51
|
Jiang P, Huang P, Yen SH, Zubair AC, Dickson DW. Genetic modification of H2AX renders mesenchymal stromal cell-derived dopamine neurons more resistant to DNA damage and subsequent apoptosis. Cytotherapy 2016; 18:1483-1492. [PMID: 27720638 PMCID: PMC6010316 DOI: 10.1016/j.jcyt.2016.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/27/2016] [Accepted: 08/23/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND AIMS Aberrant production of reactive oxygen species (ROS) and its impact on the integrity of genomic DNA have been considered one of the major risk factors for the loss of dopaminergic neurons in Parkinson's disease (PD). Stem cell transplantation as a strategy to replenish new functional neurons has great potential for PD treatment. However, limited survival of stem cells post-transplantation has always been an obstacle ascribed to the existence of neurotoxic environment in PD patients. METHODS To improve the survival of transplanted stem cells for PD treatment, we explored a new strategy based on the function of the H2AX gene (H2A histone family, member X) in determination of DNA repair and cell apoptosis. We introduced a mutant form Y142F of H2AX into dopamine (DA) neuron-like cells differentiated from bone marrow-derived mesenchymal stromal cells (BMSCs). RESULTS Expression of H2AX(Y142F) renders DA neuron-like cells more resistant to DNA damage and subsequent cell death induced by ultraviolet irradiation and 1-methyl-4-phenylpyridinium (MPP+) treatment. DISCUSSION This is a meaningful attempt to improve the sustainability of BMSC-derived dopamine neurons under a brain neurotoxic environment. Further studies are needed to evaluate the implications of our findings in stem cell therapy for PD and related diseases.
Collapse
Affiliation(s)
- Peizhou Jiang
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida, USA.
| | - Peng Huang
- Department of Laboratory Medicine and Pathology, Mayo Clinic Florida, Jacksonville, Florida, USA
| | - Shu-Hui Yen
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida, USA
| | - Abba C Zubair
- Department of Laboratory Medicine and Pathology, Mayo Clinic Florida, Jacksonville, Florida, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida, USA.
| |
Collapse
|
52
|
Vitamin D Effects on Osteoblastic Differentiation of Mesenchymal Stem Cells from Dental Tissues. Stem Cells Int 2016; 2016:9150819. [PMID: 27956902 PMCID: PMC5124467 DOI: 10.1155/2016/9150819] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/24/2016] [Accepted: 09/25/2016] [Indexed: 12/22/2022] Open
Abstract
1α,25-Dihydroxyvitamin D3 (1,25(OH)2D3), the active metabolite of vitamin D (Vit D), increases intestinal absorption of calcium and phosphate, maintaining a correct balance of bone remodeling. Vit D has an anabolic effect on the skeletal system and is key in promoting osteoblastic differentiation of human Mesenchymal Stem Cells (hMSCs) from bone marrow. MSCs can be also isolated from the immature form of the tooth, the dental bud: Dental Bud Stem Cells (DBSCs) are adult stem cells that can effectively undergo osteoblastic differentiation. In this work we investigated the effect of Vit D on DBSCs differentiation into osteoblasts. Our data demonstrate that DBSCs, cultured in an opportune osteogenic medium, differentiate into osteoblast-like cells; Vit D treatment stimulates their osteoblastic features, increasing the expression of typical markers of osteoblastogenesis like RUNX2 and Collagen I (Coll I) and, in a more important way, determining a higher production of mineralized matrix nodules.
Collapse
|
53
|
G-CSF-mobilized Bone Marrow Mesenchymal Stem Cells Replenish Neural Lineages in Alzheimer's Disease Mice via CXCR4/SDF-1 Chemotaxis. Mol Neurobiol 2016; 54:6198-6212. [PMID: 27709493 DOI: 10.1007/s12035-016-0122-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 09/12/2016] [Indexed: 10/20/2022]
Abstract
Recent studies reported granulocyte colony-stimulating factor (G-CSF) treatment can improve the cognitive function of Alzheimer's disease (AD) mice, and the mobilized hematopoietic stem cells (HSCs) or bone marrow mesenchymal stem cells (BM-MSCs) are proposed to be involved in this recovery effect. However, the exact role of mobilized HSC/BM-MSC in G-CSF-based therapeutic effects is still unknown. Here, we report that C-X-C chemokine receptor type 4 (CXCR4)/stromal cell-derived factor 1 (SDF-1) chemotaxis was a key mediator in G-CSF-based therapeutic effects, which was involved in the recruitment of repair-competent cells. Furthermore, we found both mobilized HSCs and BM-MSCs were able to infiltrate into the brain, but only BM-MSCs replenished the neural lineage cells and contributed to neurogenesis in the brains of AD mice. Together, our data show that mobilized BM-MSCs are involved in the replenishment of neural lineages following G-CSF treatment via CXCR4/SDF-1 chemotaxis and further support the potential use of BM-MSCs for further autogenically therapeutic applications.
Collapse
|
54
|
Bertolai R, Catelani C, Signorini M, Rossi A, Giannini D. Mesenchymal stem cells in post-surgical cavities of large maxillary bone lesions. CLINICAL CASES IN MINERAL AND BONE METABOLISM : THE OFFICIAL JOURNAL OF THE ITALIAN SOCIETY OF OSTEOPOROSIS, MINERAL METABOLISM, AND SKELETAL DISEASES 2016; 13:214-220. [PMID: 28228785 PMCID: PMC5318175 DOI: 10.11138/ccmbm/2016.13.3.214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Recent studies have highlighted that MSCs are capable of regenerating large bone defects when used in combination with bone substitutes and increasing allo-graft osteointegration. We investigated the hypothesis that autologous MSCs may lead to increased bone regeneration and reduced healing time in post-surgical cavities of large maxillary bone lesions. METHODS This study involved 10 patients (TEST GROUP) (6 males and 4 females). All patients had expansive mandibular lesions larger than 3 cm. From the surgical point of view, the 10 patients were treated with MSCs (withdrawal of the iliac crest bone marrow BMMSs) directly into the post-surgical cavity, without the addition of filler. RESULTS and radiological data, in the postoperative, were compared to those of patients who did not receive any grafting of MSCs. The 7 patients with mandibular lesions showed a rapid and very good healing with an 85-90% ossification of the major defect at 12 months. CONCLUSIONS Through the use of stem cells a greater ossification of the residual cavity (85-90%) was observed at 12 months after surgical enucleation in contenitive defects.
Collapse
Affiliation(s)
- Roberto Bertolai
- University of Florence, School of Human Health Sciences, Surgery and Translational Medicine Department (DCMT), Head and Neck Unit, Florence, Italy
| | - Carlo Catelani
- University of Florence, School of Human Health Sciences, Surgery and Translational Medicine Department (DCMT), Head and Neck Unit, Florence, Italy
| | - Mattia Signorini
- University of Florence, School of Human Health Sciences, Surgery and Translational Medicine Department (DCMT), Head and Neck Unit, Florence, Italy
| | - Alessandro Rossi
- University of Florence, School of Human Health Sciences, Surgery and Translational Medicine Department (DCMT), Head and Neck Unit, Florence, Italy
| | - Domenico Giannini
- University of Florence, School of Human Health Sciences, Surgery and Translational Medicine Department (DCMT), Head and Neck Unit, Florence, Italy
| |
Collapse
|
55
|
Alessio N, Özcan S, Tatsumi K, Murat A, Peluso G, Dezawa M, Galderisi U. The secretome of MUSE cells contains factors that may play a role in regulation of stemness, apoptosis and immunomodulation. Cell Cycle 2016; 16:33-44. [PMID: 27463232 DOI: 10.1080/15384101.2016.1211215] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are a heterogeneous population, which contain several cell phenotypes: mesenchymal stem cells, progenitor cells, fibroblasts and other type of cells. Previously, we identified unique stem cells that we named multilineage-differentiating stress enduring (Muse) cells as one to several percent of MSCs of the bone marrow, adipose tissue and dermis. Among different cell populations in MSCs, Muse cells, positive for pluripotent surface marker SSEA-3, may represent cells responsible for pluripotent-like property of MSCs, since they express pluripotency genes, able to differentiated into triploblastic cells from a single cells and are self-renewable. MSCs release biologically active factors that have profound effects on local cellular dynamics. A thorough examination of MSC secretome seems essential for understanding the physiological functions exerted by these cells in our organism and also for rational cellular therapy design. In this setting, studies on secretome of Muse cells may shed light on pathways that are associated with their specific features. Our findings evidenced that secretomes of MSCs and Muse cells contain factors that regulate extracellular matrix remodeling, ox-redox activities and immune system. Muse cells appear to secrete factors that may preserve their stem cell features, allow survival under stress conditions and may contribute to their immunomodulation capacity. In detail, the proteins belonging to protein kinase A signaling, FXR/RXR activation and LXR/RXR activation pathways may play a role in regulation of Muse stem cell features. These last 2 pathways together with proteins associated with antigen presentation pathway and coagulation system may play a role in immunomodulation.
Collapse
Affiliation(s)
- Nicola Alessio
- a Department of Experimental Medicine , Biotechnology and Molecular Biology Section, Second University of Naples , Naples , Italy
| | - Servet Özcan
- b Genome and Stem Cell Center (GENKOK), Erciyes University , Kayseri , Turkey.,c Graduate School of Health Sciences, Erciyes Universty , Kayseri , Turkey
| | - Kazuki Tatsumi
- d Department of Stem Cell Biology and Histology , Tohoku University Graduate School of Medicine , Sendai , Japan.,e Tohoku Laboratory Non-clinical Research Division, Clio, Inc. , Sendai , Japan
| | - Ayşegül Murat
- c Graduate School of Health Sciences, Erciyes Universty , Kayseri , Turkey
| | | | - Mari Dezawa
- e Tohoku Laboratory Non-clinical Research Division, Clio, Inc. , Sendai , Japan
| | - Umberto Galderisi
- a Department of Experimental Medicine , Biotechnology and Molecular Biology Section, Second University of Naples , Naples , Italy.,b Genome and Stem Cell Center (GENKOK), Erciyes University , Kayseri , Turkey.,g Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University , Philadelphia , PA , USA
| |
Collapse
|
56
|
The Preclinical Research Progress of Stem Cells Therapy in Parkinson's Disease. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5683097. [PMID: 27379248 PMCID: PMC4917676 DOI: 10.1155/2016/5683097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 04/21/2016] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is a type of degenerative disorder of the basal ganglia, causing tremor at rest, muscle rigidity hypokinesia, and dementia. The effectiveness of drug treatments gradually diminishes because the conversion to dopamine within the brain is increasingly disrupted by the progressive degeneration of the dopaminergic terminals. After long-term treatment, most patients with PD suffer from disability that cannot be satisfactorily controlled. To solve these issues, stem cells have recently been used for cell therapy of PD. In this review, the characteristics of different stem cells and their therapeutic effects on PD treatment will be discussed.
Collapse
|
57
|
Wu CC, Lien CC, Hou WH, Chiang PM, Tsai KJ. Gain of BDNF Function in Engrafted Neural Stem Cells Promotes the Therapeutic Potential for Alzheimer's Disease. Sci Rep 2016; 6:27358. [PMID: 27264956 PMCID: PMC4893631 DOI: 10.1038/srep27358] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/17/2016] [Indexed: 12/16/2022] Open
Abstract
Stem cell-based therapy is a potential treatment for neurodegenerative diseases, but its application to Alzheimer’s disease (AD) remains limited. Brain-derived neurotrophic factor (BDNF) is critical in the pathogenesis and treatment of AD. Here, we present a novel therapeutic approach for AD treatment using BDNF-overexpressing neural stem cells (BDNF-NSCs). In vitro, BDNF overexpression was neuroprotective to beta-amyloid-treated NSCs. In vivo, engrafted BDNF-NSCs-derived neurons not only displayed the Ca2+-response fluctuations, exhibited electrophysiological properties of mature neurons and integrated into local brain circuits, but recovered the cognitive deficits. Furthermore, BDNF overexpression improved the engrafted cells’ viability, neuronal fate, neurite complexity, maturation of electrical property and the synaptic density. In contrast, knockdown of the BDNF in BDNF-NSCs diminished stem cell-based therapeutic efficacy. Together, our findings indicate BDNF overexpression improves the therapeutic potential of engrafted NSCs for AD via neurogenic effects and neuronal replacement, and further support the feasibility of NSC-based ex vivo gene therapy for AD.
