51
|
Yan W, Wistuba II, Emmert-Buck MR, Erickson HS. Squamous Cell Carcinoma - Similarities and Differences among Anatomical Sites. Am J Cancer Res 2011; 1:275-300. [PMID: 21938273 PMCID: PMC3175764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 12/31/2010] [Indexed: 10/01/2024] Open
Abstract
Squamous cell carcinoma (SCC) is an epithelial malignancy involving many anatomical sites and is the most common cancer capable of metastatic spread. Development of early diagnosis methods and novel therapeutics are important for prevention and mortality reduction. In this effort, numerous molecular alterations have been described in SCCs. SCCs share many phenotypic and molecular characteristics, but they have not been extensively compared. This article reviews SCC as a disease, including: epidemiology, pathology, risk factors, molecular characteristics, prognostic markers, targeted therapy, and a new approach to studying SCCs. Through this comparison, several themes are apparent. For example, HPV infection is a common risk factor among the four major SCCs (NMSC, HNSC, ESCC, and NSCLC) and molecular abnormalities in cell-cycle regulation and signal transduction predominate. These data reveal that the molecular insights, new markers, and drug targets discovered in individual SCCs may shed light on this type of cancer as a whole.
Collapse
Affiliation(s)
- Wusheng Yan
- Pathogenetics Unit, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | | | | | |
Collapse
|
52
|
A dose-finding, pharmacokinetic and pharmacodynamic study of a novel schedule of flavopiridol in patients with advanced solid tumors. Invest New Drugs 2010; 30:629-38. [PMID: 20938713 DOI: 10.1007/s10637-010-9563-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 10/03/2010] [Indexed: 10/19/2022]
Abstract
PURPOSE Based on the promising activity and tolerability of flavopiridol administered with a pharmacokinetically-derived dosing schedule in chronic lymphocytic leukemia (CLL), we conducted a phase I study using this schedule in patients with advanced solid tumors. EXPERIMENTAL DESIGN Flavopiridol was given IV as a 30-min loading dose followed by a 4-hr infusion weekly for 4 weeks repeated every 6 weeks. Dose-escalation was in cohorts of three patients using the standard 3+3 phase I study design. Blood samples were obtained for pharmacokinetic and pharmacodynamic studies. RESULTS Thirty-four eligible patients with advanced solid tumors received a total of 208 doses (median 7, range 1-24). Total doses ranged from 40 to 105 mg/m(2). The primary dose limiting toxicity was cytokine release syndrome (CKRS). No antitumor responses were observed. The mean peak plasma concentration across all doses was 1.65 ± 0.86 μM. Area under the concentration-versus-time curve ([Formula: see text]) ranged from 4.31 to 32.2 μM[Symbol: see text]hr with an overall mean of 13.6 ± 7.0 μM[Symbol: see text]hr. Plasma flavopiridol concentrations and AUC increased proportionally with dose. There was no correlation between cytokine levels and clinical outcomes. CONCLUSIONS The maximum-tolerated dose of flavopiridol is 20 mg/m(2) bolus followed by 20 mg/m(2) infusion over 4 h given weekly for 4 weeks on a 6-week cycle in patients with advanced solid tumors. Flavopiridol PK was notably different, and there was a higher frequency of CKRS, despite prophylactic steroids, seen in this patient group compared to previous studies with CLL using a similar dosing schedule.
Collapse
|
53
|
Squires MS, Feltell RE, Wallis NG, Lewis EJ, Smith DM, Cross DM, Lyons JF, Thompson NT. Biological characterization of AT7519, a small-molecule inhibitor of cyclin-dependent kinases, in human tumor cell lines. Mol Cancer Ther 2009; 8:324-32. [PMID: 19174555 DOI: 10.1158/1535-7163.mct-08-0890] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cyclin-dependent kinases (CDK), and their regulatory cyclin partners, play a central role in eukaryotic cell growth, division, and death. This key role in cell cycle progression, as well as their deregulation in several human cancers, makes them attractive therapeutic targets in oncology. A series of CDK inhibitors was developed using Astex's fragment-based medicinal chemistry approach, linked to high-throughput X-ray crystallography. A compound from this series, designated AT7519, is currently in early-phase clinical development. We describe here the biological characterization of AT7519, a potent inhibitor of several CDK family members. AT7519 showed potent antiproliferative activity (40-940 nmol/L) in a panel of human tumor cell lines, and the mechanism of action was shown here to be consistent with the inhibition of CDK1 and CDK2 in solid tumor cell lines. AT7519 caused cell cycle arrest followed by apoptosis in human tumor cells and inhibited tumor growth in human tumor xenograft models. Tumor regression was observed following twice daily dosing of AT7519 in the HCT116 and HT29 colon cancer xenograft models. We show that these biological effects are linked to inhibition of CDKs in vivo and that AT7519 induces tumor cell apoptosis in these xenograft models. AT7519 has an attractive biological profile for development as a clinical candidate, and the tolerability and efficacy in animal models compare favorably with other CDK inhibitors in clinical development. Studies described here formed the biological rationale for investigating the potential therapeutic benefit of AT7519 in cancer patients.
Collapse
Affiliation(s)
- Matthew S Squires
- Astex Therapeutics Ltd., 436 Cambridge Science Park, Milton Road, Cambridge, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Affiliation(s)
- John Farley
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | | |
Collapse
|
55
|
Santos ES, Perez C, Donald CE, Raez LE. Targeting important pathways in head and neck cancer: from the bench to the clinic. Expert Rev Anticancer Ther 2008; 8:1819-35. [PMID: 18983242 DOI: 10.1586/14737140.8.11.1819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Radiation therapy as single or combined modality (concurrent chemoradiotherapy) has been the cornerstone of treatment for squamous cell carcinoma of the head and neck for a long time. Fortunately, advances in tumor biology have provided new insights of tumor proliferation, metastases, migration and cell cycle regulation. The success seen with the use of cetuximab alone or in combination with conventional treatments has led the roadmap to discover other potential target mechanisms which may translate into better response rate with less local and systemic toxicity and improved overall survival. In this review, we discuss other cellular pathways that have shown to be involved in the carcinogenesis of squamous cell carcinoma of the head and neck and the actual efforts to target these mechanisms.
Collapse
Affiliation(s)
- Edgardo S Santos
- University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA.
| | | | | | | |
Collapse
|
56
|
Regulation of transcription by the Epstein-Barr virus nuclear antigen EBNA 2. Biochem Soc Trans 2008; 36:625-8. [PMID: 18631129 DOI: 10.1042/bst0360625] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The EBNA 2 (Epstein-Barr nuclear antigen 2) transcription factor is essential for B-cell transformation by the cancer-associated EBV (Epstein-Barr virus) and for the continuous proliferation of infected cells. EBNA 2 activates transcription from the viral Cp (C promoter) during infection to generate the 120 kb transcript that encodes all nuclear antigens required for immortalization by EBV. EBNA 2 contains an acidic activation domain and can interact with a number of general transcription factors and co-activators. It is now becoming clear, however, that the regulation of transcription elongation in addition to initiation by EBNA 2, at least in part through CDK9 (cyclin-dependent kinase 9)-dependent phosphorylation of the RNA polymerase C-terminal domain, is likely to play a crucial role in the mechanism of action of this key viral protein.
Collapse
|
57
|
Sekine C, Sugihara T, Miyake S, Hirai H, Yoshida M, Miyasaka N, Kohsaka H. Successful treatment of animal models of rheumatoid arthritis with small-molecule cyclin-dependent kinase inhibitors. THE JOURNAL OF IMMUNOLOGY 2008; 180:1954-61. [PMID: 18209094 DOI: 10.4049/jimmunol.180.3.1954] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Intraarticular gene transfer of cyclin-dependent kinase (CDK) inhibitors to suppress synovial cell cycling has shown efficacy in treating animal models of rheumatoid arthritis. Endogenous CDK inhibitors also modulate immune function via a CDK-independent pathway. Accordingly, systemic administration of small molecules that inhibit CDK may or may not ameliorate arthritis. To address this issue, alvocidib (flavopiridol), known to be tolerated clinically for treating cancers, and a newly synthesized CDK4/6-selective inhibitor were tested for antiarthritic effects. In vitro, they inhibited proliferation of human and mouse synovial fibroblasts without inducing apoptosis. In vivo, treatment of collagen-induced arthritis mice with alvocidib suppressed synovial hyperplasia and joint destruction, whereas serum concentrations of anti-collagen type II (CII) Abs and proliferative responses to CII were maintained. Treatment was effective even when therapeutically administered. Treated mice developed arthritis after termination of treatment. Thus, immune responses to CII were unimpaired. The same treatment ameliorated arthritis induced by K/BxN serum transfer to lymphocyte-deficient mice. Similarly, the CDK4/6-selective inhibitor suppressed collagen-induced arthritis. Both small-molecule CDK inhibitors were effective in treating animal models of rheumatoid arthritis not by suppressing lymphocyte function. Thus, the two small-molecule CDK inhibitors ameliorated arthritis models in a distinctive way, compared with other immunosuppressive drugs.
Collapse
Affiliation(s)
- Chiyoko Sekine
- Clinical Immunology, RIKEN Research Center of Allergy and Immunology, Yokohama, Japan
| | | | | | | | | | | | | |
Collapse
|
58
|
Amornphimoltham P, Patel V, Leelahavanichkul K, Abraham RT, Gutkind JS. A retroinhibition approach reveals a tumor cell-autonomous response to rapamycin in head and neck cancer. Cancer Res 2008; 68:1144-53. [PMID: 18281490 DOI: 10.1158/0008-5472.can-07-1756] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Emerging evidence supporting the activation of the Akt-mammalian target of rapamycin (mTOR) signaling network in head and neck squamous cell carcinoma (HNSCC) progression has provided the rationale for exploring the therapeutic potential of inhibiting this pathway for HNSCC treatment. Indeed, rapamycin, a clinically relevant mTOR inhibitor, promotes the rapid regression of HNSCC-tumor xenografts in mice. However, rapamycin does not affect the growth of HNSCC cells in vitro, thus raising the possibility that, as for other cancer types, rapamycin may not target cancer cells directly but may instead act on a component of the tumor microenvironment, such as tumor-associated vasculature. Here, we used a retroinhibition approach to assess the contribution of cancer cell-autonomous actions of rapamycin to its antitumor activity in HNSCC. A rapamycin-resistant form of mTOR (mTOR-RR) was expressed in HNSCC cells while retaining the wild-type (rapamycin-sensitive) mTOR (mTOR-WT) alleles in host-derived endothelial and stromal cells. Expression of mTOR-RR prevented the decrease in phospho-S6 levels caused by rapamycin through mTOR in HNSCC cells but not in stromal cells, and rendered HNSCC xenografts completely resistant to the antitumoral activity of rapamycin. This reverse pharmacology strategy also enabled monitoring the direct consequences of inhibiting mTOR in cancer cells within the complex tumor microenvironment, which revealed that mTOR controls the accumulation of hypoxia-inducible factor-1 alpha (HIF-1 alpha) and the consequent expression of vascular endothelial growth factor and a glucose transporter, Glut-1, in HNSCC cells. These findings indicate that HNSCC cells are the primary target of rapamycin in vivo, and provide evidence that its antiangiogenic effects may represent a downstream consequence of mTOR inhibition in HNSCC cells.
