51
|
Resende F, de Araújo S, Tavares LP, Teixeira MM, Costa VV. The Multifaceted Role of Annexin A1 in Viral Infections. Cells 2023; 12:1131. [PMID: 37190040 PMCID: PMC10137178 DOI: 10.3390/cells12081131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Dysregulated inflammatory responses are often correlated with disease severity during viral infections. Annexin A1 (AnxA1) is an endogenous pro-resolving protein that timely regulates inflammation by activating signaling pathways that culminate with the termination of response, clearance of pathogen and restoration of tissue homeostasis. Harnessing the pro-resolution actions of AnxA1 holds promise as a therapeutic strategy to control the severity of the clinical presentation of viral infections. In contrast, AnxA1 signaling might also be hijacked by viruses to promote pathogen survival and replication. Therefore, the role of AnxA1 during viral infections is complex and dynamic. In this review, we provide an in-depth view of the role of AnxA1 during viral infections, from pre-clinical to clinical studies. In addition, this review discusses the therapeutic potential for AnxA1 and AnxA1 mimetics in treating viral infections.
Collapse
Affiliation(s)
- Filipe Resende
- Post-Graduation Program of Cell Biology, Department of Morphology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
- Center for Research and Development of Drugs, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Simone de Araújo
- Center for Research and Development of Drugs, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Luciana Pádua Tavares
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| | - Mauro Martins Teixeira
- Center for Research and Development of Drugs, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
- Department of Biochemistry and Immunology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Vivian Vasconcelos Costa
- Post-Graduation Program of Cell Biology, Department of Morphology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
- Center for Research and Development of Drugs, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| |
Collapse
|
52
|
Transcriptional heterogeneity in human diabetic foot wounds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528839. [PMID: 36824808 PMCID: PMC9949055 DOI: 10.1101/2023.02.16.528839] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Wound repair requires the coordination of multiple cell types including immune cells and tissue resident cells to coordinate healing and return of tissue function. Diabetic foot ulceration is a type of chronic wound that impacts over 4 million patients in the US and over 7 million worldwide (Edmonds et al., 2021). Yet, the cellular and molecular mechanisms that go awry in these wounds are not fully understood. Here, by profiling chronic foot ulcers from non-diabetic (NDFUs) and diabetic (DFUs) patients using single-cell RNA sequencing, we find that DFUs display transcription changes that implicate reduced keratinocyte differentiation, altered fibroblast function and lineages, and defects in macrophage metabolism, inflammation, and ECM production compared to NDFUs. Furthermore, analysis of cellular interactions reveals major alterations in several signaling pathways that are altered in DFUs. These data provide a view of the mechanisms by which diabetes alters healing of foot ulcers and may provide therapeutic avenues for DFU treatments.
Collapse
|
53
|
Caratti G, Desgeorges T, Juban G, Stifel U, Fessard A, Koenen M, Caratti B, Théret M, Skurk C, Chazaud B, Tuckermann JP, Mounier R. Macrophagic AMPKα1 orchestrates regenerative inflammation induced by glucocorticoids. EMBO Rep 2023; 24:e55363. [PMID: 36520372 PMCID: PMC9900347 DOI: 10.15252/embr.202255363] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Macrophages are key cells after tissue damage since they mediate both acute inflammatory phase and regenerative inflammation by shifting from pro-inflammatory to restorative cells. Glucocorticoids (GCs) are the most potent anti-inflammatory hormone in clinical use, still their actions on macrophages are not fully understood. We show that the metabolic sensor AMP-activated protein kinase (AMPK) is required for GCs to induce restorative macrophages. GC Dexamethasone activates AMPK in macrophages and GC receptor (GR) phosphorylation is decreased in AMPK-deficient macrophages. Loss of AMPK in macrophages abrogates the GC-induced acquisition of their repair phenotype and impairs GC-induced resolution of inflammation in vivo during post-injury muscle regeneration and acute lung injury. Mechanistically, two categories of genes are impacted by GC treatment in macrophages. Firstly, canonical cytokine regulation by GCs is not affected by AMPK loss. Secondly, AMPK-dependent GC-induced genes required for the phenotypic transition of macrophages are co-regulated by the transcription factor FOXO3, an AMPK substrate. Thus, beyond cytokine regulation, GR requires AMPK-FOXO3 for immunomodulatory actions in macrophages, linking their metabolic status to transcriptional control in regenerative inflammation.
Collapse
Affiliation(s)
- Giorgio Caratti
- Institute of Comparative Molecular EndocrinologyUniversität UlmUlmGermany
| | - Thibaut Desgeorges
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217Université de LyonLyonFrance
| | - Gaëtan Juban
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217Université de LyonLyonFrance
| | - Ulrich Stifel
- Institute of Comparative Molecular EndocrinologyUniversität UlmUlmGermany
| | - Aurélie Fessard
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217Université de LyonLyonFrance
| | - Mascha Koenen
- Institute of Comparative Molecular EndocrinologyUniversität UlmUlmGermany
- Present address:
Laboratory of Molecular MetabolismThe Rockefeller UniversityNew YorkNYUSA
| | - Bozhena Caratti
- Institute of Comparative Molecular EndocrinologyUniversität UlmUlmGermany
| | - Marine Théret
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217Université de LyonLyonFrance
- Present address:
Department of Medical GeneticsSchool of Biomedical Engineering and the Biomedical Research CentreVancouverBCCanada
| | - Carsten Skurk
- Department of CardiologyCharité Universitätsmedizin BerlinBerlinGermany
- Franklin/German Centre for Cardiovascular Research (DZHK), Partner Site Berlin/Institute of Health (BIH)BerlinGermany
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217Université de LyonLyonFrance
| | - Jan P Tuckermann
- Institute of Comparative Molecular EndocrinologyUniversität UlmUlmGermany
| | - Rémi Mounier
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217Université de LyonLyonFrance
| |
Collapse
|
54
|
Perretti M, Dalli J. Resolution Pharmacology: Focus on Pro-Resolving Annexin A1 and Lipid Mediators for Therapeutic Innovation in Inflammation. Annu Rev Pharmacol Toxicol 2023; 63:449-469. [PMID: 36151051 DOI: 10.1146/annurev-pharmtox-051821-042743] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chronic diseases that affect our society are made more complex by comorbidities and are poorly managed by the current pharmacology. While all present inflammatory etiopathogeneses, there is an unmet need for better clinical management of these diseases and their multiple symptoms. We discuss here an innovative approach based on the biology of the resolution of inflammation. Studying endogenous pro-resolving peptide and lipid mediators, how they are formed, and which target they interact with, can offer innovative options through augmenting the expression or function of pro-resolving pathways or mimicking their actions with novel targeted molecules. In all cases, resolution offers innovation for the treatment of the primary cause of a given disease and/or for the management of its comorbidities, ultimately improving patient quality of life. By implementing resolution pharmacology, we harness the whole physiology of inflammation, with the potential to bring a marked change in the management of inflammatory conditions.
Collapse
Affiliation(s)
- Mauro Perretti
- The William Harvey Research Institute, Faculty of Medicine and Dentistry, and Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom; ,
| | - Jesmond Dalli
- The William Harvey Research Institute, Faculty of Medicine and Dentistry, and Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom; ,
| |
Collapse
|
55
|
Cao Y, Chen J, Liu F, Qi G, Zhao Y, Xu S, Wang J, Zhu T, Zhang Y, Jia Y. Formyl peptide receptor 2 activation by mitochondrial formyl peptides stimulates the neutrophil proinflammatory response via the ERK pathway and exacerbates ischemia-reperfusion injury. Cell Mol Biol Lett 2023; 28:4. [PMID: 36658472 PMCID: PMC9854225 DOI: 10.1186/s11658-023-00416-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/02/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) is an inevitable process in renal transplantation that significantly increases the risk of delayed graft function, acute rejection, and even graft loss. Formyl peptide receptor 2 (FPR2) is an important receptor in multiple septic and aseptic injuries, but its functions in kidney IRI are still unclear. This study was designed to reveal the pathological role of FPR2 in kidney IRI and its functional mechanisms. METHODS To explore the mechanism of FPR2 in kidney IRI, the model rats were sacrificed after IRI surgery. Immunofluorescence, enzyme-linked immunosorbent assays, and western blotting were used to detect differences in the expression of FPR2 and its ligands between the IRI and control groups. WRW4 (WRWWWW-NH2), a specific antagonist of FPR2, was administered to kidney IRI rats. Kidney function and pathological damage were detected to assess kidney injury and recovery. Flow cytometry was used to quantitatively compare neutrophil infiltration among the experimental groups. Mitochondrial formyl peptides (mtFPs) were synthesized and administered to primary rat neutrophils together with the specific FPR family antagonist WRW4 to verify our hypothesis in vitro. Western blotting and cell function assays were used to examine the functions and signaling pathways that FPR2 mediates in neutrophils. RESULTS FPR2 was activated mainly by mtFPs during the acute phase of IRI, mediating neutrophil migration and reactive oxygen species production in the rat kidney through the ERK1/2 pathway. FPR2 blockade in the early phase protected rat kidneys from IRI. CONCLUSIONS mtFPs activated FPR2 during the acute phase of IRI and mediated rat kidney injury by activating the migration and reactive oxygen species generation of neutrophils through the ERK1/2 pathway.
Collapse
Affiliation(s)
- Yirui Cao
- grid.413087.90000 0004 1755 3939Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China ,grid.413087.90000 0004 1755 3939Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Juntao Chen
- grid.413087.90000 0004 1755 3939Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China ,grid.413087.90000 0004 1755 3939Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Feng Liu
- grid.411405.50000 0004 1757 8861Department of Integrative Medicine, Huashan Hospital Fudan University, Shanghai, People’s Republic of China
| | - Guisheng Qi
- grid.413087.90000 0004 1755 3939Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yufeng Zhao
- grid.413087.90000 0004 1755 3939Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China ,grid.413087.90000 0004 1755 3939Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Shihao Xu
- grid.413087.90000 0004 1755 3939Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China ,grid.413087.90000 0004 1755 3939Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Jiyan Wang
- grid.413087.90000 0004 1755 3939Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China ,grid.413087.90000 0004 1755 3939Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Tongyu Zhu
- grid.413087.90000 0004 1755 3939Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China ,grid.413087.90000 0004 1755 3939Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Yi Zhang
- grid.413087.90000 0004 1755 3939Zhongshan Hospital Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yichen Jia
- grid.413087.90000 0004 1755 3939Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
56
|
Wickstead ES, Solito E, McArthur S. Promiscuous Receptors and Neuroinflammation: The Formyl Peptide Class. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122009. [PMID: 36556373 PMCID: PMC9786789 DOI: 10.3390/life12122009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022]
Abstract
Formyl peptide receptors, abbreviated as FPRs in humans, are G-protein coupled receptors (GPCRs) mainly found in mammalian leukocytes. However, they are also expressed in cell types crucial for homeostatic brain regulation, including microglia and blood-brain barrier endothelial cells. Thus, the roles of these immune-associated receptors are extensive, from governing cellular adhesion and directed migration through chemotaxis, to granule release and superoxide formation, to phagocytosis and efferocytosis. In this review, we will describe the similarities and differences between the two principal pro-inflammatory and anti-inflammatory FPRs, FPR1 and FPR2, and the evidence for their importance in the development of neuroinflammatory disease, alongside their potential as therapeutic targets.
Collapse
Affiliation(s)
- Edward S. Wickstead
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: (E.S.W.); (S.M.)
| | - Egle Solito
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
- Department of Medicina Molecolare e Biotecnologie Mediche, University of Naples “Federico II”, 80131 Naples, Italy
| | - Simon McArthur
- Institute of Dentistry, Faculty of Medicine & Dentistry, Queen Mary University of London, Blizard Institute, 4, Newark Street, London E1 2AT, UK
- Correspondence: (E.S.W.); (S.M.)
| |
Collapse
|
57
|
Broering MF, Leão MDC, da Rocha GHO, Scharf P, Xavier LF, Alves ADCS, Castro I, Reutelingsperger C, Uchiyama MK, Araki K, Guterres SS, Pohlmann AR, Farsky SHP. Development of Annexin A1-surface-functionalized metal-complex multi-wall lipid core nanocapsules and effectiveness on experimental colitis. Eur J Pharm Biopharm 2022; 181:49-59. [PMID: 36334840 DOI: 10.1016/j.ejpb.2022.10.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022]
Abstract
Annexin A1 (AnxA1), a 37KDa protein, is secreted by inflammatory and epithelial cells and displays anti-inflammatory and wound healing activities in intestinal bowel diseases. Herein, we aimed to functionalize recombinant AnxA1 (AnxA1) on multi-wall lipid core nanocapsules (MLNC) and investigate its effectiveness on experimental colitis. MLNC were prepared by covering lipid core nanocapsules (LNC) with chitosan, which coordinates metals to specific protein chemisorption sites. Therefore, MLNC were linked to Zn2+ and AnxA1 was added to form MLNC-AnxA1. LNC, MLNC and MLNC-AnxA1 presented average size of 129, 152 and 163 nm, respectively, and similar polydispersity indexes (0.xx); incorporation of chitosan inverted the negative potential zeta; the coordination efficiency of AnxA1 was 92.22 %, and transmission electron microscope photomicrograph showed MLNC-AnxA1 had a spherical shape. The effectiveness of MLNC-AnxA1 was measured in Dextran Sulfate Sodium (DSS)-induced colitis in male C57BL/6 mice. DSS (2 % solution) was administered from days 1-6; saline, LNC, MLNC, MLNC-AnxA1 or AnxA1 were administered, once a day, by oral or intraperitoneal (i.p.) routes, from days 6-9. Clinical parameters of the disease were measured from day 0-10 and gut tissues were collected for histopathology, immunohistochemistry and flow cytometry analyses. Only i.p. treatment with MLNC-AnxA1 reduced weight loss, diarrhea and disease activity index, and prevented loss of colonic structure integrity; induced the switch of macrophages into M2 phenotype in the lamina propria; recovered the colonic histoarchitecture by decreasing dysplasia of crypts, inflammation and ulcerations; restored the expression of claudin-1 Zonna-occludens-1 tight junctions in the inflamed gut; and induced stem cell proliferation in intestinal crypts. Associated, data highlight the functionalization of MLNC with AnxA1 as a tool to improve the local actions of such protein in the inflamed gut by inducing resolution of inflammation and tissue repair.