Collapse
Affiliation(s)
- Cheng-Chun Wu
- Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Chang Lien
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | - Wen-Hsien Hou
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | - Po-Min Chiang
- Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuen-Jer Tsai
- Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
58
|
Steinberg GK, Kondziolka D, Wechsler LR, Lunsford LD, Coburn ML, Billigen JB, Kim AS, Johnson JN, Bates D, King B, Case C, McGrogan M, Yankee EW, Schwartz NE. Clinical Outcomes of Transplanted Modified Bone Marrow-Derived Mesenchymal Stem Cells in Stroke: A Phase 1/2a Study. Stroke 2016; 47:1817-24. [PMID: 27256670 DOI: 10.1161/strokeaha.116.012995] [Citation(s) in RCA: 284] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/25/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND PURPOSE Preclinical data suggest that cell-based therapies have the potential to improve stroke outcomes. METHODS Eighteen patients with stable, chronic stroke were enrolled in a 2-year, open-label, single-arm study to evaluate the safety and clinical outcomes of surgical transplantation of modified bone marrow-derived mesenchymal stem cells (SB623). RESULTS All patients in the safety population (N=18) experienced at least 1 treatment-emergent adverse event. Six patients experienced 6 serious treatment-emergent adverse events; 2 were probably or definitely related to surgical procedure; none were related to cell treatment. All serious treatment-emergent adverse events resolved without sequelae. There were no dose-limiting toxicities or deaths. Sixteen patients completed 12 months of follow-up at the time of this analysis. Significant improvement from baseline (mean) was reported for: (1) European Stroke Scale: mean increase 6.88 (95% confidence interval, 3.5-10.3; P<0.001), (2) National Institutes of Health Stroke Scale: mean decrease 2.00 (95% confidence interval, -2.7 to -1.3; P<0.001), (3) Fugl-Meyer total score: mean increase 19.20 (95% confidence interval, 11.4-27.0; P<0.001), and (4) Fugl-Meyer motor function total score: mean increase 11.40 (95% confidence interval, 4.6-18.2; P<0.001). No changes were observed in modified Rankin Scale. The area of magnetic resonance T2 fluid-attenuated inversion recovery signal change in the ipsilateral cortex 1 week after implantation significantly correlated with clinical improvement at 12 months (P<0.001 for European Stroke Scale). CONCLUSIONS In this interim report, SB623 cells were safe and associated with improvement in clinical outcome end points at 12 months. CLINICAL TRIAL REGISTRATION URL: https://www.clinicaltrials.gov. Unique identifier: NCT01287936.
Collapse
Affiliation(s)
- Gary K Steinberg
- From the Department of Neurosurgery (G.K.S., M.L.C., J.N.J.) and Department of Neurology and Neurological Sciences (G.K.S., N.E.S.), Stanford University School of Medicine and Stanford Health Care, CA; Department of Neurosurgery, New York University and NYU Langone Medical Center, NY (D.K.); Department of Neurosurgery (L.D.L.) and Department of Neurology (L.R.W., J.B.B.), University of Pittsburgh Medical School and University of Pittsburgh Medical Center, PA; Department of Neurology, University of California, San Francisco (A.S.K.); SanBio, Inc, Mountain View, CA (D.B., C.C., M.M., E.W.Y.); and Western Statistical Consulting, LLC, Phoenix, AZ (B.K.).
| | - Douglas Kondziolka
- From the Department of Neurosurgery (G.K.S., M.L.C., J.N.J.) and Department of Neurology and Neurological Sciences (G.K.S., N.E.S.), Stanford University School of Medicine and Stanford Health Care, CA; Department of Neurosurgery, New York University and NYU Langone Medical Center, NY (D.K.); Department of Neurosurgery (L.D.L.) and Department of Neurology (L.R.W., J.B.B.), University of Pittsburgh Medical School and University of Pittsburgh Medical Center, PA; Department of Neurology, University of California, San Francisco (A.S.K.); SanBio, Inc, Mountain View, CA (D.B., C.C., M.M., E.W.Y.); and Western Statistical Consulting, LLC, Phoenix, AZ (B.K.)
| | - Lawrence R Wechsler
- From the Department of Neurosurgery (G.K.S., M.L.C., J.N.J.) and Department of Neurology and Neurological Sciences (G.K.S., N.E.S.), Stanford University School of Medicine and Stanford Health Care, CA; Department of Neurosurgery, New York University and NYU Langone Medical Center, NY (D.K.); Department of Neurosurgery (L.D.L.) and Department of Neurology (L.R.W., J.B.B.), University of Pittsburgh Medical School and University of Pittsburgh Medical Center, PA; Department of Neurology, University of California, San Francisco (A.S.K.); SanBio, Inc, Mountain View, CA (D.B., C.C., M.M., E.W.Y.); and Western Statistical Consulting, LLC, Phoenix, AZ (B.K.)
| | - L Dade Lunsford
- From the Department of Neurosurgery (G.K.S., M.L.C., J.N.J.) and Department of Neurology and Neurological Sciences (G.K.S., N.E.S.), Stanford University School of Medicine and Stanford Health Care, CA; Department of Neurosurgery, New York University and NYU Langone Medical Center, NY (D.K.); Department of Neurosurgery (L.D.L.) and Department of Neurology (L.R.W., J.B.B.), University of Pittsburgh Medical School and University of Pittsburgh Medical Center, PA; Department of Neurology, University of California, San Francisco (A.S.K.); SanBio, Inc, Mountain View, CA (D.B., C.C., M.M., E.W.Y.); and Western Statistical Consulting, LLC, Phoenix, AZ (B.K.)
| | - Maria L Coburn
- From the Department of Neurosurgery (G.K.S., M.L.C., J.N.J.) and Department of Neurology and Neurological Sciences (G.K.S., N.E.S.), Stanford University School of Medicine and Stanford Health Care, CA; Department of Neurosurgery, New York University and NYU Langone Medical Center, NY (D.K.); Department of Neurosurgery (L.D.L.) and Department of Neurology (L.R.W., J.B.B.), University of Pittsburgh Medical School and University of Pittsburgh Medical Center, PA; Department of Neurology, University of California, San Francisco (A.S.K.); SanBio, Inc, Mountain View, CA (D.B., C.C., M.M., E.W.Y.); and Western Statistical Consulting, LLC, Phoenix, AZ (B.K.)
| | - Julia B Billigen
- From the Department of Neurosurgery (G.K.S., M.L.C., J.N.J.) and Department of Neurology and Neurological Sciences (G.K.S., N.E.S.), Stanford University School of Medicine and Stanford Health Care, CA; Department of Neurosurgery, New York University and NYU Langone Medical Center, NY (D.K.); Department of Neurosurgery (L.D.L.) and Department of Neurology (L.R.W., J.B.B.), University of Pittsburgh Medical School and University of Pittsburgh Medical Center, PA; Department of Neurology, University of California, San Francisco (A.S.K.); SanBio, Inc, Mountain View, CA (D.B., C.C., M.M., E.W.Y.); and Western Statistical Consulting, LLC, Phoenix, AZ (B.K.)
| | - Anthony S Kim
- From the Department of Neurosurgery (G.K.S., M.L.C., J.N.J.) and Department of Neurology and Neurological Sciences (G.K.S., N.E.S.), Stanford University School of Medicine and Stanford Health Care, CA; Department of Neurosurgery, New York University and NYU Langone Medical Center, NY (D.K.); Department of Neurosurgery (L.D.L.) and Department of Neurology (L.R.W., J.B.B.), University of Pittsburgh Medical School and University of Pittsburgh Medical Center, PA; Department of Neurology, University of California, San Francisco (A.S.K.); SanBio, Inc, Mountain View, CA (D.B., C.C., M.M., E.W.Y.); and Western Statistical Consulting, LLC, Phoenix, AZ (B.K.)
| | - Jeremiah N Johnson
- From the Department of Neurosurgery (G.K.S., M.L.C., J.N.J.) and Department of Neurology and Neurological Sciences (G.K.S., N.E.S.), Stanford University School of Medicine and Stanford Health Care, CA; Department of Neurosurgery, New York University and NYU Langone Medical Center, NY (D.K.); Department of Neurosurgery (L.D.L.) and Department of Neurology (L.R.W., J.B.B.), University of Pittsburgh Medical School and University of Pittsburgh Medical Center, PA; Department of Neurology, University of California, San Francisco (A.S.K.); SanBio, Inc, Mountain View, CA (D.B., C.C., M.M., E.W.Y.); and Western Statistical Consulting, LLC, Phoenix, AZ (B.K.)
| | - Damien Bates
- From the Department of Neurosurgery (G.K.S., M.L.C., J.N.J.) and Department of Neurology and Neurological Sciences (G.K.S., N.E.S.), Stanford University School of Medicine and Stanford Health Care, CA; Department of Neurosurgery, New York University and NYU Langone Medical Center, NY (D.K.); Department of Neurosurgery (L.D.L.) and Department of Neurology (L.R.W., J.B.B.), University of Pittsburgh Medical School and University of Pittsburgh Medical Center, PA; Department of Neurology, University of California, San Francisco (A.S.K.); SanBio, Inc, Mountain View, CA (D.B., C.C., M.M., E.W.Y.); and Western Statistical Consulting, LLC, Phoenix, AZ (B.K.)
| | - Bill King
- From the Department of Neurosurgery (G.K.S., M.L.C., J.N.J.) and Department of Neurology and Neurological Sciences (G.K.S., N.E.S.), Stanford University School of Medicine and Stanford Health Care, CA; Department of Neurosurgery, New York University and NYU Langone Medical Center, NY (D.K.); Department of Neurosurgery (L.D.L.) and Department of Neurology (L.R.W., J.B.B.), University of Pittsburgh Medical School and University of Pittsburgh Medical Center, PA; Department of Neurology, University of California, San Francisco (A.S.K.); SanBio, Inc, Mountain View, CA (D.B., C.C., M.M., E.W.Y.); and Western Statistical Consulting, LLC, Phoenix, AZ (B.K.)
| | - Casey Case
- From the Department of Neurosurgery (G.K.S., M.L.C., J.N.J.) and Department of Neurology and Neurological Sciences (G.K.S., N.E.S.), Stanford University School of Medicine and Stanford Health Care, CA; Department of Neurosurgery, New York University and NYU Langone Medical Center, NY (D.K.); Department of Neurosurgery (L.D.L.) and Department of Neurology (L.R.W., J.B.B.), University of Pittsburgh Medical School and University of Pittsburgh Medical Center, PA; Department of Neurology, University of California, San Francisco (A.S.K.); SanBio, Inc, Mountain View, CA (D.B., C.C., M.M., E.W.Y.); and Western Statistical Consulting, LLC, Phoenix, AZ (B.K.)
| | - Michael McGrogan
- From the Department of Neurosurgery (G.K.S., M.L.C., J.N.J.) and Department of Neurology and Neurological Sciences (G.K.S., N.E.S.), Stanford University School of Medicine and Stanford Health Care, CA; Department of Neurosurgery, New York University and NYU Langone Medical Center, NY (D.K.); Department of Neurosurgery (L.D.L.) and Department of Neurology (L.R.W., J.B.B.), University of Pittsburgh Medical School and University of Pittsburgh Medical Center, PA; Department of Neurology, University of California, San Francisco (A.S.K.); SanBio, Inc, Mountain View, CA (D.B., C.C., M.M., E.W.Y.); and Western Statistical Consulting, LLC, Phoenix, AZ (B.K.)
| | - Ernest W Yankee
- From the Department of Neurosurgery (G.K.S., M.L.C., J.N.J.) and Department of Neurology and Neurological Sciences (G.K.S., N.E.S.), Stanford University School of Medicine and Stanford Health Care, CA; Department of Neurosurgery, New York University and NYU Langone Medical Center, NY (D.K.); Department of Neurosurgery (L.D.L.) and Department of Neurology (L.R.W., J.B.B.), University of Pittsburgh Medical School and University of Pittsburgh Medical Center, PA; Department of Neurology, University of California, San Francisco (A.S.K.); SanBio, Inc, Mountain View, CA (D.B., C.C., M.M., E.W.Y.); and Western Statistical Consulting, LLC, Phoenix, AZ (B.K.)
| | - Neil E Schwartz
- From the Department of Neurosurgery (G.K.S., M.L.C., J.N.J.) and Department of Neurology and Neurological Sciences (G.K.S., N.E.S.), Stanford University School of Medicine and Stanford Health Care, CA; Department of Neurosurgery, New York University and NYU Langone Medical Center, NY (D.K.); Department of Neurosurgery (L.D.L.) and Department of Neurology (L.R.W., J.B.B.), University of Pittsburgh Medical School and University of Pittsburgh Medical Center, PA; Department of Neurology, University of California, San Francisco (A.S.K.); SanBio, Inc, Mountain View, CA (D.B., C.C., M.M., E.W.Y.); and Western Statistical Consulting, LLC, Phoenix, AZ (B.K.)
| |
Collapse
|
59
|
Collagen-Hydroxyapatite Scaffolds Induce Human Adipose Derived Stem Cells Osteogenic Differentiation In Vitro. PLoS One 2016; 11:e0151181. [PMID: 26982592 PMCID: PMC4794180 DOI: 10.1371/journal.pone.0151181] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/24/2016] [Indexed: 01/30/2023] Open
Abstract
Mesenchymal stem cells (MSCs) play a crucial role in regulating normal skeletal homeostasis and, in case of injury, in bone healing and reestablishment of skeletal integrity. Recent scientific literature is focused on the development of bone regeneration models where MSCs are combined with biomimetic three-dimensional scaffolds able to direct MSC osteogenesis. In this work the osteogenic potential of human MSCs isolated from adipose tissue (hADSCs) has been evaluated in vitro in combination with collagen/Mg doped hydroxyapatite scaffolds. Results demonstrate the high osteogenic potential of hADSCs when cultured in specific differentiation induction medium, as revealed by the Alizarin Red S staining and gene expression profile analysis. In combination with collagen/hydroxyapatite scaffold, hADSCs differentiate into mature osteoblasts even in the absence of specific inducing factors; nevertheless, the supplement of the factors markedly accelerates the osteogenic process, as confirmed by the expression of specific markers of pre-osteoblast and mature osteoblast stages, such as osterix, osteopontin (also known as bone sialoprotein I), osteocalcin and specific markers of extracellular matrix maturation and mineralization stages, such as ALPL and osteonectin. Hence, the present work demonstrates that the scaffold per se is able to induce hADSCs differentiation, while the addition of osteo-inductive factors produces a significant acceleration of the osteogenic process. This observation makes the use of our model potentially interesting in the field of regenerative medicine for the treatment of bone defects.
