at sixty schoolchildren's houses in Taiwan. PM10, PM2.5, PM1 (PM with aerodynamic diameter less than 10, 2.5, and 1 μm, respectively) and airborne bacteria, fungi and endotoxin concentrations were simultaneously measured over simulation and background periods. Our results show the increase of PM10, PM2.5, PM1, airborne bacteria and fungi through the behavior of jumping on the bed (by 414 μg m-3, 353 μg m-3, 349 μg m-3, 6569 CFU m-3 and 978 CFU m-3, respectively). When making the bed, the PM10, PM2.5, PM1, airborne bacteria and fungi also significantly increased by 4.69 μg m-3, 4.09 μg m-3, 4.15 μg m-3, 8569 CFU m-3, and 779 CFU m-3, respectively. Airborne endotoxin concentrations significantly increased by 21.76 EU m-3 following jumping on the bed and making the bed. Moreover, when jumping on the bed, higher PM2.5 and PM1 concentrations in houses with furry pets rather than no furry pets, and less airborne fungi in apartments than in townhouses were found. For making the bed, lower airborne fungi was found in houses using essential oils rather than no essential oils using. The airborne endotoxin concentrations were positively associated with furry pets and smokers in the homes and negatively correlated to the home with window opening with a statistical significance during the periods of jumping on the bed and making the bed. In conclusion, significant increases of PM and bioaerosols during jumping on the bed and making the bed may need to be concerned.
Collapse
Affiliation(s)
- Yu-Chuan Yen
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Chun-Yuh Yang
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Kristina Dawn Mena
- Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, TX, United States
| | - Yu-Ting Cheng
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
| | - Chung-Shin Yuan
- Institute of Environmental Engineering, College of Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Pei-Shih Chen
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung City, Taiwan; Institute of Environmental Engineering, College of Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan.
| |
Collapse
|
57
|
Shakya KM, Peltier RE, Zhang Y, Pandey BD. Roadside Exposure and Inflammation Biomarkers among a Cohort of Traffic Police in Kathmandu, Nepal. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16030377. [PMID: 30699969 PMCID: PMC6388290 DOI: 10.3390/ijerph16030377] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 02/08/2023]
Abstract
Air pollution is a major environmental problem in the Kathmandu Valley. Specifically, roadside and traffic-related air pollution exposure levels were found at very high levels exceeding Nepal air quality standards for daily PM2.5. In an exposure study involving traffic police officers, we collected 78 blood samples in a highly polluted spring season (16 February 2014–4 April 2014) and 63 blood samples in the less polluted summer season (20 July 2014–22 August 2014). Fourteen biomarkers, i.e., C-reactive protein (CRP), serum amyloid A (SAA), intracellular adhesion molecule (ICAM-1), vascular cell adhesion molecule (VCAM-1), interferon gamma (IFN-γ), interleukins (IL1-β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12, IL-13), and tumor necrosis factor (TNF-α) were analyzed in collected blood samples using proinflammatory panel 1 kits and vascular injury panel 2 kits. All the inflammatory biomarker levels were higher in the summer season than in the spring season, while particulate levels were higher in the spring season than in the summer season. We did not find significant association between 24-hour average PM2.5 or black carbon (BC) exposure levels with most of analyzed biomarkers for the traffic volunteers working and residing near busy roads in Kathmandu, Nepal, during 2014. Inflammation and vascular injury marker concentrations were generally higher in females, suggesting the important role of gender in inflammation biomarkers. Because of the small sample size of female subjects, further investigation with a larger sample size is required to confirm the role of gender in inflammation biomarkers.
Collapse
Affiliation(s)
- Kabindra M Shakya
- Villanova University, Department of Geography and the Environment, Villanova, PA 19085, USA.
| | - Richard E Peltier
- University of Massachusetts, Department of Environmental Health Science, Amherst, MA 01003, USA.
| | - Yimin Zhang
- Villanova University, Department of Mathematics and Statistics, Villanova, PA 19085, USA.
| | - Basu D Pandey
- Kathmandu and Everest International Clinic and Research Center, Sukraraj Tropical and Infectious Disease Hospital, Kathmandu 9045, Nepal.
| |
Collapse
|
58
|
Hamanaka RB, Mutlu GM. Particulate Matter Air Pollution: Effects on the Cardiovascular System. Front Endocrinol (Lausanne) 2018; 9:680. [PMID: 30505291 PMCID: PMC6250783 DOI: 10.3389/fendo.2018.00680] [Citation(s) in RCA: 279] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/30/2018] [Indexed: 12/18/2022] Open
Abstract
Air pollution is a complex mixture of gaseous and particulate components, each of which has detrimental effects on human health. While the composition of air pollution varies greatly depending on the source, studies from across the world have consistently shown that air pollution is an important modifiable risk factor for significantly increased morbidity and mortality. Moreover, clinical studies have generally shown a greater impact of particulate matter (PM) air pollution on health than the gaseous components. PM has wide-ranging deleterious effects on human health, particularly on the cardiovascular system. Both acute and chronic exposure to PM air pollution is associated with increased risk of death from cardiovascular diseases including ischemic heart disease, heart failure, and ischemic/thrombotic stroke. Particulate matter has also been shown to be an important endocrine disrupter, contributing to the development of metabolic diseases such as obesity and diabetes mellitus, which themselves are risk factors for cardiovascular disease. While the epidemiological evidence for the deleterious effects of PM air pollution on health is increasingly accepted, newer studies are shedding light on the mechanisms by which PM exerts its toxic effects. A greater understanding of how PM exerts toxic effects on human health is required in order to prevent and minimize the deleterious health effects of this ubiquitous environmental hazard. Air pollution is a growing public health problem and mortality due to air pollution is expected to double by 2050. Here, we review the epidemiological evidence for the cardiovascular effects of PM exposure and discuss current understanding about the biological mechanisms, by which PM exerts toxic effects on cardiovascular system to induce cardiovascular disease.
Collapse
Affiliation(s)
| | - Gökhan M. Mutlu
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
59
|
Adar SD, Chen YH, D'Souza JC, O'Neill MS, Szpiro AA, Auchincloss AH, Park SK, Daviglus ML, Diez Roux AV, Kaufman JD. Longitudinal Analysis of Long-Term Air Pollution Levels and Blood Pressure: A Cautionary Tale from the Multi-Ethnic Study of Atherosclerosis. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:107003. [PMID: 30392401 PMCID: PMC6371645 DOI: 10.1289/ehp2966] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
BACKGROUND Air pollution exposures are hypothesized to impact blood pressure, yet few longitudinal studies exist, their findings are inconsistent, and different adjustments have been made for potentially distinct confounding by calendar time and age. OBJECTIVE We aimed to investigate the associations of long- and short-term [Formula: see text] and [Formula: see text] concentrations with systolic and diastolic blood pressures and incident hypertension while also accounting for potential confounding by age and time. METHODS Between 2000 and 2012, Multi-Ethnic Study of Atherosclerosis participants were measured for systolic and diastolic blood pressure at five exams. We estimated annual average and daily [Formula: see text] and [Formula: see text] concentrations for 6,569 participants using spatiotemporal models and measurements, respectively. Associations of exposures with blood pressure corrected for medication were studied using mixed-effects models. Incident hypertension was examined with Cox regression. We adjusted all models for sex, race/ethnicity, socioeconomic status, smoking, physical activity, diet, season, and site. We compared associations from models adjusting for time-varying age with those that adjusted for both time-varying age and calendar time. RESULTS We observed decreases in pollution and blood pressures (adjusted for age and medication) over time. Strong, positive associations of long- and short-term exposures with blood pressure were found only in models with adjustment for time-varying age but not adjustment for both time-varying age and calendar time. For example, [Formula: see text] higher annual average [Formula: see text] concentrations were associated with 2.7 (95% CI: 1.5, 4.0) and [Formula: see text] (95% CI: [Formula: see text] 1.0) mmHg in systolic blood pressure with and without additional adjustment for time, respectively. Associations with incident hypertension were similarly weakened by additional adjustment for time. Sensitivity analyses indicated that air pollution did not likely cause the temporal trends in blood pressure. CONCLUSIONS In contrast to experimental evidence, we found no associations between long- or short-term exposures to air pollution and blood pressure after accounting for both time-varying age and calendar time. This research suggests that careful consideration of both age and time is needed in longitudinal studies with trending exposures. https://doi.org/10.1289/EHP2966.
Collapse
Affiliation(s)
- Sara D Adar
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Yeh-Hsin Chen
- Harris County Public and Environmental Services, Houston, Texas, USA
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Jennifer C D'Souza
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Marie S O'Neill
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Adam A Szpiro
- Department of Biostatistics, University of Washington School of Public Health, Seattle, Washington, USA
| | - Amy H Auchincloss
- Department of Epidemiology and Biostatistics, Drexel University Dornsife School of Public Health, Philadelphia, Pennsylvania, USA
| | - Sung Kyun Park
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Martha L Daviglus
- Institute of Minority Health Research, University of Illinois College of Medicine, Chicago, Illinois, USA
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ana V Diez Roux
- Department of Epidemiology and Biostatistics, Drexel University Dornsife School of Public Health, Philadelphia, Pennsylvania, USA
| | - Joel D Kaufman
- Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Seattle, Washington, USA
- Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
60
|
Olvera Alvarez HA, Kubzansky LD, Campen MJ, Slavich GM. Early life stress, air pollution, inflammation, and disease: An integrative review and immunologic model of social-environmental adversity and lifespan health. Neurosci Biobehav Rev 2018; 92:226-242. [PMID: 29874545 PMCID: PMC6082389 DOI: 10.1016/j.neubiorev.2018.06.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 01/21/2023]
Abstract
Socially disadvantaged individuals are at greater risk for simultaneously being exposed to adverse social and environmental conditions. Although the mechanisms underlying joint effects remain unclear, one hypothesis is that toxic social and environmental exposures have synergistic effects on inflammatory processes that underlie the development of chronic diseases, including cardiovascular disease, diabetes, depression, and certain types of cancer. In the present review, we examine how exposure to two risk factors that commonly occur with social disadvantage-early life stress and air pollution-affect health. Specifically, we identify neuroimmunologic pathways that could link early life stress, inflammation, air pollution, and poor health, and use this information to propose an integrated, multi-level model that describes how these factors may interact and cause health disparity across individuals based on social disadvantage. This model highlights the importance of interdisciplinary research considering multiple exposures across domains and the potential for synergistic, cross-domain effects on health, and may help identify factors that could potentially be targeted to reduce disease risk and improve lifespan health.
Collapse
Affiliation(s)
- Hector A Olvera Alvarez
- School of Nursing, University of Texas at El Paso, Health Science and Nursing Building, Room 359, 500 West University Avenue, El Paso, TX, USA.
| | - Laura D Kubzansky
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM, USA
| | - George M Slavich
- Cousins Center for Psychoneuroimmunology and Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| |
Collapse
|
61
|
Garshick E, Grady ST, Hart JE, Coull BA, Schwartz JD, Laden F, Moy ML, Koutrakis P. Indoor black carbon and biomarkers of systemic inflammation and endothelial activation in COPD patients. ENVIRONMENTAL RESEARCH 2018; 165:358-364. [PMID: 29783085 PMCID: PMC6007002 DOI: 10.1016/j.envres.2018.05.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 05/21/2023]
Abstract
RATIONALE Evidence linking traffic-related particle exposure to systemic effects in chronic obstructive lung disease (COPD) patients is limited. OBJECTIVES Assess relationships between indoor black carbon (BC), a tracer of traffic-related particles, and plasma biomarkers of systemic inflammation and endothelial activation. METHODS BC was measured by reflectance in fine particle samples over a mean of 7.6 days in homes of 85 COPD patients up to 4 times seasonally over a year. After the completion of sampling, plasma C-reactive protein (CRP), interleukin-6 (IL-6), and soluble vascular adhesion molecule-1 (sVCAM-1) were measured. Current smokers and homes with major sources of BC were excluded; therefore, indoor BC was primarily a measure of infiltrated outdoor BC. Mixed effects regression models with a random intercept for each participant were used to assess BC effects at different times (1-9 days before phlebotomy) and in the multi-day sample. RESULTS Measured median BC was 0.19 µg/m3 (interquartile range, IQR=0.22 µg/m3). Adjusting for season, race, age, BMI, heart disease, diabetes, ambient temperature, relative humidity, a recent cold or similar illness, and blood draw time, there was a positive relationship between BC and CRP. The largest effect size was for BC averaged over the previous seven days (11.8% increase in CRP per IQR; 95%CI = 1.8-22.9). Effects were greatest among non-statin users and persons with diabetes. There were positive effects of BC on IL-6 only in non-statin users. There were no associations with sVCAM-1. CONCLUSIONS These results demonstrate exposure-response relationships between indoor BC with biomarkers of systemic inflammation in COPD patients, with stronger relationships in persons not using statins and with diabetes.
