51
|
Fungal Pathogens in CF Airways: Leave or Treat? Mycopathologia 2017; 183:119-137. [PMID: 28770417 DOI: 10.1007/s11046-017-0184-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/22/2017] [Indexed: 02/07/2023]
Abstract
Chronic airway infection plays an essential role in the progress of cystic fibrosis (CF) lung disease. In the past decades, mainly bacterial pathogens, such as Pseudomonas aeruginosa, have been the focus of researchers and clinicians. However, fungi are frequently detected in CF airways and there is an increasing body of evidence that fungal pathogens might play a role in CF lung disease. Several studies have shown an association of fungi, particularly Aspergillus fumigatus and Candida albicans, with the course of lung disease in CF patients. Mechanistically, in vitro and in vivo studies suggest that an impaired immune response to fungal pathogens in CF airways renders them more susceptible to fungi. However, it remains elusive whether fungi are actively involved in CF lung disease pathologies or whether they rather reflect a dysregulated airway colonization and act as microbial bystanders. A key issue for dissecting the role of fungi in CF lung disease is the distinction of dynamic fungal-host interaction entities, namely colonization, sensitization or infection. This review summarizes key findings on pathophysiological mechanisms and the clinical impact of fungi in CF lung disease.
Collapse
|
52
|
Lee SM, Park HY, Suh YS, Yoon EH, Kim J, Jang WH, Lee WS, Park SG, Choi IW, Choi I, Kang SW, Yun H, Teshima T, Kwon B, Seo SK. Inhibition of acute lethal pulmonary inflammation by the IDO-AhR pathway. Proc Natl Acad Sci U S A 2017; 114:E5881-E5890. [PMID: 28673995 PMCID: PMC5530642 DOI: 10.1073/pnas.1615280114] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The lung is a prototypic organ that was evolved to reduce immunopathology during the immune response to potentially hazardous endogenous and exogenous antigens. In this study, we show that donor CD4+ T cells transiently induced expression of indoleamine 2,3-dioxygenase (IDO) in lung parenchyma in an IFN-γ-dependent manner early after allogeneic hematopoietic stem cell transplantation (HSCT). Abrogation of host IDO expression by deletion of the IDO gene or the IFN-γ gene in donor T cells or by FK506 treatment resulted in acute lethal pulmonary inflammation known as idiopathic pneumonia syndrome (IPS). Interestingly, IL-6 strongly induced IDO expression in an IFN-γ-independent manner when deacetylation of STAT3 was inhibited. Accordingly, a histone deacetylase inhibitor (HDACi) could reduce IPS in the state where IFN-γ expression was suppressed by FK506. Finally, l-kynurenine produced by lung epithelial cells and alveolar macrophages during IPS progression suppresses the inflammatory activities of lung epithelial cells and CD4+ T cells through the aryl hydrocarbon receptor pathway. Taken together, our results reveal that IDO is a critical regulator of acute pulmonary inflammation and that regulation of IDO expression by HDACi may be a therapeutic approach for IPS after HSCT.
Collapse
MESH Headings
- Animals
- Basic Helix-Loop-Helix Transcription Factors/immunology
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Female
- Graft vs Host Disease
- Hematopoietic Stem Cell Transplantation/mortality
- Histone Deacetylase Inhibitors/pharmacology
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Interferon-gamma/genetics
- Interferon-gamma/metabolism
- Interferon-gamma/pharmacology
- Kynurenine/metabolism
- Lung/immunology
- Lung/metabolism
- Lung/pathology
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Pneumonia/drug therapy
- Pneumonia/metabolism
- Receptors, Aryl Hydrocarbon/immunology
- Receptors, Aryl Hydrocarbon/metabolism
- Receptors, Interferon/genetics
- Receptors, Interferon/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes, Regulatory/immunology
- Tacrolimus/pharmacology
- Interferon gamma Receptor
Collapse
Affiliation(s)
- Soung-Min Lee
- Department of Microbiology and Immunology, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Ha Young Park
- Department of Microbiology and Immunology, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Young-Sill Suh
- Department of Microbiology and Immunology, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Eun Hye Yoon
- Department of Microbiology and Immunology, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Juyang Kim
- Biomedical Research Center and Department of Biological Sciences, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Won Hee Jang
- Department of Biochemistry, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Won-Sik Lee
- Department of Hemato/Oncology, Busan Paik Hospital, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Sae-Gwang Park
- Department of Microbiology and Immunology, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Il-Whan Choi
- Department of Microbiology and Immunology, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Inhak Choi
- Department of Microbiology and Immunology, Inje University College of Medicine, Busan 47392, Republic of Korea
- Advanced Research Center for Multiple Myeloma, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Sun-Woo Kang
- Department of Nephrology, Busan Paik Hospital, Inje University College of Medicine, Busan 614-735, Republic of Korea
| | - Hwayoung Yun
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Byungsuk Kwon
- Biomedical Research Center and Department of Biological Sciences, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Su-Kil Seo
- Department of Microbiology and Immunology, Inje University College of Medicine, Busan 47392, Republic of Korea;
| |
Collapse
|
53
|
Cantin AM, Hanrahan JW. Thymosin α1: a single drug with multiple targets in cystic fibrosis. Nat Med 2017; 23:536-538. [DOI: 10.1038/nm.4339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
54
|
Stephen-Victor E, Bosschem I, Haesebrouck F, Bayry J. The Yin and Yang of regulatory T cells in infectious diseases and avenues to target them. Cell Microbiol 2017; 19. [DOI: 10.1111/cmi.12746] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Emmanuel Stephen-Victor
- Institut National de la Santé et de la Recherche Médicale; Paris France
- Centre de Recherche des Cordeliers; Equipe-Immunopathologie et Immunointervention Thérapeutique; Paris France
- Sorbonne Universités; Université Pierre et Marie Curie; Paris France
| | - Iris Bosschem
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine; Ghent University; Merelbeke Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine; Ghent University; Merelbeke Belgium
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale; Paris France
- Centre de Recherche des Cordeliers; Equipe-Immunopathologie et Immunointervention Thérapeutique; Paris France
- Sorbonne Universités; Université Pierre et Marie Curie; Paris France
- Université Paris Descartes; Sorbonne Paris Cité; Paris France
| |
Collapse
|
55
|
Romani L, Oikonomou V, Moretti S, Iannitti RG, D'Adamo MC, Villella VR, Pariano M, Sforna L, Borghi M, Bellet MM, Fallarino F, Pallotta MT, Servillo G, Ferrari E, Puccetti P, Kroemer G, Pessia M, Maiuri L, Goldstein AL, Garaci E. Thymosin α1 represents a potential potent single-molecule-based therapy for cystic fibrosis. Nat Med 2017; 23:590-600. [PMID: 28394330 PMCID: PMC5420451 DOI: 10.1038/nm.4305] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 02/17/2017] [Indexed: 12/17/2022]
Abstract
Cystic fibrosis (CF) is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) that compromise its chloride-channel activity. The most common mutation, p.Phe508del, results in the production of a misfolded CFTR protein, which has residual channel activity but is prematurely degraded. Because of the inherent complexity of the pathogenetic mechanisms involved in CF —which include impaired chloride permeability and persistent lung inflammation—a multidrug approach is required for efficacious CF therapy. To date, no individual, drug with pleiotropic beneficial effects for CF is available. Here we report on the ability of thymosin alpha 1 (Tα1)—a naturally occurring polypeptide with an excellent safety profile in the clinic when used as an adjuvant or an immunotherapeutic agent—to rectify the multiple tissue defects in CF mice as well as in cells from subjects with the p.Phe508del mutation. Tα1 displayed two combined properties that favorably opposed CF symptomatology; namely, it reduced inflammation and increased CFTR maturation, stability and activity. By virtue of this two-pronged action, Tα1 offers a strong potential to be an efficacious single molecule-based therapeutic agent in CF.