Collapse
Affiliation(s)
- Panomwat Amornphimoltham
- Oral and Pharyngeal Cancer Branch, National Institute of Craniofacial and Dental Research, NIH, Bethesda, Maryland 20892-4330, USA
| | | | | | | | | |
Collapse
|
59
|
Takada Y, Sethi G, Sung B, Aggarwal BB. Flavopiridol suppresses tumor necrosis factor-induced activation of activator protein-1, c-Jun N-terminal kinase, p38 mitogen-activated protein kinase (MAPK), p44/p42 MAPK, and Akt, inhibits expression of antiapoptotic gene products, and enhances apoptosis through cytochrome c release and caspase activation in human myeloid cells. Mol Pharmacol 2008; 73:1549-57. [PMID: 18287248 DOI: 10.1124/mol.107.041350] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although flavopiridol, a semisynthetic flavone, was initially thought to be a specific inhibitor of cyclin-dependent kinases, it has now been shown that flavopiridol mediates antitumor responses through mechanism(s) yet to be defined. We have shown previously that flavopiridol abrogates tumor necrosis factor (TNF)-induced nuclear factor-kappaB (NF-kappaB) activation. In this report, we examined whether this flavone affects other cellular responses activated by TNF. TNF is a potent inducer of activator protein-1 (AP-1), and flavopiridol abrogated this activation in a dose- and time-dependent manner. Flavopiridol also suppressed AP-1 activation induced by various carcinogens and inflammatory stimuli. When examined for its effect on other signaling pathways, flavopiridol inhibited TNF-induced activation of various mitogen-activated protein kinases, including c-Jun NH(2)-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), and p44/p42 MAPK. It is noteworthy that this flavone also suppressed TNF-induced activation of Akt, a cell survival kinase, and expression of various antiapoptotic proteins, such as IAP-1, IAP-2, XIAP, Bcl-2, Bcl-xL, and TRAF-1. Flavopiridol also inhibited the TNF-induced induction of intercellular adhesion molecule-1, c-Myc, and c-Fos, all known to mediate tumorigenesis. Moreover, TNF-induced apoptosis was enhanced by flavopiridol through activation of the bid-cytochrome-caspase-9-caspase-3 pathway. Overall, our results clearly suggest that flavopiridol interferes with the TNF cell-signaling pathway, leading to suppression of antiapoptotic mechanisms and enhancement of apoptosis.
Collapse
Affiliation(s)
- Yasunari Takada
- Cytokine Research Laboratory, Department of Experimental Therapeutics, Unit 143, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
60
|
Guo JM, Xiao BX, Liu Q, Zhang S, Liu DH, Gong ZH. Anticancer effect of aloe-emodin on cervical cancer cells involves G2/M arrest and induction of differentiation. Acta Pharmacol Sin 2007; 28:1991-5. [PMID: 18031614 DOI: 10.1111/j.1745-7254.2007.00707.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
AIM The aim of this study was to investigate the effects of aloe-emodin, a natural compound from the root and rhizome of Rheum palmatum, on the growth of human cervical cancer cells, HeLa. METHODS HeLa cells were treated with various concentrations of aloe-emodin for 1-5 d, and cell growth was measured by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide assay. The long-term growth effect was investigated by crystal violet assay. The distributions of the cell cycle and apoptosis were analyzed by flow cytometry. The alkaline phosphatase (ALP) activity was analyzed by a chemical analyzer. Finally, Western blotting was used to indicate the abundant changes of protein kinase C (PKC), c-myc, cyclins, cyclin-dependent kinases (CDK), and proliferating cell nuclear antigen (PCNA). RESULTS Aloe-emodin inhibited the growth of HeLa cells in a dose-dependent manner at concentrations ranging between 2.5 and 40 micromol/L. The flow cytometric analysis showed that HeLa cells were arrested at the G2/M phase. This effect was associated with the decrease in cyclin A and CDK2, and the increase in cyclin B1 and CDK1. More importantly, the ALP activity was found to be increased by aloe-emodin treatment, and accompanied by the inhibition of PCNA expression. In addition, aloe-emodin suppressed the expression of PKCalpha and c-myc. CONCLUSION These findings provide a possible mechanistic explanation for the growth inhibitory effect of aloe-emodin on HeLa, which includes cell cycle arrest and inducing differentiation.
Collapse
Affiliation(s)
- Jun-ming Guo
- Ningbo University School of Medicine, Ningbo 315211, China.
| | | | | | | | | | | |
Collapse
|
61
|
Palacios C, Yerbes R, López-Rivas A. Flavopiridol induces cellular FLICE-inhibitory protein degradation by the proteasome and promotes TRAIL-induced early signaling and apoptosis in breast tumor cells. Cancer Res 2007; 66:8858-69. [PMID: 16951203 DOI: 10.1158/0008-5472.can-06-0808] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The cyclin-dependent kinase inhibitor flavopiridol is undergoing clinical trials as an antitumor drug. We show here that pretreatment of different human breast cancer cell lines with flavopiridol facilitates tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. In breast tumor cells, apoptosis induction by TRAIL is blocked at the level of apical caspase-8 activation. Flavopiridol treatment enhances TRAIL-induced formation of death-inducing signaling complex and early processing of procaspase-8. Subsequently, a TRAIL-induced, mitochondria-operated pathway of apoptosis is activated in cells treated with flavopiridol. Down-regulation of cellular FLICE-inhibitory proteins (c-FLIP; c-FLIP(L) and c-FLIP(S)) is observed on flavopiridol treatment. c-FLIP loss and apoptosis sensitization by flavopiridol are both prevented in cells treated with an inhibitor of the ubiquitin-proteasome system. Furthermore, targeting c-FLIP directly with small interfering RNA oligonucleotides also sensitizes various human breast tumor cell lines to TRAIL-induced apoptosis. Our results indicate that flavopiridol sensitizes breast cancer cells to TRAIL-induced apoptosis by facilitating early events in the apoptotic pathway, and this combination treatment could be regarded as a potential therapeutic tool against breast tumors.
Collapse
Affiliation(s)
- Carmen Palacios
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide, Sevilla, Spain
| | | | | |
Collapse
|
62
|
Li Y, Tanaka K, Li X, Okada T, Nakamura T, Takasaki M, Yamamoto S, Oda Y, Tsuneyoshi M, Iwamoto Y. Cyclin-dependent kinase inhibitor, flavopiridol, induces apoptosis and inhibits tumor growth in drug-resistant osteosarcoma and Ewing's family tumor cells. Int J Cancer 2007; 121:1212-8. [PMID: 17520676 DOI: 10.1002/ijc.22820] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Multimodal therapies play important roles in the treatment of osteosarcoma (OS) and Ewing's family of tumors (EFTs), two most frequent malignant bone tumors. Although the clinical outcome of primary OS and EFTs is greatly improved, the relapsed cases often are associated with multidrug resistance of the tumors and the prognosis of these patients is still poor. Flavopiridol, a pan cyclin-dependent kinase (CDK) inhibitor is a novel antitumor agent that can induce cell cycle arrest and apoptosis in many cancer cells. However, there have been no studies about the effects of flavopiridol on drug-resistant OS and EFTs. Here, we demonstrated that flavopiridol induced the cleavage of poly-ADP-ribose polymerase (PARP) in a time and dose dependent manner in adriamycin-resistant OS and EFTs cells expressing P-glycoprotein (P-gp) and multidrug resistance-associated protein 1 (MRP(1)) as effectively as in their parental cells. Our data also showed that flavopiridol caused the release of mitochondrial cytochrome c and the activation of caspase-9, caspase-8 and caspase-3, with an increase ratio of the proapoptotic protein level (Bax) to the antiapoptotic protein level (Bcl-2 and Bcl-X(L)), while apoptosis was inhibited by pan caspase inhibitor (Z-VAD-FMK) and caspase-3 inhibitor (Z-DEVD-FMK), not by caspase-8 inhibitor (Z-IETD-FMK). The treatment with flavopiridol further inhibited the tumor growth in mouse models of the drug-resistant OS and EFTs. These results suggest that flavopiridol might be promising in clinical therapy for the relapsed OS and EFTs.
Collapse
Affiliation(s)
- Yan Li
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Le Tourneau C, Faivre S, Siu LL. Molecular targeted therapy of head and neck cancer: Review and clinical development challenges. Eur J Cancer 2007; 43:2457-66. [PMID: 17904355 DOI: 10.1016/j.ejca.2007.08.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Accepted: 08/17/2007] [Indexed: 11/27/2022]
Abstract
Recently, new targets have been identified in head and neck squamous cell carcinomas (HNSCC) as playing key roles in tumour proliferation and metastases. The first target that has led to the approval of a molecularly based therapy in HNSCC has been the epidermal growth factor receptor (EGFR). Indeed, cetuximab, a monoclonal antibody directed against EGFR, has recently been approved in combination with radiation therapy in patients with locally advanced HNSCC, and in patients with platinum-refractory recurrent or metastatic (R/M) HNSCC. This review discusses novel targeted anticancer agents that do not exclusively target EGFR. The initial assessments of novel agents have typically been in patients with heavily pre-treated R/M HNSCC, with response rates and times to progression that are often disappointing. Evaluation of novel agents in the pre-operative 'window' setting, or as first-line therapy for R/M disease, may offer a more optimal understanding of their molecular and clinical effects.