Collapse
|
60
|
Increased Understanding of Stem Cell Behavior in Neurodegenerative and Neuromuscular Disorders by Use of Noninvasive Cell Imaging. Stem Cells Int 2016; 2016:6235687. [PMID: 26997958 PMCID: PMC4779824 DOI: 10.1155/2016/6235687] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/07/2016] [Accepted: 01/11/2016] [Indexed: 12/13/2022] Open
Abstract
Numerous neurodegenerative and neuromuscular disorders are associated with cell-specific depletion in the human body. This imbalance in tissue homeostasis is in healthy individuals repaired by the presence of endogenous stem cells that can replace the lost cell type. However, in most disorders, a genetic origin or limited presence or exhaustion of stem cells impairs correct cell replacement. During the last 30 years, methods to readily isolate and expand stem cells have been developed and this resulted in a major change in the regenerative medicine field as it generates sufficient amount of cells for human transplantation applications. Furthermore, stem cells have been shown to release cytokines with beneficial effects for several diseases. At present however, clinical stem cell transplantations studies are struggling to demonstrate clinical efficacy despite promising preclinical results. Therefore, to allow stem cell therapy to achieve its full potential, more insight in their in vivo behavior has to be achieved. Different methods to noninvasively monitor these cells have been developed and are discussed. In some cases, stem cell monitoring even reached the clinical setting. We anticipate that by further exploring these imaging possibilities and unraveling their in vivo behavior further improvement in stem cell transplantations will be achieved.
Collapse
|
61
|
Shimomura A, Iizuka-Kogo A, Yamamoto N, Nomura R. A lower volume culture method for obtaining a larger yield of neuron-like cells from mesenchymal stem cells. Med Mol Morphol 2015; 49:119-26. [PMID: 26700227 DOI: 10.1007/s00795-015-0131-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/08/2015] [Indexed: 01/21/2023]
Abstract
Mesenchymal stem cells (MSCs) represent a promising cell source for stem cell therapy to replace neurons damaged by neurodegenerative diseases. A system designed for in vitro neuronal differentiation of MSCs is an indispensable technique, which provides MSC-derived functional neurons for cell-replacement therapies and valuable information in pre-clinical research. This study investigated the effects of reducing the volume of neural induction medium on cell viability and neural differentiation of MSCs. When MSCs were differentiated in low volumes of neural induction medium, rather than using the conventional method, the cell density on culture dishes significantly increased. The % cell death, including apoptosis and necrosis, was significantly lower in the lower volume method than in the conventional method. There were no significant differences between the lower volume and conventional methods in the expression levels of the neuronal marker genes. In an analysis of immunostaining for a mature neuronal marker, no significant difference was detected between the media volumes. These findings demonstrate that neuronal induction of MSCs in low volumes of differentiation medium promoted survival during differentiation and resulted in larger numbers of MSC-derived neurons, compared to the conventional method. This novel lower volume method offers both financial and cell-yield advantages over the conventional method.
Collapse
Affiliation(s)
- Atsushi Shimomura
- Department of Communication Disorders, Health Sciences University of Hokkaido School of Psychological Science, 2-5 Ainosato, Kita-ku, Sapporo, Hokkaido, 002-8072, Japan. .,Department of Communication Disorders, Health Sciences University of Hokkaido School of Rehabilitation Sciences, 1757 Kanazawa, Tobetsu, Hokkaido, 061-0293, Japan.
| | - Akiko Iizuka-Kogo
- Department of Anatomy and Cell Biology, Gunma University School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Naoki Yamamoto
- Laboratory of Molecular Biology and Histochemistry, Fujita Health University Joint Research Laboratory, 1-98 Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Ryuji Nomura
- Department of Anatomy I, Fujita Health University School of Medicine, 1-98 Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| |
Collapse
|
62
|
Razavi S, Khosravizadeh Z, Bahramian H, Kazemi M. Changes of neural markers expression during late neurogenic differentiation of human adipose-derived stem cells. Adv Biomed Res 2015; 4:209. [PMID: 26605238 PMCID: PMC4627175 DOI: 10.4103/2277-9175.166146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 03/04/2015] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Different studies have been done to obtain sufficient number of neural cells for treatment of neurodegenerative diseases, spinal cord, and traumatic brain injury because neural stem cells are limited in central nerves system. Recently, several studies have shown that adipose-derived stem cells (ADSCs) are the appropriate source of multipotent stem cells. Furthermore, these cells are found in large quantities. The aim of this study was an assessment of proliferation and potential of neurogenic differentiation of ADSCs with passing time. MATERIALS AND METHODS Neurosphere formation was used for neural induction in isolated human ADSCs (hADSCs). The rate of proliferation was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and potential of neural differentiation of induced hADSCs was evaluated by immunocytochemical and real-time reverse transcription polymerase chain reaction analysis after 10 and 14 days post-induction. RESULTS The rate of proliferation of induced hADSCs increased after 14 days while the expression of nestin, glial fibrillary acidic protein, and microtubule-associated protein 2 was decreased with passing time during neurogenic differentiation. CONCLUSION These findings showed that the proliferation of induced cells increased with passing time, but in early neurogenic differentiation of hADSCs, neural expression was higher than late of differentiation. Thus, using of induced cells in early differentiation may be suggested for in vivo application.
Collapse
Affiliation(s)
- Shahnaz Razavi
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Khosravizadeh
- Department of Reproductive Biology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Bahramian
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Kazemi
- Department of Genetic, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
63
|
PERIPHERAL NERVE REGENERATION: CELL THERAPY AND NEUROTROPHIC FACTORS. Rev Bras Ortop 2015; 46:643-9. [PMID: 27027067 PMCID: PMC4799329 DOI: 10.1016/s2255-4971(15)30319-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 06/16/2011] [Indexed: 12/25/2022] Open
Abstract
Peripheral nerve trauma results in functional loss in the innervated organ, and recovery without surgical intervention is rare. Many surgical techniques can be used for nerve repair. Among these, the tubulization technique can be highlighted: this allows regenerative factors to be introduced into the chamber. Cell therapy and tissue engineering have arisen as an alternative for stimulating and aiding peripheral nerve regeneration. Therefore, the aim of this review was to provide a survey and analysis on the results from experimental and clinical studies that used cell therapy and tissue engineering as tools for optimizing the regeneration process. The articles used came from the LILACS, Medline and SciELO scientific databases. Articles on the use of stem cells, Schwann cells, growth factors, collagen, laminin and platelet-rich plasma for peripheral nerve repair were summarized over the course of the review. Based on these studies, it could be concluded that the use of stem cells derived from different sources presents promising results relating to nerve regeneration, because these cells have a capacity for neuronal differentiation, thus demonstrating effective functional results. The use of tubes containing bioactive elements with controlled release also optimizes the nerve repair, thus promoting greater myelination and axonal growth of peripheral nerves. Another promising treatment is the use of platelet-rich plasma, which not only releases growth factors that are important in nerve repair, but also serves as a carrier for exogenous factors, thereby stimulating the proliferation of specific cells for peripheral nerve repair.
Collapse
|
64
|
Nakano R, Edamura K, Nakayama T, Narita T, Okabayashi K, Sugiya H. Fibroblast Growth Factor Receptor-2 Contributes to the Basic Fibroblast Growth Factor-Induced Neuronal Differentiation in Canine Bone Marrow Stromal Cells via Phosphoinositide 3-Kinase/Akt Signaling Pathway. PLoS One 2015; 10:e0141581. [PMID: 26523832 PMCID: PMC4629880 DOI: 10.1371/journal.pone.0141581] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/09/2015] [Indexed: 11/26/2022] Open
Abstract
Bone marrow stromal cells (BMSCs) are considered as candidates for regenerative therapy and a useful model for studying neuronal differentiation. The role of basic fibroblast growth factor (bFGF) in neuronal differentiation has been previously studied; however, the signaling pathway involved in this process remains poorly understood. In this study, we investigated the signaling pathway in the bFGF-induced neuronal differentiation of canine BMSCs. bFGF induced the mRNA expression of the neuron marker, microtubule associated protein-2 (MAP2) and the neuron-like morphological change in canine BMSCs. In the presence of inhibitors of fibroblast growth factor receptors (FGFR), phosphatidylinositol 3-kinase (PI3K) and Akt, i.e., SU5402, LY294002, and MK2206, respectively, bFGF failed to induce the MAP2 mRNA expression and the neuron-like morphological change. bFGF induced Akt phosphorylation, but it was attenuated by the FGFR inhibitor SU5402 and the PI3K inhibitor LY294002. In canine BMSCs, expression of FGFR-1 and FGFR-2 was confirmed, but only FGFR-2 activation was detected by cross-linking and immunoprecipitation analysis. Small interfering RNA-mediated knockdown of FGFR-2 in canine BMSCs resulted in the attenuation of bFGF-induced Akt phosphorylation. These results suggest that the FGFR-2/PI3K/Akt signaling pathway is involved in the bFGF-induced neuronal differentiation of canine BMSCs.
Collapse
Affiliation(s)
- Rei Nakano
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
| | - Kazuya Edamura
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
| | - Tomohiro Nakayama
- Laboratory of Veterinary Radiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
| | - Takanori Narita
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
| | - Ken Okabayashi
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
| | - Hiroshi Sugiya
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
65
|
Fu MH, Li CL, Lin HL, Chen PC, Calkins MJ, Chang YF, Cheng PH, Yang SH. Stem cell transplantation therapy in Parkinson's disease. SPRINGERPLUS 2015; 4:597. [PMID: 26543732 PMCID: PMC4628010 DOI: 10.1186/s40064-015-1400-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 10/06/2015] [Indexed: 02/06/2023]
Abstract
Ineffective therapeutic treatments and inadequate repair ability in the central nervous system are disturbing problems for several neurological diseases. Fortunately, the development of clinically applicable populations of stem cells has provided an avenue to overcome the failure of endogenous repair systems and substitute new cells into the damaged brain. However, there are still several existing obstacles to translating into clinical application. Here we review the stem-cell based therapies for Parkinson’s disease and discuss the potential advantages and drawbacks. We hope this review may provide suggestions for viable strategies to overcome the current technical and biological issues associated with the application of stem cells in Parkinson’s disease.
