51
|
Biswas P, Dai Y, Stuehr DJ. Indoleamine dioxygenase and tryptophan dioxygenase activities are regulated through GAPDH- and Hsp90-dependent control of their heme levels. Free Radic Biol Med 2022; 180:179-190. [PMID: 35051612 PMCID: PMC11389873 DOI: 10.1016/j.freeradbiomed.2022.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/08/2021] [Accepted: 01/11/2022] [Indexed: 01/15/2023]
Abstract
Indoleamine-2, 3-dioxygenase (IDO1) and Tryptophan-2, 3-dioxygense (TDO) are heme-containing dioxygenases that catalyze the conversion of tryptophan to N-formyl-kynurenine and thus enable generation of l-kynurenine and related metabolites that govern the immune response and broadly impact human biology. Given that TDO and IDO1 activities are directly proportional to their heme contents, it is important to understand their heme delivery and insertion processes. Early studies established that TDO and IDO1 heme levels are sub-saturating in vivo and subject to change but did not identify the cellular mechanisms that provide their heme or enable dynamic changes in their heme contents. We investigated the potential involvement of GAPDH and chaperone Hsp90, based on our previous studies linking these proteins to intracellular heme allocation. We studied heme delivery and insertion into IDO1 and TDO expressed in both normal and heme-deficient HEK293T cells and into IDO1 naturally expressed in HeLa cells in response to IFN-γ, and also investigated the interactions of TDO and IDO1 with GAPDH and Hsp90 in cells and among their purified forms. We found that GAPDH delivered both mitochondrially-generated and exogenous heme to apo-IDO1 and apo-TDO in cells, potentially through a direct interaction with either enzyme. In contrast, we found Hsp90 interacted with apo-IDO1 but not with apo-TDO, and was only needed to drive heme insertion into apo-IDO1. By uncovering the cellular processes that allocate heme to IDO1 and TDO, our study provides new insight on how their activities and l-kynurenine production may be controlled in health and disease.
Collapse
Affiliation(s)
- Pranjal Biswas
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, USA
| | - Yue Dai
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, USA
| | - Dennis J Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
52
|
Wilczyński JR, Nowak M. Cancer Immunoediting: Elimination, Equilibrium, and Immune Escape in Solid Tumors. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 113:1-57. [PMID: 35165859 DOI: 10.1007/978-3-030-91311-3_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Emphasizing the dynamic processes between cancer and host immune system, the initially discovered concept of cancer immunosurveillance has been replaced by the current concept of cancer immunoediting consisting of three phases: elimination, equilibrium, and escape. Solid tumors composed of both cancer and host stromal cells are an example how the three phases of cancer immunoediting functionally evolve and how tumor shaped by the host immune system gets finally resistant phenotype. The elimination, equilibrium, and escape have been described in this chapter in details, including the role of immune surveillance, cancer dormancy, disruption of the antigen-presenting machinery, tumor-infiltrating immune cells, resistance to apoptosis, as well as the function of tumor stroma, microvesicles, exosomes, and inflammation.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecologic Surgery and Gynecologic Oncology, Medical University of Lodz, Lodz, Poland.
| | - Marek Nowak
- Department of Operative Gynecology and Gynecologic Oncology, Polish Mother's Memorial Hospital-Research Institute, Lodz, Poland
- Department of Operative and Endoscopic Gynecology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
53
|
Peyraud F, Guegan JP, Bodet D, Cousin S, Bessede A, Italiano A. Targeting Tryptophan Catabolism in Cancer Immunotherapy Era: Challenges and Perspectives. Front Immunol 2022; 13:807271. [PMID: 35173722 PMCID: PMC8841724 DOI: 10.3389/fimmu.2022.807271] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/12/2022] [Indexed: 12/15/2022] Open
Abstract
Metabolism of tryptophan (Trp), an essential amino acid, represent a major metabolic pathway that both promotes tumor cell intrinsic malignant properties as well as restricts antitumour immunity, thus emerging as a drug development target for cancer immunotherapy. Three cytosolic enzymes, namely indoleamine 2,3-dioxygenase 1 (IDO1), IDO2 and tryptophan 2,3-dioxygenase (TDO2), catalyzes the first-rate limiting step of the degradation of Trp to kynurenine (Kyn) and modulates immunity toward immunosuppression mainly through the aryl hydrocarbon receptor (AhR) activation in numerous types of cancer. By restoring antitumor immune responses and synergizing with other immunotherapies, the encouraging preclinical data of IDO1 inhibitors has dramatically failed to translate into clinical success when combined with immune checkpoints inhibitors, reigniting the debate of combinatorial approach. In this review, we i) provide comprehensive evidences on immunomodulatory role of the Trp catabolism metabolites that highlight this pathway as relevant target in immuno-oncology, ii)ii) discuss underwhelming results from clinical trials investigating efficacy of IDO1 inhibitors and underlying mechanisms that might have contributed to this failure, and finally, iii) discuss the current state-of-art surrounding alternative approaches of innovative antitumor immunotherapies that target molecules of Trp catabolism as well as challenges and perspectives in the era of immunotherapy.
Collapse
Affiliation(s)
- Florent Peyraud
- Department of Medical Oncology, Institut Bergonié, Bordeaux, France
- Early Phase Trials and Sarcoma Unit, Institut Bergonié, Bordeaux, France
- University of Bordeaux, Bordeaux, France
| | | | | | - Sophie Cousin
- Department of Medical Oncology, Institut Bergonié, Bordeaux, France
- Early Phase Trials and Sarcoma Unit, Institut Bergonié, Bordeaux, France
| | | | - Antoine Italiano
- Department of Medical Oncology, Institut Bergonié, Bordeaux, France
- Early Phase Trials and Sarcoma Unit, Institut Bergonié, Bordeaux, France
- University of Bordeaux, Bordeaux, France
| |
Collapse
|
54
|
Esmaeili SA, Hajavi J. The role of indoleamine 2,3-dioxygenase in allergic disorders. Mol Biol Rep 2022; 49:3297-3306. [PMID: 35028850 DOI: 10.1007/s11033-021-07067-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/08/2021] [Indexed: 01/08/2023]
Abstract
The amino acid tryptophan (TRP) is critical for the expansion and survival of cells. During the past few years, the manipulation of tryptophan metabolism via indoleamine 2,3 dioxygenase (IDO) has been presented as a significant regulatory mechanism for tolerance stimulation and the regulation of immune responses. Currently, a considerable number of studies suggest that the role of IDO in T helper 2 (Th2) cell regulation may be different from that of T helper 1 (Th1) immune responses. IDO acts as an immunosuppressive tolerogenic enzyme to decrease allergic responses through the stimulation of the Kynurenine-IDO pathway, the subsequent reduction of TRP, and the promotion of Kynurenine products. Kynurenine products motivate T-cell apoptosis and anergy, the propagation of Treg and Th17 cells, and the aberration of the Th1/Th2 response. We suggest that the IDO-kynurenine pathway can function as a negative reaction round for Th1 cells; however, it may play a different role in upregulating principal Th2 immune responses. In this review, we intend to integrate novel results on this pathway in correlation with allergic diseases.
Collapse
Affiliation(s)
- Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jafar Hajavi
- Department of Basic Sciences, Faculty of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Science, 9691793718, Gonabad, Iran.
| |
Collapse
|
55
|
Song X, Si Q, Qi R, Liu W, Li M, Guo M, Wei L, Yao Z. Indoleamine 2,3-Dioxygenase 1: A Promising Therapeutic Target in Malignant Tumor. Front Immunol 2022; 12:800630. [PMID: 35003126 PMCID: PMC8733291 DOI: 10.3389/fimmu.2021.800630] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Tumorigenesis is a complex multifactorial and multistep process in which tumors can utilize a diverse repertoire of immunosuppressive mechanisms to evade host immune attacks. The degradation of tryptophan into immunosuppressive kynurenine is considered an important immunosuppressive mechanism in the tumor microenvironment. There are three enzymes, namely, tryptophan 2,3-dioxygenase (TDO), indoleamine 2,3-dioxygenase 1 (IDO1), and indoleamine 2,3-dioxygenase 2 (IDO2), involved in the metabolism of tryptophan. IDO1 has a wider distribution and higher activity in catalyzing tryptophan than the other two; therefore, it has been studied most extensively. IDO1 is a cytosolic monomeric, heme-containing enzyme, which is now considered an authentic immune regulator and represents one of the promising drug targets for tumor immunotherapy. Collectively, this review highlights the regulation of IDO1 gene expression and the ambivalent mechanisms of IDO1 on the antitumoral immune response. Further, new therapeutic targets via the regulation of IDO1 are discussed. A comprehensive analysis of the expression and biological function of IDO1 can help us to understand the therapeutic strategies of the inhibitors targeting IDO1 in malignant tumors.
Collapse
Affiliation(s)
- Xiaotian Song
- Department of Immunology, Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| | - Qianqian Si
- Department of Immunology, Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| | - Rui Qi
- Department of Immunology, Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| | - Weidan Liu
- Department of Clinical Laboratory, The People's Hospital, Pingxiang County, Xingtai, China
| | - Miao Li
- Department of Immunology, Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| | - Mengyue Guo
- Department of Immunology, Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| | - Lin Wei
- Department of Immunology, Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| | - Zhiyan Yao
- Department of Immunology, Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| |
Collapse
|
56
|
Sudar-Milovanovic E, Gluvic Z, Obradovic M, Zaric B, Isenovic ER. Tryptophan Metabolism in Atherosclerosis and Diabetes. Curr Med Chem 2022; 29:99-113. [PMID: 34269660 DOI: 10.2174/0929867328666210714153649] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 02/08/2023]
Abstract
The essential amino acid tryptophan (Trp) undergoes catabolism through several pathways, producing biologically active metabolites that significantly impact physiological processes. The metabolic pathway responsible for the majority of Trp catabolism is the kynurenine synthesis pathway (KP). Serotonin and melatonin are among the most essential Trp pathways degradation products. It has emerged that a strong relationship exists between alterations in Trp metabolism and the onset and progression of atherosclerosis and diabetes. Atherosclerosis is a chronic inflammatory disease of the small and medium arteries wall caused by maladaptive local immune responses, which underpins several cardiovascular diseases (CVD). Systemic low-grade immune-mediated inflammation is implicated in atherosclerosis where pro-inflammatory cytokines, such as interferon-γ (IFN-γ), play a significant role. IFN-γ upregulates the enzyme indoleamine 2,3-dioxygenase (IDO), decreasing serum levels of the Trp and increasing metabolite levels of kynurenine. Increased IDO expression and activity could accelerate the atherosclerosis process. Therefore, activated IDO inhibition could offer possible treatment options regarding atherosclerosis management. Diabetes is a chronic metabolic disease characterized by hyperglycemia that, over time, leads to severe damage to the heart, blood vessels, eyes, kidneys, and peripheral nerves. Trp serum levels and lower activity of IDO were higher in future type 2 diabetes (T2DM) patients. This article reviews recent findings on the link between mammalian Trp metabolism and its role in atherosclerosis and diabetes and outlines the intervention strategies.
Collapse
Affiliation(s)
- Emina Sudar-Milovanovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade,Serbia
| | - Zoran Gluvic
- Clinic for Internal Medicine, Department of Endocrinology and Diabetes, Zemun Clinical Hospital, School of Medicine, University of Belgrade, Belgrade,Serbia
| | - Milan Obradovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade,Serbia
| | - Bozidarka Zaric
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade,Serbia
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade,Serbia
| |
Collapse
|
57
|
Therapeutic Potential of Thymoquinone in Triple-Negative Breast Cancer Prevention and Progression through the Modulation of the Tumor Microenvironment. Nutrients 2021; 14:nu14010079. [PMID: 35010954 PMCID: PMC8746460 DOI: 10.3390/nu14010079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 02/07/2023] Open
Abstract
To date, the tumor microenvironment (TME) has gained considerable attention in various areas of cancer research due to its role in driving a loss of immune surveillance and enabling rapid advanced tumor development and progression. The TME plays an integral role in driving advanced aggressive breast cancers, including triple-negative breast cancer (TNBC), a pivotal mediator for tumor cells to communicate with the surrounding cells via lymphatic and circulatory systems. Furthermore, the TME plays a significant role in all steps and stages of carcinogenesis by promoting and stimulating uncontrolled cell proliferation and protecting tumor cells from the immune system. Various cellular components of the TME work together to drive cancer processes, some of which include tumor-associated adipocytes, fibroblasts, macrophages, and neutrophils which sustain perpetual amplification and release of pro-inflammatory molecules such as cytokines. Thymoquinone (TQ), a natural chemical component from black cumin seed, is widely used traditionally and now in clinical trials for the treatment/prevention of multiple types of cancer, showing a potential to mitigate components of TME at various stages by various pathways. In this review, we focus on the role of TME in TNBC cancer progression and the effect of TQ on the TME, emphasizing their anticipated role in the prevention and treatment of TNBC. It was concluded from this review that the multiple components of the TME serve as a critical part of TNBC tumor promotion and stimulation of uncontrolled cell proliferation. Meanwhile, TQ could be a crucial compound in the prevention and progression of TNBC therapy through the modulation of the TME.
Collapse
|
58
|
Novel Biomarkers and Druggable Targets in Advanced Melanoma. Cancers (Basel) 2021; 14:cancers14010081. [PMID: 35008245 PMCID: PMC8750474 DOI: 10.3390/cancers14010081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/13/2021] [Accepted: 12/21/2021] [Indexed: 01/05/2023] Open
Abstract
Immunotherapy with Ipilimumab or antibodies against programmed death (ligand) 1 (anti-PD1/PDL1), targeted therapies with BRAF-inhibitors (anti-BRAF) and their combinations significantly changed melanoma treatment options in both primary, adjuvant and metastatic setting, allowing for a cure, or at least long-term survival, in most patients. However, up to 50% of those with advance or metastatic disease still have no significant benefit from such innovative therapies, and clinicians are not able to discriminate in advance neither who is going to respond and for how long nor who is going to develop collateral effects and which ones. However, druggable targets, as well as affordable and reliable biomarkers are needed to personalize resources at a single-patient level. In this manuscript, different molecules, genes, cells, pathways and even combinatorial algorithms or scores are included in four biomarker chapters (molecular, immunological, peripheral and gut microbiota) and reviewed in order to evaluate their role in indicating a patient’s possible response to treatment or development of toxicities.