Collapse
|
64
|
Todd R, Hinds PW, Munger K, Rustgi AK, Opitz OG, Suliman Y, Wong DT. Cell cycle dysregulation in oral cancer. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2007; 13:51-61. [PMID: 12097237 DOI: 10.1177/154411130201300106] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The dysregulation of the molecular events governing cell cycle control is emerging as a central theme of oral carcinogenesis. Regulatory pathways responding to extracellular signaling or intracellular stress and DNA damage converge on the cell cycle apparatus. Abrogation of mitogenic and anti-mitogenic response regulatory proteins, such as the retinoblastoma tumor suppressor protein (pRB), cyclin D1, cyclin-dependent kinase (CDK) 6, and CDK inhibitors (p21(WAF1/CIP1), p27(KIP1), and p16(INK4a)), occur frequently in human oral cancers. Cellular responses to metabolic stress or genomic damage through p53 and related pathways that block cell cycle progression are also altered during oral carcinogenesis. In addition, new pathways and cell cycle regulatory proteins, such as p12(DOC-1), are being discovered. The multistep process of oral carcinogenesis likely involves functional alteration of cell cycle regulatory members combined with escape from cellular senescence and apoptotic signaling pathways. Detailing the molecular alterations and understanding the functional consequences of the dysregulation of the cell cycle apparatus in the malignant oral keratinocyte will uncover novel diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- R Todd
- Department of Oral & Maxillofacial Surgery, Massachusetts General Hospital/Harvard School of Dental Medicine, Boston, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
65
|
Schang LM, St Vincent MR, Lacasse JJ. Five years of progress on cyclin-dependent kinases and other cellular proteins as potential targets for antiviral drugs. Antivir Chem Chemother 2007; 17:293-320. [PMID: 17249245 DOI: 10.1177/095632020601700601] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In 1997-1998, the pharmacological cyclin-dependent kinase (CDK) inhibitors (PCIs) were independently discovered to inhibit replication of human cytomegalovirus, herpes simplex virus type 1 and HIV-1. The results from small clinical trials against cancer were then suggesting that PCIs could be safe enough to be used clinically. It was thus hypothesized that PCIs could have the potential to be developed as novel antivirals targeting cellular proteins. Consequently, Antiviral Chemistry & Chemotherapy published in 2001 the first review on the potential of CDKs, and cellular proteins in general, as potential targets for antivirals. The viral functions inhibited by PCIs, or their cellular targets, were then just starting to be characterized. The antiviral spectrum of PCIs and their effects on viral disease were still mostly untested. Even their actual specificity was not yet completely characterized. In addition, cellular proteins were not accepted as valid targets for antivirals. Significant progress has been made in the last 5 years in understanding the antiviral activities of PCIs and the potential roles of cellular proteins in general as targets for antivirals. The first clinical trials of the antiviral activities of PCIs and other inhibitors of cellular protein kinases have now been scheduled. Herein, we review the progress made since the publication of the first review on PCIs as potential antiviral drugs and on CDKs, and cellular proteins in general, as potential targets for antiviral drugs. We also highlight the major issues that still need to be addressed before PCIs or other drugs targeting cellular proteins can be developed as clinical antivirals.
Collapse
Affiliation(s)
- Luis M Schang
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.
| | | | | |
Collapse
|
66
|
Henley D, Isbill M, Fernando R, Foster JS, Wimalasena J. Paclitaxel induced apoptosis in breast cancer cells requires cell cycle transit but not Cdc2 activity. Cancer Chemother Pharmacol 2007; 59:235-49. [PMID: 16972069 DOI: 10.1007/s00280-006-0262-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Accepted: 04/30/2006] [Indexed: 11/29/2022]
Abstract
PURPOSE Paclitaxel (PTX) is a widely used chemotherapy agent and may cause cell death by apoptosis subsequent to microtubule (MT) disruption. In this paper, we have investigated whether cell cycle transit and or Cdc2 (Cdk1) activity is required for the apoptosis induced by PTX. METHODS Cell cycle was analyzed by flow cytometry, Cdc2 was assayed bio chemically. Cdc2 activity was decreased by siRNA and dominant negative (dn) Cdc2 expression. Cells were arrested by chemical or biological inhibitors in a G1 or S phase. Apoptosis was measured by DNA fragmentation and examination of nuclei by microscopy. JNK and AKT activations were assessed as well. RESULTS Cell cycle inhibition was highly effective in decreasing PTX induced apoptosis. MT morphology was not altered by these inhibitors. PTX induced JNK activity or AKT mediated BAD phosphorylation was unaffected by cell cycle inhibitors. Abrogation of Cdc 2 activity was without effect on PTX induced apoptosis. CONCLUSIONS While cell cycle transit is required for PTX induced apoptosis; Cdc2 activity is not required.
Collapse
Affiliation(s)
- D Henley
- Department of OB/GYN, GSM, UTMCK, University of Tennessee, Alcoa Highway, Knoxville, TN 37920, USA
| | | | | | | | | |
Collapse
|
67
|
Squarize CH, Castilho RM, Sriuranpong V, Pinto DS, Gutkind JS. Molecular cross-talk between the NFkappaB and STAT3 signaling pathways in head and neck squamous cell carcinoma. Neoplasia 2006; 8:733-46. [PMID: 16984731 PMCID: PMC1584297 DOI: 10.1593/neo.06274] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The development of head and neck squamous cell carcinoma (HNSCC) involves the accumulation of genetic and epigenetic alterations in tumor-suppressor proteins, together with the persistent activation of growth-promoting signaling pathways. The activation of epidermal growth factor receptor (EGFR) is a frequent event in HNSCC. However, EGFR-independent mechanisms also contribute to the activation of key intracellular signaling routes, including signal transducer and activator of transcription-3 (STAT3), nuclear factor kappaB (NFkappaB), and Akt. Indeed, the autocrine activation of the gp130 cytokine receptor in HNSCC cells by tumor-released cytokines, such as IL-6, can result in the EGFR-independent activation of STAT3. In this study, we explored the nature of the molecular mechanism underlying enhanced IL-6 secretion in HNSCC cells. We found that HNSCC cells display an increased activity of the IL-6 promoter, which is dependent on the presence of an intact NFkappaB site. Furthermore, NFkappaB inhibition downregulated IL-6 gene and protein expression, and decreased the release of multiple cytokines. Interestingly, interfering with NFkappaB function also prevented the autocrine/paracrine activation of STAT3 in HNSCC cells. These findings demonstrate a cross-talk between the NFkappaB and the STAT3 signaling systems, and support the emerging notion that HNSCC results from the aberrant activity of a signaling network.
Collapse
Affiliation(s)
- Cristiane H Squarize
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-4340, USA
| | | | | | | | | |
Collapse
|
68
|
|
69
|
Sato S, Kajiyama Y, Sugano M, Iwanuma Y, Sonoue H, Matsumoto T, Tsurumaru M. Alvocidib (Flavopiridol) suppresses tumor growth in SCID mice with human esophageal cancer xenografts without inducing apoptosis. Surg Oncol 2006; 15:107-13. [PMID: 17097874 DOI: 10.1016/j.suronc.2006.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2006] [Accepted: 10/02/2006] [Indexed: 11/16/2022]
Abstract
Alvocidib (Flavopiridol, HMR1275) is a potent inhibitor of multiple cyclin-dependent kinases and has been identified recently as an antitumor agent in several cancers. Previous studies have shown that alvocidib could potentially treat esophageal cancer in vitro. This study evaluates alvocidib for its ability to suppress tumor growth in severe combined immunodeficiency (SCID) mice bearing TE8 human esophageal squamous cell carcinoma (SCC) xenografts. Alvocidib treatment of 10mg/kg body weight reduced tumor volume significantly. Immunohistochemistry analysis of alvocidib-treated tumor sections showed significant reductions in cyclin D1, VEGF, and Rb levels. Alvocidib treatment did not cause a marked increase in apoptotic tumor cells by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) analysis, yet hematoxylin and eosin staining revealed tumor necrosis. In vivo investigation of alvocidib treatment confirmed antitumor activity in TE8 esophageal xenografts. These findings suggest that alvocidib could be a useful anti-cancer agent for esophageal cancer.
Collapse
Affiliation(s)
- Shinsuke Sato
- Department of Gastroenterological Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| | | | | | | | | | | | | |
Collapse
|
70
|
Psyrri A, Fountzilas G. Advances in the treatment of locally advanced non-nasopharyngeal squamous cell carcinoma of the head and neck region. Med Oncol 2006; 23:1-15. [PMID: 16645225 DOI: 10.1385/mo:23:1:1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Revised: 11/30/1999] [Accepted: 05/12/2005] [Indexed: 01/08/2023]
Abstract
Over the past decade important advances have been made in the treatment of locally advanced squamous cell carcinoma of the head and neck (SCCHN). Traditionally, chemotherapy has been incorporated in the treatment of SCCHN either before local treatment as induction, concomitantly with radiation, or following local treatment as adjuvant therapy. A number of randomized trials and meta-analyses have demonstrated that induction chemotherapy (usually based on the combination of cisplatin and 5-d continuous infusion of fluorouracil) followed by local treatment or concomitant chemoradiotherapy (CCRT) each prolongs survival and results in organ preservation in a significant number of patients. Survival rates appear to be higher when CCRT with cisplatin is used. Furthermore, accelerated fractionation radiation regimens have shown improved local control rates in randomized trials. Recently, new therapeutic strategies such as induction chemotherapy followed by CCRT or the incorporation of newer agents such as taxanes are under intense investigation and preliminary results are promising. Advances in molecular biology have led to the elucidation of molecular mechanisms that initiate and maintain the malignant phenotype in SCCHN. The identification of molecular targets has revolutionized our approach to cancer therapy and resulted in the introduction of novel targeted therapies. Cyclin-dependent kinases, the tumor suppressor p53 gene, and epidermal growth factor receptor are some of the molecular targets of such therapies in patients with SCCHN.
Collapse
Affiliation(s)
- Amanda Psyrri
- Department of Medical Oncology, Papageorgiou Hospital, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
| | | |
Collapse
|
71
|
Bark-Jones SJ, Webb HM, West MJ. EBV EBNA 2 stimulates CDK9-dependent transcription and RNA polymerase II phosphorylation on serine 5. Oncogene 2006; 25:1775-85. [PMID: 16314842 DOI: 10.1038/sj.onc.1209205] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
EBNA 2 is one of only five viral genes essential for the infection and immortalization of human B cells by the cancer-associated virus Epstein-Barr virus (EBV). EBNA 2 activates cellular and viral transcription and associates with components of the basal transcription apparatus and a number of coactivators. We provide the first evidence to show that the mechanism of transcriptional activation by EBNA 2 also involves phosphorylation of the C-terminal domain (CTD) of RNA polymerase II (pol II). We found that transcriptional activation by EBNA 2 was inhibited by a dominant-negative mutant of the pol II CTD kinase, CDK9, and by low concentrations of the CDK9 inhibitor 5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole. Moreover, using chromatin immunoprecipitation assays we demonstrated that EBNA 2 stimulates both pol II recruitment and pol II phosphorylation on serine 5 of the CTD in vivo. These results identify a new step in the transcription cycle that is subject to regulation by a key EBV-encoded transcription factor and highlight CDK9 inhibitors as potential anti-EBV agents.
