51
|
Abstract
Dietary iron absorption and systemic iron traffic are tightly controlled by hepcidin, a liver-derived peptide hormone. Hepcidin inhibits iron entry into plasma by binding to and inactivating the iron exporter ferroportin in target cells, such as duodenal enterocytes and tissue macrophages. Hepcidin is induced in response to increased body iron stores to inhibit further iron absorption and prevent iron overload. The mechanism involves the BMP/SMAD signaling pathway, which triggers transcriptional hepcidin induction. Inactivating mutations in components of this pathway cause hepcidin deficiency, which allows inappropriately increased iron absorption and efflux into the bloodstream. This leads to hereditary hemochromatosis (HH), a genetically heterogenous autosomal recessive disorder of iron metabolism characterized by gradual buildup of unshielded non-transferrin bound iron (NTBI) in plasma and excessive iron deposition in tissue parenchymal cells. The predominant HH form is linked to mutations in the HFE gene and constitutes the most frequent genetic disorder in Caucasians. Other, more severe and rare variants are caused by inactivating mutations in HJV (hemojuvelin), HAMP (hepcidin) or TFR2 (transferrin receptor 2). Mutations in SLC40A1 (ferroportin) that cause hepcidin resistance recapitulate the biochemical phenotype of HH. However, ferroportin-related hemochromatosis is transmitted in an autosomal dominant manner. Loss-of-function ferroportin mutations lead to ferroportin disease, characterized by iron overload in macrophages and low transferrin saturation. Aceruloplasminemia and atransferrinemia are further inherited disorders of iron overload caused by deficiency in ceruloplasmin or transferrin, the plasma ferroxidase and iron carrier, respectively.
Collapse
Affiliation(s)
- Kostas Pantopoulos
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
52
|
Hepcidin-mediated hypoferremic response to acute inflammation requires a threshold of Bmp6/Hjv/Smad signaling. Blood 2018; 132:1829-1841. [PMID: 30213871 DOI: 10.1182/blood-2018-03-841197] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 09/11/2018] [Indexed: 01/01/2023] Open
Abstract
Systemic iron balance is controlled by hepcidin, a liver hormone that limits iron efflux to the bloodstream by promoting degradation of the iron exporter ferroportin in target cells. Iron-dependent hepcidin induction requires hemojuvelin (HJV), a bone morphogenetic protein (BMP) coreceptor that is disrupted in juvenile hemochromatosis, causing dramatic hepcidin deficiency and tissue iron overload. Hjv-/- mice recapitulate phenotypic hallmarks of hemochromatosis but exhibit blunted hepcidin induction following lipopolysaccharide (LPS) administration. We show that Hjv-/- mice fail to mount an appropriate hypoferremic response to acute inflammation caused by LPS, the lipopeptide FSL1, or Escherichia coli infection because residual hepcidin does not suffice to drastically decrease macrophage ferroportin levels. Hfe-/- mice, a model of milder hemochromatosis, exhibit almost wild-type inflammatory hepcidin expression and associated effects, whereas double Hjv-/-Hfe-/- mice phenocopy single Hjv-/- counterparts. In primary murine hepatocytes, Hjv deficiency does not affect interleukin-6 (IL-6)/Stat, and only slightly inhibits BMP2/Smad signaling to hepcidin; however, it severely impairs BMP6/Smad signaling and thereby abolishes synergism with the IL-6/Stat pathway. Inflammatory induction of hepcidin is suppressed in iron-deficient wild-type mice and recovers after the animals are provided overnight access to an iron-rich diet. We conclude that Hjv is required for inflammatory induction of hepcidin and controls the acute hypoferremic response by maintaining a threshold of Bmp6/Smad signaling. Our data highlight Hjv as a potential pharmacological target against anemia of inflammation.
Collapse
|
53
|
Zhang H, Zhabyeyev P, Wang S, Oudit GY. Role of iron metabolism in heart failure: From iron deficiency to iron overload. Biochim Biophys Acta Mol Basis Dis 2018; 1865:1925-1937. [PMID: 31109456 DOI: 10.1016/j.bbadis.2018.08.030] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/25/2018] [Accepted: 08/22/2018] [Indexed: 12/11/2022]
Abstract
Iron metabolism is a balancing act, and biological systems have evolved exquisite regulatory mechanisms to maintain iron homeostasis. Iron metabolism disorders are widespread health problems on a global scale and range from iron deficiency to iron-overload. Both types of iron disorders are linked to heart failure. Iron play a fundamental role in mitochondrial function and various enzyme functions and iron deficiency has a particular negative impact on mitochondria function. Given the high-energy demand of the heart, iron deficiency has a particularly negative impact on heart function and exacerbates heart failure. Iron-overload can result from excessive gut absorption of iron or frequent use of blood transfusions and is typically seen in patients with congenital anemias, sickle cell anemia and beta-thalassemia major, or in patients with primary hemochromatosis. This review provides an overview of normal iron metabolism, mechanisms underlying development of iron disorders in relation to heart failure, including iron-overload cardiomyopathy, and clinical perspective on the treatment options for iron metabolism disorders.
Collapse
Affiliation(s)
- Hao Zhang
- Division of Cardiology, Department of Medicine, Canada; Mazankowski Alberta Heart Institute, Canada
| | - Pavel Zhabyeyev
- Division of Cardiology, Department of Medicine, Canada; Mazankowski Alberta Heart Institute, Canada
| | - Shaohua Wang
- Mazankowski Alberta Heart Institute, Canada; Division of Cardiac Surgery, Department of Surgery, University of Alberta, Edmonton, Canada
| | - Gavin Y Oudit
- Division of Cardiology, Department of Medicine, Canada; Mazankowski Alberta Heart Institute, Canada.
| |
Collapse
|
54
|
The hemochromatosis protein HFE signals predominantly via the BMP type I receptor ALK3 in vivo. Commun Biol 2018; 1:65. [PMID: 30271947 PMCID: PMC6123693 DOI: 10.1038/s42003-018-0071-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 04/20/2018] [Indexed: 12/24/2022] Open
Abstract
Mutations in HFE, the most common cause of hereditary hemochromatosis, lead to iron overload. The iron overload is characterized by increased iron uptake due to lower levels of the hepatic, iron regulatory hormone hepcidin. HFE was cloned 21 years ago, but the signaling pathway is still unknown. Because bone morphogenetic protein (BMP) signaling is impaired in patients with hereditary hemochromatosis, and the interaction of HFE and the BMP type I receptor ALK3 was suggested in vitro, in vivo experiments were performed. In vivo, hepatocyte-specific Alk3-deficient and control mice were injected with either AAV2/8-Hfe-Flag or PBS. HFE overexpression in control mice results in increased hepatic hepcidin levels, p-Smad1/5 levels, and iron deficiency anemia, whereas overexpression of HFE in hepatocyte-specific Alk3-deficient mice results in no change in hepcidin, p-Smad1/5 levels, or blood parameters. These results indicate that HFE signals predominantly via ALK3 to induce hepcidin in vivo. Lisa Traeger et al. show that human hereditary hemochromatosis protein (HFE) signals through ALK3 to induce hepcidin in mice in vivo. The results validate and extend previous findings from in vitro studies that suggested a link between HFE and BMP signaling.
Collapse
|
55
|
Chen M, Zheng J, Liu G, Xu E, Wang J, Fuqua BK, Vulpe CD, Anderson GJ, Chen H. Ceruloplasmin and hephaestin jointly protect the exocrine pancreas against oxidative damage by facilitating iron efflux. Redox Biol 2018; 17:432-439. [PMID: 29883959 PMCID: PMC6007082 DOI: 10.1016/j.redox.2018.05.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 05/23/2018] [Accepted: 05/28/2018] [Indexed: 02/07/2023] Open
Abstract
Little is known about the iron efflux from the pancreas, but it is likely that multicopper ferroxidases (MCFs) are involved in this process. We thus used hephaestin (Heph) and ceruloplasmin (Cp) single-knockout mice and Heph/Cp double-knockout mice to investigate the roles of MCFs in pancreatic iron homeostasis. We found that both HEPH and CP were expressed in the mouse pancreas, and that ablation of either MCF had limited effect on the pancreatic iron levels. However, ablation of both MCFs together led to extensive pancreatic iron deposition and severe oxidative damage. Perls’ Prussian blue staining revealed that this iron deposition was predominantly in the exocrine pancreas, while the islets were spared. Consistent with these results, plasma lipase and trypsin were elevated in Heph/Cp knockout mice, indicating damage to the exocrine pancreas, while insulin secretion was not affected. These data indicate that HEPH and CP play mutually compensatory roles in facilitating iron efflux from the exocrine pancreas, and show that MCFs are able to protect the pancreas against iron-induced oxidative damage.
Collapse
Affiliation(s)
- Min Chen
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, China
| | - Jiashuo Zheng
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, China
| | - Guohao Liu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, China
| | - En Xu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, China
| | - Junzhuo Wang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, China
| | - Brie K Fuqua
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Chris D Vulpe
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Gregory J Anderson
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Huijun Chen
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, China.
| |
Collapse
|
56
|
Rishi G, Secondes ES, Nathan Subramaniam V. Hemochromatosis: Evaluation of the dietary iron model and regulation of hepcidin. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2550-2556. [PMID: 29752985 DOI: 10.1016/j.bbadis.2018.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/20/2018] [Accepted: 05/07/2018] [Indexed: 12/22/2022]
Abstract
Our knowledge of iron homeostasis has increased steadily over the last two decades; much of this has been made possible through the study of animal models of iron-related disease. Analysis of transgenic mice with deletions or perturbations in genes known to be involved in systemic or local regulation of iron metabolism has been particularly informative. The effect of these genes on iron accumulation and hepcidin regulation is traditionally compared with wildtype mice fed a high iron diet, most often a 2% carbonyl iron diet. Recent studies have indicated that a very high iron diet could be detrimental to the health of the mice and could potentially affect homeostasis of other metals, for example zinc and copper. We analyzed mice fed a diet containing either 0.25%, 0.5%, 1% or 2% carbonyl iron for two weeks and compared them with mice on a control diet. Our results indicate that a 0.25% carbonyl iron diet is sufficient to induce maximal hepatic hepcidin response. Importantly these results also demonstrate that in a chronic setting of iron administration, the amount of excess hepatic iron may not further influence hepcidin regulation and that expression of hepcidin plateaus at lower hepatic iron levels. These studies provide further insights into the regulation of this important hormone.
Collapse
Affiliation(s)
- Gautam Rishi
- The Liver Disease and Iron Disorders Research Group, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Eriza S Secondes
- The Liver Disease and Iron Disorders Research Group, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - V Nathan Subramaniam
- The Liver Disease and Iron Disorders Research Group, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Queensland, Australia.
| |
Collapse
|
57
|
Yin X, Wu Q, Monga J, Xie E, Wang H, Wang S, Zhang H, Wang ZY, Zhou T, Shi Y, Rogers J, Lin H, Min J, Wang F. HDAC1 Governs Iron Homeostasis Independent of Histone Deacetylation in Iron-Overload Murine Models. Antioxid Redox Signal 2018; 28:1224-1237. [PMID: 29113455 DOI: 10.1089/ars.2017.7161] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
AIMS Iron-overload disorders are common and could lead to significant morbidity and mortality worldwide. Due to limited treatment options, there is a great need to develop novel strategies to remove the excess body iron. To discover potential epigenetic modulator in hepcidin upregulation and subsequently decreasing iron burden, we performed an epigenetic screen. The in vivo effects of the identified compounds were further tested in iron-overload mouse models, including Hfe-/-, Hjv-/-, and hepatocyte-specific Smad4 knockout (Smad4fl/fl;Alb-Cre+) mice. RESULTS Entinostat (MS-275), the clinical used histone deacetylase 1 (HDAC1) inhibitor, was identified the most potent hepcidin agonist. Consistently, Hdac1-deficient mice also presented higher hepcidin levels than wild-type controls. Notably, the long-term treatment with entinostat in Hfe-/- mice significantly alleviated iron overload through upregulating hepcidin transcription. In contrast, entinostat showed no effect on hepcidin expression and iron levels in Smad4fl/fl;Alb-Cre+ mice. Further mechanistic studies revealed that HDAC1 suppressed expression of hepcidin through interacting with SMAD4 rather than deacetylation of SMAD4 or histone-H3 on the hepcidin promoter. INNOVATION The findings uncovered HDAC1 as a novel hepcidin suppressor through complexing with SMAD4 but not deacetylation of either histone 3 or SMAD4. In addition, our study suggested a novel implication of entinostat in treating iron-overload disorders. CONCLUSIONS Based on our results, we conclude that entinostat strongly activated hepcidin in vivo and in vitro. HDAC1 could serve as a novel hepcidin suppressor by binding to SMAD4, effect of which is independent of BMP/SMAD1/5/8 signaling. Antioxid. Redox Signal. 28, 1224-1237.
