51
|
Adedara IA, Owumi SE, Oyelere AK, Farombi EO. Neuroprotective role of gallic acid in aflatoxin B 1 -induced behavioral abnormalities in rats. J Biochem Mol Toxicol 2020; 35:e22684. [PMID: 33319922 DOI: 10.1002/jbt.22684] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/07/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022]
Abstract
The neurotoxic impact of dietary exposure to aflatoxin B1 (AFB1 ) is documented in experimental and epidemiological studies. Gallic acid (GA) is a triphenolic phytochemical with potent anticancer, anti-inflammatory, and antioxidant activities. There is a knowledge gap on the influence of GA on AFB1 -induced neurotoxicity. This study probed the influence of GA on neurobehavioral and biochemical abnormalities in rats orally treated with AFB1 per se (75 µg/kg body weight) or administered together with GA (20 and 40 mg/kg) for 28 uninterrupted days. Behavioral endpoints obtained with video-tracking software demonstrated significant (p < .05) abatement of AFB1 -induced anxiogenic-like behaviors (increased freezing, urination, and fecal bolus discharge), motor and locomotor inadequacies, namely increased negative geotaxis and diminished grip strength, absolute turn angle, total time mobile, body rotation, maximum speed, and total distance traveled by GA. The improvement of exploratory behavior in animals that received both AFB1 and GA was confirmed by track plots and heat maps appraisal. Abatement of AFB1 -induced decreases in acetylcholinesterase activity, antioxidant status and glutathione level by GA was accompanied by a marked reduction in oxidative stress markers in the cerebellum and cerebrum of rats. Additionally, GA treatment abrogated AFB1 -mediated decrease in interleukin-10 and elevation of inflammatory indices, namely tumor necrosis factor-α, myeloperoxidase activity, interleukin-1β, and nitric oxide. Further, GA treatment curtailed caspase-3 activation and histological injuries in the cerebral and cerebellar tissues. In conclusion, abatement of AFB1 -induced neurobehavioral abnormalities by GA involves anti-inflammatory, antioxidant, and antiapoptotic mechanisms in rats.
Collapse
Affiliation(s)
- Isaac A Adedara
- Department of Biochemistry, Drug Metabolism and Toxicology Research Laboratories, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Solomon E Owumi
- Department of Biochemistry, Cancer Research and Molecular Biology Laboratory, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adegboyega K Oyelere
- School of Biochemistry and Chemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Ebenezer O Farombi
- Department of Biochemistry, Drug Metabolism and Toxicology Research Laboratories, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
52
|
Surabhi S, Cuypers F, Hammerschmidt S, Siemens N. The Role of NLRP3 Inflammasome in Pneumococcal Infections. Front Immunol 2020; 11:614801. [PMID: 33424869 PMCID: PMC7793845 DOI: 10.3389/fimmu.2020.614801] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
Inflammasomes are innate immune sensors that regulate caspase-1 mediated inflammation in response to environmental, host- and pathogen-derived factors. The NLRP3 inflammasome is highly versatile as it is activated by a diverse range of stimuli. However, excessive or chronic inflammasome activation and subsequent interleukin-1β (IL-1β) release are implicated in the pathogenesis of various autoimmune diseases such as rheumatoid arthritis, inflammatory bowel disease, and diabetes. Accordingly, inflammasome inhibitor therapy has a therapeutic benefit in these diseases. In contrast, NLRP3 inflammasome is an important defense mechanism against microbial infections. IL-1β antagonizes bacterial invasion and dissemination. Unfortunately, patients receiving IL-1β or inflammasome inhibitors are reported to be at a disproportionate risk to experience invasive bacterial infections including pneumococcal infections. Pneumococci are typical colonizers of immunocompromised individuals and a leading cause of community-acquired pneumonia worldwide. Here, we summarize the current limited knowledge of inflammasome activation in pneumococcal infections of the respiratory tract and how inflammasome inhibition may benefit these infections in immunocompromised patients.
Collapse
Affiliation(s)
| | | | | | - Nikolai Siemens
- Department of Molecular Genetics and Infection Biology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
53
|
Eissa IH, Ibrahim MK, Metwaly AM, Belal A, Mehany ABM, Abdelhady AA, Elhendawy MA, Radwan MM, ElSohly MA, Mahdy HA. Design, molecular docking, in vitro, and in vivo studies of new quinazolin-4(3H)-ones as VEGFR-2 inhibitors with potential activity against hepatocellular carcinoma. Bioorg Chem 2020; 107:104532. [PMID: 33334586 DOI: 10.1016/j.bioorg.2020.104532] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 02/09/2023]
Abstract
A series of new VEGFR-2 inhibitors were designed, synthesized and evaluated for their anti-proliferative activities against hepatocellular carcinoma (HepG-2 cell line). Compound 29b (IC50 = 4.33 ± 0.2 µg/ml) was found to be the most potent derivative as it has showed to be more active than doxorubicin (IC50 = 4.50 ± 0.2 µg/ml) and 78% of sorafenib activity (IC50 = 3.40 ± 0.25 µg/ml). The inhibitory profiles against VEGFR-2 were also assessed for the most promising candidates (16b, 20c, 22b, 24a, 24b, 28c, 28e, 29a, 29b and 29c). Compounds 29b, 29c and 29a exhibited potent inhibitory activities towards VEGFR-2 at IC50 values of 3.1 ± 0.04, 3.4 ± 0.05 and 3.7 ± 0.06 µM, respectively, comparing sorafenib (IC50 = 2.4 ± 0.05 µM). Furthermorer, compound 29b induced apoptosis and arrested the cell cycle growth at G2/M phase. Additionally, in vivo antitumor experiments revealed that compounds 29b and 29c have significant tumor growth inhibition. The test of immuno-histochemical expression of activated caspase-3 revealed that there is a time-dependent increase in cleaved caspase-3 protein expression upon exposure of HepG-2 cells to compound 29b. Moreover, the fibroblastic proliferative index test revealed that compound 29b could attenuate liver fibrosis. Docking studies also supported the results concluded from the biological screening via prediction of the possible binding interactions of the target compounds with VEGFR-2 active sites using the crystal structure of VEGFR-2 downloaded from the Protein Data Bank, (PDB ID: 2OH4) using Discovery Studio 2.5 software. Further structural optimization of the most active candidates may serve as a useful strategy for getting new lead compounds in search for powerful and selective antineoplastic agents.
Collapse
Affiliation(s)
- Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| | - Mohammed K Ibrahim
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed M Metwaly
- Pharmacognosy Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Amany Belal
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Ahmed B M Mehany
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | | | - Mostafa A Elhendawy
- National Center for Natural Products Research, University of Mississippi, MS 38677, USA; Department of Agriculture Chemistry, Faculty of Agriculture, Damietta University, Damietta, Egypt
| | - Mohamed M Radwan
- National Center for Natural Products Research, University of Mississippi, MS 38677, USA; Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mahmoud A ElSohly
- National Center for Natural Products Research, University of Mississippi, MS 38677, USA; Department of Pharmaceutics and Drug Delivery, University of Mississippi, University, MS 38677, USA
| | - Hazem A Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| |
Collapse
|
54
|
Maiese A, De Matteis A, Bolino G, Turillazzi E, Frati P, Fineschi V. Hypo-Expression of Flice-Inhibitory Protein and Activation of the Caspase-8 Apoptotic Pathways in the Death-Inducing Signaling Complex Due to Ischemia Induced by the Compression of the Asphyxiogenic Tool on the Skin in Hanging Cases. Diagnostics (Basel) 2020; 10:diagnostics10110938. [PMID: 33198065 PMCID: PMC7696535 DOI: 10.3390/diagnostics10110938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 11/16/2022] Open
Abstract
The FLICE-inhibitory protein (c-FLIPL) (55 kDa) is expressed in numerous tissues and most abundantly in the kidney, skeletal muscles and heart. The c-FLIPL has a region of homology with caspase-8 at the carboxy-terminal end which allows the molecule to assume a tertiary structure similar to that of caspases-8 and -10. Consequently, c-FLIPL acts as a negative inhibitor of caspase-8, preventing the processing and subsequent release of the pro-apoptotic molecule active form. The c-FLIP plays as an inhibitor of apoptosis induced by a variety of agents, such as tumor necrosis factor (TNF), T cell receptor (TCR), TNF-related apoptosis inducing ligand (TRAIL), Fas and death receptor (DR). Increased expression of c-FLIP has been found in many human malignancies and shown to be involved in resistance to CD95/Fas and TRAIL receptor-induced apoptosis. We wanted to verify an investigative protocol using FLIP to make a differential diagnosis between skin sulcus with vitality or non-vital skin sulcus in hanged subjects and those undergoing simulated hanging (suspension of the victim after murder). The study group consisted of 21 cases who died from suicidal hanging. The control group consisted of traumatic or natural deaths, while a third group consisted of simulated hanging cases. The reactions to the Anti-FLIP Antibody (Abcam clone-8421) was scored for each section with a semi-quantitative method by means of microscopic observation carried out with confocal microscopy and three-dimensional reconstruction. The results obtained allow us to state that the skin reaction to the FLIP is extremely clear and precise, allowing a diagnosis of unequivocal vitality and a very objective differentiation with the post-mortal skin sulcus.
Collapse
Affiliation(s)
- Aniello Maiese
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa PI, Italy; (A.M.); (E.T.)
- IRCCS (Istituto di Ricerca e Cura a Carattere Scientifico) Neuromed Mediterranean Neurological Institute, Via Atinense 18, 86077 Pozzilli IS, Italy;
| | - Alessandra De Matteis
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome RM, Italy; (A.D.M.); (G.B.)
| | - Giorgio Bolino
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome RM, Italy; (A.D.M.); (G.B.)
| | - Emanuela Turillazzi
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa PI, Italy; (A.M.); (E.T.)
| | - Paola Frati
- IRCCS (Istituto di Ricerca e Cura a Carattere Scientifico) Neuromed Mediterranean Neurological Institute, Via Atinense 18, 86077 Pozzilli IS, Italy;
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome RM, Italy; (A.D.M.); (G.B.)
| | - Vittorio Fineschi
- IRCCS (Istituto di Ricerca e Cura a Carattere Scientifico) Neuromed Mediterranean Neurological Institute, Via Atinense 18, 86077 Pozzilli IS, Italy;
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome RM, Italy; (A.D.M.); (G.B.)