Collapse
Affiliation(s)
- Luigina Romani
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Vasilis Oikonomou
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Silvia Moretti
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Rossana G Iannitti
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Maria Cristina D'Adamo
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Valeria R Villella
- European Institute for Research in Cystic Fibrosis, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Marilena Pariano
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Luigi Sforna
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Monica Borghi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Marina M Bellet
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | | | | - Giuseppe Servillo
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Eleonora Ferrari
- European Institute for Research in Cystic Fibrosis, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Puccetti
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, INSERM U1138, Université Paris Descartes, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Mauro Pessia
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Luigi Maiuri
- European Institute for Research in Cystic Fibrosis, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy.,Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Allan L Goldstein
- Department of Biochemistry and Molecular Medicine, George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| | - Enrico Garaci
- University San Raffaele and IRCCS San Raffaele, Rome, Italy
| |
Collapse
|
56
|
A mast cell-ILC2-Th9 pathway promotes lung inflammation in cystic fibrosis. Nat Commun 2017; 8:14017. [PMID: 28090087 PMCID: PMC5241810 DOI: 10.1038/ncomms14017] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 11/22/2016] [Indexed: 12/17/2022] Open
Abstract
T helper 9 (Th9) cells contribute to lung inflammation and allergy as sources of interleukin-9 (IL-9). However, the mechanisms by which IL-9/Th9 mediate immunopathology in the lung are unknown. Here we report an IL-9-driven positive feedback loop that reinforces allergic inflammation. We show that IL-9 increases IL-2 production by mast cells, which leads to expansion of CD25+ type 2 innate lymphoid cells (ILC2) and subsequent activation of Th9 cells. Blocking IL-9 or inhibiting CD117 (c-Kit) signalling counteracts the pathogenic effect of the described IL-9-mast cell-IL-2 signalling axis. Overproduction of IL-9 is observed in expectorates from cystic fibrosis (CF) patients, and a sex-specific variant of IL-9 is predictive of allergic reactions in female patients. Our results suggest that blocking IL-9 may be a therapeutic strategy to ameliorate inflammation associated with microbial colonization in the lung, and offers a plausible explanation for gender differences in clinical outcomes of patients with CF. In patients with cystic fibrosis, IL-9 signalling is increased. The authors describe an inflammatory loop in which IL-9 produced by Th9 cells drives mast cells to produce IL-2, resulting in ILC2 cell activation, and show inhibition of this loop with blocking antibodies to IL-9 in a mouse model of pulmonary infection.
Collapse
|
57
|
Gonçalves SM, Lagrou K, Duarte-Oliveira C, Maertens JA, Cunha C, Carvalho A. The microbiome-metabolome crosstalk in the pathogenesis of respiratory fungal diseases. Virulence 2016; 8:673-684. [PMID: 27820674 DOI: 10.1080/21505594.2016.1257458] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Filamentous fungi of the genus Aspergillus are responsible for several superficial and invasive infections and allergic syndromes. The risk of infection and its clinical outcome vary significantly even among patients with similar predisposing clinical factors and pathogen exposure. There is increasing evidence that the individual microbiome supervises the outcome of the host-fungus interaction by influencing mechanisms of immune regulation, inflammation, metabolism, and other physiological processes. Microbiome-mediated mechanisms of resistance allow therefore the control of fungal colonization, preventing the onset of overt disease, particularly in patients with underlying immune dysfunction. Here, we review this emerging area of research and discuss the contribution of the microbiota (and its dysbiosis), including its immunoregulatory properties and relationship with the metabolic activity of commensals, to respiratory fungal diseases. Finally, we highlight possible strategies aimed at decoding the microbiome-metabolome dialog and at its exploitation toward personalized medical interventions in patients at high risk of infection.
Collapse
Affiliation(s)
- Samuel M Gonçalves
- a Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho , Braga , Portugal.,b ICVS/3B's - PT Government Associate Laboratory , Guimarães , Portugal
| | - Katrien Lagrou
- c Department of Microbiology and Immunology , KU Leuven - University of Leuven , Leuven , Belgium.,d Department of Laboratory Medicine and National Reference Center for Medical Mycology , University Hospitals Leuven , Leuven , Belgium
| | - Cláudio Duarte-Oliveira
- a Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho , Braga , Portugal.,b ICVS/3B's - PT Government Associate Laboratory , Guimarães , Portugal
| | - Johan A Maertens
- e Department of Hematology , University Hospitals Leuven , Leuven , Belgium
| | - Cristina Cunha
- a Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho , Braga , Portugal.,b ICVS/3B's - PT Government Associate Laboratory , Guimarães , Portugal
| | - Agostinho Carvalho
- a Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho , Braga , Portugal.,b ICVS/3B's - PT Government Associate Laboratory , Guimarães , Portugal
| |
Collapse
|
58
|
Caffrey AK, Obar JJ. Alarmin(g) the innate immune system to invasive fungal infections. Curr Opin Microbiol 2016; 32:135-143. [PMID: 27351354 DOI: 10.1016/j.mib.2016.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/04/2016] [Accepted: 06/07/2016] [Indexed: 11/24/2022]
Abstract
Fungi encounter numerous stresses in a mammalian host, including the immune system, which they must adapt to in order to grow and cause disease. The host immune system tunes its response to the threat level posed by the invading pathogen. We discuss recent findings on how interleukin (IL)-1 signaling is central to tuning the immune response to the virulence potential of invasive fungi, as well as other pathogens. Moreover, we discuss fungal factors that may drive tissue invasion and destruction that regulate IL-1 cytokine release. Moving forward understanding the mechanisms of fungal adaption to the host, together with understanding how the host innate immune system recognizes invading fungal pathogens will increase our therapeutic options for treatment of invasive fungal infections.
Collapse
Affiliation(s)
- Alayna K Caffrey
- Montana State University, Department of Microbiology & Immunology, Bozeman, MT 59718, United States; Geisel School of Medicine at Dartmouth, Department of Microbiology & Immunology, Lebanon, NH 03756, United States
| | - Joshua J Obar
- Geisel School of Medicine at Dartmouth, Department of Microbiology & Immunology, Lebanon, NH 03756, United States.
| |
Collapse
|
59
|
Gresnigt MS, Rekiki A, Rasid O, Savers A, Jouvion G, Dannaoui E, Parlato M, Fitting C, Brock M, Cavaillon JM, van de Veerdonk FL, Ibrahim-Granet O. Reducing hypoxia and inflammation during invasive pulmonary aspergillosis by targeting the Interleukin-1 receptor. Sci Rep 2016; 6:26490. [PMID: 27215684 PMCID: PMC4877709 DOI: 10.1038/srep26490] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/04/2016] [Indexed: 01/05/2023] Open
Abstract
Hypoxia as a result of pulmonary tissue damage due to unresolved inflammation during invasive pulmonary aspergillosis (IPA) is associated with a poor outcome. Aspergillus fumigatus can exploit the hypoxic microenvironment in the lung, but the inflammatory response required for fungal clearance can become severely disregulated as a result of hypoxia. Since severe inflammation can be detrimental to the host, we investigated whether targeting the interleukin IL-1 pathway could reduce inflammation and tissue hypoxia, improving the outcome of IPA. The interplay between hypoxia and inflammation was investigated by in vivo imaging of hypoxia and measurement of cytokines in the lungs in a model of corticosteroid immunocompromised and in Cxcr2 deficient mice. Severe hypoxia was observed following Aspergillus infection in both models and correlated with development of pulmonary inflammation and expression of hypoxia specific transcripts. Treatment with IL-1 receptor antagonist reduced hypoxia and slightly, but significantly reduced mortality in immunosuppressed mice, but was unable to reduce hypoxia in Cxcr2(-/-) mice. Our data provides evidence that the inflammatory response during invasive pulmonary aspergillosis, and in particular the IL-1 axis, drives the development of hypoxia. Targeting the inflammatory IL-1 response could be used as a potential immunomodulatory therapy to improve the outcome of aspergillosis.
