51
|
Fonte P, Araújo F, Silva C, Pereira C, Reis S, Santos HA, Sarmento B. Polymer-based nanoparticles for oral insulin delivery: Revisited approaches. Biotechnol Adv 2015; 33:1342-54. [PMID: 25728065 DOI: 10.1016/j.biotechadv.2015.02.010] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/29/2014] [Accepted: 02/18/2015] [Indexed: 10/23/2022]
Abstract
Diabetes mellitus is a high prevalence and one of the most severe and lethal diseases in the world. Insulin is commonly used to treat diabetes in order to give patients a better life condition. However, due to bioavailability problems, the most common route of insulin administration is the subcutaneous route, which may present patients compliance problems to treatment. The oral administration is thus considered the most convenient alternative to deliver insulin, but it faces important challenges. The low stability of insulin in the gastrointestinal tract and low intestinal permeation, are problems to overcome. Therefore, the encapsulation of insulin into polymer-based nanoparticles is presented as a good strategy to improve insulin oral bioavailability. In the last years, different strategies and polymers have been used to encapsulate insulin and deliver it orally. Polymers with distinct properties from natural or synthetic sources have been used to achieve this aim, and among them may be found chitosan, dextran, alginate, poly(γ-glutamic acid), hyaluronic acid, poly(lactic acid), poly(lactide-co-glycolic acid), polycaprolactone (PCL), acrylic polymers and polyallylamine. Promising studies have been developed and positive results were obtained, but there is not a polymeric-based nanoparticle system to deliver insulin orally available in the market yet. There is also a lack of long term toxicity studies about the safety of the developed carriers. Thus, the aims of this review are first to provide a deep understanding on the oral delivery of insulin and the possible routes for its uptake, and then to overview the evolution of this field in the last years of research of insulin-loaded polymer-based nanoparticles in the academic and industrial fields. Toxicity concerns of the discussed nanocarriers are also addressed.
Collapse
Affiliation(s)
- Pedro Fonte
- REQUINTE, Department of Chemical Sciences-Applied Chemistry Lab, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra PRD, Portugal
| | - Francisca Araújo
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra PRD, Portugal; ICBAS-Instituto Ciências Biomédicas Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; INEB-Instituto de Engenharia Biomédica, University of Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal; Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, FI-00014 University of Helsinki, Finland
| | - Cátia Silva
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra PRD, Portugal
| | - Carla Pereira
- INEB-Instituto de Engenharia Biomédica, University of Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Salette Reis
- REQUINTE, Department of Chemical Sciences-Applied Chemistry Lab, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Hélder A Santos
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, FI-00014 University of Helsinki, Finland
| | - Bruno Sarmento
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra PRD, Portugal; INEB-Instituto de Engenharia Biomédica, University of Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal.
| |
Collapse
|
52
|
Mudassir J, Darwis Y, Khiang PK. Prerequisite Characteristics of Nanocarriers Favoring Oral Insulin Delivery: Nanogels as an Opportunity. INT J POLYM MATER PO 2014. [DOI: 10.1080/00914037.2014.921919] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
53
|
Nouri M, Bredberg A, Weström B, Lavasani S. Intestinal barrier dysfunction develops at the onset of experimental autoimmune encephalomyelitis, and can be induced by adoptive transfer of auto-reactive T cells. PLoS One 2014; 9:e106335. [PMID: 25184418 PMCID: PMC4153638 DOI: 10.1371/journal.pone.0106335] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 08/05/2014] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system with a pathogenesis involving a dysfunctional blood-brain barrier and myelin-specific, autoreactive T cells. Although the commensal microbiota seems to affect its pathogenesis, regulation of the interactions between luminal antigens and mucosal immune elements remains unclear. Herein, we investigated whether the intestinal mucosal barrier is also targeted in this disease. Experimental autoimmune encephalomyelitis (EAE), the prototypic animal model of MS, was induced either by active immunization or by adoptive transfer of autoreactive T cells isolated from these mice. We show increased intestinal permeability, overexpression of the tight junction protein zonulin and alterations in intestinal morphology (increased crypt depth and thickness of the submucosa and muscularis layers). These intestinal manifestations were seen at 7 days (i.e., preceding the onset of neurological symptoms) and at 14 days (i.e., at the stage of paralysis) after immunization. We also demonstrate an increased infiltration of proinflammatory Th1/Th17 cells and a reduced regulatory T cell number in the gut lamina propria, Peyer's patches and mesenteric lymph nodes. Adoptive transfer to healthy mice of encephalitogenic T cells, isolated from EAE-diseased animals, led to intestinal changes similar to those resulting from the immunization procedure. Our findings show that disruption of intestinal homeostasis is an early and immune-mediated event in EAE. We propose that this intestinal dysfunction may act to support disease progression, and thus represent a potential therapeutic target in MS. In particular, an increased understanding of the regulation of tight junctions at the blood-brain barrier and in the intestinal wall may be crucial for design of future innovative therapies.
Collapse
Affiliation(s)
- Mehrnaz Nouri
- Department of Clinical Sciences, Clinical Research Centre, Surgery Research Unit, Lund University, Malmö, Sweden
- Department of Biology, Lund University, Lund, Sweden
| | - Anders Bredberg
- ImmuneBiotech AB, Lund Life Science Incubator, Medicon Village, Lund, Sweden
- Department of Laboratory Medicine, Section of Medical Microbiology, Lund University, Malmö, Sweden
| | - Björn Weström
- Department of Biology, Lund University, Lund, Sweden
| | - Shahram Lavasani
- Department of Biology, Lund University, Lund, Sweden
- ImmuneBiotech AB, Lund Life Science Incubator, Medicon Village, Lund, Sweden
| |
Collapse
|
54
|
Kuppusamy P, Yusoff MM, Maniam GP, Ichwan SJA, Soundharrajan I, Govindan N. Nutraceuticals as potential therapeutic agents for colon cancer: a review. Acta Pharm Sin B 2014; 4:173-81. [PMID: 26579381 PMCID: PMC4629076 DOI: 10.1016/j.apsb.2014.04.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 01/14/2014] [Accepted: 03/27/2014] [Indexed: 12/27/2022] Open
Abstract
Colon cancer is a world-wide health problem and the second-most dangerous type of cancer, affecting both men and women. The modern diet and lifestyles, with high meat consumption and excessive alcohol use, along with limited physical activity has led to an increasing mortality rate for colon cancer worldwide. As a result, there is a need to develop novel and environmentally benign drug therapies for colon cancer. Currently, nutraceuticals play an increasingly important role in the treatment of various chronic diseases such as colon cancer, diabetes and Alzheimer׳s disease. Nutraceuticals are derived from various natural sources such as medicinal plants, marine organisms, vegetables and fruits. Nutraceuticals have shown the potential to reduce the risk of colon cancer and slow its progression. These dietary substances target different molecular aspects of colon cancer development. Accordingly, this review briefly discusses the medicinal importance of nutraceuticals and their ability to reduce the risk of colorectal carcinogenesis.