- Correspondence:
| |
Collapse
|
55
|
Rodríguez Stewart RM, Raghuram V, Berry JTL, Joshi GN, Mainou BA. Noncanonical Cell Death Induction by Reassortant Reovirus. J Virol 2020; 94:e01613-20. [PMID: 32847857 PMCID: PMC7592226 DOI: 10.1128/jvi.01613-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 08/15/2020] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) constitutes 10 to 15% of all breast cancer and is associated with worse prognosis than other subtypes of breast cancer. Current therapies are limited to cytotoxic chemotherapy, radiation, and surgery, leaving a need for targeted therapeutics to improve outcomes for TNBC patients. Mammalian orthoreovirus (reovirus) is a nonenveloped, segmented, double-stranded RNA virus in the Reoviridae family. Reovirus preferentially kills transformed cells and is in clinical trials to assess its efficacy against several types of cancer. We previously engineered a reassortant reovirus, r2Reovirus, that infects TNBC cells more efficiently and induces cell death with faster kinetics than parental reoviruses. In this study, we sought to understand the mechanisms by which r2Reovirus induces cell death in TNBC cells. We show that r2Reovirus infection of TNBC cells of a mesenchymal stem-like (MSL) lineage downregulates the mitogen-activated protein kinase/extracellular signal-related kinase pathway and induces nonconventional cell death that is caspase-dependent but caspase 3-independent. Infection of different MSL lineage TNBC cells with r2Reovirus results in caspase 3-dependent cell death. We map the enhanced oncolytic properties of r2Reovirus in TNBC to epistatic interactions between the type 3 Dearing M2 gene segment and type 1 Lang genes. These findings suggest that the genetic composition of the host cell impacts the mechanism of reovirus-induced cell death in TNBC. Together, our data show that understanding host and virus determinants of cell death can identify novel properties and interactions between host and viral gene products that can be exploited for the development of improved viral oncolytics.IMPORTANCE TNBC is unresponsive to hormone therapies, leaving patients afflicted with this disease with limited treatment options. We previously engineered an oncolytic reovirus (r2Reovirus) with enhanced infective and cytotoxic properties in TNBC cells. However, how r2Reovirus promotes TNBC cell death is not known. In this study, we show that reassortant r2Reovirus can promote nonconventional caspase-dependent but caspase 3-independent cell death and that the mechanism of cell death depends on the genetic composition of the host cell. We also map the enhanced oncolytic properties of r2Reovirus in TNBC to interactions between a type 3 M2 gene segment and type 1 genes. Our data show that understanding the interplay between the host cell environment and the genetic composition of oncolytic viruses is crucial for the development of efficacious viral oncolytics.
Collapse
Affiliation(s)
- Roxana M Rodríguez Stewart
- Emory University, Atlanta, Georgia, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Jameson T L Berry
- Emory University, Atlanta, Georgia, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Bernardo A Mainou
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
56
|
Zamaraev AV, Volik PI, Nilov DK, Turkina MV, Egorshina AY, Gorbunova AS, Iarovenko SI, Zhivotovsky B, Kopeina GS. Requirement for Serine-384 in Caspase-2 processing and activity. Cell Death Dis 2020; 11:825. [PMID: 33011746 PMCID: PMC7532978 DOI: 10.1038/s41419-020-03023-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022]
Abstract
Caspase-2 is a unique and conservative cysteine protease which plays an important role in several cellular processes including apoptotic cell death. Although the molecular mechanisms of its activation remain largely unclear, a major role belongs to the architecture of the caspase-2 active center. We demonstrate that the substitution of the putative phosphorylation site of caspase-2, Serine-384 to Alanine, blocks caspase-2 processing and decreases its enzymatic activity. Strikingly, in silico analysis using molecular dynamics simulations has shown that Serine-384 is crucially involved in interactions within the caspase-2 active center. It stabilizes Arginine-378, which forms a crucial hydrogen bond with the aspartate residue of a substrate. Hence, Serine-384 is essential for supporting a proper architecture of the active center of caspase-2. Moreover, molecular modeling strongly proved steric inaccessibility of Ser-384 to be phosphorylated. Importantly, a multiple alignment has demonstrated that both Serine-384 and Arg-378 residues are highly conservative across all members of caspase family, which allows us to suggest that this diade is indispensable for caspase processing and activity. Spontaneous mutations in this diade might influence oncosuppressive function of caspases, in particular of caspase-2. Likewise, the mutation of Ser-384 is associated with the development of lung squamous cell carcinoma and adenocarcinoma. Taken together, we have uncovered a central feature of the caspase-2 activation mechanism which is crucial for the regulation of its signaling network.
Collapse
Affiliation(s)
- Alexey V Zamaraev
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Pavel I Volik
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Dmitry K Nilov
- Belozersky Institute of Physicochemical Biology, MV Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Maria V Turkina
- Faculty of Medicine and Heath Sciences, Department of Clinical and Experimental Medicine, Linköping University, 58185, Linköping, Sweden
| | | | - Anna S Gorbunova
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia, 119991
| | | | - Boris Zhivotovsky
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia, 119991
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institute, Box 210, 17177, Stockholm, Sweden
| | - Gelina S Kopeina
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia, 119991.
| |
Collapse
|
57
|
Crisol M, Wu K, Laouar L, Elliott JAW, Jomha NM. Antioxidant additives reduce reactive oxygen species production in articular cartilage during exposure to cryoprotective agents. Cryobiology 2020; 96:114-121. [PMID: 32777334 DOI: 10.1016/j.cryobiol.2020.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023]
Abstract
High concentrations of cryoprotective agents (CPA) are required during articular cartilage cryopreservation but these CPAs can be toxic to chondrocytes. Reactive oxygen species have been linked to cell death due to oxidative stress. Addition of antioxidants has shown beneficial effects on chondrocyte survival and functions after cryopreservation. The objectives of this study were to investigate (1) oxidative stress experienced by chondrocytes and (2) the effect of antioxidants on cellular reactive oxygen species production during articular cartilage exposure to high concentrations of CPAs. Porcine cartilage dowels were exposed to a multi-CPA solution supplemented with either 0.1 mg/mL chondroitin sulfate or 2000 μM ascorbic acid, at 4 °C for 180 min (N = 7). Reactive oxygen species production was measured with 5 μM dihydroethidium, a fluorescent probe that targets reactive oxygen species. The cell viability was quantified with a dual cell membrane integrity stain containing 6.25 μM Syto 13 + 9 μM propidium iodide using confocal microscopy. Supplementation of CPA solutions with chondroitin sulfate or ascorbic acid resulted in significantly lower dihydroethidium counts (p < 0.01), and a lower decrease in the percentage of viable cells (p < 0.01) compared to the CPA-treated group without additives. These results indicated that reactive oxygen species production is induced when articular cartilage is exposed to high CPA concentrations, and correlated with the amount of dead cells. Both chondroitin sulfate and ascorbic acid treatments significantly reduced reactive oxygen species production and improved chondrocyte viability when articular cartilage was exposed to high concentrations of CPAs.
Collapse
Affiliation(s)
- Mary Crisol
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Kezhou Wu
- Department of Surgery, University of Alberta, Edmonton, AB, Canada; Department of Orthopedic Surgery, First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Leila Laouar
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Janet A W Elliott
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Nadr M Jomha
- Department of Surgery, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
58
|
Sun H, Zong H, Wu G. 2‑Hydroxypropyl‑β‑cyclodextrin blocks autophagy flux and triggers caspase‑8‑mediated apoptotic cascades in HepG2 cells. Mol Med Rep 2020; 22:1901-1909. [PMID: 32705246 PMCID: PMC7413020 DOI: 10.3892/mmr.2020.11282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 04/15/2020] [Indexed: 01/07/2023] Open
Abstract
The cyclodextrin derivative, 2‑Hydroxypropyl-β‑cyclodextrin (HPβCD), from the cyclodextrin family is widely used as a drug carrier and offers promising strategies for treating neurodegenerative diseases and atherosclerosis regression. However, its side effects are not fully understood. Therefore, the aim of the present study was to investigate the possible adverse effects of relatively high concentrations of HPβCD on hepatocytes. It was found that a high dose (20 mM) of HPβCD treatment significantly inhibited the AKT/mTOR pathway and disrupted infusion of autophagosomes and lysosomes, which rapidly led to massive autophagosome accumulation in HepG2 cells. The autophagosomal membrane serves as a platform for caspase‑8 oligomerization, which is considered as the key step for its self‑activation. Using flow cytometry and TUNEL assay, increased apoptosis of HepG2 cells treated with a high dose HPβCD (20 mM) for 48 h was observed. In addition, western blotting results demonstrated that the expression of cleaved‑caspase‑8 was positively associated with microtubule‑associated protein 1 light chain 3 BII expression, which is an indicator of autophagosome level in the cytoplasm. Therefore, the present study provided novel evidence that HPβCD might be a potential risk contributing to the pathophysiological process of hepatic diseases, especially in an autophagy‑deficient state.
Collapse
Affiliation(s)
- Haidong Sun
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Huajie Zong
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China,Correspondence to: Dr Huajie Zong or Professor Gang Wu, Department of General Surgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai 200040, P.R. China, E-mail: , E-mail:
| | - Gang Wu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China,Correspondence to: Dr Huajie Zong or Professor Gang Wu, Department of General Surgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai 200040, P.R. China, E-mail: , E-mail:
| |
Collapse
|
59
|
Protocatechuic acid modulates reproductive dysfunction linked to furan exposure in rats. Toxicology 2020; 442:152556. [DOI: 10.1016/j.tox.2020.152556] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022]
|
60
|
Macejová M, Sačková V, Hradická P, Jendželovský R, Demečková V, Fedoročko P. Combination of photoactive hypericin and Manumycin A exerts multiple anticancer effects on oxaliplatin-resistant colorectal cells. Toxicol In Vitro 2020; 66:104860. [DOI: 10.1016/j.tiv.2020.104860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/04/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023]
|
61
|
Goc A, Gehring G, Baltin H, Niedzwiecki A, Rath M. Specific composition of polyphenolic compounds with fatty acids as an approach in helping to reduce spirochete burden in Lyme disease: in vivo and human observational study. Ther Adv Chronic Dis 2020; 11:2040622320922005. [PMID: 32547720 PMCID: PMC7249567 DOI: 10.1177/2040622320922005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 03/13/2020] [Indexed: 12/16/2022] Open
Abstract
Background: Lyme disease (LD) is a tick-borne infection caused by Borrelia burgdorferi sensu lato. The current therapeutic approach to this disease is limited to antibiotics. However, after their administration, about 20% of patients experience delayed onset of this illness manifesting as lingering persistent symptoms. Methods: To determine a suitable approach that would help reduce this number, we examined the efficacy of a composition of polyphenolic compounds (baicalein, luteolin, and rosmarinic acid) with fatty acids (monolaurin and cis-2-decenoic acid), and iodine/kelp in a Lyme disease animal model and volunteers. Results: The results showed that 4 weeks of dietary intake of this composition reduced the spirochete burden in animal tissues by about 75%. Basic and differential blood parameters did not show significant differences between control animals and the animals fed with this composition. Also, hepatic and renal toxicity markers were not changed and apoptosis was not observed. Relevant inflammatory cytokines such as IL-6, IL-17, TNF-α, and INF-γ, were elevated in infected animals but normalized in infected and treated animals. A small observational study revealed that after administration of this composition to 17 volunteers three times per day for 6 months, 67.4% of the volunteers with late or persistent LD, and not receptive to previous antibiotic application, responded positively, in terms of energy status as well as physical and psychological wellbeing to supplementation with this composition, while 17.7% had slight improvement, and 17.7% were none responsive. Conclusion: We concluded that this specific composition revealed feasible benefits in late or persistent LD management, although double-blind controlled clinical trials are warranted.