Collapse
Affiliation(s)
- Mark S Gresnigt
- Unité de recherche Cytokines &Inflammation, Institut Pasteur, Paris.,Department of Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Orhan Rasid
- Unité de recherche Cytokines &Inflammation, Institut Pasteur, Paris
| | - Amélie Savers
- Fungal Genetics and Biology, School of Life Sciences, University of Nottingham, UK
| | - Grégory Jouvion
- Unité Histopathologie Humaine et Modèles Animaux, Institut Pasteur, Paris France
| | - Eric Dannaoui
- Paris-Descartes University, Faculty of Medicine, APHP, European Georges Pompidou Hospital, Parasitology-Mycology Unit, Microbiology department, Paris, France
| | - Marianna Parlato
- INSERM UMR S1163 Institut Imagine, Laboratoire d'Immunité Intestinale, Paris France
| | | | - Matthias Brock
- Fungal Genetics and Biology, School of Life Sciences, University of Nottingham, UK
| | | | | | | |
Collapse
|
60
|
Jiang N, Zhao GQ, Lin J, Hu LT, Che CY, Li C, Wang Q, Xu Q, Zhang J, Peng XD. Expression of indoleamine 2,3-dioxygenase in a murine model of Aspergillus fumigatus keratitis. Int J Ophthalmol 2016; 9:491-6. [PMID: 27162718 DOI: 10.18240/ijo.2016.04.03] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/11/2015] [Indexed: 02/07/2023] Open
Abstract
AIM To observe the presence and expression of indoleamine 2,3-dioxygenase (IDO) during the corneal immunity to Aspergillus fumigatus (A. fumigatus) in the murine models. METHODS The murine model of fungal keratitis was established by smearing with colonies of A. fumigatus after scraping central epithelium of cornea and covering with contact lenses in C57BL/6 mice. The mice were randomly divided into control group, sham group and A. fumigatus keratitis group. The cornea was monitored daily using a slit lamp and recorded disease score after infection. Corneal lesion was detected by immunofluorescence staining. IDO mRNA and protein were also detected by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot. RESULTS The disease score and slit lamp photography indicated that disease severity was consistent with corneal inflammation in the murine models, and the disease scores in A. fumigatus keratitis group were obviously higher than those in the sham group. By immunofluorescence staining, IDO was mainly localized in corneal epithelium and stroma in the murine corneal tissues with A. fumigatus keratitis. Compared with the sham group, IDO mRNA expression was significantly enhanced in corneal epithelium infected by A. fumigatus. Furthermore, IDO protein expression detected by Western blot was in accord with transcript levels of IDO mRNA measured by qRT-PCR. IDO protein expression was enhanced after A. fumigatus infection compared with the sham group. CONCLUSION IDO is detected in corneal epithelium and stroma locally, which indicates IDO takes part in the pathogenesis of A. fumigatus keratitis and plays a key role in immune regulation at the early stage.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Gui-Qiu Zhao
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Jing Lin
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Li-Ting Hu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Cheng-Ye Che
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Cui Li
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Qian Wang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Qiang Xu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Jie Zhang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Xu-Dong Peng
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| |
Collapse
|
61
|
Meijer L, Nelson DJ, Riazanski V, Gabdoulkhakova AG, Hery-Arnaud G, Le Berre R, Loaëc N, Oumata N, Galons H, Nowak E, Gueganton L, Dorothée G, Prochazkova M, Hall B, Kulkarni AB, Gray RD, Rossi AG, Witko-Sarsat V, Norez C, Becq F, Ravel D, Mottier D, Rault G. Modulating Innate and Adaptive Immunity by (R)-Roscovitine: Potential Therapeutic Opportunity in Cystic Fibrosis. J Innate Immun 2016; 8:330-49. [PMID: 26987072 PMCID: PMC4800827 DOI: 10.1159/000444256] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/25/2016] [Accepted: 01/25/2016] [Indexed: 12/17/2022] Open
Abstract
(R)-Roscovitine, a pharmacological inhibitor of kinases, is currently in phase II clinical trial as a drug candidate for the treatment of cancers, Cushing's disease and rheumatoid arthritis. We here review the data that support the investigation of (R)-roscovitine as a potential therapeutic agent for the treatment of cystic fibrosis (CF). (R)-Roscovitine displays four independent properties that may favorably combine against CF: (1) it partially protects F508del-CFTR from proteolytic degradation and favors its trafficking to the plasma membrane; (2) by increasing membrane targeting of the TRPC6 ion channel, it rescues acidification in phagolysosomes of CF alveolar macrophages (which show abnormally high pH) and consequently restores their bactericidal activity; (3) its effects on neutrophils (induction of apoptosis), eosinophils (inhibition of degranulation/induction of apoptosis) and lymphocytes (modification of the Th17/Treg balance in favor of the differentiation of anti-inflammatory lymphocytes and reduced production of various interleukins, notably IL-17A) contribute to the resolution of inflammation and restoration of innate immunity, and (4) roscovitine displays analgesic properties in animal pain models. The fact that (R)-roscovitine has undergone extensive preclinical safety/pharmacology studies, and phase I and II clinical trials in cancer patients, encourages its repurposing as a CF drug candidate.