Collapse
Key Words
- 5-FU, 5-fluorouracil
- ACC, acetyl CoA carboxylase
- ACF, aberrant crypt foci
- ACL, ATP-citrate lyase
- ASTX, astaxanthin
- COX-2, cyclooxygenase 2
- Colon cancer
- DHA, decahexaenoic acid
- DMH, 1,2-dimethylhydrazine
- DR, death receptor
- EGCG, epigallocatechingallate
- EPA, eicosapentaenoic acid
- FAS, fatty acid synthase
- GADD, growth arrest and DNA damage
- HMG-CoA, 3-hydroxy-3-methyl-glutaryl CoA
- HUVEC, human umbilical vein endothelial cell
- IGF, insulin-like growth factor
- IL, interleukin
- LDH, lactate dehydrogenase
- MMP, matrix metallo-proteins
- Marine organisms
- NF-κB, nuclear factor-kappa B
- Nutraceuticals
- PRAP, prolactin receptor associated protein
- Plant derivatives
- TCA, tricarboxylic acid cycle
- TNF, tumor necrosis factor
- TRAIL, tumor necrosis factor-related apoptosis-induced ligand
- Therapeutics
- VEGF, vascular endothelial growth factor
Collapse
Affiliation(s)
- Palaniselvam Kuppusamy
- Mammalian Cell Technology Laboratory, Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak 26300, Gambang, Kuantan, Pahang, Malaysia
| | - Mashitah M. Yusoff
- Mammalian Cell Technology Laboratory, Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak 26300, Gambang, Kuantan, Pahang, Malaysia
| | - Gaanty Pragas Maniam
- Mammalian Cell Technology Laboratory, Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak 26300, Gambang, Kuantan, Pahang, Malaysia
| | | | - Ilavenil Soundharrajan
- Department of Biochemistry, National Institute of Animal Science, Suwon-si, Gyeonggi-do 441706, South Korea
| | - Natanamurugaraj Govindan
- Mammalian Cell Technology Laboratory, Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak 26300, Gambang, Kuantan, Pahang, Malaysia
| |
Collapse
|
55
|
Abstract
Delivery of peptides by the oral route greatly appeals due to commercial, patient convenience and scientific arguments. While there are over 60 injectable peptides marketed worldwide, and many more in development, most delivery strategies do not yet adequately overcome the barriers to oral delivery. Peptides are sensitive to chemical and enzymatic degradation in the intestine, and are poorly permeable across the intestinal epithelium due to sub-optimal physicochemical properties. A successful oral peptide delivery technology should protect potent peptides from presystemic degradation and improve epithelial permeation to achieve a target oral bioavailability with acceptable intra-subject variability. This review provides a comprehensive up-to-date overview of the current status of oral peptide delivery with an emphasis on patented formulations that are yielding promising clinical data.
Collapse
|
56
|
Alvi MM, Chatterjee P. A prospective analysis of co-processed non-ionic surfactants in enhancing permeability of a model hydrophilic drug. AAPS PharmSciTech 2014; 15:339-53. [PMID: 24357111 DOI: 10.1208/s12249-013-0065-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 11/20/2013] [Indexed: 11/30/2022] Open
Abstract
Paracellular route is a natural pathway for the transport of many hydrophilic drugs and macromolecules. The purpose of this study was to prospectively evaluate the ability of novel co-processed non-ionic surfactants to enhance the paracellular permeability of a model hydrophilic drug metformin using Caco-2 (human colonic adenocarcinoma) cell model. A three-tier screen was undertaken to evaluate the co-processed blends based on cytotoxicity, cellular integrity, and permeability coefficient. The relative contribution of the paracellular and the transcellular route in overall transport of metformin by co-processed blends was determined. Immunocytochemistry was conducted to determine the distribution of tight-junction protein claudin-1 after incubation with the co-processed blends. It was found that novel blends of Labrasol and Transcutol-P enhanced metformin permeability by approximately twofold with transient reduction in the transepithelia electrical resistance (TEER) and minimal cytotoxicity compared with the control, with the paracellular pathway as the major route of metformin transport. Maximum permeability of metformin (∼10-fold) was mediated by Tween-20 blends along with >75% reduction in the TEER which was irreversible over 24-h period. A shift in metformin transport from the paracellular to the transcellular route was observed with some Tween-20 blends. Immunocytochemical analysis revealed rearrangement of the cellular borders and fragmentation on treatment with Tween-20 blends. In conclusion, cytotoxicity, cellular integrity, and permeability of the hydrophilic drugs can be greatly influenced by the polyoxyethylene residues and medium chain fatty acids in the non-ionic surfactants at clinically relevant concentrations and therefore should be thoroughly investigated prior to their inclusion in formulations.
Collapse
|
57
|
Saaber D, Wollenhaupt S, Baumann K, Reichl S. Recent progress in tight junction modulation for improving bioavailability. Expert Opin Drug Discov 2014; 9:367-81. [PMID: 24558958 DOI: 10.1517/17460441.2014.892070] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Currently, there are many novel drugs that belong to class III or IV of the Biopharmaceutics Classification System, showing low bioavailability. Tight junction (TJ) modulation offers an approach to increase bioavailability of pharmaceutical compounds. Furthermore, some diseases are accompanied by disturbed barrier function or TJ dysregulation and thus represent a second application for TJ modulators. AREAS COVERED This review contains a summary of three different TJ modulators: AT1002, PN159 and labradimil. Within this summary, the authors provide a description of their effects on TJs, their adverse effects and their success in clinical trials. Furthermore, the authors present the current understanding of TJ regulation and highlight opportunities to develop new TJ modulators; they also review the problems that might occur. EXPERT OPINION The development of new mechanism-based (MB) TJ modulators is a very promising field of research. MB approaches are expected to have the best future prospects. Further elucidation of signaling pathways and TJ regulation will be necessary for advancing MB TJ modulator research.
Collapse
Affiliation(s)
- Daniel Saaber
- Technische Universität Braunschweig, Institut für Pharmazeutische Technologie , Mendelssohnstr. 1, Braunschweig 38106 , Germany
| | | | | | | |
Collapse
|
58
|
Gundogdu E, Yurdasiper A. Drug transport mechanism of oral antidiabetic nanomedicines. Int J Endocrinol Metab 2014; 12:e8984. [PMID: 24696697 PMCID: PMC3968979 DOI: 10.5812/ijem.8984] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 04/08/2013] [Accepted: 05/05/2013] [Indexed: 11/22/2022] Open
Abstract
CONTEXT Over the last few decades, extensive efforts have been made worldwide to develop nanomedicine delivery systems, especially via oral route for antidiabetic drugs. Absorption of insulin is hindered by epithelial cells of gastrointestinal tract, acidic gastric pH and digestive enzymes. EVIDENCE ACQUISITION Recent reports have identified and explained the beneficial role of several structural molecules like mucoadhesive polymers (polyacrylic acid, sodium alginate, chitosan) and other copolymers for the efficient transport and release of insulin to its receptors. RESULTS Insulin nanomedicines based on alginate-dextran sulfate core with a chitosan-polyethylene glycol-albumin shell reduced glycaemia in a dose dependent manner. Orally available exendin-4 formulations exerted their effects in a time dependent manner. Insulin nanoparticles formed by using alginate and dextran sulfate nucleating around calcium and binding to poloxamer, stabilized by chitosan, and subsequently coated with albumin showed a threefold increase of the hypoglycemic effect in comparison to free insulin in animal models. Solid lipid nanoparticles showed an enhancement of the bioavailability of repaglinide (RG) within optimized solid lipid nanoparticle formulations when compared with RG alone. CONCLUSIONS Nanoparticles represent multiparticulate delivery systems designed to obtain prolonged or controlled drug delivery and to improve bioavailability as well as stability. Nanoparticles can also offer advantages like limiting fluctuations within therapeutic range, reducing side effects, protecting drugs from degradation, decreasing dosing frequency, and improving patient compliance and convenience.