Collapse
Affiliation(s)
- Anna Goc
- Department of Infectious Diseases, Dr. Rath Research Institute BV, 5941 Optical Ct, San Jose, CA 95138, USA
| | - Gebhard Gehring
- Private Praxisklinik H. Baltin, Aschau/Chiemsee, Bavaria, Germany
| | - Hartmut Baltin
- Private Praxisklinik H. Baltin, Aschau/Chiemsee, Bavaria, Germany
| | - Aleksandra Niedzwiecki
- Department of Infectious Diseases, Dr. Rath Research Institute BV, 5941 Optical Ct, San Jose, CA, USA
| | - Matthias Rath
- Department of Infectious Diseases, Dr. Rath Research Institute BV, San Jose, CA, USA
| |
Collapse
|
62
|
Xu Y, Guo X, Wang G, Zhou C. Vitamin C Inhibits Metastasis of Peritoneal Tumors By Preventing Spheroid Formation in ID8 Murine Epithelial Peritoneal Cancer Model. Front Pharmacol 2020; 11:645. [PMID: 32477126 PMCID: PMC7236773 DOI: 10.3389/fphar.2020.00645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022] Open
Abstract
High mortality is associated with exclusively metastasis within the peritoneal cavity among patients with epithelial ovarian cancer that is the most lethal gynecologic cancer. There is an unmet need to develop more effective therapies to prevent metastasis of peritoneal cancer. Multicellular spheroid formation, during which cancer cells migrate and adhere to tumor-associated macrophages, is a critical step of ovarian cancer metastasis. Here, we showed that vitamin C inhibited spheroid formation and metastasis in ID8 ovarian cancer-bearing mice. We further found that vitamin C treatment decreased the levels of M2 macrophages in tumor nodules and suppressed the epithelial-mesenchymal transition (EMT). In vitro studies revealed that vitamin C inhibited proliferation, arrested cell cycle, attenuated migration, and prevented the spheroid formation of ID8 ovarian cancer cells. Vitamin C induced apoptosis of ID8 cells, which was confirmed by membrane potential collapse, cytosolic calcium overload, ATP depletion, and caspase-3 activation in vitamin C-treated cells. Intriguingly, vitamin C treatment caused striking morphological change and apoptosis of macrophages. The presented proof of concept study strategically identifies new anticancer mechanisms of vitamin C.
Collapse
Affiliation(s)
- Yayun Xu
- Department of Hepatobiliary and Pancreatic Surgery, Minhang Hospital, Fudan University, Shanghai, China
| | - Xing Guo
- Department of Pharmacy, People's Hospital of Rizhao, Rizhao, China
| | - Ganyu Wang
- Department of Pediatric Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Changkuo Zhou
- Department of Urology, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
63
|
Mu YL, Zhang J, Xu MQ, Foda MF, Wu Y, Han HY. Light-Induced Caspase-3-Responsive Chimeric Peptide for Effective PDT/Chemo Combination Therapy with Good Compatibility. ACS APPLIED BIO MATERIALS 2020; 3:2392-2400. [DOI: 10.1021/acsabm.0c00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yong-Li Mu
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Jin Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Meng-Qing Xu
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Mohamed F. Foda
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Yang Wu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - He-You Han
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
64
|
Syed MH, Zamzam A, Valencia J, Khan H, Jain S, Singh KK, Abdin R, Qadura M. MicroRNA Profile of Patients with Chronic Limb-Threatening Ischemia. Diagnostics (Basel) 2020; 10:diagnostics10040230. [PMID: 32316437 PMCID: PMC7235988 DOI: 10.3390/diagnostics10040230] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 12/20/2022] Open
Abstract
Chronic limb-threatening ischemia (CLTI) results in devastating complications such as lower-limb amputations. In this study, a genome-wide plasma microRNAs (miRNA) sequencing was performed to identify miRNA(s) associated with CLTI. Blood samples were collected from early stage CLTI patients (ABI < 0.9) and non-PAD controls (ABI ≥ 0.9) for 3 experiments: discovery phase (n = 23), confirmatory phase (n = 52) and validation phase (n = 20). In the discovery phase, next generation sequencing (NGS) was used to identify miRNA circulating in the plasma CLTI (n = 13) patients, compared to non-PAD controls (n = 10). Two down-regulated miRNAs (miRNA-6843-3p and miRNA-6766-5p) and three upregulated miRNAs (miRNA-1827, miRNA-320 and miRNA-98-3p) were identified (≥2-fold change). In the confirmatory phase, these 5 deregulated miRNAs were further investigated in non-PAD (n = 21) and CTLI (n = 31) patients using qRT-PCR. Only miRNA-1827 was found to be significantly upregulated (≥3-fold, p-value < 0. 001) in the CLTI group. Lastly, to minimize the influence of confounding factors, miRNA-1827 plasma levels were validated in a third cohort of CLTI patients (n = 10) matched to non-PAD controls (n = 10). Our analysis demonstrated that miRNA-1827 expression was increased in the CLTI cohort (≥2-folds, p-value < 0.001). In summary, circulating miRNA-1827 is significantly elevated in patients with CLTI.
Collapse
Affiliation(s)
- Muzammil H. Syed
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (M.H.S.); (A.Z.); (J.V.); (H.K.); (S.J.)
| | - Abdelrahman Zamzam
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (M.H.S.); (A.Z.); (J.V.); (H.K.); (S.J.)
| | - Jason Valencia
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (M.H.S.); (A.Z.); (J.V.); (H.K.); (S.J.)
| | - Hamzah Khan
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (M.H.S.); (A.Z.); (J.V.); (H.K.); (S.J.)
| | - Shubha Jain
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (M.H.S.); (A.Z.); (J.V.); (H.K.); (S.J.)
| | - Krishna K. Singh
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada;
| | - Rawand Abdin
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada;
| | - Mohammad Qadura
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
- Correspondence: ; Tel.: +1-416-864-5154
| |
Collapse
|
65
|
Bacterial Endotoxin Induces Oxidative Stress and Reduces Milk Protein Expression and Hypoxia in the Mouse Mammary Gland. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3894309. [PMID: 32273941 PMCID: PMC7128054 DOI: 10.1155/2020/3894309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/19/2019] [Accepted: 02/27/2020] [Indexed: 12/19/2022]
Abstract
The aim of this study was to investigate the mechanisms underlying the reduced milk production during mastitis. We hypothesized that bacterial endotoxin induces hypoxia, oxidative stress, and cell apoptosis while inhibiting milk gene expression in the mammary gland. To test this hypothesis, the left and right sides of the 4th pair of mouse mammary glands were alternatively injected with either lipopolysaccharide (LPS, E. coli 055: B5, 100 μL of 0.2 mg/mL) or sterile PBS through the teat meatus 3 days postpartum. At 10.5 and 22.5 h postinjection, pimonidazole HCl, a hypoxyprobe, was injected intraperitoneally. At 12 or 24 h after the LPS injection, the 4th glands were individually collected (n = 8) and analyzed. LPS treatment induced mammary inflammation at both 12 and 24 h but promoted cell apoptosis only at 12 h. Consistently, H2O2 content was increased at 12 h (P < 0.01), but dropped dramatically at 24 h (P < 0.01) in the LPS-treated gland. Nevertheless, the total antioxidative capacity in tissue tended to be decreased by LPS at both 12 and 24 h (P = 0.07 and 0.06, respectively). In agreement with these findings, LPS increased or tended to increase the mRNA expression of antioxidative genes Nqo1 at 12 h (P = 0.05) and SLC7A11 at 24 h (P = 0.08). In addition, LPS inhibited mammary expression of Csn2 and Lalba across time and protein expression of Csn1s1 at 24 h (P < 0.05). Furthermore, hypoxyprobe staining intensity was greater in the alveoli of the PBS-treated gland than the LPS-treated gland at both 12 and 24 h, demonstrating a rise in oxygen tension by LPS treatment. In summary, our observations indicated that while intramammary LPS challenge incurs inflammation, it induces oxidative stress, increases cell apoptosis and oxygen tension, and differentially inhibits the milk protein expression in the mammary gland.
Collapse
|
66
|
Akhigbe R, Ajayi A. Testicular toxicity following chronic codeine administration is via oxidative DNA damage and up-regulation of NO/TNF-α and caspase 3 activities. PLoS One 2020; 15:e0224052. [PMID: 32168344 PMCID: PMC7069647 DOI: 10.1371/journal.pone.0224052] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/25/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Codeine, a 3-methylmorphine, and other related opioids have been implicated in androgen suppression, although the associated mechanisms remain unclear. AIM Therefore, the objective of the current study was to elucidate the in vivo molecular mechanisms underlying codeine-induced androgen suppression. METHODS This study made use of twenty-one healthy male rabbits, distributed into three groups randomly, control and codeine-treated groups. The control had 1ml of normal saline daily p.o. The codeine-treated groups received either 4mg/kg b.w of codeine or 10mg/kg b.w of codeine p.o. for six weeks. Reproductive hormonal profile, testicular weight, testicular enzymes, oxidative and inflammatory parameters, testicular DNA fragmentation, histological examination and apoptosis marker were evaluated to examine the effects of codeine use. KEY FINDINGS Oral administration of codeine resulted in testicular atrophy and alterations in testicular histomorphology, elevated testicular enzymes, and suppression of circulatory and intra-testicular testosterone. These changes were associated with a marked rise in oxidative markers and decline in the activities of testicular enzymatic antioxidants, as well as oxidative DNA damage, inflammatory response, testicular DNA fragmentation, and caspase-dependent apoptosis (p<0.05). SIGNIFICANCE In conclusion, chronic codeine use resulted in testicular degeneration and testosterone suppression, which is attributable to TNF-α/nitric oxide-/oxidative stress-mediated caspase-dependent apoptotic testicular cell death and loss of testicular function.
Collapse
Affiliation(s)
- Roland Akhigbe
- Department of Physiology, College of Medicine, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - Ayodeji Ajayi
- Department of Physiology, College of Medicine, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
- * E-mail:
| |
Collapse
|
67
|
Zhao X, Qi T, Yang M, Zhang W, Kong C, Hao M, Wang Y, Zhang H, Yang B, Yang J, Jiang J. Synthesis of dual functional procaine-derived carbon dots for bioimaging and anticancer therapy. Nanomedicine (Lond) 2020; 15:677-689. [PMID: 32122238 DOI: 10.2217/nnm-2019-0390] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Procaine-derived carbon dots, termed P-dots, expectedly offer both fluorescent biomarker function and anticancer activity. Materials & methods: P-dots were synthesized by condensing procaine, citric acid and ethylenediamine via hydrothermal synthesis and characterized by transmission electron microscopy, Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy. The cellular uptake behavior and the bioimaging performance of P-dots were assessed by confocal laser scanning microscopy. Their antitumor activity was evaluated using the CCK-8 assays and in vivo antitumor experiments, and the underlying mechanism was evaluated by flow cytometry and western blotting. Results: P-dots exhibited excellent luminescence properties suitable for bioimaging and considerable anticancer activity associated with caspase-3-related cell apoptosis. Conclusion: The synthesized procaine-derived carbon dots presented a dual function consisting of bioimaging and anticancer activity, which may enable their implementation as safe and effective clinical nanotherapeutics.
Collapse
Affiliation(s)
- Xiaoming Zhao
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, PR China
| | - Tianyang Qi
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, PR China
| | - Mingxi Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130000, PR China
| | - Wenjing Zhang
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun 130033, PR China
| | - Chenfei Kong
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, PR China
| | - Miao Hao
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, PR China
| | - Yuqian Wang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, PR China
| | - Hao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130000, PR China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130000, PR China
| | - Jie Yang
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun 130033, PR China
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, PR China
| |
Collapse
|
68
|
Singh A, Bajpai J, Bajpai A, Mongre RK, Lee MS. Encapsulation of cytarabine into casein coated iron oxide nanoparticles (CCIONPs) and study of in vitro drug release and anticancer activities. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
69
|
Hamzabegovic F, Goll JB, Hooper WF, Frey S, Gelber CE, Abate G. Flagellin adjuvanted F1/V subunit plague vaccine induces T cell and functional antibody responses with unique gene signatures. NPJ Vaccines 2020; 5:6. [PMID: 31993217 PMCID: PMC6978331 DOI: 10.1038/s41541-020-0156-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 12/30/2019] [Indexed: 12/13/2022] Open
Abstract
Yersinia pestis, the cause of plague, could be weaponized. Unfortunately, development of new vaccines is limited by lack of correlates of protection. We used pre- and post-vaccination sera and peripheral blood mononuclear cells from a flagellin adjuvanted F1/V vaccine trial to evaluate for protective markers. Here, we report for the first time in humans that inverse caspase-3 levels, which are measures of protective antibody, significantly increased by 29% and 75% on days 14 and 28 post-second vaccination, respectively. In addition, there were significant increases in T-cell responses on day 28 post-second vaccination. The strongest positive and negative correlations between protective antibody levels and gene expression signatures were identified for IFNG and ENSG00000225107 genes, respectively. Flagellin/F1/V subunit vaccine induced macrophage-protective antibody and significant CD4+ T-cell responses. Several genes associated with these responses were identified that could serve as potential correlates of protection.
