51
|
Oikawa S, Lee M, Motohashi N, Maeda S, Akimoto T. An inducible knockout of Dicer in adult mice does not affect endurance exercise-induced muscle adaptation. Am J Physiol Cell Physiol 2018; 316:C285-C292. [PMID: 30540495 DOI: 10.1152/ajpcell.00278.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The contractile and metabolic properties of adult skeletal muscle change in response to endurance exercise. The mechanisms of transcriptional regulation in exercise-induced skeletal muscle adaptation, including fiber-type switching and mitochondrial biogenesis, have been investigated intensively, whereas the role of microRNA (miRNA)-mediated posttranscriptional gene regulation is less well understood. We used tamoxifen-inducible Dicer1 knockout (iDicer KO) mice to reduce the global expression of miRNAs in adult skeletal muscle and subjected these mice to 2 wk of voluntary wheel running. Dicer mRNA expression was completely depleted in fast-twitch plantaris muscle after tamoxifen injection. However, several muscle-enriched miRNAs, including miR-1 and miR-133a, were reduced by only 30-50% in both the slow and fast muscles. The endurance exercise-induced changes that occurred for many parameters (i.e., fast-to-slow fiber-type switch and increases in succinate dehydrogenase, respiratory chain complex II, and citrate synthase activity) in wild type (WT) also occurred in the iDicer KO mice. Protein expression of myosin heavy chain IIa, peroxisome proliferator-activated receptor-γ coactivator-1α, and cytochrome c complex IV was also increased in the iDicer KO mice by the voluntary running. Furthermore, there was no significant difference in oxygen consumption rate in the isolated mitochondria between the WT and iDicer KO mice. These data indicate that muscle-enriched miRNAs were detectable even after 4 wk of tamoxifen treatment and there was no apparent specific endurance-exercise-induced muscle phenotype in the iDicer KO mice.
Collapse
Affiliation(s)
- Satoshi Oikawa
- Graduate School of Comprehensive Human Science, University of Tsukuba , Tsukuba , Japan
| | - Minjung Lee
- Division of Regenerative Medical Engineering, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo , Tokyo , Japan
| | - Norio Motohashi
- Department of Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology , Tokyo , Japan
| | - Seiji Maeda
- Faculty of Health and Sport Sciences, University of Tsukuba , Tsukuba , Japan
| | - Takayuki Akimoto
- Division of Regenerative Medical Engineering, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo , Tokyo , Japan.,Laboratory of Muscle Biology, Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| |
Collapse
|
52
|
Reducing dynamin 2 (DNM2) rescues DNM2-related dominant centronuclear myopathy. Proc Natl Acad Sci U S A 2018; 115:11066-11071. [PMID: 30291191 DOI: 10.1073/pnas.1808170115] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Centronuclear myopathies (CNM) are a group of severe muscle diseases for which no effective therapy is currently available. We have previously shown that reduction of the large GTPase DNM2 in a mouse model of the X-linked form, due to loss of myotubularin phosphatase MTM1, prevents the development of the skeletal muscle pathophysiology. As DNM2 is mutated in autosomal dominant forms, here we tested whether DNM2 reduction can rescue DNM2-related CNM in a knock-in mouse harboring the p.R465W mutation (Dnm2 RW/+) and displaying a mild CNM phenotype similar to patients with the same mutation. A single intramuscular injection of adeno-associated virus-shRNA targeting Dnm2 resulted in reduction in protein levels 5 wk post injection, with a corresponding improvement in muscle mass and fiber size distribution, as well as an improvement in histopathological CNM features. To establish a systemic treatment, weekly i.p. injections of antisense oligonucleotides targeting Dnm2 were administered to Dnm2 RW/+mice for 5 wk. While muscle mass, histopathology, and muscle ultrastructure were perturbed in Dnm2 RW/+mice compared with wild-type mice, these features were indistinguishable from wild-type mice after reducing DNM2. Therefore, DNM2 knockdown via two different strategies can efficiently correct the myopathy due to DNM2 mutations, and it provides a common therapeutic strategy for several forms of centronuclear myopathy. Furthermore, we provide an example of treating a dominant disease by targeting both alleles, suggesting that this strategy may be applied to other dominant diseases.
Collapse
|
53
|
Abstract
Dynamin 2 (DNM2) belongs to a family of large GTPases that are well known for mediating membrane fission by oligomerizing at the neck of membrane invaginations. Autosomal dominant mutations in the ubiquitously expressed DNM2 cause 2 discrete neuromuscular diseases: autosomal dominant centronuclear myopathy (ADCNM) and dominant intermediate Charcot-Marie-Tooth neuropathy (CMT). CNM and CMT mutations may affect DNM2 in distinct manners: CNM mutations may cause protein hyperactivity with elevated GTPase and fission activities, while CMT mutations could impair DNM2 lipid binding and activity. DNM2 is also a modifier of the X-linked and autosomal recessive forms of CNM, as DNM2 protein levels are upregulated in animal models and patient muscle samples. Strikingly, reducing DNM2 has been shown to revert muscle phenotypes in preclinical models of CNM. As DNM2 emerges as the key player in CNM pathogenesis, the role(s) of DNM2 in skeletal muscle remains unclear. This review aims to provide insights into potential pathomechanisms related to DNM2-CNM mutations, and discuss exciting outcomes of current and future therapeutic approaches targeting DNM2 hyperactivity.
Collapse
Affiliation(s)
- Mo Zhao
- Genetics and Genome Biology Program, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Nika Maani
- Genetics and Genome Biology Program, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - James J Dowling
- Genetics and Genome Biology Program, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
- Division of Neurology, Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada.
- Department of Pediatrics, University of Toronto, Toronto, ON, M5G 1X8, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
54
|
Qaisar R, Bhaskaran S, Premkumar P, Ranjit R, Natarajan KS, Ahn B, Riddle K, Claflin DR, Richardson A, Brooks SV, Van Remmen H. Oxidative stress-induced dysregulation of excitation-contraction coupling contributes to muscle weakness. J Cachexia Sarcopenia Muscle 2018; 9:1003-1017. [PMID: 30073804 PMCID: PMC6204588 DOI: 10.1002/jcsm.12339] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/25/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND We have previously shown that the deletion of the superoxide scavenger, CuZn superoxide dismutase, in mice (Sod1-/- mice) results in increased oxidative stress and an accelerated loss of skeletal muscle mass and force that mirror the changes seen in old control mice. The goal of this study is to define the effect of oxidative stress and ageing on muscle weakness and the Excitation Contraction (EC) coupling machinery in age-matched adult (8-10 months) wild-type (WT) and Sod1-/- mice in comparison with old (25-28 months) WT mice. METHODS In vitro contractile assays were used to measure muscle contractile parameters. The activity of the sarcoplasmic reticulum Ca2+ ATPase (SERCA) pump was measured using an NADH-linked enzyme assay. Immunoblotting and immunofluorescence techniques were used to measure protein expression, and real-time reverse transcription PCR was used to measure gene expression. RESULTS The specific force generated by the extensor digitorum longus muscle was reduced in the Sod1-/- and old WT mice compared with young WT mice along with significant prolongation of time to peak force, increased half relaxation time, and disruption of intracellular calcium handling. The maximal activity of the SERCA calcium uptake pump was significantly reduced in gastrocnemius muscle from both old WT (≈14%) and adult Sod1-/- (≈33%) mice compared with young WT mice along with increased expression of sarcolipin, a known inhibitor of SERCA activity. Protein levels of the voltage sensor and calcium uptake channel proteins dihydropyridine receptor α1 and SERCA2 were significantly elevated (≈45% and ≈57%, respectively), while the ratio of calstabin, a channel stabilizing protein, to ryanodine receptor was significantly reduced (≈21%) in Sod1-/- mice compared with young WT mice. The changes in calcium handling were accompanied by substantially elevated levels of global protein carbonylation and lipid peroxidation. CONCLUSIONS Our data suggest that the muscle weakness in Sod1-/- and old WT mice is in part driven by reactive oxygen species-mediated EC uncoupling and supports a role for reduced SERCA pump activity in compromised muscle function. The novel quantitative mechanistic data provided here can lead to potential therapeutic interventions of SERCA dysfunction for sarcopenia and muscle diseases.
Collapse
Affiliation(s)
- Rizwan Qaisar
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Shylesh Bhaskaran
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Pavithra Premkumar
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Rojina Ranjit
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | | | - Bumsoo Ahn
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Kaitlyn Riddle
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Dennis R Claflin
- Department of Surgery, Section of Plastic Surgery, University of Michigan, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Arlan Richardson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Oklahoma City VA Medical Center, Oklahoma City, OK, USA.,Department of Geriatric Medicine and the Reynolds Oklahoma Center of Aging, Oklahoma University Health Science Center, Oklahoma City, OK, USA
| | - Susan V Brooks
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Holly Van Remmen
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.,Oklahoma City VA Medical Center, Oklahoma City, OK, USA
| |
Collapse
|
55
|
Yang Y, Zhang J, Wu G, Sun J, Wang Y, Guo H, Shi Y, Cheng X, Tang X, Le G. Dietary methionine restriction regulated energy and protein homeostasis by improving thyroid function in high fat diet mice. Food Funct 2018; 9:3718-3731. [PMID: 29978874 DOI: 10.1039/c8fo00685g] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Methionine-restricted diets (MRD) show an integrated series of beneficial health effects, including improving insulin sensitivity, limiting fat deposition, and decreasing oxidative stress, and inflammation responses. We aimed to explore the systemic responses to a MRD in mice fed with a high fat (HFD) and clarify the possible mechanism. Mice were fed with a control diet (0.86% methionine + 4% fat, CON), HFD (0.86% methionine + 20% fat), or MRD (0.17% methionine + 20% fat) for 22 consecutive weeks. HFD-fed mice showed widespread systemic metabolic disorders and thyroid dysfunction. A MRD significantly increased energy expenditure (e.g. fatty acid oxidation, glycolysis, and tricarboxylic acid cycle metabolism), regulated protein homeostasis, improved gut microbiota functions, prevented thyroid dysfunction, increased plasma thyroxine and triiodothyronine levels, decreased plasma thyroid stimulating hormone levels, increased type 2 deiodinase (DIO2) activity, and up-regulated mRNA and protein expression levels of DIO2 and thyroid hormone receptor α1 in the skeletal muscle. These results suggest that a MRD can improve the metabolic disorders induced by a HFD, and especially regulate energy and protein homeostasis likely through improved thyroid function. Thus, reducing methionine intake (e.g. through a vegan diet) may improve metabolic health in animals and humans.
Collapse
Affiliation(s)
- Yuhui Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Mok GF, Lozano-Velasco E, Maniou E, Viaut C, Moxon S, Wheeler G, Münsterberg A. miR-133-mediated regulation of the Hedgehog pathway orchestrates embryo myogenesis. Development 2018; 145:dev.159657. [PMID: 29802149 PMCID: PMC6031409 DOI: 10.1242/dev.159657] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 05/10/2018] [Indexed: 12/23/2022]
Abstract
Skeletal myogenesis serves as a paradigm to investigate the molecular mechanisms underlying exquisitely regulated cell fate decisions in developing embryos. The evolutionarily conserved miR-133 family of microRNAs is expressed in the myogenic lineage, but how it acts remains incompletely understood. Here, we performed genome-wide differential transcriptomics of miR-133 knockdown (KD) embryonic somites, the source of vertebrate skeletal muscle. These analyses, performed in chick embryos, revealed extensive downregulation of Sonic hedgehog (Shh) pathway components: patched receptors, Hedgehog interacting protein and the transcriptional activator Gli1. By contrast, Gli3, a transcriptional repressor, was de-repressed and confirmed as a direct miR-133 target. Phenotypically, miR-133 KD impaired myotome formation and growth by disrupting proliferation, extracellular matrix deposition and epithelialization. Together, these observations suggest that miR-133-mediated Gli3 silencing is crucial for embryonic myogenesis. Consistent with this idea, we found that activation of Shh signalling by either purmorphamine, or KD of Gli3 by antisense morpholino, rescued the miR-133 KD phenotype. Thus, we identify a novel Shh/myogenic regulatory factor/miR-133/Gli3 axis that connects epithelial morphogenesis with myogenic fate specification. Summary: Here, using chick embryos, we showed that post-transcriptional silencing of the Gli3 repressor by miR-133 is required to stably establish the myogenic programme in early somites.