Collapse
Affiliation(s)
- Mu-Hui Fu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan.,Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301 Taiwan
| | - Chia-Ling Li
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan
| | - Hsiu-Lien Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan.,Division of Breeding and Genetics, Livestock Research Institute, Council of Agriculture, Tainan, 71246 Taiwan
| | - Pei-Chun Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan.,Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan
| | - Marcus J Calkins
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan
| | - Yu-Fan Chang
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan
| | - Pei-Hsun Cheng
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan
| | - Shang-Hsun Yang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan.,Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan
| |
Collapse
|
66
|
Meyer S, Wörsdörfer P, Günther K, Thier M, Edenhofer F. Derivation of Adult Human Fibroblasts and their Direct Conversion into Expandable Neural Progenitor Cells. J Vis Exp 2015:e52831. [PMID: 26275015 DOI: 10.3791/52831] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Generation of induced pluripotent stem cell (iPSCs) from adult skin fibroblasts and subsequent differentiation into somatic cells provides fascinating prospects for the derivation of autologous transplants that circumvent histocompatibility barriers. However, progression through a pluripotent state and subsequent complete differentiation into desired lineages remains a roadblock for the clinical translation of iPSC technology because of the associated neoplastic potential and genomic instability. Recently, we and others showed that somatic cells cannot only be converted into iPSCs but also into different types of multipotent somatic stem cells by using defined factors, thereby circumventing progression through the pluripotent state. In particular, the direct conversion of human fibroblasts into induced neural progenitor cells (iNPCs) heralds the possibility of a novel autologous cell source for various applications such as cell replacement, disease modeling and drug screening. Here, we describe the isolation of adult human primary fibroblasts by skin biopsy and their efficient direct conversion into iNPCs by timely restricted expression of Oct4, Sox2, Klf4, as well as c-Myc. Sox2-positive neuroepithelial colonies appear after 17 days of induction and iNPC lines can be established efficiently by monoclonal isolation and expansion. Precise adjustment of viral multiplicity of infection and supplementation of leukemia inhibitory factor during the induction phase represent critical factors to achieve conversion efficiencies of up to 0.2%. Thus far, patient-specific iNPC lines could be expanded for more than 12 passages and uniformly display morphological and molecular features of neural stem/progenitor cells, such as the expression of Nestin and Sox2. The iNPC lines can be differentiated into neurons and astrocytes as judged by staining against TUJ1 and GFAP, respectively. In conclusion, we report a robust protocol for the derivation and direct conversion of human fibroblasts into stably expandable neural progenitor cells that might provide a cellular source for biomedical applications such as autologous neural cell replacement and disease modeling.
Collapse
Affiliation(s)
- Sandra Meyer
- Institute of Anatomy and Cell Biology, University of Würzburg; Institute of Reconstructive Neurobiology, University of Bonn
| | | | | | - Marc Thier
- Institute of Reconstructive Neurobiology, University of Bonn; German Cancer Research Center, Heidelberg
| | - Frank Edenhofer
- Institute of Anatomy and Cell Biology, University of Würzburg; Institute of Reconstructive Neurobiology, University of Bonn;
| |
Collapse
|
67
|
Babenko VA, Silachev DN, Zorova LD, Pevzner IB, Khutornenko AA, Plotnikov EY, Sukhikh GT, Zorov DB. Improving the Post-Stroke Therapeutic Potency of Mesenchymal Multipotent Stromal Cells by Cocultivation With Cortical Neurons: The Role of Crosstalk Between Cells. Stem Cells Transl Med 2015; 4:1011-20. [PMID: 26160961 DOI: 10.5966/sctm.2015-0010] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/26/2015] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED The goal of the present study was to maximally alleviate the negative impact of stroke by increasing the therapeutic potency of injected mesenchymal multipotent stromal cells (MMSCs). To pursue this goal, the intercellular communications of MMSCs and neuronal cells were studied in vitro. As a result of cocultivation of MMSCs and rat cortical neurons, we proved the existence of intercellular contacts providing transfer of cellular contents from one cell to another. We present evidence of intercellular exchange with fluorescent probes specifically occupied by cytosol with preferential transfer from neurons toward MMSCs. In contrast, we observed a reversed transfer of mitochondria (from MMSCs to neural cells). Intravenous injection of MMSCs in a postischemic period alleviated the pathological indexes of a stroke, expressed as a lower infarct volume in the brain and partial restoration of neurological status. Also, MMSCs after cocultivation with neurons demonstrated more profound neuroprotective effects than did unprimed MMSCs. The production of the brain-derived neurotrophic factor was slightly increased in MMSCs, and the factor itself was redistributed in these cells after cocultivation. The level of Miro1 responsible for intercellular traffic of mitochondria was increased in MMSCs after cocultivation. We conclude that the exchange by cellular compartments between neural and stem cells improves MMSCs' protective abilities for better rehabilitation after stroke. This could be used as an approach to enhance the therapeutic benefits of stem cell therapy to the damaged brain. SIGNIFICANCE The idea of priming stem cells before practical use for clinical purposes was applied. Thus, cells were preconditioned by coculturing them with the targeted cells (i.e., neurons for the treatment of brain pathological features) before the transfusion of stem cells to the organism. Such priming improved the capacity of stem cells to treat stroke. Some additional minimal study will be required to develop a detailed protocol for coculturing followed by cell separation.
Collapse
Affiliation(s)
- Valentina A Babenko
- Faculty of Bioengineering and Bioinformatics, A.N. Belozersky Institute of Physico-Chemical Biology, and International Laser Center, Lomonosov Moscow State University, Moscow, Russian Federation; Gynecology and Perinatology, Research Center of Obstetrics, Moscow, Russian Federation
| | - Denis N Silachev
- Faculty of Bioengineering and Bioinformatics, A.N. Belozersky Institute of Physico-Chemical Biology, and International Laser Center, Lomonosov Moscow State University, Moscow, Russian Federation; Gynecology and Perinatology, Research Center of Obstetrics, Moscow, Russian Federation
| | - Ljubava D Zorova
- Faculty of Bioengineering and Bioinformatics, A.N. Belozersky Institute of Physico-Chemical Biology, and International Laser Center, Lomonosov Moscow State University, Moscow, Russian Federation; Gynecology and Perinatology, Research Center of Obstetrics, Moscow, Russian Federation
| | - Irina B Pevzner
- Faculty of Bioengineering and Bioinformatics, A.N. Belozersky Institute of Physico-Chemical Biology, and International Laser Center, Lomonosov Moscow State University, Moscow, Russian Federation; Gynecology and Perinatology, Research Center of Obstetrics, Moscow, Russian Federation
| | - Anastasia A Khutornenko
- Faculty of Bioengineering and Bioinformatics, A.N. Belozersky Institute of Physico-Chemical Biology, and International Laser Center, Lomonosov Moscow State University, Moscow, Russian Federation; Gynecology and Perinatology, Research Center of Obstetrics, Moscow, Russian Federation
| | - Egor Y Plotnikov
- Faculty of Bioengineering and Bioinformatics, A.N. Belozersky Institute of Physico-Chemical Biology, and International Laser Center, Lomonosov Moscow State University, Moscow, Russian Federation; Gynecology and Perinatology, Research Center of Obstetrics, Moscow, Russian Federation
| | - Gennady T Sukhikh
- Faculty of Bioengineering and Bioinformatics, A.N. Belozersky Institute of Physico-Chemical Biology, and International Laser Center, Lomonosov Moscow State University, Moscow, Russian Federation; Gynecology and Perinatology, Research Center of Obstetrics, Moscow, Russian Federation
| | - Dmitry B Zorov
- Faculty of Bioengineering and Bioinformatics, A.N. Belozersky Institute of Physico-Chemical Biology, and International Laser Center, Lomonosov Moscow State University, Moscow, Russian Federation; Gynecology and Perinatology, Research Center of Obstetrics, Moscow, Russian Federation
| |
Collapse
|
68
|
Zhou LN, Cui XJ, Su KX, Wang XH, Guo JH. Beneficial reciprocal effects of bone marrow stromal cells and Schwann cells from adult rats in a dynamic co‑culture system in vitro without intercellular contact. Mol Med Rep 2015; 12:4931-8. [PMID: 26133460 PMCID: PMC4581791 DOI: 10.3892/mmr.2015.4016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 06/11/2015] [Indexed: 01/17/2023] Open
Abstract
In order to examine how implanted bone marrow stromal cells (BMSCs) encourage peripheral nerve regeneration, the present study investigated the interaction of BMSCs and Schwann cells (SCs) using an indirect in vitro co‑culture model. SCs and BMSCs were obtained from adult Sprague‑Dawley rats. The passaged BMSCs were CD29‑ and CD44‑positive but CD45‑negative and were co‑cultured with the primary SCs using a Millicell system, which allows BMSCs and SCs to grow in the same culture medium but without direct contact. Expression of the typical SC markers S‑100 and glial fibrillary acidic protein (GFAP) of the treated BMSCs as well as the proliferation capacity of the co‑cultured SCs was evaluated by immunocytochemical staining on the 3rd and 5th day of co‑culture. Immunocytochemical staining showed that >75% of the BMSCs in the indirect co‑culture model were GFAP‑ and S‑100‑positive on the 3rd and 5th day after co‑culture, as opposed to <5% of the BMSCs in the control group. On the 3rd day after co‑culture, only a few co‑cultured BMSCs showed the typical SC‑like morphology, while most BMSCs still kept their native appearance. By contrast, on the 5th day after co‑culture, almost all of the co‑cultured BMSCs appeared with the typical SC‑like morphology. Furthermore, 70.71% of the SCs in the indirect co‑culture model were S‑100‑positive on the 5th day of co‑culture, as opposed to >30.43% of the SCs in the control group. These results indicated that BMSCs may interact synergistically with SCs with regard to promoting peripheral nerve regeneration.
Collapse
Affiliation(s)
- Li-Na Zhou
- Department of Anatomy, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Xiao-Jun Cui
- Department of Anatomy, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Kai-Xin Su
- Department of Anatomy, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Xiao-Hong Wang
- Department of Anatomy, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Jin-Hua Guo
- Department of Anatomy, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| |
Collapse
|
69
|
Abstract
The enteric nervous system is the intrinsic innervation of the gut. Several neuromuscular disorders affect the neurons and glia of the enteric nervous system adversely, resulting in disruptions in gastrointestinal motility and function. Pharmacological interventions to remedy gastrointestinal function do not address the underlying cause of dysmotility arising from lost, absent, or damaged enteric neuroglial circuitry. Cell-based therapies have gained traction in the past decade, following the discovery of several adult stem cell niches in the human body. Adult neural stem cells can be isolated from the postnatal and adult intestine using minimally invasive biopsies. These stem cells retain the ability to differentiate into several functional classes of enteric neurons and enteric glia. Upon identification of these cells, several groups have also established that transplantation of these cells into aganglionic or dysganglionic intestine rescues gastrointestinal motility and function. This chapter highlights key studies performed in the field of stem cell transplantation therapies that are targeted towards the remedy of gastrointestinal motility and function.
Collapse
Affiliation(s)
- Khalil N Bitar
- Wake Forest School of Medicine, Wake Forest Institute for Regenerative Medicine, 391 Technology Way, Richard H Dean Biomedical Engineering Building, Winston-Salem, NC, 27101, USA,
| | | |
Collapse
|
70
|
Wakao S, Dezawa M. [Current status and future prospects of Muse cell research
]. Nihon Yakurigaku Zasshi 2015; 145:299-305. [PMID: 26063152 DOI: 10.1254/fpj.145.299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
71
|
Lewis CM, Suzuki M. Therapeutic applications of mesenchymal stem cells for amyotrophic lateral sclerosis. Stem Cell Res Ther 2015; 5:32. [PMID: 25157751 PMCID: PMC4035799 DOI: 10.1186/scrt421] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting the neuromuscular system and does not have a known singular cause. Genetic mutations, extracellular factors, non-neuronal support cells, and the immune system have all been shown to play varied roles in clinical and pathological disease progression. The therapeutic plasticity of mesenchymal stem cells (MSCs) may be well matched to this complex disease pathology, making MSCs strong candidates for cellular therapy in ALS. In this review, we summarize a variety of explored mechanisms by which MSCs play a role in ALS progression, including neuronal and non-neuronal cell replacement, trophic factor delivery, and modulation of the immune system. Currently relevant techniques for applying MSC therapy in ALS are discussed, focusing in particular on delivery route and cell source. We include examples from in vitro, preclinical, and clinical investigations to elucidate the remaining progress that must be made to understand and apply MSCs as a treatment for ALS.
Collapse
|
72
|
Ahmad I, Zhao X, Parameswaran S, Destache CJ, Rodriguez-Sierra J, Thoreson WB, Ahmad H, Sorrentino J, Balasubramanian S. Direct differentiation of adult ocular progenitors into striatal dopaminergic neurons. Int J Stem Cells 2015; 8:106-14. [PMID: 26019760 PMCID: PMC4445705 DOI: 10.15283/ijsc.2015.8.1.106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 04/06/2015] [Indexed: 12/31/2022] Open
Abstract
Parkinson’s disease, characterized by motor dysfunction due to the loss of nigrostriatal dopaminergic neurons, is one of the most prevalent age-related neurodegenerative disorders. Given there is no current cure, the stem cell approach has emerged as a viable therapeutic option to replace the dopaminergic neurons that are progressively lost to the disease. The success of the approach is likely to depend upon accessible, renewable, immune compatible, and non-tumorigenic sources of neural progenitors from which stable dopaminergic neurons can be generated efficaciously. Here, we demonstrate that neural progenitors derived from limbus, a regenerative and accessible ocular tissue, represent a safe source of dopaminergic neurons. When the limbus-derived neural progenitors were subjected to a well-established protocol of directed differentiation under the influence of Shh and FGF8, they acquired the biochemical and functional phenotype of dopaminergic neurons that included the ability to synthesize dopamine. Their intrastriatal transplantation in the rat model of hemi-Parkinsonism was associated with a reduction in the amphetamine-induced rotation. No tumor formation was observed 6 weeks post-transplantation. Together, these observations posit limbus-derived neural progenitors as an accessible and safe source of dopaminergic neurons for a potential autologous ex-vivo stem cell approach to Parkinson’s disease.