Collapse
Affiliation(s)
- Fahreta Hamzabegovic
- Division of Infectious Diseases, Allergy and Immunology, Saint Louis University, Saint Louis, MO USA
| | | | | | - Sharon Frey
- Division of Infectious Diseases, Allergy and Immunology, Saint Louis University, Saint Louis, MO USA
| | | | - Getahun Abate
- Division of Infectious Diseases, Allergy and Immunology, Saint Louis University, Saint Louis, MO USA
| |
Collapse
|
70
|
In vitro cytotoxicity of Clinacanthus nutans fractions on breast cancer cells and molecular docking study of sulphur containing compounds against caspase-3. Food Chem Toxicol 2020; 135:110869. [DOI: 10.1016/j.fct.2019.110869] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 09/17/2019] [Accepted: 10/02/2019] [Indexed: 01/16/2023]
|
71
|
Abosheasha MA, Abd El Khalik EAM, El-Gowily AH. Indispensable Role of Protein Turnover in Autophagy, Apoptosis and Ubiquitination Pathways. HEAT SHOCK PROTEINS 2020:447-468. [DOI: 10.1007/7515_2020_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
72
|
Li G, Wang X, Li C, Hu S, Niu Z, Sun Q, Sun M. Piwi-Interacting RNA1037 Enhances Chemoresistance and Motility in Human Oral Squamous Cell Carcinoma Cells. Onco Targets Ther 2019; 12:10615-10627. [PMID: 31824169 PMCID: PMC6900317 DOI: 10.2147/ott.s233322] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/13/2019] [Indexed: 01/31/2023] Open
Abstract
Background Piwi-interacting RNAs (piRNAs) are thought to silence transposable genetic elements. However, the functional roles of piRNAs in oral squamous cell carcinoma (OSCC) remain unelucidated. In the present study, we aimed to investigate the role of Piwi-interacting RNA 1037 (piR-1037) in chemoresistance to cisplatin (CDDP)-based chemotherapy and the oncogenic role of piR-1037 in OSCC cells. Methods RT-PCR was used to evaluate the levels of piR-1037 and X-linked Inhibitor of apoptosis protein (XIAP) mRNA in OSCC cell lines or tumor xenografts. Transfection of piR-1037 DNA antisense and piR-1037 RNA oligonucleotides was performed to suppress and overexpress piR-1037 in OSCC cells, respectively. A CCK8 assay was used to measure the viability or proliferation of OSCC cells. Apoptosis in OSCC cells and xenografts was determined using a TUNEL assay kit. The activity of caspase-3, caspase-8 and caspase-1 in OSCC cells was measured with colorimetric caspase assay kits. Western blot analysis was conducted to analyze XIAP expression in OSCC cells and xenograft samples. Immunoprecipitation (IP) and RNA pull-down assays were utilized to analyze the piR-1037 - XIAP interaction. Transwell assays were performed to evaluate migration and invasion of OSCC cells. Results CDDP treatment upregulated piR-1037 expression in OSCC cells and OSCC xenografts. Suppression of the CDDP-induced upregulation of piR-1037 expression enhanced the sensitivity of OSCC cells to CDDP. piR-1037 promoted protein expression and directly bound XIAP, a key apoptotic inhibitor that is implicated in chemoresistance. The relationship between piR-1037 and XIAP suggested that piR-1037 enhanced OSCC cell chemoresistance to CDDP at least partially through XIAP. Moreover, targeting the basal expression of piR-1037 inhibited cell motility by affecting epithelial–mesenchymal transition (EMT). Conclusion piR-1037 enhances the chemoresistance and motility of OSCC cells. piR-1037 promotes chemoresistance by interacting with XIAP and regulates the motility of OSCC cells by driving EMT.
Collapse
Affiliation(s)
- Guanghui Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Xi Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Chunmei Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Shuang Hu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Zhixing Niu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Qiang Sun
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Minglei Sun
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| |
Collapse
|
73
|
Mishra A, Behura A, Mawatwal S, Kumar A, Naik L, Mohanty SS, Manna D, Dokania P, Mishra A, Patra SK, Dhiman R. Structure-function and application of plant lectins in disease biology and immunity. Food Chem Toxicol 2019; 134:110827. [PMID: 31542433 PMCID: PMC7115788 DOI: 10.1016/j.fct.2019.110827] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/28/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023]
Abstract
Lectins are proteins with a high degree of stereospecificity to recognize various sugar structures and form reversible linkages upon interaction with glyco-conjugate complexes. These are abundantly found in plants, animals and many other species and are known to agglutinate various blood groups of erythrocytes. Further, due to the unique carbohydrate recognition property, lectins have been extensively used in many biological functions that make use of protein-carbohydrate recognition like detection, isolation and characterization of glycoconjugates, histochemistry of cells and tissues, tumor cell recognition and many more. In this review, we have summarized the immunomodulatory effects of plant lectins and their effects against diseases, including antimicrobial action. We found that many plant lectins mediate its microbicidal activity by triggering host immune responses that result in the release of several cytokines followed by activation of effector mechanism. Moreover, certain lectins also enhance the phagocytic activity of macrophages during microbial infections. Lectins along with heat killed microbes can act as vaccine to provide long term protection from deadly microbes. Hence, lectin based therapy can be used as a better substitute to fight microbial diseases efficiently in future.
Collapse
Affiliation(s)
- Abtar Mishra
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Assirbad Behura
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Shradha Mawatwal
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Ashish Kumar
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Lincoln Naik
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Subhashree Subhasmita Mohanty
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Debraj Manna
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Puja Dokania
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342011, India
| | - Samir K Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
74
|
Matrix Metalloproteinase Triple-Helical Peptide Inhibitors: Potential Cross-Reactivity with Caspase-11. Molecules 2019; 24:molecules24234355. [PMID: 31795279 PMCID: PMC6930605 DOI: 10.3390/molecules24234355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/15/2022] Open
Abstract
Triple-helical peptide inhibitors (THPIs) of matrix metalloproteinases (MMPs) have recently been demonstrated to be effective in a variety of animal models of disease, coincidental with knockout studies. However, passenger mutations have been described in MMP knockout mice that impact the activity of other proteins, including caspase-11. Thus, it is possible that the results observed with THPIs may be based on inhibition of caspase-11, not MMPs. The present study evaluated whether THPIs were cross-reactive with caspase-11. Two different THPIs were tested, one that is known to inhibit MMP-1 and MMP-8 (GlyΨ{PO2H-CH2}Ile-His-Lys-Gln THPI) and one that is selective for MMP-2 and MMP-9 (α1(V)GlyΨ{PO2H-CH2}Val [mep14,32,Flp15,33] THPI). No inhibition of caspase-11 was observed with GlyΨ{PO2H–CH2}Ile–His–Lys–Gln THPI, even at an inhibitor concentration of 5 μM, while 5 μM α1(V)GlyΨ{PO2H-CH2}Val [mep14,32,Flp15,33] THPI exhibited 40% inhibition of caspase-11. Further testing of GlyΨ{PO2H-CH2}Ile-His-Lys-Gln THPI revealed nM inhibition of MMP-2, MMP-9, and MMP-13. Thus, the effectiveness of GlyΨ{PO2H-CH2}Ile-His-Lys-Gln THPI observed in a sepsis animal model may not be due to caspase-11 inhibition, but may be due to broader MMP inhibition than previously thought.
Collapse
|
75
|
Wimmer K, Sachet M, Oehler R. Circulating biomarkers of cell death. Clin Chim Acta 2019; 500:87-97. [PMID: 31655053 DOI: 10.1016/j.cca.2019.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 12/15/2022]
Abstract
Numerous disease states are associated with cell death. For many decades, apoptosis and accidental necrosis have been assumed to be the two ways how a cell can die. The recent discovery of additional cell death processes such as necroptosis, ferroptosis or pyroptosis revealed a complex interplay between cell death mechanisms and diseases. Depending on the particular cell death pathway, cells secrete distinct molecular patterns, which differ between cell death types. This review focusses on released molecules, detectable in the blood flow, and their potential role as circulating biomarkers of cell death. We elucidate the molecular background of different biomarkers and give an overview on their correlation with disease stage, therapy response and prognosis in patients.
Collapse
Affiliation(s)
- Kerstin Wimmer
- Department of Surgery and Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Monika Sachet
- Department of Surgery and Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Rudolf Oehler
- Department of Surgery and Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| |
Collapse
|
76
|
Ivanisenko NV, Lavrik IN. Mechanisms of Procaspase-8 Activation in the Extrinsic Programmed Cell Death Pathway. Mol Biol 2019. [DOI: 10.1134/s0026893319050091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
77
|
Petroni G, Stefanini M, Pillozzi S, Crociani O, Becchetti A, Arcangeli A. Data describing the effects of the Macrolide Antibiotic Clarithromycin on preclinical mouse models of Colorectal Cancer. Data Brief 2019; 26:104406. [PMID: 31508470 PMCID: PMC6727004 DOI: 10.1016/j.dib.2019.104406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/31/2019] [Accepted: 08/09/2019] [Indexed: 11/25/2022] Open
Abstract
Macrolide antibiotics, such as Clarithromycin (Cla), have been proven to exert anti-tumour activity in several preclinical models of different types of cancer. Cla can exert its anti-tumour effects through different mechanisms, e.g. by blocking the autophagic flux, inducing apoptosis or inhibiting tumour-induced angiogenesis. The clinical benefit of Cla in treating various tumours in combination with conventional treatment was confirmed in extensive clinical studies in patients suffering from non-small cell lung cancer, breast cancer, multiple myeloma and other haematological malignancies. Data regarding the anti-cancer effect of Cla on Colorectal Cancer (CRC) are still lacking. This article shares data on the in vivo efficacy of Cla in two xenograft models of CRC. Our results show that Cla treatment reduces tumour growth and increases the overall survival in CRC mouse xenograft models. Moreover, the Western blot analysis of autophagic and apoptotic markers suggests that the anti-tumour effects of Cla are related to a modulation of both cellular processes. The data suggest that it will worth consider Cla as treatment option for CRC patients.