Collapse
|
59
|
Takamori S, Ishikawa S, Suzuki J, Oizumi H, Uchida T, Ueda S, Edamatsu K, Iino M, Sugimoto M. Differential diagnosis of lung cancer and benign lung lesion using salivary metabolites: A preliminary study. Thorac Cancer 2021; 13:460-465. [PMID: 34918488 PMCID: PMC8807259 DOI: 10.1111/1759-7714.14282] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/23/2022] Open
Abstract
Background Saliva is often used as a biomarker for the diagnosis of some oral and systematic diseases, owing to the non‐invasive attribute of the fluid. In this study, we aimed to identify salivary biomarkers for distinguishing lung cancer (LC) from benign lung lesion (BLL). Materials and Methods Unstimulated saliva samples were collected from 41 patients with LC and 21 with BLL. Salivary metabolites were comprehensively analyzed using capillary electrophoresis mass spectrometry. To differentiate between patients with LCs and BLLs, the discriminatory ability of each biomarker was assessed. Furthermore, a multiple logistic regression (MLR) model was developed for evaluating discriminatory ability of each salivary metabolite. Results The profiles of 10 salivary metabolites were remarkably different between the LC and BLL samples. Among them, the concentration of salivary tryptophan was significantly lower in the samples from patients with LC than in those from patients with BLL, and the area under the curve (AUC) for discriminating patients with LC from those with BLL was 0.663 (95% confidence interval [CI] = 0.516–0.810, p = 0.036). Furthermore, from the MLR model developed using these metabolites, diethanolamine, cytosine, lysine, and tyrosine, were selected using the back‐selection regression method. The MLR model based on these four metabolites had a high discriminatory ability for patients with LC and those with BLL (AUC = 0.729, 95% CI = 0.598–0.861, p = 0.003). Conclusion The four salivary metabolites can serve as potential non‐invasive biomarkers for distinguishing LC from BLL.
Collapse
Affiliation(s)
- Satoshi Takamori
- Department of Surgery II, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Shigeo Ishikawa
- Department of Dentistry, Oral and Maxillofacial Plastic and Reconstructive Surgery, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Jun Suzuki
- Department of Surgery II, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Hiroyuki Oizumi
- Department of Surgery II, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Tetsuro Uchida
- Department of Surgery II, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Shohei Ueda
- Department of Dentistry, Oral and Maxillofacial Plastic and Reconstructive Surgery, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Kaoru Edamatsu
- Department of Dentistry, Oral and Maxillofacial Plastic and Reconstructive Surgery, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Mitsuyoshi Iino
- Department of Dentistry, Oral and Maxillofacial Plastic and Reconstructive Surgery, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Masahiro Sugimoto
- Health Promotion and Pre-Emptive Medicine, Research and Development Center for Minimally Invasive Therapies, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
60
|
Hernández A, Domènech M, Muñoz-Mármol AM, Carrato C, Balana C. Glioblastoma: Relationship between Metabolism and Immunosuppressive Microenvironment. Cells 2021; 10:cells10123529. [PMID: 34944036 PMCID: PMC8700075 DOI: 10.3390/cells10123529] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive brain tumor in adults and is characterized by an immunosuppressive microenvironment. Different factors shaping this tumor microenvironment (TME) regulate tumor initiation, progression, and treatment response. Genetic alterations and metabolism pathways are two main elements that influence tumor immune cells and TME. In this manuscript, we review how both factors can contribute to an immunosuppressive state and overview the strategies being tested.
Collapse
Affiliation(s)
- Ainhoa Hernández
- B·ARGO (Badalona Applied Research Group of Oncology) Medical Oncology Department, Catalan Institute of Oncology Badalona, 08916 Badalona, Spain; (A.H.); (M.D.)
| | - Marta Domènech
- B·ARGO (Badalona Applied Research Group of Oncology) Medical Oncology Department, Catalan Institute of Oncology Badalona, 08916 Badalona, Spain; (A.H.); (M.D.)
| | - Ana M. Muñoz-Mármol
- Pathology Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain; (A.M.M.-M.); (C.C.)
| | - Cristina Carrato
- Pathology Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain; (A.M.M.-M.); (C.C.)
| | - Carmen Balana
- B·ARGO (Badalona Applied Research Group of Oncology) Medical Oncology Department, Catalan Institute of Oncology Badalona, 08916 Badalona, Spain; (A.H.); (M.D.)
- Correspondence: ; Tel.: +34-4978925
| |
Collapse
|
61
|
Plasmacytoid dendritic cells recruited by HIF-1α/eADO/ADORA1 signaling induce immunosuppression in hepatocellular carcinoma. Cancer Lett 2021; 522:80-92. [PMID: 34536555 DOI: 10.1016/j.canlet.2021.09.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 12/28/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) play immunosuppressive roles in the tumor microenvironment (TME). However, the molecular mechanisms underlying the recruitment and dysfunction of pDCs in the TME remain largely elusive, especially in hepatocellular carcinoma (HCC). In this study, we observed the accumulation of pDCs in the blood, tumor tissue, and ascitic fluid of HCC patients. A high density of tumor-infiltrating pDCs was correlated with poor prognosis in patients with HCC. Hypoxia-induced extracellular adenosine (eADO) significantly enhanced pDC recruitment into tumors via the adenosine A1 receptor (ADORA1). Mechanistically, hypoxia-inducible factor 1-alpha (HIF-1α) transcriptionally upregulated the expression of the ectonucleotidases CD39 and CD73 in HCC cells, both of which are essential for the generation of eADO. Moreover, eADO-stimulated pDCs promoted the induction of regulatory T cells and suppressed proliferation and cytotoxicity of CD8+ T cells. Depletion of pDCs using a monoclonal antibody or an ADORA1 antagonist significantly improved antitumor immunity and suppressed HCC growth in the immunocompetent HCC mouse model. Thus, targeting pDC recruitment may serve as a potential adjuvant strategy for immunotherapies in HCC.
Collapse
|
62
|
Takasu C, Yamashita S, Morine Y, Yoshikawa K, Tokunaga T, Nishi M, Kashihara H, Yoshimoto T, Shimada M. The role of the immunoescape in colorectal cancer liver metastasis. PLoS One 2021; 16:e0259940. [PMID: 34797860 PMCID: PMC8604373 DOI: 10.1371/journal.pone.0259940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/29/2021] [Indexed: 11/23/2022] Open
Abstract
The expression of programmed death 1 (PD-1) and programmed death-ligand 1 (PD-L1) indicate the efficacy of anti-PD-1/PD-L1 therapy in colorectal cancer (CRC), but are less useful for monitoring the efficacy of therapy of CRC liver metastasis (CRLM). This study investigated the effects of immune molecules on the prognosis of CRLM. We enrolled 71 patients with CRLM who underwent curative resection for CRC. We used immunohistochemistry to analyze the expression of PD-1, PD-L1, indoleamine-pyrrole 2,3-dioxygenase (IDO), and CD163 (a marker of tumor-associated macrophages [TAMs]) in metastatic tumors. The immune molecules PD-1, PD-L1, IDO, and TAMs were expressed in 32.3%, 47.8%, 45.0%, and 47.9% of metastatic CRC samples, respectively. The 5-year overall survival rates associated with immune molecule-positive groups were significantly better than in the negative groups (PD-1: 87.7% vs 53.2%, p = 0.023; PD-L1: 82.4% vs 42.3%, p = 0.007; IDO: 80.7% vs 43.5%, p = 0.007; TAMs: 82.6% vs 48.0%, p = 0.005). Multivariate analysis revealed PD-1 expression (p = 0.032, hazard ratio: 0.19), IDO expression (p = 0.049, hazard ratio: 0.37), and tumor differentiation (p<0.001, hazard ratio: 0.02) as independent prognostic indicators. PD-1 and TAMs in metastases were associated with less aggressive features such as smaller tumors. Furthermore, TAMs positively and significantly correlated with PD-1 expression (p = 0.011), PD-L1 expression (p = 0.024), and tended to correlate with IDO expression (p = 0.078). PD-1, PD-L1, IDO, and TAMs in CRLM were associated with less aggressive features and better prognosis of patients with CRC, indicating adaptive antitumor immunity vs immune tolerance. These molecules may therefore serve as prognostic markers for CRLM.
Collapse
MESH Headings
- Adaptive Immunity
- Adult
- Aged
- Aged, 80 and over
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- B7-H1 Antigen/genetics
- B7-H1 Antigen/metabolism
- Biomarkers, Tumor/genetics
- Colonic Neoplasms
- Colorectal Neoplasms/complications
- Colorectal Neoplasms/metabolism
- Diagnostic Tests, Routine
- Female
- Gene Expression/genetics
- Humans
- Immune Tolerance
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Japan
- Liver/cytology
- Liver Neoplasms
- Male
- Middle Aged
- Neoplasm Metastasis/immunology
- Neoplasm Metastasis/physiopathology
- Prognosis
- Programmed Cell Death 1 Receptor/genetics
- Programmed Cell Death 1 Receptor/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Rectal Neoplasms
- Transcriptome/genetics
- Tumor-Associated Macrophages/immunology
- Tumor-Associated Macrophages/metabolism
Collapse
Affiliation(s)
- Chie Takasu
- Department of Surgery, Tokushima University, Tokushima, Japan
- * E-mail:
| | - Shoko Yamashita
- Department of Surgery, Tokushima University, Tokushima, Japan
| | - Yuji Morine
- Department of Surgery, Tokushima University, Tokushima, Japan
| | - Kozo Yoshikawa
- Department of Surgery, Tokushima University, Tokushima, Japan
| | - Takuya Tokunaga
- Department of Surgery, Tokushima University, Tokushima, Japan
| | - Masaaki Nishi
- Department of Surgery, Tokushima University, Tokushima, Japan
| | | | | | - Mitsuo Shimada
- Department of Surgery, Tokushima University, Tokushima, Japan
| |
Collapse
|
63
|
Blobner J, Kilian M, Tan CL, Aslan K, Sanghvi K, Meyer J, Fischer M, Jähne K, Breckwoldt MO, Sahm F, von Deimling A, Bendszus M, Wick W, Platten M, Green E, Bunse L. Comparative evaluation of T-cell receptors in experimental glioma-draining lymph nodes. Neurooncol Adv 2021; 3:vdab147. [PMID: 34738084 PMCID: PMC8562732 DOI: 10.1093/noajnl/vdab147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background Glioblastomas, the most common primary malignant brain tumors, are considered immunologically cold malignancies due to growth in an immune sanctuary site. While peptide vaccines have shown to generate intra-tumoral antigen-specific T cells, the identification of these tumor-specific T cells is challenging and requires detailed analyses of tumor tissue. Several studies have shown that CNS antigens may be transported via lymphatic drainage to cervical lymph nodes, where antigen-specific T-cell responses can be generated. Therefore, we investigated whether glioma-draining lymph nodes (TDLN) may constitute a reservoir of tumor-reactive T cells. Methods We addressed our hypothesis by flow cytometric analyses of chicken ovalbumin (OVA)-specific CD8+ T cells as well as T-cell receptor beta (TCRβ) next-generation-sequencing (TCRβ-NGS) of T cells from tumor tissue, TDLN, spleen, and inguinal lymph nodes harvested from experimental mouse GL261 glioma models. Results Longitudinal dextramer-based assessment of specific CD8+ T cells from TDLN did not show tumor model antigen reactivity. Unbiased immunogenomic analysis revealed a low overlap of TCRβ sequences from glioma-infiltrating CD8+ T cells between mice. Enrichment scores, calculated by the ratio of productive frequencies of the different TCRβ-CDR3 amino-acid (aa) rearrangements of CD8+ T cells derived from tumor, TDLN, inguinal lymph nodes, and spleen demonstrated a higher proportion of tumor-associated TCR in the spleen compared to TDLN. Conclusions In experimental glioblastoma, our data did not provide evidence that glioma-draining cervical lymph nodes are a robust reservoir for spontaneous glioma-specific T cells highlighting the requirement for detailed analyses of glioma-infiltrating T cells for the discovery of tumor-specific TCR.
Collapse
Affiliation(s)
- Jens Blobner
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences (MCTN), Heidelberg University, Heidelberg, Germany
| | - Michael Kilian
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences (MCTN), Heidelberg University, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Chin Leng Tan
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences (MCTN), Heidelberg University, Heidelberg, Germany
| | - Katrin Aslan
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences (MCTN), Heidelberg University, Heidelberg, Germany
| | - Khwab Sanghvi
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences (MCTN), Heidelberg University, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Jochen Meyer
- DKTK Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neuropathology, Heidelberg University Medical Center, Heidelberg, Germany
| | - Manuel Fischer
- Department of Neuroradiology, Heidelberg University Medical Center, Heidelberg, Germany
| | - Kristine Jähne
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences (MCTN), Heidelberg University, Heidelberg, Germany
| | - Michael O Breckwoldt
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neuroradiology, Heidelberg University Medical Center, Heidelberg, Germany
| | - Felix Sahm
- DKTK Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neuropathology, Heidelberg University Medical Center, Heidelberg, Germany
| | - Andreas von Deimling
- DKTK Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neuropathology, Heidelberg University Medical Center, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Medical Center, Heidelberg, Germany
| | - Wolfgang Wick
- DKTK Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael Platten
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences (MCTN), Heidelberg University, Heidelberg, Germany.,Helmholtz Center for Translational Oncology (HI-TRON), Mainz, Germany
| | - Edward Green
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences (MCTN), Heidelberg University, Heidelberg, Germany
| | - Lukas Bunse
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences (MCTN), Heidelberg University, Heidelberg, Germany
| |
Collapse
|
64
|
Xie Q, Chu H, Yi J, Yu H, Gu T, Guan Y, Liu X, Liang J, Li Y, Wang J. Identification of a prognostic immune-related signature for small cell lung cancer. Cancer Med 2021; 10:9115-9128. [PMID: 34741430 PMCID: PMC8683526 DOI: 10.1002/cam4.4402] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 01/14/2023] Open
Abstract
Purpose As a subgroup of lung cancer, small cell lung cancer (SCLC) is characterized by a short tumor doubling time, high rates of early occurred distant cancer spread, and poor outcomes. Despite its exquisite sensitivity to chemotherapy and radiotherapy, acquired drug resistance and tumor progression are typical. This study aimed to develop a robust signature based on immune‐related genes to predict the outcome of patients with SCLC. Methods The expression data of 77 SCLC patients from George's cohort were divided into training set and testing set, and 1534 immune‐related genes from ImmPort database were used to generate and validate the signature. Cox proportional hazards and the Kaplan–Meier analysis were used for developing and testing the prognostic signature. Single‐sample gene set enrichment analysis was used to determine immune cell infiltration phenotypes. Results A 10‐gene model comprising NR3C1, NR1D2, TANK, ARAF, HDGF, INHBE, LRSAM1, PLXNA1, PML, and SP1 with the highest frequency after 1000 interactions, was chosen to construct immune‐related signature. This signature showed robust predictive value for SCLC patients’ survival in both training and testing sets. This signature was weakly associated with the clinic pathological values like TNM stage. Furthermore, patients with low risk presented with activation of immune signal pathways, and specific immune cell infiltration with high levels of CD56bright NK cells but low levels of CD8+ T cells, mast cells, and helper T cells. Conclusion The present study developed immune‐related signature that may help predict the prognosis of SCLC patients, which reflects an unappreciated level of heterogeneity of immunophenotype associated with diverse prognosis for specific subsets in this highly lethal cancer type.