Collapse
Affiliation(s)
- Xiangju Yin
- 1 College of Life and Health Sciences, Northeastern University ; The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Public Health, School of Medicine, Zhejiang University , Hangzhou, China
- 2 Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University , Zhengzhou, China
- 3 Institute of Resources and Environment, Henan Polytechnic University , Jiaozuo, China
| | - Qian Wu
- 1 College of Life and Health Sciences, Northeastern University ; The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Public Health, School of Medicine, Zhejiang University , Hangzhou, China
- 2 Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University , Zhengzhou, China
| | - Jitender Monga
- 1 College of Life and Health Sciences, Northeastern University ; The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Public Health, School of Medicine, Zhejiang University , Hangzhou, China
| | - Enjun Xie
- 1 College of Life and Health Sciences, Northeastern University ; The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Public Health, School of Medicine, Zhejiang University , Hangzhou, China
| | - Hao Wang
- 1 College of Life and Health Sciences, Northeastern University ; The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Public Health, School of Medicine, Zhejiang University , Hangzhou, China
- 2 Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University , Zhengzhou, China
| | - Shufen Wang
- 1 College of Life and Health Sciences, Northeastern University ; The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Public Health, School of Medicine, Zhejiang University , Hangzhou, China
| | - Huizhen Zhang
- 2 Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University , Zhengzhou, China
| | - Zhan-You Wang
- 1 College of Life and Health Sciences, Northeastern University ; The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Public Health, School of Medicine, Zhejiang University , Hangzhou, China
| | - Tianhua Zhou
- 1 College of Life and Health Sciences, Northeastern University ; The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Public Health, School of Medicine, Zhejiang University , Hangzhou, China
| | - Yujun Shi
- 4 Laboratory of Pathology, West China Hospital, Sichuan University , Chengdu, China
| | - Jack Rogers
- 5 Neurochemistry Laboratory, Departments of Psychiatry and Pediatrics, Massachusetts General Hospital and Harvard Medical School , Charlestown, Massachusetts
| | - Hening Lin
- 6 Department of Chemistry and Chemical Biology, Howard Hughes Medical Institute, Cornell University , Ithaca, New York
| | - Junxia Min
- 1 College of Life and Health Sciences, Northeastern University ; The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Public Health, School of Medicine, Zhejiang University , Hangzhou, China
| | - Fudi Wang
- 1 College of Life and Health Sciences, Northeastern University ; The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Public Health, School of Medicine, Zhejiang University , Hangzhou, China
- 2 Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University , Zhengzhou, China
| |
Collapse
|
58
|
An P, Wang H, Wu Q, Wang J, Xia Z, He X, Wang X, Chen Y, Min J, Wang F. Smad7 deficiency decreases iron and haemoglobin through hepcidin up-regulation by multilayer compensatory mechanisms. J Cell Mol Med 2018; 22:3035-3044. [PMID: 29575577 PMCID: PMC5980186 DOI: 10.1111/jcmm.13546] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 01/02/2018] [Indexed: 01/06/2023] Open
Abstract
To maintain iron homoeostasis, the iron regulatory hormone hepcidin is tightly controlled by BMP-Smad signalling pathway, but the physiological role of Smad7 in hepcidin regulation remains elusive. We generated and characterized hepatocyte-specific Smad7 knockout mice (Smad7Alb/Alb ), which showed decreased serum iron, tissue iron, haemoglobin concentration, up-regulated hepcidin and increased phosphor-Smad1/5/8 levels in both isolated primary hepatocytes and liver tissues. Increased levels of hepcidin lead to reduced expression of intestinal ferroportin and mild iron deficiency anaemia. Interestingly, we found no difference in hepcidin expression or phosphor-Smad1/5/8 levels between iron-challenged Smad7Alb/Alb and Smad7flox/flox , suggesting other factors assume the role of iron-induced hepcidin regulation in Smad7 deletion. We performed RNA-seq to identify differentially expressed genes in the liver. Significantly up-regulated genes were then mapped to pathways, revealing TGF-β signalling as one of the most relevant pathways, including the up-regulated genes Smad6, Bambi and Fst (Follistatin). We found that Smad6 and Bambi-but not Follistatin-are controlled by the iron-BMP-Smad pathway. Overexpressing Smad6, Bambi or Follistatin in cells significantly reduced hepcidin expression. Smad7 functions as a key regulator of iron homoeostasis by negatively controlling hepcidin expression, and Smad6 and Smad7 have non-redundant roles. Smad6, Bambi and Follistatin serve as additional inhibitors of hepcidin in the liver.
Collapse
Affiliation(s)
- Peng An
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.,School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.,School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China.,Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Qian Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.,School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiaming Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.,School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhidan Xia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.,School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xuyan He
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.,School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinhui Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.,School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yan Chen
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Junxia Min
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.,School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fudi Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.,School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China.,Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
59
|
Oikonomidou PR, Rivella S. What can we learn from ineffective erythropoiesis in thalassemia? Blood Rev 2018; 32:130-143. [PMID: 29054350 PMCID: PMC5882559 DOI: 10.1016/j.blre.2017.10.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 09/30/2017] [Accepted: 10/02/2017] [Indexed: 02/07/2023]
Abstract
Erythropoiesis is a dynamic process regulated at multiple levels to balance proliferation, differentiation and survival of erythroid progenitors. Ineffective erythropoiesis is a key feature of various diseases, including β-thalassemia. The pathogenic mechanisms leading to ineffective erythropoiesis are complex and still not fully understood. Altered survival and decreased differentiation of erythroid progenitors are both critical processes contributing to reduced production of mature red blood cells. Recent studies have identified novel important players and provided major advances in the development of targeted therapeutic approaches. In this review, β-thalassemia is used as a paradigmatic example to describe our current knowledge on the mechanisms leading to ineffective erythropoiesis and novel treatments that may have the potential to improve the clinical phenotype of associated diseases in the future.
Collapse
Affiliation(s)
- Paraskevi Rea Oikonomidou
- Department of Pediatrics, Division of Hematology, Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, USA.
| | - Stefano Rivella
- Department of Pediatrics, Division of Hematology, Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, USA; Cell and Molecular Biology Graduate Group (CAMB), University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
60
|
Zhabyeyev P, Das SK, Basu R, Shen M, Patel VB, Kassiri Z, Oudit GY. TIMP3 deficiency exacerbates iron overload-mediated cardiomyopathy and liver disease. Am J Physiol Heart Circ Physiol 2018; 314:H978-H990. [PMID: 29373036 DOI: 10.1152/ajpheart.00597.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic iron overload results in heart and liver diseases and is a common cause of morbidity and mortality in patients with genetic hemochromatosis and secondary iron overload. We investigated the role of tissue inhibitor of metalloproteinase 3 (TIMP3) in iron overload-mediated tissue injury by subjecting male mice lacking Timp3 ( Timp3-/-) and wild-type (WT) mice to 12 wk of chronic iron overload. Whereas WT mice with iron overload developed diastolic dysfunction, iron-overloaded Timp3-/- mice showed worsened cardiac dysfunction coupled with systolic dysfunction. In the heart, loss of Timp3 was associated with increased myocardial fibrosis, greater Timp1, matrix metalloproteinase ( Mmp) 2, and Mmp9 expression, increased active MMP-2 levels, and gelatinase activity. Iron overload in Timp3-/- mice showed twofold higher iron accumulation in the liver compared with WT mice because of constituently lower levels of ferroportin. Loss of Timp3 enhanced the hepatic inflammatory response to iron overload, leading to greater neutrophil and macrophage infiltration and increased hepatic fibrosis. Expression of inflammation-related MMPs (MMP-12 and MMP-13) and inflammatory cytokines (IL-1β and monocyte chemoattractant protein-1) was elevated to a greater extent in iron-overloaded Timp3-/- livers. Gelatin zymography demonstrated equivalent increases in MMP-2 and MMP-9 levels in WT and Timp3-/- iron-overloaded livers. Loss of Timp3 enhanced the susceptibility to iron overload-mediated heart and liver injury, suggesting that Timp3 is a key protective molecule against iron-mediated pathology. NEW & NOTEWORTHY In mice, loss of tissue inhibitor of metalloproteinase 3 ( Timp3) was associated with systolic and diastolic dysfunctions, twofold higher hepatic iron accumulation (attributable to constituently lower levels of ferroportin), and increased hepatic inflammation. Loss of Timp3 enhanced the susceptibility to iron overload-mediated injury, suggesting that Timp3 plays a key protective role against iron-mediated pathology.
Collapse
Affiliation(s)
- Pavel Zhabyeyev
- Division of Cardiology, Department of Medicine, University of Alberta , Edmonton, Alberta , Canada.,Mazankowski Alberta Heart Institute, University of Alberta , Edmonton, Alberta , Canada
| | - Subhash K Das
- Division of Cardiology, Department of Medicine, University of Alberta , Edmonton, Alberta , Canada.,Mazankowski Alberta Heart Institute, University of Alberta , Edmonton, Alberta , Canada
| | - Ratnadeep Basu
- Division of Cardiology, Department of Medicine, University of Alberta , Edmonton, Alberta , Canada.,Mazankowski Alberta Heart Institute, University of Alberta , Edmonton, Alberta , Canada
| | - Mengcheng Shen
- Department of Physiology, University of Alberta , Edmonton, Alberta , Canada
| | - Vaibhav B Patel
- Division of Cardiology, Department of Medicine, University of Alberta , Edmonton, Alberta , Canada.,Mazankowski Alberta Heart Institute, University of Alberta , Edmonton, Alberta , Canada
| | - Zamaneh Kassiri
- Mazankowski Alberta Heart Institute, University of Alberta , Edmonton, Alberta , Canada.,Department of Physiology, University of Alberta , Edmonton, Alberta , Canada
| | - Gavin Y Oudit
- Division of Cardiology, Department of Medicine, University of Alberta , Edmonton, Alberta , Canada.,Mazankowski Alberta Heart Institute, University of Alberta , Edmonton, Alberta , Canada
| |
Collapse
|
61
|
Advanced iron-overload cardiomyopathy in a genetic murine model is rescued by resveratrol therapy. Biosci Rep 2018; 38:BSR20171302. [PMID: 29208771 PMCID: PMC6435471 DOI: 10.1042/bsr20171302] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/01/2017] [Accepted: 12/05/2017] [Indexed: 12/20/2022] Open
Abstract
Iron-overload cardiomyopathy is prevalent on a worldwide basis and is a major comorbidity in patients with genetic hemochromatosis and secondary iron overload. Therapies are limited in part due to lack of a valid preclinical model, which recapitulates advanced iron-overload cardiomyopathy. Male hemojuvelin (HJV) knockout (HJVKO) mice, which lack HJV, a bone morphogenetic co-receptor protein required for hepcidin expression and systemic iron homeostasis, were fed a high-iron diet starting at 4 weeks of age for a duration of 1 year. Aged HJVKO mice in response to iron overload showed increased myocardial iron deposition and mortality coupled with oxidative stress and myocardial fibrosis culminating in advanced iron-overload cardiomyopathy. In a parallel group, iron-overloaded HJVKO mice received resveratrol (240 mg/day) at 9 months of age until 1 year of age. Echocardiography and invasive pressure–volume (PV) loop analyses revealed a complete normalization of iron-overload mediated diastolic and systolic dysfunction in response to resveratrol therapy. In addition, myocardial sarcoplasmic reticulum Ca2+ ATPase (SERCa2a) levels were reduced in iron-overloaded hearts and resveratrol therapy restored SERCa2a levels and suppressed up-regulation of the sodium–calcium exchanger (NCX1). Further, iron-mediated oxidative stress and myocardial fibrosis were suppressed by resveratrol treatment with concomitant activation of the p-Akt and p-AMP-activated protein kinase (AMPK) signaling pathways. A combination of ageing and high-iron diet in male HJVKO mice results in a valid preclinical model that recapitulates iron-overload cardiomyopathy in humans. Resveratrol therapy resulted in normalization of cardiac function demonstrating that resveratrol represents a feasible therapeutic intervention to reduce the burden of iron-overload cardiomyopathy.
Collapse
|
62
|
|
63
|
Kawabata H. The mechanisms of systemic iron homeostasis and etiology, diagnosis, and treatment of hereditary hemochromatosis. Int J Hematol 2017; 107:31-43. [PMID: 29134618 DOI: 10.1007/s12185-017-2365-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 11/08/2017] [Indexed: 02/06/2023]
Abstract
Hereditary hemochromatosis (HH) is a group of genetic iron overload disorders that manifest with various symptoms, including hepatic dysfunction, diabetes, and cardiomyopathy. Classic HH type 1, which is common in Caucasians, is caused by bi-allelic mutations of HFE. Severe types of HH are caused by either bi-allelic mutations of HFE2 that encodes hemojuvelin (type 2A) or HAMP that encodes hepcidin (type 2B). HH type 3, which is of intermediate severity, is caused by bi-allelic mutations of TFR2 that encodes transferrin receptor 2. Mutations of SLC40A1 that encodes ferroportin, the only cellular iron exporter, causes either HH type 4A (loss-of-function mutations) or HH type 4B (gain-of-function mutations). Studies on these gene products uncovered a part of the mechanisms of the systemic iron regulation; HFE, hemojuvelin, and TFR2 are involved in iron sensing and stimulating hepcidin expression, and hepcidin downregulates the expression of ferroportin of the target cells. Phlebotomy is the standard treatment for HH, and early initiation of the treatment is essential for preventing irreversible organ damage. However, because of the rarity and difficulty in making the genetic diagnosis, a large proportion of patients with non-HFE HH might have been undiagnosed; therefore, awareness of this disorder is important.
Collapse
Affiliation(s)
- Hiroshi Kawabata
- Department of Hematology and Immunology, Kanazawa Medical University, 1-1 Daigaku, Uchinada-machi, Ishikawa-ken, 920-0293, Japan.
| |
Collapse
|
64
|
Canali S, Wang CY, Zumbrennen-Bullough KB, Bayer A, Babitt JL. Bone morphogenetic protein 2 controls iron homeostasis in mice independent of Bmp6. Am J Hematol 2017; 92:1204-1213. [PMID: 28815688 DOI: 10.1002/ajh.24888] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/08/2017] [Accepted: 08/14/2017] [Indexed: 12/24/2022]
Abstract
Hepcidin is a key iron regulatory hormone that controls expression of the iron exporter ferroportin to increase the iron supply when needed to support erythropoiesis and other essential functions, but to prevent the toxicity of iron excess. The bone morphogenetic protein (BMP)-SMAD signaling pathway, through the ligand BMP6 and the co-receptor hemojuvelin, is a central regulator of hepcidin transcription in the liver in response to iron. Here, we show that dietary iron loading has a residual ability to induce Smad signaling and hepcidin expression in Bmp6-/- mice, effects that are blocked by a neutralizing BMP2/4 antibody. Moreover, BMP2/4 antibody inhibits hepcidin expression and induces iron loading in wildtype mice, whereas a BMP4 antibody has no effect. Bmp2 mRNA is predominantly expressed in endothelial cells of the liver, where its baseline expression is higher, but its induction by iron is less robust than Bmp6. Mice with a conditional ablation of Bmp2 in endothelial cells exhibit hepcidin deficiency, serum iron overload, and tissue iron loading in liver, pancreas and heart, with reduced spleen iron. Together, these data demonstrate that in addition to BMP6, endothelial cell BMP2 has a non-redundant role in hepcidin regulation by iron.