Collapse
Affiliation(s)
- Laurent Meijer
- Centre de Perharidy, ManRos Therapeutics, Roscoff, France
| | - Deborah J. Nelson
- Department of Pharmacological and Physiological Sciences, The University of Chicago, Chicago, Ill., USA
| | - Vladimir Riazanski
- Department of Pharmacological and Physiological Sciences, The University of Chicago, Chicago, Ill., USA
| | - Aida G. Gabdoulkhakova
- Department of Pharmacological and Physiological Sciences, The University of Chicago, Chicago, Ill., USA
| | - Geneviève Hery-Arnaud
- Unité de Bactériologie, Hôpital de la Cavale Blanche, CHRU Brest, Brest, France
- EA3882-LUBEM, Université de Brest, UFR de Médecine et des Sciences de la Santé, Brest, France
| | - Rozenn Le Berre
- EA3882-LUBEM, Université de Brest, UFR de Médecine et des Sciences de la Santé, Brest, France
- Département de Médecine Interne et Pneumologie, CHRU Brest, Brest, France
| | - Nadège Loaëc
- Centre de Perharidy, ManRos Therapeutics, Roscoff, France
| | - Nassima Oumata
- Centre de Perharidy, ManRos Therapeutics, Roscoff, France
| | - Hervé Galons
- Unité de Technologies Chimiques et Biologiques pour la Santé, Université Paris Descartes UMR-S 1022 INSERM, Paris, France
| | - Emmanuel Nowak
- Hôpital de la Cavale Blanche, CHRU Brest, Centre d'Investigation Clinique, INSERM CIC 1412, Brest, France
| | | | - Guillaume Dorothée
- Immune System, Neuroinflammation and Neurodegenerative Diseases Laboratory, Inflammation-Immunopathology-Biotherapy Department (DHU i2B), CdR Saint-Antoine, INSERM, UMRS 938, Paris, France
- Hôpital Saint-Antoine, CdR Saint-Antoine, UMRS 938, UPMC University Paris 06, Sorbonne Universités, Paris, France
| | - Michaela Prochazkova
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Md., USA
| | - Bradford Hall
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Md., USA
| | - Ashok B. Kulkarni
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Md., USA
| | - Robert D. Gray
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh Medical School, Edinburgh, UK
| | - Adriano G. Rossi
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh Medical School, Edinburgh, UK
| | | | - Caroline Norez
- Laboratoire Signalisation et Transports Ioniques Membranaires, CNRS, Université de Poitiers, Poitiers, France
| | - Frédéric Becq
- Laboratoire Signalisation et Transports Ioniques Membranaires, CNRS, Université de Poitiers, Poitiers, France
| | | | - Dominique Mottier
- Hôpital de la Cavale Blanche, CHRU Brest, Centre d'Investigation Clinique, INSERM CIC 1412, Brest, France
| | | |
Collapse
|
62
|
Iannitti RG, Napolioni V, Oikonomou V, De Luca A, Galosi C, Pariano M, Massi-Benedetti C, Borghi M, Puccetti M, Lucidi V, Colombo C, Fiscarelli E, Lass-Flörl C, Majo F, Cariani L, Russo M, Porcaro L, Ricciotti G, Ellemunter H, Ratclif L, De Benedictis FM, Talesa VN, Dinarello CA, van de Veerdonk FL, Romani L. IL-1 receptor antagonist ameliorates inflammasome-dependent inflammation in murine and human cystic fibrosis. Nat Commun 2016; 7:10791. [PMID: 26972847 PMCID: PMC4793079 DOI: 10.1038/ncomms10791] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/21/2016] [Indexed: 02/06/2023] Open
Abstract
Dysregulated inflammasome activation contributes to respiratory infections and pathologic airway inflammation. Through basic and translational approaches involving murine models and human genetic epidemiology, we show here the importance of the different inflammasomes in regulating inflammatory responses in mice and humans with cystic fibrosis (CF), a life-threatening disorder of the lungs and digestive system. While both contributing to pathogen clearance, NLRP3 more than NLRC4 contributes to deleterious inflammatory responses in CF and correlates with defective NLRC4-dependent IL-1Ra production. Disease susceptibility in mice and microbial colonization in humans occurrs in conditions of genetic deficiency of NLRC4 or IL-1Ra and can be rescued by administration of the recombinant IL-1Ra, anakinra. These results indicate that pathogenic NLRP3 activity in CF could be negatively regulated by IL-1Ra and provide a proof-of-concept evidence that inflammasomes are potential targets to limit the pathological consequences of microbial colonization in CF. IL-1-mediated inflammation contributes to the pathogenesis of cystic fibrosis. Here the authors show that this is largely due to NLRP3 activation, whereas NLRP4 induces IL-1Ra, limiting the overall inflammasome activity and providing a therapeutic angle to ameliorate the disease.
Collapse
Affiliation(s)
- Rossana G Iannitti
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Valerio Napolioni
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Vasilis Oikonomou
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Antonella De Luca
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Claudia Galosi
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Marilena Pariano
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | | | - Monica Borghi
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Matteo Puccetti
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Vincenzina Lucidi
- Unit of Endocrinology and Diabetes, Bambino Gesù Children's Hospital, 00165 Rome, Italy
| | - Carla Colombo
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, University of Milan, 20122 Milan, Italy
| | | | - Cornelia Lass-Flörl
- Division of Hygiene and Medical Microbiology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Fabio Majo
- Unit of Endocrinology and Diabetes, Bambino Gesù Children's Hospital, 00165 Rome, Italy
| | - Lisa Cariani
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, University of Milan, 20122 Milan, Italy
| | - Maria Russo
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, University of Milan, 20122 Milan, Italy
| | - Luigi Porcaro
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, University of Milan, 20122 Milan, Italy
| | | | | | - Luigi Ratclif
- Servizio di Supporto Fibrosi Cistica, Istituto Ospedale G. Tatarella, Foggia, 71042 Cerignola, Italy
| | | | | | - Charles A Dinarello
- Radboud Center for Infectious Diseases, Nijmegen, 6500 HB, The Netherlands.,Division of Infectious Diseases, University of Colorado Denver, Aurora, Colorado 80045, USA
| | - Frank L van de Veerdonk
- Division of Infectious Diseases, University of Colorado Denver, Aurora, Colorado 80045, USA.,Department of Internal Medicine, Radboud Center for Infectious diseases (RCI), Radboudumc, Nijmegen, 6500 HB, The Netherlands
| | - Luigina Romani
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| |
Collapse
|
63
|
Abstract
Cystic fibrosis (CF) lung disease is characterized by persistent and unresolved inflammation, with elevated proinflammatory and decreased anti-inflammatory cytokines, and greater numbers of immune cells. Hyperinflammation is recognized as a leading cause of lung tissue destruction in CF. Hyper-inflammation is not solely observed in the lungs of CF patients, since it may contribute to destruction of exocrine pancreas and, likely, to defects in gastrointestinal tract tissue integrity. Paradoxically, despite the robust inflammatory response, and elevated number of immune cells (such as neutrophils and macrophages), CF lungs fail to clear bacteria and are more susceptible to infections. Here, we have summarized the current understanding of immune dysregulation in CF, which may drive hyperinflammation and impaired host defense.
Collapse
Affiliation(s)
- Emanuela M Bruscia
- Section of Respiratory Medicine, Department of Pediatrics, Yale University School of Medicine, 330 Cedar Street, FMP, Room#524, New Haven, CT 06520, USA.
| | - Tracey L Bonfield
- Division of Pulmonology, Allergy and Immunology, Department of Pediatrics, Case Western Reserve University School of Medicine, 0900 Euclid Avenue, Cleveland, OH 44106-4948, USA.
| |
Collapse
|
64
|
Thakur C, Wolfarth M, Sun J, Zhang Y, Lu Y, Battelli L, Porter DW, Chen F. Oncoprotein mdig contributes to silica-induced pulmonary fibrosis by altering balance between Th17 and Treg T cells. Oncotarget 2016; 6:3722-36. [PMID: 25669985 PMCID: PMC4414149 DOI: 10.18632/oncotarget.2914] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/14/2014] [Indexed: 12/13/2022] Open
Abstract
Mineral dust-induced gene (mdig, also named Mina53) was first identified from alveolar macrophages of the coal miners with chronic lung inflammation or fibrosis, but how this gene is involved in lung diseases is poorly understood. Here we show that heterozygotic knockout of mdig (mdig+/-) ameliorates silica-induced lung fibrosis by altering the balance between Th17 cells and Treg cells. Relative to the wild type (WT) mice, infiltration of the macrophages and Th17 cells was reduced in lungs from silica-exposed mdig+/- mice. In contrast, an increased infiltration of the T regulatory (Treg) cells to the lung intestitium was observed in the mdig+/- mice treated with silica. Both the number of Th17 cells in the lung lymph nodes and the level of IL-17 in the bronchoalveolar lavage fluids were decreased in the mdig+/- mice in response to silica. Thus, these results suggest that mdig may contribute to silica-induced lung fibrosis by altering the balance between Th17 and Treg cells. Genetic deficiency of mdig impairs Th17 cell infiltration and function, but favors infiltration of the Treg cells, the immune suppressive T cells that are able to limit the inflammatory responses by repressing the Th17 cells and macrophages.