Collapse
Affiliation(s)
- Eric Garshick
- Pulmonary, Allergy, Sleep, and Critical Care Medicine Section, Medical Service, VA Boston Healthcare System, Boston, MA, USA; Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Stephanie T Grady
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA; Research and Development Service, VA Boston Healthcare System, Boston, MA, USA
| | - Jaime E Hart
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Brent A Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Joel D Schwartz
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Francine Laden
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marilyn L Moy
- Pulmonary, Allergy, Sleep, and Critical Care Medicine Section, Medical Service, VA Boston Healthcare System, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
62
|
Cheng W, Duncan KE, Ghio AJ, Ward-Caviness C, Karoly ED, Diaz-Sanchez D, Conolly RB, Devlin RB. Changes in Metabolites Present in Lung-Lining Fluid Following Exposure of Humans to Ozone. Toxicol Sci 2018; 163:430-439. [PMID: 29471466 PMCID: PMC6348881 DOI: 10.1093/toxsci/kfy043] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Controlled human exposure to the oxidant air pollutant ozone causes decrements in lung function and increased inflammation as evidenced by neutrophil influx into the lung and increased levels of proinflammatory cytokines in the airways. Here we describe a targeted metabolomics evaluation of human bronchoalveolar lavage fluid (BALF) following controlled in vivo exposure to ozone to gain greater insight into its pulmonary effects. In a 2-arm cross-over study, each healthy adult human volunteer was randomly exposed to filtered air (FA) and to 0.3 ppm ozone for 2 h while undergoing intermittent exercise with a minimum of 4 weeks between exposures. Bronchoscopy was performed and BALF obtained at 1 (n = 9) or 24 (n = 23) h postexposure. Metabolites were detected using ultrahigh performance liquid chromatography-tandem mass spectroscopy. At 1-h postexposure, a total of 28 metabolites were differentially expressed (DE) (p < .05) following ozone exposure compared with FA-exposure. These changes were associated with increased glycolysis and antioxidant responses, suggesting rapid increased energy utilization as part of the cellular response to oxidative stress. At 24-h postexposure, 41 metabolites were DE. Many of the changes were in amino acids and linked with enhanced proteolysis. Changes associated with increased lipid membrane turnover were also observed. These later-stage changes were consistent with ongoing repair of airway tissues. There were 1.37 times as many metabolites were differentially expressed at 24 h compared with 1-h postexposure. The changes at 1 h reflect responses to oxidative stress while the changes at 24 h indicate a broader set of responses consistent with tissue repair. These results illustrate the ability of metabolomic analysis to identify mechanistic features of ozone toxicity and aspects of the subsequent tissue response.
Collapse
Affiliation(s)
- WanYun Cheng
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 2799
| | - Kelly E Duncan
- School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599
| | - Andrew J Ghio
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 2799
| | - Cavin Ward-Caviness
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 2799
| | | | - David Diaz-Sanchez
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 2799
| | - Rory B Conolly
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 2799
| | - Robert B Devlin
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 2799
| |
Collapse
|
63
|
Lin H, Qian ZM, Guo Y, Zheng Y, Ai S, Hang J, Wang X, Zhang L, Liu T, Guan W, Li X, Xiao J, Zeng W, Xian H, Howard SW, Ma W, Wu F. The attributable risk of chronic obstructive pulmonary disease due to ambient fine particulate pollution among older adults. ENVIRONMENT INTERNATIONAL 2018; 113:143-148. [PMID: 29425898 DOI: 10.1016/j.envint.2018.01.029] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/24/2018] [Accepted: 01/26/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The linkage between ambient fine particle pollution (PM2.5) and chronic obstructive pulmonary disease (COPD) and the attributable risk remained largely unknown. This study determined the cross-sectional association between ambient PM2.5 and prevalence of COPD among adults ≥50 years of age. METHODS We surveyed 29,290 participants aged 50 years and above in this study. The annual average concentrations of PM2.5 derived from satellite data were used as the exposure indicator. A mixed effect model was applied to determine the associations and the burden of COPD attributable to PM2.5. RESULTS: Among the participants, 1872 (6.39%) were classified as COPD cases. Our analysis observed a threshold concentration of 30 μg/m3 in the PM2.5-COPD association, above which we found a linear positive exposure-response association between ambient PM2.5 and COPD. The odds ratio (OR) for each 10 μg/m3 increase in ambient PM2.5 was 1.21(95% CI: 1.13, 1.30). Stratified analyses suggested that males, older subjects (65 years and older) and those with lower education attainment might be the vulnerable subpopulations. We further estimated that about 13.79% (95% CI: 7.82%, 21.62%) of the COPD cases could be attributable to PM2.5 levels higher than 30 μg/m3 in the study population. CONCLUSION Our analysis indicates that ambient PM2.5 exposure could increase the risk of COPD and accounts for a substantial fraction of COPD among the study population.
Collapse
Affiliation(s)
- Hualiang Lin
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zhengmin Min Qian
- College for Public Health & Social Justice, Saint Louis University, St. Louis, MO, USA
| | - Yanfei Guo
- Shanghai Municipal Centre for Disease Control and Prevention, Shanghai, China
| | - Yang Zheng
- Shanghai Municipal Centre for Disease Control and Prevention, Shanghai, China
| | - Siqi Ai
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jian Hang
- School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaojie Wang
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Lingli Zhang
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Tao Liu
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Weijie Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Xing Li
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Jianpeng Xiao
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Weilin Zeng
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Hong Xian
- College for Public Health & Social Justice, Saint Louis University, St. Louis, MO, USA
| | - Steven W Howard
- College for Public Health & Social Justice, Saint Louis University, St. Louis, MO, USA
| | - Wenjun Ma
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China.
| | - Fan Wu
- Shanghai Municipal Centre for Disease Control and Prevention, Shanghai, China.
| |
Collapse
|
64
|
Abstract
Air pollution has a great impact on health, representing one of the leading causes of death worldwide. Previous experimental and epidemiological studies suggested the role of pollutants as risk factors for cardiovascular diseases. For this reason, international guidelines included specific statements regarding the contribution of particulate matter exposure to increase the risk of these events. In this review, we summarise the main evidence concerning the mechanisms involved in the processes linking air pollutants to the development of cardiovascular diseases.
Collapse
Affiliation(s)
- Simone Vidale
- 1 Department of Neurology and Stroke Unit, Sant'Anna Hospital, Italy
| | - Carlo Campana
- 2 Department of Cardiology, Sant'Anna Hospital, Italy
| |
Collapse
|
65
|
Biomarkers of Human Cardiopulmonary Response After Short-Term Exposures to Medical Laser-Generated Particulate Matter From Simulated Procedures: A Pilot Study. J Occup Environ Med 2018; 58:940-5. [PMID: 27465102 DOI: 10.1097/jom.0000000000000832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE We conducted an exposure chamber study in humans using a simulated clinical procedure lasing porcine tissue to demonstrate evidence of effects of exposure to laser-generated particulate matter (LGPM). METHODS We measured pre- and post-exposure changes in exhaled nitric oxide (eNO), spirometry, heart rate variability (HRV), and blood markers of inflammation in five volunteers. RESULTS Change in pre- and post-exposure measurements of eNO and spirometry was unremarkable. Neutrophil and lymphocyte counts increased and fibrinogen levels decreased in four of the five subjects. Measures of HRV showed decreases in the standard deviation of normal between beat intervals and sequential 5-minute intervals. CONCLUSION These data represent the first evidence of human physiologic response to LGPM exposure. Further exploration of coagulation effects and HRV is warranted.
Collapse
|
66
|
Hansbro PM, Kim RY, Starkey MR, Donovan C, Dua K, Mayall JR, Liu G, Hansbro NG, Simpson JL, Wood LG, Hirota JA, Knight DA, Foster PS, Horvat JC. Mechanisms and treatments for severe, steroid-resistant allergic airway disease and asthma. Immunol Rev 2018; 278:41-62. [PMID: 28658552 DOI: 10.1111/imr.12543] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Severe, steroid-resistant asthma is clinically and economically important since affected individuals do not respond to mainstay corticosteroid treatments for asthma. Patients with this disease experience more frequent exacerbations of asthma, are more likely to be hospitalized, and have a poorer quality of life. Effective therapies are urgently required, however, their development has been hampered by a lack of understanding of the pathological processes that underpin disease. A major obstacle to understanding the processes that drive severe, steroid-resistant asthma is that the several endotypes of the disease have been described that are characterized by different inflammatory and immunological phenotypes. This heterogeneity makes pinpointing processes that drive disease difficult in humans. Clinical studies strongly associate specific respiratory infections with severe, steroid-resistant asthma. In this review, we discuss key findings from our studies where we describe the development of representative experimental models to improve our understanding of the links between infection and severe, steroid-resistant forms of this disease. We also discuss their use in elucidating the mechanisms, and their potential for developing effective therapeutic strategies, for severe, steroid-resistant asthma. Finally, we highlight how the immune mechanisms and therapeutic targets we have identified may be applicable to obesity-or pollution-associated asthma.
Collapse
Affiliation(s)
- Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Richard Y Kim
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Malcolm R Starkey
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Chantal Donovan
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Kamal Dua
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Jemma R Mayall
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Gang Liu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Nicole G Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Jodie L Simpson
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Lisa G Wood
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Jeremy A Hirota
- James Hogg Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Darryl A Knight
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Paul S Foster
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
67
|
Fiordelisi A, Piscitelli P, Trimarco B, Coscioni E, Iaccarino G, Sorriento D. The mechanisms of air pollution and particulate matter in cardiovascular diseases. Heart Fail Rev 2018; 22:337-347. [PMID: 28303426 DOI: 10.1007/s10741-017-9606-7] [Citation(s) in RCA: 264] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Clinical and epidemiological studies demonstrate that short- and long-term exposure to air pollution increases mortality due to respiratory and cardiovascular diseases. Given the increased industrialization and the increased sources of pollutants (i.e., cars exhaust emissions, cigarette smoke, industry emissions, burning of fossil fuels, incineration of garbage), air pollution has become a key public health issue to solve. Among pollutants, the particulate matter (PM) is a mixture of solid and liquid particles which differently affects human health depending on their size (i.e., PM10 with a diameter <10 μm reach the lung and PM2.5 with a diameter <2.5 μm penetrate deeper into the lung). In particular, the acute exposure to PM10 and PM2.5 increases the rate of cardiovascular deaths. Thus, appropriate interventions to reduce air pollution may promote great benefits to public health by reducing the risk of cardiovascular diseases. Several biological mechanisms have been identified to date which could be responsible for PM-dependent adverse cardiovascular outcomes. Indeed, the exposure to PM10 and PM2.5 induces sustained oxidative stress and inflammation. PM2.5 is also able to increase autonomic nervous system activation. Some potential therapeutic approaches have been tested both in pre-clinical and clinical studies, based on the intake of antioxidants from dietary or by pharmacological administration. Studies are still in progress to increase the knowledge of PM activation of intracellular pathways and propose new strategies of intervention.