Collapse
Affiliation(s)
- Iqbal Ahmad
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE
| | - Xing Zhao
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE
| | - Sowmya Parameswaran
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE
| | | | - Jorge Rodriguez-Sierra
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE
| | - Wallace B Thoreson
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE
| | - Hiba Ahmad
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE
| | - John Sorrentino
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE
| | - Sudha Balasubramanian
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
73
|
Neural-induced human mesenchymal stem cells promote cochlear cell regeneration in deaf Guinea pigs. Clin Exp Otorhinolaryngol 2015; 8:83-91. [PMID: 26045904 PMCID: PMC4451547 DOI: 10.3342/ceo.2015.8.2.83] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 02/11/2014] [Accepted: 03/06/2014] [Indexed: 12/18/2022] Open
Abstract
Objectives In mammals, cochlear hair cell loss is irreversible and may result in a permanent sensorineural hearing loss. Secondary to this hair cell loss, a progressive loss of spiral ganglion neurons (SGNs) is presented. In this study, we have investigated the effects of neural-induced human mesenchymal stem cells (NI-hMSCs) from human bone marrow on sensory neuronal regeneration from neomycin treated deafened guinea pig cochleae. Methods HMSCs were isolated from the bone marrow which was obtained from the mastoid process during mastoidectomy for ear surgery. Following neural induction with basic fibroblast growth factor and forskolin, we studied the several neural marker and performed electrophysiological analysis. NI-hMSCs were transplanted into the neomycin treated deafened guinea pig cochlea. Engraftment of NI-hMSCs was evaluated immunohistologically at 8 weeks after transplantation. Results Following neural differentiation, hMSCs expressed high levels of neural markers, ionic channel markers, which are important in neural function, and tetrodotoxin-sensitive voltage-dependent sodium currents. After transplantation into the scala tympani of damaged cochlea, NI-hMSCs-injected animals exhibited a significant increase in the number of SGNs compared to Hanks balanced salt solution-injected animals. Transplanted NI-hMSCs were found within the perilymphatic space, the organ of Corti, along the cochlear nerve fibers, and in the spiral ganglion. Furthermore, the grafted NI-hMSCs migrated into the spiral ganglion where they expressed the neuron-specific marker, NeuN. Conclusion The results show the potential of NI-hMSCs to give rise to replace the lost cochlear cells in hearing loss mammals.
Collapse
|
74
|
Luo G, Gu F, Zhang Y, Liu T, Guo P, Huang Y. Icariside II promotes osteogenic differentiation of bone marrow stromal cells in beagle canine. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:4367-77. [PMID: 26191128 PMCID: PMC4503000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/24/2015] [Indexed: 06/04/2023]
Abstract
Icariside II (ICS II) is a prenylated active flavonol from the roots of epimedium koreanum Nakai, and has many biological activities, including anti-osteoporosis, anti-hypoxia and anti-cancer activities. In this study, we aimed to study the effect of ICS II on osteogenic differentiation of bone marrow derived stromal cells (BMSCs). Cell surface markers of cultured BMSCs were analyzed by flow cytometry and identified by multi-lineage differentiation assays. BMSCs proliferation was determined by the cell counting kit-8 (CCK-8) assay for 2, 4, 6 and 8 days in a range of ICS II concentrations. The osteogenic response of BMSCs to ICS II in vitro was examined by alkaline phosphatase (ALP) activity assay and Alizarin red staining on calcium nodule formation. Results showed ICS II significantly improved ALP activity, and calcium deposition. The optimal concentration of ICS II for enhancing osteogenic differentiation of BMSCs was 10(-5). Therefore, we concluded ICS II can enhance the osteogenic differentiation of BMSCs which may be useful in clinic.
Collapse
Affiliation(s)
- Guangming Luo
- Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology, Tongji UniversityShanghai, P. R. China
| | - Feifei Gu
- Department of Stomatology, Shanghai East Hospital Affiliated with Tongji UniversityShanghai, P. R. China
| | - Yingdi Zhang
- Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology, Tongji UniversityShanghai, P. R. China
| | - Tianlin Liu
- Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology, Tongji UniversityShanghai, P. R. China
- Department of Stomatology, Shanghai East Hospital Affiliated with Tongji UniversityShanghai, P. R. China
| | - Pengnv Guo
- Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology, Tongji UniversityShanghai, P. R. China
| | - Yuanliang Huang
- Department of Stomatology, Shanghai East Hospital Affiliated with Tongji UniversityShanghai, P. R. China
| |
Collapse
|
75
|
Lee JE, Kim JM, Jang HJ, Lim SY, Choi SJ, Lee NH, Suh PG, Choi UK. Propyl gallate inhibits adipogenesis by stimulating extracellular signal-related kinases in human adipose tissue-derived mesenchymal stem cells. Mol Cells 2015; 38:336-42. [PMID: 25813451 PMCID: PMC4400308 DOI: 10.14348/molcells.2015.2238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/23/2014] [Accepted: 12/24/2014] [Indexed: 01/26/2023] Open
Abstract
Propyl gallate (PG) used as an additive in various foods has antioxidant and anti-inflammatory effects. Although the functional roles of PG in various cell types are well characterized, it is unknown whether PG has effect on stem cell differentiation. In this study, we demonstrated that PG could inhibit adipogenic differentiation in human adipose tissue-derived mesenchymal stem cells (hAMSCs) by decreasing the accumulation of intracellular lipid droplets. In addition, PG significantly reduced the expression of adipocyte-specific markers including peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAAT enhancer binding protein-α (C/EBP-α), lipoprotein lipase (LPL), and adipocyte fatty acid-binding protein 2 (aP2). PG inhibited adipogenesis in hAMSCs through extracellular regulated kinase (ERK) pathway. Decreased adipogenesis following PG treatment was recovered in response to ERK blocking. Taken together, these results suggest a novel effect of PG on adipocyte differentiation in hAMSCs, supporting a negative role of ERK1/2 pathway in adipogenic differentiation.
Collapse
Affiliation(s)
- Jeung-Eun Lee
- School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 689-798,
Korea
| | - Jung-Min Kim
- School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 689-798,
Korea
| | - Hyun-Jun Jang
- School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 689-798,
Korea
- Division of Molecular and Life sciences, Pohang University of Science and Technology, Pohang,
Korea
| | - Se-young Lim
- School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 689-798,
Korea
| | - Seon-Jeong Choi
- Department of Food Science and Technology, Korea National University of Transportation, Chungbuk 368-701,
Korea
| | - Nan-Hee Lee
- Department of Food Nutrition and Cook, Daegu Science University, Daegu 702-723,
Korea
| | - Pann-Ghill Suh
- School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 689-798,
Korea
| | - Ung-Kyu Choi
- Department of Food Science and Technology, Korea National University of Transportation, Chungbuk 368-701,
Korea
| |
Collapse
|
76
|
Yasuhara T, Kameda M, Agari T, Date I. Regenerative medicine for Parkinson's disease. Neurol Med Chir (Tokyo) 2015; 55:113-23. [PMID: 25746305 PMCID: PMC4533405 DOI: 10.2176/nmc.ra.2014-0264] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Regenerative medicine for Parkinson’s disease (PD) is expected to develop dramatically with the advancement of biotechnology as represented by induced pluripotent stem cells. Existing therapeutic strategy for PD consists of medication using L-DOPA, surgery such as deep brain stimulation and rehabilitation. Current treatment cannot stop the progression of the disease, although there is definite therapeutic effect. True neurorestoration is strongly desired by regenerative medicine. This review article describes the historical development of regenerative medicine for PD, with a focus on fetal nigral cell transplantation and glial cell line-derived neurotrophic factor infusion. Subsequently, the current status of regenerative medicine for PD in terms of cell therapy and gene therapy are reviewed. In the end, the future direction to realize regenerative medicine for PD is discussed.
Collapse
Affiliation(s)
- Takao Yasuhara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine
| | | | | | | |
Collapse
|
77
|
Wakao S, Matsuse D, Dezawa M. Mesenchymal stem cells as a source of Schwann cells: their anticipated use in peripheral nerve regeneration. Cells Tissues Organs 2015; 200:31-41. [PMID: 25765009 DOI: 10.1159/000368188] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2014] [Indexed: 11/19/2022] Open
Abstract
Schwann cells form myelin, sustain axons and provide the microenvironment for nerve fibers, thereby playing a key role in the peripheral nervous system (PNS). Schwann cells also provide support for the damaged PNS by producing factors that strongly promote axonal regrowth and contribute to remyelination, which is crucial for the recovery of neural function. These advantages are not confined to the PNS and also apply to the central nervous system. Many diseases, including peripheral nerve injury, neuropathy, multiple sclerosis and spinal cord injury, are targets for Schwann cell therapy. The collection of Schwann cells, however, causes new damage to other peripheral nerve segments. Furthermore, the doubling time of Schwann cells is not very fast, and thus adequate amounts of Schwann cells for clinical use cannot be collected within a reasonable amount of time. Mesenchymal stem cells, which are highly proliferative, are easily accessible from various types of mesenchymal tissues, such as the bone marrow, umbilical cord and fat tissue. Because these cells have the ability to cross oligolineage boundaries between mesodermal to ectodermal lineages, they are capable of differentiating into Schwann cells with step-by-step cytokine stimulation. In this review, we summarize the properties of mesenchymal stem cell-derived Schwann cells, which are comparable to authentic Schwann cells, and discuss future perspectives.
Collapse
Affiliation(s)
- Shohei Wakao
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | |
Collapse
|
78
|
Li R. Stem cell transplantation for treating Parkinson's disease: Literature analysis based on the Web of Science. Neural Regen Res 2015; 7:1272-9. [PMID: 25709626 PMCID: PMC4336963 DOI: 10.3969/j.issn.1673-5374.2012.16.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 04/23/2012] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE: To identify global research trends of stem cell transplantation for treating Parkinson's disease using a bibliometric analysis of the Web of Science. DATA RETRIEVAL: We performed a bibliometric analysis of data retrievals for stem cell transplantation for treating Parkinson's disease from 2002 to 2011 using the Web of Science. SELECTION CRITERIA: Inclusion criteria: (a) peer-reviewed articles on stem cell transplantation for treating Parkinson's disease which were published and indexed in the Web of Science; (b) type of articles: original research articles, reviews, meeting abstracts, proceedings papers, book chapters, editorial material and news items; (c) year of publication: 2002–2011. Exclusion criteria: (a) articles that required manual searching or telephone access; (b) we excluded documents that were not published in the public domain; (c) we excluded a number of corrected papers from the total number of articles. MAIN OUTCOME MEASURES: (1) Type of literature; (2) annual publication output; (3) distribution according to journals; (4) distribution according to subject areas; (5) distribution according to country; (6) distribution according to institution; (7) comparison of countries that published the most papers on stem cell transplantation from different cell sources for treating Parkinson's disease; (8) comparison of institutions that published the most papers on stem cell transplantation from different cell sources for treating Parkinson's disease in the Web of Science from 2002 to 2011; (9) comparison of studies on stem cell transplantation from different cell sources for treating Parkinson's disease RESULTS: In total, 1 062 studies on stem cell transplantation for treating Parkinson's disease appeared in the Web of Science from 2002 to 2011, almost one third of which were from American authors and institutes. The number of studies on stem cell transplantation for treating Parkinson's disease had gradually increased over the past 10 years. Papers on stem cell transplantation for treating Parkinson's disease appeared in journals such as Stem Cells and Experimental Neurology. Although the United States published more articles addressing neural stem cell and embryonic stem cell transplantation for treating Parkinson's disease, China ranked first for articles published on bone marrow mesenchymal stem cell transplantation for treating Parkinson's disease. CONCLUSION: From our analysis of the literature and research trends, we found that stem cell transplantation for treating Parkinson's disease may offer further benefits in regenerative medicine.