Collapse
Affiliation(s)
- Chitra Thakur
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, USA
| | - Michael Wolfarth
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, USA
| | - Jiaying Sun
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, USA.,Respiratory Medicine, The 4th Affiliated Hospital, China Medical University, Shenyang, Liaoning Province, China
| | - Yadong Zhang
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, USA.,Central Laboratory, The Central Hospital of Wuhan, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, China
| | - Yongju Lu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, USA
| | - Lori Battelli
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, USA
| | - Dale W Porter
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, USA
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, USA.,Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, USA
| |
Collapse
|
65
|
Learning from other diseases: protection and pathology in chronic fungal infections. Semin Immunopathol 2015; 38:239-48. [DOI: 10.1007/s00281-015-0523-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/18/2015] [Indexed: 12/11/2022]
|
66
|
Zelante T, Wong A, Ping T, Chen J, Sumatoh H, Viganò E, Hong Bing Y, Lee B, Zolezzi F, Fric J, Newell E, Mortellaro A, Poidinger M, Puccetti P, Ricciardi-Castagnoli P. CD103+ Dendritic Cells Control Th17 Cell Function in the Lung. Cell Rep 2015; 12:1789-801. [DOI: 10.1016/j.celrep.2015.08.030] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 06/17/2015] [Accepted: 08/07/2015] [Indexed: 11/29/2022] Open
|
67
|
Abstract
IDO1 (indoleamine 2,3-dioxygenase 1) is a member of a unique class of mammalian haem dioxygenases that catalyse the oxidative catabolism of the least-abundant essential amino acid, L-Trp (L-tryptophan), along the kynurenine pathway. Significant increases in knowledge have been recently gained with respect to understanding the fundamental biochemistry of IDO1 including its catalytic reaction mechanism, the scope of enzyme reactions it catalyses, the biochemical mechanisms controlling IDO1 expression and enzyme activity, and the discovery of enzyme inhibitors. Major advances in understanding the roles of IDO1 in physiology and disease have also been realised. IDO1 is recognised as a prominent immune regulatory enzyme capable of modulating immune cell activation status and phenotype via several molecular mechanisms including enzyme-dependent deprivation of L-Trp and its conversion into the aryl hydrocarbon receptor ligand kynurenine and other bioactive kynurenine pathway metabolites, or non-enzymatic cell signalling actions involving tyrosine phosphorylation of IDO1. Through these different modes of biochemical signalling, IDO1 regulates certain physiological functions (e.g. pregnancy) and modulates the pathogenesis and severity of diverse conditions including chronic inflammation, infectious disease, allergic and autoimmune disorders, transplantation, neuropathology and cancer. In the present review, we detail the current understanding of IDO1’s catalytic actions and the biochemical mechanisms regulating IDO1 expression and activity. We also discuss the biological functions of IDO1 with a focus on the enzyme's immune-modulatory function, its medical implications in diverse pathological settings and its utility as a therapeutic target.
Collapse
|
68
|
McGuire JK. Regulatory T cells in cystic fibrosis lung disease. More answers, more questions. Am J Respir Crit Care Med 2015; 191:866-8. [PMID: 25876198 DOI: 10.1164/rccm.201502-0315ed] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- John K McGuire
- 1 Department of Pediatrics University of Washington School of Medicine Seattle, Washington
| |
Collapse
|
69
|
Hector A, Schäfer H, Pöschel S, Fischer A, Fritzsching B, Ralhan A, Carevic M, Öz H, Zundel S, Hogardt M, Bakele M, Rieber N, Riethmueller J, Graepler-Mainka U, Stahl M, Bender A, Frick JS, Mall M, Hartl D. Regulatory T-cell impairment in cystic fibrosis patients with chronic pseudomonas infection. Am J Respir Crit Care Med 2015; 191:914-23. [PMID: 25632992 DOI: 10.1164/rccm.201407-1381oc] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Patients with cystic fibrosis (CF) lung disease have chronic airway inflammation driven by disrupted balance of T-cell (Th17 and Th2) responses. Regulatory T cells (Tregs) dampen T-cell activation, but their role in CF is incompletely understood. OBJECTIVES To characterize numbers, function, and clinical impact of Tregs in CF lung disease. METHODS Tregs were quantified in peripheral blood and airway samples from patients with CF and from lung disease control patients without CF and healthy control subjects. The role of Pseudomonas aeruginosa and CF transmembrane conductance regulator (CFTR) in Treg regulation was analyzed by using in vitro and murine in vivo models. MEASUREMENTS AND MAIN RESULTS Tregs were decreased in peripheral blood and airways of patients with CF compared with healthy controls or lung disease patients without CF and correlated positively with lung function parameters. Patients with CF with chronic P. aeruginosa infection had lower Tregs compared with patients with CF without P. aeruginosa infection. Genetic knockout, pharmacological inhibition, and P. aeruginosa infection studies showed that both P. aeruginosa and CFTR contributed to Treg dysregulation in CF. Functionally, Tregs from patients with CF or from Cftr(-/-) mice were impaired in suppressing conventional T cells, an effect that was enhanced by P. aeruginosa infection. The loss of Tregs in CF affected memory, but not naive Tregs, and manifested gradually with disease progression. CONCLUSIONS Patients with CF who have chronic P. aeruginosa infection show an age-dependent, quantitative, and qualitative impairment of Tregs. Modulation of Tregs represents a novel strategy to rebalance T-cell responses, dampen inflammation, and ultimately improve outcomes for patients with infective CF lung disease.
Collapse
|
70
|
Ghorbani P, Santhakumar P, Hu Q, Djiadeu P, Wolever TM, Palaniyar N, Grasemann H. Short-chain fatty acids affect cystic fibrosis airway inflammation and bacterial growth. Eur Respir J 2015; 46:1033-45. [DOI: 10.1183/09031936.00143614] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 03/30/2015] [Indexed: 11/05/2022]
Abstract
The hypoxic environment of cystic fibrosis airways allows the persistence of facultative anaerobic bacteria, which can produce short-chain fatty acids (SCFAs) through fermentation. However, the relevance of SCFAs in cystic fibrosis lung disease is unknown. We show that SCFAs are present in sputum samples from cystic fibrosis patients in millimolar concentrations (mean±sem1.99±0.36 mM).SCFAs positively correlated with sputum neutrophil count and higher SCFAs were predictive for impaired nitric oxide production. We studied the effects of the SCFAs acetate, propionate and butyrate on airway inflammatory responses using epithelial cell lines and primary cell cultures. SCFAs in concentrations present in cystic fibrosis airways (0.5–2.5 mM) affected the release of granulocyte-macrophage colony-stimulating factor, granulocyte colony-stimulating factor and interleukin (IL)-6. SCFAs also resulted in higher IL-8 release from stimulated cystic fibrosis transmembrane conductance regulator (CFTR) F508del-mutant compared to wild-type CFTR-corrected bronchial epithelial cells. At 25 mM propionate reduced IL-8 release in control but not primary cystic fibrosis epithelial cells. Low (0.5–2.5 mM) SCFA concentrations increased, while high (25–50 mM) concentrations decreased inducible nitric oxide synthase expression. In addition, SCFAs affected the growth ofPseudomonas aeruginosain a concentration- and pH-dependent manner.Thus, our data suggest that SCFAs contribute to cystic fibrosis-specific alterations of responses to airway infection and inflammation.