Collapse
Affiliation(s)
- Qi Xie
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Huili Chu
- Department of Oncology, No. 960 Hospital, The People's Liberation Army of China, Jinan, China
| | - Jian Yi
- YuceBio Technology Co., Ltd., Shenzhen, China
| | - Hui Yu
- YuceBio Technology Co., Ltd., Shenzhen, China
| | - Tiantian Gu
- YuceBio Technology Co., Ltd., Shenzhen, China
| | - Yaping Guan
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Xiaolin Liu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Jing Liang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Yan Li
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Jun Wang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| |
Collapse
|
65
|
Heeren AM, Rotman J, Samuels S, Zijlmans HJMAA, Fons G, van de Vijver KK, Bleeker MCG, Kenter GG, Jordanova EJ, de Gruijl TD. Immune landscape in vulvar cancer-draining lymph nodes indicates distinct immune escape mechanisms in support of metastatic spread and growth. J Immunother Cancer 2021; 9:jitc-2021-003623. [PMID: 34697217 PMCID: PMC8547515 DOI: 10.1136/jitc-2021-003623] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
Background Therapeutic immune intervention is highly dependent on the T-cell priming and boosting capacity of tumor-draining lymph nodes (TDLN). In vulvar cancer, in-depth studies on the immune status of (pre)metastatic TDLN is lacking. Methods We have phenotyped and enumerated various T-cell and myeloid subsets in tumor-free (LN−, n=27) and metastatic TDLN (LN+, n=11) using flow cytometry. Additionally, we studied chemokine and cytokine release profiles and assessed expression of indoleamine 2,3-dioxygenase (IDO) in relation to plasmacytoid dendritic cell (pDC) or myeloid subsets. Results Metastatic involvement of TDLN was accompanied by an inflamed microenvironment with immune suppressive features, marked by hampered activation of migratory DC, increased cytokine/chemokine release, and closely correlated elevations of pDC and LN-resident conventional DC (LNR-cDC) activation state and frequencies, as well as of terminal CD8+ effector-memory T-cell (TemRA) differentiation, regulatory T-cell (Treg) rates, T-cell activation, and expression of cytotoxic T-lymphocyte protein-4 (CTLA-4) and programmed cell death protein-1 (PD-1) immune checkpoints. In addition, high indoleamine 2,3-dioxygenase (IDO) expression and increased frequencies of monocytic myeloid-derived suppressor cells (mMDSC) were observed. Correlation analyses with primary and metastatic tumor burden suggested respective roles for Tregs and suppression of inducible T cell costimulator (ICOS)+ T helper cells in early metastatic niche formation and for CD14+ LNR-cDC and terminal T-cell differentiation in later stages of metastatic growth. Conclusions Metastatic spread in vulvar TDLN is marked by an inflamed microenvironment with activated effector T cells, which are likely kept in check by an interplay of suppressive feedback mechanisms. Our data support (neoadjuvant) TDLN-targeted therapeutic interventions based on CTLA-4 and PD-1 blockade, to reinvigorate memory T cells and curb early metastatic spread and growth.
Collapse
Affiliation(s)
- Anne Marijne Heeren
- Cancer Center Amsterdam - Medical Oncology, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
| | - Jossie Rotman
- Cancer Center Amsterdam - Medical Oncology, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands.,Center for Gynecologic Oncology (CGOA), Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
| | - Sanne Samuels
- Center for Gynecologic Oncology Amsterdam (CGOA), AVL NKI, Amsterdam, The Netherlands
| | | | - Guus Fons
- Center for Gynecologic Oncology (CGOA), Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
| | | | - Maaike C G Bleeker
- Department of Pathology, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands.,Department of Pathology, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
| | - Gemma G Kenter
- Center for Gynecologic Oncology (CGOA), Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands.,Center for Gynecologic Oncology Amsterdam (CGOA), AVL NKI, Amsterdam, The Netherlands.,Center for Gynecologic Oncology, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
| | - Ekaterina J Jordanova
- Department of Obstetrics and Gynecology, Center for Gynecological Oncology Amsterdam (CGOA), Amsterdam UMC - Locatie VUMC, Amsterdam, The Netherlands
| | - Tanja D de Gruijl
- Cancer Center Amsterdam - Medical Oncology, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
| |
Collapse
|
66
|
Zhang Y, Jia H, Liu Z, Guo J, Li Y, Li R, Zhu G, Li J, Li M, Li X, Wang S, Dang C, Zhao T. D-MT prompts the anti-tumor effect of oxaliplatin by inhibiting IDO expression in a mouse model of colon cancer. Int Immunopharmacol 2021; 101:108203. [PMID: 34649091 DOI: 10.1016/j.intimp.2021.108203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/13/2021] [Accepted: 09/24/2021] [Indexed: 02/07/2023]
Abstract
Colon cancer is one of the most common malignant tumors in the digestive system. Although oxaliplatin, a chemotherapy drug, has been clinically used to treat colon cancer, its therapeutic effect is unsatisfactory. It has been proved that indoleamine dioxygenase 2,3 (IDO) is a tumor immunosuppressive factor for the immune response. Herein, an IDO inhibitor, D-MT (indoximod, 1-Methyl-D-tryptophan), was combined with oxaliplatin to treat colon cancer in mice. T cell infiltration in tumor tissues, the ratios of immune cells in the spleens, and the tumor growth and survival of the mice were detected and recorded. The results showed that the combination of oxaliplatin and D-MT significantly inhibited tumor growth and prolonged the survival of tumor-bearing mice. More importantly, the combination treatment increased the ratios of CD4+ T, CD8+ T and NK cells from the spleen in tumor-bearing mice, and prompted T cell infiltration in tumor tissues. This study provided a new therapeutic strategy for colon cancer treatment in the clinic, especially for patients with oxaliplatin resistance.
Collapse
Affiliation(s)
- Yongxi Zhang
- Department of Oncology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, PR China; Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710000, Shanxi, PR China
| | - Huijie Jia
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453000, China
| | - Zhiang Liu
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Jing Guo
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Yang Li
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Ruipeng Li
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Gaozan Zhu
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Jie Li
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Minjie Li
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Xinyi Li
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Shenggen Wang
- Department of Oncology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, PR China
| | - Chengxue Dang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710000, Shanxi, PR China.
| | - Tiesuo Zhao
- Department of Oncology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, PR China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Department of Immunology, Xinxiang Medical University, Xinxiang, Henan 453000, China.
| |
Collapse
|
67
|
Macri C, Morgan H, Villadangos JA, Mintern JD. Regulation of dendritic cell function by Fc-γ-receptors and the neonatal Fc receptor. Mol Immunol 2021; 139:193-201. [PMID: 34560415 DOI: 10.1016/j.molimm.2021.07.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 06/28/2021] [Accepted: 07/19/2021] [Indexed: 01/02/2023]
Abstract
Dendritic cells (DCs) express receptors to sense pathogens and/or tissue damage and to communicate with other immune cells. Among those receptors, Fc receptors (FcRs) are triggered by the Fc region of antibodies produced during adaptive immunity. In this review, the role of FcγR and neonatal Fc receptor (FcRn) in DC immunity will be discussed. Their expression in DC subsets and impact on antigen uptake and presentation, DC maturation and polarisation of T cell responses will be described. Lastly, we will discuss the importance of FcR-mediated DC function in the context of immunity during viral infection, inflammatory disease, cancer and immunotherapy.
Collapse
Affiliation(s)
- Christophe Macri
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, Victoria, 3010, Australia
| | - Huw Morgan
- ACRF Translational Research Laboratory, The Royal Melbourne Hospital, Parkville, Melbourne, Victoria, 3050, Australia; Department of Medicine, University of Melbourne, Parkville, Melbourne, Victoria, 3010, Australia
| | - Jose A Villadangos
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, Victoria, 3010, Australia; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Justine D Mintern
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
68
|
Abstract
Early engagement of the lymphatic system by solid tumors in peripheral, nonlymphoid tissues is a clinical hallmark of cancer and often forecasts poor prognosis. The significance of lymph node metastasis for distant spread, however, has been questioned by large-scale lymph node dissection trials and the likely prevalence of direct hematogenous metastasis. Still, an emerging appreciation for the immunological role of the tumor-draining lymph node has renewed interest in its basic biology, role in metastatic progression, antitumor immunity, and patient outcomes. In this review, we discuss our current understanding of the early mechanisms through which tumors engage lymphatic transport and condition tumor-draining lymph nodes, the significance of these changes for both metastasis and immunity, and potential implications of the tumor-draining lymph node for immunotherapy.
Collapse
Affiliation(s)
- Haley du Bois
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY 10016
| | - Taylor A. Heim
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY 10016
| | - Amanda W. Lund
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY 10016
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016
- Laura and Isaac Perlmutter Cancer Center NYU Langone Health, New York, NY 10016
| |
Collapse
|
69
|
Marszalek-Grabska M, Walczak K, Gawel K, Wicha-Komsta K, Wnorowska S, Wnorowski A, Turski WA. Kynurenine emerges from the shadows – Current knowledge on its fate and function. Pharmacol Ther 2021; 225:107845. [DOI: 10.1016/j.pharmthera.2021.107845] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022]
|
70
|
Li T, Liu T, Zhu W, Xie S, Zhao Z, Feng B, Guo H, Yang R. Targeting MDSC for Immune-Checkpoint Blockade in Cancer Immunotherapy: Current Progress and New Prospects. CLINICAL MEDICINE INSIGHTS-ONCOLOGY 2021; 15:11795549211035540. [PMID: 34408525 PMCID: PMC8365012 DOI: 10.1177/11795549211035540] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 07/07/2021] [Indexed: 01/06/2023]
Abstract
Immune-checkpoint blockade (ICB) demonstrated inspiring effect and great promise in anti-cancer therapy. However, many obstacles, such as drug resistance and difficulty in patient selection, limited the efficacy of ICB therapy and awaited to be overcome. By timely identification and intervention of the key immune-suppressive promotors in the tumor microenvironment (TME), we may better understand the mechanisms of cancer immune-escape and use novel strategies to enhance the therapeutic effect of ICB. Myeloid-derived suppressor cell (MDSC) is recognized as a major immune suppressor in the TME. In this review, we summarized the roles MDSC played in the cancer context, focusing on its negative biologic functions in ICB therapy, discussed the strategies targeted on MDSC to optimize the diagnosis and therapy process of ICB and improve the efficacy of ICB therapy against malignancies.
Collapse
Affiliation(s)
- Tianhang Li
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Tianyao Liu
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Wenjie Zhu
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Shangxun Xie
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Zihan Zhao
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Baofu Feng
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Rong Yang
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, People's Republic of China
| |
Collapse
|
71
|
Mitchell D, Shireman J, Sierra Potchanant EA, Lara-Velazquez M, Dey M. Neuroinflammation in Autoimmune Disease and Primary Brain Tumors: The Quest for Striking the Right Balance. Front Cell Neurosci 2021; 15:716947. [PMID: 34483843 PMCID: PMC8414998 DOI: 10.3389/fncel.2021.716947] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/26/2021] [Indexed: 12/25/2022] Open
Abstract
According to classical dogma, the central nervous system (CNS) is defined as an immune privileged space. The basis of this theory was rooted in an incomplete understanding of the CNS microenvironment, however, recent advances such as the identification of resident dendritic cells (DC) in the brain and the presence of CNS lymphatics have deepened our understanding of the neuro-immune axis and revolutionized the field of neuroimmunology. It is now understood that many pathological conditions induce an immune response in the CNS, and that in many ways, the CNS is an immunologically distinct organ. Hyperactivity of neuro-immune axis can lead to primary neuroinflammatory diseases such as multiple sclerosis and antibody-mediated encephalitis, whereas immunosuppressive mechanisms promote the development and survival of primary brain tumors. On the therapeutic front, attempts are being made to target CNS pathologies using various forms of immunotherapy. One of the most actively investigated areas of CNS immunotherapy is for the treatment of glioblastoma (GBM), the most common primary brain tumor in adults. In this review, we provide an up to date overview of the neuro-immune axis in steady state and discuss the mechanisms underlying neuroinflammation in autoimmune neuroinflammatory disease as well as in the development and progression of brain tumors. In addition, we detail the current understanding of the interactions that characterize the primary brain tumor microenvironment and the implications of the neuro-immune axis on the development of successful therapeutic strategies for the treatment of CNS malignancies.
Collapse
Affiliation(s)
- Dana Mitchell
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jack Shireman
- Dey Malignant Brain Tumor Laboratory, Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | | | - Montserrat Lara-Velazquez
- Dey Malignant Brain Tumor Laboratory, Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Mahua Dey
- Dey Malignant Brain Tumor Laboratory, Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
72
|
Silvano A, Seravalli V, Strambi N, Cecchi M, Tartarotti E, Parenti A, Di Tommaso M. Tryptophan metabolism and immune regulation in the human placenta. J Reprod Immunol 2021; 147:103361. [PMID: 34365162 DOI: 10.1016/j.jri.2021.103361] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022]
Abstract
The placenta represents the maternal-fetal vascular interface. It is capable of supplying the bioenergetic needs of the developing conceptus. It is composed of different cell types that engage in highly varied functions, ranging from attachment, invasion and vascular remodeling to cell fusion, hormone production, and nutrient transport. A deep knowledge of the immunological mechanisms responsible for maintaining an active tolerance towards an allogeneic fetus and the anti-inflammatory properties of the placenta can be useful to clarify the pathogenesis of adverse events in pregnancy. While the systemic mechanisms of this immunological regulation in pregnancy have been well studied, the metabolic processes involved in the placental immune response are still poorly understood. The aim of this review is to summarize the most important information concerning the immune regulation in pregnancy, focusing on the role of tryptophan (Trp) catabolism performed by indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) in the placenta.