Collapse
Affiliation(s)
- Antonella Fiordelisi
- I.O.S, Southern Italy Hospital Institute, Medicina Futura Research, 80100, Naples, Italy
| | - Prisco Piscitelli
- I.O.S, Southern Italy Hospital Institute, Medicina Futura Research, 80100, Naples, Italy
| | - Bruno Trimarco
- Department of Advanced Biomedical Sciences, University Federico II of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Enrico Coscioni
- Division of Cardiac Surgery, AOU San Giovanni di Dio e Ruggi d'Aragona, Via Largo d'Ippocrate, 84131, Salerno, Italy
| | - Guido Iaccarino
- Division of Cardiac Surgery, AOU San Giovanni di Dio e Ruggi d'Aragona, Via Largo d'Ippocrate, 84131, Salerno, Italy
- Department of Medicine and Surgery, University of Salerno, Via Salvator Allende, 84081, Baronissi, SA, Italy
| | - Daniela Sorriento
- Department of Advanced Biomedical Sciences, University Federico II of Naples, Via Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
68
|
Tsamou M, Vrijens K, Madhloum N, Lefebvre W, Vanpoucke C, Nawrot TS. Air pollution-induced placental epigenetic alterations in early life: a candidate miRNA approach. Epigenetics 2018; 13:135-146. [PMID: 27104955 PMCID: PMC5873362 DOI: 10.1080/15592294.2016.1155012] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Particulate matter (PM) exposure during in utero life may entail adverse health outcomes in later-life. Air pollution's adverse effects are known to alter gene expression profiles, which can be regulated by microRNAs (miRNAs). We investigate the potential influence of air pollution exposure in prenatal life on placental miRNA expression. Within the framework of the ENVIRONAGE birth cohort, we measured the expression of six candidate miRNAs in placental tissue from 210 mother-newborn pairs by qRT-PCR. Trimester-specific PM2.5 exposure levels were estimated for each mother's home address using a spatiotemporal model. Multiple regression models were used to study miRNA expression and in utero exposure to PM2.5 over various time windows during pregnancy. The placental expression of miR-21 (−33.7%, 95% CI: −53.2 to −6.2, P = 0.022), miR-146a (−30.9%, 95% CI: −48.0 to −8.1, P = 0.012) and miR-222 (−25.4%, 95% CI: −43.0 to −2.4, P = 0.034) was inversely associated with PM2.5 exposure during the 2nd trimester of pregnancy, while placental expression of miR-20a and miR-21 was positively associated with 1st trimester exposure. Tumor suppressor phosphatase and tensin homolog (PTEN) was identified as a common target of the miRNAs significantly associated with PM exposure. Placental PTEN expression was strongly and positively associated (+59.6% per 5 µg/m³ increment, 95% CI: 26.9 to 100.7, P < 0.0001) with 3rd trimester PM2.5 exposure. Further research is required to establish the role these early miRNA and mRNA expression changes might play in PM-induced health effects. We provide molecular evidence showing that in utero PM2.5 exposure affects miRNAs expression as well as its downstream target PTEN.
Collapse
Affiliation(s)
- Maria Tsamou
- a Center for Environmental Sciences , Hasselt University , Hasselt , Belgium
| | - Karen Vrijens
- a Center for Environmental Sciences , Hasselt University , Hasselt , Belgium
| | - Narjes Madhloum
- a Center for Environmental Sciences , Hasselt University , Hasselt , Belgium
| | - Wouter Lefebvre
- b Flemish Institute for Technological Research (VITO) , Mol , Belgium
| | | | - Tim S Nawrot
- a Center for Environmental Sciences , Hasselt University , Hasselt , Belgium.,d Department of Public Health, Environment & Health Unit , Leuven University , Leuven , Belgium
| |
Collapse
|
69
|
Griffiths SD, Chappell P, Entwistle JA, Kelly FJ, Deary ME. A study of particulate emissions during 23 major industrial fires: Implications for human health. ENVIRONMENT INTERNATIONAL 2018; 112:310-323. [PMID: 29554638 DOI: 10.1016/j.envint.2017.12.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/01/2017] [Accepted: 12/12/2017] [Indexed: 06/08/2023]
Abstract
Public exposure to significantly elevated levels of particulate matter (PM) as a result of major fires at industrial sites is a worldwide problem. Our paper describes how the United Kingdom developed its Air Quality in Major Incidents (AQinMI) service to provide fire emission plume concentration data for use by managers at the time of the incident and to allow an informed public health response. It is one of the first civilian services of its type anywhere in the world. Based on the involvement of several of the authors in the AQinMI service, we describe the service's function, detail the nature of fires covered by the service, and report for the first time on the concentration ranges of PM to which populations may be exposed in major incident fires. We also consider the human health impacts of short-term exposure to significantly elevated PM concentrations and reflect on the appropriateness of current short-term guideline values in providing public health advice. We have analysed monitoring data for airborne PM (≤10μm, PM10;≤2.5μm, PM2.5 and ≤1.0μm, PM1) collected by AQinMI teams using an Osiris laser light scattering monitor, the UK Environment Agency's 'indicative standard' equipment, during deployment to 23 major incident industrial fires. In this context, 'indicative' is applied to monitoring equipment that provides confirmation of the presence of particulates and indicates a measured mass concentration value. Incident-averaged concentrations ranged from 38 to 1450μgm-3 for PM10 and 7 to 258μgm-3 for PM2.5. Of concern was that, for several incidents, 15-min averaged concentrations reached >6500μgm-3 for PM10 and 650μgm-3 for PM2.5, though such excursions tended to be of relatively short duration. In the absence of accepted very short-term (15-min to 1-h) guideline values for PM10 and PM2.5, we have analysed the relationship between the 1-h and 24-h threshold values and whether the former can be used as a predictor of longer-term exposure. Based on this analysis, for PM10, our tentative 1-h threshold value for use in deciding whether to close public buildings or to evacuate areas is 510μgm-3. For PM2.5, 1-h concentrations exceeding 350μgm-3 might indicate longer-term exposure problems. We conclude that whilst services such as AQinMI are a positive development, there is a need to consider further the accuracy of the data provided and for the development of very short-term guideline values (i.e. minutes to hours) that responders can use to determine the appropriate public health response.
Collapse
Affiliation(s)
- Simon D Griffiths
- Faculty of Engineering and Environment, Department of Geography and Environmental Sciences, University of Northumbria, Ellison Building, Newcastle upon Tyne NE1 8ST, UK
| | - Philip Chappell
- National Incident Management, Incident Management and Resilience Services, Environment Agency, Lateral, 8 City Walk, Leeds LS11 9AT, UK
| | - Jane A Entwistle
- Faculty of Engineering and Environment, Department of Geography and Environmental Sciences, University of Northumbria, Ellison Building, Newcastle upon Tyne NE1 8ST, UK
| | - Frank J Kelly
- NIHR Health Impact of Environmental Hazards Health Protection Research Unit, Facility of Life Sciences and Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | - Michael E Deary
- Faculty of Engineering and Environment, Department of Geography and Environmental Sciences, University of Northumbria, Ellison Building, Newcastle upon Tyne NE1 8ST, UK.
| |
Collapse
|
70
|
An Z, Jin Y, Li J, Li W, Wu W. Impact of Particulate Air Pollution on Cardiovascular Health. Curr Allergy Asthma Rep 2018; 18:15. [PMID: 29470659 DOI: 10.1007/s11882-018-0768-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Air pollution is established as an independent risk factor for cardiovascular diseases (CVDs). Ambient particulate matter (PM), a principal component of air pollutant, has been considered as a main culprit of the adverse effects of air pollution on human health. RECENT FINDINGS Extensive epidemiological and toxicological studies have demonstrated particulate air pollution is positively associated with the development of CVDs. Short-term PM exposure can trigger acute cardiovascular events while long-term exposure over years augments cardiovascular risk to an even greater extent and can reduce life expectancy by a few years. Inhalation of PM affects heart rate variability, blood pressure, vascular tone, blood coagulability, and the progression of atherosclerosis. The potential molecular mechanisms of PM-caused CVDs include direct toxicity to the cardiovascular system or indirect injury by inducing systemic inflammation and oxidative stress in circulation. This review mainly focuses on the acute and chronic effects of ambient PM exposure on the development of cardiovascular diseases and the possible mechanisms for PM-induced increases in cardiovascular morbidity and mortality. Additionally, we summarized some appropriate interventions to attenuate PM air pollution-induced cardiovascular adverse effects, which may promote great benefits to public health.
Collapse
Affiliation(s)
- Zhen An
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Street, Xinxiang, Henan Province, 453003, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan Province, People's Republic of China
| | - Juan Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Street, Xinxiang, Henan Province, 453003, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Wen Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Street, Xinxiang, Henan Province, 453003, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Weidong Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Street, Xinxiang, Henan Province, 453003, China.
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
71
|
Liang H, Qiu H, Tian L. Short-term effects of fine particulate matter on acute myocardial infraction mortality and years of life lost: A time series study in Hong Kong. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:558-563. [PMID: 28988091 DOI: 10.1016/j.scitotenv.2017.09.266] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/15/2017] [Accepted: 09/25/2017] [Indexed: 06/07/2023]
Abstract
Previous studies have applied years of life lost (YLL) as a complementary indicator to assess the short-term effect of the air pollution on the health burden from all-cause mortality, but sparsely focused on individual diseases such as acute myocardial infraction (AMI). In this study, we aimed to conduct a time-series analysis to evaluate short-term effects of fine particulate matter (PM2.5) on mortality and YLL from AMI in Hong Kong from 2011 to 2015, and explore the potential effect modifiers including sex and age by subgroup analysis. We applied generalized additive Poisson and Gaussian regression model for daily death count and YLL, respectively. We found that 10μg/m3 increment in concentration of PM2.5 lasting for two days (lag01) was associated with a 2.35% (95% CI 0.38% to 4.36%) increase in daily mortality count and a 1.69 (95% CI 0.01 to 3.37) years increase in YLL from AMI. The association between PM2.5 and AMI mortality count was stronger among women and older people than men and young people, respectively. We concluded that acute exposure to PM2.5 may increase the risk of mortality and YLL from AMI in Hong Kong and this effect can be modified by age and gender. These findings add to the evidence base for public health policy formulation and resource allocation.
Collapse
Affiliation(s)
- Haiqing Liang
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Hong Qiu
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Linwei Tian
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
72
|
Kuijpers E, Pronk A, Kleemann R, Vlaanderen J, Lan Q, Rothman N, Silverman D, Hoet P, Godderis L, Vermeulen R. Cardiovascular effects among workers exposed to multiwalled carbon nanotubes. Occup Environ Med 2018; 75:351-358. [DOI: 10.1136/oemed-2017-104796] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/22/2018] [Accepted: 01/26/2018] [Indexed: 11/04/2022]
Abstract
ObjectivesThe increase in production of multiwalled carbon nanotubes (MWCNTs) has led to growing concerns about health risks. In this study, we assessed the association between occupational exposure to MWCNTs and cardiovascular biomarkers.MethodsA cross-sectional study was performed among 22 workers of a company commercially producing MWCNTs (subdivided into lab personnel with low or high exposure and operators), and a gender and age-matched unexposed population (n=42). Exposure to MWCNTs and 12 cardiovascular markers were measured in participants’ blood (phase I). In a subpopulation of 13 exposed workers and six unexposed workers, these measures were repeated after 5 months (phase II). We analysed associations between MWCNT exposure and biomarkers of cardiovascular risk, adjusted for age, body mass index, sex and smoking.ResultsWe observed an upward trend in the concentration of endothelial damage marker intercellular adhesion molecule-1 (ICAM-1), with increasing exposure to MWCNTs in both phases. The operator category showed significantly elevated ICAM-1 geometric mean ratios (GMRs) compared with the controls (phase I: GMR=1.40, P=1.30E-3; phase II: GMR=1.37, P=0.03). The trends were significant both across worker categories (phase I: P=1.50E-3; phase II: P=0.01) and across measured GM MWCNT concentrations (phase I: P=3.00E-3; phase II: P=0.01). No consistent significant associations were found for the other cardiovascular markers.ConclusionThe associations between MWCNT exposure and ICAM-1 indicate endothelial activation and an increased inflammatory state in workers with MWCNT exposure.