Collapse
|
71
|
Cantin AM, Hartl D, Konstan MW, Chmiel JF. Inflammation in cystic fibrosis lung disease: Pathogenesis and therapy. J Cyst Fibros 2015; 14:419-30. [PMID: 25814049 DOI: 10.1016/j.jcf.2015.03.003] [Citation(s) in RCA: 328] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/08/2015] [Accepted: 03/08/2015] [Indexed: 11/16/2022]
Abstract
Lung disease is the major cause of morbidity and mortality in patients with cystic fibrosis (CF). Although CF lung disease is primarily an infectious disorder, the associated inflammation is both intense and ineffective at clearing pathogens. Persistent high-intensity inflammation leads to permanent structural damage of the CF airways and impaired lung function that eventually results in respiratory failure and death. Several defective inflammatory responses have been linked to cystic fibrosis transmembrane conductance regulator (CFTR) deficiency including innate and acquired immunity dysregulation, cell membrane lipid abnormalities, various transcription factor signaling defects, as well as altered kinase and toll-like receptor responses. The inflammation of the CF lung is dominated by neutrophils that release oxidants and proteases, particularly elastase. Neutrophil elastase in the CF airway secretions precedes the appearance of bronchiectasis, and correlates with lung function deterioration and respiratory exacerbations. Anti-inflammatory therapies are therefore of particular interest for CF lung disease but must be carefully studied to avoid suppressing critical elements of the inflammatory response and thus worsening infection. This review examines the role of inflammation in the pathogenesis of CF lung disease, summarizes the results of past clinical trials and explores promising new anti-inflammatory options.
Collapse
Affiliation(s)
- André M Cantin
- Pulmonary Division, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, Canada.
| | - Dominik Hartl
- CF Center, Children's Hospital of the University of Tübingen, Tübingen, Germany
| | - Michael W Konstan
- Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - James F Chmiel
- Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
72
|
IL-37 inhibits inflammasome activation and disease severity in murine aspergillosis. PLoS Pathog 2014; 10:e1004462. [PMID: 25375146 PMCID: PMC4223056 DOI: 10.1371/journal.ppat.1004462] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 09/10/2014] [Indexed: 12/19/2022] Open
Abstract
Since IL-37 transgenic mice possesses broad anti-inflammatory properties, we assessed whether recombinant IL-37 affects inflammation in a murine model of invasive pulmonary aspergillosis. Recombinant human IL-37 was injected intraperitoneally into mice prior to infection and the effects on lung inflammation and inflammasome activation were evaluated. IL-37 markedly reduced NLRP3-dependent neutrophil recruitment and steady state mRNA levels of IL-1β production and mitigated lung inflammation and damage in a relevant clinical model, namely aspergillosis in mice with cystic fibrosis. The anti-inflammatory activity of IL-37 requires the IL-1 family decoy receptor TIR-8/SIGIRR. Thus, by preventing activation of the NLRP3 inflammasome and reducing IL-1β secretion, IL-37 functions as a broad spectrum inhibitor of the innate response to infection-mediated inflammation, and could be considered to be therapeutic in reducing the pulmonary damage due to non-resolving Aspergillus infection and disease. IL-37, firstly identified by in silico research in the year 2000, is a member of the IL-1 family. The biological properties of IL-37 are mainly those of down-regulating inflammation in models of septic shock, chemical colitis, cardiac ischemia and contact dermatitis. Whether and how IL-37 down-regulates the inflammation of infection, and its consequences, is not known. We observed that IL-37 limits inflammation and disease severity in murine invasive aspergillosis, an infection model in which cytokines of the IL-1 family have important roles. However, given that IL-1R1-deficient or caspase 1-deficient mice are resistant to lung inflammation during infection and that IL-1 signaling could drive the differentiation of antifungal inflammatory Th17 cells, the pro-inflammatory properties of IL 1-induced inflammation in aspergillosis is potentially dangerous for the host. IL-37 markedly reduced NLRP3-dependent neutrophil recruitment and steady state mRNA levels of IL-1β production and mitigated lung inflammation and damage in a relevant clinical model, namely aspergillosis in mice with cystic fibrosis. The anti-inflammatory activity of IL-37 requires the IL-1 receptor family decoy TIR-8/SIGIRR. Thus, IL-37 functions as a broad spectrum inhibitor of infection-mediated inflammation, and could be considered to be therapeutic in reducing the pulmonary damage due to non-resolving Aspergillus infection and disease.
Collapse
|
73
|
Borghi M, Renga G, Puccetti M, Oikonomou V, Palmieri M, Galosi C, Bartoli A, Romani L. Antifungal Th Immunity: Growing up in Family. Front Immunol 2014; 5:506. [PMID: 25360137 PMCID: PMC4197763 DOI: 10.3389/fimmu.2014.00506] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 09/28/2014] [Indexed: 12/25/2022] Open
Abstract
Fungal diseases represent an important paradigm in immunology since they can result from either the lack of recognition or over-activation of the inflammatory response. Current understanding of the pathophysiology underlying fungal infections and diseases highlights the multiple cell populations and cell-signaling pathways involved in these conditions. A systems biology approach that integrates investigations of immunity at the systems-level is required to generate novel insights into this complexity and to decipher the dynamics of the host–fungus interaction. It is becoming clear that a three-way interaction between the host, microbiota, and fungi dictates the types of host–fungus relationship. Tryptophan metabolism helps support this interaction, being exploited by the mammalian host and commensals to increase fitness in response to fungi via resistance and tolerance mechanisms of antifungal immunity. The cellular and molecular mechanisms that provide immune homeostasis with the fungal biota and its possible rupture in fungal infections and diseases will be discussed within the expanding role of antifungal Th cell responses.