Collapse
Affiliation(s)
- Gi Fay Mok
- School of Biological Sciences, Cell and Developmental Biology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Estefania Lozano-Velasco
- School of Biological Sciences, Cell and Developmental Biology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Eirini Maniou
- School of Biological Sciences, Cell and Developmental Biology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Camille Viaut
- School of Biological Sciences, Cell and Developmental Biology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Simon Moxon
- The Earlham Institute, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | - Grant Wheeler
- School of Biological Sciences, Cell and Developmental Biology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Andrea Münsterberg
- School of Biological Sciences, Cell and Developmental Biology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
57
|
Zanoteli E. Centronuclear myopathy: advances in genetic understanding and potential for future treatments. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1480366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Edmar Zanoteli
- Departamento de Neurologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
58
|
Metabolic Maturation during Muscle Stem Cell Differentiation Is Achieved by miR-1/133a-Mediated Inhibition of the Dlk1-Dio3 Mega Gene Cluster. Cell Metab 2018; 27:1026-1039.e6. [PMID: 29606596 DOI: 10.1016/j.cmet.2018.02.022] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 12/20/2017] [Accepted: 02/23/2018] [Indexed: 12/20/2022]
Abstract
Muscle stem cells undergo a dramatic metabolic switch to oxidative phosphorylation during differentiation, which is achieved by massively increased mitochondrial activity. Since expression of the muscle-specific miR-1/133a gene cluster correlates with increased mitochondrial activity during muscle stem cell (MuSC) differentiation, we examined the potential role of miR-1/133a in metabolic maturation of skeletal muscles in mice. We found that miR-1/133a downregulate Mef2A in differentiated myocytes, thereby suppressing the Dlk1-Dio3 gene cluster, which encodes multiple microRNAs inhibiting expression of mitochondrial genes. Loss of miR-1/133a in skeletal muscles or increased Mef2A expression causes continuous high-level expression of the Dlk1-Dio3 gene cluster, compromising mitochondrial function. Failure to terminate the stem cell-like metabolic program characterized by high-level Dlk1-Dio3 gene cluster expression initiates profound changes in muscle physiology, essentially abrogating endurance running. Our results suggest a major role of miR-1/133a in metabolic maturation of skeletal muscles but exclude major functions in muscle development and MuSC maintenance.
Collapse
|
59
|
Abstract
MicroRNAs (miRNAs) are ∼22 nt RNAs that direct posttranscriptional repression of mRNA targets in diverse eukaryotic lineages. In humans and other mammals, these small RNAs help sculpt the expression of most mRNAs. This article reviews advances in our understanding of the defining features of metazoan miRNAs and their biogenesis, genomics, and evolution. It then reviews how metazoan miRNAs are regulated, how they recognize and cause repression of their targets, and the biological functions of this repression, with a compilation of knockout phenotypes that shows that important biological functions have been identified for most of the broadly conserved miRNAs of mammals.
Collapse
Affiliation(s)
- David P Bartel
- Howard Hughes Medical Institute and Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
60
|
Single Intramuscular Injection of AAV-shRNA Reduces DNM2 and Prevents Myotubular Myopathy in Mice. Mol Ther 2018; 26:1082-1092. [PMID: 29506908 DOI: 10.1016/j.ymthe.2018.02.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 02/02/2018] [Accepted: 02/09/2018] [Indexed: 12/28/2022] Open
Abstract
Myotubular myopathy, or X-linked centronuclear myopathy, is a severe muscle disorder representing a significant burden for patients and their families. It is clinically characterized by neonatal and severe muscle weakness and atrophy. Mutations in the myotubularin (MTM1) gene cause myotubular myopathy, and no specific curative treatment is available. We previously found that dynamin 2 (DNM2) is upregulated in both Mtm1 knockout and patient muscle samples, whereas its reduction through antisense oligonucleotides rescues the clinical and histopathological features of this myopathy in mice. Here, we propose a novel approach targeting Dnm2 mRNA. We screened and validated in vitro and in vivo several short hairpin RNA (shRNA) sequences that efficiently target Dnm2 mRNA. A single intramuscular injection of AAV-shDnm2 resulted in long-term reduction of DNM2 protein level and restored muscle force, mass, histology, and myofiber ultrastructure and prevented molecular defects linked to the disease. Our results demonstrate a robust DNM2 knockdown and provide an alternative strategy based on reduction of DNM2 to treat myotubular myopathy.
Collapse
|
61
|
Bloise FF, Cordeiro A, Ortiga-Carvalho TM. Role of thyroid hormone in skeletal muscle physiology. J Endocrinol 2018; 236:R57-R68. [PMID: 29051191 DOI: 10.1530/joe-16-0611] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 10/19/2017] [Indexed: 12/31/2022]
Abstract
Thyroid hormones (TH) are crucial for development, growth, differentiation, metabolism and thermogenesis. Skeletal muscle (SM) contractile function, myogenesis and bioenergetic metabolism are influenced by TH. These effects depend on the presence of the TH transporters MCT8 and MCT10 in the plasma membrane, the expression of TH receptors (THRA or THRB) and hormone availability, which is determined either by the activation of thyroxine (T4) into triiodothyronine (T3) by type 2 iodothyronine deiodinases (D2) or by the inactivation of T4 into reverse T3 by deiodinases type 3 (D3). SM relaxation and contraction rates depend on T3 regulation of myosin expression and energy supplied by substrate oxidation in the mitochondria. The balance between D2 and D3 expression determines TH intracellular levels and thus influences the proliferation and differentiation of satellite cells, indicating an important role of TH in muscle repair and myogenesis. During critical illness, changes in TH levels and in THR and deiodinase expression negatively affect SM function and repair. This review will discuss the influence of TH action on SM contraction, bioenergetics metabolism, myogenesis and repair in health and illness conditions.
Collapse
Affiliation(s)
- Flavia F Bloise
- Institute of Biophysics Carlos Chagas FilhoLaboratory of Translational Endocrinology, Rio de Janeiro, Brazil
| | - Aline Cordeiro
- Institute of Biophysics Carlos Chagas FilhoLaboratory of Translational Endocrinology, Rio de Janeiro, Brazil
| | - Tania Maria Ortiga-Carvalho
- Institute of Biophysics Carlos Chagas FilhoLaboratory of Translational Endocrinology, Rio de Janeiro, Brazil
| |
Collapse
|
62
|
Cowling BS, Prokic I, Tasfaout H, Rabai A, Humbert F, Rinaldi B, Nicot AS, Kretz C, Friant S, Roux A, Laporte J. Amphiphysin (BIN1) negatively regulates dynamin 2 for normal muscle maturation. J Clin Invest 2017; 127:4477-4487. [PMID: 29130937 DOI: 10.1172/jci90542] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/03/2017] [Indexed: 01/25/2023] Open
Abstract
Regulation of skeletal muscle development and organization is a complex process that is not fully understood. Here, we focused on amphiphysin 2 (BIN1, also known as bridging integrator-1) and dynamin 2 (DNM2), two ubiquitous proteins implicated in membrane remodeling and mutated in centronuclear myopathies (CNMs). We generated Bin1-/- Dnm2+/- mice to decipher the physiological interplay between BIN1 and DNM2. While Bin1-/- mice die perinatally from a skeletal muscle defect, Bin1-/- Dnm2+/- mice survived at least 18 months, and had normal muscle force and intracellular organization of muscle fibers, supporting BIN1 as a negative regulator of DNM2. We next characterized muscle-specific isoforms of BIN1 and DNM2. While BIN1 colocalized with and partially inhibited DNM2 activity during muscle maturation, BIN1 had no effect on the isoform of DNM2 found in adult muscle. Together, these results indicate that BIN1 and DNM2 regulate muscle development and organization, function through a common pathway, and define BIN1 as a negative regulator of DNM2 in vitro and in vivo during muscle maturation. Our data suggest that DNM2 modulation has potential as a therapeutic approach for patients with CNM and BIN1 defects. As BIN1 is implicated in cancers, arrhythmia, and late-onset Alzheimer disease, these findings may trigger research directions and therapeutic development for these common diseases.
Collapse
Affiliation(s)
- Belinda S Cowling
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Ivana Prokic
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Hichem Tasfaout
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Aymen Rabai
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Frédéric Humbert
- Biochemistry Department, University of Geneva, Geneva, Switzerland
| | - Bruno Rinaldi
- Department of Molecular and Cellular Genetics, UMR7156, Université de Strasbourg and CNRS, Strasbourg, France
| | - Anne-Sophie Nicot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Christine Kretz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Sylvie Friant
- Department of Molecular and Cellular Genetics, UMR7156, Université de Strasbourg and CNRS, Strasbourg, France
| | - Aurélien Roux
- Biochemistry Department, University of Geneva, Geneva, Switzerland.,Swiss National Centre of Competence in Research Programme Chemical Biology, Geneva, Switzerland
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| |
Collapse
|
63
|
van der Stijl R, Withoff S, Verbeek DS. Spinocerebellar ataxia: miRNAs expose biological pathways underlying pervasive Purkinje cell degeneration. Neurobiol Dis 2017; 108:148-158. [PMID: 28823930 DOI: 10.1016/j.nbd.2017.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/21/2017] [Accepted: 08/16/2017] [Indexed: 01/09/2023] Open
Abstract
Recent work has demonstrated the importance of miRNAs in the pathogenesis of various brain disorders including the neurodegenerative disorder spinocerebellar ataxia (SCA). This review focuses on the role of miRNAs in the shared pathogenesis of the different SCA types. We examine the novel findings of a recent cell-type-specific RNA-sequencing study in mouse brain and discuss how the identification of Purkinje-cell-enriched miRNAs highlights biological pathways that expose the mechanisms behind pervasive Purkinje cell degeneration in SCA. These key pathways are likely to contain targets for therapeutic development and represent potential candidate genes for genetically unsolved SCAs.
Collapse
Affiliation(s)
- Rogier van der Stijl
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Sebo Withoff
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Dineke S Verbeek
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.
| |
Collapse
|
64
|
Goodson JM, Weldy CS, MacDonald JW, Liu Y, Bammler TK, Chien WM, Chin MT. In utero exposure to diesel exhaust particulates is associated with an altered cardiac transcriptional response to transverse aortic constriction and altered DNA methylation. FASEB J 2017; 31:4935-4945. [PMID: 28751527 DOI: 10.1096/fj.201700032r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 07/10/2017] [Indexed: 12/13/2022]
Abstract
In utero exposure to diesel exhaust air pollution has been associated with increased adult susceptibility to heart failure in mice, but the mechanisms by which this exposure promotes susceptibility to heart failure are poorly understood. To identify the potential transcriptional effects that mediate this susceptibility, we have performed RNA sequencing analysis on adult hearts from mice that were exposed to diesel exhaust in utero and that have subsequently undergone transverse aortic constriction. We identified 3 target genes, Mir133a-2, Ptprf, and Pamr1, which demonstrate dysregulation after exposure and aortic constriction. Examination of expression patterns in human heart tissues indicates a correlation between expression and heart failure. We subsequently assessed DNA methylation modifications at these candidate loci in neonatal cultured cardiac myocytes after in utero exposure to diesel exhaust and found that the promoter for Mir133a-2 is differentially methylated. These target genes in the heart are the first genes to be identified that likely play an important role in mediating adult sensitivity to heart failure. We have also shown a change in DNA methylation within cardiomyocytes as a result of in utero exposure to diesel exhaust.-Goodson, J. M., Weldy, C. S., MacDonald, J. W., Liu, Y., Bammler, T. K., Chien, W.-M., Chin, M. T. In utero exposure to diesel exhaust particulates is associated with an altered cardiac transcriptional response to transverse aortic constriction and altered DNA methylation.