Collapse
Affiliation(s)
- Evren Gundogdu
- Department of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, Ege University, Izmir, Turkey
- Corresponding author: Evren Gundogdu, Department of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, Ege University, Izmir, Turkey. Tel.: +90-2323884000, Fax: +90-2323885258, E-mail:
| | - Aysu Yurdasiper
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| |
Collapse
|
59
|
Vanuytsel T, Vermeire S, Cleynen I. The role of Haptoglobin and its related protein, Zonulin, in inflammatory bowel disease. Tissue Barriers 2013; 1:e27321. [PMID: 24868498 DOI: 10.4161/tisb.27321] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 11/22/2013] [Accepted: 11/22/2013] [Indexed: 02/08/2023] Open
Abstract
Crohn's disease (CD) and ulcerative colitis (UC), collectively called inflammatory bowel disease (IBD), are immune-mediated conditions characterized by a chronic inflammation of the gut. Their precise etiology is unknown, although an increased intestinal permeability has been shown to play a central role in the pathogenesis of IBD. The intestinal epithelium provides the largest interface between the external environment and the host, and is thus a crucial regulation site of innate and adaptive immunity. Zonulin is one of the few known physiological mediators of paracellular intestinal permeability. It was found upregulated in different immune diseases like Celiac disease and Type 1 Diabetes (T1D). Recently, human zonulin was identified as prehaptoglobin-2 (pre-HP2) which before only had been regarded as the inactive precursor for HP2. Haptoglobin (HP) is a hemoglobin-binding protein with immunomodulatory properties. Its gene harbors a common polymorphism with 2 different alleles: HP1 and HP2. Allele HP2 and genotype HP22 has been shown to be overrepresented in different immune diseases like Rheumatoid Arthritis (RA), Systemic Lupus Erythematosus (SLE) and T1D, and has also been found to be more frequent in patients with IBD (UC and CD) than in healthy controls. In order to get some clues about the mechanism of action of HP(2) in IBD pathogenesis, we here review the current state of knowledge about zonulin and haptoglobin structure and function, and their plausible role in immune mediated diseases with an emphasis on IBD.
Collapse
Affiliation(s)
- Tim Vanuytsel
- Department of Clinical and Experimental Medicine; TARGID; KU Leuven
| | | | - Isabelle Cleynen
- Department of Clinical and Experimental Medicine; TARGID; KU Leuven
| |
Collapse
|
60
|
Bruno BJ, Miller GD, Lim CS. Basics and recent advances in peptide and protein drug delivery. Ther Deliv 2013; 4:1443-67. [PMID: 24228993 PMCID: PMC3956587 DOI: 10.4155/tde.13.104] [Citation(s) in RCA: 505] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
While the peptide and protein therapeutic market has developed significantly in the past decades, delivery has limited their use. Although oral delivery is preferred, most are currently delivered intravenously or subcutaneously due to degradation and limited absorption in the gastrointestinal tract. Therefore, absorption enhancers, enzyme inhibitors, carrier systems and stability enhancers are being studied to facilitate oral peptide delivery. Additionally, transdermal peptide delivery avoids the issues of the gastrointestinal tract, but also faces absorption limitations. Due to proteases, opsonization and agglutination, free peptides are not systemically stable without modifications. This review discusses oral and transdermal peptide drug delivery, focusing on barriers and solutions to absorption and stability issues. Methods to increase systemic stability and site-specific delivery are also discussed.
Collapse
Affiliation(s)
- Benjamin J Bruno
- Department of Pharmaceutics & Pharmaceutical Chemistry, College of
Pharmacy, University of Utah. 30 South 2000 East, Room 301, Salt Lake City, UT
84112, USA
| | - Geoffrey D Miller
- Department of Pharmaceutics & Pharmaceutical Chemistry, College of
Pharmacy, University of Utah. 30 South 2000 East, Room 301, Salt Lake City, UT
84112, USA
| | - Carol S Lim
- Department of Pharmaceutics & Pharmaceutical Chemistry, College of
Pharmacy, University of Utah. 30 South 2000 East, Room 301, Salt Lake City, UT
84112, USA
| |
Collapse
|
61
|
Annaházi A, Ferrier L, Bézirard V, Lévêque M, Eutamène H, Ait-Belgnaoui A, Coëffier M, Ducrotté P, Róka R, Inczefi O, Gecse K, Rosztóczy A, Molnár T, Ringel-Kulka T, Ringel Y, Piche T, Theodorou V, Wittmann T, Bueno L. Luminal cysteine-proteases degrade colonic tight junction structure and are responsible for abdominal pain in constipation-predominant IBS. Am J Gastroenterol 2013; 108:1322-1331. [PMID: 23711626 DOI: 10.1038/ajg.2013.152] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 04/22/2013] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Luminal serine-proteases lead to increased colonic paracellular permeability and visceral hypersensitivity in patients with diarrhea-predominant irritable bowel syndrome (IBS-D). Other proteases, namely cysteine-proteases (CPs), increase airway permeability by digesting epithelial tight junction proteins. In this study, we focused on constipation-predominant IBS (IBS-C) and we aimed to (i) evaluate CP levels in two cohorts of IBS patients, (ii) test if IBS-C fecal supernatant (FSN) affects permeability, and visceral sensitivity after repeated administrations in mice, and (iii) evaluate occludin expression in IBS-C colonic biopsies. METHODS Fecal CP activity was determined using selective substrate and inhibitor (E64). The effect of papain, as positive control, and IBS-C FSN administrations were evaluated on colonic paracellular permeability and mucosal occludin levels in mice and T84 monolayers. Occludin protein levels were evaluated in IBS-C colonic biopsies. Sensitivity to colorectal distension (CRD) was measured after repeated administrations of IBS-C FSN. RESULTS We found in a subset of IBS-C patients an enhanced fecal CP activity, in comparison with healthy controls and IBS-D patients. CP activity levels positively correlated with disease severity and abdominal pain scoring. This association was confirmed by receiver operating characteristic curve analysis. In mice, repeated application of IBS-C FSN into colon triggered increased permeability, linked to the enzymatic degradation of occludin, and was associated with enhanced visceral sensitivity to CRD. Finally, occludin levels were found decreased in colonic biopsies from IBS-C patients, and IBS-C FSNs were able to degrade recombinant human occludin in vitro. All these effects were abolished by preincubation of IBS-C FSN with a CP inhibitor, E64. CONCLUSIONS These data suggest that luminal CPs may represent a new factor contributing to the genesis of symptoms in IBS.
Collapse
Affiliation(s)
- Anita Annaházi
- INRA, UMR1331, Neuro-Gastroenterology and Nutrition Group, Toulouse, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Al-Hilal TA, Alam F, Byun Y. Oral drug delivery systems using chemical conjugates or physical complexes. Adv Drug Deliv Rev 2013; 65:845-64. [PMID: 23220326 DOI: 10.1016/j.addr.2012.11.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 11/25/2012] [Accepted: 11/27/2012] [Indexed: 02/07/2023]
Abstract
Oral delivery of therapeutics is extremely challenging. The digestive system is designed in a way that naturally allows the degradation of proteins or peptides into small molecules prior to absorption. For systemic absorption, the intact drug molecules must traverse the impending harsh gastrointestinal environment. Technologies, such as enteric coating, with oral dosage formulation strategies have successfully provided the protection of non-peptide based therapeutics against the harsh, acidic condition of the stomach. However, these technologies showed limited success on the protection of therapeutic proteins and peptides. Importantly, inherent permeability coefficient of the therapeutics is still a major problem that has remained unresolved for decades. Addressing this issue in the context, we summarize the strategies that are developed in enhancing the intestinal permeability of a drug molecule either by modifying the intestinal epithelium or by modifying the drug itself. These modifications have been pursued by using a group of molecules that can be conjugated to the drug molecule to alter the cell permeability of the drug or mixed with the drug molecule to alter the epithelial barrier function, in order to achieve the effective drug permeation. This article will address the current trends and future perspectives of the oral delivery strategies.