Collapse
Affiliation(s)
- Monica Borghi
- Pathology Section, Department of Experimental Medicine, University of Perugia , Perugia , Italy
| | - Giorgia Renga
- Pathology Section, Department of Experimental Medicine, University of Perugia , Perugia , Italy
| | | | - Vasileios Oikonomou
- Pathology Section, Department of Experimental Medicine, University of Perugia , Perugia , Italy
| | - Melissa Palmieri
- Pathology Section, Department of Experimental Medicine, University of Perugia , Perugia , Italy
| | - Claudia Galosi
- Pathology Section, Department of Experimental Medicine, University of Perugia , Perugia , Italy
| | - Andrea Bartoli
- Pathology Section, Department of Experimental Medicine, University of Perugia , Perugia , Italy
| | - Luigina Romani
- Pathology Section, Department of Experimental Medicine, University of Perugia , Perugia , Italy
| |
Collapse
|
74
|
Affiliation(s)
- Manu Jain
- 1 Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | | |
Collapse
|
75
|
Genestet C, Le Gouellec A, Chaker H, Polack B, Guery B, Toussaint B, Stasia MJ. Scavenging of reactive oxygen species by tryptophan metabolites helps Pseudomonas aeruginosa escape neutrophil killing. Free Radic Biol Med 2014; 73:400-10. [PMID: 24929180 DOI: 10.1016/j.freeradbiomed.2014.06.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 10/25/2022]
Abstract
Pseudomonas aeruginosa is responsible for persistent infections in cystic fibrosis patients, suggesting an ability to circumvent innate immune defenses. This bacterium uses the kynurenine pathway to catabolize tryptophan. Interestingly, many host cells also produce kynurenine, which is known to control immune system homeostasis. We showed that most strains of P. aeruginosa isolated from cystic fibrosis patients produce a high level of kynurenine. Moreover, a strong transcriptional activation of kynA (the first gene involved in the kynurenine pathway) was observed upon contact with immune cells and particularly with neutrophils. In addition, using coculture of human neutrophils with various strains of P. aeruginosa producing no (ΔkynA) or a high level of kynurenine (ΔkynU or ΔkynA pkynA), we demonstrated that kynurenine promotes bacterial survival. In addition, increasing the amount kynurenine inhibits reactive oxygen species production by activated neutrophils, as evaluated by chemiluminescence with luminol or isoluminol or SOD-sensitive cytochrome c reduction assay. This inhibition is due neither to a phagocytosis defect nor to direct NADPH oxidase inhibition. Indeed, kynurenine has no effect on oxygen consumption by neutrophils activated by PMA or opsonized zymosan. Using in vitro reactive oxygen species-producing systems, we showed that kynurenine scavenges hydrogen peroxide and, to a lesser extent, superoxide. Kynurenine׳s scavenging effect occurs mainly intracellularly after bacterial stimulation, probably in the phagosome. In conclusion, the kynurenine pathway allows P. aeruginosa to circumvent the innate immune response by scavenging neutrophil reactive oxygen species production.
Collapse
Affiliation(s)
- Charlotte Genestet
- TIMC/Therex Laboratory, UMR 5525 (CNRS-UJF), Faculty of Medicine, University of Grenoble Alpes, Grenoble F-38041, France
| | - Audrey Le Gouellec
- TIMC/Therex Laboratory, UMR 5525 (CNRS-UJF), Faculty of Medicine, University of Grenoble Alpes, Grenoble F-38041, France
| | - Hichem Chaker
- TIMC/Therex Laboratory, UMR 5525 (CNRS-UJF), Faculty of Medicine, University of Grenoble Alpes, Grenoble F-38041, France
| | - Benoit Polack
- TIMC/Therex Laboratory, UMR 5525 (CNRS-UJF), Faculty of Medicine, University of Grenoble Alpes, Grenoble F-38041, France
| | - Benoit Guery
- Recherche translationnelle hôte pathogène, Université Lille 2, Faculté de Médecine, CHRU, Lille, France
| | - Bertrand Toussaint
- TIMC/Therex Laboratory, UMR 5525 (CNRS-UJF), Faculty of Medicine, University of Grenoble Alpes, Grenoble F-38041, France
| | - Marie José Stasia
- TIMC/Therex Laboratory, UMR 5525 (CNRS-UJF), Faculty of Medicine, University of Grenoble Alpes, Grenoble F-38041, France; Chronic Granulomatous Disease Diagnosis and Research Center, Pôle Biologie, CHU de Grenoble, Grenoble F-38043, France.
| |
Collapse
|
76
|
Bozza S, Campo S, Arseni B, Inforzato A, Ragnar L, Bottazzi B, Mantovani A, Moretti S, Oikonomous V, De Santis R, Carvalho A, Salvatori G, Romani L. PTX3 Binds MD-2 and Promotes TRIF-Dependent Immune Protection in Aspergillosis. THE JOURNAL OF IMMUNOLOGY 2014; 193:2340-8. [DOI: 10.4049/jimmunol.1400814] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
77
|
Ziai S, Coriati A, Gauthier MS, Rabasa-Lhoret R, Richter MV. Could T cells be involved in lung deterioration and hyperglycemia in cystic fibrosis? Diabetes Res Clin Pract 2014; 105:22-9. [PMID: 24731255 DOI: 10.1016/j.diabres.2014.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/20/2014] [Accepted: 03/03/2014] [Indexed: 12/17/2022]
Abstract
Cystic fibrosis-related diabetes (CFRD) is the most frequent complication of cystic fibrosis (CF) and associated with increased mortality. Why patients have an accelerated loss of lung function before the diagnosis of CFRD remains poorly understood. We reported that patients with or without CFRD had increased glucose excursions when compared to healthy peers. Studies have demonstrated that patients with CF have increased glucose fluctuations and hyperglycemia and that this may affect the clinical course of CF and lead to lymphocyte dysfunction. T-helper 17 (Th17) lymphocytes produce and secrete the pro-inflammatory cytokine IL-17. The Th17 pathway is involved in CF lung inflammation, β-cell destruction in type 1 diabetes (T1D) and Th17 cells of patients with type 2 diabetes have increased production of IL-17 when compared to healthy peers. Also, regulatory T-cells (Tregs) have been shown to be dysfunctional and produce IL-17 in T1D. Furthermore, vitamin D can affect inflammation in CF, diabetes and the differentiation of lymphocytes. In this review, we discuss the potential roles of hyperglycemia on Th17 cells, Tregs and IL-17 as a potential cause for accelerated lung function decline before CFRD and how this could be modulated by vitamin D or by directly intervening in the IL-17A pathway.
Collapse
Affiliation(s)
- S Ziai
- Nutrition Department, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada; Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - A Coriati
- Nutrition Department, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada; Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - M-S Gauthier
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - R Rabasa-Lhoret
- Nutrition Department, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada; Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada; Montreal Diabetes Research Centre (MDRC), Montréal, Québec, Canada; Cystic Fibrosis Clinic, Centre Hospitalier de l'Université de Montréal (CHUM) & CHUM Research Center (CR-CHUM), Montréal, Québec, Canada
| | - M V Richter
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
78
|
Xiao Y, Christou H, Liu L, Visner G, Mitsialis SA, Kourembanas S, Liu H. Endothelial indoleamine 2,3-dioxygenase protects against development of pulmonary hypertension. Am J Respir Crit Care Med 2014; 188:482-91. [PMID: 23822766 DOI: 10.1164/rccm.201304-0700oc] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
RATIONALE A proliferative and apoptosis-resistant phenotype in pulmonary arterial smooth muscle cells (PASMCs) is key to pathologic vascular remodeling in pulmonary hypertension (PH). Expression of indoleamine-2,3-dioxygenase (IDO) by vascular endothelium is a newly identified vasomotor-regulatory mechanism also involved in molecular signaling cascades governing vascular smooth muscle cell (vSMC) plasticity. OBJECTIVES To investigate the therapeutic potential of enhanced endothelial IDO in development of PH and its associated vascular remodeling. METHODS We used loss and gain of function in vivo studies to establish the role and determine the therapeutic effect of endothelial IDO in hypoxia-induced PH in mice and monocrotaline-induced PH in rats. We also studied PASMC phenotype in an IDO-high in vivo and in vitro tissue microenvironment. MEASUREMENTS AND MAIN RESULTS The endothelium was the primary site for endogenous IDO production within mouse lung, and the mice lacking this gene had exaggerated hypoxia-induced PH. Conversely, augmented pulmonary endothelial IDO expression, through a human IDO-encoding Sleeping Beauty (SB)-based nonviral gene-integrating approach, halted and attenuated the development of PH, right ventricular hypertrophy, and vascular remodeling in both preclinical models of PH. IDO derived from endothelial cells promoted apoptosis in PH-PASMCs through depolarization of mitochondrial transmembrane potential and down-regulated PH-PASMC proliferative/synthetic capacity through enhanced binding of myocardin to CArG box DNA sequences present within the promoters of vSMC differentiation-specific genes. CONCLUSIONS Enhanced endothelial IDO ameliorates PH and its associated vascular structural remodeling through paracrine phenotypic modulation of PH-PASMCs toward a proapoptotic and less proliferative/synthetic state.