Collapse
Affiliation(s)
- Jamie M Goodson
- Department of Pathology, University of Washington School of Medicine, University of Washington, Seattle, Washington, USA
| | - Chad S Weldy
- Department of Pathology, University of Washington School of Medicine, University of Washington, Seattle, Washington, USA.,Division of Cardiology, Department of Medicine, University of Washington School of Medicine, University of Washington, Seattle, Washington, USA
| | - James W MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, University of Washington, Seattle, Washington, USA
| | - Yonggang Liu
- Division of Cardiology, Department of Medicine, University of Washington School of Medicine, University of Washington, Seattle, Washington, USA
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, University of Washington, Seattle, Washington, USA
| | - Wei-Ming Chien
- Division of Cardiology, Department of Medicine, University of Washington School of Medicine, University of Washington, Seattle, Washington, USA
| | - Michael T Chin
- Department of Pathology, University of Washington School of Medicine, University of Washington, Seattle, Washington, USA .,Division of Cardiology, Department of Medicine, University of Washington School of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
65
|
Mak RH, Cheung WW. MicroRNA as Novel Exercise Mimetic for Muscle Wasting in CKD. J Am Soc Nephrol 2017; 28:2557-2559. [PMID: 28720683 DOI: 10.1681/asn.2017060631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Robert H Mak
- Division of Pediatric Nephrology, Rady Children's Hospital, University of California, San Diego, La Jolla, California
| | - Wai W Cheung
- Division of Pediatric Nephrology, Rady Children's Hospital, University of California, San Diego, La Jolla, California
| |
Collapse
|
66
|
Tasfaout H, Buono S, Guo S, Kretz C, Messaddeq N, Booten S, Greenlee S, Monia BP, Cowling BS, Laporte J. Antisense oligonucleotide-mediated Dnm2 knockdown prevents and reverts myotubular myopathy in mice. Nat Commun 2017; 8:15661. [PMID: 28589938 PMCID: PMC5467247 DOI: 10.1038/ncomms15661] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 04/18/2017] [Indexed: 01/27/2023] Open
Abstract
Centronuclear myopathies (CNM) are non-dystrophic muscle diseases for which no effective therapy is currently available. The most severe form, X-linked CNM, is caused by myotubularin 1 (MTM1) loss-of-function mutations, while the main autosomal dominant form is due to dynamin2 (DNM2) mutations. We previously showed that genetic reduction of DNM2 expression in Mtm1 knockout (Mtm1KO) mice prevents development of muscle pathology. Here we show that systemic delivery of Dnm2 antisense oligonucleotides (ASOs) into Mtm1KO mice efficiently reduces DNM2 protein level in muscle and prevents the myopathy from developing. Moreover, systemic ASO injection into severely affected mice leads to reversal of muscle pathology within 2 weeks. Thus, ASO-mediated DNM2 knockdown can efficiently correct muscle defects due to loss of MTM1, providing an attractive therapeutic strategy for this disease.
Collapse
Affiliation(s)
- Hichem Tasfaout
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch 67404, France.,INSERM U964, Illkirch 67404, France.,CNRS UMR7104, Illkirch 67404, France.,FMTS, Strasbourg University, Illkirch 67404, France
| | - Suzie Buono
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch 67404, France.,INSERM U964, Illkirch 67404, France.,CNRS UMR7104, Illkirch 67404, France.,FMTS, Strasbourg University, Illkirch 67404, France
| | - Shuling Guo
- Ionis Pharmaceuticals Inc., Carlsbad, California 92010, USA
| | - Christine Kretz
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch 67404, France.,INSERM U964, Illkirch 67404, France.,CNRS UMR7104, Illkirch 67404, France.,FMTS, Strasbourg University, Illkirch 67404, France
| | - Nadia Messaddeq
- INSERM U964, Illkirch 67404, France.,CNRS UMR7104, Illkirch 67404, France.,Service de Microscopie Electronique, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch 67404, France
| | - Sheri Booten
- Ionis Pharmaceuticals Inc., Carlsbad, California 92010, USA
| | - Sarah Greenlee
- Ionis Pharmaceuticals Inc., Carlsbad, California 92010, USA
| | - Brett P Monia
- Ionis Pharmaceuticals Inc., Carlsbad, California 92010, USA
| | - Belinda S Cowling
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch 67404, France.,INSERM U964, Illkirch 67404, France.,CNRS UMR7104, Illkirch 67404, France.,FMTS, Strasbourg University, Illkirch 67404, France
| | - Jocelyn Laporte
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch 67404, France.,INSERM U964, Illkirch 67404, France.,CNRS UMR7104, Illkirch 67404, France.,FMTS, Strasbourg University, Illkirch 67404, France
| |
Collapse
|
67
|
Fajardo VA, Rietze BA, Chambers PJ, Bellissimo C, Bombardier E, Quadrilatero J, Tupling AR. Effects of sarcolipin deletion on skeletal muscle adaptive responses to functional overload and unload. Am J Physiol Cell Physiol 2017; 313:C154-C161. [PMID: 28592414 DOI: 10.1152/ajpcell.00291.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 05/30/2017] [Accepted: 05/30/2017] [Indexed: 12/22/2022]
Abstract
Overexpression of sarcolipin (SLN), a regulator of sarco(endo)plasmic reticulum Ca2+-ATPases (SERCAs), stimulates calcineurin signaling to enhance skeletal muscle oxidative capacity. Some studies have shown that calcineurin may also control skeletal muscle mass and remodeling in response to functional overload and unload stimuli by increasing myofiber size and the proportion of slow fibers. To examine whether SLN might mediate these adaptive responses, we performed soleus and gastrocnemius tenotomy in wild-type (WT) and Sln-null (Sln-/-) mice and examined the overloaded plantaris and unloaded/tenotomized soleus muscles. In the WT overloaded plantaris, we observed ectopic expression of SLN, myofiber hypertrophy, increased fiber number, and a fast-to-slow fiber type shift, which were associated with increased calcineurin signaling (NFAT dephosphorylation and increased stabilin-2 protein content) and reduced SERCA activity. In the WT tenotomized soleus, we observed a 14-fold increase in SLN protein, myofiber atrophy, decreased fiber number, and a slow-to-fast fiber type shift, which were also associated with increased calcineurin signaling and reduced SERCA activity. Genetic deletion of Sln altered these physiological outcomes, with the overloaded plantaris myofibers failing to grow in size and number, and transition towards the slow fiber type, while the unloaded soleus muscles exhibited greater reductions in fiber size and number, and an accelerated slow-to-fast fiber type shift. In both the Sln-/- overloaded and unloaded muscles, these findings were associated with elevated SERCA activity and blunted calcineurin signaling. Thus, SLN plays an important role in adaptive muscle remodeling potentially through calcineurin stimulation, which could have important implications for other muscle diseases and conditions.
Collapse
Affiliation(s)
- Val A Fajardo
- Department of Kinesiology, University of Waterloo, Waterloo Ontario, Canada
| | - Bradley A Rietze
- Department of Kinesiology, University of Waterloo, Waterloo Ontario, Canada
| | - Paige J Chambers
- Department of Kinesiology, University of Waterloo, Waterloo Ontario, Canada
| | | | - Eric Bombardier
- Department of Kinesiology, University of Waterloo, Waterloo Ontario, Canada
| | - Joe Quadrilatero
- Department of Kinesiology, University of Waterloo, Waterloo Ontario, Canada
| | - A Russell Tupling
- Department of Kinesiology, University of Waterloo, Waterloo Ontario, Canada
| |
Collapse
|
68
|
Zhang D, Li Y, Liu S, Wang YC, Guo F, Zhai Q, Jiang J, Ying H. microRNA and thyroid hormone signaling in cardiac and skeletal muscle. Cell Biosci 2017; 7:14. [PMID: 28331574 PMCID: PMC5359910 DOI: 10.1186/s13578-017-0141-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 03/08/2017] [Indexed: 01/18/2023] Open
Abstract
Thyroid hormone (TH) signaling plays critical roles in the differentiation, growth, metabolism, and physiological function of all organs or tissues, including heart and skeletal muscle. Due to the significant progress in our understanding of the molecular mechanisms that underlie TH action, it's widely accepted that TH signaling is regulated at multiple levels. A growing number of discoveries suggest that microRNAs (miRNAs) act as fine-tune regulators of gene expression and adds sophisticated regulatory tiers to signaling pathways. Recently, some pioneering studies in cardiac and skeletal muscle demonstrating the interplay between miRNAs and TH signaling suggest that miRNAs might mediate and/or modulate TH signaling. This review presents recent advances involving the crosstalk between miRNAs and TH signaling and current evidence showing the importance of miRNA in TH signaling with particular emphasis on the study of muscle-specific miRNAs (myomiRs) in cardiac and skeletal muscle. Although the research of the reciprocal regulation of miRNAs and TH signaling is only at the beginning stage, it has already contributed to our current understanding of both TH action and miRNA biology. We also encourage further investigations to address the relative contributions of miRNAs in TH signaling under physiological and pathological conditions and how a group of miRNAs are coordinated to integrate into the complex hierarchical regulatory network of TH.
Collapse
Affiliation(s)
- Duo Zhang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| | - Yan Li
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| | - Shengnan Liu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| | - Yu-Cheng Wang
- Shanghai Clinical Center, Chinese Academy of Sciences, Shanghai Xuhui Central Hospital, 966 Middle Huaihai Road, Shanghai, 200031 China
| | - Feifan Guo
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| | - Qiwei Zhai
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| | - Jingjing Jiang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| | - Hao Ying
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China.,Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China.,Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Institute for Nutritional Sciences, Room A1912, New Life Science Building, 320 Yueyang Road, Shanghai, 200031 China
| |
Collapse
|
69
|
Fajardo VA, Gamu D, Mitchell A, Bloemberg D, Bombardier E, Chambers PJ, Bellissimo C, Quadrilatero J, Tupling AR. Sarcolipin deletion exacerbates soleus muscle atrophy and weakness in phospholamban overexpressing mice. PLoS One 2017; 12:e0173708. [PMID: 28278204 PMCID: PMC5344511 DOI: 10.1371/journal.pone.0173708] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/24/2017] [Indexed: 11/18/2022] Open
Abstract
Sarcolipin (SLN) and phospholamban (PLN) are two small proteins that regulate the sarco(endo)plasmic reticulum Ca2+-ATPase pumps. In a recent study, we discovered that Pln overexpression (PlnOE) in slow-twitch type I skeletal muscle fibers drastically impaired SERCA function and caused a centronuclear myopathy-like phenotype, severe muscle atrophy and weakness, and an 8 to 9-fold upregulation of SLN protein in the soleus muscles. Here, we sought to determine the physiological role of SLN upregulation, and based on its role as a SERCA inhibitor, we hypothesized that it would represent a maladaptive response that contributes to the SERCA dysfunction and the overall myopathy observed in the PlnOE mice. To this end, we crossed Sln-null (SlnKO) mice with PlnOE mice to generate a PlnOE/SlnKO mouse colony and assessed SERCA function, CNM pathology, in vitro contractility, muscle mass, calcineurin signaling, daily activity and food intake, and proteolytic enzyme activity. Our results indicate that genetic deletion of Sln did not improve SERCA function nor rescue the CNM phenotype, but did result in exacerbated muscle atrophy and weakness, due to a failure to induce type II fiber compensatory hypertrophy and a reduction in total myofiber count. Mechanistically, our findings suggest that impaired calcineurin activation and resultant decreased expression of stabilin-2, and/or impaired autophagic signaling could be involved. Future studies should examine these possibilities. In conclusion, our study demonstrates the importance of SLN upregulation in combating muscle myopathy in the PlnOE mice, and since SLN is upregulated across several myopathies, our findings may reveal SLN as a novel and universal therapeutic target.