Collapse
Affiliation(s)
- Milena Fronza Broering
- Department of Clinical & Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, SP, Brazil
| | - Matheus de Castro Leão
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of Sao Paulo, SP, Brazil
| | | | - Pablo Scharf
- Department of Clinical & Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, SP, Brazil
| | - Luana Fillipi Xavier
- Department of Clinical & Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, SP, Brazil
| | - Aline de Cristo Soares Alves
- Postgraduate Program in Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Inar Castro
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of Sao Paulo, SP, Brazil
| | - Chris Reutelingsperger
- Faculty of Health, Medicine and Life Sciences, Part of Maastricht University Medical Center, Part of Maastricht University, 6211 LK Maastricht, the Netherlands
| | - Mayara Klimuk Uchiyama
- Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, SP, Brazil
| | - Koiti Araki
- Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, SP, Brazil
| | - Sílvia Stanisçuaski Guterres
- Postgraduate Program in Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Adriana Raffin Pohlmann
- Postgraduate Program in Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Sandra Helena Poliselli Farsky
- Department of Clinical & Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, SP, Brazil.
| |
Collapse
|
58
|
Calderin EP, Zheng JJ, Boyd NL, McNally L, Audam TN, Lorkiewicz P, Hill BG, Hellmann J. Exercise-induced specialized proresolving mediators stimulate AMPK phosphorylation to promote mitochondrial respiration in macrophages. Mol Metab 2022; 66:101637. [PMID: 36400404 PMCID: PMC9719872 DOI: 10.1016/j.molmet.2022.101637] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE Physical activity has been shown to reduce the risk of CVD mortality in large-cohort longitudinal studies; however, the mechanisms underpinning the beneficial effects of exercise remain incompletely understood. Emerging data suggest that the risk reducing effect of exercise extends beyond changes in traditional CVD risk factors alone and involves alterations in immunity and reductions in inflammatory mediator production. Our study aimed to determine whether exercise-enhanced production of proresolving lipid mediators contribute to alterations in macrophage intermediary metabolism, which may contribute to the anti-inflammatory effects of exercise. METHODS Changes in lipid mediators and macrophage metabolism were assessed in C57Bl/6 mice following 4 weeks of voluntary exercise training. To investigate whether exercise-stimulated upregulation of specialized proresolving lipid mediators (SPMs) was sufficient to enhance mitochondrial respiration, both macrophages from control mice and human donors were incubated in vitro with SPMs and mitochondrial respiratory parameters were measured using extracellular flux analysis. Compound-C, an ATP-competitive inhibitor of AMPK kinase activity, was used to investigate the role of AMPK activity in SPM-induced mitochondrial metabolism. To assess the in vivo contribution of 5-lipoxygenase in AMPK activation and exercise-induced mitochondrial metabolism in macrophages, Alox5-/- mice were also subjected to exercise training. RESULTS Four weeks of exercise training enhanced proresolving lipid mediator production, while also stimulating the catabolism of inflammatory lipid mediators (e.g., leukotrienes and prostaglandins). This shift in lipid mediator balance following exercise was associated with increased macrophage mitochondrial metabolism. We also find that treating human and murine macrophages in vitro with proresolving lipid mediators enhances mitochondrial respiratory parameters. The proresolving lipid mediators RvD1, RvE1, and MaR1, but not RvD2, stimulated mitochondrial respiration through an AMPK-dependent signaling mechanism. Additionally, in a subset of macrophages, exercise-induced mitochondrial activity in vivo was dependent upon 5-lipoxygenase activity. CONCLUSION Collectively, these results suggest that exercise stimulates proresolving lipid mediator biosynthesis and mitochondrial metabolism in macrophages via AMPK, which might contribute to the anti-inflammatory and CVD risk reducing effect of exercise.
Collapse
Affiliation(s)
- Ernesto Pena Calderin
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA,Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Jing-Juan Zheng
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Nolan L. Boyd
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Lindsey McNally
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Timothy N. Audam
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Pawel Lorkiewicz
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Bradford G. Hill
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Jason Hellmann
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA,Corresponding author. 580 S. Preston St. Rm 204F, Delia Baxter II Building, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
59
|
TNFα and IFNγ cooperate for efficient pro- to anti-inflammatory transition of macrophages during muscle regeneration. Proc Natl Acad Sci U S A 2022; 119:e2209976119. [PMID: 36279473 PMCID: PMC9636974 DOI: 10.1073/pnas.2209976119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
IFNγ is traditionally known as a proinflammatory cytokine with diverse roles in antimicrobial and antitumor immunity. Yet, findings regarding its sources and functions during the regeneration process following a sterile injury are conflicting. Here, we show that natural killer (NK) cells are the main source of IFNγ in regenerating muscle. Beyond this cell population, IFNγ production is limited to a small population of T cells. We further show that NK cells do not play a major role in muscle regeneration following an acute injury or in dystrophic mice. Surprisingly, the absence of IFNγ per se also has no effect on muscle regeneration following an acute injury. However, the role of IFNγ is partially unmasked when TNFα is also neutralized, suggesting a compensatory mechanism. Using transgenic mice, we showed that conditional inhibition of IFNGR1 signaling in muscle stem cells or fibro-adipogenic progenitors does not play a major role in muscle regeneration. In contrast to common belief, we found that IFNγ is not present in the early inflammatory phase of the regeneration process but rather peaks when macrophages are acquiring an anti-inflammatory phenotype. Further transcriptomic analysis suggests that IFNγ cooperates with TNFα to regulate the transition of macrophages from pro- to anti-inflammatory states. The absence of the cooperative effect of these cytokines on macrophages, however, does not result in significant regeneration impairment likely due to the presence of other compensatory mechanisms. Our findings support the arising view of IFNγ as a pleiotropic inflammatory regulator rather than an inducer of the inflammatory response.
Collapse
|
60
|
Wu C, Qiu T, Yuan W, Shi Y, Yao X, Jiang L, Zhang J, Yang G, Liu X, Bai J, Zhao D, Sun X. Annexin A1 inhibition facilitates NLRP3 inflammasome activation in arsenic-induced insulin resistance in rat liver. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 96:103981. [PMID: 36182042 DOI: 10.1016/j.etap.2022.103981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/24/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Hepatic insulin resistance (IR) is the primary pathology of type 2 diabetes (T2D). The role of the NOD-like receptor protein 3 (NLRP3) inflammasome in arsenic-induced hepatic IR has been previously demonstrated. However, the mechanism of the arsenic-induced activation of the NLRP3 inflammasome is still unclear. Here, we demonstrate that NaAsO2 downregulated the mRNA and protein level of Annexin A1 (AnxA1), an anti-inflammatory factor, in rat livers and L-02 cells. Moreover, AnxA1 overexpression significantly alleviated arsenic-induced NLRP3 inflammasome activation and IR in L-02 cells. Importantly, Co-immunoprecipitation (Co-IP) results showed that AnxA1 1-190 peptide could bind to the domain encompassing amino acids 1-210 and 211-550 of NLRP3. In conclusion, our experiments demonstrated that arsenic exposure could activate the NLRP3 inflammasome and IR by inhibiting the AnxA1 activity. These findings suggest that AnxA1 may be a promising therapeutic target of arsenicosis.
Collapse
Affiliation(s)
- Chenbing Wu
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| | - Tianming Qiu
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| | - Weizhuo Yuan
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| | - Yan Shi
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| | - Xiaofeng Yao
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| | - Liping Jiang
- Preventive Medicine Laboratory, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, 116044, PR China.
| | - Jingyuan Zhang
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| | - Guang Yang
- Department of Nutrition and Food Safety, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| | - Xiaofang Liu
- Department of Nutrition and Food Safety, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| | - Jie Bai
- Department of Nutrition and Food Safety, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| | - Danyi Zhao
- Department of Gastrointestinal Oncology, The Second Hospital of Dalian Medical University, Dalian, PR China.
| | - Xiance Sun
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China; Global Health Research Center, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| |
Collapse
|
61
|
Qin CX, Norling LV, Vecchio EA, Brennan EP, May LT, Wootten D, Godson C, Perretti M, Ritchie RH. Formylpeptide receptor 2: Nomenclature, structure, signalling and translational perspectives: IUPHAR review 35. Br J Pharmacol 2022; 179:4617-4639. [PMID: 35797341 PMCID: PMC9545948 DOI: 10.1111/bph.15919] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 05/22/2022] [Accepted: 06/09/2022] [Indexed: 12/26/2022] Open
Abstract
We discuss the fascinating pharmacology of formylpeptide receptor 2 (FPR2; often referred to as FPR2/ALX since it binds lipoxin A4 ). Initially identified as a low-affinity 'relative' of FPR1, FPR2 presents complex and diverse biology. For instance, it is activated by several classes of agonists (from peptides to proteins and lipid mediators) and displays diverse expression patterns on myeloid cells as well as epithelial cells and endothelial cells, to name a few. Over the last decade, the pharmacology of FPR2 has progressed from being considered a weak chemotactic receptor to a master-regulator of the resolution of inflammation, the second phase of the acute inflammatory response. We propose that exploitation of the biology of FPR2 offers innovative ways to rectify chronic inflammatory states and represents a viable avenue to develop novel therapies. Recent elucidation of FPR2 structure will facilitate development of the anti-inflammatory and pro-resolving drugs of next decade.
Collapse
Affiliation(s)
- Cheng Xue Qin
- Drug Discovery Biology, Monash Institute of Pharmaceutical SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Lucy V. Norling
- William Harvey Research Institute, Barts and the London School of MedicineQueen Mary University of LondonLondonUK
| | - Elizabeth A. Vecchio
- Drug Discovery Biology, Monash Institute of Pharmaceutical SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Eoin P. Brennan
- Diabetes Complications Research Centre, Conway Institute and School of MedicineUniversity College DublinDublinIreland
| | - Lauren T. May
- Drug Discovery Biology, Monash Institute of Pharmaceutical SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Catherine Godson
- Diabetes Complications Research Centre, Conway Institute and School of MedicineUniversity College DublinDublinIreland
| | - Mauro Perretti
- William Harvey Research Institute, Barts and the London School of MedicineQueen Mary University of LondonLondonUK
| | - Rebecca H. Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical SciencesMonash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
62
|
Yu Y, Yue Z, Xu M, Zhang M, Shen X, Ma Z, Li J, Xie X. Macrophages play a key role in tissue repair and regeneration. PeerJ 2022; 10:e14053. [PMID: 36196399 PMCID: PMC9527023 DOI: 10.7717/peerj.14053] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/24/2022] [Indexed: 01/19/2023] Open
Abstract
Tissue regeneration after body injury has always been a complex problem to resolve for mammals. In adult mammals, the repair process after tissue injury is often accompanied by continuous and extensive fibrosis, which leads to scars. This process has been shown to severely hinder regeneration. Macrophages, as widely distributed innate immune cells, not only play an important role in various pathological processes, but also participate in the repair process before tissue regeneration and coordinate the regeneration process after repair. This review will discuss the various forms and indispensability of macrophages involved in repair and regeneration, and how macrophages play a role in the repair and regeneration of different tissues.