Collapse
Affiliation(s)
- Susanna Canali
- Program in Anemia Signaling Research, Division of Nephrology, Program in Membrane Biology, Center for Systems Biology; Massachusetts General Hospital, Harvard Medical School; Boston Massachusetts
| | - Chia-Yu Wang
- Program in Anemia Signaling Research, Division of Nephrology, Program in Membrane Biology, Center for Systems Biology; Massachusetts General Hospital, Harvard Medical School; Boston Massachusetts
| | - Kimberly B. Zumbrennen-Bullough
- Program in Anemia Signaling Research, Division of Nephrology, Program in Membrane Biology, Center for Systems Biology; Massachusetts General Hospital, Harvard Medical School; Boston Massachusetts
| | - Abraham Bayer
- Program in Anemia Signaling Research, Division of Nephrology, Program in Membrane Biology, Center for Systems Biology; Massachusetts General Hospital, Harvard Medical School; Boston Massachusetts
| | - Jodie L. Babitt
- Program in Anemia Signaling Research, Division of Nephrology, Program in Membrane Biology, Center for Systems Biology; Massachusetts General Hospital, Harvard Medical School; Boston Massachusetts
| |
Collapse
|
65
|
Frýdlová J, Rychtarčíková Z, Gurieva I, Vokurka M, Truksa J, Krijt J. Effect of erythropoietin administration on proteins participating in iron homeostasis in Tmprss6-mutated mask mice. PLoS One 2017; 12:e0186844. [PMID: 29073189 PMCID: PMC5658091 DOI: 10.1371/journal.pone.0186844] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/09/2017] [Indexed: 11/30/2022] Open
Abstract
Tmprss6-mutated mask mice display iron deficiency anemia and high expression of hepcidin. The aim of the study was to determine the effect of erythropoietin administration on proteins participating in the control of iron homeostasis in the liver and spleen in C57BL/6 and mask mice. Administration of erythropoietin for four days at 50 IU/mouse/day increased hemoglobin and hematocrit in C57BL/6 mice, no such increase was seen in mask mice. Erythropoietin administration decreased hepcidin expression in C57BL/6 mice, but not in mask mice. Erythropoietin treatment significantly increased the spleen size in both C57BL/6 and mask mice. Furthermore, erythropoietin administration increased splenic Fam132b, Fam132a and Tfr2 mRNA content. At the protein level, erythropoietin increased the amount of splenic erythroferrone and transferrin receptor 2 both in C57BL/6 and mask mice. Splenic ferroportin content was decreased in erythropoietin-treated mask mice in comparison with erythropoietin-treated C57BL/6 mice. In mask mice, the amount of liver hemojuvelin was decreased in comparison with C57BL/6 mice. The pattern of hemojuvelin cleavage was different between C57BL/6 and mask mice: In both groups, a main hemojuvelin band was detected at approximately 52 kDa; in C57BL/6 mice, a minor cleaved band was seen at 47 kDa. In mask mice, the 47 kDa band was absent, but additional minor bands were detected at approximately 45 kDa and 48 kDa. The results provide support for the interaction between TMPRSS6 and hemojuvelin in vivo; they also suggest that hemojuvelin could be cleaved by another as yet unknown protease in the absence of functional TMPRSS6. The lack of effect of erythropoietin on hepcidin expression in mask mice can not be explained by changes in erythroferrone synthesis, as splenic erythroferrone content increased after erythropoietin administration in both C57BL/6 and mask mice.
Collapse
Affiliation(s)
- Jana Frýdlová
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Zuzana Rychtarčíková
- Laboratory of Tumour Resistance, Institute of Biotechnology, BIOCEV Research Center, Czech Academy of Sciences, Vestec, Czech Republic
- Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Iuliia Gurieva
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martin Vokurka
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jaroslav Truksa
- Laboratory of Tumour Resistance, Institute of Biotechnology, BIOCEV Research Center, Czech Academy of Sciences, Vestec, Czech Republic
- * E-mail: (JT); (JK)
| | - Jan Krijt
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- * E-mail: (JT); (JK)
| |
Collapse
|
66
|
Deletion of BMP6 worsens the phenotype of HJV-deficient mice and attenuates hepcidin levels reached after LPS challenge. Blood 2017; 130:2339-2343. [PMID: 29021231 DOI: 10.1182/blood-2017-07-795658] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/21/2017] [Indexed: 12/20/2022] Open
Abstract
Lack of either bone morphogenetic protein 6 (BMP6) or the BMP coreceptor hemojuvelin (HJV) in mice leads to a similar phenotype with hepcidin insufficiency, hepatic iron loading, and extrahepatic iron accumulation in males. This is consistent with the current views that HJV is a coreceptor for BMP6 in hepatocytes. To determine whether BMP6 and HJV may also signal to hepcidin independently of each other, we intercrossed Hjv-/- and Bmp6-/- mice and compared the phenotype of animals of the F2 progeny. Loss of Bmp6 further repressed Smad signaling and hepcidin expression in the liver of Hjv-/- mice of both sexes, and led to iron accumulation in the pancreas and the heart of females. These data suggest that, in Hjv-/- females, Bmp6 can provide a signal adequate to maintain hepcidin to a level sufficient to avoid extrahepatic iron loading. We also examined the impact of Bmp6 and/or Hjv deletion on the regulation of hepcidin by inflammation. Our data show that lack of 1 or both molecules does not prevent induction of hepcidin by lipopolysaccharide (LPS). However, BMP/Smad signaling in unchallenged animals is determinant for the level of hepcidin reached after stimulation, which is consistent with a synergy between interleukin 6/STAT3 and BMP/SMAD signaling in regulating hepcidin during inflammation.
Collapse
|
67
|
Turato C, Kent P, Sebastiani G, Cannito S, Morello E, Terrin L, Biasiolo A, Simonato D, Parola M, Pantopoulos K, Pontisso P. Serpinb3 is overexpressed in the liver in presence of iron overload. J Investig Med 2017; 66:32-38. [PMID: 28935635 DOI: 10.1136/jim-2017-000473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2017] [Indexed: 11/04/2022]
Abstract
Iron overload results in cellular toxicity, tissue injury, organ fibrosis and increased risk of neoplastic transformation. SerpinB3 is a serine protease inhibitor overexpressed in the liver in oxidative stress conditions, able to induce fibrosis and increased risk of malignant transformation. Aim of the present study was to assess the effect of iron overload on SerpinB3 expression in the liver using in vivo and in vitro models.The expression of Serpinb3 was assessed in the liver of hemojuvelin knockout mice (Hjv-/-), an established model of hereditary hemochromatosis, and of wild type control mice, following dietary or pharmacological iron manipulation. To assess the direct effect of iron in vitro, cell lines were treated with different concentration of hemin or with an iron chelator.Hepatic Serpinb3 mRNA and protein were highly expressed in Hjv-/- mice, but not in wild type controls fed with a standard diet. Serpinb3 became detectable in wild type mice fed with a high iron diet or injected with iron dextran; these treatments further induced Serpinb3 expression in Hjv-/- mice. Livers expressing Serpinb3 showed a positive staining also for HIF-2α in the same areas. Hemin promoted induction of SerpinB3 mRNA in HeLa and HA22T/VGH cells, but a mild stimulation of SerpinB3 promoter activity in HeLa and Huh7 cells. In conclusion, Serpinb3 is strongly induced by iron in the mouse liver. The molecular link between iron, ROS and SerpinB3 seems to be HIF-2α, which is induced by iron overload and was previously found capable of up-regulating SerpinB3 at the transcriptional level.
Collapse
Affiliation(s)
| | | | | | - Stefania Cannito
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Elisabetta Morello
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Liliana Terrin
- Department of Medicine, University of Padova, Padova, Italy
| | | | | | - Maurizio Parola
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | | | | |
Collapse
|
68
|
Wahedi M, Wortham AM, Kleven MD, Zhao N, Jue S, Enns CA, Zhang AS. Matriptase-2 suppresses hepcidin expression by cleaving multiple components of the hepcidin induction pathway. J Biol Chem 2017; 292:18354-18371. [PMID: 28924039 DOI: 10.1074/jbc.m117.801795] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/29/2017] [Indexed: 12/20/2022] Open
Abstract
Systemic iron homeostasis is maintained by regulation of iron absorption in the duodenum, iron recycling from erythrocytes, and iron mobilization from the liver and is controlled by the hepatic hormone hepcidin. Hepcidin expression is induced via the bone morphogenetic protein (BMP) signaling pathway that preferentially uses two type I (ALK2 and ALK3) and two type II (ActRIIA and BMPR2) BMP receptors. Hemojuvelin (HJV), HFE, and transferrin receptor-2 (TfR2) facilitate this process presumably by forming a plasma membrane complex with BMP receptors. Matriptase-2 (MT2) is a protease and key suppressor of hepatic hepcidin expression and cleaves HJV. Previous studies have therefore suggested that MT2 exerts its inhibitory effect by inactivating HJV. Here, we report that MT2 suppresses hepcidin expression independently of HJV. In Hjv-/- mice, increased expression of exogenous MT2 in the liver significantly reduced hepcidin expression similarly as observed in wild-type mice. Exogenous MT2 could fully correct abnormally high hepcidin expression and iron deficiency in MT2-/- mice. In contrast to MT2, increased Hjv expression caused no significant changes in wild-type mice, suggesting that Hjv is not a limiting factor for hepcidin expression. Further studies revealed that MT2 cleaves ALK2, ALK3, ActRIIA, Bmpr2, Hfe, and, to a lesser extent, Hjv and Tfr2. MT2-mediated Tfr2 cleavage was also observed in HepG2 cells endogenously expressing MT2 and TfR2. Moreover, iron-loaded transferrin blocked MT2-mediated Tfr2 cleavage, providing further insights into the mechanism of Tfr2's regulation by transferrin. Together, these observations indicate that MT2 suppresses hepcidin expression by cleaving multiple components of the hepcidin induction pathway.
Collapse
Affiliation(s)
- Mastura Wahedi
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239 and
| | - Aaron M Wortham
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239 and
| | - Mark D Kleven
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239 and
| | - Ningning Zhao
- the Department of Nutritional Sciences, University of Arizona, Tucson, Arizona 85721
| | - Shall Jue
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239 and
| | - Caroline A Enns
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239 and
| | - An-Sheng Zhang
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239 and
| |
Collapse
|
69
|
Yang R, Sarkar S, Korchinski DJ, Wu Y, Yong VW, Dunn JF. MRI monitoring of monocytes to detect immune stimulating treatment response in brain tumor. Neuro Oncol 2017; 19:364-371. [PMID: 27571884 DOI: 10.1093/neuonc/now180] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/14/2016] [Indexed: 12/22/2022] Open
Abstract
Background Glioblastoma (GBM) is an aggressive brain cancer with a poor prognosis. The use of immune therapies to treat GBM has become a promising avenue of research. It was shown that amphotericin B (Amp B) can stimulate the innate immune system and suppress the growth of brain tumor initiating cells (BTICs). However, it is not feasible to use histopathology to determine immune activation in patients. We developed an MRI technique that can rapidly detect a therapeutic response in animals treated with drugs that stimulate innate immunity. Ultra-small iron oxide nanoparticles (USPIOs) are MRI contrast agents that have been widely used for cell tracking. We hypothesized that the increased monocyte infiltration into brain tumors due to Amp B can be detected using USPIO-MRI, providing an indicator of early drug response. Methods We implanted human BTICs into severe combined immunodeficient mice and allowed the tumor to establish before treating the animals with either Amp B or vehicle and then imaged them using MRI with USPIO (ferumoxytol) contrast. Results After 7 days of treatment, there was a significantly decreased T2* in the tumor of Amp B but not vehicle animals, suggesting that USPIO is carried into the tumor by monocytes. We validated our MRI results with histopathology and confirmed that Amp B-treated animals had significantly higher levels of macrophage/microglia that were colocalized with iron staining in their brain tumor compared with vehicle mice. Conclusion USPIO-MRI is a promising method of rapidly assessing the efficacy of anticancer drugs that stimulate innate immunity.
Collapse
Affiliation(s)
- Runze Yang
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Susobhan Sarkar
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Daniel J Korchinski
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Ying Wu
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - V Wee Yong
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jeff F Dunn
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
70
|
Rishi G, Subramaniam VN. The liver in regulation of iron homeostasis. Am J Physiol Gastrointest Liver Physiol 2017; 313:G157-G165. [PMID: 28596277 DOI: 10.1152/ajpgi.00004.2017] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 05/31/2017] [Accepted: 05/31/2017] [Indexed: 01/31/2023]
Abstract
The liver is one of the largest and most functionally diverse organs in the human body. In addition to roles in detoxification of xenobiotics, digestion, synthesis of important plasma proteins, gluconeogenesis, lipid metabolism, and storage, the liver also plays a significant role in iron homeostasis. Apart from being the storage site for excess body iron, it also plays a vital role in regulating the amount of iron released into the blood by enterocytes and macrophages. Since iron is essential for many important physiological and molecular processes, it increases the importance of liver in the proper functioning of the body's metabolism. This hepatic iron-regulatory function can be attributed to the expression of many liver-specific or liver-enriched proteins, all of which play an important role in the regulation of iron homeostasis. This review focuses on these proteins and their known roles in the regulation of body iron metabolism.