Collapse
Affiliation(s)
- Taslim A Al-Hilal
- College of Pharmacy, Seoul National University, Seoul 151-742, South Korea
| | | | | |
Collapse
|
63
|
Jiang L, Long X, Meng Q. Rhamnolipids enhance epithelial permeability in Caco-2 monolayers. Int J Pharm 2013; 446:130-5. [DOI: 10.1016/j.ijpharm.2013.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 01/28/2013] [Accepted: 02/03/2013] [Indexed: 01/13/2023]
|
64
|
Oral insulin delivery in rats by nanoparticles prepared with non-toxic solvents. Int J Pharm 2013; 443:169-74. [DOI: 10.1016/j.ijpharm.2013.01.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 01/07/2013] [Indexed: 11/21/2022]
|
65
|
Abstract
Tight junctions are intercellular junctions adjacent to the apical ends of paracellular spaces. They have two classical functions, the barrier function and the fence function. The former regulates the passage of ions, water and various molecules through paracellular spaces, and is thus related to edema, jaundice, diarrhea and blood‐borne metastasis. The latter function maintains cell polarity by forming a fence to prevent intermixing of molecules in the apical membrane with those in the lateral membrane. This function is deeply involved in cancer cell properties in terms of loss of cell polarity. Recently, two novel aspects of tight junctions have been reported. One is their involvement in signal transduction. The other is that fact that tight junctions are considered to be a crucial component of innate immunity. In addition, since some proteins comprising tight junctions work as receptors for viruses and extracellular stimuli, pathogenic bacteria and viruses target and affect the tight junction functions, leading to diseases. In this review, the relationship between tight junctions and human diseases will be described.
Collapse
Affiliation(s)
- Norimasa Sawada
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan.
| |
Collapse
|
66
|
|
67
|
Chirra HD, Desai TA. Multi-reservoir bioadhesive microdevices for independent rate-controlled delivery of multiple drugs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:3839-3846. [PMID: 22962019 PMCID: PMC3527694 DOI: 10.1002/smll.201201367] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/07/2012] [Indexed: 05/29/2023]
Abstract
A variety of oral administrative systems such as enterically coated tablets, capsules, particles, and liposomes have been developed to improve oral bioavailability of drugs. However, they suffer from poor intestinal localization and therapeutic efficacy due to the various physiological conditions and high shear fluid flow. Fabrication of novel microdevices combined with the introduction of controlled release, improved adhesion, selective targeting, and tissue permeation may overcome these issues and potentially diminish the toxicity and high frequency of conventional oral administration. Herein, thin, asymmetric, poly(methyl methacrylate) (PMMA) microdevices are fabricated with multiple reservoirs using photolithography and reactive ion etching. They are loaded with different individual model drug in each reservoir. Enhanced bioadhesion of the microdevices is observed in the presence of a conjugated of targeting protein (tomato lectin) to the PMMA surface. As compared to drug encompassing hydrogels, an increase in drug permeation across the caco-2 monolayer is noticed in the presence of a microdevice loaded with the same drug-hydrogel system. Also, the release of multiple drugs from their respective reservoirs is found to be independent from each other. The use of different hydrogel systems in each reservoir shows differences in the controlled release of the respective drugs over the same release period. These results suggest that, in the future, microfabricated unidirectional multi-drug releasing devices will have an impact on the oral administration of a broad range of therapeutics.
Collapse
Affiliation(s)
| | - Tejal A. Desai
- Corresponding Author. 1700 4 Street, Byers Hall 204, Box 2520, San Francisco, CA 94158, USA. Tel.: +1 415 514 4503; fax: +1 415 514 9656.
| |
Collapse
|
68
|
Cárdenas-Bailón F, Osorio-Revilla G, Gallardo-Velázquez T. Microencapsulation techniques to develop formulations of insulin for oral delivery: a review. J Microencapsul 2012; 30:409-24. [DOI: 10.3109/02652048.2012.742159] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
69
|
Lemmer HJR, Hamman JH. Paracellular drug absorption enhancement through tight junction modulation. Expert Opin Drug Deliv 2012; 10:103-14. [DOI: 10.1517/17425247.2013.745509] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
70
|
Reix N, Parat A, Seyfritz E, Van Der Werf R, Epure V, Ebel N, Danicher L, Marchioni E, Jeandidier N, Pinget M, Frère Y, Sigrist S. In vitro uptake evaluation in Caco-2 cells and in vivo results in diabetic rats of insulin-loaded PLGA nanoparticles. Int J Pharm 2012; 437:213-20. [DOI: 10.1016/j.ijpharm.2012.08.024] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 08/13/2012] [Accepted: 08/16/2012] [Indexed: 11/26/2022]
|
71
|
Chirra HD, Desai TA. Emerging microtechnologies for the development of oral drug delivery devices. Adv Drug Deliv Rev 2012; 64:1569-78. [PMID: 22981755 PMCID: PMC3488155 DOI: 10.1016/j.addr.2012.08.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 08/06/2012] [Accepted: 08/12/2012] [Indexed: 10/27/2022]
Abstract
The development of oral drug delivery platforms for administering therapeutics in a safe and effective manner across the gastrointestinal epithelium is of much importance. A variety of delivery systems such as enterically coated tablets, capsules, particles, and liposomes have been developed to improve oral bioavailability of drugs. However, orally administered drugs suffer from poor localization and therapeutic efficacy due to various physiological conditions such as low pH, and high shear intestinal fluid flow. Novel platforms combining controlled release, improved adhesion, tissue penetration, and selective intestinal targeting may overcome these issues and potentially diminish the toxicity and high frequency of administration associated with conventional oral delivery. Microfabrication along with appropriate surface chemistry, provide a means to fabricate these platforms en masse with flexibility in tailoring the shape, size, reservoir volume, and surface characteristics of microdevices. Moreover, the same technology can be used to include integrated circuit technology and sensors for designing sophisticated autonomous drug delivery devices that promise to significantly improve point of care diagnostic and therapeutic medical applications. This review sheds light on some of the fabrication techniques and addresses a few of the microfabricated devices that can be effectively used for controlled oral drug delivery applications.
Collapse
Affiliation(s)
- Hariharasudhan D. Chirra
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, U.S.A
| | - Tejal A. Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, U.S.A
| |
Collapse
|
72
|
Abstract
Tight junctions (TJs) are intercellular contacts that seal the space between the individual cells of an epithelial sheet or stratifying epithelia, such as the epidermis, so that they can collectively separate tissue compartments. Intercellular junctions, such as adherens and TJs, play a crucial role in the formation and maintenance of epithelial and endothelial barriers. A variety of components including claudins, occludin, tricellulin, zonula occluden proteins and junctional adhesion molecules have been identified in complex localization patterns in mammalian epidermis. In several skin diseases that are characterized by impaired skin barrier function, altered proliferation/differentiation of the epidermis and/or infiltration of inflammatory cells, altered expression patterns of TJ proteins have been observed. This review is aimed at providing an insight into the molecular composition, tools for identification and understanding the role of TJs in skin diseases and barrier function regulation.
Collapse
|
73
|
Lähdeaho ML, Lindfors K, Airaksinen L, Kaukinen K, Mäki M. Recent advances in the development of new treatments for celiac disease. Expert Opin Biol Ther 2012; 12:1589-600. [PMID: 22928821 DOI: 10.1517/14712598.2012.721766] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Celiac disease is a common autoimmune condition induced by dietary gluten in genetically susceptible individuals. So far, the only available treatment for the disorder is a lifelong strict gluten-free diet, because of which small intestinal histological changes recover and symptoms disappear. However, gluten-free dieting is restrictive, and nutritionally less than optimal, and gluten is difficult to avoid. AREAS COVERED With improving insight into the pathogenesis of celiac disease, several possible drug targets have been suggested. The new strategies include degradation of gluten intraluminally, reduction of mucosal permeability, inhibition of the transglutaminase 2 enzyme, blocking antigen presentation by HLA-DQ2 or HLA-DQ8, modulation of the immune responses of many cytokines, and vaccination. EXPERT OPINION Non-dietary treatment options are warranted either as adjunctive therapy together with dieting or to replace the gluten-free diet. The key question is whether the envisaged novel drug is able to prevent gluten-induced small intestinal mucosal injury as efficiently as a strict gluten-free diet, alleviating symptoms and signs of the disease. Furthermore, the gluten dose that can be detoxified, if at all, must be established. The new drug should also be as safe as dietary treatment. Several novel treatment options are under development.