Collapse
|
73
|
Lee KK, Miller MR, Shah ASV. Air Pollution and Stroke. J Stroke 2018; 20:2-11. [PMID: 29402072 PMCID: PMC5836577 DOI: 10.5853/jos.2017.02894] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 12/15/2022] Open
Abstract
The adverse health effects of air pollution have long been recognised; however, there is less awareness that the majority of the morbidity and mortality caused by air pollution is due to its effects on the cardiovascular system. Evidence from epidemiological studies have demonstrated a strong association between air pollution and cardiovascular diseases including stroke. Although the relative risk is small at an individual level, the ubiquitous nature of exposure to air pollution means that the absolute risk at a population level is on a par with "traditional" risk factors for cardiovascular disease. Of particular concern are findings that the strength of this association is stronger in low and middle income countries where air pollution is projected to rise as a result of rapid industrialisation. The underlying biological mechanisms through which air pollutants exert their effect on the vasculature are still an area of intense discussion. A greater understanding of the effect size and mechanisms is necessary to develop effective strategies at individual and policy levels to mitigate the adverse cardiovascular effects of air pollution.
Collapse
Affiliation(s)
- Kuan Ken Lee
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Mark R. Miller
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Anoop S. V. Shah
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
74
|
Shang Y, Sun Q. Particulate air pollution: major research methods and applications in animal models. ENVIRONMENTAL DISEASE 2018; 3:57-62. [PMID: 31549002 DOI: 10.4103/ed.ed_16_18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ambient air pollution is composed of a heterogeneous mixture of gaseous and solid particle compounds in which primary particles are emitted directly into the atmosphere, such as diesel soot, while secondary particles are created through physicochemical transformation. Particulate matter (PM), especially fine and ultrafine particles, can be inhaled and deposited in the alveolar cavities and penetrate into circulation. An association between high levels of air pollutants and human disease has been known for more than half a century and increasing evidences demonstrate a strong link between exposure on PM and the development of systemic diseases, such as cardiovascular and neurological disorders. Experimental animal models have been extensively used to study the underlying mechanism caused by environmental exposure to ambient PM. Due to their availability, quality, cost, and genetically modified strains, rodent models have been widely used. Some common exposure approaches include intranasal instillation, intratracheal instillation, nose-only inhalation, whole-body inhalation, and intravenous injection have been reviewed with brief summary of its performance, merit, limitation, and application. We hope this would provide useful reference in advancing experimental researches about air pollution human health and disease development.
Collapse
Affiliation(s)
- Yanan Shang
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio, USA
| | - Qinghua Sun
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio, USA.,Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, USA.,Division of Cardiovascular Medicine, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
75
|
Collart P, Dubourg D, Levêque A, Sierra NB, Coppieters Y. Short-term effects of nitrogen dioxide on hospital admissions for cardiovascular disease in Wallonia, Belgium. Int J Cardiol 2017; 255:231-236. [PMID: 29288056 DOI: 10.1016/j.ijcard.2017.12.058] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/22/2017] [Accepted: 12/19/2017] [Indexed: 01/11/2023]
Abstract
Many studies have shown a short-term association between NO2 and cardiovascular disease. However, few data are available on the delay between exposure and a health-related event. The aim of the present study is to determine the strength of association between NO2 and cardiovascular health in Wallonia for the period 2008-2011. This study also seeks to evaluate the effects of age, gender, season and temperature on this association. The effect of the delay between exposure and health-related event was also investigated. The daily numbers of hospital admissions for arrhythmia, acute myocardial infarction, ischemic and haemorrhagic stroke were taken from a register kept by Belgian hospitals. Analyses were performed using the quasi-Poisson regression model adjusted for seasonality, long-term trend, day of the week, and temperature. Our study confirms the existence of an association between NO2 and cardiovascular disease. Apart from haemorrhagic stroke, the strongest association between NO2 concentrations and number of hospital admissions is observed at lag 0. For haemorrhagic stroke, the association is strongest with a delay of 2days. All associations calculated without stratification are statistically significant and range from an excess relative risk of 2.8% for myocardial infarction to 4.9% for haemorrhagic strokes. The results of this study reinforce the evidence of the short-term effects of NO2 on hospital admissions for cardiovascular disease. The different delay between exposure and health-related event for haemorrhagic stroke compared to ischemic stroke suggests different mechanisms of action.
Collapse
Affiliation(s)
- Philippe Collart
- Centre de recherche Epidémiologie, Biostatistiques, Recherche Clinique, School of Public Health, Université Libre de Bruxelles (U.L.B.), Route de Lennik 808, CP 596, 1070 Brussels, Belgium.
| | - Dominique Dubourg
- Agence pour une Vie de Qualité, Rue de la Rivelaine 21, 6061 Charleroi, Belgium
| | - Alain Levêque
- Centre de recherche Epidémiologie, Biostatistiques, Recherche Clinique, School of Public Health, Université Libre de Bruxelles (U.L.B.), Route de Lennik 808, CP 596, 1070 Brussels, Belgium
| | - Natalia Bustos Sierra
- Institut Scientifique de Santé Publique, Santé Publique et Surveillance, rue J. Wytsman 14, 1050 Brussels, Belgium
| | - Yves Coppieters
- Centre de recherche Epidémiologie, Biostatistiques, Recherche Clinique, School of Public Health, Université Libre de Bruxelles (U.L.B.), Route de Lennik 808, CP 596, 1070 Brussels, Belgium
| |
Collapse
|
76
|
Tibuakuu M, Jones MR, Navas-Acien A, Zhao D, Guallar E, Gassett AJ, Sheppard L, Budoff MJ, Kaufman JD, Michos ED. Exposure to ambient air pollution and calcification of the mitral annulus and aortic valve: the multi-ethnic study of atherosclerosis (MESA). Environ Health 2017; 16:133. [PMID: 29268751 PMCID: PMC5740967 DOI: 10.1186/s12940-017-0346-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 12/07/2017] [Indexed: 05/25/2023]
Abstract
BACKGROUND Long-term exposure to high ambient air pollution has been associated with coronary artery calcium (CAC), a marker of cardiovascular disease (CVD). Calcifications of left-sided heart valves are also markers of CVD risk. We investigated whether air pollution was associated with valvular calcification and its progression. METHODS We studied 6253 MESA participants aged 45-84 years who underwent two cardiac CT scans 2.5 years apart to quantify aortic valve calcium (AVC) and mitral annular calcium (MAC). CAC was included for the same timeframe for comparison with AVC/MAC. Ambient particulate matter <2.5 μm (PM2.5) and oxides of nitrogen (NOx) concentrations were predicted from residence-specific spatio-temporal models. RESULTS The mean age (SD) of the study sample was 62 (10) years, 39% were white, 27% black, 22% Hispanic, and 12% Chinese. The prevalence of AVC and MAC at baseline were 13% and 9% respectively, compared to 50% prevalence of CAC. The adjusted prevalence ratios of AVC and MAC for each 5 μg/m3 higher PM2.5 was 1.19 (95% CI 0.87, 1.62) and 1.20 (0.81, 1.77) respectively, and for CAC was 1.14 (1.01, 1.27). Over 2.5 years, the mean change in Agatston units/year for each 5 μg/m3 higher PM2.5 concentration was 0.29 (-5.05, 5.63) for AVC and 4.38 (-9.13, 17.88) for MAC, compared to 8.66 (0.61, 16.71) for CAC. We found no significant associations of NOx with AVC and MAC. CONCLUSION Our findings suggest a trend towards increased 2.5-year progression of MAC with exposure to outdoor PM2.5, although this association could not be confirmed. Additional well-powered studies with longer periods of follow-up are needed to further study associations of air pollution with valvular calcium. TRIAL REGISTRATION Although MESA is not a clinical trial, this cohort is registered at ClinicalTrials.gov Identifier: NCT00005487; Date of registration May 25, 2000.
Collapse
Affiliation(s)
- Martin Tibuakuu
- Ciccarone Center for the Prevention of Heart Disease, Johns Hopkins School of Medicine, Baltimore, MD USA
- Department of Medicine, St. Luke’s Hospital, Chesterfield, MO USA
| | - Miranda R. Jones
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University School of Public Health, New York, NY USA
| | - Di Zhao
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD USA
| | - Eliseo Guallar
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD USA
| | - Amanda J. Gassett
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA USA
- Department of Biostatistics, University of Washington, Seattle, WA USA
| | - Lianne Sheppard
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA USA
- Department of Biostatistics, University of Washington, Seattle, WA USA
| | - Matthew J. Budoff
- Division of Cardiology, Harbor-UCLA Medical Center, Los Angeles, CA USA
| | - Joel D. Kaufman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA USA
- Department of Epidemiology, University of Washington, Seattle, WA USA
| | - Erin D. Michos
- Ciccarone Center for the Prevention of Heart Disease, Johns Hopkins School of Medicine, Baltimore, MD USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD USA
- Division of Cardiology, Johns Hopkins School of Medicine, Blalock 524-B, 600 N. Wolfe Street, Baltimore, MD 21287 USA
| |
Collapse
|
77
|
Rodrigues PCO, Ignotti E, Hacon SS. Association between weather seasonality and blood parameters in riverine populations of the Brazilian Amazon. J Pediatr (Rio J) 2017; 93:482-489. [PMID: 28549741 DOI: 10.1016/j.jped.2016.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/15/2016] [Accepted: 11/16/2016] [Indexed: 10/19/2022] Open
Abstract
OBJECTIVE To analyze the seasonality of blood parameters related to iron homeostasis, inflammation, and allergy in two riverine populations from the Brazilian Amazon. METHODS This was a cross-sectional study of 120 children and adolescents of school age, living in riverine communities of Porto Velho, Rondonia, Brazil, describing the hematocrit, hemoglobin, ferritin, serum iron, total white blood cell count, lymphocytes, eosinophils, C-reactive protein, and immunoglobulin E levels in the dry and rainy seasons. The chi-squared test and the prevalence ratio were used for the comparison of proportions and mean analysis using paired Student's t-test. RESULTS Hemoglobin (13.3g/dL) and hematocrit (40.9%) showed higher average values in the dry season. Anemia prevalence was approximately 4% and 12% in the dry and rainy seasons, respectively. Serum iron was lower in the dry season, with a mean of 68.7 mcg/dL. The prevalence of iron deficiency was 25.8% in the dry season and 9.2% in the rainy season. Serum ferritin did not show abnormal values in both seasons; however, the mean values were higher in the dry season (48.5ng/mL). The parameters of eosinophils, lymphocytes, global leukocyte count, C-reactive protein and immunoglobulin E showed no seasonal differences. C-reactive protein and immunoglobulin E showed abnormal values in approximately 7% and 60% of the examinations, respectively. CONCLUSION Hematological parameters of the red cell series and blood iron homeostasis had seasonal variation, which coincided with the dry season in the region, in which an increase in atmospheric pollutants derived from fires is observed.