Collapse
Affiliation(s)
- Gautam Rishi
- Liver Disease and Iron Disorders Research Group, Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - V Nathan Subramaniam
- Liver Disease and Iron Disorders Research Group, Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
71
|
Wu Q, Shen Y, Tao Y, Wei J, Wang H, An P, Zhang Z, Gao H, Zhou T, Wang F, Min J. Hemojuvelin regulates the innate immune response to peritoneal bacterial infection in mice. Cell Discov 2017; 3:17028. [PMID: 28815056 PMCID: PMC5556331 DOI: 10.1038/celldisc.2017.28] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/13/2017] [Indexed: 12/20/2022] Open
Abstract
Hereditary hemochromatosis and iron imbalance are associated with susceptibility to bacterial infection; however, the underlying mechanisms are poorly understood. Here, we performed in vivo bacterial infection screening using several mouse models of hemochromatosis, including Hfe (Hfe−/−), hemojuvelin (Hjv−/−), and macrophage-specific ferroportin-1 (Fpn1fl/fl;LysM-Cre+) knockout mice. We found that Hjv−/− mice, but not Hfe−/− or Fpn1fl/fl;LysM-Cre+ mice, are highly susceptible to peritoneal infection by both Gram-negative and Gram-positive bacteria. Interestingly, phagocytic cells in the peritoneum of Hjv−/− mice have reduced bacterial clearance, IFN-γ secretion, and nitric oxide production; in contrast, both cell migration and phagocytosis are normal. Expressing Hjv in RAW264.7 cells increased the level of phosphorylated Stat1 and nitric oxide production. Moreover, macrophage-specific Hjv knockout mice are susceptible to bacterial infection. Finally, we found that Hjv facilitates the secretion of IFN-γ via the IL-12/Jak2/Stat4 signaling pathway. Together, these findings reveal a novel protective role of Hjv in the early stages of antimicrobial defense.
Collapse
Affiliation(s)
- Qian Wu
- The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yuanyuan Shen
- The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunlong Tao
- The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiayu Wei
- The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hao Wang
- The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Peng An
- The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhuzhen Zhang
- The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hong Gao
- The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tianhua Zhou
- The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fudi Wang
- The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
72
|
Wang H, An P, Xie E, Wu Q, Fang X, Gao H, Zhang Z, Li Y, Wang X, Zhang J, Li G, Yang L, Liu W, Min J, Wang F. Characterization of ferroptosis in murine models of hemochromatosis. Hepatology 2017; 66:449-465. [PMID: 28195347 PMCID: PMC5573904 DOI: 10.1002/hep.29117] [Citation(s) in RCA: 500] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/09/2017] [Indexed: 12/11/2022]
Abstract
UNLABELLED Ferroptosis is a recently identified iron-dependent form of nonapoptotic cell death implicated in brain, kidney, and heart pathology. However, the biological roles of iron and iron metabolism in ferroptosis remain poorly understood. Here, we studied the functional role of iron and iron metabolism in the pathogenesis of ferroptosis. We found that ferric citrate potently induces ferroptosis in murine primary hepatocytes and bone marrow-derived macrophages. Next, we screened for ferroptosis in mice fed a high-iron diet and in mouse models of hereditary hemochromatosis with iron overload. We found that ferroptosis occurred in mice fed a high-iron diet and in two knockout mouse lines that develop severe iron overload (Hjv-/- and Smad4Alb/Alb mice) but not in a third line that develops only mild iron overload (Hfe-/- mice). Moreover, we found that iron overload-induced liver damage was rescued by the ferroptosis inhibitor ferrostatin-1. To identify the genes involved in iron-induced ferroptosis, we performed microarray analyses of iron-treated bone marrow-derived macrophages. Interestingly, solute carrier family 7, member 11 (Slc7a11), a known ferroptosis-related gene, was significantly up-regulated in iron-treated cells compared with untreated cells. However, genetically deleting Slc7a11 expression was not sufficient to induce ferroptosis in mice. Next, we studied iron-treated hepatocytes and bone marrow-derived macrophages isolated from Slc7a11-/- mice fed a high-iron diet. CONCLUSION We found that iron treatment induced ferroptosis in Slc7a11-/- cells, indicating that deleting Slc7a11 facilitates the onset of ferroptosis specifically under high-iron conditions; these results provide compelling evidence that iron plays a key role in triggering Slc7a11-mediated ferroptosis and suggest that ferroptosis may be a promising target for treating hemochromatosis-related tissue damage. (Hepatology 2017;66:449-465).
Collapse
Affiliation(s)
- Hao Wang
- School of Public Health, Zhengzhou University; School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesSchool of Medicine, Zhejiang UniversityHangzhouChina
| | - Peng An
- School of Public Health, Zhengzhou University; School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesSchool of Medicine, Zhejiang UniversityHangzhouChina
| | - Enjun Xie
- School of Public Health, Zhengzhou University; School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesSchool of Medicine, Zhejiang UniversityHangzhouChina
| | - Qian Wu
- School of Public Health, Zhengzhou University; School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesSchool of Medicine, Zhejiang UniversityHangzhouChina
| | - Xuexian Fang
- School of Public Health, Zhengzhou University; School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesSchool of Medicine, Zhejiang UniversityHangzhouChina
| | - Hong Gao
- School of Public Health, Zhengzhou University; School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesSchool of Medicine, Zhejiang UniversityHangzhouChina
| | - Zhuzhen Zhang
- School of Public Health, Zhengzhou University; School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesSchool of Medicine, Zhejiang UniversityHangzhouChina
| | - Yuzhu Li
- School of Public Health, Zhengzhou University; School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesSchool of Medicine, Zhejiang UniversityHangzhouChina
| | - Xudong Wang
- School of Public Health, Zhengzhou University; School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesSchool of Medicine, Zhejiang UniversityHangzhouChina
| | - Jiaying Zhang
- School of Public Health, Zhengzhou University; School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesSchool of Medicine, Zhejiang UniversityHangzhouChina
| | - Guoli Li
- School of Public Health, Zhengzhou University; School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesSchool of Medicine, Zhejiang UniversityHangzhouChina
| | - Lei Yang
- School of Public Health, Zhengzhou University; School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesSchool of Medicine, Zhejiang UniversityHangzhouChina
| | - Wei Liu
- Department of Biochemistry and Molecular Biology, Program in Molecular and Cell Biology, School of MedicineZhejiang UniversityHangzhouChina
| | - Junxia Min
- School of Public Health, Zhengzhou University; School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesSchool of Medicine, Zhejiang UniversityHangzhouChina
| | - Fudi Wang
- School of Public Health, Zhengzhou University; School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesSchool of Medicine, Zhejiang UniversityHangzhouChina
| |
Collapse
|
73
|
Abstract
The regulation of iron metabolism in biological systems centers on providing adequate iron for cellular function while limiting iron toxicity. Because mammals cannot excrete iron, mechanisms have evolved to control iron acquisition, storage, and distribution at both systemic and cellular levels. Hepcidin, the master regulator of iron homeostasis, controls iron flows into plasma through inhibition of the only known mammalian cellular iron exporter ferroportin. Hepcidin is feedback-regulated by iron status and strongly modulated by inflammation and erythropoietic demand. This review highlights recent advances that have changed our understanding of iron metabolism and its regulation.
Collapse
Affiliation(s)
- Richard Coffey
- Departments of Medicine and Pathology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095-1690
| | - Tomas Ganz
- Departments of Medicine and Pathology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095-1690.
| |
Collapse
|
74
|
Siebold C, Yamashita T, Monnier PP, Mueller BK, Pasterkamp RJ. RGMs: Structural Insights, Molecular Regulation, and Downstream Signaling. Trends Cell Biol 2017; 27:365-378. [PMID: 28007423 PMCID: PMC5404723 DOI: 10.1016/j.tcb.2016.11.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 11/27/2016] [Accepted: 11/28/2016] [Indexed: 12/20/2022]
Abstract
Although originally discovered as neuronal growth cone-collapsing factors, repulsive guidance molecules (RGMs) are now known as key players in many fundamental processes, such as cell migration, differentiation, iron homeostasis, and apoptosis, during the development and homeostasis of many tissues and organs, including the nervous, skeletal, and immune systems. Furthermore, three RGMs (RGMa, RGMb/DRAGON, and RGMc/hemojuvelin) have been linked to the pathogenesis of various disorders ranging from multiple sclerosis (MS) to cancer and juvenile hemochromatosis (JHH). While the molecular details of these (patho)biological effects and signaling modes have long remained unknown, recent studies unveil several exciting and novel aspects of RGM processing, ligand-receptor interactions, and downstream signaling. In this review, we highlight recent advances in the mechanisms-of-action and function of RGM proteins.
Collapse
Affiliation(s)
- Christian Siebold
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Philippe P Monnier
- Krembil Research Institute, 60 Leonard Street, M5T 2S8, Toronto, ONT, Canada
| | - Bernhard K Mueller
- Neuroscience Discovery Research, Abbvie, Knollstrasse 50, 67061 Ludwigshafen, Germany
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands.
| |
Collapse
|
75
|
Modulating the selectivity of matriptase-2 inhibitors with unnatural amino acids. Eur J Med Chem 2017; 129:110-123. [DOI: 10.1016/j.ejmech.2017.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/19/2017] [Accepted: 02/05/2017] [Indexed: 12/12/2022]
|
76
|
Das SK, Patel VB, Basu R, Wang W, DesAulniers J, Kassiri Z, Oudit GY. Females Are Protected From Iron-Overload Cardiomyopathy Independent of Iron Metabolism: Key Role of Oxidative Stress. J Am Heart Assoc 2017; 6:JAHA.116.003456. [PMID: 28115312 PMCID: PMC5523622 DOI: 10.1161/jaha.116.003456] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Sex‐related differences in cardiac function and iron metabolism exist in humans and experimental animals. Male patients and preclinical animal models are more susceptible to cardiomyopathies and heart failure. However, whether similar differences are seen in iron‐overload cardiomyopathy is poorly understood. Methods and Results Male and female wild‐type and hemojuvelin‐null mice were injected and fed with a high‐iron diet, respectively, to develop secondary iron overload and genetic hemochromatosis. Female mice were completely protected from iron‐overload cardiomyopathy, whereas iron overload resulted in marked diastolic dysfunction in male iron‐overloaded mice based on echocardiographic and invasive pressure‐volume analyses. Female mice demonstrated a marked suppression of iron‐mediated oxidative stress and a lack of myocardial fibrosis despite an equivalent degree of myocardial iron deposition. Ovariectomized female mice with iron overload exhibited essential pathophysiological features of iron‐overload cardiomyopathy showing distinct diastolic and systolic dysfunction, severe myocardial fibrosis, increased myocardial oxidative stress, and increased expression of cardiac disease markers. Ovariectomy prevented iron‐induced upregulation of ferritin, decreased myocardial SERCA2a levels, and increased NCX1 levels. 17β‐Estradiol therapy rescued the iron‐overload cardiomyopathy in male wild‐type mice. The responses in wild‐type and hemojuvelin‐null female mice were remarkably similar, highlighting a conserved mechanism of sex‐dependent protection from iron‐overload‐mediated cardiac injury. Conclusions Male and female mice respond differently to iron‐overload‐mediated effects on heart structure and function, and females are markedly protected from iron‐overload cardiomyopathy. Ovariectomy in female mice exacerbated iron‐induced myocardial injury and precipitated severe cardiac dysfunction during iron‐overload conditions, whereas 17β‐estradiol therapy was protective in male iron‐overloaded mice.
Collapse
Affiliation(s)
- Subhash K Das
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Vaibhav B Patel
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Ratnadeep Basu
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Wang Wang
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jessica DesAulniers
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Zamaneh Kassiri
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Gavin Y Oudit
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada .,Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
77
|
Lunova M, Schwarz P, Nuraldeen R, Levada K, Kuscuoglu D, Stützle M, Vujić Spasić M, Haybaeck J, Ruchala P, Jirsa M, Deschemin JC, Vaulont S, Trautwein C, Strnad P. Hepcidin knockout mice spontaneously develop chronic pancreatitis owing to cytoplasmic iron overload in acinar cells. J Pathol 2016; 241:104-114. [PMID: 27741349 DOI: 10.1002/path.4822] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/21/2016] [Accepted: 09/29/2016] [Indexed: 12/14/2022]
Abstract
Iron is both an essential and a potentially toxic element, and its systemic homeostasis is controlled by the iron hormone hepcidin. Hepcidin binds to the cellular iron exporter ferroportin, causes its degradation, and thereby diminishes iron uptake from the intestine and the release of iron from macrophages. Given that hepcidin-resistant ferroportin mutant mice show exocrine pancreas dysfunction, we analysed pancreata of aging hepcidin knockout (KO) mice. Hepcidin and Hfe KO mice were compared with wild-type (WT) mice kept on standard or iron-rich diets. Twelve-month-old hepcidin KO mice were subjected to daily minihepcidin PR73 treatment for 1 week. Six-month-old hepcidin KO mice showed cytoplasmic acinar iron overload and mild pancreatitis, together with elevated expression of the iron uptake mediators DMT1 and Zip14. Acinar atrophy, massive macrophage infiltration, fatty changes and pancreas fibrosis were noted in 1-year-old hepcidin KO mice. As an underlying mechanism, 6-month-old hepcidin KO mice showed increased pancreatic oxidative stress, with elevated DNA damage, apoptosis and activated nuclear factor-κB (NF-κB) signalling. Neither iron overload nor pancreatic damage was observed in WT mice fed iron-rich diet or in Hfe KO mice. Minihepcidin application to hepcidin KO mice led to an improvement in general health status and to iron redistribution from acinar cells to macrophages. It also resulted in decreased NF-κB activation and reduced DNA damage. In conclusion, loss of hepcidin signalling in mice leads to iron overload-induced chronic pancreatitis that is not seen in situations with less severe iron accumulation. The observed tissue injury can be reversed by hepcidin supplementation. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mariia Lunova
- Department of Medicine III and IZKF, University Hospital Aachen, Aachen, Germany.,Institute of Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Peggy Schwarz
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Renwar Nuraldeen
- Department of Medicine III and IZKF, University Hospital Aachen, Aachen, Germany
| | - Kateryna Levada
- Department of Medicine III and IZKF, University Hospital Aachen, Aachen, Germany
| | - Deniz Kuscuoglu
- Department of Medicine III and IZKF, University Hospital Aachen, Aachen, Germany
| | - Michael Stützle
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Maja Vujić Spasić
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | | | - Piotr Ruchala
- Department of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Milan Jirsa
- Institute of Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | | | | | - Christian Trautwein
- Department of Medicine III and IZKF, University Hospital Aachen, Aachen, Germany
| | - Pavel Strnad
- Department of Medicine III and IZKF, University Hospital Aachen, Aachen, Germany.,Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
78
|
Genetic disruption of NRF2 promotes the development of necroinflammation and liver fibrosis in a mouse model of HFE-hereditary hemochromatosis. Redox Biol 2016; 11:157-169. [PMID: 27936457 PMCID: PMC5149069 DOI: 10.1016/j.redox.2016.11.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/16/2016] [Accepted: 11/28/2016] [Indexed: 12/18/2022] Open
Abstract
Background and Aims In hereditary hemochromatosis, iron deposition in the liver parenchyma may lead to fibrosis, cirrhosis and hepatocellular carcinoma. Most cases are ascribed to a common mutation in the HFE gene, but the extent of clinical expression is greatly influenced by the combined action of yet unidentified genetic and/or environmental modifying factors. In mice, transcription factor NRF2 is a critical determinant of hepatocyte viability during exposure to acute dietary iron overload. We evaluated if the genetic disruption of Nrf2 would prompt the development of liver damage in Hfe-/- mice (an established model of human HFE-hemochromatosis). Methods Wild-type, Nrf2-/-, Hfe-/- and double knockout (Hfe/Nrf2-/-) female mice on C57BL/6 genetic background were sacrificed at the age of 6 (young), 12–18 (middle-aged) or 24 months (old) for evaluation of liver pathology. Results Despite the parenchymal iron accumulation, Hfe-/- mice presented no liver injury. The combination of iron overload (Hfe-/-) and defective antioxidant defences (Nrf2-/-) increased the number of iron-related necroinflammatory lesions (sideronecrosis), possibly due to the accumulation of toxic oxidation products such as 4-hydroxy-2-nonenal-protein adducts. The engulfment of dead hepatocytes led to a gradual accumulation of iron within macrophages, featuring large aggregates. Myofibroblasts recruited towards the injury areas produced substantial amounts of collagen fibers involving the liver parenchyma of double-knockout animals with increased hepatic fibrosis in an age-dependent manner. Conclusions The genetic disruption of Nrf2 promotes the transition from iron accumulation (siderosis) to liver injury in Hfe-/- mice, representing the first demonstration of spontaneous hepatic fibrosis in the long term in a mouse model of hereditary hemochromatosis displaying mildly elevated liver iron. Despite the parenchymal iron overload, single Hfe-/- mice present no liver injury. Hfe and Nrf2 double knockout mice develop liver fibrosis with aging. Fibrosis is triggered by iron-related hepatocellular death (sideronecrosis). Nrf2 genetic disruption increases susceptibility to oxidative/electrophilic stress. NRF2 status is a potential determinant of liver injury in hemochromatosis.