Collapse
Affiliation(s)
- Angela Silvano
- Department of Health Sciences, Division of Obstetrics and Gynecology, Careggi Hospital, Florence, Italy
| | - Viola Seravalli
- Department of Health Sciences, Division of Obstetrics and Gynecology, Careggi Hospital, Florence, Italy
| | - Noemi Strambi
- Department of Health Sciences, Division of Obstetrics and Gynecology, Careggi Hospital, Florence, Italy
| | - Marta Cecchi
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Italy
| | - Enrico Tartarotti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Italy
| | - Astrid Parenti
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Italy.
| | - Mariarosaria Di Tommaso
- Department of Health Sciences, Division of Obstetrics and Gynecology, Careggi Hospital, Florence, Italy; Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Italy.
| |
Collapse
|
73
|
Dou A, Fang J. Heterogeneous Myeloid Cells in Tumors. Cancers (Basel) 2021; 13:3772. [PMID: 34359674 PMCID: PMC8345207 DOI: 10.3390/cancers13153772] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 12/12/2022] Open
Abstract
Accumulating studies highlight a critical role of myeloid cells in cancer biology and therapy. The myeloid cells constitute the major components of tumor microenvironment (TME). The most studied tumor-associated myeloid cells (TAMCs) include monocytes, tumor-associated macrophages (TAMs), dendritic cells (DCs), cancer-related circulating neutrophils, tumor-associated neutrophils (TANs), and myeloid-derived suppressor cells (MDSCs). These heterogenous myeloid cells perform pro-tumor or anti-tumor function, exerting complex and even opposing effects on all stages of tumor development, such as malignant clonal evolution, growth, survival, invasiveness, dissemination and metastasis of tumor cells. TAMCs also reshape TME and tumor vasculature to favor tumor development. The main function of these myeloid cells is to modulate the behavior of lymphocytes, forming immunostimulatory or immunosuppressive TME cues. In addition, TAMCs play a critical role in modulating the response to cancer therapy. Targeting TAMCs is vigorously tested as monotherapy or in combination with chemotherapy or immunotherapy. This review briefly introduces the TAMC subpopulations and their function in tumor cells, TME, angiogenesis, immunomodulation, and cancer therapy.
Collapse
Affiliation(s)
| | - Jing Fang
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, Columbia, SC 29208, USA;
| |
Collapse
|
74
|
Zhong Q, Lu Y, Xu W, Rong Z, Chang X, Qin L, Chen X, Zhou F. The differentiation of new human CD303 + Plasmacytoid dendritic cell subpopulations expressing CD205 and/or CD103 regulated by Non-Small-Cell lung cancer cells. Int Immunopharmacol 2021; 99:107983. [PMID: 34298400 DOI: 10.1016/j.intimp.2021.107983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 11/26/2022]
Abstract
CD303+ plasmacytoid dendritic cells (pDCs) play an important role in the induction of immune tolerance and antitumor immunity. Here, we focused on the effect of NSCLC cells on the development of CD303+ pDC subsets expressing CD205 and/or CD103. The NSCLC cell line H1299 and primary NSCLC cells were incubated with DCs. The protein expression of costimulatory molecules on CD303+ pDCs, the production of pro-inflammatory and anti-inflammatory cytokines by CD303+ pDCs and the development of CD303+ pDC subsets were detected by using flow cytometry. Coculture with NSCLC cells modulates the protein expression of CD86 and HLA-DR on CD303+ pDCs. Moreover, NSCLC cells suppressed the production of IL-12 and IL-23 but facilitated the secretion of IL-27 and TGF-β by CD303+ pDCs. There were new CD303+ pDC subsets expressing CD205 and/or CD103 in healthy donors and NSCLC patients: CD303+CD205+CD103+, CD303+CD205+CD103-, CD303+CD205-CD103+ and CD303+CD205-CD103- pDCs. NSCLC cells modulated the differentiation of CD303+ pDC subpopulations by regulating the protein expression of CD205 and/or CD103 on CD303+ pDCs. NSCLC cells may regulate the immune functions of CD303+ pDCs by modulating the expression of costimulatory molecules on DCs and the production of pro-inflammatory/anti-inflammatory cytokines by DCs. NSCLC cells also regulate the development of CD303+ pDC subsets expressing CD205 and/or CD103. These outcomes may reveal a new cellular mechanism leading to the NSCLC-induced immune-suppressive microenvironment.
Collapse
Affiliation(s)
- Qifeng Zhong
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd. Huangpu, Guangzhou, Guangdong, PR China
| | - Yong Lu
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd. Huangpu, Guangzhou, Guangdong, PR China
| | - Wenlong Xu
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd. Huangpu, Guangzhou, Guangdong, PR China
| | - Zhien Rong
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd. Huangpu, Guangzhou, Guangdong, PR China
| | - Xu Chang
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd. Huangpu, Guangzhou, Guangdong, PR China
| | - Li Qin
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd. Huangpu, Guangzhou, Guangdong, PR China
| | - Xiaoping Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510820, PR China; State Key Laboratory of Respiratory Disease, Center of Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, PR China; Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd. Huangpu, Guangzhou, Guangdong, PR China.
| | - Fang Zhou
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd. Huangpu, Guangzhou, Guangdong, PR China.
| |
Collapse
|
75
|
Zhu XX, Yin XQ, Hei GZ, Wei R, Guo Q, Zhao L, Zhang Z, Chu C, Fu XX, Xu K, Li X. Increased miR-6875-5p inhibits plasmacytoid dendritic cell differentiation via the STAT3/E2-2 pathway in recurrent spontaneous abortion. Mol Hum Reprod 2021; 27:6317516. [PMID: 34240166 PMCID: PMC8355038 DOI: 10.1093/molehr/gaab044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/23/2021] [Indexed: 12/03/2022] Open
Abstract
Recurrent spontaneous abortion (RSA) is a common complication of early pregnancy. Dendritic cells (DCs) are thought to confer fetal–maternal immunotolerance and play a crucial role in ensuring a successful pregnancy. A decrease of plasmacytoid dendritic cells (pDCs) was found to be involved in RSA, but the underlying mechanisms of decreased pDC in RSA remain unclear. MicroRNAs (miRNAs) play critical roles in RSA as well as the development, differentiation and functional regulation of pDCs; however, the regulatory effect of miRNAs on pDC in RSA has not been fully investigated. Here we demonstrated that both the proportion of pDC and signal transducer and activator of transcription (STAT3)/transcription factor 4 (Tcf4/E2-2) expression decreased in the peripheral blood mononuclear cells and decidua of patients with RSA compared to those with normal pregnancy (NP), and there was a significantly positive correlation between pDC and STAT3 mRNA. MiRNA microarray assay and quantitative reverse transcription PCR results showed that miR-6875-5p expression was markedly increased in women with RSA and negatively correlated with mRNA expression level of STAT3. Up-regulated miR-6875-5p could sensitively discriminate patients with RSA from NP subjects. Overexpression of miR-6875-5p significantly down-regulated the mRNA expression of STAT3 and E2-2 as well as the protein and phosphorylation level of STAT3, while miR-6875-5p knockdown showed opposite results. Dual luciferase reporter verified that miR-6875-5p regulated STAT3 expression by directly binding to its 3'untranslated region. Overall, our results suggested that increased miR-6875-5p is involved in RSA by decreasing the differentiation of pDCs via inhibition of the STAT3/E2-2 signaling pathway. miR-6875-5p may be explored as a promising diagnostic marker and therapeutic target for RSA.
Collapse
Affiliation(s)
- Xiao-Xiao Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China.,School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.,Key Laboratory of Laparoscopic Technology, the First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Xun-Qiang Yin
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Guo-Zhen Hei
- Shandong Province Maternal and Child Health Care Hospital, Jinan, Shandong, China
| | - Ran Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Qiang Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Lin Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Zhen Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Chu Chu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China.,Key Laboratory of Laparoscopic Technology, the First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Xiao-Xiao Fu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China.,Key Laboratory of Laparoscopic Technology, the First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Ke Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China.,Key Laboratory of Laparoscopic Technology, the First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Xia Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China.,School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.,Key Laboratory of Laparoscopic Technology, the First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
76
|
Garcia JH, Jain S, Aghi MK. Metabolic Drivers of Invasion in Glioblastoma. Front Cell Dev Biol 2021; 9:683276. [PMID: 34277624 PMCID: PMC8281286 DOI: 10.3389/fcell.2021.683276] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/19/2021] [Indexed: 12/02/2022] Open
Abstract
Glioblastoma is a primary malignant brain tumor with a median survival under 2 years. The poor prognosis glioblastoma caries is largely due to cellular invasion, which enables escape from resection, and drives inevitable recurrence. While most studies to date have focused on pathways that enhance the invasiveness of tumor cells in the brain microenvironment as the primary driving forces behind GBM’s ability to invade adjacent tissues, more recent studies have identified a role for adaptations in cellular metabolism in GBM invasion. Metabolic reprogramming allows invasive cells to generate the energy necessary for colonizing surrounding brain tissue and adapt to new microenvironments with unique nutrient and oxygen availability. Historically, enhanced glycolysis, even in the presence of oxygen (the Warburg effect) has dominated glioblastoma research with respect to tumor metabolism. More recent global profiling experiments, however, have identified roles for lipid, amino acid, and nucleotide metabolism in tumor growth and invasion. A thorough understanding of the metabolic traits that define invasive GBM cells may provide novel therapeutic targets for this devastating disease. In this review, we focus on metabolic alterations that have been characterized in glioblastoma, the dynamic nature of tumor metabolism and how it is shaped by interaction with the brain microenvironment, and how metabolic reprogramming generates vulnerabilities that may be ripe for exploitation.
Collapse
Affiliation(s)
- Joseph H Garcia
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Saket Jain
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Manish K Aghi
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
77
|
Pillozzi S, Bernini A, Palchetti I, Crociani O, Antonuzzo L, Campanacci D, Scoccianti G. Soft Tissue Sarcoma: An Insight on Biomarkers at Molecular, Metabolic and Cellular Level. Cancers (Basel) 2021; 13:cancers13123044. [PMID: 34207243 PMCID: PMC8233868 DOI: 10.3390/cancers13123044] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Soft tissue sarcoma is a rare mesenchymal malignancy. Despite the advancements in the fields of radiology, pathology and surgery, these tumors often recur locally and/or with metastatic disease. STS is considered to be a diagnostic challenge due to the large variety of histological subtypes with clinical and histopathological characteristics which are not always distinct. One of the important clinical problems is a lack of useful biomarkers. Therefore, the discovery of biomarkers that can be used to detect tumors or predict tumor response to chemotherapy or radiotherapy could help clinicians provide more effective clinical management. Abstract Soft tissue sarcomas (STSs) are a heterogeneous group of rare tumors. Although constituting only 1% of all human malignancies, STSs represent the second most common type of solid tumors in children and adolescents and comprise an important group of secondary malignancies. Over 100 histologic subtypes have been characterized to date (occurring predominantly in the trunk, extremity, and retroperitoneum), and many more are being discovered due to molecular profiling. STS mortality remains high, despite adjuvant chemotherapy. New prognostic stratification markers are needed to help identify patients at risk of recurrence and possibly apply more intensive or novel treatments. Recent scientific advancements have enabled a more precise molecular characterization of sarcoma subtypes and revealed novel therapeutic targets and prognostic/predictive biomarkers. This review aims at providing a comprehensive overview of the most relevant cellular, molecular and metabolic biomarkers for STS, and highlight advances in STS-related biomarker research.
Collapse
Affiliation(s)
- Serena Pillozzi
- Medical Oncology Unit, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy;
- Correspondence:
| | - Andrea Bernini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy;
| | - Ilaria Palchetti
- Department of Chemistry Ugo Schiff, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy;
| | - Olivia Crociani
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy;
| | - Lorenzo Antonuzzo
- Medical Oncology Unit, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy;
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy;
| | - Domenico Campanacci
- Department of Health Science, University of Florence, Largo Brambilla 3, 50134 Florence, Italy;
| | - Guido Scoccianti
- Department of Orthopaedic Oncology and Reconstructive Surgery, University of Florence, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy;
| |
Collapse
|
78
|
Penny HL, Sieow JL, Gun SY, Lau MC, Lee B, Tan J, Phua C, Toh F, Nga Y, Yeap WH, Janela B, Kumar D, Chen H, Yeong J, Kenkel JA, Pang A, Lim D, Toh HC, Hon TLK, Johnson CI, Khameneh HJ, Mortellaro A, Engleman EG, Rotzschke O, Ginhoux F, Abastado JP, Chen J, Wong SC. Targeting Glycolysis in Macrophages Confers Protection Against Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2021; 22:6350. [PMID: 34198548 PMCID: PMC8231859 DOI: 10.3390/ijms22126350] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/28/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammation in the tumor microenvironment has been shown to promote disease progression in pancreatic ductal adenocarcinoma (PDAC); however, the role of macrophage metabolism in promoting inflammation is unclear. Using an orthotopic mouse model of PDAC, we demonstrate that macrophages from tumor-bearing mice exhibit elevated glycolysis. Macrophage-specific deletion of Glucose Transporter 1 (GLUT1) significantly reduced tumor burden, which was accompanied by increased Natural Killer and CD8+ T cell activity and suppression of the NLRP3-IL1β inflammasome axis. Administration of mice with a GLUT1-specific inhibitor reduced tumor burden, comparable with gemcitabine, the current standard-of-care. In addition, we observe that intra-tumoral macrophages from human PDAC patients exhibit a pronounced glycolytic signature, which reliably predicts poor survival. Our data support a key role for macrophage metabolism in tumor immunity, which could be exploited to improve patient outcomes.