Collapse
Affiliation(s)
- Marja-Leena Lähdeaho
- University of Tampere, Tampere University Hospital, Pediatric Research Centre, Tampere, Finland.
| | | | | | | | | |
Collapse
|
74
|
Santos S, Torcato I, Castanho MARB. Biomedical applications of dipeptides and tripeptides. Biopolymers 2012. [DOI: 10.1002/bip.22067] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
75
|
Zhang ZH, Zhang YL, Zhou JP, Lv HX. Solid lipid nanoparticles modified with stearic acid-octaarginine for oral administration of insulin. Int J Nanomedicine 2012; 7:3333-9. [PMID: 22848162 PMCID: PMC3405896 DOI: 10.2147/ijn.s31711] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The aim of this study was to design and characterize solid lipid nanoparticles (SLNs) modified with stearic acid–octaarginine (SA-R8) as carriers for oral administration of insulin (SA-R 8-Ins-SLNs). The SLNs were prepared by spontaneous emulsion solvent diffusion methods. The mean particle size, zeta potential, drug loading, and encapsulation efficiency of the SA-R8-Ins-SLNs were 162 nm, 29.87 mV, 3.19%, and 76.54%, respectively. The zeta potential of the SLNs changed dramatically, from −32.13 mV to 29.87 mV, by binding the positively charged SA-R8. Morphological studies of SA-R8-Ins-SLNs using transmission electron microscopy showed that they were spherical. In vitro, a degradation experiment by enzymes showed that SLNs and SA-R8 could partially protect insulin from proteolysis. Compared to the insulin solution, the SA-R8-Ins-SLNs increased the Caco-2 cell’s internalization by up to 18.44 times. In the in vivo studies, a significant hypoglycemic effect in diabetic rats over controls was obtained, with a SA-R8-Ins-SLN pharmacological availability value of 13.86 ± 0.79. These results demonstrate that SA-R8-modified SLNs promote the oral absorption of insulin.
Collapse
Affiliation(s)
- Zhen-Hai Zhang
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | | | | | | |
Collapse
|
76
|
Song KH, Eddington ND. The impact of AT1002 on the delivery of ritonavir in the presence of bioadhesive polymer, carrageenan. Arch Pharm Res 2012; 35:937-43. [PMID: 22644862 DOI: 10.1007/s12272-012-0520-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 03/24/2012] [Accepted: 03/27/2012] [Indexed: 11/24/2022]
Abstract
New insights into the modification of the tight junctions theoretically offer the opportunity to regulate the diffusion barrier and then make it possible to investigate a permeation enhancer of low-bioavailability therapeutic agents. AT1002, a minimum biologically active fragment of zonula occludens toxin which reversibly opens intercellular tight junctions after binding to the Zonulin receptor, increased the transport of various molecular weight markers or low-bioavailability agents. The objective of this study was continuously to evaluate the permeation-enhancing ability of AT1002 in the presence of the bioadhesive agent, carrageenan after intranasal administration of the antiretroviral drug, ritonavir, and the permeation enhancement ratio compared with the previous results. The permeation-enhancing effect of AT1002 was significantly promoted by the bioadhesive agent, carrageenan. The administration of ritonavir with AT1002 and carrageenan resulted in a 2.55-fold increase in AUC(0-240min) and a 2.48-fold increase in C(max) compared with the control group. However, AT1002 in the absence of carrageenan did not produce a statistic enhancement in the absorption of ritonavir. Hence, AT1002 together with the addition of carrageenan may open a new approach of research in the tight junction modulated permeation enhancer, and allow the development of the mucosal drug delivery of therapeutic agents.
Collapse
Affiliation(s)
- Keon-Hyoung Song
- Pharmacokinetics-Biopharmaceutics Laboratory, Department of Pharmaceutical Science, School of Pharmacy, University of Maryland, Baltimore, 21201, USA.
| | | |
Collapse
|
77
|
Lalatsa A, Lee V, Malkinson JP, Zloh M, Schätzlein AG, Uchegbu IF. A Prodrug Nanoparticle Approach for the Oral Delivery of a Hydrophilic Peptide, Leucine5-enkephalin, to the Brain. Mol Pharm 2012; 9:1665-80. [DOI: 10.1021/mp300009u] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Aikaterini Lalatsa
- UCL School of Pharmacy, University
of London, 29-39
Brunswick Square, London, WC1N 1AX, U.K
| | - Vivian Lee
- UCL School of Pharmacy, University
of London, 29-39
Brunswick Square, London, WC1N 1AX, U.K
| | - John P. Malkinson
- UCL School of Pharmacy, University
of London, 29-39
Brunswick Square, London, WC1N 1AX, U.K
| | - Mire Zloh
- UCL School of Pharmacy, University
of London, 29-39
Brunswick Square, London, WC1N 1AX, U.K
| | - Andreas G. Schätzlein
- UCL School of Pharmacy, University
of London, 29-39
Brunswick Square, London, WC1N 1AX, U.K
| | - Ijeoma F. Uchegbu
- UCL School of Pharmacy, University
of London, 29-39
Brunswick Square, London, WC1N 1AX, U.K
| |
Collapse
|
78
|
Khafagy ES, Morishita M. Oral biodrug delivery using cell-penetrating peptide. Adv Drug Deliv Rev 2012; 64:531-9. [PMID: 22245080 DOI: 10.1016/j.addr.2011.12.014] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 12/27/2011] [Accepted: 12/29/2011] [Indexed: 12/25/2022]
Abstract
During the past few decades, the novel biotherapeutic agents such as peptides and proteins have been contributed to the treatment of several diseases. However, their oral absorption is significantly limited due to their poor delivery through the intestinal mucosa. Therefore, the feasible approaches are needed for improving the oral bioavailability of biodrugs. Recently, cell-penetrating peptides (CPPs) such as HIV-1 Tat, penetratin and oligoarginine are considered as a useful tool for the intracellular delivery of therapeutic macromolecules. Hence, it was expected that the ability of CPPs may be applicable to enhance the absorption of biodrugs through intestinal epithelial membrane. CPPs are likely to become powerful tools for overcoming the low permeability of therapeutic peptides and proteins through the intestinal membrane, the major barrier to their oral delivery. Further advantage of this promising strategy is that this successful intestinal absorption could be achieved by more convenient methodology, coadministration of CPP with drugs via intermolecular interaction among them. Hereafter, the further establishment of delivery system based on CPPs is required to realize the development of the oral forms of therapeutic peptides and proteins. The aim here is to introduce our vision focusing on oral biodrug delivery by the use of CPPs as potential peptide carrier in order to provide new information in the design and development of new oral delivery systems for novel biotherapeutics.