Collapse
Affiliation(s)
- Runhui Li
- Department of Neurology, Fengtian Hospital of Shenyang Medical College, Shenyang 110024, Liaoning Province, China
| |
Collapse
|
79
|
d'Anglemont de Tassigny X, Pascual A, López-Barneo J. GDNF-based therapies, GDNF-producing interneurons, and trophic support of the dopaminergic nigrostriatal pathway. Implications for Parkinson's disease. Front Neuroanat 2015; 9:10. [PMID: 25762899 PMCID: PMC4327623 DOI: 10.3389/fnana.2015.00010] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/21/2015] [Indexed: 01/09/2023] Open
Abstract
The glial cell line-derived neurotrophic factor (GDNF) is a well-established trophic agent for dopaminergic (DA) neurons in vitro and in vivo. GDNF is necessary for maintenance of neuronal morphological and neurochemical phenotype and protects DA neurons from toxic damage. Numerous studies on animal models of Parkinson’s disease (PD) have reported beneficial effects of GDNF on nigrostriatal DA neuron survival. However, translation of these observations to the clinical setting has been hampered so far by side effects associated with the chronic continuous intra-striatal infusion of recombinant GDNF. In addition, double blind and placebo-controlled clinical trials have not reported any clinically relevant effect of GDNF on PD patients. In the past few years, experiments with conditional Gdnf knockout mice have suggested that GDNF is necessary for maintenance of DA neurons in adulthood. In parallel, new methodologies for exogenous GDNF delivery have been developed. Recently, it has been shown that a small population of scattered, electrically interconnected, parvalbumin positive (PV+) GABAergic interneurons is responsible for most of the GDNF produced in the rodent striatum. In addition, cholinergic striatal interneurons appear to be also involved in the modulation of striatal GDNF. In this review, we summarize current knowledge on brain GDNF delivery, homeostasis, and its effects on nigrostriatal DA neurons. Special attention is paid to the therapeutic potential of endogenous GDNF stimulation in PD.
Collapse
Affiliation(s)
- Xavier d'Anglemont de Tassigny
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla Seville, Spain
| | - Alberto Pascual
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla Seville, Spain
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla Seville, Spain ; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla Seville, Spain ; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) Madrid, Spain
| |
Collapse
|
80
|
Goodarzi P, Aghayan HR, Larijani B, Soleimani M, Dehpour AR, Sahebjam M, Ghaderi F, Arjmand B. Stem cell-based approach for the treatment of Parkinson's disease. Med J Islam Repub Iran 2015; 29:168. [PMID: 26000262 PMCID: PMC4431356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 04/21/2014] [Indexed: 11/19/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative brain disorder which is around 1.5 times more common in men than in women. Currently, drug medications, surgery, and lifestyle changes are common approaches to PD, while all of them focused on reducing the symptoms. Therefore, regenerative medicine based on stem cell (SC) therapies has raised a promising hope. Various types of SCs have been used in basic and experimental studies relevant to PD, including embryonic pluripotential stem cells, mesenchymal (MSCs) and induced pluripotent SCs (iPSCs). MSCs have several advantages over other counterparts. They are easily accessible which can be obtained from various tissues such as bone marrow, adipose tissue, peripheral blood, etc. with avoiding ethical problems. Therefore, MSCs is attractive clinically because there are no related ethical and immunological concerns . Further studies are needed to answer some crucial questions about the different issues in SC therapy. Accordingly, SC-based therapy for PD also needed more complementary evaluation in both basic and clinical study areas.
Collapse
Affiliation(s)
- Parisa Goodarzi
- MSc, Brain and Spinal Cord Injury Research Center, Tehran University of Medical Sciences, School of Nursing and Midwifery, Iran University of Medical Sciences, Tehran, Iran.
| | - Hamid Reza Aghayan
- MD, PhD, Chronic Diseases Research Center, Endocrinology and Metabolism Research Institute & Brain and Spinal Cord Injury Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Bagher Larijani
- MD, Endocrinology and Metabolism Research Center , Endocrinology and Metabolism Research Institute, Tehran University of Medical sciences, Tehran, Iran.
| | - Masoud Soleimani
- PhD, Hematology Department, Faculty of Medicine, Tarbiat Modares University, Tehran, Iran.
| | - Ahmad-Reza Dehpour
- PhD, Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mehrnaz Sahebjam
- BSc, Brain and Spinal Cord Injury Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Firoozeh Ghaderi
- BSc, Brain and Spinal Cord Injury Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Babak Arjmand
- MD, PhD, GMP-Compliant Stem Cell Facility, Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute & Brain and Spinal Cord Injury Research Center, Tehran University of Medical Sciences, Shariati Hospital, North Kargar, Tehran, Iran.
| |
Collapse
|
81
|
Nam H, Lee KH, Nam DH, Joo KM. Adult human neural stem cell therapeutics: Current developmental status and prospect. World J Stem Cells 2015; 7:126-136. [PMID: 25621112 PMCID: PMC4300923 DOI: 10.4252/wjsc.v7.i1.126] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/01/2014] [Accepted: 10/16/2014] [Indexed: 02/06/2023] Open
Abstract
Over the past two decades, regenerative therapies using stem cell technologies have been developed for various neurological diseases. Although stem cell therapy is an attractive option to reverse neural tissue damage and to recover neurological deficits, it is still under development so as not to show significant treatment effects in clinical settings. In this review, we discuss the scientific and clinical basics of adult neural stem cells (aNSCs), and their current developmental status as cell therapeutics for neurological disease. Compared with other types of stem cells, aNSCs have clinical advantages, such as limited proliferation, inborn differentiation potential into functional neural cells, and no ethical issues. In spite of the merits of aNSCs, difficulties in the isolation from the normal brain, and in the in vitro expansion, have blocked preclinical and clinical study using aNSCs. However, several groups have recently developed novel techniques to isolate and expand aNSCs from normal adult brains, and showed successful applications of aNSCs to neurological diseases. With new technologies for aNSCs and their clinical strengths, previous hurdles in stem cell therapies for neurological diseases could be overcome, to realize clinically efficacious regenerative stem cell therapeutics.
Collapse
|
82
|
Taran R, Mamidi MK, Singh G, Dutta S, Parhar IS, John JP, Bhonde R, Pal R, Das AK. In vitro and in vivo neurogenic potential of mesenchymal stem cells isolated from different sources. J Biosci 2014; 39:157-69. [PMID: 24499800 DOI: 10.1007/s12038-013-9409-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Regenerative medicine is an evolving interdisciplinary topic of research involving numerous technological methods that utilize stem cells to repair damaged tissues. Particularly, mesenchymal stem cells (MSCs) are a great tool in regenerative medicine because of their lack of tumorogenicity, immunogenicity and ability to perform immunomodulatory as well as anti-inflammatory functions. Numerous studies have investigated the role of MSCs in tissue repair and modulation of allogeneic immune responses. MSCs derived from different sources hold unique regenerative potential as they are self-renewing and can differentiate into chondrocytes, osteoblasts, adipocytes, cardiomyocytes, hepatocytes, endothelial and neuronal cells, among which neuronal-like cells have gained special interest. MSCs also have the ability to secrete multiple bioactive molecules capable of stimulating recovery of injured cells and inhibiting inflammation. In this review we focus on neural differentiation potential of MSCs isolated from different sources and how certain growth factors/small molecules can be used to derive neuronal phenotypes from MSCs. We also discuss the efficacy of MSCs when transplanted in vivo and how they can generate certain neurons and lead to relief or recovery of the diseased condition. Furthermore, we have tried to evaluate the appropriatemerits of different sources ofMSCs with respect to their propensity towards neurological differentiation as well as their effectiveness in preclinical studies.
Collapse
Affiliation(s)
- Ramyani Taran
- Manipal Institute of Regenerative Medicine, Manipal University Branch Campus, Bangalore, India
| | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Tsai HL, Deng WP, Lai WFT, Chiu WT, Yang CB, Tsai YH, Hwang SM, Renshaw PF. Wnts enhance neurotrophin-induced neuronal differentiation in adult bone-marrow-derived mesenchymal stem cells via canonical and noncanonical signaling pathways. PLoS One 2014; 9:e104937. [PMID: 25170755 PMCID: PMC4149376 DOI: 10.1371/journal.pone.0104937] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 07/16/2014] [Indexed: 01/01/2023] Open
Abstract
Wnts were previously shown to regulate the neurogenesis of neural stem or progenitor cells. Here, we explored the underlying molecular mechanisms through which Wnt signaling regulates neurotrophins (NTs) in the NT-induced neuronal differentiation of human mesenchymal stem cells (hMSCs). NTs can increase the expression of Wnt1 and Wnt7a in hMSCs. However, only Wnt7a enables the expression of synapsin-1, a synaptic marker in mature neurons, to be induced and triggers the formation of cholinergic and dopaminergic neurons. Human recombinant (hr)Wnt7a and general neuron makers were positively correlated in a dose- and time-dependent manner. In addition, the expression of synaptic markers and neurites was induced by Wnt7a and lithium, a glycogen synthase kinase-3β inhibitor, in the NT-induced hMSCs via the canonical/β-catenin pathway, but was inhibited by Wnt inhibitors and frizzled-5 (Frz5) blocking antibodies. In addition, hrWnt7a triggered the formation of cholinergic and dopaminergic neurons via the non-canonical/c-jun N-terminal kinase (JNK) pathway, and the formation of these neurons was inhibited by a JNK inhibitor and Frz9 blocking antibodies. In conclusion, hrWnt7a enhances the synthesis of synapse and facilitates neuronal differentiation in hMSCS through various Frz receptors. These mechanisms may be employed widely in the transdifferentiation of other adult stem cells.
Collapse
Affiliation(s)
- Hung-Li Tsai
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Wing-Ping Deng
- Graduate Institute of Biomedical Materials and Engineering, Taipei Medical University, Taipei, Taiwan
| | - Wen-Fu Thomas Lai
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan
- McLean Imaging Center, McLean Hospital/Harvard Medical School, Belmont, Massachusetts, United States of America
- Center for Nano-Tissue Engineering and Image Research, Taipei Medical University Hospital, Taipei, Taiwan
- * E-mail:
| | - Wen-Ta Chiu
- Center for Nano-Tissue Engineering and Image Research, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Neurosurgery, Taipei Medical University-Shuan-Ho Hospital, Taipei, Taiwan
| | - Charn-Bing Yang
- Department of Orthopedics, Taipei County Hospital, Taipei, Taiwan
| | - Yu-Hui Tsai
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Shiaw-Min Hwang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
| | - Perry F. Renshaw
- Department of Psychiatry and The Brain Institute, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
84
|
Pankajakshan D, Agrawal DK. Mesenchymal Stem Cell Paracrine Factors in Vascular Repair and Regeneration. ACTA ACUST UNITED AC 2014; 1. [PMID: 28890954 DOI: 10.19104/jbtr.2014.107] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mesenchymal stem cell therapy show great optimism in the treatment of several diseases. MSCs are attractive candidates for cell therapy because of easy isolation, high expansion potential giving unlimited pool of transplantable cells, low immunogenicity, amenability to ex vivo genetic modification, and multipotency. The stem cells orchestrate the repair process by various mechanisms such as transdifferentiation, cell fusion, microvesicles or exosomes and most importantly by secreting paracrine factors. The MSCs release several angiogenic, mitogenic, anti-apoptotic, anti-inflammatory and anti-oxidative factors that play fundamental role in regulating tissue repair in various vascular and cardiac diseases. The therapeutic release of these factors by the cells can be enhanced by several strategies like genetic modification, physiological and pharmacological preconditioning, improved cell culture and selection methods, and biomaterial based approaches. The current review describes the impact of paracrine factors released by MSCs on vascular repair and regeneration in myocardial infarction, restenosis and peripheral artery disease, and the various strategies adopted to enhance the release of these paracrine factors to enhance organ function.
Collapse
Affiliation(s)
- Divya Pankajakshan
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA
| | - Devendra K Agrawal
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA
| |
Collapse
|
85
|
Recent advances of stem cell therapy for retinitis pigmentosa. Int J Mol Sci 2014; 15:14456-74. [PMID: 25141102 PMCID: PMC4159862 DOI: 10.3390/ijms150814456] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/24/2014] [Accepted: 08/11/2014] [Indexed: 12/22/2022] Open
Abstract
Retinitis pigmentosa (RP) is a group of inherited retinal disorders characterized by progressive loss of photoreceptors and eventually leads to retina degeneration and atrophy. Until now, the exact pathogenesis and etiology of this disease has not been clear, and many approaches for RP therapies have been carried out in animals and in clinical trials. In recent years, stem cell transplantation-based attempts made some progress, especially the transplantation of bone marrow-derived mesenchymal stem cells (BMSCs). This review will provide an overview of stem cell-based treatment of RP and its main problems, to provide evidence for the safety and feasibility for further clinical treatment.