Collapse
Affiliation(s)
- Poliany C O Rodrigues
- Universidade do Estado de Mato Grosso (UNEMAT), Faculdade de Ciências da Saúde (FCS), Cáceres, MT, Brazil.
| | - Eliane Ignotti
- Universidade do Estado de Mato Grosso (UNEMAT), Programa de Pós-Graduaçao em Ciências Ambientais, Cáceres, MT, Brazil
| | - Sandra S Hacon
- Fundação Oswaldo Cruz (FIOCRUZ), Escola Nacional de Saúde Pública (ENSP), Departamento de Endemias Samuel Pessoa (DENSP), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
78
|
Rodrigues PC, Ignotti E, Hacon SS. Association between weather seasonality and blood parameters in riverine populations of the Brazilian Amazon. JORNAL DE PEDIATRIA (VERSÃO EM PORTUGUÊS) 2017. [DOI: 10.1016/j.jpedp.2017.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
79
|
Fröhlich E. Hemocompatibility of inhaled environmental nanoparticles: Potential use of in vitro testing. JOURNAL OF HAZARDOUS MATERIALS 2017; 336:158-167. [PMID: 28494303 DOI: 10.1016/j.jhazmat.2017.04.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/09/2017] [Accepted: 04/14/2017] [Indexed: 06/07/2023]
Abstract
Hemocompatibility testing is an important part in the evaluation of nano-based medicines. However, it is not systematically used for the assessment of environmental particles since they do not come in contact with blood immediately. Studies on human exposure to air-borne particles and pulmonary exposure of rodents have reported alterations in blood physiology. It is not clear, whether these effects are majorly caused by tissue inflammation or translocated particles in blood. This review addresses the question, if in vitro hemocompatibility testing could help in the risk evaluation of inhaled particles. Particle blood concentrations were estimated based on exposure levels, ventilation volume, deposition rate, lung surface area, and permeability of the alveolar epithelium to particles. The categories of hemocompatibility, thrombosis, coagulation, platelets, hematology, and immunology, were introduced. Also, concentrations of ultrafine particles, silver nanoparticles, carbon nanotubes that caused adverse effects in human blood samples were compared to the estimated concentrations of translocated particles. The comparison suggested that, it is unlikely for translocated nanoparticles to be the sole cause of adverse blood effects. Nevertheless, the testing of specific hemocompatibility parameters (hemolysis and clotting) in healthy blood might help to compare biological effect of inhaled particles containing different amounts of contamination. Testing of samples from healthy and diseased persons might help to identify pathological dispositions that increase the possibility of adverse reaction of nanoparticles in blood.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Medical University of Graz, Center for Medical Research, Stiftingtalstr. 24, A-8010 Graz, Austria.
| |
Collapse
|
80
|
Neisi A, Vosoughi M, Idani E, Goudarzi G, Takdastan A, Babaei AA, Ankali KA, Hazrati S, Shoshtari MH, Mirr I, Maleki H. Comparison of normal and dusty day impacts on fractional exhaled nitric oxide and lung function in healthy children in Ahvaz, Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:12360-12371. [PMID: 28357800 DOI: 10.1007/s11356-017-8853-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/17/2017] [Indexed: 05/26/2023]
Abstract
Children are the vulnerable group at risk of adverse health effects related to air pollution due to dust storm in Ahvaz. The purpose of this study was to compare the values of fractional exhaled nitric oxide (FENO) and lung functions as parameters of adverse health effects of particulate matter (PM) in dusty and normal (non-dusty) days in elementary schoolchildren. The study was conducted among elementary school students in Ahvaz. The healthy elementary schoolchildren (N = 105) were selected from different districts for FENO and lung function sampling during the dusty and normal days. The values of PM10 and PM2.5 during dusty days were higher than during normal days. Mean values of FENO during the normal and dusty days were 14.23 and 20.3 ppb, respectively, and the difference between these values was statistically significant (p < 0.05). Lung function results showed a statistically significant difference between the mean values of forced vital capacity during the dusty and normal days (p < 0.05). The results revealed a significant difference both in the values of inflammatory biomarker and in the lung function tests in dusty and normal days. Based on our results, fractional exhaled nitric oxide could be a useful short-term biomarker of particulate pollution effect coupled with spirometry.
Collapse
Affiliation(s)
- Abdolkazem Neisi
- Environmental Technologies Research Center, Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Vosoughi
- Student Research Committee, Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Environmental Health Engineering, School of Public Health, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Esmaeil Idani
- Department of Internal Medicine, Division of Pulmonology, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Gholamreza Goudarzi
- Environmental Technologies Research Center, Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Afshin Takdastan
- Environmental Technologies Research Center, Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Akbar Babaei
- Environmental Technologies Research Center, Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kambiz Ahmadi Ankali
- Environmental Technologies Research Center, Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Statistics and Epidemiology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sadegh Hazrati
- Department of Occupational and Environmental Health Engineering, School of Public Health, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Maryam Haddadzadeh Shoshtari
- Department of Internal Medicine, Division of Pulmonology, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Iman Mirr
- Department of Statistics and Epidemiology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Heidar Maleki
- Master of Environmental Engineering, School of Science Water Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
81
|
Zheng L, Kulkarni P, Zavvos K, Liang H, Birch ME, Dionysiou DD. Characterization of an Aerosol Microconcentrator for Analysis Using Microscale Optical Spectroscopies. JOURNAL OF AEROSOL SCIENCE 2017; 104:66-78. [PMID: 28626243 PMCID: PMC5472229 DOI: 10.1016/j.jaerosci.2016.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Efficient microconcentration of aerosols to a substrate is essential for effectively coupling the collected particles to microscale optical spectroscopies such as laser-induced or spark microplasma, or micro-Raman or infrared spectroscopies. In this study, we present detailed characterization of a corona-based aerosol microconcentration technique developed previously (Diwakar and Kulkarni, 2012). The method involves two coaxial electrodes separated by a few millimeters, one held at a high electrical potential and the other grounded. The particles are collected on the collection (i.e., ground) electrode from a coaxial aerosol flow in a one-step charge-and-collect scheme using corona discharge and electrical precipitation between the two electrodes. Performance of the corona microconcentration method was determined experimentally by measuring collection efficiency, wall losses, and particle deposition density. An intrinsic spectroscopic sensitivity was experimentally determined for the aerosol microconcentrator. Using this sensitivity, we show that corona-based microconcentration is much superior to alternative methods, including filtration, focused impaction using aerodynamic lens, and spot collection using condensational growth. The method offers unique advantages for compact, hand-held aerosol analytical instrumentation.
Collapse
Affiliation(s)
- Lina Zheng
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Cincinnati, OH, USA
- Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Pramod Kulkarni
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - Konstantinos Zavvos
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Cincinnati, OH, USA
- Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Huayan Liang
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Cincinnati, OH, USA
- Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - M. Eileen Birch
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - Dionysios D. Dionysiou
- Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
82
|
Liu H, Fan X, Wang N, Zhang Y, Yu J. Exacerbating effects of PM2.5 in OVA-sensitized and challenged mice and the expression of TRPA1 and TRPV1 proteins in lungs. J Asthma 2017; 54:807-817. [PMID: 28102732 DOI: 10.1080/02770903.2016.1266495] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE To investigate the effects of particulate matter ≤ 2.5 microns (PM2.5) on asthma-related phenotypes and on lung expression of TRPA1 and TRPV1 proteins in a mouse model of asthma. METHODS Female BALB/c mice were utilized to establish 28- and 42-day asthma models. Mice were sensitized with ovalbumin (OVA) and challenged with OVA, OVA plus normal saline (NS), or OVA plus PM2.5 at two doses, 1.6 or 8.0 mg kg-1. PM2.5 was instilled intratracheally without anesthesia. After the final OVA challenge was performed, 24 hours later, the changes in airway resistance (RI) and lung dynamic compliance (Cdyn) in response to acetylcholine chloride (ACH) were evaluated, and blood, bronchoalveolar lavage fluid (BALF) and lung tissue were taken at that time. The number of eosinophils in blood and various leukocytes in BALF were determined. Lung protein was extracted and probed for TRPA1 and TRPV1 expression. Interleukin (IL)-13, substance P (SP), prostaglandin D2 (PGD2) and nerve growth factor (NGF) in BALF were measured by enzyme-linked immunosorbent assay. RESULTS PM2.5 treated mice showed significantly greater changes in the number of inflammatory cells in blood and BALF, in RI and Cdyn in response to ACH, and in lung histopathology, indicated by inflammatory cell infiltration, thickened bronchial smooth muscles and bronchial mucosa damage, compared to controls. In addition, higher expression of TRPA1 and TRPV1 in lung and IL-13, SP, PGD2 and NGF in BALF were seen in mice exposed to PM2.5. All effects were most pronounced in mice in the 42-day model. CONCLUSIONS PM2.5 exacerbates effects of asthma in this model, possibly by regulating TRPA1 and TRPV1 and the relevant neurokines.
Collapse
Affiliation(s)
- Hong Liu
- a School of Basic Medicine , Nanjing University of Chinese Medicine , Nanjing , Jiangsu Province , People's Republic of China.,b Library of Nanjing University of Chinese Medicine , Nanjing , Jiangsu Province , People's Republic of China
| | - Xinsheng Fan
- a School of Basic Medicine , Nanjing University of Chinese Medicine , Nanjing , Jiangsu Province , People's Republic of China
| | - Naiqian Wang
- a School of Basic Medicine , Nanjing University of Chinese Medicine , Nanjing , Jiangsu Province , People's Republic of China
| | - Yuyan Zhang
- c Nanjing Environmental Monitoring Center , Nanjing , Jiangsu Province , People's Republic of China
| | - Jinghua Yu
- d First school of clinical medicine , Nanjing University of Chinese Medicine , Nanjing , Jiangsu Province , People's Republic of China
| |
Collapse
|
83
|
Pan X, Gong YY, Martinelli I, Angelici L, Favero C, Bertazzi PA, Mannucci PM, Ariëns RAS, Routledge MN. Fibrin clot structure is affected by levels of particulate air pollution exposure in patients with venous thrombosis. ENVIRONMENT INTERNATIONAL 2016; 92-93:70-76. [PMID: 27060417 DOI: 10.1016/j.envint.2016.03.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Particulate air pollution is a risk factor for cardiovascular diseases and thrombosis. Long-term exposure to particulate matter with a diameter<10μm (PM10) has been associated with an increased risk of venous thrombosis. OBJECTIVES The aim of this study was to investigate whether or not particulate air pollution alters fibrin clot structure and thus modulates thrombosis risk. METHODS We investigated fibrin polymerization by turbidity (maximum absorbance mOD), clot structure by confocal microscopy (fibre number per μm) and fibrin pore size by permeability (Ks×10(-10)cm(2)) in 103 patients with deep vein thrombosis and 121 healthy controls, for whom levels of air pollution exposure had been recorded. Exposure groups were defined by mean PM10 concentrations over the 730days before the event. RESULTS We found a higher average number of fibres per clot area in patients than controls, but no difference in Ks or fibre thickness. When the two groups were divided into high or low exposure to PM10, a significantly denser fibrin clot network structure with thicker fibres (higher maximum absorbance, p<0.05), decreased permeability (lower Ks value, p<0.05) and higher average fibre numbers per clot area (p<0.05) was observed in patients in the high exposure group compared to those with low exposure. There were no significant differences in fibrin clot structure between the two exposure levels in healthy subjects. CONCLUSIONS PM10 levels are associated with altered fibrin clot structure in patients with deep vein thrombosis but not in controls, suggesting that air pollution may trigger differences in fibrin clot structure only in patients predisposed to thrombotic disease.
Collapse
Affiliation(s)
- Xiaoxi Pan
- Environmental Epidemiology, Leeds Institute for Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK; Thrombosis Research Group, Leeds Institute for Cardiovascular and Metabolic Medicine, Multidisciplinary Cardiovascular Research Centre School of Medicine, University of Leeds, Leeds, UK
| | - Yun Yun Gong
- Institute for Global Food Security, Queens's University Belfast, Belfast, UK
| | - Ida Martinelli
- A. Bianchi Bonomi Haemophilia and Thrombosis Centre, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | | | | | - Pier Alberto Bertazzi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Pier M Mannucci
- Scientific Direction, IRCCS Ca' Granda Foundation Maggiore Hospital, Milan, Italy
| | - Robert A S Ariëns
- Thrombosis Research Group, Leeds Institute for Cardiovascular and Metabolic Medicine, Multidisciplinary Cardiovascular Research Centre School of Medicine, University of Leeds, Leeds, UK.
| | - Michael N Routledge
- Environmental Epidemiology, Leeds Institute for Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
84
|
Morakinyo OM, Mokgobu MI, Mukhola MS, Hunter RP. Health Outcomes of Exposure to Biological and Chemical Components of Inhalable and Respirable Particulate Matter. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13060592. [PMID: 27314370 PMCID: PMC4924049 DOI: 10.3390/ijerph13060592] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/03/2016] [Accepted: 06/08/2016] [Indexed: 02/04/2023]
Abstract
Particulate matter (PM) is a key indicator of air pollution and a significant risk factor for adverse health outcomes in humans. PM is not a self-contained pollutant but a mixture of different compounds including chemical and biological fractions. While several reviews have focused on the chemical components of PM and associated health effects, there is a dearth of review studies that holistically examine the role of biological and chemical components of inhalable and respirable PM in disease causation. A literature search using various search engines and (or) keywords was done. Articles selected for review were chosen following predefined criteria, to extract and analyze data. The results show that the biological and chemical components of inhalable and respirable PM play a significant role in the burden of health effects attributed to PM. These health outcomes include low birth weight, emergency room visit, hospital admission, respiratory and pulmonary diseases, cardiovascular disease, cancer, non-communicable diseases, and premature death, among others. This review justifies the importance of each or synergistic effects of the biological and chemical constituents of PM on health. It also provides information that informs policy on the establishment of exposure limits for PM composition metrics rather than the existing exposure limits of the total mass of PM. This will allow for more effective management strategies for improving outdoor air quality.