Collapse
Affiliation(s)
- Val A. Fajardo
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1
| | - Daniel Gamu
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1
| | - Andrew Mitchell
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1
| | - Darin Bloemberg
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1
| | - Eric Bombardier
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1
| | - Paige J. Chambers
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1
| | - Catherine Bellissimo
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1
| | - Joe Quadrilatero
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1
| | - A. Russell Tupling
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1
- * E-mail:
| |
Collapse
|
70
|
Gabunia K, Herman AB, Ray M, Kelemen SE, England RN, DeLa Cadena R, Foster WJ, Elliott KJ, Eguchi S, Autieri MV. Induction of MiR133a expression by IL-19 targets LDLRAP1 and reduces oxLDL uptake in VSMC. J Mol Cell Cardiol 2017; 105:38-48. [PMID: 28257760 DOI: 10.1016/j.yjmcc.2017.02.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/21/2017] [Accepted: 02/27/2017] [Indexed: 10/20/2022]
Abstract
The transformation of vascular smooth muscle cells [VSMC] into foam cells leading to increased plaque size and decreased stability is a key, yet understudied step in atherogenesis. We reported that Interleukin-19 (IL-19), a novel, anti-inflammatory cytokine, attenuates atherosclerosis by anti-inflammatory effects on VSMC. In this work we report that IL-19 induces expression of miR133a, a muscle-specific miRNA, in VSMC. Although previously unreported, we report that miR133a can target and reduce mRNA abundance, mRNA stability, and protein expression of Low Density Lipoprotein Receptor Adaptor Protein 1, (LDLRAP1), an adaptor protein which functions to internalize the LDL receptor. Mutations in this gene lead to LDL receptor malfunction and cause the Autosomal Recessive Hypercholesterolemia (ARH) disorder in humans. Herein we show that IL-19 reduces lipid accumulation in VSMC, and LDLRAP1 expression and oxLDL uptake in a miR133a-dependent mechanism. We show that LDLRAP1 is expressed in plaque and neointimal VSMC of mouse and human injured arteries. Transfection of miR133a and LDLRAP1 siRNA into VSMC reduces their proliferation and uptake of oxLDL. miR133a is significantly increased in plasma from hyperlipidemic compared with normolipidemic patients. Expression of miR133a in IL-19 stimulated VSMC represents a previously unrecognized link between vascular lipid metabolism and inflammation, and may represent a therapeutic opportunity to combat vascular inflammatory diseases.
Collapse
Affiliation(s)
- Khatuna Gabunia
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, United States
| | - Allison B Herman
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, United States
| | - Mitali Ray
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, United States
| | - Sheri E Kelemen
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, United States
| | - Ross N England
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, United States
| | - Raul DeLa Cadena
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, United States
| | - William J Foster
- Departments of Ophthalmology & Bioengineering, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, United States
| | - Katherine J Elliott
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, United States
| | - Satoru Eguchi
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, United States
| | - Michael V Autieri
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, United States.
| |
Collapse
|
71
|
Loss of MyoD Promotes Fate Transdifferentiation of Myoblasts Into Brown Adipocytes. EBioMedicine 2017; 16:212-223. [PMID: 28117277 PMCID: PMC5474440 DOI: 10.1016/j.ebiom.2017.01.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 02/08/2023] Open
Abstract
Brown adipose tissue (BAT) represents a promising agent to ameliorate obesity and other metabolic disorders. However, the abundance of BAT decreases with age and BAT paucity is a common feature of obese subjects. As brown adipocytes and myoblasts share a common Myf5 lineage origin, elucidating the molecular mechanisms underlying the fate choices of brown adipocytes versus myoblasts may lead to novel approaches to expand BAT mass. Here we identify MyoD as a key negative regulator of brown adipocyte development. CRISPR/CAS9-mediated deletion of MyoD in C2C12 myoblasts facilitates their adipogenic transdifferentiation. MyoD knockout downregulates miR-133 and upregulates the miR-133 target Igf1r, leading to amplification of PI3K–Akt signaling. Accordingly, inhibition of PI3K or Akt abolishes the adipogenic gene expression of MyoD null myoblasts. Strikingly, loss of MyoD converts satellite cell-derived primary myoblasts to brown adipocytes through upregulation of Prdm16, a target of miR-133 and key determinant of brown adipocyte fate. Conversely, forced expression of MyoD in brown preadipocytes blocks brown adipogenesis and upregulates the expression of myogenic genes. Importantly, miR-133a knockout significantly blunts the inhibitory effect of MyoD on brown adipogenesis. Our results establish MyoD as a negative regulator of brown adipocyte development by upregulating miR-133 to suppress Akt signaling and Prdm16. Loss of MyoD facilitates adipogenic transdifferentiation of myoblasts. Overexpression of MyoD transdifferentiate brown preadipocytes to myoblasts. MyoD acts partially through miR-133 to suppress brown adipocyte cell fate.
Brown fat burns fat to produce heat, and represents a promising agent to treat obesity and its related disorders. Brown fat cells and muscle cells share a common origin, but what controls the developmental separation of the two cell types is not well understood. This study reports that inhibition of “MyoD” gene in muscle progenitors promotes their differentiation into brown fat cells in mice. Conversely, forced expression of MyoD in brown fat progenitors converts them into muscle cells. This work suggests that inhibition of MyoD may represent a future direction to expand brown fat and alleviate obesity in humans.
Collapse
|
72
|
Cheng CS, Ran L, Bursac N, Kraus WE, Truskey GA. Cell Density and Joint microRNA-133a and microRNA-696 Inhibition Enhance Differentiation and Contractile Function of Engineered Human Skeletal Muscle Tissues. Tissue Eng Part A 2017; 22:573-83. [PMID: 26891613 DOI: 10.1089/ten.tea.2015.0359] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
To utilize three-dimensional (3D) engineered human skeletal muscle tissue for translational studies and in vitro studies of drug toxicity, there is a need to promote differentiation and functional behavior. In this study, we identified conditions to promote contraction of engineered human skeletal muscle bundles and examined the effects of transient inhibition of microRNAs (miRs) on myogenic differentiation and function of two-dimensional (2D) and 3D cultures of human myotubes. In 2D cultures, simultaneously inhibiting both miR-133a, which promotes myoblast proliferation, and miR-696, which represses oxidative metabolism, resulted in an increase in sarcomeric α-actinin protein and the metabolic coactivator PGC-1α protein compared to transfection with a scrambled miR sequence (negative control). Although PGC-1α was elevated following joint inhibition of miRs 133a and 696, there was no difference in myosin heavy chain (MHC) protein isoforms. 3D engineered human skeletal muscle myobundles seeded with 5 × 10(6) human skeletal myoblasts (HSkM)/mL and cultured for 2 weeks after onset of differentiation consistently did not contract when stimulated electrically, whereas those seeded with myoblasts at 10 × 10(6) HSkM/mL or higher did contract. When HSkM were transfected with both anti-miRs and seeded into fibrin hydrogels and cultured for 2 weeks under static conditions, twitch and tetanic specific forces after electrical stimulation were greater than for myobundles prepared with HSkM transfected with scrambled sequences. Immunofluorescence and Western blots of 3D myobundles indicate that anti-miR-133a or anti-miR-696 treatment led to modest increases in slow MHC, but no consistent increase in fast MHC. Similar to results in 2D, only myobundles prepared with myoblasts treated with anti-miR-133a and anti-miR-696 produced an increase in PGC-1α mRNA. PGC-1α targets were differentially affected by the treatment. HIF-2α mRNA showed an expression pattern similar to that of PGC-1α mRNA, but COXII mRNA levels were not affected by the anti-miRs. Overall, joint inhibition of miR-133a and miR-696 accelerated differentiation, elevated the metabolic coactivator PGC-1α, and increased the contractile force in 3D engineered human skeletal muscle bundles.
Collapse
Affiliation(s)
- Cindy S Cheng
- 1 Department of Biomedical Engineering, Duke University , Durham, North Carolina
| | - Lydia Ran
- 1 Department of Biomedical Engineering, Duke University , Durham, North Carolina
| | - Nenad Bursac
- 1 Department of Biomedical Engineering, Duke University , Durham, North Carolina
| | - William E Kraus
- 1 Department of Biomedical Engineering, Duke University , Durham, North Carolina.,2 Department of Medicine, Duke University School of Medicine , Durham, North Carolina
| | - George A Truskey
- 1 Department of Biomedical Engineering, Duke University , Durham, North Carolina
| |
Collapse
|
73
|
Sjögren RJO, Lindgren Niss MHL, Krook A. Skeletal Muscle microRNAs: Roles in Differentiation, Disease and Exercise. RESEARCH AND PERSPECTIVES IN ENDOCRINE INTERACTIONS 2017. [DOI: 10.1007/978-3-319-72790-5_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
74
|
Pant M, Bal NC, Periasamy M. Sarcolipin: A Key Thermogenic and Metabolic Regulator in Skeletal Muscle. Trends Endocrinol Metab 2016; 27:881-892. [PMID: 27637585 PMCID: PMC5424604 DOI: 10.1016/j.tem.2016.08.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/19/2016] [Accepted: 08/22/2016] [Indexed: 12/14/2022]
Abstract
Skeletal muscle constitutes ∼40% of body mass and has the capacity to play a major role as thermogenic, metabolic, and endocrine organ. In addition to shivering, muscle also contributes to nonshivering thermogenesis via futile sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) activity. Sarcolipin (SLN), a regulator of SERCA activity in muscle, plays an important role in regulating muscle thermogenesis and metabolism. Uncoupling of SERCA by SLN increases ATP hydrolysis and heat production, and contributes to temperature homeostasis. SLN also affects whole-body metabolism and weight gain in mice, and is upregulated in various muscle diseases including muscular dystrophy, suggesting a role for SLN during increased metabolic demand. In this review we also highlight the physiological roles of skeletal muscle beyond contraction.
Collapse
Affiliation(s)
- Meghna Pant
- Department of Physiology and Cell Biology, Ohio State University, Columbus, OH, USA
| | - Naresh C Bal
- Sanford Burnham Medical Research Institute at Lake Nona, Orlando, FL, USA; School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Muthu Periasamy
- Department of Physiology and Cell Biology, Ohio State University, Columbus, OH, USA; Sanford Burnham Medical Research Institute at Lake Nona, Orlando, FL, USA.
| |
Collapse
|
75
|
Zhang Y, Yu B, He J, Chen D. From Nutrient to MicroRNA: a Novel Insight into Cell Signaling Involved in Skeletal Muscle Development and Disease. Int J Biol Sci 2016; 12:1247-1261. [PMID: 27766039 PMCID: PMC5069446 DOI: 10.7150/ijbs.16463] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/19/2016] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle is a remarkably complicated organ comprising many different cell types, and it plays an important role in lifelong metabolic health. Nutrients, as an external regulator, potently regulate skeletal muscle development through various internal regulatory factors, such as mammalian target of rapamycin (mTOR) and microRNAs (miRNAs). As a nutrient sensor, mTOR, integrates nutrient availability to regulate myogenesis and directly or indirectly influences microRNA expression. MiRNAs, a class of small non-coding RNAs mediating gene silencing, are implicated in myogenesis and muscle-related diseases. Meanwhile, growing evidence has emerged supporting the notion that the expression of myogenic miRNAs could be regulated by nutrients in an epigenetic mechanism. Therefore, this review presents a novel insight into the cell signaling network underlying nutrient-mTOR-miRNA pathway regulation of skeletal myogenesis and summarizes the epigenetic modifications in myogenic differentiation, which will provide valuable information for potential therapeutic intervention.