Collapse
Affiliation(s)
- Giulia Petroni
- Department of Experimental and Clinical Medicine, University of Firenze, Viale GB Morgagni 50, 50134 Firenze, Italy
| | - Matteo Stefanini
- Department of Experimental and Clinical Medicine, University of Firenze, Viale GB Morgagni 50, 50134 Firenze, Italy
| | - Serena Pillozzi
- Department of Experimental and Clinical Medicine, University of Firenze, Viale GB Morgagni 50, 50134 Firenze, Italy.,Dival Toscana Srl, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Olivia Crociani
- Department of Experimental and Clinical Medicine, University of Firenze, Viale GB Morgagni 50, 50134 Firenze, Italy.,Dival Toscana Srl, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, University of Firenze, Viale GB Morgagni 50, 50134 Firenze, Italy
| |
Collapse
|
78
|
Yan W, Li K, Buhe A, Li T, Tian P, Hong J. Salidroside inhibits the proliferation and migration of gastric carcinoma cells and tumor growth via the activation of ERS-dependent autophagy and apoptosis. RSC Adv 2019; 9:25655-25666. [PMID: 35530072 PMCID: PMC9070095 DOI: 10.1039/c9ra00044e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 07/08/2019] [Indexed: 12/04/2022] Open
Abstract
The endoplasmic reticulum stress (ERS)-induced autophagy and apoptosis are favorable for the suppression of many cancer types. Salidroside (Salid) has been proven to be capable of inducing the apoptosis of many cancer cells. However, the underlying mechanisms and whether Salid can activate the autophagic system have still not been explained thoroughly. Herein, the inhibition effect of Salid on the growth and progress of gastric cancer and the underlying mechanisms were investigated. With the SGC-7901 cells acting as the cancer model cells, we ascertained that Salid exerted a superior antagonism effect on the growth and migration of gastric cancer cells in a dose-dependent manner. Additionally, Salid exhibited strong capacity to induce cell apoptosis by the down-regulation of proliferation-related genes (Ki67 and PCNA), increase in the pro-apoptotic protein C-caspase-3, and changing the levels of other related genes. A mechanism study revealed that the levels of the ERS-related genes, such as CHOP, C-caspase-12, GADD34, and BiP, in the SGC-7901 cells dramatically changed post-treatment by Salid, indicating the involvement of ERS in Salid-inducing cell apoptosis. In addition, the increased LC3+ autophagic vacuoles, enhanced conversion of LC3-I to LC3-II, and inhibition of the PI3K/Akt/mTOR pathway further confirmed the activation of autophagy induced by Salid. Importantly, the effect of Salid in regulating the levels of autophagy-related proteins or the signaling pathway could be markedly depressed by co-incubating with Wortmannin (Wort), an autophagy inhibitor. The final evaluation of the tumor therapy efficacy exhibited satisfactory cancer growth inhibition by Salid with negligible toxicity to normal tissues. In summary, the present work provides a comprehensive effective evaluation of Salid for treating gastric cancer. The detailed investigation of the underlying mechanisms may offer a rational reference for the future applications of Salid in clinic. The endoplasmic reticulum stress (ERS)-induced autophagy and apoptosis are favorable for the suppression of many cancer types.![]()
Collapse
Affiliation(s)
- Wei Yan
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University China
| | - Kai Li
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University China
| | - Amin Buhe
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University China
| | - Tianxiong Li
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University China
| | - Peirong Tian
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University China
| | - Jun Hong
- Department of Surgery, Vanderbilt University Medical Center USA
| |
Collapse
|
79
|
Lion's Mane Mushroom, Hericium erinaceus (Bull.: Fr.) Pers. Suppresses H 2O 2-Induced Oxidative Damage and LPS-Induced Inflammation in HT22 Hippocampal Neurons and BV2 Microglia. Antioxidants (Basel) 2019; 8:antiox8080261. [PMID: 31374912 PMCID: PMC6720269 DOI: 10.3390/antiox8080261] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/28/2019] [Accepted: 08/01/2019] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress and inflammation in neuron-glia system are key factors in the pathogenesis of neurodegenerative diseases. As synthetic drugs may cause side effects, natural products have gained recognition for the prevention or management of diseases. In this study, hot water (HE-HWA) and ethanolic (HE-ETH) extracts of the basidiocarps of Hericium erinaceus mushroom were investigated for their neuroprotective and anti-inflammatory activities against hydrogen peroxide (H2O2)-induced neurotoxicity in HT22 mouse hippocampal neurons and lipopolysaccharide (LPS)-induced BV2 microglial activation respectively. HE-ETH showed potent neuroprotective activity by significantly (p < 0.0001) increasing the viability of H2O2-treated neurons. This was accompanied by significant reduction in reactive oxygen species (ROS) (p < 0.05) and improvement of the antioxidant enzyme catalase (CAT) (p < 0.05) and glutathione (GSH) content (p < 0.01). Besides, HE-ETH significantly improved mitochondrial membrane potential (MMP) (p < 0.05) and ATP production (p < 0.0001) while reducing mitochondrial toxicity (p < 0.001), Bcl-2-associated X (Bax) gene expression (p < 0.05) and nuclear apoptosis (p < 0.0001). However, gene expression of Nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase 1 (HO-1) and NAD(P)H quinone dehydrogenase 1 (NQO1) were unaffected (p > 0.05). HE-ETH also significantly (p < 0.0001) reduced nitric oxide (NO) level in LPS-treated BV2 indicating an anti-inflammatory activity in the microglia. These findings demonstrated HE-ETH maybe a potential neuroprotective and anti-inflammatory agent in neuron-glia environment.
Collapse
|
80
|
Davargaon RS, Sambe AD, Muthangi V V S. Trolox prevents high glucose-induced apoptosis in rat myocardial H9c2 cells by regulating GLUT-4 and antioxidant defense mechanism. IUBMB Life 2019; 71:1876-1895. [PMID: 31359611 DOI: 10.1002/iub.2133] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 07/01/2019] [Indexed: 12/12/2022]
Abstract
Redox imbalance due to hyperglycemia is a causative factor for an increased generation of reactive oxygen species (ROS) that leads to mitochondrial dysfunction and the release of cytochrome-c. The aim of the present study is to elucidate the functional role of oxidative stress (OS) in the induction of apoptosis in H9c2 cells in the hyperglycemic state through glucose transporter-4 (GLUT-4) regulation and antioxidant status. H9c2 cells were incubated with 15, 24, and 33 mM glucose for 24, 48, and 72 hr to induce hyperglycemic stress. Hyperglycemic episodes have significantly influenced GLUT-4 mRNA regulation, depleted glutathione (GSH) and its associated enzymes, reduced cellular antioxidant enzymes (AOEs), caused nuclear condensation, and induced apoptosis by activating caspase-9 and 3 and annexin V binding in a concentration and duration-dependent manner. Trolox pretreatment significantly enhanced the GLUT-4 mRNA and antioxidant defense mechanism, suppressed nuclear condensation, and prevented cytochrome-c release, thereby reducing mitochondrial-dependent apoptosis. The present study shows that the toxic effect of high glucose is significantly regulated and that OS induction can be prevented through a water-soluble vitamin E analog "Trolox" treatment.
Collapse
Affiliation(s)
| | - Asha Devi Sambe
- Laboratory of Gerontology, Department of Zoology, J.B. Campus, Bangalore University, Bengaluru, Karnataka, India
| | | |
Collapse
|
81
|
Emdad L, Bhoopathi P, Talukdar S, Pradhan AK, Sarkar D, Wang XY, Das SK, Fisher PB. Recent insights into apoptosis and toxic autophagy: The roles of MDA-7/IL-24, a multidimensional anti-cancer therapeutic. Semin Cancer Biol 2019; 66:140-154. [PMID: 31356866 DOI: 10.1016/j.semcancer.2019.07.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/21/2019] [Accepted: 07/19/2019] [Indexed: 12/18/2022]
Abstract
Apoptosis and autophagy play seminal roles in maintaining organ homeostasis. Apoptosis represents canonical type I programmed cell death. Autophagy is viewed as pro-survival, however, excessive autophagy can promote type II cell death. Defective regulation of these two obligatory cellular pathways is linked to various diseases, including cancer. Biologic or chemotherapeutic agents, which can reprogram cancer cells to undergo apoptosis- or toxic autophagy-mediated cell death, are considered effective tools for treating cancer. Melanoma differentiation associated gene-7 (mda-7) selectively promotes these effects in cancer cells. mda-7 was identified more than two decades ago by subtraction hybridization showing elevated expression during induction of terminal differentiation of metastatic melanoma cells following treatment with recombinant fibroblast interferon and mezerein (a PKC activating agent). MDA-7 was classified as a member of the IL-10 gene family based on its chromosomal location, and the presence of an IL-10 signature motif and a secretory sequence, and re-named interleukin-24 (MDA-7/IL-24). Multiple studies have established MDA-7/IL-24 as a potent anti-cancer agent, which when administered at supra-physiological levels induces growth arrest and cell death through apoptosis and toxic autophagy in a wide variety of tumor cell types, but not in corresponding normal/non-transformed cells. Furthermore, in a phase I/II clinical trial, MDA-7/IL-24 administered by means of a non-replicating adenovirus was well tolerated and displayed significant clinical activity in patients with multiple advanced cancers. This review examines our current comprehension of the role of MDA-7/IL-24 in mediating cancer-specific cell death via apoptosis and toxic autophagy.
Collapse
Affiliation(s)
- Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.
| | - Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Sarmistha Talukdar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Anjan K Pradhan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.
| |
Collapse
|
82
|
Caspases interplay with kinases and phosphatases to determine cell fate. Eur J Pharmacol 2019; 855:20-29. [DOI: 10.1016/j.ejphar.2019.04.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 04/05/2019] [Accepted: 04/29/2019] [Indexed: 12/15/2022]
|
83
|
Ribeiro LS, Migliari Branco L, Franklin BS. Regulation of Innate Immune Responses by Platelets. Front Immunol 2019; 10:1320. [PMID: 31244858 PMCID: PMC6579861 DOI: 10.3389/fimmu.2019.01320] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/23/2019] [Indexed: 12/11/2022] Open
Abstract
The role of platelets has been extensively studied in the context of coagulation and vascular integrity. Their hemostatic imbalance can lead to known conditions as atherosclerotic plaques, thrombosis, and ischemia. Nevertheless, the knowledge regarding the regulation of different cell types by platelets has been growing exponentially in the past years. Among these biological systems, the innate immune response is remarkably affected by the crosstalk with platelets. This interaction can come from the formation of platelet-leukocyte aggregates, signaling by direct contact between membrane surface molecules or by the stimulation of immune cells by soluble factors and active microparticles secreted by platelets. These ubiquitous blood components are able to sense and react to danger signals, guiding leukocytes to an injury site and providing a scaffold for the formation of extracellular traps for efficient microbial killing and clearance. Using several different mechanisms, platelets have an important task as they regulate the release of different cytokines and chemokines upon sterile or infectious damage, the expression of cell markers and regulation of cell death and survival. Therefore, platelets are more than clotting agents, but critical players within the fine inflammatory equilibrium for the host. In this review, we present pointers to a better understanding about how platelets control and modulate innate immune cells, as well as a summary of the outcome of this interaction, providing an important step for therapeutic opportunities and guidance for future research on infectious and autoimmune diseases.