Collapse
|
79
|
Endothelial cells produce bone morphogenetic protein 6 required for iron homeostasis in mice. Blood 2016; 129:405-414. [PMID: 27864295 DOI: 10.1182/blood-2016-06-721571] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 11/14/2016] [Indexed: 02/06/2023] Open
Abstract
Bone morphogenetic protein 6 (BMP6) signaling in hepatocytes is a central transcriptional regulator of the iron hormone hepcidin that controls systemic iron balance. How iron levels are sensed to regulate hepcidin production is not known, but local induction of liver BMP6 expression by iron is proposed to have a critical role. To identify the cellular source of BMP6 responsible for hepcidin and iron homeostasis regulation, we generated mice with tissue-specific ablation of Bmp6 in different liver cell populations and evaluated their iron phenotype. Efficiency and specificity of Cre-mediated recombination was assessed by using Cre-reporter mice, polymerase chain reaction of genomic DNA, and quantitation of Bmp6 messenger RNA expression from isolated liver cell populations. Localization of the BMP co-receptor hemojuvelin was visualized by immunofluorescence microscopy. Analysis of the Bmp6 conditional knockout mice revealed that liver endothelial cells (ECs) expressed Bmp6, whereas resident liver macrophages (Kupffer cells) and hepatocytes did not. Loss of Bmp6 in ECs recapitulated the hemochromatosis phenotype of global Bmp6 knockout mice, whereas hepatocyte and macrophage Bmp6 conditional knockout mice exhibited no iron phenotype. Hemojuvelin was localized on the hepatocyte sinusoidal membrane immediately adjacent to Bmp6-producing sinusoidal ECs. Together, these data demonstrate that ECs are the predominant source of BMP6 in the liver and support a model in which EC BMP6 has paracrine actions on hepatocyte hemojuvelin to regulate hepcidin transcription and maintain systemic iron homeostasis.
Collapse
|
80
|
Millot S, Delaby C, Moulouel B, Lefebvre T, Pilard N, Ducrot N, Ged C, Lettéron P, de Franceschi L, Deybach JC, Beaumont C, Gouya L, De Verneuil H, Lyoumi S, Puy H, Karim Z. Hemolytic anemia repressed hepcidin level without hepatocyte iron overload: lesson from Günther disease model. Haematologica 2016; 102:260-270. [PMID: 28143953 DOI: 10.3324/haematol.2016.151621] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/28/2016] [Indexed: 01/08/2023] Open
Abstract
Hemolysis occurring in hematologic diseases is often associated with an iron loading anemia. This iron overload is the result of a massive outflow of hemoglobin into the bloodstream, but the mechanism of hemoglobin handling has not been fully elucidated. Here, in a congenital erythropoietic porphyria mouse model, we evaluate the impact of hemolysis and regenerative anemia on hepcidin synthesis and iron metabolism. Hemolysis was confirmed by a complete drop in haptoglobin, hemopexin and increased plasma lactate dehydrogenase, an increased red blood cell distribution width and osmotic fragility, a reduced half-life of red blood cells, and increased expression of heme oxygenase 1. The erythropoiesis-induced Fam132b was increased, hepcidin mRNA repressed, and transepithelial iron transport in isolated duodenal loops increased. Iron was mostly accumulated in liver and spleen macrophages but transferrin saturation remained within the normal range. The expression levels of hemoglobin-haptoglobin receptor CD163 and hemopexin receptor CD91 were drastically reduced in both liver and spleen, resulting in heme- and hemoglobin-derived iron elimination in urine. In the kidney, the megalin/cubilin endocytic complex, heme oxygenase 1 and the iron exporter ferroportin were induced, which is reminiscent of significant renal handling of hemoglobin-derived iron. Our results highlight ironbound hemoglobin urinary clearance mechanism and strongly suggest that, in addition to the sequestration of iron in macrophages, kidney may play a major role in protecting hepatocytes from iron overload in chronic hemolysis.
Collapse
Affiliation(s)
- Sarah Millot
- INSERM U1149/ERL CNRS 8252, Centre de Recherche sur l'Inflammation Paris Montmartre, 75018 Paris, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Service Odontologie, Hôpital Universitaire, Université de Montpellier, France.,Université Paris Diderot, Bichat site, Paris, France.,Laboratory of Excellence, GR-Ex, Paris, France
| | - Constance Delaby
- INSERM U1149/ERL CNRS 8252, Centre de Recherche sur l'Inflammation Paris Montmartre, 75018 Paris, France.,Université Paris Diderot, Bichat site, Paris, France.,Institut de Médecine Régénératrice et de Biothérapie-Hôpital Saint Eloi CHU Montpellier, Université de Montpellier, France
| | - Boualem Moulouel
- INSERM U1149/ERL CNRS 8252, Centre de Recherche sur l'Inflammation Paris Montmartre, 75018 Paris, France.,Université Paris Diderot, Bichat site, Paris, France.,Laboratory of Excellence, GR-Ex, Paris, France
| | - Thibaud Lefebvre
- INSERM U1149/ERL CNRS 8252, Centre de Recherche sur l'Inflammation Paris Montmartre, 75018 Paris, France.,Université Paris Diderot, Bichat site, Paris, France.,Laboratory of Excellence, GR-Ex, Paris, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Centre Français des Porphyries, Hôpital Louis Mourier, Colombes, France
| | - Nathalie Pilard
- INSERM U1149/ERL CNRS 8252, Centre de Recherche sur l'Inflammation Paris Montmartre, 75018 Paris, France.,Université Paris Diderot, Bichat site, Paris, France
| | - Nicolas Ducrot
- INSERM U1149/ERL CNRS 8252, Centre de Recherche sur l'Inflammation Paris Montmartre, 75018 Paris, France.,Université Paris Diderot, Bichat site, Paris, France.,Laboratory of Excellence, GR-Ex, Paris, France
| | - Cécile Ged
- INSERM, Biothérapies des Maladies Génétiques et Cancers, U1035, F-33000 Bordeaux, France
| | - Philippe Lettéron
- INSERM U1149/ERL CNRS 8252, Centre de Recherche sur l'Inflammation Paris Montmartre, 75018 Paris, France.,Université Paris Diderot, Bichat site, Paris, France
| | - Lucia de Franceschi
- Department of Clinical and Experimental Medicine, Section of Internal Medicine, University of Verona, Italy
| | - Jean Charles Deybach
- INSERM U1149/ERL CNRS 8252, Centre de Recherche sur l'Inflammation Paris Montmartre, 75018 Paris, France.,Université Paris Diderot, Bichat site, Paris, France.,Laboratory of Excellence, GR-Ex, Paris, France.,Institut de Médecine Régénératrice et de Biothérapie-Hôpital Saint Eloi CHU Montpellier, Université de Montpellier, France
| | - Carole Beaumont
- INSERM U1149/ERL CNRS 8252, Centre de Recherche sur l'Inflammation Paris Montmartre, 75018 Paris, France.,Université Paris Diderot, Bichat site, Paris, France.,Laboratory of Excellence, GR-Ex, Paris, France
| | - Laurent Gouya
- INSERM U1149/ERL CNRS 8252, Centre de Recherche sur l'Inflammation Paris Montmartre, 75018 Paris, France.,Université Paris Diderot, Bichat site, Paris, France.,Laboratory of Excellence, GR-Ex, Paris, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Centre Français des Porphyries, Hôpital Louis Mourier, Colombes, France
| | - Hubert De Verneuil
- Assistance Publique-Hôpitaux de Paris (AP-HP), Centre Français des Porphyries, Hôpital Louis Mourier, Colombes, France
| | - Saïd Lyoumi
- INSERM U1149/ERL CNRS 8252, Centre de Recherche sur l'Inflammation Paris Montmartre, 75018 Paris, France.,Laboratory of Excellence, GR-Ex, Paris, France.,Université Versailles Saint Quentin en Yvelines, France
| | - Hervé Puy
- INSERM U1149/ERL CNRS 8252, Centre de Recherche sur l'Inflammation Paris Montmartre, 75018 Paris, France .,Université Paris Diderot, Bichat site, Paris, France.,Laboratory of Excellence, GR-Ex, Paris, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Centre Français des Porphyries, Hôpital Louis Mourier, Colombes, France
| | - Zoubida Karim
- INSERM U1149/ERL CNRS 8252, Centre de Recherche sur l'Inflammation Paris Montmartre, 75018 Paris, France .,Université Paris Diderot, Bichat site, Paris, France.,Laboratory of Excellence, GR-Ex, Paris, France
| |
Collapse
|
81
|
Impact of Oxidative Stress in Premature Aging and Iron Overload in Hemodialysis Patients. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1578235. [PMID: 27800120 PMCID: PMC5069386 DOI: 10.1155/2016/1578235] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/15/2016] [Accepted: 08/23/2016] [Indexed: 12/22/2022]
Abstract
Background. Increased oxidative stress is a well described feature of patients in hemodialysis. Their need for multiple blood transfusions and supplemental iron causes a significant iron overload that has recently been associated with increased oxidation of polyunsaturated lipids and accelerated aging due to DNA damage caused by telomere shortening. Methods. A total of 70 patients were evaluated concomitantly, 35 volunteers with ferritin levels below 500 ng/mL (Group A) and 35 volunteers with ferritin levels higher than 500 ng/mL (Group B). A sample of venous blood was taken to extract DNA from leukocytes and to measure relative telomere length by real-time PCR. Results. Patients in Group B had significantly higher plasma TBARS (p = 0.008), carbonyls (p = 0.0004), and urea (p = 0.02) compared with those in Group A. Telomeres were significantly shorter in Group B, 0.66 (SD, 0.051), compared with 0.75 (SD, 0.155) in Group A (p = 0.0017). We observed a statistically significant association between relative telomere length and ferritin levels (r = −0.37, p = 0.001). Relative telomere length was inversely related to time on hemodialysis (r = −0.27, p = 0.02). Conclusions. Our findings demonstrate that iron overload was associated with increased levels of oxidative stress and shorter relative telomere length.
Collapse
|
82
|
Bao WD, Fan Y, Deng YZ, Long LY, Wang JJ, Guan DX, Qian ZY, An P, Feng YY, He ZY, Wang XF, Phillip Koeffler H, Hu R, Wang J, Wang X, Wang F, Li JJ, Xie D. Iron overload in hereditary tyrosinemia type 1 induces liver injury through the Sp1/Tfr2/hepcidin axis. J Hepatol 2016; 65:137-145. [PMID: 27013087 DOI: 10.1016/j.jhep.2016.03.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 02/25/2016] [Accepted: 03/10/2016] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS Iron is an essential metal for fundamental metabolic processes, but little is known regarding the involvement of iron in other nutritional disorders. In the present study, we investigated disordered iron metabolism in a murine model of hereditary tyrosinemia type I (HT1), a disease of the tyrosine degradation pathway. METHODS We analysed the status of iron accumulation following NTBC withdrawal from Fah(-/-) mice, a murine model for HT1. Liver histology and serum parameters were used to assess the extent of liver injury and iron deposition. To determine the physiological significance of iron accumulation, mice were subjected to a low-iron food intake to reduce the iron accumulation. Mechanistic studies were performed on tissues and cells using immunoblotting, qRT-PCR, adenovirus transfection and other assays. RESULTS Severe iron overload was observed in the murine model of HT1 with dramatically elevated hepatic and serum iron levels. Mechanistic studies revealed that downregulation and dysfunction of Tfr2 decreased hepcidin, leading to iron overload. The Fah(-/-) hepatocytes lost the ability of transferrin-sensitive induction of hepcidin. Forced expression of Tfr2 in the murine liver reduced the iron accumulation. Moreover, transcription factor Sp1 was downregulated and identified as a new regulator of Tfr2 here. Additionally, low-iron food intake effectively reduced the iron deposits, protected the liver and prolonged the survival in these mice. CONCLUSIONS Iron was severely overloaded in the HT1 mice via the Sp1/Tfr2/Hepcidin axis. The iron overload induced liver injury in the HT1 mice, and reduction of the iron accumulation ameliorated liver injury. LAY SUMMARY Primary and secondary iron overload is an abnormal status affecting millions of people worldwide. Here, we reported severe iron overload in a murine model of HT1, a disease of the tyrosine degradation pathway, and elucidated the mechanistic basis and the physiological significance of iron overload in HT1. These studies are of general interest not only with respect to secondary iron-induced liver injury in HT1 but also are important to elucidate the crosstalk between the two metabolic pathways.