Collapse
Affiliation(s)
- Yong Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, Sichuan 625014, P. R. China.; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, Sichuan 625014, P. R. China.; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, Sichuan 625014, P. R. China.; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, Sichuan 625014, P. R. China.; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, China
| |
Collapse
|
76
|
Cenik BK, Liu N, Chen B, Bezprozvannaya S, Olson EN, Bassel-Duby R. Myocardin-related transcription factors are required for skeletal muscle development. Development 2016; 143:2853-61. [PMID: 27385017 PMCID: PMC5004908 DOI: 10.1242/dev.135855] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/17/2016] [Indexed: 12/24/2022]
Abstract
Myocardin-related transcription factors (MRTFs) play a central role in the regulation of actin expression and cytoskeletal dynamics. Stimuli that promote actin polymerization allow for shuttling of MRTFs to the nucleus where they activate serum response factor (SRF), a regulator of actin and other cytoskeletal protein genes. SRF is an essential regulator of skeletal muscle differentiation and numerous components of the muscle sarcomere, but the potential involvement of MRTFs in skeletal muscle development has not been examined. We explored the role of MRTFs in muscle development in vivo by generating mutant mice harboring a skeletal muscle-specific deletion of MRTF-B and a global deletion of MRTF-A. These double knockout (dKO) mice were able to form sarcomeres during embryogenesis. However, the sarcomeres were abnormally small and disorganized, causing skeletal muscle hypoplasia and perinatal lethality. Transcriptome analysis demonstrated dramatic dysregulation of actin genes in MRTF dKO mice, highlighting the importance of MRTFs in actin cycling and myofibrillogenesis. MRTFs were also shown to be necessary for the survival of skeletal myoblasts and for the efficient formation of intact myotubes. Our findings reveal a central role for MRTFs in sarcomere formation during skeletal muscle development and point to the potential involvement of these transcriptional co-activators in skeletal myopathies.
Collapse
Affiliation(s)
- Bercin K Cenik
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA The Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | - Ning Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA The Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | - Beibei Chen
- Clinical Sciences, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | - Svetlana Bezprozvannaya
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA The Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | - Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA The Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA The Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| |
Collapse
|
77
|
Nie Y, Sato Y, Wang C, Yue F, Kuang S, Gavin TP. Impaired exercise tolerance, mitochondrial biogenesis, and muscle fiber maintenance in miR-133a-deficient mice. FASEB J 2016; 30:3745-3758. [PMID: 27458245 DOI: 10.1096/fj.201600529r] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/18/2016] [Indexed: 12/18/2022]
Abstract
Exercise promotes multiple beneficial effects on muscle function, including induction of mitochondrial biogenesis. miR-133a is a muscle-enriched microRNA that regulates muscle development and function. The role of miR-133a in exercise tolerance has not been fully elucidated. In the current study, mice that were deficient in miR-133a demonstrated low maximal exercise capacity and low resting metabolic rate. Transcription of the mitochondrial biogenesis regulators peroxisome proliferator-activated receptor-γ coactivator 1-α, peroxisome proliferator-activated receptor-γ coactivator 1-β, nuclear respiratory factor-1, and transcription factor A, mitochondrial were lower in miR-133a-deficient muscle, which was consistent with lower mitochondrial mass and impaired exercise capacity. Six weeks of endurance exercise training increased the transcriptional level of miR-133a and stimulated mitochondrial biogenesis in wild-type mice, but failed to improve mitochondrial function in miR-133a-deficient mice. Further mechanistic analysis showed an increase in the miR-133a potential target, IGF-1 receptor, along with hyperactivation of Akt signaling, in miR-133a-deficient mice, which was consistent with lower transcription of the mitochondrial biogenesis regulators. These findings indicate an essential role of miR-133a in skeletal muscle mitochondrial biogenesis, exercise tolerance, and response to exercise training.-Nie, Y., Sato, Y., Wang, C., Yue, F., Kuang, S., Gavin, T. P. Impaired exercise tolerance, mitochondrial biogenesis, and muscle fiber maintenance in miR-133a-deficient mice.
Collapse
Affiliation(s)
- Yaohui Nie
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana, USA.,Max E. Wastl Human Performance Laboratory, Purdue University, West Lafayette, Indiana, USA.,Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA; and
| | - Yoriko Sato
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana, USA.,Max E. Wastl Human Performance Laboratory, Purdue University, West Lafayette, Indiana, USA.,Department of United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Chao Wang
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA; and
| | - Feng Yue
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA; and
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA; and
| | - Timothy P Gavin
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana, USA;
| |
Collapse
|
78
|
Nie M, Liu J, Yang Q, Seok HY, Hu X, Deng ZL, Wang DZ. MicroRNA-155 facilitates skeletal muscle regeneration by balancing pro- and anti-inflammatory macrophages. Cell Death Dis 2016; 7:e2261. [PMID: 27277683 PMCID: PMC5143393 DOI: 10.1038/cddis.2016.165] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/26/2016] [Accepted: 05/12/2016] [Indexed: 12/19/2022]
Abstract
Skeletal muscle has remarkable regeneration capacity and regenerates in response to injury. Muscle regeneration largely relies on muscle stem cells called satellite cells. Satellite cells normally remain quiescent, but in response to injury or exercise they become activated and proliferate, migrate, differentiate, and fuse to form multinucleate myofibers. Interestingly, the inflammatory process following injury and the activation of the myogenic program are highly coordinated, with myeloid cells having a central role in modulating satellite cell activation and regeneration. Here, we show that genetic deletion of microRNA-155 (miR-155) in mice substantially delays muscle regeneration. Surprisingly, miR-155 does not appear to directly regulate the proliferation or differentiation of satellite cells. Instead, miR-155 is highly expressed in myeloid cells, is essential for appropriate activation of myeloid cells, and regulates the balance between pro-inflammatory M1 macrophages and anti-inflammatory M2 macrophages during skeletal muscle regeneration. Mechanistically, we found that miR-155 suppresses SOCS1, a negative regulator of the JAK-STAT signaling pathway, during the initial inflammatory response upon muscle injury. Our findings thus reveal a novel role of miR-155 in regulating initial immune responses during muscle regeneration and provide a novel miRNA target for improving muscle regeneration in degenerative muscle diseases.
Collapse
Affiliation(s)
- M Nie
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Chongqing Medical University, 76 Linjiang Road, Chongqing, P.R. China
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA, USA
| | - J Liu
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA, USA
| | - Q Yang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA, USA
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - H Y Seok
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA, USA
| | - X Hu
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA, USA
| | - Z-L Deng
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Chongqing Medical University, 76 Linjiang Road, Chongqing, P.R. China
| | - D-Z Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA, USA
| |
Collapse
|
79
|
Fajardo VA, Smith IC, Bombardier E, Chambers PJ, Quadrilatero J, Tupling AR. Diaphragm assessment in mice overexpressing phospholamban in slow-twitch type I muscle fibers. Brain Behav 2016; 6:e00470. [PMID: 27134770 PMCID: PMC4842933 DOI: 10.1002/brb3.470] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 03/08/2016] [Accepted: 03/11/2016] [Indexed: 12/30/2022] Open
Abstract
AIMS Phospholamban (PLN) and sarcolipin (SLN) are small inhibitory proteins that regulate the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) pump. Previous work from our laboratory revealed that in the soleus and gluteus minimus muscles of mice overexpressing PLN (Pln (OE)), SERCA function was impaired, dynamin 2 (3-5 fold) and SLN (7-9 fold) were upregulated, and features of human centronuclear myopathy (CNM) were observed. Here, we performed structural and functional experiments to evaluate whether the diaphragm muscles of the Pln (OE) mouse would exhibit CNM pathology and muscle weakness. METHODS Diaphragm muscles from Pln (OE) and WT mice were subjected to histological/histochemical/immunofluorescent staining, Ca(2+)-ATPase and Ca(2+) uptake assays, Western blotting, and in vitro electrical stimulation. RESULTS Our results demonstrate that PLN overexpression reduced SERCA's apparent affinity for Ca(2+) but did not reduce maximal SERCA activity or rates of Ca(2+) uptake. SLN was upregulated 2.5-fold, whereas no changes in dynamin 2 expression were found. With respect to CNM, we did not observe type I fiber predominance, central nuclei, or central aggregation of oxidative activity in diaphragm, although type I fiber hypotrophy was present. Furthermore, in vitro contractility assessment of Pln (OE) diaphragm strips revealed no reductions in force-generating capacity, maximal rates of relaxation or force development, but did indicate that ½ relaxation time was prolonged. CONCLUSIONS Therefore, the effects of PLN overexpression on skeletal muscle phenotype differ between diaphragm and the postural soleus and gluteus minimus muscles. Our findings here point to differences in SLN expression and type I fiber distribution as potential contributing factors.
Collapse
Affiliation(s)
| | - Ian Curtis Smith
- Department of Kinesiology University of Waterloo Waterloo ON Canada
| | - Eric Bombardier
- Department of Kinesiology University of Waterloo Waterloo ON Canada
| | - Paige J Chambers
- Department of Kinesiology University of Waterloo Waterloo ON Canada
| | - Joe Quadrilatero
- Department of Kinesiology University of Waterloo Waterloo ON Canada
| | | |
Collapse
|
80
|
Muscle-specific microRNAs in skeletal muscle development. Dev Biol 2016; 410:1-13. [DOI: 10.1016/j.ydbio.2015.12.013] [Citation(s) in RCA: 281] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 01/19/2023]
|
81
|
Galimov A, Merry TL, Luca E, Rushing EJ, Mizbani A, Turcekova K, Hartung A, Croce CM, Ristow M, Krützfeldt J. MicroRNA-29a in Adult Muscle Stem Cells Controls Skeletal Muscle Regeneration During Injury and Exercise Downstream of Fibroblast Growth Factor-2. Stem Cells 2016; 34:768-80. [PMID: 26731484 DOI: 10.1002/stem.2281] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 09/23/2015] [Accepted: 10/31/2015] [Indexed: 01/18/2023]
Abstract
The expansion of myogenic progenitors (MPs) in the adult muscle stem cell niche is critical for the regeneration of skeletal muscle. Activation of quiescent MPs depends on the dismantling of the basement membrane and increased access to growth factors such as fibroblast growth factor-2 (FGF2). Here, we demonstrate using microRNA (miRNA) profiling in mouse and human myoblasts that the capacity of FGF2 to stimulate myoblast proliferation is mediated by miR-29a. FGF2 induces miR-29a expression and inhibition of miR-29a using pharmacological or genetic deletion decreases myoblast proliferation. Next generation RNA sequencing from miR-29a knockout myoblasts (Pax7(CE/+) ; miR-29a(flox/flox) ) identified members of the basement membrane as the most abundant miR-29a targets. Using gain- and loss-of-function experiments, we confirm that miR-29a coordinately regulates Fbn1, Lamc1, Nid2, Col4a1, Hspg2 and Sparc in myoblasts in vitro and in MPs in vivo. Induction of FGF2 and miR-29a and downregulation of its target genes precedes muscle regeneration during cardiotoxin (CTX)-induced muscle injury. Importantly, MP-specific tamoxifen-induced deletion of miR-29a in adult skeletal muscle decreased the proliferation and formation of newly formed myofibers during both CTX-induced muscle injury and after a single bout of eccentric exercise. Our results identify a novel miRNA-based checkpoint of the basement membrane in the adult muscle stem cell niche. Strategies targeting miR-29a might provide useful clinical approaches to maintain muscle mass in disease states such as ageing that involve aberrant FGF2 signaling.