Collapse
Affiliation(s)
- Hweixian Leong Penny
- Singapore Immunology Network, A*STAR, Singapore, 8A Biomedical Grove Level 3 & 4 Immunos Building, Singapore 138648, Singapore; (J.L.S.); (S.Y.G.); (M.C.L.); (B.L.); (J.T.); (C.P.); (F.T.); (Y.N.); (W.H.Y.); (D.K.); (H.C.); (J.Y.); (H.J.K.); (A.M.); (O.R.); (F.G.); (J.-P.A.); (J.C.)
| | - Je Lin Sieow
- Singapore Immunology Network, A*STAR, Singapore, 8A Biomedical Grove Level 3 & 4 Immunos Building, Singapore 138648, Singapore; (J.L.S.); (S.Y.G.); (M.C.L.); (B.L.); (J.T.); (C.P.); (F.T.); (Y.N.); (W.H.Y.); (D.K.); (H.C.); (J.Y.); (H.J.K.); (A.M.); (O.R.); (F.G.); (J.-P.A.); (J.C.)
| | - Sin Yee Gun
- Singapore Immunology Network, A*STAR, Singapore, 8A Biomedical Grove Level 3 & 4 Immunos Building, Singapore 138648, Singapore; (J.L.S.); (S.Y.G.); (M.C.L.); (B.L.); (J.T.); (C.P.); (F.T.); (Y.N.); (W.H.Y.); (D.K.); (H.C.); (J.Y.); (H.J.K.); (A.M.); (O.R.); (F.G.); (J.-P.A.); (J.C.)
| | - Mai Chan Lau
- Singapore Immunology Network, A*STAR, Singapore, 8A Biomedical Grove Level 3 & 4 Immunos Building, Singapore 138648, Singapore; (J.L.S.); (S.Y.G.); (M.C.L.); (B.L.); (J.T.); (C.P.); (F.T.); (Y.N.); (W.H.Y.); (D.K.); (H.C.); (J.Y.); (H.J.K.); (A.M.); (O.R.); (F.G.); (J.-P.A.); (J.C.)
| | - Bernett Lee
- Singapore Immunology Network, A*STAR, Singapore, 8A Biomedical Grove Level 3 & 4 Immunos Building, Singapore 138648, Singapore; (J.L.S.); (S.Y.G.); (M.C.L.); (B.L.); (J.T.); (C.P.); (F.T.); (Y.N.); (W.H.Y.); (D.K.); (H.C.); (J.Y.); (H.J.K.); (A.M.); (O.R.); (F.G.); (J.-P.A.); (J.C.)
| | - Jasmine Tan
- Singapore Immunology Network, A*STAR, Singapore, 8A Biomedical Grove Level 3 & 4 Immunos Building, Singapore 138648, Singapore; (J.L.S.); (S.Y.G.); (M.C.L.); (B.L.); (J.T.); (C.P.); (F.T.); (Y.N.); (W.H.Y.); (D.K.); (H.C.); (J.Y.); (H.J.K.); (A.M.); (O.R.); (F.G.); (J.-P.A.); (J.C.)
| | - Cindy Phua
- Singapore Immunology Network, A*STAR, Singapore, 8A Biomedical Grove Level 3 & 4 Immunos Building, Singapore 138648, Singapore; (J.L.S.); (S.Y.G.); (M.C.L.); (B.L.); (J.T.); (C.P.); (F.T.); (Y.N.); (W.H.Y.); (D.K.); (H.C.); (J.Y.); (H.J.K.); (A.M.); (O.R.); (F.G.); (J.-P.A.); (J.C.)
| | - Florida Toh
- Singapore Immunology Network, A*STAR, Singapore, 8A Biomedical Grove Level 3 & 4 Immunos Building, Singapore 138648, Singapore; (J.L.S.); (S.Y.G.); (M.C.L.); (B.L.); (J.T.); (C.P.); (F.T.); (Y.N.); (W.H.Y.); (D.K.); (H.C.); (J.Y.); (H.J.K.); (A.M.); (O.R.); (F.G.); (J.-P.A.); (J.C.)
| | - Yvonne Nga
- Singapore Immunology Network, A*STAR, Singapore, 8A Biomedical Grove Level 3 & 4 Immunos Building, Singapore 138648, Singapore; (J.L.S.); (S.Y.G.); (M.C.L.); (B.L.); (J.T.); (C.P.); (F.T.); (Y.N.); (W.H.Y.); (D.K.); (H.C.); (J.Y.); (H.J.K.); (A.M.); (O.R.); (F.G.); (J.-P.A.); (J.C.)
| | - Wei Hseun Yeap
- Singapore Immunology Network, A*STAR, Singapore, 8A Biomedical Grove Level 3 & 4 Immunos Building, Singapore 138648, Singapore; (J.L.S.); (S.Y.G.); (M.C.L.); (B.L.); (J.T.); (C.P.); (F.T.); (Y.N.); (W.H.Y.); (D.K.); (H.C.); (J.Y.); (H.J.K.); (A.M.); (O.R.); (F.G.); (J.-P.A.); (J.C.)
| | - Baptiste Janela
- Skin Research Institute of Singapore (SRIS), 11 Mandalay Road, #17-01 Clinical Sciences Building, Singapore 308232, Singapore;
| | - Dilip Kumar
- Singapore Immunology Network, A*STAR, Singapore, 8A Biomedical Grove Level 3 & 4 Immunos Building, Singapore 138648, Singapore; (J.L.S.); (S.Y.G.); (M.C.L.); (B.L.); (J.T.); (C.P.); (F.T.); (Y.N.); (W.H.Y.); (D.K.); (H.C.); (J.Y.); (H.J.K.); (A.M.); (O.R.); (F.G.); (J.-P.A.); (J.C.)
| | - Hao Chen
- Singapore Immunology Network, A*STAR, Singapore, 8A Biomedical Grove Level 3 & 4 Immunos Building, Singapore 138648, Singapore; (J.L.S.); (S.Y.G.); (M.C.L.); (B.L.); (J.T.); (C.P.); (F.T.); (Y.N.); (W.H.Y.); (D.K.); (H.C.); (J.Y.); (H.J.K.); (A.M.); (O.R.); (F.G.); (J.-P.A.); (J.C.)
| | - Joe Yeong
- Singapore Immunology Network, A*STAR, Singapore, 8A Biomedical Grove Level 3 & 4 Immunos Building, Singapore 138648, Singapore; (J.L.S.); (S.Y.G.); (M.C.L.); (B.L.); (J.T.); (C.P.); (F.T.); (Y.N.); (W.H.Y.); (D.K.); (H.C.); (J.Y.); (H.J.K.); (A.M.); (O.R.); (F.G.); (J.-P.A.); (J.C.)
| | - Justin A. Kenkel
- Department of Pathology, Stanford University School of Medicine, 3373 Hillview Ave., Palo Alto, CA 94304, USA; (J.A.K.); (E.G.E.)
| | - Angela Pang
- National University Cancer Institute Singapore, NUH Medical Centre (NUHMC) @ Levels 8-10, 5 Lower Kent Ridge Road, Singapore 119074, Singapore;
| | - Diana Lim
- Department of Pathology, National University Health System, National University Hospital, Lower Kent Ridge Road, 1 Main Building, Level 3, Singapore 119074, Singapore;
| | - Han Chong Toh
- National Cancer Centre, 11 Hospital Crescent, Singapore 169610, Singapore;
| | - Tony Lim Kiat Hon
- Division of Pathology, Singapore General Hospital, 20 College Road, Academia, Level 7, Singapore 169856, Singapore;
| | | | - Hanif Javanmard Khameneh
- Singapore Immunology Network, A*STAR, Singapore, 8A Biomedical Grove Level 3 & 4 Immunos Building, Singapore 138648, Singapore; (J.L.S.); (S.Y.G.); (M.C.L.); (B.L.); (J.T.); (C.P.); (F.T.); (Y.N.); (W.H.Y.); (D.K.); (H.C.); (J.Y.); (H.J.K.); (A.M.); (O.R.); (F.G.); (J.-P.A.); (J.C.)
| | - Alessandra Mortellaro
- Singapore Immunology Network, A*STAR, Singapore, 8A Biomedical Grove Level 3 & 4 Immunos Building, Singapore 138648, Singapore; (J.L.S.); (S.Y.G.); (M.C.L.); (B.L.); (J.T.); (C.P.); (F.T.); (Y.N.); (W.H.Y.); (D.K.); (H.C.); (J.Y.); (H.J.K.); (A.M.); (O.R.); (F.G.); (J.-P.A.); (J.C.)
| | - Edgar G. Engleman
- Department of Pathology, Stanford University School of Medicine, 3373 Hillview Ave., Palo Alto, CA 94304, USA; (J.A.K.); (E.G.E.)
| | - Olaf Rotzschke
- Singapore Immunology Network, A*STAR, Singapore, 8A Biomedical Grove Level 3 & 4 Immunos Building, Singapore 138648, Singapore; (J.L.S.); (S.Y.G.); (M.C.L.); (B.L.); (J.T.); (C.P.); (F.T.); (Y.N.); (W.H.Y.); (D.K.); (H.C.); (J.Y.); (H.J.K.); (A.M.); (O.R.); (F.G.); (J.-P.A.); (J.C.)
| | - Florent Ginhoux
- Singapore Immunology Network, A*STAR, Singapore, 8A Biomedical Grove Level 3 & 4 Immunos Building, Singapore 138648, Singapore; (J.L.S.); (S.Y.G.); (M.C.L.); (B.L.); (J.T.); (C.P.); (F.T.); (Y.N.); (W.H.Y.); (D.K.); (H.C.); (J.Y.); (H.J.K.); (A.M.); (O.R.); (F.G.); (J.-P.A.); (J.C.)
| | - Jean-Pierre Abastado
- Singapore Immunology Network, A*STAR, Singapore, 8A Biomedical Grove Level 3 & 4 Immunos Building, Singapore 138648, Singapore; (J.L.S.); (S.Y.G.); (M.C.L.); (B.L.); (J.T.); (C.P.); (F.T.); (Y.N.); (W.H.Y.); (D.K.); (H.C.); (J.Y.); (H.J.K.); (A.M.); (O.R.); (F.G.); (J.-P.A.); (J.C.)
| | - Jinmiao Chen
- Singapore Immunology Network, A*STAR, Singapore, 8A Biomedical Grove Level 3 & 4 Immunos Building, Singapore 138648, Singapore; (J.L.S.); (S.Y.G.); (M.C.L.); (B.L.); (J.T.); (C.P.); (F.T.); (Y.N.); (W.H.Y.); (D.K.); (H.C.); (J.Y.); (H.J.K.); (A.M.); (O.R.); (F.G.); (J.-P.A.); (J.C.)
| | - Siew Cheng Wong
- Singapore Immunology Network, A*STAR, Singapore, 8A Biomedical Grove Level 3 & 4 Immunos Building, Singapore 138648, Singapore; (J.L.S.); (S.Y.G.); (M.C.L.); (B.L.); (J.T.); (C.P.); (F.T.); (Y.N.); (W.H.Y.); (D.K.); (H.C.); (J.Y.); (H.J.K.); (A.M.); (O.R.); (F.G.); (J.-P.A.); (J.C.)
| |
Collapse
|
79
|
Zakharia Y, McWilliams RR, Rixe O, Drabick J, Shaheen MF, Grossmann KF, Kolhe R, Pacholczyk R, Sadek R, Tennant LL, Smith CM, Kennedy EP, Link CJ, Vahanian NN, Yu J, Shen SS, Brincks EL, Rossi GR, Munn D, Milhem M. Phase II trial of the IDO pathway inhibitor indoximod plus pembrolizumab for the treatment of patients with advanced melanoma. J Immunother Cancer 2021; 9:jitc-2020-002057. [PMID: 34117113 PMCID: PMC8202104 DOI: 10.1136/jitc-2020-002057] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2021] [Indexed: 12/23/2022] Open
Abstract
Background The indoleamine 2,3-dioxygenase (IDO) pathway is a key counter-regulatory mechanism that, in cancer, is exploited by tumors to evade antitumor immunity. Indoximod is a small-molecule IDO pathway inhibitor that reverses the immunosuppressive effects of low tryptophan (Trp) and high kynurenine (Kyn) that result from IDO activity. In this study, indoximod was used in combination with a checkpoint inhibitor (CPI) pembrolizumab for the treatment for advanced melanoma. Methods Patients with advanced melanoma were enrolled in a single-arm phase II clinical trial evaluating the addition of indoximod to standard of care CPI approved for melanoma. Investigators administered their choice of CPI including pembrolizumab (P), nivolumab (N), or ipilimumab (I). Indoximod was administered continuously (1200 mg orally two times per day), with concurrent CPI dosed per US Food and Drug Administration (FDA)-approved label. Results Between July 2014 and July 2017, 131 patients were enrolled. (P) was used more frequently (n=114, 87%) per investigator’s choice. The efficacy evaluable population consisted of 89 patients from the phase II cohort with non-ocular melanoma who received indoximod combined with (P). The objective response rate (ORR) for the evaluable population was 51% with confirmed complete response of 20% and disease control rate of 70%. Median progression-free survival was 12.4 months (95% CI 6.4 to 24.9). The ORR for Programmed Death-Ligand 1 (PD-L1)-positive patients was 70% compared with 46% for PD-L1-negative patients. The combination was well tolerated, and side effects were similar to what was expected from single agent (P). Conclusion In this study, the combination of indoximod and (P) was well tolerated and showed antitumor efficacy that is worth further evaluation in selected patients with advanced melanoma.
Collapse
Affiliation(s)
- Yousef Zakharia
- University of Iowa Holden Comprehensive Cancer Center, Iowa City, Iowa, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jiayi Yu
- NewLink Genetics Corp, Ames, Iowa, USA
| | - Steven S Shen
- University of Minnesota Institute for Health Informatics, Minneapolis, Minnesota, USA
| | | | | | - David Munn
- Augusta University, Augusta, Georgia, USA
| | - Mohammed Milhem
- University of Iowa Holden Comprehensive Cancer Center, Iowa City, Iowa, USA
| |
Collapse
|
80
|
Popp FC, Capino I, Bartels J, Damanakis AI, Li J, Datta RR, Löser H, Zhao Y, Quaas A, Lohneis P, Bruns CJ. Expression of Immune Checkpoint Regulators IDO, VISTA, LAG3, and TIM3 in Resected Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2021; 13:2689. [PMID: 34072549 PMCID: PMC8198722 DOI: 10.3390/cancers13112689] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 05/20/2021] [Indexed: 01/22/2023] Open
Abstract
Pancreatic cancer features elaborate mechanisms of immune evasion. The potential of new immune molecules was explored to restore the antitumor immune response. If these immune molecules are associated with poor survival, specific drugs could take effect. Here, we analyze the expression of VISTA, LAG3, IDO, and TIM3 on tumor-infiltrating lymphocytes (TILs) and its impact on patient survival. We analyzed 153 pancreatic cancer patients from the prospectively managed database of the multicentered PANCALYZE study. Immunohistochemistry on a tissue microarray assessed VISTA, LAG3, IDO, and TIM3 expression of TILs from the patients undergoing primary resection. Complementarily, we analyzed publicly available transcriptomic data (n = 903). Successful completion of chemotherapy, and lymph node status were independent predictors of survival in the multivariate analysis of the clinicopathologic parameters. Fifteen tumors were exclusively VISTA-positive, thirteen tumors expressed VISTA together with TIM3, and ten tumors expressed VISTA together with IDO. Patients featuring tumors with high numbers of IDO-positive TILs had better patient survival (p = 0.037). VISTA, LAG3, and TIM3 expression did not correlate with survival. The analysis of publicly available data did not show survival differences. Tumors rarely co-express more than two immune molecules at the same time, and VISTA is most frequently co-expressed. Although IDO generally inhibits T-cell proliferation, a high expression of IDO was associated with improved survival. We expect immune checkpoint inhibitors against VISTA, LAG3, and TIM3 to be inefficient in a clinical application.