Collapse
Affiliation(s)
- S J Bark-Jones
- Department of Biochemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | | | | |
Collapse
|
72
|
Lee YK, Isham CR, Kaufman SH, Bible KC. Flavopiridol disrupts STAT3/DNA interactions, attenuates STAT3-directed transcription, and combines with the Jak kinase inhibitor AG490 to achieve cytotoxic synergy. Mol Cancer Ther 2006; 5:138-48. [PMID: 16432172 DOI: 10.1158/1535-7163.mct-05-0235] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Up-regulated signal transducers and activators of transcription (STAT)-mediated signaling is believed to contribute to the pathogenesis of a variety of solid and hematologic cancers. Consequently, inhibition of STAT-mediated signaling has recently been proposed as a potential new therapeutic approach to the treatment of cancers. Having shown previously that the pan-cyclin-dependent kinase inhibitor flavopiridol binds to DNA and seems to kill cancer cells via that process in some circumstances, we evaluated the hypothesis that flavopiridol might consequently disrupt STAT3/DNA interactions, attenuate STAT3-directed transcription, and down-regulate STAT3 downstream polypeptides, including the antiapoptotic polypeptide Mcl-1. SDS-PAGE/immunoblotting and reverse transcription-PCR were used to assess RNA and polypeptide levels, respectively. DNA cellulose affinity chromatography and a nuclear elution assay were used to evaluate the ability of flavopiridol to disrupt STAT3/DNA interactions. A STAT3 luciferase reporter assay was used to examine the ability of flavopiridol to attenuate STAT3-directed transcription. Colony-forming assays were used to assess cytotoxic synergy between flavopiridol and AG490. Flavopiridol was found to (a) disrupt STAT3/DNA interactions (DNA cellulose affinity chromatography and nuclear elution assay), (b) attenuate STAT3-directed transcription (STAT3 luciferase reporter assay), and (c) down-regulate the STAT3 downstream antiapoptotic polypeptide Mcl-1 at the transcriptional level (reverse transcription-PCR and SDS-PAGE/immunoblotting). Furthermore, flavopiridol, but not the microtubule inhibitor paclitaxel, could be combined with the STAT3 pathway inhibitor AG490 to achieve cytotoxic synergy in A549 human non-small cell lung cancer cells. Collectively, these data suggest that flavopiridol can attenuate STAT3-directed transcription in a targeted fashion and may therefore be exploitable clinically in the development of chemotherapy regimens combining flavopiridol and other inhibitors of STAT3 signaling pathways.
Collapse
Affiliation(s)
- Yean Kit Lee
- Division of Developmental Oncology Research, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
73
|
Xiao B, Guo J, Lou Y, Meng D, Zhao W, Zhang L, Yan C, Wang D. Inhibition of growth and increase of alkaline phosphatase activity in cultured human oral cancer cells by all-trans retinoic acid. Int J Oral Maxillofac Surg 2006; 35:643-8. [PMID: 16497480 DOI: 10.1016/j.ijom.2006.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2004] [Revised: 07/21/2005] [Accepted: 01/11/2006] [Indexed: 10/25/2022]
Abstract
In this study, the effects of all-trans retinoic acid (ATRA) on human oral cancer cells with regard to cell growth, the cell cycle, and alkaline phosphatase (ALP) activity were evaluated. Human oral cancer KB cells were treated with various concentrations of ATRA, and cell growth was then determined using the MTT viability assay. The cell-cycle distribution and ALP activity were analysed using a flow cytometer and chemical analyser, respectively. The KB cells were inhibited by ATRA at concentrations of 1-16 microM (1 microM, P<0.05; 2 microM, P<0.01; 4, 8 and 16 microM, P<0.001) in a dose-dependent manner. ATRA arrested KB cells in the G0/G1 phase. The ALP activity in KB cells was increased by ATRA. This is one of the first studies to focus on the expression of ALP in human head-and-neck carcinoma cells treated with retinoids. These findings suggest that the anti-tumour effects of ATRA on human oral cancer are associated with G0/G1 phase arrest and an increase in ALP activity.
Collapse
Affiliation(s)
- B Xiao
- School of Medicine, Ningbo University, Ningbo 315211, China
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Abstract
The cell cycle represents a series of tightly integrated events that allow the cell to grow and proliferate. Critical parts of the cell cycle machinery are the cyclin-dependent kinases (CDKs), which, when activated, provide a means for the cell to move from one phase of the cell cycle to the next. The CDKs are regulated positively by cyclins and regulated negatively by naturally occurring CDK inhibitors (CDKIs). Cancer represents a dysregulation of the cell cycle such that cells that overexpress cyclins or do not express the CDKIs continue to undergo unregulated cell growth. The cell cycle also serves to protect the cell from DNA damage. Thus, cell cycle arrest, in fact, represents a survival mechanism that provides the tumor cell the opportunity to repair its own damaged DNA. Thus, abrogation of cell cycle checkpoints, before DNA repair is complete, can activate the apoptotic cascade, leading to cell death. Now in clinical trials are a series of targeted agents that directly inhibit the CDKs, inhibit unrestricted cell growth, and induce growth arrest. Recent attention has also focused on these drugs as inhibitors of transcription. In addition, there are now agents that abrogate the cell cycle checkpoints at critical time points that make the tumor cell susceptible to apoptosis. An understanding of the cell cycle is critical to understanding how best to clinically develop these agents, both as single agents and in combination with chemotherapy.
Collapse
Affiliation(s)
- Gary K Schwartz
- Department of Medicine, Division of Solid Tumor Oncology, Gastrointestinal Oncology Service, New York, NY, USA.
| | | |
Collapse
|
75
|
Guo J, Xiao B, Lou Y, Yan C, Zhan L, Wang D, Zhao W. Antitumor effects of all-trans-retinoic acid on cultured human pancreatic cancer cells. J Gastroenterol Hepatol 2006; 21:443-8. [PMID: 16509872 DOI: 10.1111/j.1440-1746.2006.04180.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIM Although it is uncommon, pancreatic cancer is known to have a poor prognosis. The aim of the present study was to determine the inhibitory effects of all-trans-retinoic acid (ATRA) on cell growth, cell cycle and alkaline phosphatase (ALP) activity in the human pancreatic cancer cell line PANC-1 in vitro. METHODS Human pancreatic cancer PANC-1 cells were treated by various concentrations of ATRA, and then the cell growth was determined by MTT viability assay. Cell cycle distribution and ALP activity were analyzed by flow cytometry and chemical analyzer, respectively. RESULTS ATRA inhibited the growth of PANC-1 cells grown in culture; a dose-dependent inhibitory influence was found. ATRA arrested PANC-1 cells at G2/M phase. The ALP activity of PANC-1 cells was significantly increased by 1-50 micromol/L ATRA. CONCLUSIONS The antitumor effects of ATRA on human pancreatic cancer cells are associated with G2/M phase arrest and increased ALP activity.
Collapse
Affiliation(s)
- Junming Guo
- Ningbo University School of Medicine, Ningbo, China
| | | | | | | | | | | | | |
Collapse
|
76
|
Aggarwal BB, Ichikawa H, Garodia P, Weerasinghe P, Sethi G, Bhatt ID, Pandey MK, Shishodia S, Nair MG. From traditional Ayurvedic medicine to modern medicine: identification of therapeutic targets for suppression of inflammation and cancer. Expert Opin Ther Targets 2006; 10:87-118. [PMID: 16441231 DOI: 10.1517/14728222.10.1.87] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cancer is a hyperproliferative disorder that involves transformation, dysregulation of apoptosis, proliferation, invasion, angiogenesis and metastasis. Extensive research during the last 30 years has revealed much about the biology of cancer. Drugs used to treat most cancers are those that can block cell signalling, including growth factor signalling (e.g., epidermal growth factor); prostaglandin production (e.g., COX-2); inflammation (e.g., inflammatory cytokines: NF-kappaB, TNF, IL-1, IL-6, chemokines); drug resistance gene products (e.g., multi-drug resistance); cell cycle proteins (e.g., cyclin D1 and cyclin E); angiogenesis (e.g., vascular endothelial growth factor); invasion (e.g., matrix metalloproteinases); antiapoptosis (e.g., bcl-2, bcl-X(L), XIAP, survivin, FLIP); and cellular proliferation (e.g., c-myc, AP-1, growth factors). Numerous reports have suggested that Ayurvedic plants and their components mediate their effects by modulating several of these recently identified therapeutic targets. However, Ayurvedic medicine requires rediscovery in light of our current knowledge of allopathic (modern) medicine. The focus of this review is to elucidate the Ayurvedic concept of cancer, including its classification, causes, pathogenesis and prevention; surgical removal of tumours; herbal remedies; dietary modifications; and spiritual treatments.
Collapse
Affiliation(s)
- Bharat B Aggarwal
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Box 143, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Kang HM, Lee SK, Shin DS, Lee MY, Han DC, Baek NI, Son KH, Kwon BM. Dehydrotrametenolic acid selectively inhibits the growth of H-ras transformed rat2 cells and induces apoptosis through caspase-3 pathway. Life Sci 2006; 78:607-13. [PMID: 16112686 DOI: 10.1016/j.lfs.2005.05.066] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Accepted: 05/03/2005] [Indexed: 01/22/2023]
Abstract
The screening of natural products that preferentially inhibit growth of H-ras transformed rat2 cells vs. rat2 cells was performed to identify H-ras specific growth inhibitor. A lanostane-type triterpene acid, dehydrotrametenolic acid (3beta-hydroxylanosta-7,9(11),24-trien-21-oic acid), was isolated from the sclerotium of Poria cocos (Polyporaceae). Dehydrotrametenolic acid selectively inhibited the growth of H-ras transformed cells with a GI(50) value of 40 microM. FACS analysis indicated that the compound exerted its anti-proliferation effects through cell cycle arrest at G2/M phase and accumulation of sub-G1 population. Dehydrotrametenolic acid-induced apoptosis was further confirmed with chromosomal DNA fragmentation, caspase-3 activation, and degradation of PARP and Lamin A/C degradation. The compound also regulated the expression of H-ras, Akt and Erk, which are the downstream proteins of H-ras signaling pathways. The results suggest that dehydrotrametenolic acid can be a potential anticancer agent against H-ras transformed tumor.
Collapse
Affiliation(s)
- Hyun-Mi Kang
- Korea Research Institute of Bioscience and Biotechnology, 52 Uendong, Yusung, Taejon, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Guo JM, Xiao BX, Kang GZ, Liu DH, Chen H, Zhang S, Zhang XN. Suppression of telomerase activity and arrest at G1 phase in human cervical cancer HeLa cells by all-trans retinoic acid. Int J Gynecol Cancer 2006; 16:341-6. [PMID: 16445656 DOI: 10.1111/j.1525-1438.2006.00353.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Of all neoplasms found in women, cervical cancer has the third highest incidence and causes the fourth most deaths. All-trans retinoic acid (ATRA) may be with chemopreventive potential on cervical cancer, but the mechanisms underlying is not clear. To investigate the mechanisms, human cervical cancer HeLa cells were treated with ATRA for 1, 2, 3, or 4 days in vitro. We found that ATRA inhibited the growth of HeLa cells in a dose-dependent manner at the concentrations from 0.3 to 9.6 mumol/L. Flow cytometric analysis showed that HeLa cells were arrested at G0/G1 phase by ATRA, and the aneuploidy was found when cells were treated for 4 days, which is the first report that ATRA causes aneuploid cycle in HeLa cells. The expression of human telomerase catalytic subunit messenger RNA was decreased remarkably by ATRA. These findings suggested that the inhibition of telomerase activity and arrest of cells at G0/G1 phase might be the key steps through which ATRA inhibits the proliferation of HeLa cells. Our results provide a possible mechanistic explanation for the growth inhibitory effect of ATRA on HeLa cells. Therefore, retinoids may have therapeutic potential to complement current treatments of cervical cancers.