Collapse
Affiliation(s)
- Artur Galimov
- Division of Endocrinology, Diabetes, and Clinical Nutrition, University Zurich and University Hospital Zurich, Zurich, Switzerland.,Competence Center Personalized Medicine, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Troy L Merry
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Edlira Luca
- Division of Endocrinology, Diabetes, and Clinical Nutrition, University Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Elisabeth J Rushing
- Institute of Neuropathology, University Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Amir Mizbani
- Division of Endocrinology, Diabetes, and Clinical Nutrition, University Zurich and University Hospital Zurich, Zurich, Switzerland.,Competence Center Personalized Medicine, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Katarina Turcekova
- Division of Endocrinology, Diabetes, and Clinical Nutrition, University Zurich and University Hospital Zurich, Zurich, Switzerland.,Competence Center Personalized Medicine, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Angelika Hartung
- Division of Endocrinology, Diabetes, and Clinical Nutrition, University Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Carlo M Croce
- Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University, Columbus, Ohio, USA
| | - Michael Ristow
- Competence Center Personalized Medicine, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Jan Krützfeldt
- Division of Endocrinology, Diabetes, and Clinical Nutrition, University Zurich and University Hospital Zurich, Zurich, Switzerland.,Competence Center Personalized Medicine, ETH Zurich and University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
82
|
Jin HY, Gonzalez-Martin A, Miletic AV, Lai M, Knight S, Sabouri-Ghomi M, Head SR, Macauley MS, Rickert RC, Xiao C. Transfection of microRNA Mimics Should Be Used with Caution. Front Genet 2015; 6:340. [PMID: 26697058 PMCID: PMC4667072 DOI: 10.3389/fgene.2015.00340] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 11/12/2015] [Indexed: 12/19/2022] Open
Abstract
Transient transfection of chemically synthesized microRNA (miRNA) mimics is being used extensively to study the functions and mechanisms of endogenous miRNAs. However, it remains unclear whether transfected miRNAs behave similarly to endogenous miRNAs. Here we show that transient transfection of miRNA mimics into HeLa cells by a commonly used method led to the accumulation of high molecular weight RNA species and a few hundred fold increase in mature miRNA levels. In contrast, expression of the same miRNAs through lentiviral infection or plasmid transfection of HeLa cells, transgenic expression in primary lymphocytes, and endogenous overexpression in lymphoma and leukemia cell lines did not lead to the appearance of high molecular weight RNA species. The increase of mature miRNA levels in these cells was below 10-fold, which was sufficient to suppress target gene expression and to drive lymphoma development in mice. Moreover, transient transfection of miRNA mimics at high concentrations caused non-specific alterations in gene expression, while at low concentrations achieved expression levels comparable to other methods but failed to efficiently suppress target gene expression. Small RNA deep sequencing analysis revealed that the guide strands of miRNA mimics were frequently mutated, while unnatural passenger strands of some miRNA mimics accumulated to high levels. The high molecular weight RNA species were a heterogeneous mixture of several classes of RNA species generated by concatemerization, 5'- and 3'-end tailing of miRNA mimics. We speculate that the supraphysiological levels of mature miRNAs and these artifactual RNA species led to non-specific changes in gene expression. Our results have important implications for the design and interpretation of experiments primarily employing transient transfection of miRNA mimics.
Collapse
Affiliation(s)
- Hyun Yong Jin
- Department of Immunology and Microbial Science, The Scripps Research Institute La Jolla, CA, USA ; Kellogg School of Science and Technology, The Scripps Research Institute La Jolla, CA, USA
| | - Alicia Gonzalez-Martin
- Department of Immunology and Microbial Science, The Scripps Research Institute La Jolla, CA, USA
| | - Ana V Miletic
- Program on Immunity and Pathogenesis, Sanford-Burnham Medical Research Institute La Jolla, CA, USA
| | - Maoyi Lai
- Department of Immunology and Microbial Science, The Scripps Research Institute La Jolla, CA, USA
| | - Sarah Knight
- Department of Immunology and Microbial Science, The Scripps Research Institute La Jolla, CA, USA ; Department of Cell and Molecular Biology, The Scripps Research Institute La Jolla, CA, USA ; Department of Chemical Physiology, The Scripps Research Institute La Jolla, CA, USA
| | - Mohsen Sabouri-Ghomi
- Department of Immunology and Microbial Science, The Scripps Research Institute La Jolla, CA, USA
| | - Steven R Head
- Next Generation Sequencing Core, The Scripps Research Institute La Jolla, CA, USA
| | - Matthew S Macauley
- Department of Immunology and Microbial Science, The Scripps Research Institute La Jolla, CA, USA ; Department of Cell and Molecular Biology, The Scripps Research Institute La Jolla, CA, USA ; Department of Chemical Physiology, The Scripps Research Institute La Jolla, CA, USA
| | - Robert C Rickert
- Program on Immunity and Pathogenesis, Sanford-Burnham Medical Research Institute La Jolla, CA, USA
| | - Changchun Xiao
- Department of Immunology and Microbial Science, The Scripps Research Institute La Jolla, CA, USA
| |
Collapse
|
83
|
Jin HY, Xiao C. MicroRNA Mechanisms of Action: What have We Learned from Mice? Front Genet 2015; 6:328. [PMID: 26635864 PMCID: PMC4644800 DOI: 10.3389/fgene.2015.00328] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/22/2015] [Indexed: 12/12/2022] Open
Affiliation(s)
- Hyun Yong Jin
- Department of Immunology and Microbial Science, The Scripps Research Institute La Jolla, CA, USA ; Kellogg School of Science and Technology, The Scripps Research Institute La Jolla, CA, USA
| | - Changchun Xiao
- Department of Immunology and Microbial Science, The Scripps Research Institute La Jolla, CA, USA
| |
Collapse
|
84
|
A conserved MADS-box phosphorylation motif regulates differentiation and mitochondrial function in skeletal, cardiac, and smooth muscle cells. Cell Death Dis 2015; 6:e1944. [PMID: 26512955 PMCID: PMC5399178 DOI: 10.1038/cddis.2015.306] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 09/07/2015] [Accepted: 09/14/2015] [Indexed: 12/19/2022]
Abstract
Exposure to metabolic disease during fetal development alters cellular differentiation and perturbs metabolic homeostasis, but the underlying molecular regulators of this phenomenon in muscle cells are not completely understood. To address this, we undertook a computational approach to identify cooperating partners of the myocyte enhancer factor-2 (MEF2) family of transcription factors, known regulators of muscle differentiation and metabolic function. We demonstrate that MEF2 and the serum response factor (SRF) collaboratively regulate the expression of numerous muscle-specific genes, including microRNA-133a (miR-133a). Using tandem mass spectrometry techniques, we identify a conserved phosphorylation motif within the MEF2 and SRF Mcm1 Agamous Deficiens SRF (MADS)-box that regulates miR-133a expression and mitochondrial function in response to a lipotoxic signal. Furthermore, reconstitution of MEF2 function by expression of a neutralizing mutation in this identified phosphorylation motif restores miR-133a expression and mitochondrial membrane potential during lipotoxicity. Mechanistically, we demonstrate that miR-133a regulates mitochondrial function through translational inhibition of a mitophagy and cell death modulating protein, called Nix. Finally, we show that rodents exposed to gestational diabetes during fetal development display muscle diacylglycerol accumulation, concurrent with insulin resistance, reduced miR-133a, and elevated Nix expression, as young adult rats. Given the diverse roles of miR-133a and Nix in regulating mitochondrial function, and proliferation in certain cancers, dysregulation of this genetic pathway may have broad implications involving insulin resistance, cardiovascular disease, and cancer biology.
Collapse
|
85
|
Demonbreun AR, Swanson KE, Rossi AE, Deveaux HK, Earley JU, Allen MV, Arya P, Bhattacharyya S, Band H, Pytel P, McNally EM. Eps 15 Homology Domain (EHD)-1 Remodels Transverse Tubules in Skeletal Muscle. PLoS One 2015; 10:e0136679. [PMID: 26325203 PMCID: PMC4556691 DOI: 10.1371/journal.pone.0136679] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/06/2015] [Indexed: 11/19/2022] Open
Abstract
We previously showed that Eps15 homology domain-containing 1 (EHD1) interacts with ferlin proteins to regulate endocytic recycling. Myoblasts from Ehd1-null mice were found to have defective recycling, myoblast fusion, and consequently smaller muscles. When expressed in C2C12 cells, an ATPase dead-EHD1 was found to interfere with BIN1/amphiphysin 2. We now extended those findings by examining Ehd1-heterozygous mice since these mice survive to maturity in normal Mendelian numbers and provide a ready source of mature muscle. We found that heterozygosity of EHD1 was sufficient to produce ectopic and excessive T-tubules, including large intracellular aggregates that contained BIN1. The disorganized T-tubule structures in Ehd1-heterozygous muscle were accompanied by marked elevation of the T-tubule-associated protein DHPR and reduction of the triad linker protein junctophilin 2, reflecting defective triads. Consistent with this, Ehd1-heterozygous muscle had reduced force production. Introduction of ATPase dead-EHD1 into mature muscle fibers was sufficient to induce ectopic T-tubule formation, seen as large BIN1 positive structures throughout the muscle. Ehd1-heterozygous mice were found to have strikingly elevated serum creatine kinase and smaller myofibers, but did not display findings of muscular dystrophy. These data indicate that EHD1 regulates the maintenance of T-tubules through its interaction with BIN1 and links T-tubules defects with elevated creatine kinase and myopathy.
Collapse
Affiliation(s)
- Alexis R. Demonbreun
- Center for Genetic Medicine, Northwestern University, Chicago, IL, United States of America
- * E-mail:
| | - Kaitlin E. Swanson
- Department of Pathology, The University of Chicago, Chicago, IL, United States of America
| | - Ann E. Rossi
- Department of Medicine, The University of Chicago, Chicago, IL, United States of America
| | - H. Kieran Deveaux
- Department of Medicine, The University of Chicago, Chicago, IL, United States of America
| | - Judy U. Earley
- Center for Genetic Medicine, Northwestern University, Chicago, IL, United States of America
| | - Madison V. Allen
- Center for Genetic Medicine, Northwestern University, Chicago, IL, United States of America
| | - Priyanka Arya
- Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Sohinee Bhattacharyya
- Department of Pathology & Microbiology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Hamid Band
- Department of Pathology & Microbiology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Peter Pytel
- Department of Pathology, The University of Chicago, Chicago, IL, United States of America
| | - Elizabeth M. McNally
- Center for Genetic Medicine, Northwestern University, Chicago, IL, United States of America
| |
Collapse
|
86
|
Mitchelson KR, Qin WY. Roles of the canonical myomiRs miR-1, -133 and -206 in cell development and disease. World J Biol Chem 2015; 6:162-208. [PMID: 26322174 PMCID: PMC4549760 DOI: 10.4331/wjbc.v6.i3.162] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 03/13/2015] [Accepted: 05/28/2015] [Indexed: 02/05/2023] Open
Abstract
MicroRNAs are small non-coding RNAs that participate in different biological processes, providing subtle combinational regulation of cellular pathways, often by regulating components of signalling pathways. Aberrant expression of miRNAs is an important factor in the development and progression of disease. The canonical myomiRs (miR-1, -133 and -206) are central to the development and health of mammalian skeletal and cardiac muscles, but new findings show they have regulatory roles in the development of other mammalian non-muscle tissues, including nerve, brain structures, adipose and some specialised immunological cells. Moreover, the deregulation of myomiR expression is associated with a variety of different cancers, where typically they have tumor suppressor functions, although examples of an oncogenic role illustrate their diverse function in different cell environments. This review examines the involvement of the related myomiRs at the crossroads between cell development/tissue regeneration/tissue inflammation responses, and cancer development.