Collapse
|
79
|
Pillay V, Hibbins AR, Choonara YE, du Toit LC, Kumar P, Ndesendo VMK. Orally Administered Therapeutic Peptide Delivery: Enhanced Absorption Through the Small Intestine Using Permeation Enhancers. Int J Pept Res Ther 2012. [DOI: 10.1007/s10989-012-9299-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
80
|
Rekha MR, Sharma CP. Oral delivery of therapeutic protein/peptide for diabetes--future perspectives. Int J Pharm 2012; 440:48-62. [PMID: 22503954 DOI: 10.1016/j.ijpharm.2012.03.056] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 03/19/2012] [Accepted: 03/23/2012] [Indexed: 01/12/2023]
Abstract
Diabetes is a metabolic disease and is a major cause of mortality and morbidity in epidemic proportions. A type I diabetic patient is dependent on daily injections of insulin, for survival and also to maintain a normal life, which is uncomfortable, painful and also has deleterious effects. Extensive efforts are being made worldwide for developing noninvasive drug delivery systems, especially via oral route. Oral route is the most widely accepted means of administration. However it is not feasible for direct delivery of peptide and protein drugs. To overcome the gastro-intestinal barriers various types of formulations such as polymeric micro/nanoparticles, liposomes, etc. are investigated. In the recent years lot of advances have taken place in developing and understanding the oral peptide delivery systems. Simultaneously, the development and usage of other peptides having anti-diabetic potentials are also considered for diabetes therapy. In this review we are focusing on the advances reported during the past decade in the field of oral insulin delivery along with the possibility of other peptidic incretin hormones such as GLP-1, exendin-4, for diabetes therapy.
Collapse
Affiliation(s)
- M R Rekha
- Division of Biosurface Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695012, Kerala, India
| | | |
Collapse
|
81
|
López JE, Peppas NA. Cellular evaluation of insulin transmucosal delivery. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 15:385-96. [PMID: 15212324 DOI: 10.1163/156856204323005262] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
P(MAA-g-EG) microparticles have been extensively investigated as carriers for oral delivery of proteins such as insulin. In this study, we investigated the effect of the molecular weight of the PEG tethered chains in the copolymer network and of the microparticle size on the transepithelial electrical resistance (TEER) and insulin epithelial permeability, using monolayers of human intestinal epithelial Caco-2 cells. Two molecular weights of the PEG chains, 400 and 1000, were investigated, as well as three different dry microparticle sizes: 25-90, 90-150 and 150-212 microm. Their effect on the cell monolayer integrity was studied by monitoring TEER as a fraction of time and determining insulin permeability. The presence of insulin-loaded P(MAA-g-EG) microparticles decreases the TEERs value by 50% with respect to the control. This disruption of the cell monolayer was recovered in 3 h after the removal of the polymer microparticles. Within the range of PEG molecular weights studied, there was no significant change of the TEER values. However, decreased microparticle sizes and short PEG chains systems led to higher permeability values. Insulin-loaded P(MAA-g-EG) microparticles enhanced the transport of insulin through the Caco-2 cell monolayers.
Collapse
Affiliation(s)
- Jennifer E López
- School of Chemical Engineering, Purdue University, West Lafayette, IN 47907-1283, USA
| | | |
Collapse
|
82
|
Rashtak S, Murray JA. Review article: coeliac disease, new approaches to therapy. Aliment Pharmacol Ther 2012; 35:768-81. [PMID: 22324389 PMCID: PMC3912561 DOI: 10.1111/j.1365-2036.2012.05013.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 04/03/2011] [Accepted: 01/18/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND Coeliac disease is managed by life-long gluten withdrawal from the diet. However, strict adherence to a gluten-free diet is difficult and is not always effective. Novel therapeutic approaches are needed to supplement or even replace the dietary treatment. AIM To review recent advances in new therapeutic options for coeliac disease. METHODS A literature search was performed on MEDLINE, EMBASE, Web of Science, Scopus, DDW.org and ClinicalTrials.gov for English articles and abstracts. The search terms used included, but not limited to, 'Celiac disease', 'new', 'novel', 'Advances', 'alternatives' and 'Drug therapy'. The cited articles were selected based on the relevancy to the review objective. RESULTS Several new therapeutic approaches for coeliac disease are currently under development by targeting its underlying pathogenesis. Alternative therapies range from reproduction of harmless wheat strains to immunomodulatory approaches. Some of these therapies such as enzymatic cleavage of gluten and permeability inhibitors have shown promise in clinical studies. CONCLUSIONS Gluten-free diet is still the only practical treatment for patients with coeliac disease. Novel strategies provide promise of alternative adjunctive approaches to diet restriction alone for patients with this disorder.
Collapse
Affiliation(s)
- S Rashtak
- Celiac Disease Research Program, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
83
|
The influence of stabilizer and bioadhesive polymer on the permeation-enhancing effect of AT1002 in the nasal delivery of a paracellular marker. Arch Pharm Res 2012; 35:359-66. [DOI: 10.1007/s12272-012-0217-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 12/07/2011] [Accepted: 12/07/2011] [Indexed: 10/28/2022]
|
84
|
Zhang L, Song L, Zhang C, Ren Y. Improving intestinal insulin absorption efficiency through coadministration of cell-penetrating peptide and hydroxypropyl-β-cyclodextrin. Carbohydr Polym 2012. [DOI: 10.1016/j.carbpol.2011.10.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
85
|
Chin J, Foyez Mahmud K, Kim SE, Park K, Byun Y. Insight of current technologies for oral delivery of proteins and peptides. DRUG DISCOVERY TODAY. TECHNOLOGIES 2012; 9:e71-e174. [PMID: 24064270 DOI: 10.1016/j.ddtec.2012.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
|
86
|
|
87
|
Song KH, Eddington ND. The influence of AT1002 on the nasal absorption of molecular weight markers and therapeutic agents when co-administered with bioadhesive polymers and an AT1002 antagonist, AT1001. J Pharm Pharmacol 2011; 64:30-9. [PMID: 22150669 DOI: 10.1111/j.2042-7158.2011.01381.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES The purpose of this study was to demonstrate the effects of the tight junction permeation enhancer, AT1002, on the nasal absorption of molecular weight markers and low bioavailable therapeutic agents co-administered with bioadhesive polymers or zonulin antagonist. METHODS The bioadhesive polymers, carrageenan and Na-CMC, were prepared with AT1002 to examine the permeation-enhancing effect of AT1002 on the nasal absorption of inulin, calcitonin and saquinavir after nasal administration to Sprague-Dawley rats. Blood samples were collected over a 6-hour period from a jugular cannula. In addition, we determined whether AT1002 exerts a permeation-enhancing effect via activation of PAR-2 specific binding to a putative receptor of zonulin. To examine this zonulin antagonist, AT1001, was administered 30 min prior to dosing with an AT1002/inulin solution and blood samples were collected over a 6-hour period. KEY FINDINGS The bioadhesive polymers did not directly increase the absorption of inulin, calcitonin and saquinavir, but promoted the permeation-enhancing effect of AT1002 when delivered nasally, thereby significantly increasing the absorption of each drug. Pre-treatment with AT1001 antagonized the zonulin receptor and significantly minimized the permeation-enhancing effect of AT1002. CONCLUSION These findings will assist in understanding the permeation-enhancing capability of and the receptor binding of AT1002. Further, combining AT1002 with carrageenan supports the development of the mucosal delivery of therapeutic agents that have low bioavailability even with bioadhesive agents.