Collapse
Affiliation(s)
- J M Guo
- School of Medicine, Ningbo University, Ningbo 315211, China.
| | | | | | | | | | | | | |
Collapse
|
79
|
Lu X, Jung JI, Cho HJ, Lim DY, Lee HS, Chun HS, Kwon DY, Park JHY. Fisetin inhibits the activities of cyclin-dependent kinases leading to cell cycle arrest in HT-29 human colon cancer cells. J Nutr 2005; 135:2884-90. [PMID: 16317137 DOI: 10.1093/jn/135.12.2884] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Fisetin, a natural flavonol present in edible vegetables, fruits, and wine, was reported to exert anticarcinogenic effects. The objective of the current study was to examine the effect of fisetin on the cell cycle progression of the human colon cancer cell line HT-29. HT-29 cells were cultured in serum-free medium with 0, 20, 40, or 60 micromol/L fisetin. Fisetin dose dependently inhibited both cell growth and DNA synthesis (P < 0.05), with a 79 +/- 1% decrease in cell number observed 72 h after the addition of 60 micromol/L fisetin. Perturbed cell cycle progression from the G(1) to S phase was observed at 8 h with 60 micromol/L fisetin treatment, whereas a G(2)/M phase arrest was observed after 24 h (P < 0.05). The phosphorylation state of the retinoblastoma proteins shifted from hyperphosphorylated to hypophosphorylated in cells treated with 40 micromol/L fisetin. (P < 0.05). Fisetin decreased the activities of cyclin-dependent kinases (CDK)2 and CDK4; these effects were likely attributable to decreases in the levels of cyclin E and D1 and an increase in p21(CIP1/WAF1) levels (P < 0.05). However, fisetin also inhibited CDk4 activity in a cell-free system (P < 0.05), indicating that it may directly inhibit CDk4 activity. The protein levels of cell division cycles (CDC)2 and CDC25C and the activity of CDC2 were also decreased in fisetin-treated cells (P < 0.05). These results indicate that inhibition of cell cycle progression in HT-29 cells after treatment with fisetin can be explained, at least in part, by modification of CDK activities.
Collapse
Affiliation(s)
- Xianghua Lu
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Korea
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Senderowicz AM. Inhibitors of cyclin-dependent kinase modulators for cancer therapy. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2005; 63:183-206. [PMID: 16265881 DOI: 10.1007/3-7643-7414-4_8] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Most human malignancies have an aberration in the Rb pathway due to 'cdk hyperactivation'. Several small-molecule cdk modulators are being discovered and tested in the clinic. The first ATP-competitive cdk inhibitors tested in clinical trials, flavopiridol and UCN-01, have shown promising results with evidence of antitumor activity and plasma concentrations sufficient to inhibit cdk-related functions. The best schedule to be administered, combination with standard chemotherapeutic agents, best tumor types to be targeted, and demonstration of cdk modulation from tumor samples from patients in these trials are important issues that need to be answered to advance these agents to the clinical arena.
Collapse
Affiliation(s)
- Adrian M Senderowicz
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bldg. 10, Room B3-B6, Bethesda, MD 20892, USA.
| |
Collapse
|
81
|
Amornphimoltham P, Patel V, Sodhi A, Nikitakis NG, Sauk JJ, Sausville EA, Molinolo AA, Gutkind JS. Mammalian Target of Rapamycin, a Molecular Target in Squamous Cell Carcinomas of the Head and Neck. Cancer Res 2005; 65:9953-61. [PMID: 16267020 DOI: 10.1158/0008-5472.can-05-0921] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Emerging knowledge on how the dysregulated function of signaling networks contributes to the malignant growth of squamous cell carcinoma of the head and neck (HNSCC) can now be exploited to identify novel mechanism-based anticancer treatments. In this regard, we have observed that persistent activation of the serine/threonine kinase Akt is a frequent event in HNSCC, and that blockade of its upstream kinase, 3'-phosphoinositide-dependent kinase 1, potently inhibits tumor cell growth. Akt promotes cell proliferation by its ability to coordinate mitogenic signaling with energy- and nutrient-sensing pathways that control protein synthesis through the atypical serine/threonine kinase, mammalian target of rapamycin (mTOR). This kinase, in turn, phosphorylates key eukaryotic translation regulators, including p70-S6 kinase and the eukaryotic translation initiation factor, 4E binding protein 1. Indeed, we show here that aberrant accumulation of the phosphorylated active form of S6, the most downstream target of the Akt-mTOR-p70-S6 kinase pathway, is a frequent event in clinical specimens from patients with HNSCC and their derived cell lines. Of interest, this enhanced level of the phosphorylated active form of S6 was rapidly reduced in HNSCC cell lines and HNSCC xenograft models at clinically relevant doses of rapamycin, which specifically inhibits mTOR. Furthermore, we observed that rapamycin displays a potent antitumor effect in vivo, as it inhibits DNA synthesis and induces the apoptotic death of HNSCC cells, ultimately resulting in tumor regression. These findings identify the Akt-mTOR pathway as a potential therapeutic target for HNSCC, and may provide the rationale for the early clinical evaluation of rapamycin and its analogues in patients with HNSCC.
Collapse
Affiliation(s)
- Panomwat Amornphimoltham
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, NIH, Bethesda 20892-4330, USA
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Puppo M, Pastorino S, Melillo G, Pezzolo A, Varesio L, Bosco MC. Induction of apoptosis by flavopiridol in human neuroblastoma cells is enhanced under hypoxia and associated with N-myc proto-oncogene down-regulation. Clin Cancer Res 2005; 10:8704-19. [PMID: 15623656 DOI: 10.1158/1078-0432.ccr-03-0422] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Neuroblastoma is the most common extracranial solid tumor of children that arises from the sympathetic nervous system. Survival rates for neuroblastoma patients is low despite intensive therapeutic intervention, and the identification of new effective drugs remains a primary goal. The cyclin-dependent kinase inhibitor, flavopiridol, has demonstrated growth-inhibitory and cytotoxic activity against various tumor types. Our aim was to investigate flavopiridol effects on advanced-stage, N-myc proto-oncogene (MYCN)-amplified human neuroblastomas and the modulation of its activity by hypoxia, a critical determinant of tumor progression and a major challenge of therapy. EXPERIMENTAL DESIGN Cell viability was monitored by 3-(4,5 dimethyl-2 thiazolyl)-2,5 diphenyl-2H tetrazolium bromide (MTT) and trypan blue dye exclusion assays; DNA synthesis was assessed with the bromodeoxyuridine pulse-labeling technique; apoptosis was studied by Giemsa staining, DNA fragmentation, terminal deoxynucleotidyl-transferase-mediated dUTP nick end labeling reaction, flow cytometric determination of hypodiploid DNA content, and evaluation of caspase activity and cytochrome c (CytC) release; MYCN expression was determined by Northern and Western blotting. RESULTS Flavopiridol caused dose- and time-dependent decreases in neuroblastoma viability by inducing apoptosis, as confirmed by morphologic and biochemical criteria. Cell death was preceded by DNA synthesis inhibition and G1-G2 arrest, reversed by the pancaspase inhibitor, zVAD-fmk, and associated with caspase-3 and -2 activation and CytC increase. Moreover, flavopiridol strongly down-regulated MYCN mRNA and protein expression. Exposure to hypoxia enhanced both the extent of apoptosis and flavopiridol effects on CytC, caspase 3, and MYCN. CONCLUSIONS These results indicate that flavopiridol has growth-inhibitory and apoptotic activity against advanced-stage neuroblastomas in vitro and is worthy of further investigation for the treatment of this disease.
Collapse
Affiliation(s)
- Maura Puppo
- Laboratory of Molecular Biology, Giannina Gaslini Institute, Genoa, Italy
| | | | | | | | | | | |
Collapse
|
83
|
Grendys EC, Blessing JA, Burger R, Hoffman J. A phase II evaluation of flavopiridol as second-line chemotherapy of endometrial carcinoma: a Gynecologic Oncology Group study. Gynecol Oncol 2005; 98:249-53. [PMID: 15978659 DOI: 10.1016/j.ygyno.2005.05.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 04/29/2005] [Accepted: 05/06/2005] [Indexed: 01/02/2023]
Abstract
OBJECTIVE A phase II study was conducted to determine the efficacy of single agent flavopiridol therapy in patients with recurrent or persistent endometrial adenocarcinoma refractory to established treatments. METHODS Eligible patients with measurable disease who failed primary therapy including one cytotoxic regimen were eligible for the trial. They were treated with single agent flavopiridol (50 mg/m(2)/day, IV bolus days 1, 2, 3). Treatment was repeated every 21 days with dose adjustments made for toxicity. Patients were treated until progression of disease or adverse side effects precluded further therapy. RESULTS A total of 26 patients were enrolled in the study of whom, 23 patients were eligible. There were no objective responses. Five patients had stable disease (22%), 15 (65%) had increasing disease, and response could not be assessed in 3 (13%). The most frequent side effects included anemia, neutropenia, and diarrhea, all of which appeared manageable. CONCLUSION Flavopiridol as a single agent in the above dosing schedule appears to have minimal activity as second-line chemotherapy of endometrial adenocarcinoma.
Collapse
|
84
|
Bible KC, Lensing JL, Nelson SA, Lee YK, Reid JM, Ames MM, Isham CR, Piens J, Rubin SL, Rubin J, Kaufmann SH, Atherton PJ, Sloan JA, Daiss MK, Adjei AA, Erlichman C. Phase 1 Trial of Flavopiridol Combined with Cisplatin or Carboplatin in Patients with Advanced Malignancies with the Assessment of Pharmacokinetic and Pharmacodynamic End Points. Clin Cancer Res 2005; 11:5935-41. [PMID: 16115936 DOI: 10.1158/1078-0432.ccr-04-2566] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Flavopiridol, a cyclin-dependent kinase inhibitor, transcription inhibitor, and DNA-interacting agent, was combined with cisplatin or carboplatin to establish toxicities, evaluate pharmacokinetics, and examine its effects on patient cancers and levels of selected polypeptides in patient peripheral blood mononuclear cells (PBMC). EXPERIMENTAL DESIGN Therapy was given every 3 weeks. Stage I: cisplatin was fixed at 30 mg/m2 with escalating flavopiridol. Stage II: flavopiridol was fixed at the stage I maximum tolerated dose (MTD) with escalation of cisplatin. Stage III: flavopiridol was fixed at the stage I MTD with escalation of carboplatin. RESULTS Thirty-nine patients were treated with 136 cycles of chemotherapy. Neutropenia was seen in only 11% of patients. Grade 3 flavopiridol/CDDP toxicities were nausea (30%), vomiting (19%), diarrhea (15%), dehydration (15%), and neutropenia (10%). Flavopiridol combined with carboplatin resulted in unexpectedly high toxicities and one treatment-related death. Stable disease (>3 months) was seen in 34% of treated patients, but there were no objective responses. The stage II MTD was 60 mg/m2 cisplatin and 100 mg/m2/24 hours flavopiridol. As given, CDDP did not alter flavopiridol pharmacokinetics. Flavopiridol induced increased p53 and pSTAT3 levels in patient PBMCs but had no effects on cyclin D1, phosphoRNA polymerase II, or Mcl-1. CONCLUSIONS Flavopiridol and cisplatin can be safely combined in the treatment of cancer patients. Unexpected toxicity in flavopiridol/carboplatin-treated patients attenuates enthusiasm for this alternative combination. Analysis of polypeptide levels in patient PBMCs suggests that flavopiridol may be affecting some, but not all, of its known in vitro molecular targets in vivo.