Collapse
Affiliation(s)
- Yajie Yu
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Zhongyu Yue
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Mengli Xu
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Meiling Zhang
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Xue Shen
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Zihan Ma
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Juan Li
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Xin Xie
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| |
Collapse
|
63
|
Feng H, Qi Y, Wang X, Chen F, Li X. Treadmill Exercise Decreases Inflammation Via Modulating IL-6 Expression in the Rat Model of Middle Cerebral Artery Occlusion. Neurocrit Care 2022; 38:279-287. [PMID: 35982267 DOI: 10.1007/s12028-022-01575-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 07/25/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Long-term bed rest in neurointensive care (NIC) patients leads to skeletal muscle atrophy and cognitive dysfunction, which seriously affects the physical fitness and final prognosis of critically ill patients. Exercise therapy plays an increasingly important role in the treatment and rehabilitation of patients with sarcopenia. However, the therapeutic effect and mechanism of exercise therapy for patients with neurological impairment remain unclear. METHODS Serum samples of NIC patients before and after exercise therapy and normal people were collected to detect interleukin-6 (IL-6) and interleukin-1β levels by enzyme-linked immunosorbent assay (ELISA). Middle cerebral artery occlusion (MCAO) was used for the construction of a rat model. The Morris water maze test, exploration test, and open-field test were used to assess neurological function in rats. Western blot and quantitative real-time polymerase chain reaction were performed to evaluate the activation of IL-6/adenosine-monophosphate-activated protein kinase (AMPK) signaling. RESULTS Exercise therapy attenuated IL-6 expression in NIC patients. Exercise therapy alleviated cognitive dysfunctions and decreased IL-6 expression in MCAO rats. Exercise therapy alleviated gastrocnemius muscle injury in rats after MCAO by modulating IL-6/AMPK signaling. CONCLUSIONS Treadmill exercise decreases inflammation in MCAO rats via modulating IL-6/AMPK signaling.
Collapse
Affiliation(s)
- Hui Feng
- Department of Rehabilitation, The Affiliated Jiangning Hospital of Nanjing Medical University, No. 169 Hushan Road, Dongshan Street, Jiangning District, Nanjing, 210000, Jiangsu, China.
| | - Yinliang Qi
- Department of Hyperbaric Oxygen, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui, China
| | - Xinlong Wang
- Department of Rehabilitation, The Affiliated Jiangning Hospital of Nanjing Medical University, No. 169 Hushan Road, Dongshan Street, Jiangning District, Nanjing, 210000, Jiangsu, China
| | - Fangyu Chen
- Department of Rehabilitation, The Affiliated Jiangning Hospital of Nanjing Medical University, No. 169 Hushan Road, Dongshan Street, Jiangning District, Nanjing, 210000, Jiangsu, China
| | - Xueping Li
- Department of Rehabilitation, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Qinhuai District, Nanjing, 210000, Jiangsu, China
| |
Collapse
|
64
|
Klein L, Ophelders DR, van den Hove D, Damoiseaux M, Rutten BP, Reutelingsperger CP, Schurgers LJ, Wolfs TG. Prenatal administration of multipotent adult progenitor cells modulates the systemic and cerebral immune response in an ovine model of chorioamnionitis. Brain Behav Immun Health 2022; 23:100458. [PMID: 35647567 PMCID: PMC9136278 DOI: 10.1016/j.bbih.2022.100458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/17/2022] [Accepted: 03/31/2022] [Indexed: 11/30/2022] Open
Abstract
Systemic and cerebral inflammation following antenatal infection (e.g. chorioamnionitis) and dysregulation of the blood brain barrier (BBB) are major risk factors for abnormal neonatal brain development. Administration of multipotent adult progenitor cells (MAPCs) represents an interesting pharmacological strategy as modulator of the peripheral and cerebral immune response and protector of BBB integrity. We studied the immunomodulatory and protective cerebrovascular potential of prenatally administered MAPCs in a preclinical ovine model for antenatal inflammation. Ovine fetuses were intra-amniotically (i.a.) exposed to lipopolysaccharide (LPS) or saline at gestational day 125, followed by the intravenous administration of 1*107 MAPCs or saline at gestational day 127. Circulating inflammation markers were measured. Fetal brains were examined immuno-histochemically post-mortem at gestational day 132. Fetal plasma IL-6 levels were elevated significantly 24 h after LPS administration. In utero systemic MAPC treatment after LPS exposure increased Annexin A1 (ANXA1) expression in the cerebrovascular endothelium, indicating enforcement of BBB integrity, and increased the number of leukocytes at brain barriers throughout the brain. Further characterisation of brain barrier-associated leukocytes showed that monocyte/choroid plexus macrophage (IBA-1+/CD206+) and neutrophil (MPO+) populations predominantly contributed to the LPS-MAPC-induced increase of CD45+cells. In the choroid plexus, the percentage of leukocytes expressing the proresolving mediator ANXA1 tended to be decreased after LPS-induced antenatal inflammation, an effect reversed by systemic MAPC treatment. Accordingly, expression levels of ANXA1 per leukocyte were decreased after LPS and restored after subsequent MAPC treatment. Increased expression of ANXA1 by the cerebrovasculature and immune cells at brain barriers following MAPC treatment in an infectious setting indicate a MAPC driven early defence mechanism to protect the neonatal brain against infection-driven inflammation and potential additional pro-inflammatory insults in the neonatal period. MAPCs administered systemically enhance the brain directed immune response in an inflammation dependent manner in preterm fetuses. Annexin A1 expression is increased in cerebrovasculature and immune cells at brain barriers when MAPCs were i.v. administered in the infectious setting. MAPCs potentially protect the neonatal brain by enforcing the blood brain barrier and modulating inflammation.
Collapse
Affiliation(s)
- Luise Klein
- School for Oncology and Reproduction (GROW), Maastricht University, Maastricht, the Netherlands
- Department of Pediatrics, Maastricht University, Maastricht, the Netherlands
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands
| | - Daan R.M.G. Ophelders
- School for Oncology and Reproduction (GROW), Maastricht University, Maastricht, the Netherlands
- Department of Pediatrics, Maastricht University, Maastricht, the Netherlands
| | - Daniel van den Hove
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
- Department of Psychiatry and Neuropsychology, European Graduate School of Neuroscience (EURON), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, the Netherlands
| | - Maurits Damoiseaux
- School for Oncology and Reproduction (GROW), Maastricht University, Maastricht, the Netherlands
- Department of Pediatrics, Maastricht University, Maastricht, the Netherlands
| | - Bart P.F. Rutten
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands
- Department of Psychiatry and Neuropsychology, European Graduate School of Neuroscience (EURON), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, the Netherlands
| | - Chris P.M. Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands
| | - Leon J. Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands
| | - Tim G.A.M. Wolfs
- School for Oncology and Reproduction (GROW), Maastricht University, Maastricht, the Netherlands
- Department of Pediatrics, Maastricht University, Maastricht, the Netherlands
- Corresponding author. School for Oncology and Reproduction (GROW), Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
65
|
Wang X, Zhou L. The Many Roles of Macrophages in Skeletal Muscle Injury and Repair. Front Cell Dev Biol 2022; 10:952249. [PMID: 35898401 PMCID: PMC9309511 DOI: 10.3389/fcell.2022.952249] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/23/2022] [Indexed: 12/24/2022] Open
Abstract
Skeletal muscle is essential to physical activity and energy metabolism. Maintaining intact functions of skeletal muscle is crucial to health and wellbeing. Evolutionarily, skeletal muscle has developed a remarkable capacity to maintain homeostasis and to regenerate after injury, which indispensably relies on the resident muscle stem cells, satellite cells. Satellite cells are largely quiescent in the homeostatic steady state. They are activated in response to muscle injury. Activated satellite cells proliferate and differentiate into myoblasts. Myoblasts fuse to form myotubes which further grow and differentiate into mature myofibers. This process is tightly regulated by muscle microenvironment that consists of multiple cellular and molecular components, including macrophages. Present in both homeostatic and injured muscles, macrophages contain heterogeneous functional subtypes that play diverse roles in maintaining homeostasis and promoting injury repair. The spatial-temporal presence of different functional subtypes of macrophages and their interactions with myogenic cells are vital to the proper regeneration of skeletal muscle after injury. However, this well-coordinated process is often disrupted in a chronic muscle disease, such as muscular dystrophy, leading to asynchronous activation and differentiation of satellite cells and aberrant muscle regeneration. Understanding the precise cellular and molecular processes regulating interactions between macrophages and myogenic cells is critical to the development of therapeutic manipulation of macrophages to promote injury repair. Here, we review the current knowledge of the many roles played by macrophages in the regulation of myogenic cells in homeostatic, regenerating, and dystrophic skeletal muscles.
Collapse
|
66
|
Inhibitory role of Annexin A1 in pathological bone resorption and therapeutic implications in periprosthetic osteolysis. Nat Commun 2022; 13:3919. [PMID: 35798730 PMCID: PMC9262976 DOI: 10.1038/s41467-022-31646-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/20/2022] [Indexed: 12/26/2022] Open
Abstract
There is currently no therapy available for periprosthetic osteolysis, the most common cause of arthroplasty failure. Here, the role of AnxA1 in periprosthetic osteolysis and potential therapeutics were investigated. Reducing the expression of AnxA1 in calvarial tissue was found to be associated with increased osteolytic lesions and the osteolytic lesions induced by debris implantation were more severe in AnxA1-defecient mice than in wild-type mice. AnxA1 inhibits the differentiation of osteoclasts through suppressing NFκB signaling and promoting the PPAR-γ pathway. Administration of N-terminal-AnxA1 (Ac2-26 peptide) onto calvariae significantly reduced osteolytic lesions triggered by wear debris. These therapeutic effects were abrogated in mice that had received the PPAR-γ antagonist, suggesting that the AnxA1/PPAR-γ axis has an inhibitory role in osteolysis. The administration of Ac2–26 suppressed osteolysis induced by TNF-α and RANKL injections in mice. These findings indicate that AnxA1 is a potential therapeutic agent for the treatment of periprosthetic osteolysis. Periprosthetic osteolysis is a cause of arthroplasty failure without available therapies. Here the authors show that Annexin A1 (AnxA1) is involved in in periprosthetic osteolysis and exerts potential therapeutic effects through suppressing NFκB signaling and promoting the PPAR-γ pathway resulting in inhibition of inflammation and osteoclasts differentiation induced by wear debris.
Collapse
|
67
|
ANNEXIN A1: Roles in Placenta, Cell Survival, and Nucleus. Cells 2022; 11:cells11132057. [PMID: 35805141 PMCID: PMC9266233 DOI: 10.3390/cells11132057] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023] Open
Abstract
The unbiased approaches of the last decade have enabled the collection of new data on the biology of annexin A1 (ANXA1) in a variety of scientific aspects, creating opportunities for new biomarkers and/or therapeutic purposes. ANXA1 is found in the plasma membrane, cytoplasm, and nucleus, being described at low levels in the nuclear and cytoplasmic compartments of placental cells related to gestational diabetic diseases, and its translocation from the cytoplasm to the nucleus has been associated with a response to DNA damage. The approaches presented here open pathways for reflection upon, and intrinsic clarification of, the modulating action of this protein in the response to genetic material damage, as well as its level of expression and cellular localization. The objective of this study is to arouse interest, with an emphasis on the mechanisms of nuclear translocation of ANXA1, which remain underexplored and may be beneficial in new inflammatory therapies.
Collapse
|
68
|
Wang RX, Wu L, Chen SF, Li ZY, Zhao MH, Chen M. Renal Expression of Annexin A1 Is Associated With the Severity of Renal Injury in Antineutrophil Cytoplasmic Autoantibody-Associated Vasculitis. Front Med (Lausanne) 2022; 9:769813. [PMID: 35783659 PMCID: PMC9247296 DOI: 10.3389/fmed.2022.769813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 05/27/2022] [Indexed: 12/25/2022] Open
Abstract
Background Increasing studies demonstrated the importance of activation of neutrophils in the pathogenesis of antineutrophil cytoplasmic autoantibody (ANCA)-associated vasculitis (AAV). Previous studies showed that annexin A1 (ANXA1) inhibited the recruitment, transendothelial migration and respiratory burst of neutrophils and induced apoptosis of neutrophils. The current study aimed to investigate the plasma and renal levels of ANXA1 as well as their association with the disease severity in AAV patients. Methods Thirty-one AAV patients in active stage and 35 AAV patients in remission stage were recruited. The expression of ANXA1 in renal specimens was assessed by immunohistochemistry. The co-localization of ANXA1 with renal intrinsic and infiltrating cells was detected by double immunofluorescence. The plasma levels of ANXA1 were determined by ELISA. The association of plasma and renal levels of ANXA1 with clinicopathological parameters was further analyzed. Results Plasma levels of ANXA1 were significantly higher in active AAV patients than those in AAV patients in remission as well as healthy controls. The renal expression of ANXA1 was significantly higher in active AAV patients than in healthy controls and disease controls. Double immunofluorescence assay showed that ANXA1 was expressed in glomerular endothelial cells, mesangial cells, podocytes, proximal tubular epithelial cells, neutrophils, monocytes/macrophages and T cells in AAV patients. The mean optical density of ANXA1 in glomeruli was correlated with serum creatinine levels (r = −0.491, P = 0.005) and eGFR (r = 0.492, P = 0.005) at renal biopsy and the proportion of crescents (r = −0.423, P = 0.018) in renal specimens of AAV patients. The expression of ANXA1 in glomeruli of AAV patients achieving complete renal recovery was significantly higher than those achieving partial renal recovery. Conclusion In AAV patients, the renal expression of ANXA1 was associated with the severity of renal injury.