Collapse
Affiliation(s)
- Keon-Hyoung Song
- Pharmacokinetics-Biopharmaceutics Laboratory, Department of Pharmaceutical Science, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | | |
Collapse
|
88
|
Shaji J, Patole V. Protein and Peptide drug delivery: oral approaches. Indian J Pharm Sci 2011; 70:269-77. [PMID: 20046732 PMCID: PMC2792531 DOI: 10.4103/0250-474x.42967] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 02/18/2008] [Accepted: 05/05/2008] [Indexed: 11/16/2022] Open
Abstract
Till recent, injections remained the most common means for administering therapeutic proteins and peptides because of their poor oral bioavailability. However, oral route would be preferred to any other route because of its high levels of patient acceptance and long term compliance, which increases the therapeutic value of the drug. Designing and formulating a polypeptide drug delivery through the gastro intestinal tract has been a persistent challenge because of their unfavorable physicochemical properties, which includes enzymatic degradation, poor membrane permeability and large molecular size. The main challenge is to improve the oral bioavailability from less than 1% to at least 30-50%. Consequently, efforts have intensified over the past few decades, where every oral dosage form used for the conventional small molecule drugs has been used to explore oral protein and peptide delivery. Various strategies currently under investigation include chemical modification, formulation vehicles and use of enzyme inhibitors, absorption enhancers and mucoadhesive polymers. This review summarizes different pharmaceutical approaches which overcome various physiological barriers that help to improve oral bioavailability that ultimately achieve formulation goals for oral delivery.
Collapse
Affiliation(s)
- Jessy Shaji
- Department of Pharmaceutical Sciences, Prin. K. M. Kundnani College of Pharmacy, Cuffe Parade, Mumbai-400 005, India
| | | |
Collapse
|
89
|
Mady MM, Elshemey WM. Interaction of dipalmitoyl phosphatidylcholine (DPPC) liposomes and insulin. Mol Phys 2011. [DOI: 10.1080/00268976.2011.575408] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
90
|
Chatterjee T, Mukherjee D, Dey S, Pal A, Hoque KM, Chakrabarti P. Accessory cholera enterotoxin, Ace, from Vibrio cholerae: structure, unfolding, and virstatin binding. Biochemistry 2011; 50:2962-72. [PMID: 21366345 DOI: 10.1021/bi101673x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vibrio cholerae accessory cholera enterotoxin (Ace) is the third toxin, along with cholera toxin (CT) and zonula occludens toxin (Zot), that causes the endemic disease cholera. Structural characterization of Ace has been restricted because of the limited production of this toxic protein by V. cholerae. We have cloned, overexpressed, and purified Ace from V. cholerae strain O395 in Escherichia coli to homogeneity and determined its biological activity. The unfolding of the purified protein was investigated using circular dichroism and intrinsic tryptophan fluorescence. Because Ace is predominantly a hydrophobic protein, the degree of exposure of hydrophobic regions was identified from the spectral changes of the environment-sensitive fluorescent probe 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid (bis-ANS) that quenches the fluorescence of tryptophan residues of Ace in a concentration-dependent manner. Results showed that bis-ANS binds one monomeric unit of Ace with a 1:1 stoichiometry and a K' of 0.72 μM. Ace exists as a dimer, with higher oligomeric forms appearing upon glutaraldehyde cross-linking. This study also reports the binding of virstatin, a small molecule that inhibits virulence regulation in V. cholerae, to Ace. The binding constant (K=9×10(4) M(-1)) and the standard free energy change (ΔG°=-12 kcal mol(-1)) of Ace-virstatin interaction have been evaluated by the fluorescence quenching method. The binding does not affect the oligomeric status of Ace. A cell viability assay of the antibacterial activity of Ace has been performed using various microbial strains. A homology model of Ace, consistent with the experimental results, has been constructed.
Collapse
Affiliation(s)
- Tanaya Chatterjee
- Department of Biochemistry, Bioinformatics Centre, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India.
| | | | | | | | | | | |
Collapse
|
91
|
|
92
|
Zhang XH, He KW, Zhang SX, Lu WC, Zhao PD, Luan XT, Ye Q, Wen LB, Li B, Guo RL, Wang XM, Lv LX, Zhou JM, Yu ZY, Mao AH. Subcutaneous and intranasal immunization with Stx2B-Tir-Stx1B-Zot reduces colonization and shedding of Escherichia coli O157:H7 in mice. Vaccine 2011; 29:3923-9. [PMID: 21338683 DOI: 10.1016/j.vaccine.2011.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 01/13/2011] [Accepted: 02/06/2011] [Indexed: 11/28/2022]
Abstract
The type III secretion system of Escherichia coli O157:H7 is involved in colonization of mammalian hosts by the organism. The translocated intimin receptor (Tir) is inserted into the mammalian host cell plasma membrane in a hairpin loop topology with the central loop of the molecule exposed to the host cell surface and accessible for interaction with an LEE-encoded bacterial outer membrane adhesin called intimin. Shiga toxin type 1 and 2 produced by E. coli O157:H7 are responsible for hemolytic uremic syndrome and able to promote intestinal colonization. Zonula occludens toxin (Zot) is a single polypeptide chain encoded by the filamentous bacteriophage CTXφ of Vibrio cholerae. Zot binds a receptor on intestinal epithelial cells and increases mucosal permeability by affecting the structure of epithelial tight junctions. Because of these properties, Zot is a promising tool for mucosal drug and antigen (Ag) delivery. In the current study, we constructed a novel fusion protein carrying both of the immunogenic B subunits derived from the two toxins, Tir and Zot, designated Stx2B-Tir-Stx1B-Zot, expressed in the E. coli BL21 and harvested the purified protein by a simple GST·Bind Resin chromatography method. We used a streptomycin-treated mouse model to evaluate the efficacy of subcutaneous vs. intranasal administration of the vaccine. Following immunization, mice were infected with E. coli O157:H7 and feces were monitored for shedding. Immune responses against Stx2B-Tir-Stx1B-Zot, Stx2B-Tir-Stx1B and control agent (GST/PBS) were also monitored. Subcutaneous immunization of mice with Stx2B-Tir-Stx1B-Zot induced significant Stx2B-Tir-Stx1B-Zot-specific serum IgG antibodies but did not significantly induce any antigen-specific IgA in feces, whereas intranasal immunization elicited significant Stx2B-Tir-Stx1B-Zot-specific serum IgG antibodies with some animals developing antigen-specific IgA in feces. Mice that were immunized intranasally with Stx2B-Tir-Stx1B-Zot showed dramatically decreased E. coli O157:H7 shedding compared to those of Stx2B-Tir-Stx1B and control agent following experimental infection. Mice immunized subcutaneously with Stx2B-Tir-Stx1B-Zot or Stx2B-Tir-Stx1B both showed reduced shedding in feces, moreover, Stx2B-Tir-Stx1B-Zot did better. These results demonstrate the perspective for the use of Stx2B-Tir-Stx1B-Zot to prevent colonization and shedding of E. coli O157:H7.
Collapse
Affiliation(s)
- Xue-Han Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Tongwei Road 6#, Nanjing 210095, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Uchida T, Kanazawa T, Takashima Y, Okada H. Development of an Efficient Transdermal Delivery System of Small Interfering RNA Using Functional Peptides, Tat and AT-1002. Chem Pharm Bull (Tokyo) 2011; 59:196-201. [DOI: 10.1248/cpb.59.196] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tamae Uchida
- Laboratory of Pharmaceutics and Drug Delivery, Department of Pharmaceutical Science, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Takanori Kanazawa
- Laboratory of Pharmaceutics and Drug Delivery, Department of Pharmaceutical Science, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Yuuki Takashima
- Laboratory of Pharmaceutics and Drug Delivery, Department of Pharmaceutical Science, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Hiroaki Okada
- Laboratory of Pharmaceutics and Drug Delivery, Department of Pharmaceutical Science, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
94
|
Abstract
Oral insulin is an exciting area of research and development in the field of diabetology. This brief review covers the various approaches used in the development of oral insulin, and highlights some of the recent data related to novel oral insulin preparation.