Collapse
Affiliation(s)
- Keith C Bible
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesotta 55905, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Matsuo M, Sasaki N, Saga K, Kaneko T. Cytotoxicity of flavonoids toward cultured normal human cells. Biol Pharm Bull 2005; 28:253-9. [PMID: 15684479 DOI: 10.1248/bpb.28.253] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cytotoxicity of flavonoids, including apigenin, eriodictyol, 3-hydroxyflavone, kaempherol, luteolin, naringenin, quercetin, rutin, and taxifolin, toward cultured human normal cells, i.e., human lung embryonic fibroblasts (TIG-1) and human umbilical vein endothelial (HUVE) cells, was examined. When these normal human cells were incubated with each flavonoid in culture medium for 24 h, some of the flavonoids showed considerable cytotoxicity at relatively high concentrations and in a dose-dependent manner. 3-Hydroxyflavone, luteolin, and apigenin were more toxic toward TIG-1 cells than the other flavonoids, and luteolin, 3-hydroxyflavone, and quercetin were more toxic toward HUVE cells. HUVE cells were more vulnerable to flavonoid cytotoxicity than TIG-1 cells. Using 2',7'-dichlorofluorescin diacetate (DCF-DA), the intracellular reactive oxygen species (ROS) level of flavonoid-treated TIG-1 cells was examined. The ROS level increased significantly in the presence of the flavone apigenin or luteolin or the flavonol 3-hydroxyflavone, quercetin, or kaempherol. These results suggest that these flavones and flavonols exert cytotoxicity through increasing intracellular ROS levels. Further, the incorporation of apigenin, 3-hydroxyflavone, luteolin, and quercetin, which are more toxic, into TIG-1 cells during 24-h incubation was examined. These flavonoids were incorporated into them and the order of their incorporation efficiency was similar to that of their cytotoxicity. In conclusion, some flavonoids are cytotoxic at higher concentrations toward human normal cells. Further, it is suggested that they are incorporated into cells, increase intracellular ROS levels, and then exert cytotoxicity.
Collapse
Affiliation(s)
- Mitsuyoshi Matsuo
- Department of Biology, Faculty of Science, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe 658-8501, Japan.
| | | | | | | |
Collapse
|
86
|
Kim S, Wu HG, Shin JH, Park HJ, Kim IA, Kim IH. Enhancement of radiation effects by flavopiridol in uterine cervix cancer cells. Cancer Res Treat 2005; 37:191-5. [PMID: 19956502 PMCID: PMC2785412 DOI: 10.4143/crt.2005.37.3.191] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Accepted: 03/04/2005] [Indexed: 11/21/2022] Open
Abstract
PURPOSE To determine the effects of combinations of radiation and flavopiridol, an inhibitor of cyclin-dependent kinases and global transcription, in a human uterine cervix cancer cell line. MATERIALS AND METHODS Human uterine cervix cancer cells (HeLa), cultured to the mid-log phase, were exposed to X-rays, flavopiridol, and combinations of X-rays and flavopiridol in various sequences. The end point in this study was the clonogenic survival, which was measured via clonogenic assays. In order to determine the intrinsic cytotoxicity of flavopiridol, 0, 5, 12.5, 25, 37.5, 50 and 100 nM of flavopiridol were added to cell culture media. In the combination treatment, four different schedules of flavopiridol and irradiation combinations were tested: treatment of flavopiridol for 24 hours followed by irradiation, simultaneous administration of flavopiridol and irradiation, and irradiation followed by flavopiridol (for 24 hours) at intervals of 6 and 24 hours. The fraction of cells surviving after the combination treatment with 2 Gy of radiation (SF2) was compared with that of the fraction of cells surviving after treatment with irradiation alone. RESULTS The cytotoxicity of flavopiridol was found to be dose-dependent, with an IC50 of 80 nM. No cytotoxic enhancements were observed when flavopiridol and radiation were administered simultaneously. Flavopiridol, administered either 24 hours before or 6 hours after irradiation, exerted no sensitizing effects on the cells. Only one protocol resulted in a radiosensitizing effect: the administration of flavopiridol 24 hours after irradiation. CONCLUSION Flavopiridol enhanced the effects of radiation on a uterine cervix cancer cell line in vitro, and this enhancement was both sequence- and time-dependent.
Collapse
Affiliation(s)
- Suzy Kim
- Department of Radiation Oncology, The Catholic University of Korea College of Medicine, Korea
| | - Hong-Gyun Wu
- Department of Radiation Oncology, Seoul National University College of Medicine, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Korea
- Institute of Radiation Medicine, Medical Research Center, Seoul National University, Korea
| | - Jin Hee Shin
- Cancer Research Institute, Seoul National University College of Medicine, Korea
| | - Hye Jin Park
- Cancer Research Institute, Seoul National University College of Medicine, Korea
| | - In Ah Kim
- Cancer Research Institute, Seoul National University College of Medicine, Korea
- Department of Radiation Oncology, Bundang Seoul National University Hospital, Korea
| | - Il Han Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Korea
- Institute of Radiation Medicine, Medical Research Center, Seoul National University, Korea
| |
Collapse
|
87
|
Kristof AS, Pacheco-Rodriguez G, Schremmer B, Moss J. LY303511 (2-Piperazinyl-8-phenyl-4H-1-benzopyran-4-one) Acts via Phosphatidylinositol 3-Kinase-Independent Pathways to Inhibit Cell Proliferation via Mammalian Target of Rapamycin (mTOR)- and Non-mTOR-Dependent Mechanisms. J Pharmacol Exp Ther 2005; 314:1134-43. [PMID: 15923340 DOI: 10.1124/jpet.105.083550] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mammalian target of rapamycin (mTOR), a serine/threonine kinase, regulates cell growth and proliferation in part via the activation of p70 S6 kinase (S6K). Rapamycin is an antineo-plastic agent that, in complex with FKBP12, is a specific inhibitor of mTOR through interaction with its FKBP12-rapamycin binding domain, thereby causing G(1) cell cycle arrest. However, cancer cells often develop resistance to rapamycin, and alternative inhibitors of mTOR are desired. 2-(4-Morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002) blocks mTOR kinase activity, but it also inhibits phosphatidylinositol 3-kinase (PI3K), an enzyme that regulates cellular functions other than proliferation. We hypothesized that a close structural analog, 2-piperazinyl-8-phenyl-4H-1-benzopyran-4-one (LY303511) might inhibit mTOR-dependent cell proliferation without unwanted effects on PI3K. In human lung epithelial adenocarcinoma (A549) cells, LY303511, like rapamycin, inhibited mTOR-dependent phosphorylation of S6K, but not PI3K-dependent phosphorylation of Akt. LY303511 blocked proliferation in A549 as well as in primary pulmonary artery smooth muscle cells, without causing apoptosis. In contrast to rapamycin, LY303511 reduced G(2)/M progression as well as G(2)/M-specific cyclins in A549 cells. Consistent with an additional mTOR-independent kinase target, LY303511 inhibited casein kinase 2 activity, a known regulator of G(1) and G(2)/M progression. In addition to its antiproliferative effect in vitro, LY303511 inhibited the growth of human prostate adenocarcinoma tumor implants in athymic mice. Given its inhibition of cell proliferation via mTOR-dependent and independent mechanisms, LY303511 has therapeutic potential with antineoplastic actions that are independent of PI3K inhibition.
Collapse
Affiliation(s)
- Arnold S Kristof
- Pulmonary-Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | |
Collapse
|
88
|
Barak E, Amin-Spector S, Gerliak E, Goyard S, Holland N, Zilberstein D. Differentiation of Leishmania donovani in host-free system: analysis of signal perception and response. Mol Biochem Parasitol 2005; 141:99-108. [PMID: 15811531 DOI: 10.1016/j.molbiopara.2005.02.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Revised: 02/01/2005] [Accepted: 02/01/2005] [Indexed: 11/15/2022]
Abstract
Leishmania donovani are the causative agents of kala-azar in humans. They undergo a developmental program following changes in the environment, resulting in the reversible transformation between the extracellular promastigote form in the sand fly vector and the obligatory intracellular amastigote form in phagolysosomes of macrophages. A host-free differentiation system for L. donovani was used to investigate the initial process of promastigote to amastigote differentiation. Within an hour after exposing promastigotes to differentiation signal (concomitant exposure to 37 degrees C and pH 5.5), they expressed the amastigote-specific A2 protein family. At 5 h they started to transform to amastigote-shaped cells, a process that was completed 7 h later. This morphological transformation occurred synchronously, while cells arrested at G1. By sequential exposure to elevated temperature (for 24 h) and then acidic pH, we found that heat was responsible for the growth arrest and acidic pH to its release and subsequent route to differentiation into amastigotes. Lastly, ethanol and Azetidine 2 carboxylic acid (a synthetic proline analog) that induced heat shock response in promastigotes were capable of replacing heat in the differentiation signal.
Collapse
Affiliation(s)
- Efrat Barak
- Department of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | | | | | |
Collapse
|
89
|
Fischer PM, Gianella-Borradori A. Recent progress in the discovery and development of cyclin-dependent kinase inhibitors. Expert Opin Investig Drugs 2005; 14:457-77. [PMID: 15882121 DOI: 10.1517/13543784.14.4.457] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cyclin-dependent kinases (CDKs) have long been known to be the main facilitators of the cell proliferation cycle. However, they also play important roles in the regulation of the RNA polymerase II transcription cycle. Cancer cells display aberrant cell cycle regulation to gain proliferative advantages and they also appear to have an exaggerated dependence on RNA polymerase II transcriptional activity to sustain pro-survival and antiapoptotic signalling. A picture is now starting to emerge that both the cell-cycle and transcriptional functions of CDKs can be exploited pharmacologically with CDK inhibitors that possess appropriate selectivity profiles. In this article, recent advances into these mechanistic insights and how they can guide clinical development in terms of choice of indication are reviewed, as well as combinations with existing chemotherapies. An overview is also given of recent clinical trial results with the lead CDK inhibitor drug candidates seliciclib (CYC202, (R)-roscovitine; Cyclacel) and alvocidib (flavopiridol; Aventis-NCI), as well as the development of other clinical entries and advanced preclinical compounds. The discussion focuses on oncology, but we point out recent results with CDK inhibitors in virology and nephrology.