Collapse
Affiliation(s)
- Wen-Dai Bao
- Institute of Nutrition Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yao Fan
- Institute of Nutrition Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yue-Zhen Deng
- Institute of Nutrition Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Ling-Yun Long
- Institute of Nutrition Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Jing-Jing Wang
- Institute of Nutrition Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Dong-Xian Guan
- Institute of Nutrition Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Zhen-Yu Qian
- Institute of Nutrition Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Peng An
- Institute of Nutrition Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yuan-Yuan Feng
- Institute of Nutrition Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Zhi-Ying He
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai 200438, China
| | - Xiao-Fan Wang
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - H Phillip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, 12-01, Singapore 117599, Singapore; Cedars-Sinai Medical Center, Division of Hematology/Oncology, UCLA School of Medicine, Los Angeles, CA 90048, USA
| | - Ronggui Hu
- State Key Laboratory of Molecular Biology, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, China
| | - Jianshe Wang
- Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, 399 Wanyuan Road, Minhang District, Shanghai 201102, PR China
| | - Xin Wang
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, MN 55455, USA
| | - Fudi Wang
- Department of Nutrition, School of Public Health, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Jing-Jing Li
- Institute of Nutrition Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Dong Xie
- Institute of Nutrition Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.
| |
Collapse
|
83
|
Miller HK, Schwiesow L, Au-Yeung W, Auerbuch V. Hereditary Hemochromatosis Predisposes Mice to Yersinia pseudotuberculosis Infection Even in the Absence of the Type III Secretion System. Front Cell Infect Microbiol 2016; 6:69. [PMID: 27446816 PMCID: PMC4919332 DOI: 10.3389/fcimb.2016.00069] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/08/2016] [Indexed: 12/18/2022] Open
Abstract
The iron overload disorder hereditary hemochromatosis (HH) predisposes humans to serious disseminated infection with pathogenic Yersinia as well as several other pathogens. Recently, we showed that the iron-sulfur cluster coordinating transcription factor IscR is required for type III secretion in Y. pseudotuberculosis by direct control of the T3SS master regulator LcrF. In E. coli and Yersinia, IscR levels are predicted to be regulated by iron bioavailability, oxygen tension, and oxidative stress, such that iron depletion should lead to increased IscR levels. To investigate how host iron overload influences Y. pseudotuberculosis virulence and the requirement for the Ysc type III secretion system (T3SS), we utilized two distinct murine models of HH: hemojuvelin knockout mice that mimic severe, early-onset HH as well as mice with the HfeC282Y∕C282Y mutation carried by 10% of people of Northern European descent, associated with adult-onset HH. Hjv−∕− and HfeC282Y∕C282Y transgenic mice displayed enhanced colonization of deep tissues by Y. pseudotuberculosis following oral inoculation, recapitulating enhanced susceptibility of humans with HH to disseminated infection with enteropathogenic Yersinia. Importantly, HH mice orally infected with Y. pseudotuberculosis lacking the T3SS-encoding virulence plasmid, pYV, displayed increased deep tissue colonization relative to wildtype mice. Consistent with previous reports using monocytes from HH vs. healthy donors, macrophages isolated from HfeC282Y∕C282Y mice were defective in Yersinia uptake compared to wildtype macrophages, indicating that the anti-phagocytic property of the Yersinia T3SS plays a less important role in HH animals. These data suggest that Yersinia may rely on distinct virulence factors to cause disease in healthy vs. HH hosts.
Collapse
Affiliation(s)
- Halie K Miller
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz Santa Cruz, CA, USA
| | - Leah Schwiesow
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz Santa Cruz, CA, USA
| | - Winnie Au-Yeung
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz Santa Cruz, CA, USA
| | - Victoria Auerbuch
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz Santa Cruz, CA, USA
| |
Collapse
|
84
|
Zhao N, Maxson JE, Zhang RH, Wahedi M, Enns CA, Zhang AS. Neogenin Facilitates the Induction of Hepcidin Expression by Hemojuvelin in the Liver. J Biol Chem 2016; 291:12322-35. [PMID: 27072365 DOI: 10.1074/jbc.m116.721191] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Indexed: 01/24/2023] Open
Abstract
Hemojuvelin (HJV) regulates iron homeostasis by direct interaction with bone morphogenetic protein (BMP) ligands to induce hepcidin expression through the BMP signaling pathway in the liver. Crystallography studies indicate that HJV can simultaneously bind to both BMP2 and the ubiquitously expressed cell surface receptor neogenin. However, the role of the neogenin-HJV interaction in the function of HJV is unknown. Here we identify a mutation in HJV that specifically lowers its interaction with neogenin. Expression of this mutant Hjv in the liver of Hjv(-/-) mice dramatically attenuated its induction of BMP signaling and hepcidin mRNA, suggesting that interaction with neogenin is critical for the iron regulatory function of HJV. Further studies revealed that neogenin co-immunoprecipitated with ALK3, an essential type-I BMP receptor for hepatic hepcidin expression. Neogenin has also been shown to facilitate the cleavage of HJV by furin in transfected cells. Surprisingly, although cleavage of HJV by furin has been implicated in the regulation of HJV function in cell culture models and furin-cleaved soluble Hjv is detectable in the serum of mice, mutating the furin cleavage site did not alter the stimulation of hepcidin expression by Hjv in mice. In vivo studies validated the important role of HJV-BMP interaction for Hjv stimulation of BMP signaling and hepcidin expression. Together these data support a model in which neogenin acts as a scaffold to facilitate assembly of the HJV·BMP·BMP receptor complex to induce hepcidin expression.
Collapse
Affiliation(s)
- Ningning Zhao
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239
| | - Julia E Maxson
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239
| | - Richard H Zhang
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239
| | - Mastura Wahedi
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239
| | - Caroline A Enns
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239
| | - An-Sheng Zhang
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239
| |
Collapse
|
85
|
Abstract
Iron is required for most forms of organisms, and it is the most essential element for the functions of many iron-containing proteins involved in oxygen transport, cellular respiration, DNA replication, and so on. Disorders of iron metabolism are associated with diverse diseases, including anemias (e.g., iron-deficiency anemia and anemia of chronic diseases) and iron overload diseases, such as hereditary hemochromatosis and β-thalassemia. Hepcidin (encoded by Hamp gene) is a peptide hormone synthesized by hepatocytes, and it plays an important role in regulating the systematic iron homeostasis. As the systemic iron regulator, hepcidin, not only controls dietary iron absorption and iron egress out of iron storage cells, but also induces iron redistribution in various organs. Deregulated hepcidin is often seen in a variety of iron-related diseases including anemias and iron overload disorders. In the case of iron overload disorders (e.g., hereditary hemochromatosis and β-thalassemia), hepatic hepcidin concentration is significantly reduced.Since hepcidin deregulation is responsible for iron disorder-associated diseases, the purpose of this review is to summarize the recent findings on therapeutics targeting hepcidin.Continuous efforts have been made to search for hepcidin mimics and chemical compounds that could be used to increase hepcidin level. Here, a literature search was conducted in PubMed, and research papers relevant to hepcidin regulation or hepcidin-centered therapeutic work were reviewed. On the basis of literature search, we recapitulated recent findings on therapeutic studies targeting hepcidin, including agonists and antagonists to modulate hepcidin expression or its downstream signaling. We also discussed the molecular mechanisms by which hepcidin level and iron metabolism are modulated.Elevating hepcidin concentration is an optimal strategy to ameliorate iron overload diseases, and also to relieve β-thalassemia phenotypes by improving ineffective erythropoiesis. Relative to the current conventional therapies, such as phlebotomy and blood transfusion, therapeutics targeting hepcidin would open a new avenue for treatment of iron-related diseases.
Collapse
Affiliation(s)
- Jing Liu
- From the State Key Laboratory of Environmental Chemistry and Ecotoxicology (JL, SL), Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; Department of Medicine (BS), University of California, Los Angeles, CA; Department of Cardiovascular Disease (HY), Beijing Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing; and Gansu University of Traditional Chinese Medicine (HY), Lanzhou, China
| | | | | | | |
Collapse
|
86
|
Canali S, Core AB, Zumbrennen-Bullough KB, Merkulova M, Wang CY, Schneyer AL, Pietrangelo A, Babitt JL. Activin B Induces Noncanonical SMAD1/5/8 Signaling via BMP Type I Receptors in Hepatocytes: Evidence for a Role in Hepcidin Induction by Inflammation in Male Mice. Endocrinology 2016; 157:1146-62. [PMID: 26735394 PMCID: PMC4769363 DOI: 10.1210/en.2015-1747] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Induction of the iron regulatory hormone hepcidin contributes to the anemia of inflammation. Bone morphogenetic protein 6 (BMP6) signaling is a central regulator of hepcidin expression in the liver. Recently, the TGF-β/BMP superfamily member activin B was implicated in hepcidin induction by inflammation via noncanonical SMAD1/5/8 signaling, but its mechanism of action and functional significance in vivo remain uncertain. Here, we show that low concentrations of activin B, but not activin A, stimulate prolonged SMAD1/5/8 signaling and hepcidin expression in liver cells to a similar degree as canonical SMAD2/3 signaling, and with similar or modestly reduced potency compared with BMP6. Activin B stimulates hepcidin via classical activin type II receptors ACVR2A and ACVR2B, noncanonical BMP type I receptors activin receptor-like kinase 2 and activin receptor-like kinase 3, and SMAD5. The coreceptor hemojuvelin binds to activin B and facilitates activin B-SMAD1/5/8 signaling. Activin B-SMAD1/5/8 signaling has some selectivity for hepatocyte-derived cells and is not enabled by hemojuvelin in other cell types. Liver activin B mRNA expression is up-regulated in multiple mouse models of inflammation associated with increased hepcidin and hypoferremia, including lipopolysaccharide, turpentine, and heat-killed Brucella abortus models. Finally, the activin inhibitor follistatin-315 blunts hepcidin induction by lipopolysaccharide or B. abortus in mice. Our data elucidate a novel mechanism for noncanonical SMAD activation and support a likely functional role for activin B in hepcidin stimulation during inflammation in vivo.
Collapse
Affiliation(s)
- Susanna Canali
- Program in Anemia Signaling Research (S.C., A.B.C., K.B.Z.-B., M.M., C.-Y.W., J.L.B.), Division of Nephrology, Program in Membrane Biology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114; Center for Hemochromatosis (S.C., A.P.), University Hospital of Modena and Reggio Emilia, Modena Italy 41124; and Department of Veterinary and Animal Science (A.S.), University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Amanda B Core
- Program in Anemia Signaling Research (S.C., A.B.C., K.B.Z.-B., M.M., C.-Y.W., J.L.B.), Division of Nephrology, Program in Membrane Biology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114; Center for Hemochromatosis (S.C., A.P.), University Hospital of Modena and Reggio Emilia, Modena Italy 41124; and Department of Veterinary and Animal Science (A.S.), University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Kimberly B Zumbrennen-Bullough
- Program in Anemia Signaling Research (S.C., A.B.C., K.B.Z.-B., M.M., C.-Y.W., J.L.B.), Division of Nephrology, Program in Membrane Biology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114; Center for Hemochromatosis (S.C., A.P.), University Hospital of Modena and Reggio Emilia, Modena Italy 41124; and Department of Veterinary and Animal Science (A.S.), University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Maria Merkulova
- Program in Anemia Signaling Research (S.C., A.B.C., K.B.Z.-B., M.M., C.-Y.W., J.L.B.), Division of Nephrology, Program in Membrane Biology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114; Center for Hemochromatosis (S.C., A.P.), University Hospital of Modena and Reggio Emilia, Modena Italy 41124; and Department of Veterinary and Animal Science (A.S.), University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Chia-Yu Wang
- Program in Anemia Signaling Research (S.C., A.B.C., K.B.Z.-B., M.M., C.-Y.W., J.L.B.), Division of Nephrology, Program in Membrane Biology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114; Center for Hemochromatosis (S.C., A.P.), University Hospital of Modena and Reggio Emilia, Modena Italy 41124; and Department of Veterinary and Animal Science (A.S.), University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Alan L Schneyer
- Program in Anemia Signaling Research (S.C., A.B.C., K.B.Z.-B., M.M., C.-Y.W., J.L.B.), Division of Nephrology, Program in Membrane Biology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114; Center for Hemochromatosis (S.C., A.P.), University Hospital of Modena and Reggio Emilia, Modena Italy 41124; and Department of Veterinary and Animal Science (A.S.), University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Antonello Pietrangelo
- Program in Anemia Signaling Research (S.C., A.B.C., K.B.Z.-B., M.M., C.-Y.W., J.L.B.), Division of Nephrology, Program in Membrane Biology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114; Center for Hemochromatosis (S.C., A.P.), University Hospital of Modena and Reggio Emilia, Modena Italy 41124; and Department of Veterinary and Animal Science (A.S.), University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Jodie L Babitt
- Program in Anemia Signaling Research (S.C., A.B.C., K.B.Z.-B., M.M., C.-Y.W., J.L.B.), Division of Nephrology, Program in Membrane Biology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114; Center for Hemochromatosis (S.C., A.P.), University Hospital of Modena and Reggio Emilia, Modena Italy 41124; and Department of Veterinary and Animal Science (A.S.), University of Massachusetts Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
87
|
Oikonomidou PR, Casu C, Rivella S. New strategies to target iron metabolism for the treatment of beta thalassemia. Ann N Y Acad Sci 2016; 1368:162-8. [PMID: 26919168 DOI: 10.1111/nyas.13018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 01/19/2023]
Abstract
Iron is one of the most abundant elements in the Earth and a fundamental component of enzymes and other proteins that participate in a wide range of biological processes. As the human body has no mechanisms to eliminate the excess of iron, its metabolism needs to be tightly controlled in order to avoid all the sequelae associated with high iron levels. Iron overload is the main cause of morbidity and mortality in beta thalassemia. The master regulator of iron homeostasis, hepcidin, is chronically repressed in this disorder, leading to increased intestinal iron absorption and consequent iron overload. Many groups have focused on obtaining a better understanding of the pathways involved in iron regulation. New molecules have recently been synthesized and used in animal models of dysregulated iron metabolism, demonstrating their ability to target and reduce iron load. Antisense oligonucleotides, as well as lipid nanoparticle-formulated small interfering RNAs and minihepcidins peptides, are novel agents that have already proved to be efficient in modulating iron metabolism in mouse models and are therefore promising candidates for the treatment of patients affected by iron disorders.