Collapse
Affiliation(s)
- Lucas Secchim Ribeiro
- Institute of Innate Immunity, University Hospitals, University of Bonn, Bonn, Germany
| | - Laura Migliari Branco
- Centro de Terapia Celular e Molecular (CTC-Mol), Universidade Federal de São Paulo, São Paulo, Brazil
| | - Bernardo S Franklin
- Institute of Innate Immunity, University Hospitals, University of Bonn, Bonn, Germany
| |
Collapse
|
84
|
Matos CP, Addis Y, Nunes P, Barroso S, Alho I, Martins M, Matos APA, Marques F, Cavaco I, Costa Pessoa J, Correia I. Exploring the cytotoxic activity of new phenanthroline salicylaldimine Zn(II) complexes. J Inorg Biochem 2019; 198:110727. [PMID: 31195153 DOI: 10.1016/j.jinorgbio.2019.110727] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 11/26/2022]
Abstract
Zinc(II) complexes bearing N-salicylideneglycinate (Sal-Gly) and 1,10-phenanthroline (phen) or phenanthroline derivatives [NN = 5-chloro-1,10-phenanthroline, 5-amine-1,10-phenanthroline (amphen), 4,7-diphenyl-1,10-phenanthroline (Bphen) and 5,6-epoxy-5,6-dihydro-1,10-phenanthroline] are synthesized. Complexes formulated as [Zn(NN)2(H2O)2]2+(NN = phen and amphen), are also prepared. The cytotoxicity of the compounds is evaluated towards a panel of human cancer cells: ovarian (A2780), breast (MCF7) and cervical (HeLa), as well as non-tumoral V79 fibroblasts. All compounds display higher cytotoxicity than cisplatin (IC50 = 22.5 ± 5.0 μM) towards ovarian cells, showing IC50values in the low micromolar range. Overall, all compounds show higher selectivity for the A2780 cells than for the non-tumoral cells and higher selectivity indexes (IC50(V79)/IC50(A2780) than cisplatin. [Zn(Sal-Gly)(NN)(H2O)] complexes induce caspase-dependent apoptosis in A2780 cells, except [Zn(Sal-Gly)(Bphen)(H2O)], one of the most cytotoxic of the series. The cellular uptake in the ovarian cells analyzed by Inductively Coupled Plasma mass spectrometry indicates different Zn distribution profiles. Transmission electronic microscopy shows mitochondria alterations and apoptotic features consistent with caspase activation; cells incubated with [Zn(Sal-Gly)(amphen)(H2O)] present additional nuclear membrane alterations in agreement with significant association with the nucleus. The increase of reactive oxygen species and lipid peroxidation forms could be related to apoptosis induction. [Zn(NN)2(H2O)2]2+complexes have high ability to bind DNA through intercalation/groove binding, and circular dichroism data suggests that the main type of species that interact with DNA is [Zn(NN)]2+. Studies varying the % of fetal bovine serum (1-15%) in cell media show that albumin binding decreases the complex activity, indicating that distinct speciation of Zn- and phen-containing species in cell media may affect the cytotoxicity.
Collapse
Affiliation(s)
- Cristina P Matos
- Centro de Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Yemataw Addis
- Centro de Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal; Departamento de Química e Farmácia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Patrique Nunes
- Centro de Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Sónia Barroso
- Centro de Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Irina Alho
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Marta Martins
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - António P A Matos
- Centro de Investigação Interdisciplinar Egas Moniz, Campus Universitário, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - Isabel Cavaco
- Centro de Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal; Departamento de Química e Farmácia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - João Costa Pessoa
- Centro de Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Isabel Correia
- Centro de Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
85
|
Wagner HJ, Weber W. Design of a Human Rhinovirus-14 3C Protease-Inducible Caspase-3. Molecules 2019; 24:E1945. [PMID: 31117169 PMCID: PMC6571611 DOI: 10.3390/molecules24101945] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/17/2019] [Accepted: 05/19/2019] [Indexed: 11/16/2022] Open
Abstract
The engineering of enzymes for the purpose of controlling their activity represents a valuable approach to address challenges in both fundamental and applied research. Here, we describe and compare different design strategies for the generation of a human rhinovirus-14 (HRV14) 3C protease-inducible caspase-3 (CASP3). We exemplify the application potential of the resulting protease by controlling the activity of a synthetic enzyme cascade, which represents an important motif for the design of artificial signal transduction networks. In addition, we use our engineered CASP3 to characterize the effect of aspartate mutations on enzymatic activity. Besides the identification of mutations that render the enzyme inactive, we find the CASP3-D192E mutant (aspartate-to-glutamate exchange at position 192) to be inaccessible for 3C protease-mediated cleavage. This indicates a structural change of CASP3 that goes beyond a slight misalignment of the catalytic triad. This study could inspire the design of additional engineered proteases that could be used to unravel fundamental research questions or to expand the collection of biological parts for the design of synthetic signaling pathways.
Collapse
Affiliation(s)
- Hanna J Wagner
- Faculty of Biology, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany.
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany.
| | - Wilfried Weber
- Faculty of Biology, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany.
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany.
| |
Collapse
|
86
|
Hu G, Han Y, Yang D, Cao R, Wang Q, Liu H, Dong Z, Zhang X, Zhang Q, Zhao J. Molecular cloning and characterization of FADD from the manila clam Ruditapes philippinarum. FISH & SHELLFISH IMMUNOLOGY 2019; 88:556-566. [PMID: 30885740 DOI: 10.1016/j.fsi.2019.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
Fas-associated protein with death domain (FADD) is an essential element in cell death, and also implicates in cell cycle progression, inflammation and innate immunity. In the study, an FADD (designated as RpFADD) was identified and characterized from manila clam, Ruditapes philippinarum. Multiple alignments and phylogenetic analysis strongly suggested that RpFADD was a new member of the FADD family. The RpFADD transcripts were constitutively expressed in a wide range of tissues, and dominantly expressed in hemocytes. After challenged with Vibrio anguillarum or Micrococcus luteus, the expression level of RpFADD transcripts was significantly induced and reached the maximum level at 72 h and 48 h, respectively. Knockdown of RpFADD down-regulated the transcript levels of RpIKK, RpTAK1 and RpNF-κB with the exception of RpIκB. Moreover, RpFADD primarily localized in the cell cytoplasm, and its over-expression promoted the apoptosis of HeLa cells. These results revealed that RpFADD perhaps regulated the NF-κB signaling pathways positively, which provided a better understanding of RpFADD in innate immunity.
Collapse
Affiliation(s)
- Gege Hu
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yijing Han
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Dinglong Yang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China.
| | - Ruiwen Cao
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qing Wang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Hui Liu
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Zhijun Dong
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Xiaoli Zhang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Qianqian Zhang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Jianmin Zhao
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Center for Ocean Mega-science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, PR China.
| |
Collapse
|
87
|
Combination of clotam and vincristine enhances anti-proliferative effect in medulloblastoma cells. Gene 2019; 705:67-76. [PMID: 30991098 DOI: 10.1016/j.gene.2019.04.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/28/2019] [Accepted: 04/12/2019] [Indexed: 12/20/2022]
Abstract
Medulloblastoma (MB) is characterized by highly invasive embryonal neuro-epithelial tumors that metastasize via cerebrospinal fluid. MB is difficult to treat and the chemotherapy is associated with significant toxicities and potential long-term disabilities. Previously, we showed that small molecule, clotam (tolfenamic acid: TA) inhibited MB cell proliferation and tumor growth in mice by targeting, survivin. Overexpression of survivin is associated with aggressiveness and poor prognosis in several cancers, including MB. The aim of this study was to test combination treatment involving Vincristine® (VCR), a standard chemotherapeutic drug for MB and TA against MB cells. DAOY and D283 MB cells were treated with 10 μg/mL TA or VCR (DAOY: 2 ng/mL; D283: 1 ng/mL) or combination (TA + VCR). These optimized doses were lower than individual IC50 values. The effect of single or combination treatment on cell viability (CellTiterGlo kit), Combination Index (Chou-Talalay method based on median-drug effect analysis), activation of apoptosis and cell cycle modulation (by flow cytometry using Annexin V and propidium iodide respectively) and the expression of associated markers including survivin (Western immunoblot) were determined. Combination Index showed moderate synergistic cytotoxic effect in both cells. When compared to individual agents, the combination of TA and VCR increased MB cell growth inhibition, induced apoptosis and caused cell cycle (G2/M phase) arrest. Survivin expression was also decreased by the combination treatment. TA is effective for inducing the anti-proliferative response of VCR in MB cells. MB has four distinct genetic/molecular subgroups. Experiments were conducted with MB cells representing two subgroups (DAOY: SHH group; D283: group 4/3). TA-induced inhibition of survivin expression potentially destabilizes mitotic microtubule assembly, sensitizing MB cells and enhancing the efficacy of VCR.
Collapse
|
88
|
Ghosh AK, Samanta I, Mondal A, Liu WR. Covalent Inhibition in Drug Discovery. ChemMedChem 2019; 14:889-906. [PMID: 30816012 DOI: 10.1002/cmdc.201900107] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Indexed: 12/11/2022]
Abstract
Although covalent inhibitors have been used as therapeutics for more than a century, there has been general resistance in the pharmaceutical industry against their further development due to safety concerns. This inclination has recently been reverted after the development of a wide variety of covalent inhibitors to address human health conditions along with the US Food and Drug Administration (FDA) approval of several covalent therapeutics for use in humans. Along with this exciting resurrection of an old drug discovery concept, this review surveys enzymes that can be targeted by covalent inhibitors for the treatment of human diseases. We focus on protein kinases, RAS proteins, and a few other enzymes that have been studied extensively as targets for covalent inhibition, with the aim to address challenges in designing effective covalent drugs and to provide suggestions in the area that have yet to be explored.
Collapse
Affiliation(s)
- Avick Kumar Ghosh
- Department of Chemistry, Texas A&M University, Corner of Ross and Spence Streets, College Station, TX, 77843, USA
| | - Indranil Samanta
- Department of Chemistry, Texas A&M University, Corner of Ross and Spence Streets, College Station, TX, 77843, USA
| | - Anushree Mondal
- Department of Chemistry, Texas A&M University, Corner of Ross and Spence Streets, College Station, TX, 77843, USA
| | - Wenshe Ray Liu
- Department of Chemistry, Texas A&M University, Corner of Ross and Spence Streets, College Station, TX, 77843, USA
| |
Collapse
|
89
|
Cáceres B, Ramirez A, Carrillo E, Jimenez G, Griñán-Lisón C, López-Ruiz E, Jiménez-Martínez Y, Marchal JA, Boulaiz H. Deciphering the Mechanism of Action Involved in Enhanced Suicide Gene Colon Cancer Cell Killer Effect Mediated by Gef and Apoptin. Cancers (Basel) 2019; 11:cancers11020264. [PMID: 30813432 PMCID: PMC6406936 DOI: 10.3390/cancers11020264] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 12/24/2022] Open
Abstract
Despite the great advances in cancer treatment, colorectal cancer has emerged as the second highest cause of death from cancer worldwide. For this type of tumor, the use of suicide gene therapy could represent a novel therapy. We recently demonstrated that co-expression of gef and apoptin dramatically inhibits proliferation of the DLD-1 colon cell line. In the present manuscript, we try to establish the mechanism underlying the enhanced induction of apoptosis by triggering both gef and apoptin expression in colon tumor cells. Scanning microscopy reveals that simultaneous expression of gef and apoptin induces the apparition of many "pores" in the cytoplasmic membrane not detected in control cell lines. The formation of pores induced by the gef gene and accentuated by apoptin results in cell death by necrosis. Moreover, we observed the presence of apoptotic cells. Performing protein expression analysis using western blot, we revealed an activation of mitochondrial apoptosis (increased expression of Pp53, cytochrome c, Bax, and caspase 9) and also the involvement of the extrinsic pathway through caspase 8activation. In conclusion, in this manuscript we demonstrate for the first time that the extrinsic pathway of apoptosis and pore formation is also involved in the cell death caused by the co-expression of the gef and apoptin genes. Our results suggest that co-expression of gef and apoptin genes induces an increase in post-apoptotic necrotic cell death and could be a valuable tool in the design of new antitumor strategies focused on the enhancement of the immune response against cancer cell death.
Collapse
Affiliation(s)
- Blanca Cáceres
- Motril Health Center, Hospital Santa Ana, Motril, 18600 Granada, Spain.
| | - Alberto Ramirez
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, 18016 Granada, Spain.
- Biosanitary Institute of Granada (ibs. GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain.
| | - Esmeralda Carrillo
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, 18016 Granada, Spain.
- Biosanitary Institute of Granada (ibs. GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain.
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain.
- Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain.
| | - Gema Jimenez
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, 18016 Granada, Spain.
- Biosanitary Institute of Granada (ibs. GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain.
- Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain.
| | - Carmen Griñán-Lisón
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, 18016 Granada, Spain.