Collapse
Affiliation(s)
- Peter M Fischer
- Cyclacel Limited, James Lindsay Place, Dundee DD1 5JJ, Scotland, UK.
| | | |
Collapse
|
90
|
Aguero MF, Facchinetti MM, Sheleg Z, Senderowicz AM. Phenoxodiol, a Novel Isoflavone, Induces G1 Arrest by Specific Loss in Cyclin-Dependent Kinase 2 Activity by p53-Independent Induction of p21WAF1/CIP1. Cancer Res 2005; 65:3364-73. [PMID: 15833870 DOI: 10.1158/0008-5472.can-04-2429] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Phenoxodiol, an isoflavone derivative of genistein with unknown mechanism of action, is currently being evaluated in early human cancer clinical trials. To determine the mechanism of antiproliferative effects of phenoxodiol, we examined its effects in a battery of human cell lines. Although we observed caspase-dependent apoptosis in HN12 cells as early as 24 hours after exposure, clonogenic death occurred only after 48-hour exposure despite caspase blockade by the general caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone (ZVAD)-fmk. Moreover, clear evidence of cell death as determined by nuclear morphology and plasmatic membrane damage occur despite ZVAD, suggesting that another mechanism besides caspase-dependent apoptosis is required for clonogenic death induced by phenoxodiol. In search for other potential antiproliferative effects, we assessed the effects of phenoxodiol in the cell cycle progression of human carcinoma cell lines. A significant G(1)-S arrest was observed by 12 hours of exposure in HN12 cell lines at concentrations > or =5 microg/mL. Cell cycle arrest occurred several hours (approximately 12 hours) before induction of apoptosis. Analysis of in vitro purified cyclin-dependent kinase (cdk) activity showed that phenoxodiol did not inhibit cdk activity. In contrast, cellular cdk2 activity obtained from HN12 cell lines exposed to phenoxodiol for 12 hours decreased by 60%, whereas cdk6 activity remained unaltered, suggesting that the loss of cdk2 activity was specific. Loss in cdk2 activity was preceded by the accumulation of the endogenous cdk inhibitor p21(WAF1). To assess the role of p21(WAF1) induction by phenoxodiol, we used HCT116 isogenic cell lines and showed that phenoxodiol induced G(1) arrest together with p21(WAF1) expression in wild-type clones. In contrast, p21(-/-) variants failed to show G(1) arrest. Finally, induction of p21 by phenoxodiol is p53 independent, as phenoxodiol induced p21 in HCT116 lacking p53. These data therefore indicate that phenoxodiol promotes G(1)-S arrest by the specific loss in cdk2 activity due to p53-independent p21(WAF1) induction. This novel feature of phenoxodiol may have clinical implications, as the majority of human malignancies have aberrations in cell cycle progression regulation.
Collapse
Affiliation(s)
- Martin F Aguero
- Molecular Therapeutics Unit, Oral & Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
91
|
Pignataro L, Sambataro G, Pagani D, Pruneri G. Clinico-prognostic value of D-type cyclins and p27 in laryngeal cancer patients: a review. ACTA OTORHINOLARYNGOLOGICA ITALICA : ORGANO UFFICIALE DELLA SOCIETA ITALIANA DI OTORINOLARINGOLOGIA E CHIRURGIA CERVICO-FACCIALE 2005; 25:75-85. [PMID: 16116829 PMCID: PMC2639874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Despite recent improvements in surgical and radiation therapy, failures still occur in patients with laryngeal squamous cell carcinomas, which may have a very different clinical outcome even when their clinical and histopathological characteristics are similar. The apparent inadequacy of "traditional" prognostic factors in predicting the clinical evolution of laryngeal squamous cell carcinomas has led to attempts to develop additional markers capable of distinguishing patients with a good prognosis from those who are more likely to relapse. A number of studies have demonstrated a relationship between tumourigenesis and alterations in the expression of cyclins, cyclin-dependent kinases and cyclin-dependent kinase inhibitors, but the data regarding laryngeal squamous cell carcinomas are somewhat conflicting. Herein a review is made of the published literature concerning the clinico-prognostic role of cyclin D1, D3 and p27, and personal data are described concerning laryngeal squamous cell carcinoma patients who underwent surgical resection at the ENT Department of the University of Milan. The results of our multivariate analyses demonstrated that cyclin D1, p27 and cyclin D3 overexpression are statistically significant predictors of disease-free survival (p = 0.0238, p = 0.0001 and p = 0.0217, respectively); the statistical correlation with overall survival was significant in the case of p27 (p = 0.0009) and cyclin D3 (p = 0.0189), and borderline in the case of cyclin D1 (p = 0.0622). In relation to cyclin D1/p27 coexpression, the patients with a cyclin D1-/p27+ phenotype showed the best prognosis, those with a cyclin D1/p27+ or cyclin D1-/p27- phenotype, an intermediate prognosis, and those with a cyclin D1+/p27- phenotype, the poorest prognosis (p = 0.0001 and p = 0.0001 for trend for disease-free survival; p = 0.0015 and p = 0.0008 for trend for overall survival). In the case of cyclin D1/cyclin D3 coexpression, the patients with cyclin D1+/cyclin D3+ tumours had the poorest overall survival, those with cyclin D1/cyclin D3+or cyclin D1+/cyclin D3- tumours showed intermediate course, and those with cyclin D1 /cyclin D3- tumours had the most favourable outcome (p = 0.0002). The findings of this review indicate that both types of cyclin D and p27 are involved in the genesis of laryngeal squamous cell carcinomas, and that immunohistochemical evaluations of biopsy samples may provide useful additional markers capable of identifying subgroups of patients with a poor prognosis who can be treated by means of more aggressive surgery, adjuvant radiotherapy and chemotherapy, as well as those requiring a closer and more prolonged follow-up. Finally, preliminary results suggest that the administration of new molecular therapies that exert their antitumoural activities by functionally subverting the pathways regulated by D-type cyclins and their cyclin-dependent kinase counterparts may represent a further therapeutic modality for patients with refractory head and neck squamous cell carcinomas [corrected]
Collapse
Affiliation(s)
- L Pignataro
- Department of Otorhinolaryngological and Ophthalmological Sciences, Fondazione IRCCS, Ospedale Maggiore Policlinico Mangiagalli e Regina Elena, Italy
| | | | | | | |
Collapse
|
92
|
Lechpammer M, Xu X, Ellis FH, Bhattacharaya N, Shapiro GI, Loda M. Flavopiridol reduces malignant transformation of the esophageal mucosa in p27 knockout mice. Oncogene 2005; 24:1683-8. [PMID: 15674336 DOI: 10.1038/sj.onc.1208375] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The cyclin-dependent kinase (cdk) inhibitor p27 preferentially inactivates cdk complexes required for progression through the G1/S transition. Loss of p27 is associated with aggressive behavior in a variety of tumors, including Barrett's associated adenocarcinoma (BAA). We have previously shown that gastroduodenal-esophageal reflux (GDER) together with N-methyl-N-benzylnitrosamine (MBN) induces Barrett's esophagus (BE) and malignant transformation of the esophageal mucosa in mice. This process is enhanced in a p27 null background. Here, we show that chronic flavopiridol administration sharply reduced the prevalence of BE in GDER/MBN-treated p27 knockout mice when compared to animals treated with diluent only (7 vs 26%, P=0.0079). Similarly, flavopiridol reduced the prevalence of BAA (11 vs 32%, P=0.0098) and overall cancer prevalence (15 vs 60%, P<0.0001). In addition, appropriate molecular targeting by flavopiridol in tumor cells was confirmed by downregulation of cyclin D1, a known target of this pan-cdk inhibitor. The results of this study represent the experimental basis for chemoprevention with cdk inhibitors in human BE and BAA.
Collapse
Affiliation(s)
- Mirna Lechpammer
- Department of Medical Oncology, Dana-Farber Cancer Institute, D740 44 Binney Street, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
93
|
Hahn M, Li W, Yu C, Rahmani M, Dent P, Grant S. Rapamycin and UCN-01 synergistically induce apoptosis in human leukemia cells through a process that is regulated by the Raf-1/MEK/ERK, Akt, and JNK signal transduction pathways. Mol Cancer Ther 2005; 4:457-70. [PMID: 15767555 DOI: 10.1158/1535-7163.mct-04-0137] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Interactions between the protein kinase C and Chk1 inhibitor UCN-01 and rapamycin in human leukemia cells have been investigated in relation to apoptosis induction. Treatment of U937 monocytic leukemia cells with rapamycin (10 nmol/L) in conjunction with a minimally toxic concentration of UCN-01 (100 nmol/L) for 36 hours resulted in marked potentiation of mitochondrial injury (i.e., loss of mitochondrial membrane potential and cytosolic release of cytochrome c, AIF, and Smac/DIABLO), caspase activation, and apoptosis. The release of cytochrome c, AIF, and Smac/DIABLO were inhibited by BOC-D-fmk, indicating that their release was caspase dependent. These events were associated with marked down-regulation of Raf-1, MEK, and ERK phosphorylation, diminished Akt activation, and enhanced phosphorylation of c-Jun NH2-terminal kinase (JNK). Coadministration of UCN-01 and rapamycin reduced the expression levels of the antiapoptotic members of the Bcl-2 family Mcl-1 and Bcl-xL and diminished the expression of cyclin D1 and p34(cdc2). Furthermore, enforced expression of a constitutively active MEK1 or, to a lesser extent, myristoylated Akt construct partially but significantly attenuated UCN-01/rapamycin-mediated lethality in both U937 and Jurkat cell systems. Finally, inhibition of the stress-related JNK by SP600125 or by the expression of a dominant-negative mutant of c-Jun significantly attenuated apoptosis induced by rapamycin/UCN-01. Together, these findings indicate that the mammalian target of rapamycin inhibitor potentiates UCN-01 cytotoxicity in a variety of human leukemia cell types and suggest that inhibition of both Raf-1/MEK/ERK and Akt cytoprotective signaling pathways as well as JNK activation contribute to this phenomenon.
Collapse
Affiliation(s)
- Michael Hahn
- Department of Medicine, MCV Station Box 230, Virginia Commonwealth University, Medical College of Virginia, Richmond, VA 23298, USA
| | | | | | | | | | | |
Collapse
|
94
|
Benson C, Kaye S, Workman P, Garrett M, Walton M, de Bono J. Clinical anticancer drug development: targeting the cyclin-dependent kinases. Br J Cancer 2005; 92:7-12. [PMID: 15558073 PMCID: PMC2361734 DOI: 10.1038/sj.bjc.6602229] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Revised: 10/07/2004] [Accepted: 10/11/2004] [Indexed: 12/03/2022] Open
Abstract
Cell division involves a cyclical biochemical process composed of several step-wise reactions that have to occur once per cell cycle. Dysregulation of cell division is a hallmark of all cancers. Genetic and epigenetic mechanisms frequently result in deranged expression and/or activity of cell-cycle proteins including the cyclins, cyclin-dependent kinases (Cdks), Cdk inhibitors and checkpoint control proteins. The critical nature of these proteins in cell cycling raises hope that targeting them may result in selective cytotoxicity and valuable anticancer activity.