Collapse
Affiliation(s)
- Rui-Xue Wang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Liang Wu
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Su-Fang Chen
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Zhi-Ying Li
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- *Correspondence: Zhi-Ying Li
| | - Ming-Hui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Min Chen
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
69
|
Gadipudi LL, Ramavath NN, Provera A, Reutelingsperger C, Albano E, Perretti M, Sutti S. Annexin A1 treatment prevents the evolution to fibrosis of experimental nonalcoholic steatohepatitis. Clin Sci (Lond) 2022; 136:643-656. [PMID: 35438166 DOI: 10.1042/cs20211122] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/07/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022]
Abstract
Annexin A1 (AnxA1) is an important effector in the resolution of inflammation which is involved in modulating hepatic inflammation in nonalcoholic steatohepatitis (NASH). In the present study, we have investigated the possible effects of treatment with AnxA1 for counteracting the progression of experimental NASH. NASH was induced in C57BL/6 mice by feeding methionine-choline deficient (MCD) or Western diets (WDs) and the animals were treated for 4-6 weeks with human recombinant AnxA1 (hrAnxA1; 1 µg, daily IP) or saline once NASH was established. In both experimental models, treatment with hrAnxA1 improved parenchymal injury and lobular inflammation without interfering with the extension of steatosis. Furthermore, administration of hrAnxA1 significantly attenuated the hepatic expression of α1-procollagen and TGF-β1 and reduced collagen deposition, as evaluated by collagen Sirius Red staining. Flow cytometry and immunohistochemistry showed that hrAnxA1 did not affect the liver recruitment of macrophages, but strongly interfered with the formation of crown-like macrophage aggregates and reduced their capacity of producing pro-fibrogenic mediators like osteopontin (OPN) and galectin-3 (Gal-3). This effect was related to an interference with the acquisition of a specific macrophage phenotype characterized by the expression of the Triggering Receptor Expressed on Myeloid cells 2 (TREM-2), CD9 and CD206, previously associated with NASH evolution to cirrhosis. Collectively, these results indicate that, beside ameliorating hepatic inflammation, AnxA1 is specifically effective in preventing NASH-associated fibrosis by interfering with macrophage pro-fibrogenic features. Such a novel function of AnxA1 gives the rationale for the development of AnxA1 analogs for the therapeutic control of NASH evolution.
Collapse
Affiliation(s)
- Laila Lavanya Gadipudi
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of East Piedmont, Novara, Italy
| | - Naresh Naik Ramavath
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of East Piedmont, Novara, Italy
| | - Alessia Provera
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of East Piedmont, Novara, Italy
| | - Chris Reutelingsperger
- Cardiovascular Research Institute Maastricht, Department of Biochemistry, Maastricht University, Maastricht, The Netherlands
| | - Emanuele Albano
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of East Piedmont, Novara, Italy
| | - Mauro Perretti
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, U.K
| | - Salvatore Sutti
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of East Piedmont, Novara, Italy
| |
Collapse
|
70
|
Zhang Z, Ma Q, Velagapudi R, Barclay WE, Rodriguiz RM, Wetsel WC, Yang T, Shinohara ML, Terrando N. Annexin-A1 Tripeptide Attenuates Surgery-Induced Neuroinflammation and Memory Deficits Through Regulation the NLRP3 Inflammasome. Front Immunol 2022; 13:856254. [PMID: 35603196 PMCID: PMC9120413 DOI: 10.3389/fimmu.2022.856254] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/01/2022] [Indexed: 01/05/2023] Open
Abstract
Neuroinflammation is a growing hallmark of perioperative neurocognitive disorders (PNDs), including delirium and longer-lasting cognitive deficits. We have developed a clinically relevant orthopedic mouse model to study the impact of a common surgical procedure on the vulnerable brain. The mechanism underlying PNDs remains unknown. Here we evaluated the impact of surgical trauma on the NLRP3 inflammasome signaling, including the expression of apoptosis-associated speck-like protein containing a CARD (ASC), caspase-1, and IL-1β in the hippocampus of C57BL6/J male mice, adult (3-months) and aged (>18-months). Surgery triggered ASC specks formation in CA1 hippocampal microglia, but without inducing significant morphological changes in NLRP3 and ASC knockout mice. Since no therapies are currently available to treat PNDs, we assessed the neuroprotective effects of a biomimetic peptide derived from the endogenous inflammation-ending molecule, Annexin-A1 (ANXA1). We found that this peptide (ANXA1sp) inhibited postoperative NLRP3 inflammasome activation and prevented microglial activation in the hippocampus, reducing PND-like memory deficits. Together our results reveal a previously under-recognized role of hippocampal ANXA1 and NLRP3 inflammasome dysregulation in triggering postoperative neuroinflammation, offering a new target for advancing treatment of PNDs through the resolution of inflammation.
Collapse
Affiliation(s)
- Zhiquan Zhang
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States,*Correspondence: Zhiquan Zhang, ; Niccolò Terrando,
| | - Qing Ma
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Ravikanth Velagapudi
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - William E. Barclay
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Ramona M. Rodriguiz
- Department of Psychiatry and Behavioral Sciences, Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, NC, United States
| | - William C. Wetsel
- Department of Psychiatry and Behavioral Sciences, Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, NC, United States,Department of Neurobiology, Duke University Medical Center, Durham, NC, United States,Department of Cell Biology, Duke University Medical Center, Durham, NC, United States
| | - Ting Yang
- Department of Medicine, Division of Nephrology, Duke University Medical Center, Durham, NC, United States
| | - Mari L. Shinohara
- Department of Immunology, Duke University Medical Center, Durham, NC, United States,Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Niccolò Terrando
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States,Department of Immunology, Duke University Medical Center, Durham, NC, United States,Department of Cell Biology, Duke University Medical Center, Durham, NC, United States,*Correspondence: Zhiquan Zhang, ; Niccolò Terrando,
| |
Collapse
|
71
|
Filep JG. Targeting Neutrophils for Promoting the Resolution of Inflammation. Front Immunol 2022; 13:866747. [PMID: 35371088 PMCID: PMC8966391 DOI: 10.3389/fimmu.2022.866747] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/21/2022] [Indexed: 12/15/2022] Open
Abstract
Acute inflammation is a localized and self-limited innate host-defense mechanism against invading pathogens and tissue injury. Neutrophils, the most abundant immune cells in humans, play pivotal roles in host defense by eradicating invading pathogens and debris. Ideally, elimination of the offending insult prompts repair and return to homeostasis. However, the neutrophils` powerful weaponry to combat microbes can also cause tissue damage and neutrophil-driven inflammation is a unifying mechanism for many diseases. For timely resolution of inflammation, in addition to stopping neutrophil recruitment, emigrated neutrophils need to be disarmed and removed from the affected site. Accumulating evidence documents the phenotypic and functional versatility of neutrophils far beyond their antimicrobial functions. Hence, understanding the receptors that integrate opposing cues and checkpoints that determine the fate of neutrophils in inflamed tissues provides insight into the mechanisms that distinguish protective and dysregulated, excessive inflammation and govern resolution. This review aims to provide a brief overview and update with key points from recent advances on neutrophil heterogeneity, functional versatility and signaling, and discusses challenges and emerging therapeutic approaches that target neutrophils to enhance the resolution of inflammation.
Collapse
Affiliation(s)
- János G Filep
- Department of Pathology and Cell Biology, University of Montreal, Montreal, QC, Canada.,Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
| |
Collapse
|
72
|
Liver ischaemia-reperfusion injury: a new understanding of the role of innate immunity. Nat Rev Gastroenterol Hepatol 2022; 19:239-256. [PMID: 34837066 DOI: 10.1038/s41575-021-00549-8] [Citation(s) in RCA: 193] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/29/2021] [Indexed: 02/08/2023]
Abstract
Liver ischaemia-reperfusion injury (LIRI), a local sterile inflammatory response driven by innate immunity, is one of the primary causes of early organ dysfunction and failure after liver transplantation. Cellular damage resulting from LIRI is an important risk factor not only for graft dysfunction but also for acute and even chronic rejection and exacerbates the shortage of donor organs for life-saving liver transplantation. Hepatocytes, liver sinusoidal endothelial cells and Kupffer cells, along with extrahepatic monocyte-derived macrophages, neutrophils and platelets, are all involved in LIRI. However, the mechanisms underlying the responses of these cells in the acute phase of LIRI and how these responses are orchestrated to control and resolve inflammation and achieve homeostatic tissue repair are not well understood. Technological advances allow the tracking of cells to better appreciate the role of hepatic macrophages and platelets (such as their origin and immunomodulatory and tissue-remodelling functions) and hepatic neutrophils (such as their selective recruitment, anti-inflammatory and tissue-repairing functions, and formation of extracellular traps and reverse migration) in LIRI. In this Review, we summarize the role of macrophages, platelets and neutrophils in LIRI, highlight unanswered questions, and discuss prospects for innovative therapeutic regimens against LIRI in transplant recipients.
Collapse
|
73
|
Annexin-A1-Derived Peptide Ac2-26 Suppresses Allergic Airway Inflammation and Remodelling in Mice. Cells 2022; 11:cells11050759. [PMID: 35269381 PMCID: PMC8909467 DOI: 10.3390/cells11050759] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/03/2022] [Accepted: 02/15/2022] [Indexed: 01/04/2023] Open
Abstract
Annexin-A1 (AnxA1) and its N-terminal derived peptide Ac2-26 regulate the inflammatory response in several experimental models of disorders. This study evaluated the effect of endogenous AnxA1 and its N-terminal peptide Acetyl 2-26 (Ac2-26) on allergic asthma triggered by house dust mite (HDM) extract in mice. ANXA1−/− and wildtype (WT) mice were exposed to intranasal instillation of HDM every other day for 3 weeks, with analyses performed 24 h following the last exposure. Intranasal administration of peptide Ac2-26 was performed 1 h before HDM, beginning 1 week after the initial antigen application. ANXA1−/− mice stimulated with HDM showed marked exacerbations of airway hyperreactivity (AHR), eosinophil accumulation, subepithelial fibrosis, and mucus hypersecretion, all parameters correlating with overexpression of cytokines (IL-4, IL-13, TNF-α, and TGF-β) and chemokines (CCL11/eotaxin-1 and CCL2/MCP-1). Intranasal treatment with peptide Ac2-26 decreased eosinophil infiltration, peribronchiolar fibrosis, and mucus exacerbation caused by the allergen challenge. Ac2-26 also inhibited AHR and mediator production. Collectively, our findings show that the AnxA1-derived peptide Ac2-26 protects against several pathological changes associated with HDM allergic reaction, suggesting that this peptide or related AnxA1-mimetic Ac2-26 may represent promising therapeutic candidates for the treatment of allergic asthma.