Collapse
|
95
|
Kim SK, Lee S, Jin S, Moon HT, Jeon OC, Lee DY, Byun Y. Diabetes Correction in Pancreatectomized Canines by Orally Absorbable Insulin−Deoxycholate Complex. Mol Pharm 2010; 7:708-17. [DOI: 10.1021/mp9002688] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sang Kyoon Kim
- College of Pharmacy, Seoul National University, Seoul 151-742, South Korea, Mediplex Corporation, Seoul 135-729, South Korea, Department of Bioengineering, College of Engineering, Hanyang University, Seoul 133-791, South Korea, and Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742, South Korea
| | - Seulki Lee
- College of Pharmacy, Seoul National University, Seoul 151-742, South Korea, Mediplex Corporation, Seoul 135-729, South Korea, Department of Bioengineering, College of Engineering, Hanyang University, Seoul 133-791, South Korea, and Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742, South Korea
| | - Sunji Jin
- College of Pharmacy, Seoul National University, Seoul 151-742, South Korea, Mediplex Corporation, Seoul 135-729, South Korea, Department of Bioengineering, College of Engineering, Hanyang University, Seoul 133-791, South Korea, and Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742, South Korea
| | - Hyun Tae Moon
- College of Pharmacy, Seoul National University, Seoul 151-742, South Korea, Mediplex Corporation, Seoul 135-729, South Korea, Department of Bioengineering, College of Engineering, Hanyang University, Seoul 133-791, South Korea, and Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742, South Korea
| | - Ok Cheol Jeon
- College of Pharmacy, Seoul National University, Seoul 151-742, South Korea, Mediplex Corporation, Seoul 135-729, South Korea, Department of Bioengineering, College of Engineering, Hanyang University, Seoul 133-791, South Korea, and Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742, South Korea
| | - Dong Yun Lee
- College of Pharmacy, Seoul National University, Seoul 151-742, South Korea, Mediplex Corporation, Seoul 135-729, South Korea, Department of Bioengineering, College of Engineering, Hanyang University, Seoul 133-791, South Korea, and Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742, South Korea
| | - Youngro Byun
- College of Pharmacy, Seoul National University, Seoul 151-742, South Korea, Mediplex Corporation, Seoul 135-729, South Korea, Department of Bioengineering, College of Engineering, Hanyang University, Seoul 133-791, South Korea, and Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742, South Korea
| |
Collapse
|
96
|
De Leo L, Di Toro N, Decorti G, Malusà N, Ventura A, Not T. Fasting increases tobramycin oral absorption in mice. Antimicrob Agents Chemother 2010; 54:1644-1646. [PMID: 20086144 PMCID: PMC2849372 DOI: 10.1128/aac.01172-09] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 12/29/2009] [Accepted: 01/12/2010] [Indexed: 11/20/2022] Open
Abstract
The pharmacokinetics of the aminoglycoside tobramycin was evaluated after oral administration to fed or fasting (15 h) mice. As expected, under normal feeding conditions, oral absorption was negligible; however, fasting induced a dramatic increase in tobramycin bioavailability. The dual-sugar test with lactulose and l-rhamnose confirmed increased small bowel permeability via the paracellular route in fasting animals. When experiments aimed at increasing the oral bioavailability of hydrophilic compounds are performed, timing of fasting should be extremely accurate.
Collapse
Affiliation(s)
- Luigina De Leo
- Department of Reproductive and Developmental Sciences, University of Trieste, and Institute of Child Health IRCCS Burlo Garofolo, Department of Life Sciences, University of Trieste, Department of Prevention, Sanitary Services Agency Number 1, Trieste, Italy
| | - Nicola Di Toro
- Department of Reproductive and Developmental Sciences, University of Trieste, and Institute of Child Health IRCCS Burlo Garofolo, Department of Life Sciences, University of Trieste, Department of Prevention, Sanitary Services Agency Number 1, Trieste, Italy
| | - Giuliana Decorti
- Department of Reproductive and Developmental Sciences, University of Trieste, and Institute of Child Health IRCCS Burlo Garofolo, Department of Life Sciences, University of Trieste, Department of Prevention, Sanitary Services Agency Number 1, Trieste, Italy
| | - Noelia Malusà
- Department of Reproductive and Developmental Sciences, University of Trieste, and Institute of Child Health IRCCS Burlo Garofolo, Department of Life Sciences, University of Trieste, Department of Prevention, Sanitary Services Agency Number 1, Trieste, Italy
| | - Alessandro Ventura
- Department of Reproductive and Developmental Sciences, University of Trieste, and Institute of Child Health IRCCS Burlo Garofolo, Department of Life Sciences, University of Trieste, Department of Prevention, Sanitary Services Agency Number 1, Trieste, Italy
| | - Tarcisio Not
- Department of Reproductive and Developmental Sciences, University of Trieste, and Institute of Child Health IRCCS Burlo Garofolo, Department of Life Sciences, University of Trieste, Department of Prevention, Sanitary Services Agency Number 1, Trieste, Italy
| |
Collapse
|
97
|
|
98
|
Abstract
Oral insulin is one of the most exciting areas of development in the treatment of diabetes because of its potential benefit in patient convenience, rapid insulinization of liver, adequate insulin delivery avoiding peripheral hyperinsulinaemia while potentially avoiding adverse effects of weight gain and hypoglycaemia. Growing evidence that earlier initiation of intensive insulin therapy produces sustained tight glycaemic control resulting in substantial delay in complications makes an effective oral insulin product even more vital for the management of patients with diabetes. Despite knowledge of this unmet medical need, oral delivery of insulin has been unsuccessful because of several barriers. For several decades, researchers have tried to develop oral insulin using various technologies without much clinical or commercial success. This review summarizes the development status of oral insulins which are publicly reported to be undergoing clinical studies. Currently, two oral insulin products are in an advanced stage of clinical development and first data from long-term therapy are expected to be available in the second half of 2010.
Collapse
Affiliation(s)
- Harish Iyer
- R&D, Biocon Limited, Bangalore, Karnataka, India.
| | | | | |
Collapse
|
99
|
|
100
|
Maher S, Leonard TW, Jacobsen J, Brayden DJ. Safety and efficacy of sodium caprate in promoting oral drug absorption: from in vitro to the clinic. Adv Drug Deliv Rev 2009; 61:1427-49. [PMID: 19800376 DOI: 10.1016/j.addr.2009.09.006] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 09/21/2009] [Accepted: 09/24/2009] [Indexed: 12/12/2022]
Abstract
A major challenge in oral drug delivery is the development of novel dosage forms to promote absorption of poorly permeable drugs across the intestinal epithelium. To date, no absorption promoter has been approved in a formulation specifically designed for oral delivery of Class III molecules. Promoters that are designated safe for human consumption have been licensed for use in a recently approved buccal insulin spray delivery system and also for many years as part of an ampicillin rectal suppository. Unlike buccal and rectal delivery, oral formulations containing absorption promoters have the additional technical hurdle whereby the promoter and payload must be co-released in high concentrations at the small intestinal epithelium in order to generate significant but rapidly reversible increases in permeability. An advanced promoter in the clinic is the medium chain fatty acid (MCFA), sodium caprate (C(10)), a compound already approved as a food additive. We discuss how it has evolved to a matrix tablet format suitable for administration to humans under the headings of mechanism of action at the cellular and tissue level as well as in vitro and in vivo efficacy and safety studies. In specific clinical examples, we review how C(10)-based formulations are being tested for oral delivery of bisphosphonates using Gastro Intestinal Permeation Enhancement Technology, GIPET (Merrion Pharmaceuticals, Ireland) and in a related solid dose format for antisense oligonucleotides (ISIS Pharmaceuticals, USA).
Collapse
Affiliation(s)
- Sam Maher
- UCD School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | |
Collapse
|