Collapse
Affiliation(s)
- Paraskevi Rea Oikonomidou
- Department of Pediatrics, Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Carla Casu
- Department of Pediatrics, Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Stefano Rivella
- Department of Pediatrics, Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
88
|
Das SK, DesAulniers J, Dyck JRB, Kassiri Z, Oudit GY. Resveratrol mediates therapeutic hepatic effects in acquired and genetic murine models of iron-overload. Liver Int 2016; 36:246-57. [PMID: 26077449 DOI: 10.1111/liv.12893] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/09/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Abnormal iron metabolism and hepatic iron-overload is a major cause of liver injury and in the development of chronic liver diseases. Iron-overload-mediated liver disease leads to end-stage cirrhosis and/or hepatocellular carcinoma. METHODS Using a genetic hemochromatosis (hemojuvelin knockout mice) and non-genetic (secondary iron-overload) murine models of hepatic iron-overload, we elucidated the mechanism of hepatic iron injury and the therapeutic effects of resveratrol. RESULTS Hepatic iron-overload was associated with hepatosplenomegaly, increased oxidative stress, hepatic fibrosis, and inflammation, and a pro-apoptotic state which was markedly corrected by resveratrol therapy. Importantly our aging studies with the hemojuvelin knockout mice showed advanced liver disease in association with steatosis in the absence of a diabetic state which recapitulates the essential pathological features seen in clinical iron-overload. Chronic hepatic iron-overload showed increased nuclear localization of acetylated Forkhead fox-O-1 (FoxO1) transcription factor whereas resveratrol dietary intervention reversed the acetylation of FoxO1 in association with increased SIRT1 levels which together with its pleotropic antioxidant properties are likely key mechanisms of its therapeutic action. Importantly, resveratrol treatment did not affect the degree of hepatic iron-overload but rather direct protects the liver from iron-mediated injury. CONCLUSIONS Our findings illustrate a novel and definitive therapeutic action of resveratrol and represent an economically feasible therapeutic intervention to treat hepatic iron-overload and liver disease.
Collapse
Affiliation(s)
- Subhash K Das
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | | | - Jason R B Dyck
- Department of Pediatrics and Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Zamaneh Kassiri
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
| | - Gavin Y Oudit
- Department of Medicine, University of Alberta, Edmonton, AB, Canada.,Department of Physiology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
89
|
Latour C, Besson-Fournier C, Meynard D, Silvestri L, Gourbeyre O, Aguilar-Martinez P, Schmidt PJ, Fleming MD, Roth MP, Coppin H. Differing impact of the deletion of hemochromatosis-associated molecules HFE and transferrin receptor-2 on the iron phenotype of mice lacking bone morphogenetic protein 6 or hemojuvelin. Hepatology 2016; 63:126-37. [PMID: 26406355 DOI: 10.1002/hep.28254] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/22/2015] [Indexed: 12/07/2022]
Abstract
UNLABELLED Hereditary hemochromatosis, which is characterized by inappropriately low levels of hepcidin, increased dietary iron uptake, and systemic iron accumulation, has been associated with mutations in the HFE, transferrin receptor-2 (TfR2), and hemojuvelin (HJV) genes. However, it is still not clear whether these molecules intersect in vivo with bone morphogenetic protein 6 (BMP6)/mothers against decapentaplegic (SMAD) homolog signaling, the main pathway up-regulating hepcidin expression in response to elevated hepatic iron. To answer this question, we produced double knockout mice for Bmp6 and β2-microglobulin (a surrogate for the loss of Hfe) and for Bmp6 and Tfr2, and we compared their phenotype (hepcidin expression, Bmp/Smad signaling, hepatic and extrahepatic tissue iron accumulation) with that of single Bmp6-deficient mice and that of mice deficient for Hjv, alone or in combination with Hfe or Tfr2. Whereas the phenotype of Hjv-deficient females was not affected by loss of Hfe or Tfr2, that of Bmp6-deficient females was considerably worsened, with decreased Smad5 phosphorylation, compared with single Bmp6-deficient mice, further repression of hepcidin gene expression, undetectable serum hepcidin, and massive iron accumulation not only in the liver but also in the pancreas, the heart, and the kidneys. CONCLUSION These results show that (1) BMP6 does not require HJV to transduce signal to hepcidin in response to intracellular iron, even if the loss of HJV partly reduces this signal, (2) another BMP ligand can replace BMP6 and significantly induce hepcidin expression in response to extracellular iron, and (3) BMP6 alone is as efficient at inducing hepcidin as the other BMPs in association with the HJV/HFE/TfR2 complex; they provide an explanation for the compensatory effect of BMP6 treatment on the molecular defect underlying Hfe hemochromatosis in mice.
Collapse
Affiliation(s)
- Chloé Latour
- Centre de Physiopathologie de Toulouse Purpan, Inserm U1043, CNRS U5282, Université de Toulouse III, Toulouse, France
| | - Céline Besson-Fournier
- Centre de Physiopathologie de Toulouse Purpan, Inserm U1043, CNRS U5282, Université de Toulouse III, Toulouse, France
| | - Delphine Meynard
- Centre de Physiopathologie de Toulouse Purpan, Inserm U1043, CNRS U5282, Université de Toulouse III, Toulouse, France
| | - Laura Silvestri
- San Raffaele Scientific Institute & Vita-Salute University, Milan, Italy
| | - Ophélie Gourbeyre
- Centre de Physiopathologie de Toulouse Purpan, Inserm U1043, CNRS U5282, Université de Toulouse III, Toulouse, France
| | - Patricia Aguilar-Martinez
- Centre de Physiopathologie de Toulouse Purpan, Inserm U1043, CNRS U5282, Université de Toulouse III, Toulouse, France.,Laboratory of Haematology, CHRU de Montpellier, Hôpital Saint Eloi, Montpellier, France
| | - Paul J Schmidt
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Mark D Fleming
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Marie-Paule Roth
- Centre de Physiopathologie de Toulouse Purpan, Inserm U1043, CNRS U5282, Université de Toulouse III, Toulouse, France
| | - Hélène Coppin
- Centre de Physiopathologie de Toulouse Purpan, Inserm U1043, CNRS U5282, Université de Toulouse III, Toulouse, France
| |
Collapse
|
90
|
Iron-overload injury and cardiomyopathy in acquired and genetic models is attenuated by resveratrol therapy. Sci Rep 2015; 5:18132. [PMID: 26638758 PMCID: PMC4671148 DOI: 10.1038/srep18132] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/12/2015] [Indexed: 02/08/2023] Open
Abstract
Iron-overload cardiomyopathy is a prevalent cause of heart failure on a world-wide basis and is a major cause of mortality and morbidity in patients with secondary iron-overload and genetic hemochromatosis. We investigated the therapeutic effects of resveratrol in acquired and genetic models of iron-overload cardiomyopathy. Murine iron-overload models showed cardiac iron-overload, increased oxidative stress, altered Ca2+ homeostasis and myocardial fibrosis resulting in heart disease. Iron-overload increased nuclear and acetylated levels of FOXO1 with corresponding inverse changes in SIRT1 levels in the heart corrected by resveratrol therapy. Resveratrol, reduced the pathological remodeling and improved cardiac function in murine models of acquired and genetic iron-overload at varying stages of iron-overload. Echocardiography and hemodynamic analysis revealed a complete normalization of iron-overload mediated diastolic and systolic dysfunction in response to resveratrol therapy. Myocardial SERCA2a levels were reduced in iron-overloaded hearts and resveratrol therapy restored SERCA2a levels and corrected altered Ca2+ homeostasis. Iron-mediated pro-oxidant and pro-fibrotic effects in human and murine cardiomyocytes and cardiofibroblasts were suppressed by resveratrol which correlated with reduction in iron-induced myocardial oxidative stress and myocardial fibrosis. Resveratrol represents a clinically and economically feasible therapeutic intervention to reduce the global burden from iron-overload cardiomyopathy at early and chronic stages of iron-overload.
Collapse
|
91
|
Xu W, Barrientos T, Mao L, Rockman HA, Sauve AA, Andrews NC. Lethal Cardiomyopathy in Mice Lacking Transferrin Receptor in the Heart. Cell Rep 2015; 13:533-545. [PMID: 26456827 DOI: 10.1016/j.celrep.2015.09.023] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 08/21/2015] [Accepted: 09/04/2015] [Indexed: 01/26/2023] Open
Abstract
Both iron overload and iron deficiency have been associated with cardiomyopathy and heart failure, but cardiac iron utilization is incompletely understood. We hypothesized that the transferrin receptor (Tfr1) might play a role in cardiac iron uptake and used gene targeting to examine the role of Tfr1 in vivo. Surprisingly, we found that decreased iron, due to inactivation of Tfr1, was associated with severe cardiac consequences. Mice lacking Tfr1 in the heart died in the second week of life and had cardiomegaly, poor cardiac function, failure of mitochondrial respiration, and ineffective mitophagy. The phenotype could only be rescued by aggressive iron therapy, but it was ameliorated by administration of nicotinamide riboside, an NAD precursor. Our findings underscore the importance of both Tfr1 and iron in the heart, and may inform therapy for patients with heart failure.
Collapse
Affiliation(s)
- Wenjing Xu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Duke University, Durham, NC 27705, USA
| | - Tomasa Barrientos
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Duke University, Durham, NC 27705, USA
| | - Lan Mao
- Department of Medicine, Duke University School of Medicine, Duke University, Durham, NC 27705, USA
| | - Howard A Rockman
- Department of Medicine, Duke University School of Medicine, Duke University, Durham, NC 27705, USA
| | - Anthony A Sauve
- Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Nancy C Andrews
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Duke University, Durham, NC 27705, USA; Department of Pediatrics, Duke University School of Medicine, Duke University, Durham, NC 27705, USA.
| |
Collapse
|
92
|
Martins AF, Xavier Neto J, Azambuja A, Sereno ML, Figueira A, Campos-Junior PH, Rosário MF, Toledo CBB, Silva GAB, Kitten GT, Coutinho LL, Dietrich S, Jorge EC. Repulsive Guidance Molecules a, b and c Are Skeletal Muscle Proteins, and Repulsive Guidance Molecule a Promotes Cellular Hypertrophy and Is Necessary for Myotube Fusion. Cells Tissues Organs 2015; 200:326-38. [PMID: 26397945 DOI: 10.1159/000433491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2015] [Indexed: 11/19/2022] Open
Abstract
Repulsive guidance molecules (RGMs) compose a family of glycosylphosphatidylinositol (GPI)-anchored axon guidance molecules and perform several functions during neural development. New evidence has suggested possible new roles for these axon guidance molecules during skeletal muscle development, which has not been investigated thus far. In the present study, we show that RGMa, RGMb and RGMc are all induced during skeletal muscle differentiation in vitro. Immunolocalization performed on adult skeletal muscle cells revealed that RGMa, RGMb and RGMc are sarcolemmal proteins. Additionally, RGMa was found to be a sarcoplasmic protein with a surprisingly striated pattern. RGMa colocalization with known sarcoplasmic proteins suggested that this axon guidance molecule is a skeletal muscle sarcoplasmic protein. Western blot analysis revealed two RGMa fragments of 60 and 33 kDa, respectively, in adult skeletal muscle samples. RGMa phenotypes in skeletal muscle cells (C2C12 and primary myoblasts) were also investigated. RGMa overexpression produced hypertrophic cells, whereas RGMa knockdown resulted in the opposite phenotype. RGMa knockdown also blocked myotube formation in both skeletal muscle cell types. Our results are the first to show an axon guidance molecule as a skeletal muscle sarcoplasmic protein and to include RGMa in a system that regulates skeletal muscle cell size and differentiation.
Collapse
Affiliation(s)
- Aline Fagundes Martins
- Departamento de Morfologia, Instituto de Cix00EA;ncias Biolx00F3;gicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Rivella S. β-thalassemias: paradigmatic diseases for scientific discoveries and development of innovative therapies. Haematologica 2015; 100:418-30. [PMID: 25828088 DOI: 10.3324/haematol.2014.114827] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
β-thalassemias are monogenic disorders characterized by defective synthesis of the β-globin chain, one of the major components of adult hemoglobin. A large number of mutations in the β-globin gene or its regulatory elements have been associated with β-thalassemias. Due to the complexity of the regulation of the β-globin gene and the role of red cells in many physiological processes, patients can manifest a large spectrum of phenotypes, and clinical requirements vary from patient to patient. It is important to consider the major differences in the light of potential novel therapeutics. This review summarizes the main discoveries and mechanisms associated with the synthesis of β-globin and abnormal erythropoiesis, as well as current and novel therapies.