Collapse
Affiliation(s)
- Felix C. Popp
- Department of General, Visceral, Cancer and Transplantation Surgery, University of Cologne, 50937 Cologne, Germany; (F.C.P.); (I.C.); (J.B.); (A.I.D.); (J.L.); (R.R.D.); (Y.Z.)
| | - Ingracia Capino
- Department of General, Visceral, Cancer and Transplantation Surgery, University of Cologne, 50937 Cologne, Germany; (F.C.P.); (I.C.); (J.B.); (A.I.D.); (J.L.); (R.R.D.); (Y.Z.)
| | - Joana Bartels
- Department of General, Visceral, Cancer and Transplantation Surgery, University of Cologne, 50937 Cologne, Germany; (F.C.P.); (I.C.); (J.B.); (A.I.D.); (J.L.); (R.R.D.); (Y.Z.)
| | - Alexander I. Damanakis
- Department of General, Visceral, Cancer and Transplantation Surgery, University of Cologne, 50937 Cologne, Germany; (F.C.P.); (I.C.); (J.B.); (A.I.D.); (J.L.); (R.R.D.); (Y.Z.)
| | - Jiahui Li
- Department of General, Visceral, Cancer and Transplantation Surgery, University of Cologne, 50937 Cologne, Germany; (F.C.P.); (I.C.); (J.B.); (A.I.D.); (J.L.); (R.R.D.); (Y.Z.)
| | - Rabi R. Datta
- Department of General, Visceral, Cancer and Transplantation Surgery, University of Cologne, 50937 Cologne, Germany; (F.C.P.); (I.C.); (J.B.); (A.I.D.); (J.L.); (R.R.D.); (Y.Z.)
| | - Heike Löser
- Institute of Pathology, University of Cologne, 50937 Cologne, Germany; (H.L.); (A.Q.); (P.L.)
| | - Yue Zhao
- Department of General, Visceral, Cancer and Transplantation Surgery, University of Cologne, 50937 Cologne, Germany; (F.C.P.); (I.C.); (J.B.); (A.I.D.); (J.L.); (R.R.D.); (Y.Z.)
| | - Alexander Quaas
- Institute of Pathology, University of Cologne, 50937 Cologne, Germany; (H.L.); (A.Q.); (P.L.)
| | - Philipp Lohneis
- Institute of Pathology, University of Cologne, 50937 Cologne, Germany; (H.L.); (A.Q.); (P.L.)
| | - Christiane J. Bruns
- Department of General, Visceral, Cancer and Transplantation Surgery, University of Cologne, 50937 Cologne, Germany; (F.C.P.); (I.C.); (J.B.); (A.I.D.); (J.L.); (R.R.D.); (Y.Z.)
| | | |
Collapse
|
81
|
Bone marrow dendritic cell aggregates associate with systemic immune dysregulation in chronic myelomonocytic leukemia. Blood Adv 2021; 4:5425-5430. [PMID: 33152058 DOI: 10.1182/bloodadvances.2020002415] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/28/2020] [Indexed: 11/20/2022] Open
Abstract
Key Points
Systemic immune microenvironment signatures in CMML indicate an altered T- and natural killer cell balance. CMML bone marrow dendritic cell aggregates associate with disease progression and systemic regulatory T-cell phenotypic switch.
Collapse
|
82
|
Altered ratio of dendritic cell subsets in skin-draining lymph nodes promotes Th2-driven contact hypersensitivity. Proc Natl Acad Sci U S A 2021; 118:2021364118. [PMID: 33431694 DOI: 10.1073/pnas.2021364118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) specialize in the production of type I IFN (IFN-I). pDCs can be depleted in vivo by injecting diphtheria toxin (DT) in a mouse in which pDCs express a diphtheria toxin receptor (DTR) transgene driven by the human CLEC4C promoter. This promoter is enriched for binding sites for TCF4, a transcription factor that promotes pDC differentiation and expression of pDC markers, including CLEC4C. Here, we found that injection of DT in CLEC4C-DTR+ mice markedly augmented Th2-dependent skin inflammation in a model of contact hypersensitivity (CHS) induced by the hapten fluorescein isothiocyanate. Unexpectedly, this biased Th2 response was independent of reduced IFN-I accompanying pDC depletion. In fact, DT treatment altered the representation of conventional dendritic cells (cDCs) in the skin-draining lymph nodes during the sensitization phase of CHS; there were fewer Th1-priming CD326+ CD103+ cDC1 and more Th2-priming CD11b+ cDC2. Single-cell RNA-sequencing of CLEC4C-DTR+ cDCs revealed that CD326+ DCs, like pDCs, expressed DTR and were depleted together with pDCs by DT treatment. Since CD326+ DCs did not express Tcf4, DTR expression might be driven by yet-undefined transcription factors activating the CLEC4C promoter. These results demonstrate that altered DC representation in the skin-draining lymph nodes during sensitization to allergens can cause Th2-driven CHS.
Collapse
|
83
|
Capochiani de Iudicibus R, Tomek P, Palmer BD, Tijono SM, Flanagan JU, Ching LM. Parallel discovery of selective and dual inhibitors of tryptophan dioxygenases IDO1 and TDO2 with a newly-modified enzymatic assay. Bioorg Med Chem 2021; 39:116160. [PMID: 33901770 DOI: 10.1016/j.bmc.2021.116160] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 11/18/2022]
Abstract
The expression of tryptophan catabolising enzyme indoleamine 2,3-dioxygenase 1 (IDO1) or tryptophan 2,3-dioxygenase 2 (TDO2) in cancers is associated with suppressed immunity and poor patient prognosis. Results from human clinical trials of IDO1 inhibitors have been disappointing. There is now a strong interest in the development of TDO2-selective or dual IDO1/TDO2 inhibitors that may surpass IDO1 inhibitors by providing broader efficacy and blocking constitutively-expressed hepatic TDO2. To expedite the discovery of novel TDO2-specific and dual inhibitors, an assay that enabled the efficient and accurate measurement of the inhibitory activity of compounds against both IDO1 and TDO2 enzymes, concurrently in the same experiment was established to screen 5,682 compounds that included the National Cancer Institute Diversity set 5, for inhibition of IDO1 and TDO2 activity. This screen identified 82 compounds that inhibited either IDO1, TDO2 or both enzymes > 50% at 20 µM. Thirty Pan Assay Interference compounds were removed from the list and the IC50 of the remaining 52 compounds against IDO1 and TDO2 was subsequently determined using the newly-developed concurrent assay. Ten compounds were confirmed as dual IDO1/TDO2 inhibitors having IC50 values under 50 µM against both enzymes and within 2-fold of each other. Six compounds with IC50 values between 1.39 and 8.41 µM were identified as potential TDO2-selective leads. The use of this concurrent protocol is anticipated to expedite the discovery of novel leads for dual and selective inhibitors against IDO1 and or TDO2 and speed the evaluation of novel analogues that will ensue.
Collapse
Affiliation(s)
- Rossella Capochiani de Iudicibus
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand.
| | - Petr Tomek
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand.
| | - Brian D Palmer
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand.
| | - Sofian M Tijono
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand.
| | - Jack U Flanagan
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand.
| | - Lai-Ming Ching
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand.
| |
Collapse
|
84
|
Investigating the effects of IDO1, PTGS2, and TGF-β1 overexpression on immunomodulatory properties of hTERT-MSCs and their extracellular vesicles. Sci Rep 2021; 11:7825. [PMID: 33837229 PMCID: PMC8035148 DOI: 10.1038/s41598-021-87153-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
The therapeutic potential of mesenchymal stem cells (MSCs) is out of the question. Yet, recent drawbacks have resulted in a strategic shift towards the application of MSC-derived cell-free products such as extracellular vesicles (EVs). Recent reports revealed that functional properties of MSCs, including EV secretion patterns, correlate with microenvironmental cues. These findings highlight the urgent need for defining the optimal circumstances for EV preparation. Considering the limitations of primary cells, we employed immortalized cells as an alternative source to prepare therapeutically sufficient EV numbers. Herein, the effects of different conditional environments are explored on human TERT-immortalized MSCs (hTERT-MSCs). The latter were transduced to overexpress IDO1, PTGS2, and TGF-β1 transgenes either alone or in combination, and their immunomodulatory properties were analyzed thereafter. Likewise, EVs derived from these various MSCs were extensively characterized. hTERT-MSCs-IDO1 exerted superior inhibitory effects on lymphocytes, significantly more than hTERT-MSCs-IFN-γ. As such, IDO1 overexpression promoted the immunomodulatory properties of such enriched EVs. Considering the limitations of cell therapy like tumor formation and possible immune responses in the host, the results presented herein might be considered as a feasible model for the induction of immunomodulation in off-the-shelf and cell-free therapeutics, especially for autoimmune diseases.
Collapse
|
85
|
Cancer Stem Cells Are Possible Key Players in Regulating Anti-Tumor Immune Responses: The Role of Immunomodulating Molecules and MicroRNAs. Cancers (Basel) 2021; 13:cancers13071674. [PMID: 33918136 PMCID: PMC8037840 DOI: 10.3390/cancers13071674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary This review provides a critical overview of the state of the art of the characterization of the immunological profile of a rare component of the tumors, denominated cancer stem cells (CSCs) or cancer initiating cells (CICs). These cells are endowed with the ability to form and propagate tumors and resistance to therapies, including the most innovative approaches. These investigations contribute to understanding the mechanisms regulating the interaction of CSCs/CICs with the immune system and identifying novel therapeutic approaches to render these cells visible and susceptible to immune responses. Abstract Cancer cells endowed with stemness properties and representing a rare population of cells within malignant lesions have been isolated from tumors with different histological origins. These cells, denominated as cancer stem cells (CSCs) or cancer initiating cells (CICs), are responsible for tumor initiation, progression and resistance to therapies, including immunotherapy. The dynamic crosstalk of CSCs/CICs with the tumor microenvironment orchestrates their fate and plasticity as well as their immunogenicity. CSCs/CICs, as observed in multiple studies, display either the aberrant expression of immunomodulatory molecules or suboptimal levels of molecules involved in antigen processing and presentation, leading to immune evasion. MicroRNAs (miRNAs) that can regulate either stemness properties or their immunological profile, with in some cases dual functions, can provide insights into these mechanisms and possible interventions to develop novel therapeutic strategies targeting CSCs/CICs and reverting their immunogenicity. In this review, we provide an overview of the immunoregulatory features of CSCs/CICs including miRNA profiles involved in the regulation of the interplay between stemness and immunological properties.
Collapse
|
86
|
Lasho T, Patnaik MM. Novel therapeutic targets for chronic myelomonocytic leukemia. Best Pract Res Clin Haematol 2021; 34:101244. [PMID: 33762099 DOI: 10.1016/j.beha.2021.101244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Chronic myelomonocytic leukemia (CMML) is a rare, age-related myeloid neoplasm with overlapping features of myelodysplastic syndromes/myeloproliferative neoplasms. Although gene mutations involving TET2, ASXL1 and SRSF2 are common, there are no specific molecular alterations that define the disease. Allogeneic stem cell transplant is the only curative option, with most patients not qualifying, due to advanced age at diagnosis and comorbidities. The only approved treatment options are hypomethylating agents; drugs that fail to alter the disease course or affect mutant allele burdens. Clinically CMML can be sub-classified into proliferative (pCMML) and dysplastic (dCMML) subtypes, with pCMML being associated with signaling mutations, myeloproliferative features, and a shorter overall survival. Given the paucity of effective treatment strategies there is a need for rationally informed and biomarker driven studies. This report will discuss current and prospective therapies for CMML and discuss the role for personalized therapeutics.
Collapse
Affiliation(s)
- Terra Lasho
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Mrinal M Patnaik
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
87
|
Shadbad MA, Hajiasgharzadeh K, Derakhshani A, Silvestris N, Baghbanzadeh A, Racanelli V, Baradaran B. From Melanoma Development to RNA-Modified Dendritic Cell Vaccines: Highlighting the Lessons From the Past. Front Immunol 2021; 12:623639. [PMID: 33692796 PMCID: PMC7937699 DOI: 10.3389/fimmu.2021.623639] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
Although melanoma remains the deadliest skin cancer, the current treatment has not resulted in the desired outcomes. Unlike chemotherapy, immunotherapy has provided more tolerable approaches and revolutionized cancer therapy. Although dendritic cell-based vaccines have minor side effects, the undesirable response rates of traditional approaches have posed questions about their clinical translation. The immunosuppressive tumor microenvironment can be the underlying reason for their low response rates. Immune checkpoints and indoleamine 2,3-dioxygenase have been implicated in the induction of immunosuppressive tumor microenvironment. Growing evidence indicates that the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase/Protein kinase B (PKB) (PI3K/AKT) pathways, as the main oncogenic pathways of melanoma, can upregulate the tumoral immune checkpoints, like programmed death-ligand 1. This study briefly represents the main oncogenic pathways of melanoma and highlights the cross-talk between these oncogenic pathways with indoleamine 2,3-dioxygenase, tumoral immune checkpoints, and myeloid-derived suppressor cells. Moreover, this study sheds light on a novel tumor antigen on melanoma, which has substantial roles in tumoral immune checkpoints expression, indoleamine 2,3-dioxygenase secretion, and stimulating the oncogenic pathways. Finally, this review collects the lessons from the previous unsuccessful trials and integrates their lessons with new approaches in RNA-modified dendritic cell vaccines. Unlike traditional approaches, the advances in single-cell RNA-sequencing techniques and RNA-modified dendritic cell vaccines along with combined therapy of the immune checkpoint inhibitors, indoleamine 2,3-dioxygenase inhibitor, and RNA-modified dendritic cell-based vaccine can overcome these auto-inductive loops and pave the way for developing robust dendritic cell-based vaccines with the most favorable response rate and the least side effects.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/adverse effects
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/therapeutic use
- Cancer Vaccines/adverse effects
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Cancer Vaccines/therapeutic use
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Dendritic Cells/transplantation
- Humans
- Immune Checkpoint Proteins/metabolism
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Melanoma/genetics
- Melanoma/immunology
- Melanoma/metabolism
- Melanoma/therapy
- Myeloid-Derived Suppressor Cells/immunology
- Myeloid-Derived Suppressor Cells/metabolism
- RNA, Small Interfering/adverse effects
- RNA, Small Interfering/genetics
- RNA, Small Interfering/immunology
- RNA, Small Interfering/therapeutic use
- Signal Transduction
- Skin Neoplasms/genetics
- Skin Neoplasms/immunology
- Skin Neoplasms/metabolism
- Skin Neoplasms/therapy
- Tumor Escape
- Tumor Microenvironment
- Vaccines, Synthetic/adverse effects
- Vaccines, Synthetic/therapeutic use
- mRNA Vaccines
Collapse
Affiliation(s)
- Mahdi Abdoli Shadbad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
| | - Nicola Silvestris
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
- Department of Biomedical Sciences and Human Oncology, Aldo Moro University of Bari, Bari, Italy
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, Aldo Moro University of Bari, Bari, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
88
|
Cherney EC, Zhang L, Nara S, Zhu X, Gullo-Brown J, Maley D, Lin TA, Hunt JT, Huang C, Yang Z, Darienzo C, Discenza L, Ranasinghe A, Grubb M, Ziemba T, Traeger SC, Li X, Johnston K, Kopcho L, Fereshteh M, Foster K, Stefanski K, Fargnoli J, Swanson J, Brown J, Delpy D, Seitz SP, Borzilleri R, Vite G, Balog A. Discovery and Preclinical Evaluation of BMS-986242, a Potent, Selective Inhibitor of Indoleamine-2,3-dioxygenase 1. ACS Med Chem Lett 2021; 12:288-294. [PMID: 33603977 DOI: 10.1021/acsmedchemlett.0c00668] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 01/22/2021] [Indexed: 01/14/2023] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is a heme-containing dioxygenase enzyme implicated in cancer immune response. This account details the discovery of BMS-986242, a novel IDO1 inhibitor designed for the treatment of a variety of cancers including metastatic melanoma and renal cell carcinoma. Given the substantial interest around this target for cancer immunotherapy, we sought to identify a structurally differentiated clinical candidate that performs comparably to linrodostat (BMS-986205) in terms of both in vitro potency and in vivo pharmacodynamic effect in a mouse xenograft model. On the basis of its preclinical profile, BMS-986242 was selected as a candidate for clinical development.