Collapse
|
86
|
Seo BF, Kim KJ, Kim MK, Rhie JW. The effects of human keratinocyte coculture on human adipose-derived stem cells. Int Wound J 2014; 13:630-5. [PMID: 25091634 DOI: 10.1111/iwj.12335] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/13/2014] [Accepted: 06/26/2014] [Indexed: 12/19/2022] Open
Abstract
The potential for adipose-derived stem cells to differentiate into keratinocyte-like cells has recently been receiving attention, stemming from the hypothesis that a bioengineered skin may be manufactured from these readily available mesenchymal stem cells. This study was conducted to evaluate the influence of human keratinocyte non-contact coculture on hADSCs. Human epidermal keratinocytes and hADSCs obtained by lipoaspiration were cultured in keratinogenic growth media, which were divided into the following groups: human adipose-derived stem cell (hADSC) monoculture, non-contact coculture of hADSCs and human keratinocytes and keratinocyte monoculture. Cell proliferation was assessed, and keratogenicity was analysed through immunocytochemistry and polymerase chain reaction of early, intermediate and late keratogenic markers. hADSCs cocultured with keratinocytes displayed enhanced proliferation compared with the monoculture group. After a 7-day coculture period, immunohistochemistry and polymerase chain reaction findings revealed the presence of specific keratinocyte markers in the coculture group. This study demonstrates that hADSCs cocultured with keratinocytes have the capacity to transdifferentiate into keratinocyte lineage cells, and suggests that adipose tissue may be a source of keratinocytes that may further be used in structuring the bioengineered skin.
Collapse
Affiliation(s)
- Bommie F Seo
- Department of Plastic and Reconstructive Surgery, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ki J Kim
- Department of Plastic and Reconstructive Surgery, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Min K Kim
- Department of Plastic and Reconstructive Surgery, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jong W Rhie
- Department of Plastic and Reconstructive Surgery, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| |
Collapse
|
87
|
Huat TJ, Khan AA, Pati S, Mustafa Z, Abdullah JM, Jaafar H. IGF-1 enhances cell proliferation and survival during early differentiation of mesenchymal stem cells to neural progenitor-like cells. BMC Neurosci 2014; 15:91. [PMID: 25047045 PMCID: PMC4117972 DOI: 10.1186/1471-2202-15-91] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 07/07/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND There has been increasing interest recently in the plasticity of mesenchymal stem cells (MSCs) and their potential to differentiate into neural lineages. To unravel the roles and effects of different growth factors in the differentiation of MSCs into neural lineages, we have differentiated MSCs into neural lineages using different combinations of growth factors. Based on previous studies of the roles of insulin-like growth factor 1 (IGF-1) in neural stem cell isolation in the laboratory, we hypothesized that IGF-1 can enhance proliferation and reduce apoptosis in neural progenitor-like cells (NPCs) during differentiation of MSCs into NCPs.We induced MSCs differentiation under four different combinations of growth factors: (A) EGF + bFGF, (B) EGF + bFGF + IGF-1, (C) EGF + bFGF + LIF, (D) EGF + bFGF + BDNF, and (E) without growth factors, as a negative control. The neurospheres formed were characterized by immunofluorescence staining against nestin, and the expression was measured by flow cytometry. Cell proliferation and apoptosis were also studied by MTS and Annexin V assay, respectively, at three different time intervals (24 hr, 3 days, and 5 days). The neurospheres formed in the four groups were then terminally differentiated into neuron and glial cells. RESULTS The four derived NPCs showed a significantly higher expression of nestin than was shown by the negative control. Among the groups treated with growth factors, NPCs treated with IGF-1 showed the highest expression of nestin. Furthermore, NPCs derived using IGF-1 exhibited the highest cell proliferation and cell survival among the treated groups. The NPCs derived from IGF-1 treatment also resulted in a better yield after the terminal differentiation into neurons and glial cells than that of the other treated groups. CONCLUSIONS Our results suggested that IGF-1 has a crucial role in the differentiation of MSCs into neuronal lineage by enhancing the proliferation and reducing the apoptosis in the NPCs. This information will be beneficial in the long run for improving both cell-based and cell-free therapy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Tee Jong Huat
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Jalan Hospital Universiti Sains Malaysia, 16150 Kubang Kerian, Kota Bharu, Kelantan, Malaysia.
| | | | | | | | | | | |
Collapse
|
88
|
Im W, Lee ST, Chu K, Kim M, Roh JK. Stem Cells Transplantation and Huntington's Disease. Int J Stem Cells 2014; 2:102-8. [PMID: 24855528 DOI: 10.15283/ijsc.2009.2.2.102] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2008] [Indexed: 11/09/2022] Open
Abstract
Huntington's disease (HD) is a progressive and devastating neurodegenerative disorder that results in movement abnormalities, cognitive impairments, dementia, and affective disturbances. As no proven medical therapy for this genetic disease is currently available, symptoms mitigation is the primary treatment for HD. Stem cells can play an important role in cell therapy therapeutic strategies to replace dysfunctional or dying cells in HD. Here, we present a brief overview of the current state of stem cells therapy and of the results obtained in animal models of HD, and discuss neuro-protective approaches that utilize stem cells-derived paracrine factors.
Collapse
Affiliation(s)
- Wooseok Im
- Department of Neurology, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Soon-Tae Lee
- Department of Neurology, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea ; Program in Neuroscience, Neuroscience Research Institute of SNUMRC, Seoul National University, Seoul, Korea
| | - Kon Chu
- Department of Neurology, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea ; Program in Neuroscience, Neuroscience Research Institute of SNUMRC, Seoul National University, Seoul, Korea
| | - Manho Kim
- Department of Neurology, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea ; Program in Neuroscience, Neuroscience Research Institute of SNUMRC, Seoul National University, Seoul, Korea
| | - Jae-Kyu Roh
- Department of Neurology, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea ; Program in Neuroscience, Neuroscience Research Institute of SNUMRC, Seoul National University, Seoul, Korea
| |
Collapse
|
89
|
Palma JA, Kaufmann H. Novel therapeutic approaches in multiple system atrophy. Clin Auton Res 2014; 25:37-45. [PMID: 24928797 DOI: 10.1007/s10286-014-0249-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/23/2014] [Indexed: 01/12/2023]
Abstract
Multiple system atrophy (MSA) is a sporadic, adult onset, relentlessly progressive neurodegenerative disease characterized by autonomic abnormalities associated with parkinsonism, cerebellar dysfunction, pyramidal signs, or combinations thereof. Treatments that can halt or reverse the progression of MSA have not yet been identified. MSA is neuropathologically defined by the presence of α-synuclein-containing inclusions, particularly in the cytoplasm of oligodendrocytes (glial cytoplasmic inclusions, GCIs), which are associated with neurodegeneration. The mechanisms by which oligodendrocytic α-synuclein inclusions cause neuronal death in MSA are not completely understood. The MSA neurodegenerative process likely comprises cell-to-cell transmission of α-synuclein in a prion-like manner, α-synuclein aggregation, increased oxidative stress, abnormal expression of tubulin proteins, decreased expression of neurotrophic factors, excitotoxicity and microglial activation, and neuroinflammation. In an attempt to block each of these pathogenic mechanisms, several pharmacologic approaches have been tried and shown to exert neuroprotective effects in transgenic mouse or cellular models of MSA. These include sertraline, paroxetine, and lithium, which hamper arrival of α-synuclein to oligodendroglia; rifampicin, lithium, and non-steroidal anti-inflammatory drugs, which inhibit α-synuclein aggregation in oligodendrocytes; riluzole, rasagiline, fluoxetine and mesenchymal stem cells, which exert neuroprotective actions; and minocycline and intravenous immunoglobulins, which reduce neuroinflammation and microglial activation. These and other potential therapeutic strategies for MSA are summarized in this review.
Collapse
Affiliation(s)
- Jose-Alberto Palma
- Department of Neurology, Dysautonomia Center, New York University School of Medicine, 530 First Av, Suite 9Q, New York, NY, 10016, USA
| | | |
Collapse
|
90
|
Kassis I, Vaknin-Dembinsky A, Bulte J, Karussis D. Effects of supermagnetic iron oxide labeling on the major functional properties of human mesenchymal stem cells from multiple sclerosis patients. Int J Stem Cells 2014; 3:144-53. [PMID: 24855552 DOI: 10.15283/ijsc.2010.3.2.144] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2010] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND OBJECTIVES In the last few years, treatment protocols using mesenchymal stem cells (MSC) in various experimental models and human diseases have been investigated. MSCs are on the focus of stem cell research, since they are considered as a type of adult stem cells with low toxicity and acceptable side effects profile and they can be administered autologously. In addition several studies have revealed significant immunomodulatory properties of MSCs and a potential for transdifferentiation, including neural differentiation, both in vivo and in vitro. Magnetic resonance imaging (MRI) is a non-invasive technique that can be used to track labeled cells and evaluate their migration ability in various clinical settings. METHODS AND RESULTS In this study we investigated whether such labeling of MSCs with the commercially used para-magnetic material, Feridex, has any negative effect on the above mentioned functional properties of MSCs. We labeled human mesenchymal stem cells (hMSC) with poly-L-lysine coated Feridex(®) and evaluated their cellular differentiation and immunomodulatory properties, in vitro. In comparison with unlabeled cells, labeled hMSC exhibited normal adipogenic and osteogenic differentiation, but decreased chondrogenic differentiation. Regarding neural differentiation, labeled and unlabeled cells were similar in their ability to express neural-like and glial like surface proteins. Finally, both labeled and unlabeled MSCs exhibited a dose-dependent, significant blocking effect on the proliferation of healthy donors lymphocytes following mitogen stimulation. CONCLUSIONS These findings indicate that labeling with Feridex does not affect the immunomodulatory, nor the neural transdifferentiation potential of MScs and therefore, Feridex may be used for the tracking of this type of stem cells in clinical applications, without compromising their major functional properties.
Collapse
Affiliation(s)
- Ibrahim Kassis
- Department of Neurology, Laboratory of Neuroimmunology and Agnes Ginges Center for Neurogenetics and Multiple Sclerosis Center, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Adi Vaknin-Dembinsky
- Department of Neurology, Laboratory of Neuroimmunology and Agnes Ginges Center for Neurogenetics and Multiple Sclerosis Center, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Jeff Bulte
- National Institute of Sciences, Bethesda, USA
| | - Dimitrios Karussis
- Department of Neurology, Laboratory of Neuroimmunology and Agnes Ginges Center for Neurogenetics and Multiple Sclerosis Center, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
91
|
Appaix F, Nissou MF, Sanden BVD, Dreyfus M, Berger F, Issartel JP, Wion D. Brain mesenchymal stem cells: The other stem cells of the brain? World J Stem Cells 2014; 6:134-143. [PMID: 24772240 PMCID: PMC3999771 DOI: 10.4252/wjsc.v6.i2.134] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 02/20/2014] [Indexed: 02/06/2023] Open
Abstract
Multipotent mesenchymal stromal cells (MSC), have the potential to differentiate into cells of the mesenchymal lineage and have non-progenitor functions including immunomodulation. The demonstration that MSCs are perivascular cells found in almost all adult tissues raises fascinating perspectives on their role in tissue maintenance and repair. However, some controversies about the physiological role of the perivascular MSCs residing outside the bone marrow and on their therapeutic potential in regenerative medicine exist. In brain, perivascular MSCs like pericytes and adventitial cells, could constitute another stem cell population distinct to the neural stem cell pool. The demonstration of the neuronal potential of MSCs requires stringent criteria including morphological changes, the demonstration of neural biomarkers expression, electrophysiological recordings, and the absence of cell fusion. The recent finding that brain cancer stem cells can transdifferentiate into pericytes is another facet of the plasticity of these cells. It suggests that the perversion of the stem cell potential of pericytes might play an even unsuspected role in cancer formation and tumor progression.
Collapse
|
92
|
Derivation of human decidua-like cells from amnion and menstrual blood. Sci Rep 2014; 4:4599. [PMID: 24710473 PMCID: PMC3978502 DOI: 10.1038/srep04599] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 03/10/2014] [Indexed: 12/20/2022] Open
Abstract
We induced differentiation of human amnion-derived mesenchymal stem cells (AMCs) and menstrual blood-derived mesenchymal stem cells (MMCs) into endometrial stroma-like cells, which could be useful for cell therapy to support embryo implantation. Interestingly, the expression patterns of surface markers were similar among AMCs, MMCs, and endometrial stromal cells. In addition, whereas treatment with estrogen and progesterone was not very effective for decidualizing AMCs and MMCs, treatment with 8-Br-cAMP prompted remarkable morphological changes in these cells as well as increased expression of decidualization markers (prolactin and insulin-like growth factor binding protein-1) and attenuated expression of surface markers unique to mesenchymal stem cells. These results demonstrated that bone marrow-derived stem cells, which are considered a potential source of endometrial progenitor cells, as well as AMCs and MMCs show in vitro decidualization potential, which is characteristic of endometrial stromal cells.