Collapse
|
74
|
Matsuzaka Y, Hirai Y, Hashido K, Okada T. Therapeutic Application of Extracellular Vesicles-Capsulated Adeno-Associated Virus Vector via nSMase2/Smpd3, Satellite, and Immune Cells in Duchenne Muscular Dystrophy. Int J Mol Sci 2022; 23:1551. [PMID: 35163475 PMCID: PMC8836108 DOI: 10.3390/ijms23031551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by loss-of-function mutations in the dystrophin gene on chromosome Xp21. Disruption of the dystrophin-glycoprotein complex (DGC) on the cell membrane causes cytosolic Ca2+ influx, resulting in protease activation, mitochondrial dysfunction, and progressive myofiber degeneration, leading to muscle wasting and fragility. In addition to the function of dystrophin in the structural integrity of myofibers, a novel function of asymmetric cell division in muscular stem cells (satellite cells) has been reported. Therefore, it has been suggested that myofiber instability may not be the only cause of dystrophic degeneration, but rather that the phenotype might be caused by multiple factors, including stem cell and myofiber functions. Furthermore, it has been focused functional regulation of satellite cells by intracellular communication of extracellular vesicles (EVs) in DMD pathology. Recently, a novel molecular mechanism of DMD pathogenesis-circulating RNA molecules-has been revealed through the study of target pathways modulated by the Neutral sphingomyelinase2/Neutral sphingomyelinase3 (nSMase2/Smpd3) protein. In addition, adeno-associated virus (AAV) has been clinically applied for DMD therapy owing to the safety and long-term expression of transduction genes. Furthermore, the EV-capsulated AAV vector (EV-AAV) has been shown to be a useful tool for the intervention of DMD, because of the high efficacy of the transgene and avoidance of neutralizing antibodies. Thus, we review application of AAV and EV-AAV vectors for DMD as novel therapeutic strategy.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8551, Japan;
| | - Yukihiko Hirai
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
| | - Kazuo Hashido
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8551, Japan;
| | - Takashi Okada
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
| |
Collapse
|
75
|
Wetzel A, Bonnefoy F, Chagué C, Vetter M, Couturier M, Baffert B, Adotévi O, Saas P, Perruche S. Pro-Resolving Factor Administration Limits Cancer Progression by Enhancing Immune Response Against Cancer Cells. Front Immunol 2022; 12:812171. [PMID: 35116038 PMCID: PMC8804172 DOI: 10.3389/fimmu.2021.812171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/21/2021] [Indexed: 12/27/2022] Open
Abstract
Cancers are consequences of cellular dysfunction leading to an aberrant cellular multiplication and proliferation, subsequently yielding metastasis formation. Inflammatory reaction, with immune cell recruitment, is the main defense against precancerous lesions. However, an inflammatory environment also favors cancer cell progression, with cancer cell evasion from immune surveillance, leading to cancer development. Current therapeutic strategies enhance this natural immune response in order to restore immunosurveillance. The variety of these strategies is a predominant source of inflammatory mediators used by cancer cells to grow, differentiate, and migrate, therefore encouraging metastasis formation. For this reason, during cancer progression, limiting inflammation appears to be an innovative strategy to avoid the escape of cancer cells and potentially enhance the efficacy of antitumor therapies. Thus, this study aims to investigate the impact of administering pro-resolving factors (SuperMApo® drug candidate), which are inducers of inflammation resolution, in the framework of cancer treatment. We have observed that administering pro-resolving mediators issued from apoptotic cell efferocytosis by macrophages controlled peritoneal cancer progression by limiting cancer cell dissemination to the blood and mesenteric lymph nodes. This observation has been linked to an increase of macrophage mobilization in both peritoneal cavity and mesenteric lymph nodes. This control is associated to a restricted immunosuppressive myeloid cell circulation and to an IFN-γ-specific anti-tumor T-cell response. Altogether, these results suggest that administering proresolving factors could provide a new additional therapeutic alternative to control cancer progression.
Collapse
Affiliation(s)
- Audrey Wetzel
- University of Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, LabEx LipSTIC, Besançon, France
- MED’INN’Pharma, Besançon, France
| | - Francis Bonnefoy
- University of Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, LabEx LipSTIC, Besançon, France
- MED’INN’Pharma, Besançon, France
| | - Cécile Chagué
- University of Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, LabEx LipSTIC, Besançon, France
| | - Mathieu Vetter
- University of Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, LabEx LipSTIC, Besançon, France
| | | | - Blandine Baffert
- University of Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, LabEx LipSTIC, Besançon, France
| | - Olivier Adotévi
- University of Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, LabEx LipSTIC, Besançon, France
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | - Philippe Saas
- University of Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, LabEx LipSTIC, Besançon, France
| | - Sylvain Perruche
- University of Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, LabEx LipSTIC, Besançon, France
- MED’INN’Pharma, Besançon, France
- *Correspondence: Sylvain Perruche,
| |
Collapse
|
76
|
Tavares LP, Melo EM, Sousa LP, Teixeira MM. Pro-resolving therapies as potential adjunct treatment for infectious diseases: Evidence from studies with annexin A1 and angiotensin-(1-7). Semin Immunol 2022; 59:101601. [PMID: 35219595 DOI: 10.1016/j.smim.2022.101601] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/06/2022] [Accepted: 02/17/2022] [Indexed: 01/15/2023]
Abstract
Infectious diseases, once believed to be an eradicable public health threat, still represent a leading cause of death worldwide. Environmental and social changes continuously favor the emergence of new pathogens and rapid dissemination around the world. The limited availability of anti-viral therapies and increased antibiotic resistance has made the therapeutic management of infectious disease a major challenge. Inflammation is a primordial defense to protect the host against invading microorganisms. However, dysfunctional inflammatory responses contribute to disease severity and mortality during infections. In recent years, a few studies have examined the relevance of resolution of inflammation in the context of infections. Inflammation resolution is an active integrated process transduced by several pro-resolving mediators, including Annexin A1 and Angiotensin-(1-7). Here, we examine some of the cellular and molecular circuits triggered by pro-resolving molecules and that may be beneficial in the context of infectious diseases.
Collapse
Affiliation(s)
- Luciana Pádua Tavares
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Eliza Mathias Melo
- Immunopharmacology Laboratory, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lirlândia Pires Sousa
- Signaling in Inflammation Laboratory, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - Mauro Martins Teixeira
- Immunopharmacology Laboratory, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
77
|
Interactions between plant lipid-binding proteins and their ligands. Prog Lipid Res 2022; 86:101156. [DOI: 10.1016/j.plipres.2022.101156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/05/2021] [Accepted: 01/14/2022] [Indexed: 01/11/2023]
|
78
|
Juban G. [Targeting macrophages in muscular dystrophies?]. Med Sci (Paris) 2021; 37 Hors série n° 1:15-18. [PMID: 34878387 DOI: 10.1051/medsci/2021184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Macrophages play an essential role during muscle regeneration. Alteration of their properties is observed in chronic diseases such as degenerative myopathies, where they contribute to muscle fibrosis. Modulation of macrophage inflammatory status represents a relevant therapeutic strategy to improve muscle homeostasis.
Collapse
Affiliation(s)
- Gaëtan Juban
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, Inserm U1217, Université de Lyon, 69007 Lyon, France
| |
Collapse
|
79
|
Singh P, Chazaud B. Benefits and pathologies associated with the inflammatory response. Exp Cell Res 2021; 409:112905. [PMID: 34736921 DOI: 10.1016/j.yexcr.2021.112905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/14/2021] [Accepted: 10/29/2021] [Indexed: 10/20/2022]
Abstract
Adult skeletal muscle regenerates completely after a damage, thanks to the satellite cells, or muscle stem cells (MuSCs), that implement the adult myogenic program. This program is sustained by both robust intrinsic mechanisms and extrinsic cues coming from the close neighborhood of MuSCs during muscle regeneration. Among the various cell types present in the regenerating muscle, immune cells, and particularly macrophages, exert numerous functions and provide sequential transient niches to support the myogenic program. The adequate orchestration of the delivery of these cues ensures efficient muscle regeneration and full functional recovery. The situation is very different in muscular dystrophies where asynchronous and permanent microinjuries occur, triggering contradictory regenerating cues at the same time in a specific area, that lead to chronic inflammation and fibrogenesis. Here we review the beneficial effects that leukocytes, and particularly macrophages, exert on their neighboring cells during skeletal muscle regeneration after an acute injury. Then, the more complicated (and less beneficial) roles of leukocytes during muscular dystrophies are presented. Finally, we discuss how the inflammatory compartment may be a target to improve muscle regeneration in both acute muscle injury and muscle diseases.
Collapse
Affiliation(s)
- Pawandeep Singh
- Institut NeuroMyoGene, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université Lyon, Faculté de Médecine, 8 Avenue Rockefeller, 69008, Lyon, France
| | - Bénédicte Chazaud
- Institut NeuroMyoGene, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université Lyon, Faculté de Médecine, 8 Avenue Rockefeller, 69008, Lyon, France.
| |
Collapse
|
80
|
Juban G, Chazaud B. Efferocytosis during Skeletal Muscle Regeneration. Cells 2021; 10:cells10123267. [PMID: 34943775 PMCID: PMC8699096 DOI: 10.3390/cells10123267] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023] Open
Abstract
Efferocytosis, i.e., engulfment of dead cells by macrophages, is a crucial step during tissue repair after an injury. Efferocytosis delineates the transition from the pro-inflammatory phase of the inflammatory response to the recovery phase that ensures tissue reconstruction. We present here the role of efferocytosis during skeletal muscle regeneration, which is a paradigm of sterile tissue injury followed by a complete regeneration. We present the molecular mechanisms that have been described to control this process, and particularly the metabolic control of efferocytosis during skeletal muscle regeneration.
Collapse
|
81
|
Minari ALA, Thomatieli-Santos RV. From skeletal muscle damage and regeneration to the hypertrophy induced by exercise: What is the role of different macrophages subsets? Am J Physiol Regul Integr Comp Physiol 2021; 322:R41-R54. [PMID: 34786967 DOI: 10.1152/ajpregu.00038.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Macrophages are one of the top players when considering immune cells involved with tissue homeostasis. Recently, increasing evidence has demonstrated that these macrophages could also present two major subsets during tissue healing; proliferative macrophages (M1-like), which are responsible for increasing myogenic cell proliferation, and restorative macrophages (M2-like), which are accountable for the end of the mature muscle myogenesis. The participation and characterization of these macrophage subsets is critical during myogenesis, not only to understand the inflammatory role of macrophages during muscle recovery but also to create supportive strategies that can improve mass muscle maintenance. Indeed, most of our knowledge about macrophage subsets comes from skeletal muscle damage protocols, and we still do not know how these subsets can contribute to skeletal muscle adaptation. This narrative review aims to collect and discuss studies demonstrating the involvement of different macrophage subsets during the skeletal muscle damage/regeneration process, showcasing an essential role of these macrophage subsets during muscle adaptation induced by acute and chronic exercise programs.
Collapse
Affiliation(s)
- André Luis Araujo Minari
- Universidade estadual Paulista, Campus Presidente Prudente, Brazil.,Universidade Federal de São Paulo, Psicobiologia, Brazil
| | - Ronaldo V Thomatieli-Santos
- Universidade Federal de São Paulo, Campus Baixada Santista, Brazil.,Universidade Federal de São Paulo, Psicobiologia, Brazil
| |
Collapse
|
82
|
Feno S, Munari F, Reane DV, Gissi R, Hoang DH, Castegna A, Chazaud B, Viola A, Rizzuto R, Raffaello A. The dominant-negative mitochondrial calcium uniporter subunit MCUb drives macrophage polarization during skeletal muscle regeneration. Sci Signal 2021; 14:eabf3838. [PMID: 34726954 DOI: 10.1126/scisignal.abf3838] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Simona Feno
- Department of Biomedical Sciences, University of Padova, 35131 Padua, Italy
| | - Fabio Munari
- Department of Biomedical Sciences, University of Padova, 35131 Padua, Italy
| | | | - Rosanna Gissi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona 4, 70125 Bari, Italy
| | - Dieu-Huong Hoang
- INSERM U1217, CNRS 5310, Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Université de Lyon, 8 Avenue Rockefeller, F-69008 Lyon, France
| | - Alessandra Castegna
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona 4, 70125 Bari, Italy.,IBIOM-CNR, Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Via Giovanni Amendola 122/O, 70126 Bari, Italy
| | - Bénédicte Chazaud
- INSERM U1217, CNRS 5310, Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Université de Lyon, 8 Avenue Rockefeller, F-69008 Lyon, France
| | - Antonella Viola
- Department of Biomedical Sciences, University of Padova, 35131 Padua, Italy
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padova, 35131 Padua, Italy
| | - Anna Raffaello
- Department of Biomedical Sciences, University of Padova, 35131 Padua, Italy.,Myology Center, University of Padua, via G. Colombo 3, 35100 Padova, Italy
| |
Collapse
|
83
|
Luis Araujo Minari A, Avila F, Missae Oyama L, Vagner Thomatieli Dos Santos R. Inflammatory response of the peripheral neuroendocrine system following downhill running. Cytokine 2021; 149:155746. [PMID: 34678553 DOI: 10.1016/j.cyto.2021.155746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 09/06/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022]
Abstract
Exploring the relationship between exercise inflammation and the peripheral neuroendocrine system is essential for understanding how acute or repetitive bouts of exercise can contribute to skeletal muscle adaption. In severe damage, some evidence demonstrates that peripheral neuroendocrine receptors might contribute to inflammatory resolution, supporting the muscle healing process through myogenesis. In this sense, the current study aimed to evaluate two classic peripheral neuronal receptors along with skeletal muscle inflammation and adaptation parameters in triceps brachii after exercise. We euthanized C57BL (10 to 12 weeks old) male mice before, and one, two, and three days after a downhill running protocol. The positive Ly6C cells, along with interleukin-6 (IL-6), nuclear factor kappa B (NF-κB), glucocorticoid receptor (GR), α7 subunits of the nicotinic acetylcholine receptor (nAChRs), and myonuclei accretion were analyzed. Our main results demonstrated that nAChRs increased with the inflammatory and myonuclei accretion responses regardless of NF-κB and GR protein expression. These results indicate that increased nAChR may contribute to skeletal muscle adaption after downhill running in mice.