- Biosanitary Institute of Granada (ibs. GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain.
- Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain.
| | - Elena López-Ruiz
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, 18016 Granada, Spain.
- Biosanitary Institute of Granada (ibs. GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain.
- Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain.
- Department of Health Sciences, University of Jaén, E-23071 Jaén, Spain.
| | - Yaiza Jiménez-Martínez
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, 18016 Granada, Spain.
- Biosanitary Institute of Granada (ibs. GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain.
- Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain.
| | - Juan A Marchal
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, 18016 Granada, Spain.
- Biosanitary Institute of Granada (ibs. GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain.
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain.
- Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain.
| | - Houria Boulaiz
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, 18016 Granada, Spain.
- Biosanitary Institute of Granada (ibs. GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain.
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain.
- Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain.
| |
Collapse
|
90
|
Farag A, Lashen S, Eltaysh R. Histoarchitecture restoration of cerebellar sub-layers as a response to estradiol treatment following Kainic acid-induced spinal cord injury. Cell Tissue Res 2019; 376:309-323. [PMID: 30788578 DOI: 10.1007/s00441-019-02992-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 12/29/2018] [Indexed: 12/19/2022]
Abstract
One of the major impacts of spinal cord injury (SCI) is the cerebellar neurological malfunction and deformation of its sub-layers. This could be due to the enormous innervation of the spinocerebellar tract from the posterior gray horn in the spinal cord to the ipsilateral cerebellum. Although the neuroprotective role of estradiol in spinal cord (SC) injuries, as well as its ability to delay secondary cell death changes, is well-known, its effect on cerebellar layers is not fully investigated. In this study, a SCI model was achieved by injection of Kainic acid into SC of adult Male Wistar rats in order to assess the effects of SCI on the cerebellum. The animals were classified into SCI group (animals with SCI), estradiol-treated group (animals with SCI and received estradiol), control groups, and sham control group. The microscopical examination 24 h after induction of SCI revealed that KA induced the most characteristics of neurodegeneration including astrocytic propagation and microglial activation. The estradiol was injected intraperitoneally 20 min after induction of SCI, and the samples were collected at 1, 3, 7, 14, and 30 days. Histologically, the estradiol reduced the inflammatory response, enhanced the recovery of molecular, granular, and Purkinje cell layers, and therefore aided in the restoration of layer organization. These findings were also confirmed by immunohistochemical staining and gene expression profiling.
Collapse
Affiliation(s)
- Amany Farag
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Gomhoria St., P.O. box 35516, Mansoura, Egypt.
| | - S Lashen
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Gomhoria St., P.O. box 35516, Mansoura, Egypt
| | - R Eltaysh
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Gomhoria St., P.O. box 35516, Mansoura, Egypt
| |
Collapse
|
91
|
Interleukin-18 in Health and Disease. Int J Mol Sci 2019; 20:ijms20030649. [PMID: 30717382 PMCID: PMC6387150 DOI: 10.3390/ijms20030649] [Citation(s) in RCA: 322] [Impact Index Per Article: 64.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/12/2022] Open
Abstract
Interleukin (IL)-18 was originally discovered as a factor that enhanced IFN-γ production from anti-CD3-stimulated Th1 cells, especially in the presence of IL-12. Upon stimulation with Ag plus IL-12, naïve T cells develop into IL-18 receptor (IL-18R) expressing Th1 cells, which increase IFN-γ production in response to IL-18 stimulation. Therefore, IL-12 is a commitment factor that induces the development of Th1 cells. In contrast, IL-18 is a proinflammatory cytokine that facilitates type 1 responses. However, IL-18 without IL-12 but with IL-2, stimulates NK cells, CD4+ NKT cells, and established Th1 cells, to produce IL-3, IL-9, and IL-13. Furthermore, together with IL-3, IL-18 stimulates mast cells and basophils to produce IL-4, IL-13, and chemical mediators such as histamine. Therefore, IL-18 is a cytokine that stimulates various cell types and has pleiotropic functions. IL-18 is a member of the IL-1 family of cytokines. IL-18 demonstrates a unique function by binding to a specific receptor expressed on various types of cells. In this review article, we will focus on the unique features of IL-18 in health and disease in experimental animals and humans.
Collapse
|
92
|
A11, a novel diaryl acylhydrazone derivative, exerts neuroprotection against ischemic injury in vitro and in vivo. Acta Pharmacol Sin 2019; 40:160-169. [PMID: 29925921 DOI: 10.1038/s41401-018-0028-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/08/2018] [Accepted: 04/09/2018] [Indexed: 12/21/2022] Open
Abstract
There is an urgent need to develop effective therapies for ischemic stroke, but the complicated pathological processes after ischemia make doing so difficult. In the current study, we identified a novel diaryl acylhydrazone derivative, A11, which has multiple neuroprotective properties in ischemic stroke models. First, A11 was demonstrated to induce neuroprotection against ischemic injury in a dose-dependent manner (from 0.3 to 3 μM) in three in vitro experimental ischemic stroke models: oxygen glucose deprivation (OGD), hydrogen peroxide, and glutamate-stimulated neuronal cell injury models. Moreover, A11 was able to potently alleviate three critical pathological changes, apoptosis, oxidative stress, and mitochondrial dysfunction, following ischemic insult in neuronal cells. Further analysis revealed that A11 upregulated the phosphorylation levels of protein kinase B (AKT) and extracellular signal-regulated kinase (ERK) in OGD-exposed neuronal cells, suggesting joint activation of the phosphoinositide 3-kinase (PI3K)/AKT and mitogen-activated protein kinase (MEK)/ERK pathways. In rats with middle cerebral artery occlusion, single-dose administration of A11 (3 mg/kg per day, i.v.) at the onset of reperfusion significantly reduced the infarct volumes and ameliorated neurological deficits. Our study, for the first time, reports the anti-ischemic effect of diaryl acylhydrazone chemical entities, especially A11, which acts on multiple ischemia-associated pathological processes. Our results may provide new clues for the development of an effective therapeutic agent for ischemic stroke.
Collapse
|
93
|
Apoptosis and apoptotic body: disease message and therapeutic target potentials. Biosci Rep 2019; 39:BSR20180992. [PMID: 30530866 PMCID: PMC6340950 DOI: 10.1042/bsr20180992] [Citation(s) in RCA: 504] [Impact Index Per Article: 100.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 11/30/2018] [Accepted: 12/07/2018] [Indexed: 12/11/2022] Open
Abstract
Apoptosis is widely known as programmed cell death eliciting no inflammatory responses. The intricacy of apoptosis has been a focus of an array of researches, accumulating a wealth of knowledge which led to not only a better understanding of the fundamental process, but also potent therapies of diseases. The classic intrinsic and extrinsic signaling pathways of apoptosis, along with regulatory factors have been well delineated. Drugs and therapeutic measures designed based on current understanding of apoptosis have long been employed. Small-molecule apoptosis inducers have been clinically used for eliminating morbid cells and therefore treating diseases, such as cancer. Biologics with improved apoptotic efficacy and selectivity, such as recombinant proteins and antibodies, are being extensively researched and some have been approved by the FDA. Apoptosis also produces membrane-bound vesicles derived from disassembly of apoptotic cells, now known as apoptotic bodies (ApoBDs). These little sealed sacs containing information as well as substances from dying cells were previously regarded as garbage bags until they were discovered to be capable of delivering useful materials to healthy recipient cells (e.g., autoantigens). In this review, current understandings and knowledge of apoptosis were summarized and discussed with a focus on apoptosis-related therapeutic applications and ApoBDs.
Collapse
|
94
|
Abstract
Proliferative vitreoretinopathy (PVR) is the most common cause for failure of rhegmatogenous retinal detachment repair and is characterized by the growth and contraction of cellular membranes within the vitreous cavity and on both sides of the retinal surface as well as intraretinal fibrosis. Currently, PVR is thought to be an abnormal wound healing response that is primarily driven by inflammatory, retinal, and RPE cells. At this time, surgery is the only management option for PVR as there is no proven pharmacologic agent for the treatment or prevention of PVR. Laboratory research to better understand PVR pathophysiology and clinical trials of various agents to prevent PVR formation are ongoing.
Collapse
Affiliation(s)
- Sana Idrees
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Jayanth Sridhar
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA
| | - Ajay E. Kuriyan
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
95
|
Yusuf M, Khan M, Robaian MA, Khan RA. Biomechanistic insights into the roles of oxidative stress in generating complex neurological disorders. Biol Chem 2018; 399:305-319. [PMID: 29261511 DOI: 10.1515/hsz-2017-0250] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 12/07/2017] [Indexed: 12/13/2022]
Abstract
Neurological diseases like Alzheimer's disease, epilepsy, parkinsonism, depression, Huntington's disease and amyotrophic lateral sclerosis prevailing globally are considered to be deeply influenced by oxidative stress-based changes in the biochemical settings of the organs. The excess oxygen concentration triggers the production of reactive oxygen species, and even the intrinsic antioxidant enzyme system, i.e. SOD, CAT and GSHPx, fails to manage their levels and keep them under desirable limits. This consequently leads to oxidation of protein, lipids and nucleic acids in the brain resulting in apoptosis, proteopathy, proteasomes and mitochondrion dysfunction, glial cell activation as well as neuroinflammation. The present exploration deals with the evidence-based mechanism of oxidative stress towards development of key neurological diseases along with the involved biomechanistics and biomaterials.
Collapse
Affiliation(s)
- Mohammad Yusuf
- College of Pharmacy, Taif University, Taif-Al-Haweiah 21974, Saudi Arabia
| | - Maria Khan
- College of Pharmacy, Taif University, Taif-Al-Haweiah 21974, Saudi Arabia
| | - Majed A Robaian
- College of Pharmacy, Taif University, Taif-Al-Haweiah 21974, Saudi Arabia
| | - Riaz A Khan
- Medicinal Chemistry Department, Qassim University, Qassim 51452, Saudi Arabia
- Department of Chemistry, MRIU, Faridabad, HR 121 001, India
| |
Collapse
|
96
|
Yildirim C, Yuksel OH, Urkmez A, Sahin A, Somay A, Verit A. Protective effects of Tadalafil and darbepoetin against ischemia - reperfusion injury in a rat testicular torsion model. Int Braz J Urol 2018; 44:1005-1013. [PMID: 30130015 PMCID: PMC6237536 DOI: 10.1590/s1677-5538.ibju.2018.0200] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/31/2018] [Indexed: 12/03/2022] Open
Abstract
Objectives: To evaluate protective effects of darbepoetin and tadalafil against ischemia-reperfusion injury in ipsilateral and contralateral testicle. Materials and Methods: Thirty 3-month-old adult male Wistar-Albino rats were randomly divided into 5 groups (A-E). Sham operation was performed in the first group. In Group B, rats did not received any medication after creating 720 degrees torsion of the left testis. The rats in Group C, D and E received darbepoetin, tadalafil, and darbepoetin/tadalafil combination 30 minutes after creating 720 degrees torsion of the left testis, respectively. The testes of rats in these three groups were detorsioned at 90 minutes after drug administration. Both testes were removed at 30 minutes after detorsion. Results: There were significant differences between the groups in terms of the degree of histopathological damage, Johnsen score, fibrosis score and caspase-3 immunoreactivity in the torsioned testes (p: 0.000). The results for each parameter in the left testes were significantly better in the darbepoetin / tadalafil combination group. Similarly, there were also significant differences in the contralateral testes (p: 0.000). Conclusion: The active substances darbepoetin and tadalafil that were used as a combination had protective effects on both testes and produced out better results in preserving testicular histology. Especially in cases where it is not possible to rescue the torsioned testis, this result was more noticeable in the contralateral testis.