Collapse
Affiliation(s)
- C Benson
- Section of Medicine and Cancer Research UK Centre for Cancer Therapeutics, Institute for Cancer Research and Royal Marsden Hospital, Downs Road, Sutton, Surrey SM2 5PT, UK
| | - S Kaye
- Section of Medicine and Cancer Research UK Centre for Cancer Therapeutics, Institute for Cancer Research and Royal Marsden Hospital, Downs Road, Sutton, Surrey SM2 5PT, UK
| | - P Workman
- Section of Medicine and Cancer Research UK Centre for Cancer Therapeutics, Institute for Cancer Research and Royal Marsden Hospital, Downs Road, Sutton, Surrey SM2 5PT, UK
| | - M Garrett
- Section of Medicine and Cancer Research UK Centre for Cancer Therapeutics, Institute for Cancer Research and Royal Marsden Hospital, Downs Road, Sutton, Surrey SM2 5PT, UK
| | - M Walton
- Section of Medicine and Cancer Research UK Centre for Cancer Therapeutics, Institute for Cancer Research and Royal Marsden Hospital, Downs Road, Sutton, Surrey SM2 5PT, UK
| | - J de Bono
- Section of Medicine and Cancer Research UK Centre for Cancer Therapeutics, Institute for Cancer Research and Royal Marsden Hospital, Downs Road, Sutton, Surrey SM2 5PT, UK
| |
Collapse
|
95
|
Pruneri G, Pignataro L, Valentini S, Fabris S, Maisonneuve P, Carboni N, Pece S, Capra M, Del Curto B, Neri A, Viale G. Cyclin D3 Immunoreactivity Is an Independent Predictor of Survival in Laryngeal Squamous Cell Carcinoma. Clin Cancer Res 2005. [DOI: 10.1158/1078-0432.242.11.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Purpose: To analyze the prevalence and clinical relevance of cyclin D3 abnormalities in laryngeal squamous cell carcinoma (LSCC).
Experimental Design: Cyclin D3 immunoreactivity was evaluated in 223 formalin-fixed and paraffin-embedded samples of LSCC patients with a mean follow-up of 62.8 ± 43.2 months. The occurrence of cyclin D3 extra signals was analyzed by fluorescence in situ hybridization in 47 randomly selected cases collected in a tissue microarray. Cyclin D1 immunoreactivity had been previously investigated in 133 cases.
Results: Cyclin D3 immunoreactivity and gene extra signals were found in 39.5% and 42.6% of the cases, respectively, and the concordance between immunohistochemical and fluorescence in situ hybridization results was 70.2% (P = 0.0085). Cyclin D3 immunoreactivity was significantly associated with a high risk of death. Multivariate analysis showed that high tumor grade, exophytic/ulcerating tumor type, low performance status, and cyclin D3 immunoreactivity were the only independent predictors of poor overall survival. In the 133 cases analyzed for both cyclin D1 and cyclin D3, patients with cyclin D1+/cyclin D3+ tumors experienced the worst prognosis, patients with cyclin D1−/cyclin D3− exhibited the most prolonged survival, and with cyclin D1−/cyclin D3+ or cyclin D1+/cyclin D3− tumors an intermediate course was associated.
Conclusions: Our data suggest that cyclin D3 immunoreactivity, possibly due to the occurrence of gene extra copies, may represent an adjunct in LSCC patients' prognostication and contribute to identify D-type cyclins as potential targets of newly developed therapies.
Collapse
Affiliation(s)
| | | | | | - Sonia Fabris
- 5Laboratory of Experimental Hematology and Molecular Genetics, and
| | | | - Nadia Carboni
- 6Anaesthesiology and Intensive Care, Ospedale Maggiore, Istituto di Ricovero e Cura a Carattere Scientifico, and
| | - Salvatore Pece
- 3Experimental Oncology, European Institute of Oncology and University of Milan School of Medicine,
| | - Maria Capra
- 7FIRC Institute of Molecular Oncology, Milan, Italy
| | | | - Antonino Neri
- 5Laboratory of Experimental Hematology and Molecular Genetics, and
| | | |
Collapse
|
96
|
Affiliation(s)
- Manish A Shah
- Department of Medicine, Division of Solid Tumor Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| | | |
Collapse
|
97
|
Abstract
Flavopiridol has potent anti-proliferative properties due to its direct action of binding to the ATP-binding pocket of cyclin-dependent kinases (cdks), and due to its indirect action reducing levels of other cyclins and cdk inhibitors, contributing to its pleiotropic effects. Flavopiridol is a potent apoptotic agent due to its ability to cause cell death in cycling as well as non-cycling tumor cells; to down-regulate important cell survival proteins, such as survivin, through inhibition of the phosphorylation of Thr34; to increase sensitivity for S phase cells to drug treatment by modulating E2F-1 transcription factor activity in tumor cells; to induce both caspase-dependent and -independent mitochondrial cell death pathways; and to inhibit the activation of p-Akt which in turn inhibits activation of NF-kappaB. Flavopiridol possesses several important anti-angiogenic activities including induction of apoptosis of endothelial cells; inhibition of the hypoxic induction of vascular endothelial growth factor and/or its production under hypoxic conditions through inhibition of HIF-1alpha transcription; and decreased secretion of matrix metalloproteinases that is linked with significant inhibition of invasive potential in Matrigel assays. Taken together, the anti-proliferative and anti-angiogenic properties of flavopiridol may contribute to its anti-tumor activities observed in several preclinical animal models of human cancers including prostate, lymphoid, head and neck, colon, and glioma. These promising preclinical observations opened the way for phase I and II clinical trials. Given the low toxicity profile of flavopiridol used as a single agent in patients, combination therapy now offers numerous opportunities in the near future to improve the efficacy of flavopiridol in the treatment of refractory cancers.
Collapse
Affiliation(s)
- Elizabeth W Newcomb
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
98
|
Sato S, Kajiyama Y, Sugano M, Iwanuma Y, Tsurumaru M. Flavopiridol as a radio-sensitizer for esophageal cancer cell lines. Dis Esophagus 2004; 17:338-44. [PMID: 15569374 DOI: 10.1111/j.1442-2050.2004.00437.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Flavopiridol is a synthetic flavone that has shown an antitumor effect against several cancers. Here, we investigated the in vitro effect of flavopiridol alone and the combined effect of low-dose flavopiridol plus radiation on esophageal squamous cell carcinoma cell lines. Esophageal squamous cell carcinoma cell lines (TE8, TE9 and KE4) were exposed to flavopiridol (0.05-400 nmol/L) for 48 h. Growth inhibition was evaluated by MTT assay, cell cycle distribution was determined by flow cytometry, and cyclin D1, Bcl-2 and Rb protein expression was detected by Western blotting. The effect of 0.05 nmol/L flavopiridol as a radio-sensitizer was determined by clonogenic assay. The IC50 was approximately 110-250 nmol/L. Exposure to 0.05 nmol/L flavopiridol for 48 h increased the G2/M population, while 300 nmol/L increased the G1 population. At a concentration of 300 nmol/L, nuclear fragmentation and chromatin condensation were observed in all three cell lines. Exposure to 300 nmol/L flavopiridol decreased the levels of cyclin D1 and Rb protein in all three cell lines and Bcl-2 protein was also decreased in TE8 and KE4 cells. Moreover, exposure to 0.05 nmol/L flavopiridol slightly decreased the levels of cyclin D1, Rb and Bcl-2 protein in KE4 cells. Flavopiridol treatment (0.05 nmol/L) enhanced the radio-sensitivity in all three cell lines. Low-dose flavopiridol augmented the response of esophageal squamous cell carcinoma cell lines to radiation. Administration of a low dose of flavopiridol could be a potent new therapeutic approach for improving the efficacy of radiotherapy against esophageal cancer.
Collapse
Affiliation(s)
- S Sato
- First Department of Surgery, Juntendo University School of Medicine, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
99
|
Abstract
The treatment of squamous cell carcinoma of the head and neck (SCCHN) has recently witnessed the introduction of molecularly targeted agents based on disease biology, target discovery, and validation. One class of agents, the epidermal growth factor receptor (EGFR) inhibitors, is currently in phase III trials. There are multiple processes, however, that appear to be suitable for targeted therapy beyond EGFR. These include signal transduction, cell cycle control, prostaglandin synthesis, protein degradation, hypoxia, and angiogenesis. These systems and specific protein targets will be reviewed in detail with emphasis on promising preclinical and early clinical evidence of activity.
Collapse
Affiliation(s)
- Ezra E W Cohen
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637-1470, USA.
| |
Collapse
|
100
|
Shapiro GI. Preclinical and clinical development of the cyclin-dependent kinase inhibitor flavopiridol. Clin Cancer Res 2004; 10:4270s-4275s. [PMID: 15217973 DOI: 10.1158/1078-0432.ccr-040020] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Flavopiridol is the first potent inhibitor of cyclin-dependent kinases (cdks) to reach clinical trial. In the majority of solid tumor cell lines and xenografts, flavopiridol induces cell cycle arrest and tumor growth inhibition. This is reflected in clinical outcomes: across multiple Phase II trials there are subsets of patients with prolonged stable disease, although few responses have been observed. Flavopiridol displays sequence-dependent cytotoxic synergy with chemotherapy agents. These effects are most marked when chemotherapy precedes flavopiridol. In the case of DNA-damaging agents that impose S-phase delay, flavopiridol-mediated cdk inhibition disrupts the phosphorylation of E2F-1, leading to inappropriate persistence of its activity, inducing apoptotic pathways. This mechanism has been exploited in a Phase I trial of sequential gemcitabine and flavopiridol that has produced promising results. Flavopiridol is also synergistic with taxanes. Inhibition of cyclin B-cdk1 by flavopiridol accelerates exit from an abnormal mitosis associated with taxane-induced cell death and reduces the phosphorylation of survivin, preventing its stabilization and the cellular protection it affords after taxane exposure. The sequential combination of docetaxel and flavopiridol has been investigated in a Phase I trial in patients with advanced non-small cell lung cancer, and a randomized Phase II study is under way. Initial schedules of flavopiridol used prolonged continuous infusions that produced nanomolar levels of drug thought to be capable of achieving cdk inhibition based on results in tumor cell lines. Recently, it has been discovered that micromolar concentrations are likely to be more effective, and shorter infusions that achieve a higher C(max) have now been adopted. Loading followed by maintenance infusions are also under development, designed to achieve sustained micromolar drug levels. Clinical trials remain complicated by the absence of pharmacodynamic end points to confirm target inhibition.
Collapse
Affiliation(s)
- Geoffrey I Shapiro
- Department of Medical Oncology and Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston, Massachusetts, USA.
| |
Collapse
|