Collapse
Affiliation(s)
| | - Felipe Avila
- Departamento de Fisiologia - Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| | - Lila Missae Oyama
- Departamento de Fisiologia - Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| | - Ronaldo Vagner Thomatieli Dos Santos
- Departamento de Psicobiologia, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil; Departamento de Biociências - Campus da Baixada Santista, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil.
| |
Collapse
|
84
|
ANXA1 Contained in EVs Regulates Macrophage Polarization in Tumor Microenvironment and Promotes Pancreatic Cancer Progression and Metastasis. Int J Mol Sci 2021; 22:ijms222011018. [PMID: 34681678 PMCID: PMC8538745 DOI: 10.3390/ijms222011018] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/21/2022] Open
Abstract
The tumor microenvironment (TME) is a dynamic system where nontumor and cancer cells intercommunicate through soluble factors and extracellular vesicles (EVs). The TME in pancreatic cancer (PC) is critical for its aggressiveness and the annexin A1 (ANXA1) has been identified as one of the oncogenic elements. Previously, we demonstrated that the autocrine/paracrine activities of extracellular ANXA1 depend on its presence in EVs. Here, we show that the complex ANXA1/EVs modulates the macrophage polarization further contributing to cancer progression. The EVs isolated from wild type (WT) and ANXA1 knock-out MIA PaCa-2 cells have been administrated to THP-1 macrophages finding that ANXA1 is crucial for the acquisition of a protumor M2 phenotype. The M2 macrophages activate endothelial cells and fibroblasts to induce angiogenesis and matrix degradation, respectively. We have also found a significantly increased presence of M2 macrophage in mice tumor and liver metastasis sections previously obtained by orthotopic xenografts with WT cells. Taken together, our data interestingly suggest the relevance of ANXA1 as potential diagnostic/prognostic and/or therapeutic PC marker.
Collapse
|
85
|
Seo BR, Payne CJ, McNamara SL, Freedman BR, Kwee BJ, Nam S, de Lázaro I, Darnell M, Alvarez JT, Dellacherie MO, Vandenburgh HH, Walsh CJ, Mooney DJ. Skeletal muscle regeneration with robotic actuation-mediated clearance of neutrophils. Sci Transl Med 2021; 13:eabe8868. [PMID: 34613813 DOI: 10.1126/scitranslmed.abe8868] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Bo Ri Seo
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Christopher J Payne
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.,Viam Inc., New York, NY 10023, USA
| | - Stephanie L McNamara
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Benjamin R Freedman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Brian J Kwee
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Sungmin Nam
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Irene de Lázaro
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Max Darnell
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Jonathan T Alvarez
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Maxence O Dellacherie
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Herman H Vandenburgh
- Department of Pathology and Lab Medicine, Brown University, Providence, RI 02912, USA
| | - Conor J Walsh
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
86
|
Wu L, Liu C, Chang DY, Zhan R, Zhao M, Man Lam S, Shui G, Zhao MH, Zheng L, Chen M. The Attenuation of Diabetic Nephropathy by Annexin A1 via Regulation of Lipid Metabolism Through the AMPK/PPARα/CPT1b Pathway. Diabetes 2021; 70:2192-2203. [PMID: 34103347 DOI: 10.2337/db21-0050] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/01/2021] [Indexed: 11/13/2022]
Abstract
Inflammation and abnormal metabolism play important roles in the pathogenesis of diabetic nephropathy (DN). Annexin A1 (ANXA1) contributes to inflammation resolution and improves metabolism. In this study, we assess the effects of ANXA1 in diabetic mice and proximal tubular epithelial cells (PTECs) treated with high glucose plus palmitate acid (HGPA) and explore the association of ANXA1 with lipid accumulation in patients with DN. It is found that ANXA1 deletion aggravates renal injuries, including albuminuria, mesangial matrix expansion, and tubulointerstitial lesions in high-fat diet/streptozotocin-induced diabetic mice. ANXA1 deficiency promotes intrarenal lipid accumulation and drives mitochondrial alterations in kidneys. In addition, Ac2-26, an ANXA1 mimetic peptide, has a therapeutic effect against lipid toxicity in diabetic mice. In HGPA-treated human PTECs, ANXA1 silencing causes FPR2/ALX-driven deleterious effects, which suppress phosphorylated Thr172 AMPK, resulting in decreased peroxisome proliferator-activated receptor α and carnitine palmitoyltransferase 1b expression and increased HGPA-induced lipid accumulation, apoptosis, and elevated expression of proinflammatory and profibrotic genes. Last but not least, the extent of lipid accumulation correlates with renal function, and the level of tubulointerstitial ANXA1 expression correlates with ectopic lipid deposition in kidneys of patients with DN. These data demonstrate that ANXA1 regulates lipid metabolism of PTECs to ameliorate disease progression; hence, it holds great potential as a therapeutic target for DN.
Collapse
Affiliation(s)
- Liang Wu
- Renal Division, Department of Medicine, Peking University First Hospital; Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Changjie Liu
- Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, Beijing, China
| | - Dong-Yuan Chang
- Renal Division, Department of Medicine, Peking University First Hospital; Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Rui Zhan
- Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, Beijing, China
| | - Mingming Zhao
- Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, Beijing, China
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Lipidall Technologies Co., Ltd., Changzhou, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ming-Hui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital; Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Lemin Zheng
- Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, Beijing, China
- Beijing Tiantan Hospital, China National Clinical Research Center for Neuro-logical Diseases, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, Beijing, China
| | - Min Chen
- Renal Division, Department of Medicine, Peking University First Hospital; Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
87
|
Shanley LC, Mahon OR, Kelly DJ, Dunne A. Harnessing the innate and adaptive immune system for tissue repair and regeneration: Considering more than macrophages. Acta Biomater 2021; 133:208-221. [PMID: 33657453 DOI: 10.1016/j.actbio.2021.02.023] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/05/2021] [Accepted: 02/15/2021] [Indexed: 02/08/2023]
Abstract
Tissue healing and regeneration is a complex, choreographed, spatiotemporal process involving a plethora of cell types, the activity of which is stringently regulated in order for effective tissue repair to ensue post injury. A number of globally prevalent conditions such as heart disease, organ failure, and severe musculoskeletal disorders require new therapeutic strategies to repair damaged or diseased tissue, particularly given an ageing population in which obesity, diabetes, and consequent tissue defects have reached epidemic proportions. This is further compounded by the lack of intrinsic healing and poor regenerative capacity of certain adult tissues. While vast progress has been made in the last decade regarding tissue regenerative strategies to direct self-healing, for example, through implantation of tissue engineered scaffolds, several challenges have hampered the clinical application of these technologies. Control of the immune response is growing as an attractive approach in regenerative medicine and it is becoming increasingly apparent that an in depth understanding of the interplay between cells of the immune system and tissue specific progenitor cells is of paramount importance. Furthermore, the integration of immunology and bioengineering promises to elevate the efficacy of biomaterial-based tissue repair and regeneration. In this review, we highlight the role played by individual immune cell subsets in tissue repair processes and describe new approaches that are being taken to direct appropriate healing outcomes via biomaterial mediated targeting of immune cell activity. STATEMENT OF SIGNIFICANCE: It is becoming increasingly apparent that controlling the immune response is as an attractive approach in regenerative medicine. Here, we propose that an in-depth understanding of immune system and tissue specific progenitor cell interactions may reveal mechanisms by which tissue healing and regeneration takes place, in addition to identifying novel therapeutic targets that could be used to enhance the tissue repair process. To date, most reviews have focused solely on macrophage subsets. This manuscript details the role of other innate and adaptive immune cells such as innate lymphoid cells (ILCs), natural killer (NK) cells and γδT cells (in addition to macrophages) in tissue healing. We also describe new approaches that are being taken to direct appropriate healing outcomes via biomaterial mediated cytokine and drug delivery.
Collapse
|
88
|
Annexin A1 attenuates cardiac diastolic dysfunction in mice with inflammatory arthritis. Proc Natl Acad Sci U S A 2021; 118:2020385118. [PMID: 34526398 PMCID: PMC8463875 DOI: 10.1073/pnas.2020385118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2021] [Indexed: 12/16/2022] Open
Abstract
Rheumatoid arthritis (RA) carries a twofold increased incidence of heart failure with preserved ejection fraction, accompanied by diastolic dysfunction, which can lead to death. The causes of diastolic dysfunction are unknown, and there are currently no well-characterized animal models for studying these mechanisms. Current medications for RA do not have marked beneficial cardio-protective effects. K/BxN F1 progeny and KRN control mice were analyzed over time for arthritis development, monitoring left ventricular diastolic and systolic function using echocardiography. Excised hearts were analyzed by flow cytometry, qPCR, and histology. In pharmacological experiments, K/BxN F1 mice were treated with human recombinant AnxA1 (hrAnxA1, 1 μg/mouse) or vehicle daily. K/BxN F1 mice exhibited fully developed arthritis with normal cardiac function at 4 wk; however, by week 8, all mice displayed left ventricular diastolic dysfunction with preserved ejection fraction. This dysfunction was associated with cardiac hypertrophy, myocardial inflammation and fibrosis, and inflammatory markers. Daily treatment of K/BxN F1 mice with hrAnxA1 from weeks 4 to 8 halted progression of the diastolic dysfunction. The treatment reduced cardiac transcripts of proinflammatory cytokines and profibrotic markers. At the cellular level, hrAnxA1 decreased activated T cells and increased MHC IIlow macrophage infiltration in K/BxN F1 hearts. Similar effects were obtained when hrAnxA1 was administered from week 8 to week 15. We describe an animal model of inflammatory arthritis that recapitulates the cardiomyopathy of RA. Treatment with hrAnxA1 after disease onset corrected the diastolic dysfunction through modulation of both fibroblast and inflammatory cell phenotype within the heart.
Collapse
|
89
|
Marine T, Marielle S, Graziella M, Fabio RMV. Macrophages in Skeletal Muscle Dystrophies, An Entangled Partner. J Neuromuscul Dis 2021; 9:1-23. [PMID: 34542080 PMCID: PMC8842758 DOI: 10.3233/jnd-210737] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
While skeletal muscle remodeling happens throughout life, diseases that result in its dysfunction are accountable for many deaths. Indeed, skeletal muscle is exceptionally capable to respond to stimuli modifying its homeostasis, such as in atrophy, hypertrophy, regeneration and repair. In particular conditions such as genetic diseases (muscular dystrophies), skeletal muscle’s capacity to remodel is strongly affected and undergoes continuous cycles of chronic damage. This induces scarring, fatty infiltration, as well as loss of contractibility and of the ability to generate force. In this context, inflammation, primarily mediated by macrophages, plays a central pathogenic role. Macrophages contribute as the primary regulators of inflammation during skeletal muscle regeneration, affecting tissue-resident cells such as myogenic cells and endothelial cells, but also fibro-adipogenic progenitors, which are the main source of the fibro fatty scar. During skeletal muscle regeneration their function is tightly orchestrated, while in dystrophies their fate is strongly disturbed, resulting in chronic inflammation. In this review, we will discuss the latest findings on the role of macrophages in skeletal muscle diseases, and how they are regulated.