Collapse
Affiliation(s)
- Oyewale Mayowa Morakinyo
- Department of Environmental Health, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa.
| | - Matlou Ingrid Mokgobu
- Department of Environmental Health, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa.
| | - Murembiwa Stanley Mukhola
- Department of Environmental Health, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa.
| | - Raymond Paul Hunter
- Department of Environmental Health, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa.
| |
Collapse
|
85
|
Xie Y, Bo L, Jiang S, Tian Z, Kan H, Li Y, Song W, Zhao J. Individual PM2.5 exposure is associated with the impairment of cardiac autonomic modulation in general residents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:10255-10261. [PMID: 26910828 DOI: 10.1007/s11356-015-5933-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 12/07/2015] [Indexed: 06/05/2023]
Abstract
Fine particulate matter (PM2.5) is one of the major pollutants in metropolitan areas. The current study was conducted to observe the effects of PM2.5 on cardiac autonomic modulation. The participants included 619 men and women aged from 35-75 in a residential area in Shanghai, China. All the participants were divided into four categories according to the distance between their apartments and major road. In addition, individual PM2.5 was measured using SIDEPAKTM AM510 (TSI, USA) from 8:00 am to 6:00 pm. At the end of the individual PM2.5 measurement, the systolic pressure, diastolic pressure, heart rate (HR), low-frequency (LF), high-frequency (HF), and LF/HF were determined. The association between individual PM2.5 level and the above health effects was analyzed using generalized linear regression. The results showed that the average concentration of individual PM2.5 was 95.5 and 87.0 μg/m(3) for men and women. Residential distance to major road was negatively correlated with the individual PM2.5. The results indicated that per 1.0 μg/m(3) increase of individual PM2.5 was associated with a 2.3 % increase for systolic pressure, 0.3 % increase for diastolic pressure, 0.4 % decrease for LF, and 0.4 % decrease for HF. Nevertheless, there was no statistical association between individual PM2.5 and heart rate and LF/HF in the total model. In addition, the similar results were found in men and women excluding a significant association between PM2.5 and the heart rate in men. The alterations of cardiac autonomic modulation hinted that PM2.5 exposure might be associated with the potential occurrence of cardiovascular disease, such as arrhythmia and ischemic heart diseases.
Collapse
Affiliation(s)
- Yuquan Xie
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Liang Bo
- Department of Environmental Health, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, 331 Building 8, 130 Dong'an Road, Shanghai, 200032, China
| | - Shuo Jiang
- Department of Environmental Health, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, 331 Building 8, 130 Dong'an Road, Shanghai, 200032, China
| | - Zhenyong Tian
- Department of Environmental Health, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, 331 Building 8, 130 Dong'an Road, Shanghai, 200032, China
| | - Haidong Kan
- Department of Environmental Health, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, 331 Building 8, 130 Dong'an Road, Shanghai, 200032, China
| | - Yigang Li
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weimin Song
- Department of Environmental Health, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, 331 Building 8, 130 Dong'an Road, Shanghai, 200032, China
| | - Jinzhuo Zhao
- Department of Environmental Health, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, 331 Building 8, 130 Dong'an Road, Shanghai, 200032, China.
| |
Collapse
|
86
|
Costello S, Neophytou AM, Brown DM, Noth EM, Hammond SK, Cullen MR, Eisen EA. Incident Ischemic Heart Disease After Long-Term Occupational Exposure to Fine Particulate Matter: Accounting for 2 Forms of Survivor Bias. Am J Epidemiol 2016; 183:861-8. [PMID: 27033425 PMCID: PMC4851988 DOI: 10.1093/aje/kwv218] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/14/2015] [Indexed: 02/05/2023] Open
Abstract
Little is known about the heart disease risks associated with occupational, rather than traffic-related, exposure to particulate matter with aerodynamic diameter of 2.5 µm or less (PM2.5). We examined long-term exposure to PM2.5 in cohorts of aluminum smelters and fabrication workers in the United States who were followed for incident ischemic heart disease from 1998 to 2012, and we addressed 2 forms of survivor bias. Left truncation bias was addressed by restricting analyses to the subcohort hired after the start of follow up. Healthy worker survivor bias, which is characterized by time-varying confounding that is affected by prior exposure, was documented only in the smelters and required the use of marginal structural Cox models. When comparing always-exposed participants above the 10th percentile of annual exposure with those below, the hazard ratios were 1.67 (95% confidence interval (CI): 1.11, 2.52) and 3.95 (95% CI: 0.87, 18.00) in the full and restricted subcohorts of smelter workers, respectively. In the fabrication stratum, hazard ratios based on conditional Cox models were 0.98 (95% CI: 0.94, 1.02) and 1.17 (95% CI: 1.00, 1.37) per 1 mg/m(3)-year in the full and restricted subcohorts, respectively. Long-term exposure to occupational PM2.5 was associated with a higher risk of ischemic heart disease among aluminum manufacturing workers, particularly in smelters, after adjustment for survivor bias.
Collapse
Affiliation(s)
- Sadie Costello
- Correspondence to Dr. Sadie Costello, Environmental Health Science, School of Public Health, University of California, Berkeley, 50 University Hall #7360, Berkeley, CA 94720 (e-mail: )
| | | | | | | | | | | | | |
Collapse
|
87
|
Akopian AN, Fanick ER, Brooks EG. TRP channels and traffic-related environmental pollution-induced pulmonary disease. Semin Immunopathol 2016; 38:331-8. [PMID: 26837756 PMCID: PMC4896490 DOI: 10.1007/s00281-016-0554-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/19/2016] [Indexed: 12/21/2022]
Abstract
Environmental pollutant exposures are major risk factors for adverse health outcomes, with increased morbidity and mortality in humans. Diesel exhaust (DE) is one of the major harmful components of traffic-related air pollution. Exposure to DE affects several physiological systems, including the airways, and pulmonary diseases are increased in highly populated urban areas. Hence, there are urgent needs to (1) create newer and lesser polluting fuels, (2) improve exhaust aftertreatments and reduce emissions, and (3) understand mechanisms of actions for toxic effects of both conventional and cleaner diesel fuels on the lungs. These steps could aid the development of diagnostics and interventions to prevent the negative impact of traffic-related air pollution on the pulmonary system. Exhaust from conventional, and to a lesser extent, clean fuels, contains particulate matter (PM) and more than 400 additional chemical constituents. The major toxic constituents are nitrogen oxides (NOx) and polycyclic aromatic hydrocarbons (PAHs). PM and PAHs could potentially act via transient receptor potential (TRP) channels. In this review, we will first discuss the associations between DE from conventional as well as clean fuel technologies and acute and chronic airway inflammation. We will then review possible activation and/or potentiation of TRP vanilloid type 1 (TRPV1) and ankyrin 1 (TRPA1) channels by PM and PAHs. Finally, we will discuss and summarize recent findings on the mechanisms whereby TRPs could control the link between DE and airway inflammation, which is a primary determinant leading to pulmonary disease.
Collapse
Affiliation(s)
- Armen N Akopian
- Department of Endodontics, School of Dentistry, UT Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - E Robert Fanick
- Office of Automotive Engineering, Southwest Research Institute, San Antonio, TX, 78228, USA
| | - Edward G Brooks
- Department of Pediatrics, Division of Immunology and Infectious Disease, School of Medicine, UT Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
- Center for Airway Inflammation Research, UT Health Science Center at San Antonio, 8403 Floyd Curl Drive, STRF Microbiology MC 8259, San Antonio, TX, 78229, USA.
| |
Collapse
|
88
|
Jiang S, Bo L, Gong C, Du X, Kan H, Xie Y, Song W, Zhao J. Traffic-related air pollution is associated with cardio-metabolic biomarkers in general residents. Int Arch Occup Environ Health 2016; 89:911-21. [PMID: 27084335 DOI: 10.1007/s00420-016-1129-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/07/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE The study was conducted to explore the mechanisms linking traffic-related air pollution and cardio-metabolic risk. METHODS The participants included 371 men and women aged from 45 to 75 in an urban residential area in Shanghai, China. The participants were divided into four categories (≤50, 51-100, 101-200 and >200 m) according to the residential distance to major road. Additionally, the personal fine particulate matter (PM2.5) was measured from 8:00 am to 6:00 pm to assess the PM2.5 exposure in general residents. Then, the continuous subclinical measurements and biological effects related to cardio-metabolic disorders were detected. The generalized linear regression analysis was applied for estimating the adjusted hazards ratio for cardio-metabolic disorders relative to traffic-related air pollution. RESULTS The average personal PM2.5 is 111.1 μg/m(3) in the participants living within 50 m to major road, which is significantly higher than the personal PM2.5 (68.2 μg/m(3)) in the participants living more than 200 m away from the major road. The participants living within 50 m to major road compared with those living more than 200 m away have 1.15 times higher of heart rate (HR), 1.95 times higher of fasting insulin, 1.30 times higher of homeostasis model assessment of insulin resistance (HOMA-IR), 1.56 times higher of low-density lipoprotein cholesterol (LDL-C), 8.39 times higher of interleukin 6 (IL-6), 4.30 times higher of augmentation index (AI), 1.60 times higher of systolic blood pressure (SBP) and 1.91 times higher of diastolic blood pressure (DBP). Contrary to the increase in above biological effects, there were 1.06 times lower of low frequency (LF), 1.05 times lower of high frequency (HF), 2.54 times lower of IL-10, 4.61 times lower of nitric oxide (NO), 1.19 times lower of superoxide dismutase (SOD) and 1.85 times lower of total antioxidant capacity (T-AOC). There was no clear exposure-response relationship can be observed in the fasting glucose, LF/HF, cholesterol and high-density lipoprotein (HDL). CONCLUSION Long-term exposure to traffic-related air pollution may contribute to the development or exacerbation of cardio-metabolic disorders. The mechanisms linking air pollution and cardio-metabolic disorders may be associated with the increased systemic inflammation and oxidative stress, reduced insulin sensitivity and elevated arterial stiffness and blood pressure.
Collapse
Affiliation(s)
- Shuo Jiang
- Department of Environmental Health, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, 331 Building 8, 130 Dong'an Road, Shanghai, 200032, China
| | - Liang Bo
- Department of Environmental Health, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, 331 Building 8, 130 Dong'an Road, Shanghai, 200032, China
| | - Changyi Gong
- Department of Environmental Health, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, 331 Building 8, 130 Dong'an Road, Shanghai, 200032, China
| | - Xihao Du
- Department of Environmental Health, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, 331 Building 8, 130 Dong'an Road, Shanghai, 200032, China
| | - Haidong Kan
- Department of Environmental Health, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, 331 Building 8, 130 Dong'an Road, Shanghai, 200032, China
| | - Yuquan Xie
- Department of Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weimin Song
- Department of Environmental Health, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, 331 Building 8, 130 Dong'an Road, Shanghai, 200032, China
| | - Jinzhuo Zhao
- Department of Environmental Health, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, 331 Building 8, 130 Dong'an Road, Shanghai, 200032, China.
| |
Collapse
|
89
|
Peng C, Luttmann-Gibson H, Zanobetti A, Cohen A, De Souza C, Coull BA, Horton ES, Schwartz J, Koutrakis P, Gold DR. AIR POLLUTION INFLUENCES ON EXHALED NITRIC OXIDE AMONG PEOPLE WITH TYPE II DIABETES. AIR QUALITY, ATMOSPHERE, & HEALTH 2016; 9:265-273. [PMID: 27213020 PMCID: PMC4871616 DOI: 10.1007/s11869-015-0336-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
OBJECTIVE In a population with type 2 diabetes mellitus (T2DM), we examined associations of short-term air pollutant exposures with pulmonary inflammation, measured as fraction of exhaled pulmonary nitric oxide (FeNO). METHODS Sixty-nine Boston Metropolitan residents with T2DM completed up to 5 bi-weekly visits with 321 offline FeNO measurements. We measured ambient concentrations of particle mass, number and components at our stationary central site. Ambient concentrations of gaseous air pollutants were obtained from state monitors. We used linear models with fixed effects for participants, adjusting for 24-hour mean temperature, 24-hour mean water vapor pressure, season, and scrubbed room NO the day of the visit, to estimate associations between FeNO and interquartile range increases in exposure. RESULTS Interquartile increases in the 6-hour averages of black carbon (BC) (0.5 μg/m3) and particle number (PN) (1,000 particles/cm3) were associated with increases in FeNO of 3.84% (95% CI 0.60% to 7.18%) and 9.86 % (95% CI 3.59% to 16.52%), respectively. We also found significant associations of increases in FeNO with increases in 24-hour moving averages of BC, PN and nitrogen oxides (NOx). CONCLUSION Recent studies have focused on FeNO as a marker for eosinophilic pulmonary inflammation in asthmatic populations. This study adds support to the relevance of FeNO as a marker for pulmonary inflammation in diabetic populations, whose underlying chronic inflammatory status is likely to be related to innate immunity and proinflammatory adipokines.