Collapse
Affiliation(s)
- Emily C. Cherney
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Liping Zhang
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Susheel Nara
- Biocon BMS R&D Center, Bommasandra Jigani Link Rd, Bommasandra Industrial Area, Bengaluru, Karnataka 560099, India
| | - Xiao Zhu
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Johnni Gullo-Brown
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Derrick Maley
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Tai-An Lin
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - John T. Hunt
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Christine Huang
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Zheng Yang
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Celia Darienzo
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Lorell Discenza
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Asoka Ranasinghe
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Mary Grubb
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Theresa Ziemba
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Sarah C. Traeger
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Xin Li
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Kathy Johnston
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Lisa Kopcho
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Mark Fereshteh
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Kimberly Foster
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Kevin Stefanski
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Joseph Fargnoli
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Jesse Swanson
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Jennifer Brown
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Diane Delpy
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Steven P. Seitz
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Robert Borzilleri
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Gregory Vite
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Aaron Balog
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| |
Collapse
|
89
|
Yao Y, Liang H, Fang X, Zhang S, Xing Z, Shi L, Kuang C, Seliger B, Yang Q. What is the prospect of indoleamine 2,3-dioxygenase 1 inhibition in cancer? Extrapolation from the past. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:60. [PMID: 33557876 PMCID: PMC7869231 DOI: 10.1186/s13046-021-01847-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/14/2021] [Indexed: 12/14/2022]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1), a monomeric heme-containing enzyme, catalyzes the first and rate-limiting step in the kynurenine pathway of tryptophan metabolism, which plays an important role in immunity and neuronal function. Its implication in different pathophysiologic processes including cancer and neurodegenerative diseases has inspired the development of IDO1 inhibitors in the past decades. However, the negative results of the phase III clinical trial of the would-be first-in-class IDO1 inhibitor (epacadostat) in combination with an anti-PD1 antibody (pembrolizumab) in patients with advanced malignant melanoma call for a better understanding of the role of IDO1 inhibition. In this review, the current status of the clinical development of IDO1 inhibitors will be introduced and the key pre-clinical and clinical data of epacadostat will be summarized. Moreover, based on the cautionary notes obtained from the clinical readout of epacadostat, strategies for the identification of reliable predictive biomarkers and pharmacodynamic markers as well as for the selection of the tumor types to be treated with IDO1inhibitors will be discussed.
Collapse
Affiliation(s)
- Yu Yao
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, 200438, Shanghai, China
| | - Heng Liang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, 200438, Shanghai, China
| | - Xin Fang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, 200438, Shanghai, China
| | - Shengnan Zhang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, 200438, Shanghai, China
| | - Zikang Xing
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, 200438, Shanghai, China
| | - Lei Shi
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, 200438, Shanghai, China
| | - Chunxiang Kuang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, 200092, Shanghai, China
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06112, Halle (Saale), Germany
| | - Qing Yang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, 200438, Shanghai, China.
| |
Collapse
|
90
|
Passiglia F, Reale ML, Cetoretta V, Novello S. Immune-Checkpoint Inhibitors Combinations in Metastatic NSCLC: New Options on the Horizon? Immunotargets Ther 2021; 10:9-26. [PMID: 33575224 PMCID: PMC7872895 DOI: 10.2147/itt.s253581] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/13/2021] [Indexed: 11/23/2022] Open
Abstract
The therapeutic targeting of the programmed death-1 (PD-1)/programmed death ligand-1 (PD-L1) axis marked a milestone in the treatment of non-small cell lung cancer (NSCLC), leading to unprecedented response duration and long-term survival for a relevant subgroup of patients affected by non-oncogene-addicted, metastatic disease. However, the biological heterogeneity as well as the occurrence of innate/acquired resistance are well-known phenomena which significantly affect the therapeutic response to immunotherapy. To date, we are moving towards the second phase of the "immune-revolution", characterized by the advent of new immune-checkpoint inhibitors combinations, aiming to target the main resistance pathways and ultimately increase the number of NSCLC patients who may derive long-term clinical benefit from immunotherapy. In this review, we provide an updated and comprehensive overview of the main PD-1/PD-L1 inhibitors' combination approaches under clinical investigation in non-oncogene addicted, metastatic NSCLC patients, including checkpoints (other than CTLA-4) as well as "immune-metabolism" modulators, DNA repair pathway inhibitors, antiangiogenic agents, cytokines, and a new generation of vaccines, with the final aim of identifying the most promising options on the horizon.
Collapse
Affiliation(s)
- Francesco Passiglia
- Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, Orbassano (TO), Italy
| | - Maria Lucia Reale
- Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, Orbassano (TO), Italy
| | - Valeria Cetoretta
- Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, Orbassano (TO), Italy
| | - Silvia Novello
- Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, Orbassano (TO), Italy
| |
Collapse
|
91
|
Grobben Y, de Man J, van Doornmalen AM, Muller M, Willemsen-Seegers N, Vu-Pham D, Mulder WR, Prinsen MBW, de Wit J, Sterrenburg JG, van Cauter F, den Ouden JE, van Altena AM, Massuger LF, Uitdehaag JCM, Buijsman RC, Zaman GJR. Targeting Indoleamine 2,3-Dioxygenase in Cancer Models Using the Novel Small Molecule Inhibitor NTRC 3883-0. Front Immunol 2021; 11:609490. [PMID: 33584686 PMCID: PMC7876453 DOI: 10.3389/fimmu.2020.609490] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/10/2020] [Indexed: 12/19/2022] Open
Abstract
Indoleamine 2,3-dioxygenase (IDO1) is a key regulator of immune suppression by catalyzing the oxidation of L-tryptophan. IDO1 expression has been related to poor prognosis in several cancers and to resistance to checkpoint immunotherapies. We describe the characterization of a novel small molecule IDO1 inhibitor, NTRC 3883-0, in a panel of biochemical and cell-based assays, and various cancer models. NTRC 3883-0 released the inhibitory effect of IDO1 on CD8-positive T cell proliferation in co-cultures of IDO1-overexpressing cells with healthy donor lymphocytes, demonstrating its immune modulatory activity. In a syngeneic mouse model using IDO1-overexpressing B16F10 melanoma cells, NTRC 3883-0 effectively counteracted the IDO1-induced modulation of L-tryptophan and L-kynurenine levels, demonstrating its in vivo target modulation. Finally, we studied the expression and activity of IDO1 in primary cell cultures established from the malignant ascites of ovarian cancer patients. In these cultures, IDO1 expression was induced upon stimulation with IFNγ, and its activity could be inhibited by NTRC 3883-0. Based on these results, we propose the use of ascites cell-based functional assays for future patient stratification. Our results are discussed in light of the recent discontinuation of clinical trials of more advanced IDO1 inhibitors and the reconsideration of IDO1 as a valid drug target.
Collapse
Affiliation(s)
- Yvonne Grobben
- Netherlands Translational Research Center B.V., Oss, Netherlands
| | - Jos de Man
- Netherlands Translational Research Center B.V., Oss, Netherlands
| | | | - Michelle Muller
- Netherlands Translational Research Center B.V., Oss, Netherlands
| | | | - Diep Vu-Pham
- Netherlands Translational Research Center B.V., Oss, Netherlands
| | | | | | - Joeri de Wit
- Netherlands Translational Research Center B.V., Oss, Netherlands
| | | | - Freek van Cauter
- Netherlands Translational Research Center B.V., Oss, Netherlands
| | - Judith E. den Ouden
- Department of Obstetrics and Gynaecology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Anne M. van Altena
- Department of Obstetrics and Gynaecology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Leon F. Massuger
- Department of Obstetrics and Gynaecology, Radboud University Medical Centre, Nijmegen, Netherlands
| | | | | | | |
Collapse
|
92
|
Mendes A, Gigan JP, Rodriguez Rodrigues C, Choteau SA, Sanseau D, Barros D, Almeida C, Camosseto V, Chasson L, Paton AW, Paton JC, Argüello RJ, Lennon-Duménil AM, Gatti E, Pierre P. Proteostasis in dendritic cells is controlled by the PERK signaling axis independently of ATF4. Life Sci Alliance 2020; 4:4/2/e202000865. [PMID: 33443099 PMCID: PMC7756897 DOI: 10.26508/lsa.202000865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022] Open
Abstract
Differentiated dendritic cells display an unusual activation of the integrated stress response, which is necessary for normal type-I Interferon production and cell migration. In stressed cells, phosphorylation of eukaryotic initiation factor 2α (eIF2α) controls transcriptome-wide changes in mRNA translation and gene expression known as the integrated stress response. We show here that DCs are characterized by high eIF2α phosphorylation, mostly caused by the activation of the ER kinase PERK (EIF2AK3). Despite high p-eIF2α levels, DCs display active protein synthesis and no signs of a chronic integrated stress response. This biochemical specificity prevents translation arrest and expression of the transcription factor ATF4 during ER-stress induction by the subtilase cytotoxin (SubAB). PERK inactivation, increases globally protein synthesis levels and regulates IFN-β expression, while impairing LPS-stimulated DC migration. Although the loss of PERK activity does not impact DC development, the cross talk existing between actin cytoskeleton dynamics; PERK and eIF2α phosphorylation is likely important to adapt DC homeostasis to the variations imposed by the immune contexts.
Collapse
Affiliation(s)
- Andreia Mendes
- Aix Marseille Université, Centre National de la Recherch Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille Luminy (CIML), CENTURI, Marseille, France.,Department of Medical Sciences, Institute for Research in Biomedicine (iBiMED) and Ilidio Pinho Foundation, University of Aveiro, Aveiro, Portugal.,International Associated Laboratory (LIA) CNRS "Mistra", Marseille, France
| | - Julien P Gigan
- Aix Marseille Université, Centre National de la Recherch Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille Luminy (CIML), CENTURI, Marseille, France
| | - Christian Rodriguez Rodrigues
- Aix Marseille Université, Centre National de la Recherch Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille Luminy (CIML), CENTURI, Marseille, France
| | - Sébastien A Choteau
- Aix Marseille Université, Centre National de la Recherch Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille Luminy (CIML), CENTURI, Marseille, France.,Aix-Marseille Université, INSERM, Theories and Approaches of Genomic Complexity (TAGC), CENTURI, Marseille, France
| | - Doriane Sanseau
- INSERM U932, Institut Curie, ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043, Paris, France
| | - Daniela Barros
- Aix Marseille Université, Centre National de la Recherch Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille Luminy (CIML), CENTURI, Marseille, France.,Department of Medical Sciences, Institute for Research in Biomedicine (iBiMED) and Ilidio Pinho Foundation, University of Aveiro, Aveiro, Portugal.,International Associated Laboratory (LIA) CNRS "Mistra", Marseille, France
| | - Catarina Almeida
- Department of Medical Sciences, Institute for Research in Biomedicine (iBiMED) and Ilidio Pinho Foundation, University of Aveiro, Aveiro, Portugal.,International Associated Laboratory (LIA) CNRS "Mistra", Marseille, France
| | - Voahirana Camosseto
- Aix Marseille Université, Centre National de la Recherch Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille Luminy (CIML), CENTURI, Marseille, France.,International Associated Laboratory (LIA) CNRS "Mistra", Marseille, France.,INSERM U932, Institut Curie, ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043, Paris, France
| | - Lionel Chasson
- Aix Marseille Université, Centre National de la Recherch Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille Luminy (CIML), CENTURI, Marseille, France
| | - Adrienne W Paton
- Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, Australia
| | - James C Paton
- Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, Australia
| | - Rafael J Argüello
- Aix Marseille Université, Centre National de la Recherch Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille Luminy (CIML), CENTURI, Marseille, France.,INSERM U932, Institut Curie, ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043, Paris, France
| | | | - Evelina Gatti
- Aix Marseille Université, Centre National de la Recherch Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille Luminy (CIML), CENTURI, Marseille, France .,Department of Medical Sciences, Institute for Research in Biomedicine (iBiMED) and Ilidio Pinho Foundation, University of Aveiro, Aveiro, Portugal.,International Associated Laboratory (LIA) CNRS "Mistra", Marseille, France.,INSERM U932, Institut Curie, ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043, Paris, France
| | - Philippe Pierre
- Aix Marseille Université, Centre National de la Recherch Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille Luminy (CIML), CENTURI, Marseille, France .,Department of Medical Sciences, Institute for Research in Biomedicine (iBiMED) and Ilidio Pinho Foundation, University of Aveiro, Aveiro, Portugal.,International Associated Laboratory (LIA) CNRS "Mistra", Marseille, France.,INSERM U932, Institut Curie, ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043, Paris, France
| |
Collapse
|
93
|
O'Melia MJ, Rohner NA, Manspeaker MP, Francis DM, Kissick HT, Thomas SN. Quality of CD8 + T cell immunity evoked in lymph nodes is compartmentalized by route of antigen transport and functional in tumor context. SCIENCE ADVANCES 2020; 6:eabd7134. [PMID: 33310857 PMCID: PMC7732197 DOI: 10.1126/sciadv.abd7134] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/29/2020] [Indexed: 05/05/2023]
Abstract
Revealing the mechanisms that underlie the expansion of antitumor CD8+ T cells that are associated with improved clinical outcomes is critical to improving immunotherapeutic management of melanoma. How the lymphatic system, which orchestrates the complex sensing of antigen by lymphocytes to mount an adaptive immune response, facilitates this response in the context of malignancy is incompletely understood. To delineate the effects of lymphatic transport and tumor-induced lymphatic and lymph node (LN) remodeling on the elicitation of CD8+ T cell immunity within LNs, we designed a suite of nanoscale biomaterial tools enabling the quantification of antigen access and presentation within the LN and resulting influence on T cell functions. The expansion of antigen-specific stem-like and cytotoxic CD8+ T cell pools was revealed to be sensitive to the mechanism of lymphatic transport to LNs, demonstrating the potential for nanoengineering strategies targeting LNs to optimize cancer immunotherapy in eliciting antitumor CD8+ T cell immunity.