Collapse
Affiliation(s)
- Theret Marine
- School of Biomedical Engineering, Department of Medical Genetics, University of British Columbia, Vancouver BC, Canada
| | - Saclier Marielle
- Department of Biosciences, University of Milan, via Celoria, Milan, Italy
| | - Messina Graziella
- Department of Biosciences, University of Milan, via Celoria, Milan, Italy
| | - Rossi M V Fabio
- School of Biomedical Engineering, Department of Medical Genetics, University of British Columbia, Vancouver BC, Canada
| |
Collapse
|
90
|
Saclier M, Ben Larbi S, My Ly H, Moulin E, Mounier R, Chazaud B, Juban G. Interplay between myofibers and pro-inflammatory macrophages controls muscle damage in mdx mice. J Cell Sci 2021; 134:272022. [PMID: 34471933 DOI: 10.1242/jcs.258429] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/30/2021] [Indexed: 12/18/2022] Open
Abstract
Duchenne muscular dystrophy is a genetic muscle disease characterized by chronic inflammation and fibrosis mediated by a pro-fibrotic macrophage population expressing pro-inflammatory markers. Our aim was to characterize cellular events leading to the alteration of macrophage properties and to modulate macrophage inflammatory status using the gaseous mediator hydrogen sulfide (H2S). Using co-culture experiments, we first showed that myofibers derived from mdx mice strongly skewed the polarization of resting macrophages towards a pro-inflammatory phenotype. Treatment of mdx mice with NaHS, an H2S donor, reduced the number of pro-inflammatory macrophages in skeletal muscle, which was associated with a decreased number of nuclei per fiber, as well as reduced myofiber branching and fibrosis. Finally, we established the metabolic sensor AMP-activated protein kinase (AMPK) as a critical NaHS target in muscle macrophages. These results identify an interplay between myofibers and macrophages where dystrophic myofibers contribute to the maintenance of a highly inflammatory environment sustaining a pro-inflammatory macrophage status, which in turn favors myofiber damage, myofiber branching and establishment of fibrosis. Our results also highlight the use of H2S donors as a potential therapeutic strategy to improve the dystrophic muscle phenotype by dampening chronic inflammation. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Marielle Saclier
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Sabrina Ben Larbi
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université de Lyon, 69008 Lyon, France
| | - Ha My Ly
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université de Lyon, 69008 Lyon, France
| | - Eugénie Moulin
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université de Lyon, 69008 Lyon, France
| | - Rémi Mounier
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université de Lyon, 69008 Lyon, France
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université de Lyon, 69008 Lyon, France
| | - Gaëtan Juban
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université de Lyon, 69008 Lyon, France
| |
Collapse
|
91
|
Reischl S, Lee JH, Miltschitzky JRE, Vieregge V, Walter RL, Twardy V, Kasajima A, Friess H, Kamaly N, Neumann PA. Ac2-26-Nanoparticles Induce Resolution of Intestinal Inflammation and Anastomotic Healing via Inhibition of NF-κB Signaling in a Model of Perioperative Colitis. Inflamm Bowel Dis 2021; 27:1379-1393. [PMID: 33512505 DOI: 10.1093/ibd/izab008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Although in most patients with inflammatory bowel diseases, conservative therapy is successful, a significant proportion of patients still require surgery once in their lifetime. Development of a safe perioperative treatment to dampen colitis activity without disturbance of anastomotic healing is an urgent and unmet medical need. Annexin A1 (ANXA1) has been shown to be effective in reducing colitis activity. Herein, a nanoparticle-based perioperative treatment approach was used for analysis of the effects of ANXA1 on the resolution of inflammation after surgery for colitis. METHODS Anxa1-knockout mice were used to delineate the effects of ANXA1 on anastomotic healing. A murine model of preoperative dextran sodium sulfate colitis was performed. Collagen-IV-targeted polymeric nanoparticles, loaded with the ANXA1 biomimetic peptide Ac2-26 (Ac2-26-NPs), were synthesized and administered perioperatively during colitis induction. The effects of the Ac2-26-NPs on postoperative recovery and anastomotic healing were evaluated using the disease activity index, histological healing scores, and weight monitoring. Ultimately, whole-genome RNA sequencing of the anastomotic tissue was performed to unravel underlying molecular mechanisms. RESULTS Anxa1-knockout exacerbated the inflammatory response in the healing anastomosis. Treatment with Ac2-26-NPs improved preoperative colitis activity (P < 0.045), postoperative healing scores (P < 0.018), and weight recovery (P < 0.015). Whole-genome RNA sequencing revealed that the suppression of proinflammatory cytokine and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling was associated with the treatment effects and a phenotypic switch toward anti-inflammatory M2 macrophages. CONCLUSIONS Proresolving therapy with Ac2-26-NPs promises to be a potent perioperative therapy because it improves colitis activity and even intestinal anastomotic healing by the suppression of proinflammatory signaling.
Collapse
Affiliation(s)
- Stefan Reischl
- Technical University of Munich, School of Medicine, Department of Surgery, Munich, Germany
| | - Jong Hyun Lee
- Technical University of Denmark, Department of Health Technology, Copenhagen, Denmark
| | | | - Vincent Vieregge
- Technical University of Munich, School of Medicine, Department of Surgery, Munich, Germany
| | - Robert Leon Walter
- Technical University of Munich, School of Medicine, Department of Surgery, Munich, Germany
| | - Vanessa Twardy
- University of Muenster, School of Medicine, Department of Surgery, Muenster, Germany
| | - Atsuko Kasajima
- Technical Technical University of Munich, School of Medicine, Institute of Pathology, Munich, Germany
| | - Helmut Friess
- Technical University of Munich, School of Medicine, Department of Surgery, Munich, Germany
| | - Nazila Kamaly
- Technical University of Denmark, Department of Health Technology, Copenhagen, Denmark.,Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, London, United Kingdom
| | | |
Collapse
|
92
|
Sears B, Saha AK. Dietary Control of Inflammation and Resolution. Front Nutr 2021; 8:709435. [PMID: 34447777 PMCID: PMC8382877 DOI: 10.3389/fnut.2021.709435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/13/2021] [Indexed: 12/18/2022] Open
Abstract
The healing of any injury requires a dynamic balance of initiation and resolution of inflammation. This hypothesis-generating review presents an overview of the various nutrients that can act as signaling agents to modify the metabolic responses essential for the optimal healing of injury-induced inflammation. In this hypothesis-generating review, we describe a defined nutritional program consisting of an integrated interaction of a calorie-restricted anti-inflammatory diet coupled with adequate levels of omega-3 fatty acids and sufficient levels of dietary polyphenols that can be used in clinical trials to treat conditions associated with insulin resistance. Each dietary intervention works in an orchestrated systems-based approach to reduce, resolve, and repair the tissue damage caused by any inflammation-inducing injury. The orchestration of these specific nutrients and their signaling metabolites to facilitate healing is termed the Resolution Response. The final stage of the Resolution Response is the activation of intracellular 5' adenosine monophosphate-activated protein kinase (AMPK), which is necessary to repair tissue damaged by the initial injury-induced inflammation. The dietary optimization of the Resolution Response can be personalized to the individual by using standard blood markers. Once each of those markers is in their appropriate ranges, activation of intracellular AMPK will be facilitated. Finally, we outline how the resulting activation of AMPK will affect a diverse number of other intercellular signaling systems leading to an extended healthspan.
Collapse
Affiliation(s)
- Barry Sears
- Inflammation Research Foundation, Peabody, MA, United States
| | | |
Collapse
|
93
|
Chen H, Liu W, Wang Y, Liu D, Zhao L, Yu J. SARS-CoV-2 activates lung epithelial cell proinflammatory signaling and leads to immune dysregulation in COVID-19 patients. EBioMedicine 2021; 70:103500. [PMID: 34311326 PMCID: PMC8302220 DOI: 10.1016/j.ebiom.2021.103500] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/29/2022] Open
Abstract
Background The outbreak of Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 infection has become a global health emergency. We aim to decipher SARS-CoV-2 infected cell types, the consequent host immune response and their interplay in lung of COVID-19 patients. Methods We analyzed single-cell RNA sequencing (scRNA-seq) data of bronchoalveolar lavage fluid (BALF) samples from 10 healthy donors, 6 severe COVID-19 patients and 3 mild recovered patients. The expressions of SARS-CoV-2 receptors (ACE2 and TMPRSS2) were examined among different cell types. The immune cells infiltration patterns, their expression profiles, and interplays between immune cells and SARS-CoV-2 target cells were further investigated. Findings Compared to healthy controls, ACE2 and TMPRSS2 expressions were significantly higher in lung epithelial cells of COVID-19 patients, in particular club and ciliated cells. SARS-CoV-2 activated pro-inflammatory genes and interferon/cytokine signaling in these cells. In severe COVID-19 patients, significantly higher neutrophil, but lower macrophage in lung was observed along with markedly increased cytokines expression compared with healthy controls and mild patients. By contrast, neutrophil and macrophage returned to normal level whilst more T and NK cells accumulation were observed in mild patients. Moreover, SARS-CoV-2 infection altered the community interplays of lung epithelial and immune cells: interactions between the club and immune cells were higher in COVID-19 patients compared to healthy donors; on the other hand, immune-immune cells interactions appeared the strongest in mild patients. Interpretation SARS-CoV-2 could infect lung epithelium, alter communication patterns between lung epithelial cells and immune system, and drive dysregulated host immune response in COVID-19 patients.
Collapse
Affiliation(s)
- Huarong Chen
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong; Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Weixin Liu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Yifei Wang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Dabin Liu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Liuyang Zhao
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
94
|
Markworth JF, Sugg KB, Sarver DC, Maddipati KR, Brooks SV. Local shifts in inflammatory and resolving lipid mediators in response to tendon overuse. FASEB J 2021; 35:e21655. [PMID: 34042218 DOI: 10.1096/fj.202100078r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/13/2021] [Accepted: 04/26/2021] [Indexed: 01/25/2023]
Abstract
Tendon inflammation has been implicated in both adaptive connective tissue remodeling and overuse-induced tendinopathy. Lipid mediators control both the initiation and resolution of inflammation, but their roles within tendon are largely unknown. Here, we profiled local shifts in intratendinous lipid mediators via liquid chromatography-tandem mass spectrometry in response to synergist ablation-induced plantaris tendon overuse. Sixty-four individual lipid mediators were detected in homogenates of plantaris tendons from ambulatory control rats. This included many bioactive metabolites of the cyclooxygenase (COX), lipoxygenase (LOX), and epoxygenase (CYP) pathways. Synergist ablation induced a robust inflammatory response at day 3 post-surgery characterized by epitenon infiltration of polymorphonuclear leukocytes and monocytes/macrophages (MΦ), heightened expression of inflammation-related genes, and increased intratendinous concentrations of the pro-inflammatory eicosanoids thromboxane B2 and prostaglandin E2 . By day 7, MΦ became the predominant myeloid cell type in tendon and there were further delayed increases in other COX metabolites including prostaglandins D2 , F2α , and I2 . Specialized pro-resolving mediators including protectin D1, resolvin D2 and D6, as well as related pathway markers of D-resolvins (17-hydroxy-docosahexaenoic acid), E-resolvins (18-hydroxy-eicosapentaenoic acid), and lipoxins (15-hydroxy-eicosatetraenoic acid) were also increased locally in response to tendon overuse, as were anti-inflammatory fatty acid epoxides of the CYP pathway (eg, epoxy-eicosatrienoic acids). Nevertheless, intratendinous prostaglandins remained markedly increased even following 28 days of tendon overuse together with a lingering MΦ presence. These data reveal a delayed and prolonged local inflammatory response to tendon overuse characterized by an overwhelming predominance of pro-inflammatory eicosanoids and a relative lack of specialized pro-resolving lipid mediators.
Collapse
Affiliation(s)
- James F Markworth
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.,Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Kristoffer B Sugg
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA.,Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Dylan C Sarver
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA.,Department of Cellular & Molecular Physiology, Johns Hopkins University, Baltimore, MD, USA
| | - Krishna Rao Maddipati
- Department of Pathology, Lipidomics Core Facility, Wayne State University, Detroit, MI, USA
| | - Susan V Brooks
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
95
|
Juban G. Transcriptional control of macrophage inflammatory shift during skeletal muscle regeneration. Semin Cell Dev Biol 2021; 119:82-88. [PMID: 34183241 DOI: 10.1016/j.semcdb.2021.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/13/2021] [Accepted: 06/18/2021] [Indexed: 01/05/2023]
Abstract
Skeletal muscle is a tissue able to fully regenerate after an acute injury. Macrophages play an essential role during skeletal muscle regeneration. Resolution of inflammation is a crucial step during the regeneration process, allowing to contain the inflammatory response to avoid damage of the healthy surrounding muscle and triggers the recovery phase during which the muscle regenerates. Resolution of inflammation is mainly mediated by macrophage phenotypic shift that is the transition from a pro-inflammatory damage associated profile towards an anti-inflammatory restorative phenotype, which is characterized by a major transcriptional rewiring. Failure of the resolution of inflammation is observed in chronic diseases such as degenerative myopathies where permanent asynchronous muscle injuries trigger contradictory inflammatory cues, leading to fibrosis and alteration of muscle function. This review will focus on the described molecular pathways that control macrophage inflammatory shift during skeletal muscle regeneration. First, we will highlight the transcriptional changes that characterize macrophage inflammatory shift during skeletal muscle regeneration. Then, we will describe how the signaling pathways and the metabolic changes associated with this shift are controlled. Finally, we will emphasize the transcription factors involved.
Collapse
Affiliation(s)
- Gaëtan Juban
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université de Lyon, Lyon, France.
| |
Collapse
|
96
|
Panci G, Chazaud B. Inflammation during post-injury skeletal muscle regeneration. Semin Cell Dev Biol 2021; 119:32-38. [PMID: 34140216 DOI: 10.1016/j.semcdb.2021.05.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/02/2021] [Accepted: 05/30/2021] [Indexed: 12/18/2022]
Abstract
The adult skeletal muscle fully regenerates after injury thanks to the properties of muscle stem cells that follow the adult myogenic program to replace damaged myofibers. Muscle regeneration also relies upon the coordinated actions of several other cell types, among which immune cells. Leukocytes infiltrate the damaged muscle soon after injury and support the regeneration process in a variety of ways, from the activation of muscle stem cells to the maturation of newly formed myofibers. Leukocytes also interact with other cell types such as fibroadipogenic precursors and endothelial cells. This review presents the interactions that leukocytes develop with the cells present in their vicinity and the impact they have on skeletal muscle regeneration.
Collapse
Affiliation(s)
- Georgiana Panci
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université Lyon, Faculté de Médecine, 8 Avenue Rockefeller, F-69008 Lyon, France.