Collapse
Affiliation(s)
- Stefano Rivella
- Department of Pediatrics Hematology-Oncology Department of Cell and Developmental Biology Weill Cornell Medical College New York, NY, USA
| |
Collapse
|
94
|
Miseta A, Nagy J, Nagy T, Poór VS, Fekete Z, Sipos K. Hepcidin and its potential clinical utility. Cell Biol Int 2015; 39:1191-202. [PMID: 26109250 DOI: 10.1002/cbin.10505] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/12/2015] [Indexed: 02/06/2023]
Abstract
A number of pathophysiological conditions are related to iron metabolism disturbances. Some of them are well known, others are newly discovered or special. Hepcidin is a newly identified iron metabolism regulating hormone, which could be a promising biomarker for many disorders. In this review, we provide background information about mammalian iron metabolism, cellular iron trafficking, and the regulation of expression of hepcidin. Beside these molecular biological processes, we summarize the methods that have been used to determine blood and urine hepcidin levels and present those pathological conditions (cancer, inflammation, neurological disorders) when hepcidin measurement may have clinical relevance.
Collapse
Affiliation(s)
- Attila Miseta
- Department of Laboratory Medicine, Faculty of Medical Sciences, University of Pécs, 7624 Ifjusag Street 13. Pecs, Hungary
| | - Judit Nagy
- Department of Anaesthesiology and Intensive Care, Faculty of Medical Sciences, University of Pécs, 7624 Ifjusag Street 13. Pecs, Hungary
| | - Tamas Nagy
- Department of Laboratory Medicine, Faculty of Medical Sciences, University of Pécs, 7624 Ifjusag Street 13. Pecs, Hungary
| | - Viktor Soma Poór
- Department of Forensic Medicine, Faculty of Medical Sciences, University of Pécs, 7624 Szigeti Street 12. Pecs, Hungary
| | - Zsuzsanna Fekete
- Department of Medical Biology, Faculty of Medical Sciences, University of Pécs, 7624 Szigeti Street 12. Pecs, Hungary
| | - Katalin Sipos
- Department of Pharmaceutical Biology, Faculty of Medical Sciences, University of Pécs, 7624 Rokus Street 2. Pecs, Hungary
| |
Collapse
|
95
|
Jenkitkasemwong S, Wang CY, Coffey R, Zhang W, Chan A, Biel T, Kim JS, Hojyo S, Fukada T, Knutson MD. SLC39A14 Is Required for the Development of Hepatocellular Iron Overload in Murine Models of Hereditary Hemochromatosis. Cell Metab 2015; 22:138-50. [PMID: 26028554 PMCID: PMC4497937 DOI: 10.1016/j.cmet.2015.05.002] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 03/04/2015] [Accepted: 04/24/2015] [Indexed: 01/07/2023]
Abstract
Nearly all forms of hereditary hemochromatosis are characterized by pathological iron accumulation in the liver, pancreas, and heart. These tissues preferentially load iron because they take up non-transferrin-bound iron (NTBI), which appears in the plasma during iron overload. Yet, how tissues take up NTBI is largely unknown. We report that ablation of Slc39a14, the gene coding for solute carrier SLC39A14 (also called ZIP14), in mice markedly reduced the uptake of plasma NTBI by the liver and pancreas. To test the role of SLC39A14 in tissue iron loading, we crossed Slc39a14(-/-) mice with Hfe(-/-) and Hfe2(-/-) mice, animal models of type 1 and type 2 (juvenile) hemochromatosis, respectively. Slc39a14 deficiency in hemochromatotic mice greatly diminished iron loading of the liver and prevented iron deposition in hepatocytes and pancreatic acinar cells. The data suggest that inhibition of SLC39A14 may mitigate hepatic and pancreatic iron loading and associated pathologies in iron overload disorders.
Collapse
Affiliation(s)
- Supak Jenkitkasemwong
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA
| | - Chia-Yu Wang
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA
| | - Richard Coffey
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA
| | - Wei Zhang
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA
| | - Alan Chan
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA
| | - Thomas Biel
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - Jae-Sung Kim
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - Shintaro Hojyo
- RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Deutsches Rheuma-Forschungszentrum Berlin, Osteoimmunology, Charitéplatz, 10117 Berlin, Germany
| | - Toshiyuki Fukada
- RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Shinagawa 142-8666, Japan; Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8055, Japan
| | - Mitchell D Knutson
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
96
|
Schmidt PJ. Regulation of Iron Metabolism by Hepcidin under Conditions of Inflammation. J Biol Chem 2015; 290:18975-83. [PMID: 26055723 DOI: 10.1074/jbc.r115.650150] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Iron is a redox-active metal required as a cofactor in multiple metalloproteins essential for a host of life processes. The metal is highly toxic when present in excess and must be strictly regulated to prevent tissue and organ damage. Hepcidin, a molecule first characterized as an antimicrobial peptide, plays a critical role in the regulation of iron homeostasis. Multiple stimuli positively influence the expression of hepcidin, including iron, inflammation, and infection by pathogens. In this Minireview, I will discuss how inflammation regulates hepcidin transcription, allowing for sufficient concentrations of iron for organismal needs while sequestering the metal from infectious pathogens.
Collapse
Affiliation(s)
- Paul J Schmidt
- From the Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
97
|
Li J, Zhang P, Liu H, Ren W, Song J, Rao E, Takahashi E, Zhou Y, Li W, Chen X. Deficits of learning and memory in Hemojuvelin knockout mice. J Vet Med Sci 2015; 77:1235-40. [PMID: 26027705 PMCID: PMC4638289 DOI: 10.1292/jvms.15-0102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Iron is involved in various physiological processes of the human body to maintain normal
functions. Abnormal iron accumulation in brain has been reported as a pathogenesis of
several neurodegenerative disorders and cognitive impairments. Hemojuvelin (HVJ) is a
membrane-bound and soluble protein in mammals that is responsible for the iron overload
condition known as juvenile hemochromatosis. Although iron accumulation in brain has been
related to neurodegenerative diseases, it remains unknown the effect of mutation of HVJ
gene on cognitive performance. In our studies, HJV(−/−) mice showed deficits in novel
object recognition and Morris water maze tests. Furthermore, the expression ration of
apoptotic marker Bax and anti-apoptotic marker Bcl-2 in the hippocampus and prefrontal
cortex showed higher levels in HJV(−/−) mice. Our results suggested that deletion of HJV
gene could increase apoptosis in brain which might contribute to learning and memory
deficits in mutant mice. These results indicated that HJV(−/−) mice would be a useful
model to study cognitive impairment induced by iron overload in brain.
Collapse
Affiliation(s)
- Jinglong Li
- College of Life Sciences, Shaanxi Normal University, No.199 South Chang'an Road, Xi'an 710062, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Wu Q, Wang H, An P, Tao Y, Deng J, Zhang Z, Shen Y, Chen C, Min J, Wang F. HJV and HFE Play Distinct Roles in Regulating Hepcidin. Antioxid Redox Signal 2015; 22:1325-36. [PMID: 25608116 PMCID: PMC4410569 DOI: 10.1089/ars.2013.5819] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIMS Hereditary hemochromatosis (HH) is an iron overload disease that is caused by mutations in HFE, HJV, and several other genes. However, whether HFE-HH and HJV-HH share a common pathway via hepcidin regulation is currently unclear. Recently, some HH patients have been reported to carry concurrent mutations in both the HFE and HJV genes. To dissect the roles and molecular mechanisms of HFE and/or HJV in the pathogenesis of HH, we studied Hfe(-/-), Hjv(-/-), and Hfe(-/-)Hjv(-/-) double-knockout mouse models. RESULTS Hfe(-/-)Hjv(-/-) mice developed iron overload in multiple organs at levels comparable to Hjv(-/-) mice. After an acute delivery of iron, the expression of hepcidin (i.e., Hamp1 mRNA) was increased in the livers of wild-type and Hfe(-/-) mice, but not in either Hjv(-/-) or Hfe(-/-)Hjv(-/-) mice. Furthermore, iron-induced phosphorylation of Smad1/5/8 was not detected in the livers of Hjv(-/-) or Hfe(-/-)Hjv(-/-) mice. INNOVATION We generated and phenotypically characterized Hfe(-/-)Hjv(-/-) double-knockout mice. In addition, because they faithfully phenocopy clinical HH patients, these mouse models are an invaluable tool for mechanistically dissecting how HFE and HJV regulate hepcidin expression. CONCLUSIONS Based on our results, we conclude that HFE may depend on HJV for transferrin-dependent hepcidin regulation. The presence of residual hepcidin in the absence of HFE suggests either the presence of an unknown regulator (e.g., TFR2) that is synergistic with HJV or that HJV is sufficient to maintain basal levels of hepcidin.
Collapse
Affiliation(s)
- Qian Wu
- 1 Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences , Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Rausa M, Pagani A, Nai A, Campanella A, Gilberti ME, Apostoli P, Camaschella C, Silvestri L. Bmp6 expression in murine liver non parenchymal cells: a mechanism to control their high iron exporter activity and protect hepatocytes from iron overload? PLoS One 2015; 10:e0122696. [PMID: 25860887 PMCID: PMC4393274 DOI: 10.1371/journal.pone.0122696] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 02/12/2015] [Indexed: 02/06/2023] Open
Abstract
Bmp6 is the main activator of hepcidin, the liver hormone that negatively regulates plasma iron influx by degrading the sole iron exporter ferroportin in enterocytes and macrophages. Bmp6 expression is modulated by iron but the molecular mechanisms are unknown. Although hepcidin is expressed almost exclusively by hepatocytes (HCs), Bmp6 is produced also by non-parenchymal cells (NPCs), mainly sinusoidal endothelial cells (LSECs). To investigate the regulation of Bmp6 in HCs and NPCs, liver cells were isolated from adult wild type mice whose diet was modified in iron content in acute or chronic manner and in disease models of iron deficiency (Tmprss6 KO mouse) and overload (Hjv KO mouse). With manipulation of dietary iron in wild-type mice, Bmp6 and Tfr1 expression in both HCs and NPCs was inversely related, as expected. When hepcidin expression is abnormal in murine models of iron overload (Hjv KO mice) and deficiency (Tmprss6 KO mice), Bmp6 expression in NPCs was not related to Tfr1. Despite the low Bmp6 in NPCs from Tmprss6 KO mice, Tfr1 mRNA was also low. Conversely, despite body iron overload and high expression of Bmp6 in NPCs from Hjv KO mice, Tfr1 mRNA and protein were increased. However, in the same cells ferritin L was only slightly increased, but the iron content was not, suggesting that Bmp6 in these cells reflects the high intracellular iron import and export. We propose that NPCs, sensing the iron flux, not only increase hepcidin through Bmp6 with a paracrine mechanism to control systemic iron homeostasis but, controlling hepcidin, they regulate their own ferroportin, inducing iron retention or release and further modulating Bmp6 production in an autocrine manner. This mechanism, that contributes to protect HC from iron loading or deficiency, is lost in disease models of hepcidin production.
Collapse
MESH Headings
- Anemia, Iron-Deficiency/metabolism
- Anemia, Iron-Deficiency/pathology
- Animals
- Apoferritins/metabolism
- Bone Morphogenetic Protein 6/genetics
- Bone Morphogenetic Protein 6/metabolism
- Cells, Cultured
- Disease Models, Animal
- GPI-Linked Proteins
- Hemochromatosis Protein
- Hepatocytes/cytology
- Hepatocytes/drug effects
- Hepatocytes/metabolism
- Hepcidins/metabolism
- Iron/metabolism
- Iron Deficiencies
- Iron Overload/metabolism
- Iron Overload/pathology
- Iron, Dietary/pharmacology
- Male
- Membrane Proteins/deficiency
- Membrane Proteins/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- RNA, Messenger/metabolism
- Receptors, Transferrin/genetics
- Receptors, Transferrin/metabolism
- Serine Endopeptidases/deficiency
- Serine Endopeptidases/genetics
Collapse
Affiliation(s)
- Marco Rausa
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita Salute University, Milan, Italy
| | - Alessia Pagani
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita Salute University, Milan, Italy
| | - Antonella Nai
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita Salute University, Milan, Italy
| | - Alessandro Campanella
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita Salute University, Milan, Italy
| | - Maria Enrica Gilberti
- Unit of Occupational Health and Industrial Hygiene, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Pietro Apostoli
- Unit of Occupational Health and Industrial Hygiene, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Clara Camaschella
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita Salute University, Milan, Italy
- * E-mail: (LS); (CC)
| | - Laura Silvestri
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita Salute University, Milan, Italy
- * E-mail: (LS); (CC)
| |
Collapse
|
100
|
Shucheng G, Chunkang C, Youshan Z, Juan G, Chengming F, Xi Z, Chao X, Xiao L. Decitabine treatment could ameliorate primary iron-overload in myelodysplastic syndrome patients. Cancer Invest 2015; 33:98-106. [PMID: 25699651 DOI: 10.3109/07357907.2014.1001895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In order to research how does hypomethylating agents ameliorate iron metabolism in myelodysplastic syndrome (MDS), we performed methylation-specific, polymerase chain reaction (MSP), bisulfate genomic sequencing polymerase chain reaction (BSP), quantitative real-time PCR and western blot of hemojuvelin (HJV) and ELISA assay for hepcidin before and after demethylating therapy (decitabine) to determine whether the change of HJV methylation status would have an influence on hepcidin expression. Eleven of 22 MDS patients achieved CR or PR according to IWG criteria (50%). HJV mRNA was induced in decitabine responders (p = .006 comparing pre/post decitabine treatment) but not in non-responders (p = .121). Similarly, hepcidin serum expression increased from 320.77 ± 34.8 μg/L to 366.77 ± 21.90 μg/L (p = .012) in responders but did not significantly change in non-responders (p = .058), while no difference of adjusted serum ferritin (ASF) was found. In conclusion, hypermethylation of HJV promoter region could silence the gene expression and demethylating therapy might ameliorate iron-overload through HJV demethylation.
Collapse
Affiliation(s)
- Gu Shucheng
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University , Shanghai , China
| | | | | | | | | | | | | | | |
Collapse
|