Collapse
Affiliation(s)
- M J O'Melia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - N A Rohner
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - M P Manspeaker
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - D M Francis
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - H T Kissick
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - S N Thomas
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| |
Collapse
|
94
|
Zhu Y, Jiang C, Liu Y, Li Y, Wu H, Feng J, Xu Y. Association between IDO activity and prognosis in patients with non-small cell lung cancer after radiotherapy. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1169. [PMID: 33241018 PMCID: PMC7576049 DOI: 10.21037/atm-20-5634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Indoleamine 2,3-dioxygenase (IDO), a limiting enzyme in the IDO/kynurenine (Kyn) pathway, converts tryptophan (Trp) into Kyn, and plays a significant role in immune suppression and tumor immune evasion. This study aimed to investigate the association between IDO activity and clinical outcomes in non-small cell lung cancer (NSCLC) patients who underwent radiotherapy (RT). Methods Serum Kyn and Trp levels were measured in 104 NSCLC patients by high-performance liquid chromatography at baseline, and the following RT. The correlation between IDO activity, as computed by Kyn: Trp ratios and survival was estimated using Kaplan-Meier curves. Cox proportional hazard models are used in the univariate and multivariate analyses. Results Both the Kyn levels and Kyn:Trp ratios were reduced after RT at a biologically equivalent dose (BED) of <70 Gy, while these increased at a BED of ≥70 Gy. Post/pre-Kyn levels were positively correlated with an objective response. Patients with a higher Kyn:Trp ratio pre-RT had the worse median progression-free survival (mPFS, 13.5 vs. 24.5 months, P=0.049). Higher post/pre-Kyn:Trp ratios were correlated with improved median overall survival (mOS, 23.8 months vs. not reached, P=0.032). On the multivariate analysis, pre-RT Kyn:Trp and post/pre-Kyn:Trp ratios remained as independent predictive factors for PFS and OS, respectively. Conclusions It was proved that RT could alter IDO-mediated immune activity and establish strong correlations between IDO activity and survival outcomes in NSCLC patients treated with RT. These present findings suggest that the profiling of IDO activity might allow for the prompt adjustment of RT doses and better predict patient response to RT.
Collapse
Affiliation(s)
- Yaoyao Zhu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,First Clinical Medical School, Wenzhou Medical University, Wenzhou, China
| | - Chenxue Jiang
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuanjun Liu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,First Clinical Medical School, Wenzhou Medical University, Wenzhou, China
| | - Yefei Li
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - He Wu
- First Clinical Medical School, Wenzhou Medical University, Wenzhou, China
| | - Jianguo Feng
- Laboratory Research Centre, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Yaping Xu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,First Clinical Medical School, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
95
|
Sosa Cuevas E, Ouaguia L, Mouret S, Charles J, De Fraipont F, Manches O, Valladeau-Guilemond J, Bendriss-Vermare N, Chaperot L, Aspord C. BDCA1 + cDC2s, BDCA2 + pDCs and BDCA3 + cDC1s reveal distinct pathophysiologic features and impact on clinical outcomes in melanoma patients. Clin Transl Immunology 2020; 9:e1190. [PMID: 33282290 PMCID: PMC7684973 DOI: 10.1002/cti2.1190] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Objectives Dendritic cells play a pivotal but still enigmatic role in the control of tumor development. Composed of specialised subsets (cDC1s, cDC2s, pDCs), DCs are critical in triggering and shaping antitumor immune responses. Yet, tumors exploit plasticity of DCs to subvert their functions and escape from immune control. This challenging controversy prompted us to explore the pathophysiological role of cDCs and pDCs in melanoma, where their precise and coordinated involvement remains to be deciphered. Methods We investigated in melanoma patients the phenotypic and functional features of circulating and tumor‐infiltrating BDCA1+ cDC2s, BDCA2+ pDCs and BDCA3+ cDC1s and assessed their clinical impact. Results Principal component analyses (PCA) based on phenotypic or functional parameters of DC subsets revealed intra‐group clustering, highlighting specific features of DCs in blood and tumor infiltrate of patients compared to healthy donors. DC subsets exhibited perturbed frequencies in the circulation and actively infiltrated the tumor site, while harbouring a higher activation status. Whereas cDC2s and pDCs displayed an altered functionality in response to TLR triggering, circulating and tumor‐infiltrating cDC1s preserved potent competences associated with improved prognosis. Notably, the proportion of circulating cDC1s predicted the clinical outcome of melanoma patients. Conclusion Such understanding uncovers critical and distinct impact of each DC subset on clinical outcomes and unveils fine‐tuning of interconnections between DCs in melanoma. Elucidating the mechanisms of DC subversion by tumors could help designing new therapeutic strategies exploiting the potentialities of these powerful immune players and their cross‐talks, while counteracting their skewing by tumors, to achieve immune control and clinical success.
Collapse
Affiliation(s)
- Eleonora Sosa Cuevas
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble 38000 France.,R&D Laboratory Etablissement Français du Sang Auvergne-Rhône-Alpes Grenoble 38000 France
| | - Laurissa Ouaguia
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble 38000 France.,R&D Laboratory Etablissement Français du Sang Auvergne-Rhône-Alpes Grenoble 38000 France
| | - Stephane Mouret
- Dermatology clinic Grenoble University Hospital Grenoble F-38043 France
| | - Julie Charles
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble 38000 France.,Dermatology clinic Grenoble University Hospital Grenoble F-38043 France
| | - Florence De Fraipont
- Medical Unit of Molecular genetic (hereditary diseases and oncology) Grenoble University Hospital Grenoble F-38043 France
| | - Olivier Manches
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble 38000 France.,R&D Laboratory Etablissement Français du Sang Auvergne-Rhône-Alpes Grenoble 38000 France
| | - Jenny Valladeau-Guilemond
- INSERM 1052 CNRS 5286 Centre Léon Bérard Centre de Recherche en Cancérologie de Lyon Université Claude Bernard Lyon 1 Univ Lyon Lyon 69373 France
| | - Nathalie Bendriss-Vermare
- INSERM 1052 CNRS 5286 Centre Léon Bérard Centre de Recherche en Cancérologie de Lyon Université Claude Bernard Lyon 1 Univ Lyon Lyon 69373 France
| | - Laurence Chaperot
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble 38000 France.,R&D Laboratory Etablissement Français du Sang Auvergne-Rhône-Alpes Grenoble 38000 France
| | - Caroline Aspord
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble 38000 France.,R&D Laboratory Etablissement Français du Sang Auvergne-Rhône-Alpes Grenoble 38000 France
| |
Collapse
|
96
|
Salvador-Coloma C, Santaballa A, Sanmartín E, Calvo D, García A, Hervás D, Cordón L, Quintas G, Ripoll F, Panadero J, Font de Mora J. Immunosuppressive profiles in liquid biopsy at diagnosis predict response to neoadjuvant chemotherapy in triple-negative breast cancer. Eur J Cancer 2020; 139:119-134. [DOI: 10.1016/j.ejca.2020.08.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/07/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022]
|
97
|
Heidari F, Ramezani A, Erfani N, Razmkhah M. Indoleamine 2, 3-Dioxygenase: A Professional Immunomodulator and Its Potential Functions in Immune Related Diseases. Int Rev Immunol 2020; 41:346-363. [DOI: 10.1080/08830185.2020.1836176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fahimeh Heidari
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Ramezani
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasrollah Erfani
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboobeh Razmkhah
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
98
|
Takasu C, Nishi M, Yoshikawa K, Tokunaga T, Kashihara H, Yoshimoto T, Shimada M. Impact of sidedness of colorectal cancer on tumor immunity. PLoS One 2020; 15:e0240408. [PMID: 33045001 PMCID: PMC7549786 DOI: 10.1371/journal.pone.0240408] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/26/2020] [Indexed: 12/11/2022] Open
Abstract
Background Clinical and molecular characteristics differ between right-sided and left-sided colorectal cancer (CRC). This study aimed to clarify the correlation between CRC sidedness and tumor immunity. Methods A total of 102 patients who underwent curative colectomy for stage II/III CRC were included in this study. The expression of programmed cell death (PD)-1, PD1-ligand 1 (PD-L1), forkhead box P3 (Foxp3), transforming growth factor (TGF)-β, and indoleamine-pyrrole 2,3-dioxygenase (IDO) were examined using immunohistochemistry and the relationships between sidedness and several prognostic factors were examined. Results Clinicopathological factors were not significantly different between right- and left-sided CRC. The tumor immunity-related molecule PD-L1 was more highly expressed in right-sided than in left-sided CRC (62.9% vs. 30.6%, p<0.01). No significant difference was found in overall survival (OS) and disease-free survival (DFS) by sidedness. PD-1 and Foxp3 expression were significant prognostic factors for OS. Lymph node metastasis (N), lymphatic invasion (ly), and PD-L1 expression were significant prognostic factors for DFS. In right-sided CRC, IDO-positive patients had a poor OS (p<0.05), and IDO was the only independent prognostic indicator for OS. N and venous invasion were identified as independent prognostic indicators for DFS. In left-sided CRC, univariate analysis identified PD-1, PD-L1, and Foxp3 expression as significant predictors of poor OS. Multivariate analysis confirmed PD-L1 expression as an independent prognostic indicator. N, ly, and PD-L1 expression levels were identified as significant predictors of poor DFS. Conclusions The prognostic factors were IDO in right-sided CRC and PD-L1 and Foxp3 in left-sided CRC. These findings indicated that tumor immunity might play different roles depending upon sidedness. Tumor location may be an important factor to consider when assessing immune response and therapeutic decisions in CRC patients.
Collapse
Affiliation(s)
- Chie Takasu
- Department of Surgery, The University of Tokushima, Tokushima, Japan
- * E-mail:
| | - Masaaki Nishi
- Department of Surgery, The University of Tokushima, Tokushima, Japan
| | - Kozo Yoshikawa
- Department of Surgery, The University of Tokushima, Tokushima, Japan
| | - Takuya Tokunaga
- Department of Surgery, The University of Tokushima, Tokushima, Japan
| | - Hideya Kashihara
- Department of Surgery, The University of Tokushima, Tokushima, Japan
| | | | - Mitsuo Shimada
- Department of Surgery, The University of Tokushima, Tokushima, Japan
| |
Collapse
|
99
|
Verneau J, Sautés-Fridman C, Sun CM. Dendritic cells in the tumor microenvironment: prognostic and theranostic impact. Semin Immunol 2020; 48:101410. [PMID: 33011065 DOI: 10.1016/j.smim.2020.101410] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/24/2020] [Accepted: 09/04/2020] [Indexed: 12/30/2022]
Abstract
Among all immune cells, dendritic cells (DC) are the most potent APCs in the immune system and are central players of the adaptive immune response. There are phenotypically and functionally distinct DC populations derived from blood and lymphoid organ including plasmacytoid DC (pDC), conventional DC (cDC1 and cDC2) and monocyte-derived DC (moDC). The interaction between these different DCs and tumors is a dynamic process where DC-mediated cross-priming of tumor specific T cells is critical in initiating and sustaining anti-tumor immunity. Their presence within the tumor tends to induce T cell responses and to reduce cancer progression and is associated with improved patient survival. This review will focus on the distinct tumor-associated DCs (TADC) subsets in the tumor microenvironment (TME), their roles in tumor immunology and their prognostic and/or predictive impact in human cancers. The development of therapeutic immunity strategies targeting TADC is promising to enhance their immune-stimulatory capacity in cancers and improve the efficacy of current immunotherapies including immune checkpoint inhibitor (ICI) blockade and DC-based therapies.
Collapse
Affiliation(s)
- Johanna Verneau
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006, Paris, France; Centre de Recherche des Cordeliers, 15 rue de l'Ecole de Médecine, 75006, Paris, France
| | - Catherine Sautés-Fridman
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006, Paris, France; Centre de Recherche des Cordeliers, 15 rue de l'Ecole de Médecine, 75006, Paris, France
| | - Cheng-Ming Sun
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006, Paris, France; Centre de Recherche des Cordeliers, 15 rue de l'Ecole de Médecine, 75006, Paris, France.
| |
Collapse
|
100
|
Meireson A, Devos M, Brochez L. IDO Expression in Cancer: Different Compartment, Different Functionality? Front Immunol 2020; 11:531491. [PMID: 33072086 PMCID: PMC7541907 DOI: 10.3389/fimmu.2020.531491] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is a cytosolic haem-containing enzyme involved in the degradation of tryptophan to kynurenine. Although initially thought to be solely implicated in the modulation of innate immune responses during infection, subsequent discoveries demonstrated IDO1 as a mechanism of acquired immune tolerance. In cancer, IDO1 expression/activity has been observed in tumor cells as well as in the tumor-surrounding stroma, which is composed of endothelial cells, immune cells, fibroblasts, and mesenchymal cells. IDO1 expression/activity has also been reported in the peripheral blood. This manuscript reviews available data on IDO1 expression, mechanisms of its induction, and its function in cancer for each of these compartments. In-depth study of the biological function of IDO1 according to the expressing (tumor) cell can help to understand if and when IDO1 inhibition can play a role in cancer therapy.
Collapse
Affiliation(s)
- Annabel Meireson
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Michael Devos
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium
| | - Lieve Brochez
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|