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université Lyon, Faculté de Médecine, 8 Avenue Rockefeller, F-69008 Lyon, France.
| |
Collapse
|
97
|
Markworth JF, Brown LA, Lim E, Castor‐Macias JA, Larouche J, Macpherson PCD, Davis C, Aguilar CA, Maddipati KR, Brooks SV. Metabolipidomic profiling reveals an age-related deficiency of skeletal muscle pro-resolving mediators that contributes to maladaptive tissue remodeling. Aging Cell 2021; 20:e13393. [PMID: 34075679 PMCID: PMC8208786 DOI: 10.1111/acel.13393] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 03/07/2021] [Accepted: 05/08/2021] [Indexed: 12/12/2022] Open
Abstract
Specialized pro-resolving mediators actively limit inflammation and support tissue regeneration, but their role in age-related muscle dysfunction has not been explored. We profiled the mediator lipidome of aging muscle via liquid chromatography-tandem mass spectrometry and tested whether treatment with the pro-resolving mediator resolvin D1 (RvD1) could rejuvenate the regenerative ability of aged muscle. Aged mice displayed chronic muscle inflammation and this was associated with a basal deficiency of pro-resolving mediators 8-oxo-RvD1, resolvin E3, and maresin 1, as well as many anti-inflammatory cytochrome P450-derived lipid epoxides. Following muscle injury, young and aged mice produced similar amounts of most pro-inflammatory eicosanoid metabolites of cyclooxygenase (e.g., prostaglandin E2 ) and 12-lipoxygenase (e.g., 12-hydroxy-eicosatetraenoic acid), but aged mice produced fewer markers of pro-resolving mediators including the lipoxins (15-hydroxy-eicosatetraenoic acid), D-resolvins/protectins (17-hydroxy-docosahexaenoic acid), E-resolvins (18-hydroxy-eicosapentaenoic acid), and maresins (14-hydroxy-docosahexaenoic acid). Similar absences of downstream pro-resolving mediators including lipoxin A4 , resolvin D6, protectin D1/DX, and maresin 1 in aged muscle were associated with greater inflammation, impaired myofiber regeneration, and delayed recovery of strength. Daily intraperitoneal injection of RvD1 had minimal impact on intramuscular leukocyte infiltration and myofiber regeneration but suppressed inflammatory cytokine expression, limited fibrosis, and improved recovery of muscle function. We conclude that aging results in deficient local biosynthesis of specialized pro-resolving mediators in muscle and that immunoresolvents may be attractive novel therapeutics for the treatment of muscular injuries and associated pain in the elderly, due to positive effects on recovery of muscle function without the negative side effects on tissue regeneration of non-steroidal anti-inflammatory drugs.
Collapse
Affiliation(s)
- James F. Markworth
- Department of Molecular & Integrative Physiology University of Michigan Ann Arbor MI USA
| | - Lemuel A. Brown
- Department of Molecular & Integrative Physiology University of Michigan Ann Arbor MI USA
| | - Eunice Lim
- Department of Molecular & Integrative Physiology University of Michigan Ann Arbor MI USA
| | | | - Jacqueline Larouche
- Department of Biomedical Engineering University of Michigan Ann Arbor MI USA
| | - Peter C. D. Macpherson
- Department of Molecular & Integrative Physiology University of Michigan Ann Arbor MI USA
| | - Carol Davis
- Department of Molecular & Integrative Physiology University of Michigan Ann Arbor MI USA
| | - Carlos A. Aguilar
- Department of Biomedical Engineering University of Michigan Ann Arbor MI USA
| | - Krishna Rao Maddipati
- Department of Pathology Lipidomics Core Facility Wayne State University Detroit MI USA
| | - Susan V. Brooks
- Department of Molecular & Integrative Physiology University of Michigan Ann Arbor MI USA
- Department of Biomedical Engineering University of Michigan Ann Arbor MI USA
| |
Collapse
|
98
|
Xia Q, Mao M, Zeng Z, Luo Z, Zhao Y, Shi J, Li X. Inhibition of SENP6 restrains cerebral ischemia-reperfusion injury by regulating Annexin-A1 nuclear translocation-associated neuronal apoptosis. Am J Cancer Res 2021; 11:7450-7470. [PMID: 34158860 PMCID: PMC8210613 DOI: 10.7150/thno.60277] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/20/2021] [Indexed: 12/24/2022] Open
Abstract
Rationale: Annexin-A1 (ANXA1) has previously been proposed to play a crucial role in neuronal apoptosis during ischemic stroke injury. Our recent study demonstrated that ANXA1 was modified by SUMOylation, and that this modification was greatly weakened after cerebral ischemia, but its effect on neuronal death and the underlying mechanism have not been fully elucidated. Methods: Mice subjected to middle cerebral artery occlusion were established as the animal model and primary cultured neurons treated with oxygen-glucose deprivation and reperfusion was established as the cell model of ischemic stroke. The Ni2+-NTA agarose affinity pull-down assay was carried out to determine the SUMOylation level of ANXA1. Co-immunoprecipitation assays was utilized to explore the protein interaction. Immunoblot analysis, quantitative real-time PCR, Luciferase reporter assay were performed to identify the regulatory mechanism. LDH release and TUNEL staining was performed to investigate the neuronal cytotoxicity and apoptosis, respectively. Results: In this study, we identified the deSUMOylating enzyme sentrin/SUMO-specific protease 6 (SENP6) as a negative regulator of ANXA1 SUMOylation. Notably, we found that SENP6-mediated deSUMOylation of ANXA1 induced its nuclear translocation and triggered neuronal apoptosis during cerebral ischemic injury. A mechanistic study demonstrated that SENP6-mediated deSUMOylation of ANXA1 promoted TRPM7- and PKC-dependent phosphorylation of ANXA1. Furthermore, blocking the deSUMOylation of ANXA1 mediated by SENP6 inhibited the transcriptional activity of p53, decreased Bid expression, suppressed caspase-3 pathway activation and reduced the apoptosis of primary neurons subjected to oxygen-glucose deprivation and reperfusion. More importantly, SENP6 inhibition by overexpression of a SENP6 catalytic mutant in neurons resulted in significant improvement in neurological function in the mouse model of ischemic stroke. Conclusions: Taken together, the results of this study identified a previously unidentified function of SENP6 in neuronal apoptosis and strongly indicated that SENP6 inhibition may provide therapeutic benefits for cerebral ischemia.
Collapse
|
99
|
Fang S, Zhong L, Wang AQ, Zhang H, Yin ZS. Identification of Regeneration and Hub Genes and Pathways at Different Time Points after Spinal Cord Injury. Mol Neurobiol 2021; 58:2643-2662. [PMID: 33484404 DOI: 10.1007/s12035-021-02289-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/11/2021] [Indexed: 12/19/2022]
Abstract
Spinal cord injury (SCI) is a neurological injury that can cause neuronal loss around the lesion site and leads to locomotive and sensory deficits. However, the underlying molecular mechanisms remain unclear. This study aimed to verify differential gene time-course expression in SCI and provide new insights for gene-level studies. We downloaded two rat expression profiles (GSE464 and GSE45006) from the Gene Expression Omnibus database, including 1 day, 3 days, 7 days, and 14 days post-SCI, along with thoracic spinal cord data for analysis. At each time point, gene integration was performed using "batch normalization." The raw data were standardized, and differentially expressed genes at the different time points versus the control were analyzed by Gene Ontology enrichment analysis, the Kyoto Encyclopedia of Genes and Genomes pathway analysis, and gene set enrichment analysis. A protein-protein interaction network was then built and visualized. In addition, ten hub genes were identified at each time point. Among them, Gnb5, Gng8, Agt, Gnai1, and Psap lack correlation studies in SCI and deserve further investigation. Finally, we screened and analyzed genes for tissue repair, reconstruction, and regeneration and found that Anxa1, Snap25, and Spp1 were closely related to repair and regeneration after SCI. In conclusion, hub genes, signaling pathways, and regeneration genes involved in secondary SCI were identified in our study. These results may be useful for understanding SCI-related biological processes and the development of targeted intervention strategies.
Collapse
Affiliation(s)
- Sheng Fang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, Anhui Province, China
| | - Lin Zhong
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, Anhui Province, China
- Department of Orthopedics, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - An-Quan Wang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, Anhui Province, China
| | - Hui Zhang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, Anhui Province, China
| | - Zong-Sheng Yin
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, Anhui Province, China.
| |
Collapse
|
100
|
Xu X, Gao W, Li L, Hao J, Yang B, Wang T, Li L, Bai X, Li F, Ren H, Zhang M, Zhang L, Wang J, Wang D, Zhang J, Jiao L. Annexin A1 protects against cerebral ischemia-reperfusion injury by modulating microglia/macrophage polarization via FPR2/ALX-dependent AMPK-mTOR pathway. J Neuroinflammation 2021; 18:119. [PMID: 34022892 PMCID: PMC8140477 DOI: 10.1186/s12974-021-02174-3] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
Background Cerebral ischemia–reperfusion (I/R) injury is a major cause of early complications and unfavorable outcomes after endovascular thrombectomy (EVT) therapy in patients with acute ischemic stroke (AIS). Recent studies indicate that modulating microglia/macrophage polarization and subsequent inflammatory response may be a potential adjunct therapy to recanalization. Annexin A1 (ANXA1) exerts potent anti-inflammatory and pro-resolving properties in models of cerebral I/R injury. However, whether ANXA1 modulates post-I/R-induced microglia/macrophage polarization has not yet been fully elucidated. Methods We retrospectively collected blood samples from AIS patients who underwent successful recanalization by EVT and analyzed ANXA1 levels longitudinally before and after EVT and correlation between ANXA1 levels and 3-month clinical outcomes. We also established a C57BL/6J mouse model of transient middle cerebral artery occlusion/reperfusion (tMCAO/R) and an in vitro model of oxygen–glucose deprivation and reoxygenation (OGD/R) in BV2 microglia and HT22 neurons to explore the role of Ac2-26, a pharmacophore N-terminal peptide of ANXA1, in regulating the I/R-induced microglia/macrophage activation and polarization. Results The baseline levels of ANXA1 pre-EVT were significantly lower in 23 AIS patients, as compared with those of healthy controls. They were significantly increased to the levels found in controls 2–3 days post-EVT. The increased post-EVT levels of ANXA1 were positively correlated with 3-month clinical outcomes. In the mouse model, we then found that Ac2-26 administered at the start of reperfusion shifted microglia/macrophage polarization toward anti-inflammatory M2-phenotype in ischemic penumbra, thus alleviating blood–brain barrier leakage and neuronal apoptosis and improving outcomes at 3 days post-tMCAO/R. The protection was abrogated when mice received Ac2-26 together with WRW4, which is a specific antagonist of formyl peptide receptor type 2/lipoxin A4 receptor (FPR2/ALX). Furthermore, the interaction between Ac2-26 and FPR2/ALX receptor activated the 5’ adenosine monophosphate-activated protein kinase (AMPK) and inhibited the downstream mammalian target of rapamycin (mTOR). These in vivo findings were validated through in vitro experiments. Conclusions Ac2-26 modulates microglial/macrophage polarization and alleviates subsequent cerebral inflammation by regulating the FPR2/ALX-dependent AMPK-mTOR pathway. It may be investigated as an adjunct strategy for clinical prevention and treatment of cerebral I/R injury after recanalization. Plasma ANXA1 may be a potential biomarker for outcomes of AIS patients receiving EVT. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02174-3.
Collapse
Affiliation(s)
- Xin Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China. .,China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, 100053, China.
| | - Weiwei Gao
- Department of Neurology, Tianjin Huanhu Hospital, 6 Jizhao Road, Tianjin, 300350, China.
| | - Lei Li
- Department of Neurosurgery & Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China
| | - Jiheng Hao
- Department of Neurosurgery, Liaocheng People's Hospital, 67 Dongchang West Road, Liaocheng, 252000, China
| | - Bin Yang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China.,China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, 100053, China
| | - Tao Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China.,China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, 100053, China
| | - Long Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China.,China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, 100053, China
| | - Xuesong Bai
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China.,China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, 100053, China
| | - Fanjian Li
- Department of Neurosurgery & Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China
| | - Honglei Ren
- Department of Neurosurgery & Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China
| | - Meng Zhang
- Department of Neurosurgery, Liaocheng People's Hospital, 67 Dongchang West Road, Liaocheng, 252000, China
| | - Liyong Zhang
- Department of Neurosurgery, Liaocheng People's Hospital, 67 Dongchang West Road, Liaocheng, 252000, China
| | - Jiyue Wang
- Department of Neurosurgery, Liaocheng People's Hospital, 67 Dongchang West Road, Liaocheng, 252000, China
| | - Dong Wang
- Department of Neurosurgery & Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China
| | - Jianning Zhang
- Department of Neurosurgery & Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China. .,China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, 100053, China. .,Department of Interventional Neuroradiology, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China.
| |
Collapse
|