Collapse
|
87
|
Noncoding RNAs, Emerging Regulators of Skeletal Muscle Development and Diseases. BIOMED RESEARCH INTERNATIONAL 2015; 2015:676575. [PMID: 26258142 PMCID: PMC4516831 DOI: 10.1155/2015/676575] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/16/2015] [Accepted: 02/19/2015] [Indexed: 02/07/2023]
Abstract
A healthy and independent life requires skeletal muscles to maintain optimal function throughout the lifespan, which is in turn dependent on efficient activation of processes that regulate muscle development, homeostasis, and metabolism. Thus, identifying mechanisms that modulate these processes is of crucial priority. Noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), have emerged as a class of previously unrecognized transcripts whose importance in a wide range of biological processes and human disease is only starting to be appreciated. In this review, we summarize the roles of recently identified miRNAs and lncRNAs during skeletal muscle development and pathophysiology. We also discuss several molecular mechanisms of these noncoding RNAs. Undoubtedly, further systematic understanding of these noncoding RNAs' functions and mechanisms will not only greatly expand our knowledge of basic skeletal muscle biology, but also significantly facilitate the development of therapies for various muscle diseases, such as muscular dystrophies, cachexia, and sarcopenia.
Collapse
|
88
|
Fajardo VA, Bombardier E, McMillan E, Tran K, Wadsworth BJ, Gamu D, Hopf A, Vigna C, Smith IC, Bellissimo C, Michel RN, Tarnopolsky MA, Quadrilatero J, Tupling AR. Phospholamban overexpression in mice causes a centronuclear myopathy-like phenotype. Dis Model Mech 2015; 8:999-1009. [PMID: 26035394 PMCID: PMC4527296 DOI: 10.1242/dmm.020859] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/21/2015] [Indexed: 12/16/2022] Open
Abstract
Centronuclear myopathy (CNM) is a congenital myopathy that is histopathologically characterized by centrally located nuclei, central aggregation of oxidative activity, and type I fiber predominance and hypotrophy. Here, we obtained commercially available mice overexpressing phospholamban (PlnOE), a well-known inhibitor of sarco(endo)plasmic reticulum Ca2+-ATPases (SERCAs), in their slow-twitch type I skeletal muscle fibers to determine the effects on SERCA function. As expected with a 6- to 7-fold overexpression of phospholamban, SERCA dysfunction was evident in PlnOE muscles, with marked reductions in rates of Ca2+ uptake, maximal ATPase activity and the apparent affinity of SERCA for Ca2+. However, our most significant discovery was that the soleus and gluteus minimus muscles from the PlnOE mice displayed overt signs of myopathy: they histopathologically resembled human CNM, with centrally located nuclei, central aggregation of oxidative activity, type I fiber predominance and hypotrophy, progressive fibrosis and muscle weakness. This phenotype is associated with significant upregulation of muscle sarcolipin and dynamin 2, increased Ca2+-activated proteolysis, oxidative stress and protein nitrosylation. Moreover, in our assessment of muscle biopsies from three human CNM patients, we found a significant 53% reduction in SERCA activity and increases in both total and monomeric PLN content compared with five healthy subjects, thereby justifying future studies with more CNM patients. Altogether, our results suggest that the commercially available PlnOE mouse phenotypically resembles human CNM and could be used as a model to test potential mechanisms and therapeutic strategies. To date, there is no cure for CNM and our results suggest that targeting SERCA function, which has already been shown to be an effective therapeutic target for murine muscular dystrophy and human cardiomyopathy, might represent a novel therapeutic strategy to combat CNM. Summary: Phospholamban overexpression in mouse slow-twitch muscle impairs SERCA function and causes histopathological features associated with human centronuclear myopathy.
Collapse
Affiliation(s)
- Val A Fajardo
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Eric Bombardier
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Elliott McMillan
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Khanh Tran
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Brennan J Wadsworth
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Daniel Gamu
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Andrew Hopf
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Chris Vigna
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Ian C Smith
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Catherine Bellissimo
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Robin N Michel
- Department of Exercise Science, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Mark A Tarnopolsky
- Departement of Kinesiology, McMaster University, Hamilton, Ontario L8N 3Z5, Canada Department of Pediatrics, McMaster University, Hamilton, Ontario L8N 3Z5, Canada Department of Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Joe Quadrilatero
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - A Russell Tupling
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
89
|
Rokach O, Sekulic-Jablanovic M, Voermans N, Wilmshurst J, Pillay K, Heytens L, Zhou H, Muntoni F, Gautel M, Nevo Y, Mitrani-Rosenbaum S, Attali R, Finotti A, Gambari R, Mosca B, Jungbluth H, Zorzato F, Treves S. Epigenetic changes as a common trigger of muscle weakness in congenital myopathies. Hum Mol Genet 2015; 24:4636-47. [DOI: 10.1093/hmg/ddv195] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/22/2015] [Indexed: 12/13/2022] Open
|
90
|
Gordon JW, Dolinsky VW, Mughal W, Gordon GRJ, McGavock J. Targeting skeletal muscle mitochondria to prevent type 2 diabetes in youth. Biochem Cell Biol 2015; 93:452-65. [PMID: 26151290 DOI: 10.1139/bcb-2015-0012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The prevalence of type 2 diabetes (T2D) has increased dramatically over the past two decades, not only among adults but also among adolescents. T2D is a systemic disorder affecting every organ system and is especially damaging to the cardiovascular system, predisposing individuals to severe cardiac and vascular complications. The precise mechanisms that cause T2D are an area of active research. Most current theories suggest that the process begins with peripheral insulin resistance that precedes failure of the pancreatic β-cells to secrete sufficient insulin to maintain normoglycemia. A growing body of literature has highlighted multiple aspects of mitochondrial function, including oxidative phosphorylation, lipid homeostasis, and mitochondrial quality control in the regulation of peripheral insulin sensitivity. Whether the cellular mechanisms of insulin resistance in adults are comparable to that in adolescents remains unclear. This review will summarize both clinical and basic studies that shed light on how alterations in skeletal muscle mitochondrial function contribute to whole body insulin resistance and will discuss the evidence supporting high-intensity exercise training as a therapy to circumvent skeletal muscle mitochondrial dysfunction to restore insulin sensitivity in both adults and adolescents.
Collapse
Affiliation(s)
- Joseph W Gordon
- a Department of Human Anatomy and Cell Science, College of Nursing, Faculty of Health Sciences, University of Manitoba, The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, John Buhler Research Centre, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada
| | - Vernon W Dolinsky
- b Department of Pharmacology and Therapeutics, The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, John Buhler Research Centre, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada
| | - Wajihah Mughal
- c Department of Human Anatomy and Cell Science, The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, John Buhler Research Centre, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada
| | - Grant R J Gordon
- d Hotchkiss Brain Institute, Health Research Innovation Centre, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.,e Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Jonathan McGavock
- f Department of Pediatrics and Child Health, The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, John Buhler Research Centre, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
91
|
Overexpression of NF90-NF45 Represses Myogenic MicroRNA Biogenesis, Resulting in Development of Skeletal Muscle Atrophy and Centronuclear Muscle Fibers. Mol Cell Biol 2015; 35:2295-308. [PMID: 25918244 DOI: 10.1128/mcb.01297-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 04/18/2015] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are involved in the progression and suppression of various diseases through translational inhibition of target mRNAs. Therefore, the alteration of miRNA biogenesis induces several diseases. The nuclear factor 90 (NF90)-NF45 complex is known as a negative regulator in miRNA biogenesis. Here, we showed that NF90-NF45 double-transgenic (dbTg) mice develop skeletal muscle atrophy and centronuclear muscle fibers in adulthood. Subsequently, we found that the levels of myogenic miRNAs, including miRNA 133a (miR-133a), which promote muscle maturation, were significantly decreased in the skeletal muscle of NF90-NF45 dbTg mice compared with those in wild-type mice. However, levels of primary transcripts of the miRNAs (pri-miRNAs) were clearly elevated in NF90-NF45 dbTg mice. This result indicated that the NF90-NF45 complex suppressed miRNA production through inhibition of pri-miRNA processing. This finding was supported by the fact that processing of pri-miRNA 133a-1 (pri-miR-133a-1) was inhibited via binding of NF90-NF45 to the pri-miRNA. Finally, the level of dynamin 2, a causative gene of centronuclear myopathy and concomitantly a target of miR-133a, was elevated in the skeletal muscle of NF90-NF45 dbTg mice. Taken together, we conclude that the NF90-NF45 complex induces centronuclear myopathy through increased dynamin 2 expression by an NF90-NF45-induced reduction of miR-133a expression in vivo.
Collapse
|
92
|
Cenik BK, Garg A, McAnally JR, Shelton JM, Richardson JA, Bassel-Duby R, Olson EN, Liu N. Severe myopathy in mice lacking the MEF2/SRF-dependent gene leiomodin-3. J Clin Invest 2015; 125:1569-78. [PMID: 25774500 DOI: 10.1172/jci80115] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/29/2015] [Indexed: 01/18/2023] Open
Abstract
Maintenance of skeletal muscle structure and function requires a precise stoichiometry of sarcomeric proteins for proper assembly of the contractile apparatus. Absence of components of the sarcomeric thin filaments causes nemaline myopathy, a lethal congenital muscle disorder associated with aberrant myofiber structure and contractility. Previously, we reported that deficiency of the kelch-like family member 40 (KLHL40) in mice results in nemaline myopathy and destabilization of leiomodin-3 (LMOD3). LMOD3 belongs to a family of tropomodulin-related proteins that promote actin nucleation. Here, we show that deficiency of LMOD3 in mice causes nemaline myopathy. In skeletal muscle, transcription of Lmod3 was controlled by the transcription factors SRF and MEF2. Myocardin-related transcription factors (MRTFs), which function as SRF coactivators, serve as sensors of actin polymerization and are sequestered in the cytoplasm by actin monomers. Conversely, conditions that favor actin polymerization de-repress MRTFs and activate SRF-dependent genes. We demonstrated that the actin nucleator LMOD3, together with its stabilizing partner KLHL40, enhances MRTF-SRF activity. In turn, SRF cooperated with MEF2 to sustain the expression of LMOD3 and other components of the contractile apparatus, thereby establishing a regulatory circuit to maintain skeletal muscle function. These findings provide insight into the molecular basis of the sarcomere assembly and muscle dysfunction associated with nemaline myopathy.