Collapse
|
93
|
Buttery PC, Barker RA. Treating Parkinson's disease in the 21st century: can stem cell transplantation compete? J Comp Neurol 2014; 522:2802-16. [PMID: 24610597 PMCID: PMC4233918 DOI: 10.1002/cne.23577] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 08/07/2013] [Accepted: 10/08/2013] [Indexed: 12/25/2022]
Abstract
The characteristic and selective degeneration of a unique population of cells—the nigrostriatal dopamine (DA) neurons—that occurs in Parkinson’s disease (PD) has made the condition an iconic target for cell replacement therapies. Indeed, transplantation of fetal ventral mesencephalic cells into the DA-deficient striatum was first trialled nearly 30 years ago, at a time when other treatments for the disease were less well developed. Over recent decades standard treatments for PD have advanced, and newer biological therapies are now emerging. In the 21st century, stem cell technology will have to compete alongside other sophisticated treatments, including deep brain stimulation and gene therapies. In this review we examine how stem cell–based transplantation therapies compare with these novel and emerging treatments in the management of this common condition. J. Comp. Neurol. 522:2802–2816, 2014.
Collapse
Affiliation(s)
- Philip C Buttery
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
94
|
Ye ZL, Hou XX, Chen RL, Ding J, Zheng GH, Chen MZ, Tian C. Effects of methylthiouracil on the proliferation and apoptosis of rat bone marrow stromal cells. Exp Ther Med 2014; 7:1738-1744. [PMID: 24926377 PMCID: PMC4043562 DOI: 10.3892/etm.2014.1612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 02/21/2014] [Indexed: 12/25/2022] Open
Abstract
The aim of the present study was to investigate the effects of methylthiouracil (MTU) on the proliferation and apoptosis of rat bone marrow stromal cells (BMSCs). Rat BMSCs were isolated, cultured in vitro and treated with various concentrations of MTU. Cell growth curves were determined using the Cell Counting Kit-8 method and the effect of MTU on BMSCs in a logarithmic growth phase was observed. BMSC apoptosis following MTU treatment was detected by flow cytometry. The experimental results demonstrated that the proliferation-inhibition effect was gradually enhanced with increasing MTU concentrations and the extension of treatment time. Statistically significant differences were observed between the treatment and the control groups (P<0.05). In addition, the BMSC apoptosis rate gradually increased with increasing drug concentrations and treatment time extension; statistically significant differences were observed between the treatment and the control groups (P<0.05). Therefore, the results of the present study demonstrated that MTU inhibited the proliferation of BMSCs and promoted apoptosis, indicating the cytotoxic effects of MTU on BMSCs.
Collapse
Affiliation(s)
- Zhong-Lu Ye
- Department of Pediatrics, Affiliated Hospital and First Clinical College, Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | - Xiao-Xiao Hou
- Department of Pediatrics, Affiliated Hospital and First Clinical College, Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | - Re-Ling Chen
- Department of Pediatrics, Affiliated Hospital and First Clinical College, Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | - Jie Ding
- Department of Pediatrics, Affiliated Hospital and First Clinical College, Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | - Guo-Hua Zheng
- Department of Pediatrics, Affiliated Hospital and First Clinical College, Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | - Ming-Zhen Chen
- Department of Pediatrics, Affiliated Hospital and First Clinical College, Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | - Chuan Tian
- Department of Pediatrics, Affiliated Hospital and First Clinical College, Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| |
Collapse
|
95
|
Cell surface proteomics analysis indicates a neural lineage bias of rat bone marrow mesenchymal stromal cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:479269. [PMID: 24551847 PMCID: PMC3914342 DOI: 10.1155/2014/479269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 12/08/2013] [Accepted: 12/20/2013] [Indexed: 11/17/2022]
Abstract
Mesenchymal stromal cells (MSCs) are one of the most intensively studied stem cell types with application aims. However, the molecular characterisation and the relationship between the molecular characterisation and functional properties of MSCs are largely unknown. In this study, we purified the surface proteins from rat bone marrow MSCs (rBMMSCs) and characterised their surface proteome by LC-MS/MS. Moreover, we comparatively analysed the data from this study with the surface proteomics data of mouse and human embryonic stem (ES) cells and human mesenchymal stromal cells (hMSCs). The data showed that, in contrast to ES cells and human mesenchymal stromal cells, rBMMSCs possessed a surface proteomics pattern biased to neural and neural-endocrine lineages, indicating a neural/neural crest bias, and suggested a neural differentiation tendency of these cells. The different surface proteomics pattern between rBMMSCs and hMSCs also suggested that MSCs of different origin might possess a different lineage bias.
Collapse
|
96
|
Byun JS, Kwak BK, Kim JK, Jung J, Ha BC, Park S. Engraftment of human mesenchymal stem cells in a rat photothrombotic cerebral infarction model : comparison of intra-arterial and intravenous infusion using MRI and histological analysis. J Korean Neurosurg Soc 2013; 54:467-76. [PMID: 24527188 PMCID: PMC3921273 DOI: 10.3340/jkns.2013.54.6.467] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 07/17/2013] [Accepted: 12/12/2013] [Indexed: 01/01/2023] Open
Abstract
Objective This study aimed to evaluate the hypotheses that administration routes [intra-arterial (IA) vs. intravenous (IV)] affect the early stage migration of transplanted human bone marrow-derived mesenchymal stem cells (hBM-MSCs) in acute brain infarction. Methods Male Sprague-Dawley rats (n=40) were subjected to photothrombotic infarction. Three days after photothrombotic infarction, rats were randomly allocated to one of four experimental groups [IA group : n=12, IV group : n=12, superparamagnetic iron oxide (SPIO) group : n=8, control group : n=8]. All groups were subdivided into 1, 6, 24, and 48 hours groups according to time point of sacrifice. Magnetic resonance imaging (MRI) consisting of T2 weighted image (T2WI), T2* weighted image (T2*WI), susceptibility weighted image (SWI), and diffusion weighted image of rat brain were obtained prior to and at 1, 6, 24, and 48 hours post-implantation. After final MRI, rats were sacrificed and grafted cells were analyzed in brain and lung specimen using Prussian blue and immunohistochemical staining. Results Grafted cells appeared as dark signal intensity regions at the peri-lesional zone. In IA group, dark signals in peri-lesional zone were more prominent compared with IV group. SWI showed largest dark signal followed by T2*WI and T2WI in both IA and IV groups. On Prussian blue staining, IA administration showed substantially increased migration and a large number of transplanted hBM-MSCs in the target brain than IV administration. The Prussian blue-positive cells were not detected in SPIO and control groups. Conclusion In a rat photothrombotic model of ischemic stroke, selective IA administration of human mesenchymal stem cells is more effective than IV administration. MRI and histological analyses revealed the time course of cell migration, and the numbers and distribution of hBM-MSCs delivered into the brain.
Collapse
Affiliation(s)
- Jun Soo Byun
- Department of Radiology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Byung Kook Kwak
- Department of Radiology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Jae Kyun Kim
- Department of Radiology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Jisung Jung
- Department of Radiology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Bon Chul Ha
- Department of Radiology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Serah Park
- Department of Radiology, Chung-Ang University College of Medicine, Seoul, Korea
| |
Collapse
|
97
|
Deng X, Liang Y, Lu H, Yang Z, Liu R, Wang J, Song X, Long J, Li Y, Lei D, Feng Z. Co-transplantation of GDNF-overexpressing neural stem cells and fetal dopaminergic neurons mitigates motor symptoms in a rat model of Parkinson's disease. PLoS One 2013; 8:e80880. [PMID: 24312503 PMCID: PMC3849044 DOI: 10.1371/journal.pone.0080880] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 10/07/2013] [Indexed: 11/18/2022] Open
Abstract
Striatal transplantation of dopaminergic (DA) neurons or neural stem cells (NSCs) has been reported to improve the symptoms of Parkinson's disease (PD), but the low rate of cell survival, differentiation, and integration in the host brain limits the therapeutic efficacy. We investigated the therapeutic effects of intracranial co-transplantation of mesencephalic NSCs stably overexpressing human glial-derived neurotrophic factor (GDNF-mNSCs) together with fetal DA neurons in the 6-OHDA rat model of PD. Striatal injection of mNSCs labeled by the contrast enhancer superparamagnetic iron oxide (SPIO) resulted in a hypointense signal in the striatum on T2-weighted magnetic resonance images that lasted for at least 8 weeks post-injection, confirming the long-term survival of injected stem cells in vivo. Co-transplantation of GDNF-mNSCs with fetal DA neurons significantly reduced apomorphine-induced rotation, a behavioral endophenotype of PD, compared to sham-treated controls, rats injected with mNSCs expressing empty vector (control mNSCs) plus fetal DA neurons, or rats injected separately with either control mNSCs, GDNF-mNSCs, or fetal DA neurons. In addition, survival and differentiation of mNSCs into DA neurons was significantly greater following co-transplantation of GDNF-mNSCs plus fetal DA neurons compared to the other treatment groups as indicated by the greater number of cell expressing both the mNSCs lineage tracer enhanced green fluorescent protein (eGFP) and the DA neuron marker tyrosine hydroxylase. The success of cell-based therapies for PD may be greatly improved by co-transplantation of fetal DA neurons with mNSCs genetically modified to overexpress trophic factors such as GDNF that support differentiation into DA cells and their survival in vivo.
Collapse
Affiliation(s)
- Xingli Deng
- Department of Neurosurgery, 1st Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yuanxin Liang
- Cancer Center, Albert Einstein College of Medicine, New York, United States of America
| | - Hua Lu
- Department of Neurosurgery, 1st Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhiyong Yang
- Department of Neurosurgery, 1st Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ru’en Liu
- Department of Neurosurgery; China-Japan Friendship Hospital, Beijing, China
- * E-mail:
| | - Jinkun Wang
- Department of Neurosurgery, 1st Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xiaobin Song
- Department of Neurosurgery, 1st Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jiang Long
- Department of Neurosurgery, 1st Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yu Li
- Department of Neurosurgery, 1st Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Deqiang Lei
- Department of Neurosurgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongtang Feng
- Department of Neurosurgery, 1st Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
98
|
Yao L, Bai H. Review: mesenchymal stem cells and corneal reconstruction. Mol Vis 2013; 19:2237-43. [PMID: 24227919 PMCID: PMC3820430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 11/05/2013] [Indexed: 11/26/2022] Open
Abstract
Corneal reconstruction is among the most effective methods for curing corneal injury due to various clinical disorders. Mesenchymal stem cells (MSCs) are a type of multipotent cells distributed in various tissues, which can be easily isolated and expanded in vitro. MSCs are self-renewable and have the potential to transdifferentiate into other type of cells under certain conditions. More recently, the modulating angiogenesis, anti-inflammatory, and immunomodulatory properties of MSCs have been confirmed in animal models. The potential roles of MSCs are valuable for corneal reconstruction. Thus, in this review, we summarized the current understanding of the possible roles of MSCs in corneal reconstruction.
Collapse
Affiliation(s)
- Lin Yao
- Qingdao Eye Hospital, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Haiqing Bai
- Department of Ophthalmology, Affiliated Hospital of Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
99
|
Fan L, Hu K, Ji K, Sun Q, Xiong J, Yang L, Liu H. Directed differentiation of aged human bone marrow multipotent stem cells effectively generates dopamine neurons. In Vitro Cell Dev Biol Anim 2013; 50:304-12. [PMID: 24163158 DOI: 10.1007/s11626-013-9701-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 09/27/2013] [Indexed: 12/11/2022]
Abstract
This study aimed to isolate aged human bone marrow multipotent stem cells (hAMSCs) with the potential for multilineage differentiation and to directly induce the cells to generate dopamine neurons, which could be used for Parkinson's disease therapy. We compared different culture methods for stem cells from aged human bone marrow and identified hAMSCs that could proliferate in vitro for at least 60 doubling times. Using RT-PCR and IHC, we found that these hAMSCs expressed pluripotent genes, such as Oct4, Sox2, and Nanog. In vitro studies also proved that hAMSCs could differentiate into three germ layer-derived cell types, such as osteogenic, chondrogenic, adipogenic, and hepatocyte-liked cells. After induction for more than 20 d in vitro with retinoic acid, basic fibroblast growth factor, and sonic hedgehog using a two-step method and withdrawal of serum, hAMSCs could differentiate into dopamine neurons at the positive ratio of 70%, which showed DA secretion function upon depolarization. In conclusion, we suggest that hAMSCs can be used as cell sources to develop medical treatments to prevent the progression of Parkinson's disease, especially in aged persons.
Collapse
Affiliation(s)
- Lixing Fan
- Research Center of Developmental Biology, Second Military Medical University, XiangYin road 800, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
100
|
|