Collapse
Affiliation(s)
- Cheng Peng
- Department of Environmental Health, Harvard University School of Public Health, Boston, MA
| | - Heike Luttmann-Gibson
- Department of Environmental Health, Harvard University School of Public Health, Boston, MA
| | - Antonella Zanobetti
- Department of Environmental Health, Harvard University School of Public Health, Boston, MA
| | | | - Celine De Souza
- Department of Environmental Health, Harvard University School of Public Health, Boston, MA
| | - Brent A. Coull
- Department of Biostatistics, Harvard School of Public Health, Boston, MA
| | | | - Joel Schwartz
- Department of Environmental Health, Harvard University School of Public Health, Boston, MA
- Channing Laboratory, Harvard Medical School, Boston, MA
| | - Petros Koutrakis
- Department of Environmental Health, Harvard University School of Public Health, Boston, MA
| | - Diane R. Gold
- Department of Environmental Health, Harvard University School of Public Health, Boston, MA
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
- Channing Laboratory, Harvard Medical School, Boston, MA
| |
Collapse
|
90
|
Sen T, Astarcioglu MA, Asarcikli LD, Kilit C, Kafes H, Parspur A, Yaymaci M, Pinar M, Tüfekcioglu O, Amasyali B. The effects of air pollution and weather conditions on the incidence of acute myocardial infarction. Am J Emerg Med 2016; 34:449-54. [DOI: 10.1016/j.ajem.2015.11.068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 11/24/2015] [Indexed: 10/22/2022] Open
|
91
|
Ren J, Li B, Yu D, Liu J, Ma Z. Approaches to prevent the patients with chronic airway diseases from exacerbation in the haze weather. J Thorac Dis 2016; 8:E1-7. [PMID: 26904232 PMCID: PMC4740153 DOI: 10.3978/j.issn.2072-1439.2015.11.61] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 10/28/2015] [Indexed: 11/14/2022]
Abstract
Haze weather is becoming one of the biggest problems in many big cities in China. It triggers both public anxiety and official concerns. Particulate matter (PM) plays the most important role in causing the adverse health effects. Chemical composition of PM2.5 includes primary particles and secondary particles. The toxicological mechanisms of PM2.5 to the human body include the oxidative stress, inflammation and carcinogenesis. Short or long-term exposure to PM (especially PM2.5) can cause a series of symptoms including respiratory symptoms such as cough, wheezing and dyspnea as well as other symptoms. There are positive associations between PM2.5 and mortality due to a number of causes. PM2.5 is considered to contribute to the onset of asthma, the exacerbation of chronic obstructive pulmonary disease (COPD) in haze weather. Some approaches including outdoor health care, indoor health care and preventive medications can prevent the patients with chronic airway diseases from exacerbations.
Collapse
|
92
|
Fougère B, Vellas B, Billet S, Martin PJ, Gallucci M, Cesari M. Air Pollution modifies the association between successful and pathological aging throughout the frailty condition. Ageing Res Rev 2015; 24:299-303. [PMID: 26462883 DOI: 10.1016/j.arr.2015.09.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 09/23/2015] [Accepted: 09/28/2015] [Indexed: 01/27/2023]
Abstract
The rapid growth in the number of older adults has many implications for public health, including the need to better understand the risks posed by environmental exposures. Aging leads to a decline and deterioration of functional properties at the cellular, tissue and organ level. This loss of functional properties yields to a loss of homeostasis and decreased adaptability to internal and external stress. Frailty is a geriatric syndrome characterized by weakness, weight loss, and low activity that is associated with adverse health outcomes. Frailty manifests as an age-related, biological vulnerability to stressors and decreased physiological reserves. Ambient air pollution exposure affects human health, and elderly people appear to be particularly susceptible to its adverse effects. The aim of this paper is to discuss the role of air pollution in the modulation of several biological mechanisms involved in aging. Evidence is presented on how air pollution can modify the bidirectional association between successful and pathological aging throughout the frailty conditions.
Collapse
Affiliation(s)
- Bertrand Fougère
- Gérontopôle, Centre Hospitalier Universitaire de Toulouse, Toulouse, France; Inserm UMR1027, Université de Toulouse III Paul Sabatier, Toulouse, France.
| | - Bruno Vellas
- Gérontopôle, Centre Hospitalier Universitaire de Toulouse, Toulouse, France; Inserm UMR1027, Université de Toulouse III Paul Sabatier, Toulouse, France
| | - Sylvain Billet
- Unité de Chimie Environnementale et Interactions sur le Vivant (EA4492), Université du Littoral Côte d'Opale, Dunkerque, France
| | - Perrine J Martin
- Unité de Chimie Environnementale et Interactions sur le Vivant (EA4492), Université du Littoral Côte d'Opale, Dunkerque, France
| | - Maurizio Gallucci
- Cognitive Impairment Centre, General Hospital of Treviso, Piazza Ospedale, 1, I-31100 Treviso, Italy; FORGEI, Interdisciplinary Geriatric Research Foundation, Viale Trento Trieste 19, I-31100 Treviso, Italy
| | - Matteo Cesari
- Gérontopôle, Centre Hospitalier Universitaire de Toulouse, Toulouse, France; Inserm UMR1027, Université de Toulouse III Paul Sabatier, Toulouse, France
| |
Collapse
|
93
|
Yeung ENW, Treskes P, Martin SF, Manning JR, Dunbar DR, Rogers SM, Le Bihan T, Lockman KA, Morley SD, Hayes PC, Nelson LJ, Plevris JN. Fibrinogen production is enhanced in an in-vitro model of non-alcoholic fatty liver disease: an isolated risk factor for cardiovascular events? Lipids Health Dis 2015; 14:86. [PMID: 26256740 PMCID: PMC4529985 DOI: 10.1186/s12944-015-0069-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/29/2015] [Indexed: 12/25/2022] Open
Abstract
Background Cardiovascular disease (CVD) remains the major cause of excess mortality in patients with non-alcoholic fatty liver disease (NAFLD). The aim of this study was to investigate the individual contribution of NAFLD to CVD risk factors in the absence of pathogenic influences from other comorbidities often found in NAFLD patients, by using an established in-vitro model of hepatic steatosis. Methods Histopathological events in non-alcoholic fatty liver disease were recapitulated by focused metabolic nutrient overload of hepatoblastoma C3A cells, using oleate-treated-cells and untreated controls for comparison. Microarray and proteomic data from cell culture experiments were integrated into a custom-built systems biology database and proteogenomics analysis performed. Candidate genes with significant dysregulation and concomitant changes in protein abundance were identified and STRING association and enrichment analysis performed to identify putative pathogenic pathways. Results The search strategy yielded 3 candidate genes that were specifically and significantly up-regulated in nutrient-overloaded cells compared to untreated controls: fibrinogen alpha chain (2.2 fold), fibrinogen beta chain (2.3 fold) and fibrinogen gamma chain (2.1 fold) (all rank products pfp <0.05). Fibrinogen alpha and gamma chain also demonstrated significant concomitant increases in protein abundance (3.8-fold and 2.0-fold, respectively, p <0.05). Conclusions In-vitro modelling of NAFLD and reactive oxygen species formation in nutrient overloaded C3A cells, in the absence of pathogenic influences from other comorbidities, suggests that NAFLD is an isolated determinant of CVD. Nutrient overload-induced up-regulation of all three fibrinogen component subunits of the coagulation cascade provides a possible mechanism to explain the excess CVD mortality observed in NAFLD patients. Electronic supplementary material The online version of this article (doi:10.1186/s12944-015-0069-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emily N W Yeung
- Hepatology Laboratory, Division of Health Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
| | - Philipp Treskes
- Hepatology Laboratory, Division of Health Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
| | - Sarah F Martin
- Kinetic Parameter Facility, SynthSys, Centre for Synthetic and Systems Biology, University of Edinburgh, C.H. Waddington Building, The Kings Buildings, Edinburgh, EH9 3JD, UK.
| | - Jonathan R Manning
- Bioinformatics Team, University/BHF Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| | - Donald R Dunbar
- Bioinformatics Team, University/BHF Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| | - Sophie M Rogers
- Kinetic Parameter Facility, SynthSys, Centre for Synthetic and Systems Biology, University of Edinburgh, C.H. Waddington Building, The Kings Buildings, Edinburgh, EH9 3JD, UK.
| | - Thierry Le Bihan
- Kinetic Parameter Facility, SynthSys, Centre for Synthetic and Systems Biology, University of Edinburgh, C.H. Waddington Building, The Kings Buildings, Edinburgh, EH9 3JD, UK.
| | - K Ann Lockman
- Hepatology Laboratory, Division of Health Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
| | - Steven D Morley
- Hepatology Laboratory, Division of Health Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
| | - Peter C Hayes
- Hepatology Laboratory, Division of Health Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
| | - Leonard J Nelson
- Hepatology Laboratory, Division of Health Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
| | - John N Plevris
- Hepatology Laboratory, Division of Health Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
| |
Collapse
|
94
|
Assessing the role of chemical components in cellular responses to atmospheric particle matter (PM) through chemical fractionation of PM extracts. Anal Bioanal Chem 2015; 407:5953-63. [PMID: 25957846 DOI: 10.1007/s00216-015-8749-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/23/2015] [Accepted: 04/28/2015] [Indexed: 01/15/2023]
Abstract
In order to further our understanding of the influence of chemical components and ultimately specific sources of atmospheric particulate matter (PM) on pro-inflammatory and other adverse cellular responses, we promulgate and apply a suite of chemical fractionation tools to aqueous aerosol extracts of PM samples for analysis in toxicity assays. We illustrate the approach with a study that used water extracts of quasi-ultrafine PM (PM0.25) collected in the Los Angeles Basin. Filtered PM extracts were fractionated using Chelex, a weak anion exchanger diethylaminoethyl (DEAE), a strong anion exchanger (SAX), and a hydrophobic C18 resin, as well as by desferrioxamine (DFO) complexation that binds iron. The fractionated extracts were then analyzed using high-resolution sector field inductively coupled plasma mass spectrometry (SF-ICPMS) to determine elemental composition. Cellular responses to the fractionated extracts were probed in an in vitro rat alveolar macrophages model with measurement of reactive oxygen species (ROS) production and the cytokine tumor necrosis factor-α (TNF-α). The DFO treatment that chelates iron was very effective at reducing the cellular ROS activity but had only a small impact on the TNF-α production. In contrast, the hydrophobic C18 resin treatment had a small impact on the cellular ROS activity but significantly reduced the TNF-α production. The use of statistical methods to integrate the results across all treatments led to the conclusion that sufficient iron must be present to participate in the chemistry needed for ROS activity, but the amount of ROS activity is not proportional to the iron solution concentration. ROS activity was found to be most related to cationic mono- and divalent metals (i.e., Mn and Ni) and oxyanions (i.e., Mo and V). Although the TNF-α production was not significantly affected by the chelexation of iron, it was greatly impacted by the removal of organics with the C18 resin and all other metal removal methods, suggesting that iron is not a critical pathway leading to TNF-α production, but a wide range of soluble metals and organic compounds in particulate matter play a role. Although the results are specific to the Los Angeles Basin, where the samples used in the study were collected, the method employed in the study can be widely employed to study the role of components of particulate matter in in vitro or in vivo assays.