Collapse
|
93
|
Regulation of skeletal muscle development and homeostasis by gene imprinting, histone acetylation and microRNA. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:309-16. [DOI: 10.1016/j.bbagrm.2015.01.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/17/2014] [Accepted: 01/10/2015] [Indexed: 12/13/2022]
|
94
|
Sun J, Sonstegard TS, Li C, Huang Y, Li Z, Lan X, Zhang C, Lei C, Zhao X, Chen H. Altered microRNA expression in bovine skeletal muscle with age. Anim Genet 2015; 46:227-38. [PMID: 25703017 DOI: 10.1111/age.12272] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2014] [Indexed: 01/19/2023]
Abstract
Age-dependent decline in skeletal muscle function leads to several inherited and acquired muscular disorders in elderly individuals. The levels of microRNAs (miRNAs) could be altered during muscle maintenance and repair. We therefore performed a comprehensive investigation for miRNAs from five different periods of bovine skeletal muscle development using next-generation small RNA sequencing. In total, 511 miRNAs, including one putatively novel miRNA, were identified. Thirty-six miRNAs were differentially expressed between prenatal and postnatal stages of muscle development including several myomiRs (miR-1, miR-206 and let-7 families). Compared with miRNA expression between different muscle tissues, 14 miRNAs were up-regulated and 22 miRNAs were down-regulated in the muscle of postnatal stage. In addition, a novel miRNA was predicted and submitted to the miRBase database as bta-mir-10020. A dual luciferase reporter assay was used to demonstrate that bta-mir-10020 directly targeted the 3'-UTR of the bovine ANGPT1 gene. The overexpression of bta-mir-10020 significantly decreased the DsRed fluorescence in the wild-type expression cassette compared to the mutant type. Using three computational approaches - miranda, pita and rnahybrid - these differentially expressed miRNAs were also predicted to target 3609 bovine genes. Disease and biological function analyses and the KEGG pathway analysis revealed that these targets were statistically enriched in functionality for muscle growth and disease. Our miRNA expression analysis findings from different states of muscle development and aging significantly expand the repertoire of bovine miRNAs now shown to be expressed in muscle and could contribute to further studies on growth and developmental disorders in this tissue type.
Collapse
Affiliation(s)
- J Sun
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Animal Genomics & Improvement Laboratory, USDA-ARS, BARC-East, Beltsville, MD, 20705, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Anderson DM, Anderson KM, Chang CL, Makarewich CA, Nelson BR, McAnally JR, Kasaragod P, Shelton JM, Liou J, Bassel-Duby R, Olson EN. A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell 2015; 160:595-606. [PMID: 25640239 DOI: 10.1016/j.cell.2015.01.009] [Citation(s) in RCA: 871] [Impact Index Per Article: 87.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/24/2014] [Accepted: 01/05/2015] [Indexed: 12/14/2022]
Abstract
Functional micropeptides can be concealed within RNAs that appear to be noncoding. We discovered a conserved micropeptide, which we named myoregulin (MLN), encoded by a skeletal muscle-specific RNA annotated as a putative long noncoding RNA. MLN shares structural and functional similarity with phospholamban (PLN) and sarcolipin (SLN), which inhibit SERCA, the membrane pump that controls muscle relaxation by regulating Ca(2+) uptake into the sarcoplasmic reticulum (SR). MLN interacts directly with SERCA and impedes Ca(2+) uptake into the SR. In contrast to PLN and SLN, which are expressed in cardiac and slow skeletal muscle in mice, MLN is robustly expressed in all skeletal muscle. Genetic deletion of MLN in mice enhances Ca(2+) handling in skeletal muscle and improves exercise performance. These findings identify MLN as an important regulator of skeletal muscle physiology and highlight the possibility that additional micropeptides are encoded in the many RNAs currently annotated as noncoding.
Collapse
Affiliation(s)
- Douglas M Anderson
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA; Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | - Kelly M Anderson
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA; Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | - Chi-Lun Chang
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | - Catherine A Makarewich
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA; Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | - Benjamin R Nelson
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA; Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | - John R McAnally
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA; Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | - Prasad Kasaragod
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | - John M Shelton
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | - Jen Liou
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA; Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | - Eric N Olson
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA; Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA.
| |
Collapse
|
96
|
Liu N, Bassel-Duby R. Regulation of skeletal muscle development and disease by microRNAs. Results Probl Cell Differ 2015; 56:165-90. [PMID: 25344671 DOI: 10.1007/978-3-662-44608-9_8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The identification of microRNAs (miRNA) in vertebrates has uncovered new mechanisms regulating skeletal muscle development and disease. miRNAs are inhibitors and act by silencing specific mRNAs or by repressing protein translation. In many cases, miRNAs are involved in physiological or pathological stress, suggesting they function to exacerbate or protect the organism during stress or disease. Although many skeletal muscle diseases differ in clinical and pathological manifestations, they all have a common feature of dysregulation of miRNA expression. In particular, analysis of miRNA expression patterns in skeletal muscle diseases reveals miRNA signatures, showing many miRNAs are dysregulated during disease. Emerging identification of miRNA targets and involvement in genetic regulatory networks serve to reveal new regulatory pathways in skeletal muscle biology. This chapter features the findings pertaining to skeletal muscle miRNAs in skeletal muscle development and disease and highlights therapeutic applications of miRNA-based technology in diagnosis and treatment of skeletal muscle myopathies.
Collapse
Affiliation(s)
- Ning Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA,
| | | |
Collapse
|
97
|
Kirby TJ, Chaillou T, McCarthy JJ. The role of microRNAs in skeletal muscle health and disease. Front Biosci (Landmark Ed) 2015; 20:37-77. [PMID: 25553440 DOI: 10.2741/4298] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the last decade non-coding RNAs have emerged as importance regulators of gene expression. In particular, microRNAs are a class of small RNAs of ∼ 22 nucleotides that repress gene expression through a post-transcriptional mechanism. MicroRNAs have been shown to be involved in a broader range of biological processes, both physiological and pathological, including myogenesis, adaptation to exercise and various myopathies. The purpose of this review is to provide a comprehensive summary of what is currently known about the role of microRNAs in skeletal muscle health and disease.
Collapse
Affiliation(s)
- Tyler J Kirby
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA, 2Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Thomas Chaillou
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA, 2Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - John J McCarthy
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA, 2Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
98
|
Alexander MS, Kunkel LM. Skeletal Muscle MicroRNAs: Their Diagnostic and Therapeutic Potential in Human Muscle Diseases. J Neuromuscul Dis 2015; 2:1-11. [PMID: 27547731 PMCID: PMC4988517 DOI: 10.3233/jnd-140058] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are small 21-24 nucleotide RNAs that are capable of regulating multiple signaling pathways across multiple tissues. MicroRNAs are dynamically regulated and change in expression levels during periods of early development, tissue regeneration, cancer, and various other disease states. Recently, microRNAs have been isolated from whole serum and muscle biopsies to identify unique diagnostic signatures for specific neuromuscular disease states. Functional studies of microRNAs in cell lines and animal models of neuromuscular diseases have elucidated their importance in contributing to neuromuscular disease progression and pathologies. The ability of microRNAs to alter the expression of an entire signaling pathway opens up their unique ability to be used as potential therapeutic entry points for the treatment of disease. Here, we will review the recent findings of key microRNAs and their dysregulation in various neuromuscular diseases. Additionally, we will highlight the current strategies being used to regulate the expression of key microRNAs as they have become important players in the clinical treatment of some of the neuromuscular diseases.
Collapse
Affiliation(s)
- Matthew S Alexander
- Division of Genetics and Genomics at Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics and Genetics at Harvard Medical School, Boston, MA, USA; The Stem Cell Program at Boston Children's Hospital, Boston, MA, USA
| | - Louis M Kunkel
- Division of Genetics and Genomics at Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics and Genetics at Harvard Medical School, Boston, MA, USA; The Stem Cell Program at Boston Children's Hospital, Boston, MA, USA; The Manton Center for Orphan Disease Research at Boston Children's Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA
| |
Collapse
|
99
|
A non-conserved miRNA regulates lysosomal function and impacts on a human lysosomal storage disorder. Nat Commun 2014; 5:5840. [PMID: 25524633 DOI: 10.1038/ncomms6840] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 11/13/2014] [Indexed: 12/18/2022] Open
Abstract
Sulfatases are key enzymatic regulators of sulfate homeostasis with several biological functions including degradation of glycosaminoglycans (GAGs) and other macromolecules in lysosomes. In a severe lysosomal storage disorder, multiple sulfatase deficiency (MSD), global sulfatase activity is deficient due to mutations in the sulfatase-modifying factor 1 (SUMF1) gene, encoding the essential activator of all sulfatases. We identify a novel regulatory layer of sulfate metabolism mediated by a microRNA. miR-95 depletes SUMF1 protein levels and suppresses sulfatase activity, causing the disruption of proteoglycan catabolism and lysosomal function. This blocks autophagy-mediated degradation, causing cytoplasmic accumulation of autophagosomes and autophagic substrates. By targeting miR-95 in cells from MSD patients, we can effectively increase residual SUMF1 expression, allowing for reactivation of sulfatase activity and increased clearance of sulfated GAGs. The identification of this regulatory mechanism opens the opportunity for a unique therapeutic approach in MSD patients where the need for exogenous enzyme replacement is circumvented.
Collapse
|
100
|
Zhang D, Wang X, Li Y, Zhao L, Lu M, Yao X, Xia H, Wang YC, Liu MF, Jiang J, Li X, Ying H. Thyroid hormone regulates muscle fiber type conversion via miR-133a1. ACTA ACUST UNITED AC 2014; 207:753-66. [PMID: 25512392 PMCID: PMC4274265 DOI: 10.1083/jcb.201406068] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Thyroid hormone promotes slow-to-fast muscle fiber type conversion by inducing miR-133a1 and thereby repressing the expression of the slow muscle determinant TEAD1. It is known that thyroid hormone (TH) is a major determinant of muscle fiber composition, but the molecular mechanism by which it does so remains unclear. Here, we demonstrated that miR-133a1 is a direct target gene of TH in muscle. Intriguingly, miR-133a, which is enriched in fast-twitch muscle, regulates slow-to-fast muscle fiber type conversion by targeting TEA domain family member 1 (TEAD1), a key regulator of slow muscle gene expression. Inhibition of miR-133a in vivo abrogated TH action on muscle fiber type conversion. Moreover, TEAD1 overexpression antagonized the effect of miR-133a as well as TH on muscle fiber type switch. Additionally, we demonstrate that TH negatively regulates the transcription of myosin heavy chain I indirectly via miR-133a/TEAD1. Collectively, we propose that TH inhibits the slow muscle phenotype through a novel epigenetic mechanism involving repression of TEAD1 expression via targeting by miR-133a1. This identification of a TH-regulated microRNA therefore sheds new light on how TH achieves its diverse biological activities.
Collapse
Affiliation(s)
- Duo Zhang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; and Center for RNA Research, State Key Laboratory of Molecular Biology; University of Chinese Academy of Sciences, Shanghai 200031, China Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100021, China
| | - Xiaoyun Wang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; and Center for RNA Research, State Key Laboratory of Molecular Biology; University of Chinese Academy of Sciences, Shanghai 200031, China Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100021, China
| | - Yuying Li
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; and Center for RNA Research, State Key Laboratory of Molecular Biology; University of Chinese Academy of Sciences, Shanghai 200031, China Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100021, China
| | - Lei Zhao
- Department of Neuromuscular Disease, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Minghua Lu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; and Center for RNA Research, State Key Laboratory of Molecular Biology; University of Chinese Academy of Sciences, Shanghai 200031, China Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, and Clinical Research Center of Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xuan Yao
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; and Center for RNA Research, State Key Laboratory of Molecular Biology; University of Chinese Academy of Sciences, Shanghai 200031, China Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100021, China
| | - Hongfeng Xia
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; and Center for RNA Research, State Key Laboratory of Molecular Biology; University of Chinese Academy of Sciences, Shanghai 200031, China Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100021, China
| | - Yu-Cheng Wang
- Department of Nutrition, Shanghai Xuhui Central Hospital, Shanghai 200031, China
| | - Mo-Fang Liu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; and Center for RNA Research, State Key Laboratory of Molecular Biology; University of Chinese Academy of Sciences, Shanghai 200031, China Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, and Clinical Research Center of Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jingjing Jiang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xihua Li
- Department of Neuromuscular Disease, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Hao Ying
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; and Center for RNA Research, State Key Laboratory of Molecular Biology; University of Chinese Academy of Sciences, Shanghai 200031, China Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100021, China Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, and Clinical Research Center of Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|