Collapse
Affiliation(s)
- Caglar Yildirim
- Department of Urology, Fatih Sultan Mehmet Research & Training Hospital, University of Health Sciences, Istanbul, Turkey
| | - Ozgur H Yuksel
- Department of Urology, Fatih Sultan Mehmet Research & Training Hospital, University of Health Sciences, Istanbul, Turkey
| | - Ahmet Urkmez
- Department of Urology, Haydarpasa Numune Research & Training Hospital, University of Health Sciences, Istanbul, Turkey
| | - Aytac Sahin
- Department of Urology, Fatih Sultan Mehmet Research & Training Hospital, University of Health Sciences, Istanbul, Turkey
| | - Adnan Somay
- Department of Pathology, Fatih Sultan Mehmet Research & Training Hospital, University of Health Sciences, Istanbul, Turkey
| | - Ayhan Verit
- Department of Urology, Fatih Sultan Mehmet Research & Training Hospital, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
97
|
Gaba A, Mairhofer M, Zhegu Z, Leditznig N, Szabo L, Tschugguel W, Schneeberger C, Yotova I. Testosterone induced downregulation of migration and proliferation in human Umbilical Vein Endothelial Cells by Androgen Receptor dependent and independent mechanisms. Mol Cell Endocrinol 2018; 476:173-184. [PMID: 29777728 DOI: 10.1016/j.mce.2018.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 05/02/2018] [Accepted: 05/08/2018] [Indexed: 12/31/2022]
Abstract
Recent research has emphasized the potential unfavorable effects of declining testosterone (T) levels in men and the putative beneficial effect of androgen therapy in select women. Some controversy surrounding the mechanism of action and the effects of T on endothelium remains. In this study, we evaluated the mechanism of T action on pooled primary Human Umbilical Vein Endothelial Cells (HUVEC) of mixed gender by focusing on two important processes, proliferation and migration. In our in vitro model system, we found that only the supra-physiological dose of T affected these two processes irrespective of the ratio of male to female cells in the pools. At a concentration of 1 μM, T downregulated the proliferation of HUVEC by inducing arrest in the G1 cell cycle phase in an Androgen Receptor (AR)-independent manner. We show that treatment with 1 μM T also induced downregulation of HUVEC migration. This process was AR-dependent and was associated with persistent phosphorylation of ezrin, radixin and moesin. Regardless of the mechanism of action, the treatment of HUVEC with both supra- and physiological doses of T was associated with posttranscriptional stabilization of the AR upon ligand binding.
Collapse
Affiliation(s)
- Aulona Gaba
- Department of Gynecological Endocrinology, University Clinic of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | | | - Zyhdi Zhegu
- Department of Gynecological Endocrinology, University Clinic of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Nadja Leditznig
- Department of Gynecological Endocrinology, University Clinic of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Ladislaus Szabo
- Department of Gynecological Endocrinology, University Clinic of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Walter Tschugguel
- Department of Gynecological Endocrinology, University Clinic of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Christian Schneeberger
- Department of Gynecological Endocrinology, University Clinic of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Iveta Yotova
- Department of Gynecological Endocrinology, University Clinic of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
98
|
Kim MK, Song JY, Koh DI, Kim JY, Hatano M, Jeon BN, Kim MY, Cho SY, Kim KS, Hur MW. Reciprocal negative regulation between the tumor suppressor protein p53 and B cell CLL/lymphoma 6 (BCL6) via control of caspase-1 expression. J Biol Chem 2018; 294:299-313. [PMID: 30409904 DOI: 10.1074/jbc.ra118.004204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/10/2018] [Indexed: 11/06/2022] Open
Abstract
Even in the face of physiological DNA damage or expression of the tumor suppressor protein p53, B cell CLL/lymphoma 6 (BCL6) increases proliferation and antagonizes apoptotic responses in B cells. BCL6 represses TP53 transcription and also appears to inactivate p53 at the protein level, and additional findings have suggested negative mutual regulation between BCL6 and p53. Here, using Bcl6 -/- knockout mice, HEK293A and HCT116 p53 -/- cells, and site-directed mutagenesis, we found that BCL6 interacts with p53 and thereby inhibits acetylation of Lys-132 in p53 by E1A-binding protein p300 (p300), a modification that normally occurs upon DNA damage-induced cellular stress and whose abrogation by BCL6 diminished transcriptional activation of p53 target genes, including that encoding caspase-1. Conversely, we also found that BCL6 protein is degraded via p53-induced, caspase-mediated proteolytic cleavage, and the formation of a BCL6-p53-caspase-1 complex. Our results suggest that p53 may block oncogenic transformation by decreasing BCL6 stability via caspase-1 up-regulation, whereas aberrant BCL6 expression inactivates transactivation of p53 target genes, either by inhibiting p53 acetylation by p300 or repressing TP53 gene transcription. These findings have implications for B cell development and lymphomagenesis.
Collapse
Affiliation(s)
- Min-Kyeong Kim
- Brain Korea 21 Plus Project for Medical Sciences, Severance Biomedical Research Institute, Department of Biochemistry and Molecular Biology, Yonsei University School of Medicine, 50 Yonsei-ro, SeoDaeMoon-gu, Seoul 03722, Korea
| | - Ji-Yang Song
- Brain Korea 21 Plus Project for Medical Sciences, Severance Biomedical Research Institute, Department of Biochemistry and Molecular Biology, Yonsei University School of Medicine, 50 Yonsei-ro, SeoDaeMoon-gu, Seoul 03722, Korea
| | - Dong-In Koh
- Brain Korea 21 Plus Project for Medical Sciences, Severance Biomedical Research Institute, Department of Biochemistry and Molecular Biology, Yonsei University School of Medicine, 50 Yonsei-ro, SeoDaeMoon-gu, Seoul 03722, Korea
| | - Jin Young Kim
- Biomedical Omics Group, Korea Basic Science Institute, 162 Yoengudanji-ro, Ochang, Chungbuk 28119, Korea
| | - Masahiko Hatano
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba City, Chiba 260-0856, Japan
| | - Bu-Nam Jeon
- Brain Korea 21 Plus Project for Medical Sciences, Severance Biomedical Research Institute, Department of Biochemistry and Molecular Biology, Yonsei University School of Medicine, 50 Yonsei-ro, SeoDaeMoon-gu, Seoul 03722, Korea
| | - Min-Young Kim
- Brain Korea 21 Plus Project for Medical Sciences, Severance Biomedical Research Institute, Department of Biochemistry and Molecular Biology, Yonsei University School of Medicine, 50 Yonsei-ro, SeoDaeMoon-gu, Seoul 03722, Korea
| | - Su-Yeon Cho
- Brain Korea 21 Plus Project for Medical Sciences, Severance Biomedical Research Institute, Department of Biochemistry and Molecular Biology, Yonsei University School of Medicine, 50 Yonsei-ro, SeoDaeMoon-gu, Seoul 03722, Korea
| | - Kyung-Sup Kim
- Brain Korea 21 Plus Project for Medical Sciences, Severance Biomedical Research Institute, Department of Biochemistry and Molecular Biology, Yonsei University School of Medicine, 50 Yonsei-ro, SeoDaeMoon-gu, Seoul 03722, Korea
| | - Man-Wook Hur
- Brain Korea 21 Plus Project for Medical Sciences, Severance Biomedical Research Institute, Department of Biochemistry and Molecular Biology, Yonsei University School of Medicine, 50 Yonsei-ro, SeoDaeMoon-gu, Seoul 03722, Korea.
| |
Collapse
|
99
|
Lu C, Cai D, Ma J. Pachymic Acid Sensitizes Gastric Cancer Cells to Radiation Therapy by Upregulating Bax through Hypoxia. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:875-890. [PMID: 29737213 DOI: 10.1142/s0192415x18500465] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have previously shown that pachymic acid (PA) inhibited tumorigenesis of gastric cancer (GC) cells. However, the exact mechanism underlying the radiation response of GC was still elusive. To evaluate the effects of PA treatment on radiation response of GC cell lines both in vitro and in vivo, a colony formation assay and xenograft mouse model were employed. Changes in Bax and HIF1[Formula: see text] expressions were assessed in GC cells following PA treatment. Luciferase reporter and chromatin immune-precipitation assays were carried out to investigate the regulation of Bax through HIF1[Formula: see text]. Stable HIF1[Formula: see text] knockdown was introduced into GC cells to further study the mechanism underlying PA-enhanced response to radiation both in vitro and in vivo. PA greatly enhanced the sensitivity of GC cells to radiation in vitro and in vivo, upregulated Bax expression and inhibited hypoxia. Bax expression was under hypoxia inhibition, and PA increased Bax expression through repressing HIF1[Formula: see text]. Stable HIF1[Formula: see text] overexpression in GC cells abolished the sensitizing effect of PA on GC cells to radiation both in vitro and in vivo. PA functions as a radiation sensitizing compound in GC. PA treatment induces the expression of pro-apoptotic factor Bax by inhibiting hypoxia/HIF1[Formula: see text], supporting the therapeutic potential of PA in radiation therapy against GC.
Collapse
Affiliation(s)
- Chunwei Lu
- * Zhongshan Hospital, Fudan University, Xuhui District, Shanghai 200032, P. R. China
| | - Dingfang Cai
- * Zhongshan Hospital, Fudan University, Xuhui District, Shanghai 200032, P. R. China
| | - Jun Ma
- * Zhongshan Hospital, Fudan University, Xuhui District, Shanghai 200032, P. R. China
| |
Collapse
|
100
|
TRIM24 siRNA induced cell apoptosis and reduced cell viability in human nasopharyngeal carcinoma cells. Mol Med Rep 2018; 18:369-376. [PMID: 29749443 DOI: 10.3892/mmr.2018.8946] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/04/2018] [Indexed: 11/05/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a common cancer occurring primarily in East Asia and Africa. The high rate of recurrence and metastasis of NPC continuously endangers the health of patients. The present study aimed to identify the underlying mechanisms involved in the progression of NPC and provide experimental basis to develop a novel and efficient agent against NPC. The present study measured the expression level of tripartite motif containing 24 (TRIM24) in tumor tissues from NPC patients using reverse transcription quantitative polymerase chain reaction. Subsequently, Cell Counting kit‑8 and flow cytometry were used to detect the cell proliferation and apoptosis of NPC cell lines HONE1 and CNE1 cells where the TRIM24 gene was knocked‑down with small interfering RNA (siRNA). Further, caspase kits and western blot analysis were used to detect the expression of apoptosis and angiogenesis‑associated proteins. The present study detected a higher expression level of TRIM24 in tumor tissues and NPC cell lines and lower cell viability and higher apoptotic rate were observed when TRIM24 was silenced. Meanwhile, upregulated caspase‑3 and caspase‑9 indicated induced cell apoptosis in HONE1 and CNE1 cells following the treatment with TRIM24 siRNA. Additionally, the downregulated expression level of vascular endothelial growth factor (VEGF) and VEGF receptor 2 suggested inhibited angiogenesis of NPC cells. Additionally, the reduced levels of janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) indicated a blocked JAK2/STAT3 signaling pathway. However, there was no direct evidence that inactivation of the JAK2/STAT3 signaling pathway was involved in regulation of siTRIM24, these results suggested that TRIM24 has an important role in the growth of NPC. Additionally, silenced TRIM24 may lead to inhibited cell proliferation and induced cell apoptosis in NPC cells. The limitation of this study was that HONE1, CNE1 and CNE2 cells may have been contaminated with other cells. Further experiments with validated NPC cells may be needed.
Collapse
|