Collapse
|
95
|
Reno AL, Brooks EG, Ameredes BT. Mechanisms of Heightened Airway Sensitivity and Responses to Inhaled SO2 in Asthmatics. ENVIRONMENTAL HEALTH INSIGHTS 2015; 9:13-25. [PMID: 25922579 PMCID: PMC4384764 DOI: 10.4137/ehi.s15671] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/14/2014] [Accepted: 12/16/2014] [Indexed: 05/29/2023]
Abstract
Sulfur dioxide (SO2) is a problematic inhalable air pollutant in areas of widespread industrialization, not only in the United States but also in countries undergoing rapid industrialization, such as China, and it can be a potential trigger factor for asthma exacerbations. It is known that asthmatics are sensitive to the effects of SO2; however, the basis of this enhanced sensitivity remains incompletely understood. A PubMed search was performed over the course of 2014, encompassing the following terms: asthma, airway inflammation, sulfur dioxide, IL-10, mouse studies, and human studies. This search indicated that biomarkers of SO2 exposure, SO2 effects on airway epithelial cell function, and animal model data are useful in our understanding of the body's response to SO2, as are SO2-associated amplification of allergic inflammation, and potential promotion of neurogenic inflammation due to chemical irritant properties. While definitive answers are still being sought, these areas comprise important foci of consideration regarding asthmatic responses to inhaled SO2. Furthermore, IL-10 deficiency associated with asthma may be another important factor associated with an inability to resolve inflammation and mitigate oxidative stress resulting from SO2 inhalation, supporting the idea that asthmatics are predisposed to SO2 sensitivity, leading to asthma exacerbations and airway dysfunction.
Collapse
Affiliation(s)
| | - Edward G Brooks
- University of Texas Health Science Center at San Antonio, Texas, USA
| | | |
Collapse
|
96
|
Hemmingsen JG, Rissler J, Lykkesfeldt J, Sallsten G, Kristiansen J, Møller P P, Loft S. Controlled exposure to particulate matter from urban street air is associated with decreased vasodilation and heart rate variability in overweight and older adults. Part Fibre Toxicol 2015; 12:6. [PMID: 25890359 PMCID: PMC4374502 DOI: 10.1186/s12989-015-0081-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/11/2015] [Indexed: 01/07/2023] Open
Abstract
Background Exposure to particulate matter (PM) is generally associated with elevated risk of cardiovascular morbidity and mortality. Elderly and obese subjects may be particularly susceptible, although short-term effects are poorly described. Methods Sixty healthy subjects (25 males, 35 females, age 55 to 83 years, body mass index > 25 kg/m2) were included in a cross-over study with 5 hours of exposure to particle- or sham-filtered air from a busy street using an exposure-chamber. The sham- versus particle-filtered air had average particle number concentrations of ~23.000 versus ~1800/cm3 and PM2.5 levels of 24 versus 3μg/m3, respectively. The PM contained similar fractions of elemental and black carbon (~20-25%) in both exposure scenarios. Reactive hyperemia and nitroglycerin-induced vasodilation in finger arteries and heart rate variability (HRV) measured within 1 h after exposure were primary outcomes. Potential explanatory mechanistic variables included markers of oxidative stress (ascorbate/dehydroascorbate, nitric oxide-production cofactor tetrahydrobiopterin and its oxidation product dihydrobiopterin) and inflammation markers (C-reactive protein and leukocyte differential counts). Results Nitroglycerin-induced vasodilation was reduced by 12% [95% confidence interval: −22%; −1.0%] following PM exposure, whereas hyperemia-induced vasodilation was reduced by 5% [95% confidence interval: −11.6%; 1.6%]. Moreover, HRV measurements showed that the high and low frequency domains were significantly decreased and increased, respectively. Redox and inflammatory status did not change significantly based on the above measures. Conclusions This study indicates that exposure to real-life levels of PM from urban street air impairs the vasomotor function and HRV in overweight middle-aged and elderly adults, although this could not be explained by changes in inflammation, oxidative stress or nitric oxide-cofactors. Electronic supplementary material The online version of this article (doi:10.1186/s12989-015-0081-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jette G Hemmingsen
- Department of Public Health, Section of Environmental Health, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5A, DK-1014, Copenhagen K, Denmark.
| | - Jenny Rissler
- Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, P.O. Box 118, SE-221 00, Lund, Sweden.
| | - Jens Lykkesfeldt
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870 Frb. C., Copenhagen, Denmark.
| | - Gerd Sallsten
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital and Academy, Gothenburg, Sweden.
| | - Jesper Kristiansen
- The National Research Centre for the Working Environment, Lersø Parkalle 105, 2100, Copenhagen, Denmark.
| | - Peter Møller P
- Department of Public Health, Section of Environmental Health, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5A, DK-1014, Copenhagen K, Denmark.
| | - Steffen Loft
- Department of Public Health, Section of Environmental Health, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5A, DK-1014, Copenhagen K, Denmark.
| |
Collapse
|
97
|
van Berlo D, Hullmann M, Schins RPF. Toxicology of ambient particulate matter. ACTA ACUST UNITED AC 2015; 101:165-217. [PMID: 22945570 DOI: 10.1007/978-3-7643-8340-4_7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It is becoming increasingly clear that inhalation exposure to particulate matter (PM) can lead to or exacerbate various diseases, which are not limited to the lung but extend to the cardiovascular system and possibly other organs and tissues. Epidemiological studies have provided strong evidence for associations with chronic obstructive pulmonary disease (COPD), asthma, bronchitis and cardiovascular disease, while the evidence for a link with lung cancer is less strong. Novel research has provided first hints that exposure to PM might lead to diabetes and central nervous system (CNS) pathology. In the current review, an overview is presented of the toxicological basis for adverse health effects that have been linked to PM inhalation. Oxidative stress and inflammation are discussed as central processes driving adverse effects; in addition, profibrotic and allergic processes are implicated in PM-related diseases. Effects of PM on key cell types considered as regulators of inflammatory, fibrotic and allergic mechanisms are described.
Collapse
Affiliation(s)
- Damiën van Berlo
- Particle Research, Institut für Umweltmedizinische Forschung (IUF), Heinrich-Heine University Düsseldorf, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | | | | |
Collapse
|
98
|
Grigoratos T, Martini G. Brake wear particle emissions: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:2491-504. [PMID: 25318420 PMCID: PMC4315878 DOI: 10.1007/s11356-014-3696-8] [Citation(s) in RCA: 291] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/06/2014] [Indexed: 05/18/2023]
Abstract
Traffic-related sources have been recognized as a significant contributor of particulate matter particularly within major cities. Exhaust and non-exhaust traffic-related sources are estimated to contribute almost equally to traffic-related PM10 emissions. Non-exhaust particles can be generated either from non-exhaust sources such as brake, tyre, clutch and road surface wear or already exist in the form of deposited material at the roadside and become resuspended due to traffic-induced turbulence. Among non-exhaust sources, brake wear can be a significant particulate matter (PM) contributor, particularly within areas with high traffic density and braking frequency. Studies mention that in urban environments, brake wear can contribute up to 55 % by mass to total non-exhaust traffic-related PM10 emissions and up to 21 % by mass to total traffic-related PM10 emissions, while in freeways, this contribution is lower due to lower braking frequency. As exhaust emissions control become stricter, relative contributions of non-exhaust sources-and therefore brake wear-to traffic-related emissions will become more significant and will raise discussions on possible regulatory needs. The aim of the present literature review study is to present the state-of-the-art of the different aspects regarding PM resulting from brake wear and provide all the necessary information in terms of importance, physicochemical characteristics, emission factors and possible health effects.
Collapse
Affiliation(s)
- Theodoros Grigoratos
- European Commission, Joint Research Centre, Sustainable Transport Unit (STU), Institute for Energy and Transport (IET), Via E Fermi 2749, 21027, Ispra, Italy,
| | | |
Collapse
|
99
|
Gandhi SK, Rich DQ, Ohman-Strickland PA, Kipen HM, Gow A. Plasma nitrite is an indicator of acute changes in ambient air pollutant concentrations. Inhal Toxicol 2015; 26:426-34. [PMID: 24862977 DOI: 10.3109/08958378.2014.913216] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
CONTEXT Endothelial dysfunction has been suggested as a potential mechanism by which ambient air pollution may cause acute cardiovascular events. Recently, plasma nitrite has been developed as a marker of endothelial dysfunction. OBJECTIVES We examined the changes in plasma nitrite concentration associated with increases in ambient air pollutant concentrations in the previous 7 d. MATERIALS AND METHODS We linked up to three measurements of plasma nitrite concentrations obtained from 49 students to 24-h average concentrations of five criteria air pollutants [particle mass < 2.5 µm in aerodynamic diameter (PM(2.5)), carbon monoxide (CO), sulfur dioxide (SO₂), nitrogen dioxide (NO₂), and ozone (O₃)] measured at two monitoring sites closest to Rutgers University campus (6-15 miles) in New Jersey during the years 2006-2009. We examined the change in plasma nitrite associated with each interquartile-range (IQR) increase in pollutant concentration in the previous 24 h and six preceding 24- h periods, using linear mixed models. RESULTS IQR increases in mean PM(2.5) (7.0 µg/m³) and CO (161.7 parts per billion) concentrations in the first 24 h before the plasma nitrite measurement were associated with increased plasma nitrite concentrations (PM(2.5): 15.5 nanomolar; 95% confidence interval (CI): 2.4, 28.5; CO: 15.6 nanomolar; 95% CI: 2.4, 28.9). Increased plasma nitrite associated with IQR increases in O₃ and SO₂ concentrations over longer lags were observed. DISCUSSION AND CONCLUSION Rapid increases in plasma nitrite following exposure to ambient air pollutants support the hypothesis that ambient air pollution is associated with inducible nitric oxide synthase-mediated systemic inflammation in humans.
Collapse
Affiliation(s)
- Sampada K Gandhi
- Department of Epidemiology, Rutgers School of Public Health , Piscataway, NJ , USA
| | | | | | | | | |
Collapse
|
100
|
Outdoor air pollution and cardiovascular diseases in Lebanon: a case-control study. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2015; 2015:810846. [PMID: 25653681 PMCID: PMC4310226 DOI: 10.1155/2015/810846] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 10/18/2014] [Accepted: 11/16/2014] [Indexed: 11/18/2022]
Abstract
Outdoor air pollution is increasingly considered as a serious threat for cardiovascular diseases (CVD). The aim of this study is to investigate the association between outdoor pollutants and cardiovascular diseases among adults in Lebanon and to examine the possible moderator effect of cigarette smoking status on this association. A multicenter case-control study was conducted between October 2011 and October 2012. Cases were hospitalized patients diagnosed with CVD by a cardiologist while the control group subjects were free of any cardiac diseases. Information on sociodemographic characteristics, tobacco consumption, self-rated global health, pollution exposure, and other risk factors was collected using a questionnaire. The results of the logistic regression revealed that living near busy highway (OR 5.04, 95% CI (4.44–12.85), P < 0.001) and close to local diesel generator (OR 4.76, 95% CI (2.07–10.91), P < 0.001) was significantly associated with CVD. The association between the CVD and exposure to outside pollutants differed by cigarette smoking status. A clear difference was noted between nonsmokers and current smokers OR 4.6, 95% CI (1.10–19.25) and OR 10.11, 95% CI (7.33–20.23), respectively. Forthcoming studies are needed to clarify the potential link between outdoor air pollution and cardiovascular diseases in Lebanon. Public health interventions must be implemented to reduce air pollution and to improve air quality.
Collapse
|