Collapse
Affiliation(s)
- Yongguang Xiao
- Department of Surgery, Boston Children’s Hospital, Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|
79
|
Iannitti RG, Casagrande A, De Luca A, Cunha C, Sorci G, Riuzzi F, Borghi M, Galosi C, Massi-Benedetti C, Oury TD, Cariani L, Russo M, Porcaro L, Colombo C, Majo F, Lucidi V, Fiscarelli E, Ricciotti G, Lass-Flörl C, Ratclif L, Esposito A, De Benedictis FM, Donato R, Carvalho A, Romani L. Hypoxia promotes danger-mediated inflammation via receptor for advanced glycation end products in cystic fibrosis. Am J Respir Crit Care Med 2014; 188:1338-50. [PMID: 24127697 DOI: 10.1164/rccm.201305-0986oc] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
RATIONALE Hypoxia regulates the inflammatory-antiinflammatory balance by the receptor for advanced glycation end products (RAGE), a versatile sensor of damage-associated molecular patterns. The multiligand nature of RAGE places this receptor in the midst of chronic inflammatory diseases. OBJECTIVES To characterize the impact of the hypoxia-RAGE pathway on pathogenic airway inflammation preventing effective pathogen clearance in cystic fibrosis (CF) and elucidate the potential role of this danger signal in pathogenesis and therapy of lung inflammation. METHODS We used in vivo and in vitro models to study the impact of hypoxia on RAGE expression and activity in human and murine CF, the nature of the RAGE ligand, and the impact of RAGE on lung inflammation and antimicrobial resistance in fungal and bacterial pneumonia. MEASUREMENTS AND MAIN RESULTS Sustained expression of RAGE and its ligand S100B was observed in murine lung and human epithelial cells and exerted a proximal role in promoting inflammation in murine and human CF, as revealed by functional studies and analysis of the genetic variability of AGER in patients with CF. Both hypoxia and infections contributed to the sustained activation of the S100B-RAGE pathway, being RAGE up-regulated by hypoxia and S100B by infection by Toll-like receptors. Inhibiting the RAGE pathway in vivo with soluble (s) RAGE reduced pathogen load and inflammation in experimental CF, whereas sRAGE production was defective in patients with CF. CONCLUSIONS A causal link between hyperactivation of RAGE and inflammation in CF has been observed, such that targeting pathogenic inflammation alleviated inflammation in CF and measurement of sRAGE levels could be a useful biomarker for RAGE-dependent inflammation in patients with CF.
Collapse
Affiliation(s)
- Rossana G Iannitti
- 1 Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Abstract
The Th17 pathway has recently been shown to play a critical role in host defense, allergic responses and autoimmune inflammation. Th17 cells predominantly produce IL-17 and IL-22, which are two cytokines with broad effects in the lung and other tissues. This review summarizes not only what is currently known about the molecular regulation of this pathway and Th17-related cytokine signaling, but also the roles of these cytokines in pathogen immunity and asthma. In the last 5 years, the Th17 field has rapidly grown and research has revealed that the Th17 pathway is essential in lung pathogenesis in response to exogenous stimuli. As work in the field continues, it is expected that many exciting therapeutic advances will be made for a broad range of diseases.
Collapse
Affiliation(s)
- Michelle L Manni
- Department of Pediatrics, Division of Pulmonary Medicine, Allergy, and Immunology, Children’s Hospital of Pittsburgh of UPMC, One Children’s Hospital, Dr, 9127 Rangos, 4401 Penn Ave., Pittsburgh, PA 15224, USA
| | - Keven M Robinson
- Department of Pediatrics, Division of Pulmonary Medicine, Allergy, and Immunology, Children’s Hospital of Pittsburgh of UPMC, One Children’s Hospital, Dr, 9127 Rangos, 4401 Penn Ave., Pittsburgh, PA 15224, USA
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - John F Alcorn
- Department of Pediatrics, Division of Pulmonary Medicine, Allergy, and Immunology, Children’s Hospital of Pittsburgh of UPMC, One Children’s Hospital, Dr, 9127 Rangos, 4401 Penn Ave., Pittsburgh, PA 15224, USA
| |
Collapse
|
81
|
Kushwah R, Gagnon S, Sweezey NB. Intrinsic predisposition of naïve cystic fibrosis T cells to differentiate towards a Th17 phenotype. Respir Res 2013; 14:138. [PMID: 24344776 PMCID: PMC3890528 DOI: 10.1186/1465-9921-14-138] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 12/13/2013] [Indexed: 01/04/2023] Open
Abstract
Background Cystic fibrosis (CF) is a complex, multi-system, life-shortening, autosomal recessive disease most common among Caucasians. Pulmonary pathology, the major cause of morbidity and mortality in CF, is characterized by dysregulation of cytokines and a vicious cycle of infection and inflammation. This cycle causes a progressive decline in lung function, eventually resulting in respiratory failure and death. The Th17 immune response plays an active role in the pathogenesis of CF pulmonary pathology, but it is not known whether the pathophysiology of CF disease contributes to a heightened Th17 response or whether CF naïve CD4+ T lymphocytes (Th0 cells) intrinsically have a heightened predisposition to Th17 differentiation. Methods To address this question, Th0 cells were isolated from the peripheral blood of CF mice, human CF subjects and corresponding controls. Murine Th0 cells were isolated from single spleen cell suspensions using fluorescence-activated cell sorting. Lymphocytes from human buffy coats were isolated by gradient centrifugation and Th0 cells were further isolated using a human naïve T cell isolation kit. Th0 cells were then assessed for their capacity to differentiate along Th17, Th1 or Treg lineages in response to corresponding cytokine stimulation. The T cell responses of human peripheral blood cells were also assessed ex vivo using flow cytometry. Results Here we identify in both mouse and human CF an intrinsically enhanced predisposition of Th0 cells to differentiate towards a Th17 phenotype, while having a normal propensity for differentiation into Th1 and Treg lineages. Furthermore, we identify an active Th17 response in the peripheral blood of human CF subjects. Conclusions We propose that these novel observations offer an explanation, at least in part, for the known increased Th17-associated inflammation of CF and the early signs of inflammation in CF lungs before any evidence of infection. Moreover, these findings point towards direct modulation of T cell responses as a novel potential therapeutic strategy for combating excessive inflammation in CF.
Collapse
Affiliation(s)
| | | | - Neil B Sweezey
- Physiology and Experimental Medicine, Research Institute, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8.
| |
Collapse
|
82
|
Robinson KM, Alcorn JF. T-Cell Immunotherapy in Cystic Fibrosis. Am J Respir Crit Care Med 2013; 187:564-6. [DOI: 10.1164/rccm.201212-2201ed] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|