51
|
Nobre AR, Entenberg D, Wang Y, Condeelis J, Aguirre-Ghiso JA. The Different Routes to Metastasis via Hypoxia-Regulated Programs. Trends Cell Biol 2018; 28:941-956. [PMID: 30041830 PMCID: PMC6214449 DOI: 10.1016/j.tcb.2018.06.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 12/18/2022]
Abstract
Hypoxia is linked to metastasis; however, how it affects metastatic progression is not clear due to limited consensus in the literature. We posit that this lack of consensus is due to hypoxia being studied using different approaches, such as in vitro, primary tumor, or metastasis assays in an isolated manner. Here, we review the pros and cons of in vitro hypoxia assays, highlight in vivo studies that inform on physiological hypoxia, and review the evidence that primary tumor hypoxia might influence the fate of disseminated tumor cells (DTCs) in secondary organs. Our analysis suggests that consensus can be reached by using in vivo methods of study, which also allow better modeling of how hypoxia affects DTC fate and metastasis.
Collapse
Affiliation(s)
- Ana Rita Nobre
- Division of Hematology and Oncology, Department of Medicine, Department of Otolaryngology, Department of Oncological Sciences, Tisch Cancer Institute, Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, NY 10029, USA; Abel Salazar School of Biomedicine, Porto University, Porto, Portugal; These authors contributed equally
| | - David Entenberg
- Department of Anatomy and Structural Biology, Gruss Lipper Biophotonics Center, Integrated Imaging Program, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA; These authors contributed equally
| | - Yarong Wang
- Department of Anatomy and Structural Biology, Gruss Lipper Biophotonics Center, Integrated Imaging Program, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - John Condeelis
- Department of Anatomy and Structural Biology, Gruss Lipper Biophotonics Center, Integrated Imaging Program, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA.
| | - Julio A Aguirre-Ghiso
- Division of Hematology and Oncology, Department of Medicine, Department of Otolaryngology, Department of Oncological Sciences, Tisch Cancer Institute, Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, NY 10029, USA.
| |
Collapse
|
52
|
HIF-1α, NOTCH1, ADAM12, and HB-EGF are overexpressed in mucoepidermoid carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2018; 127:e8-e17. [PMID: 30415904 DOI: 10.1016/j.oooo.2018.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/14/2018] [Accepted: 09/23/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Intratumoral hypoxia (IH) occurs during cellular proliferation of malignant tumors. This phenomenon is characterized by a decrease in oxygen levels in the neoplastic microenvironment. Throughout this condition, the proteins HIF-1α, NOTCH1, ADAM12, and HB-EGF can be activated, triggering signaling pathways associated with tumor invasiveness through invadopodia formation. This study aimed to evaluate the immunostaining of HIF-1α, NOTCH1, ADAM12, and HBEGF in 19 cases of mucoepidermoid carcinoma (MEC) and 10 samples of salivary glands (control group). STUDY DESIGN The immunoperoxidase technique was employed to detect the proteins of interest. The Student t test was used to compare immunoexpression between MEC samples and the control group. RESULTS Protein immunostaining was statistically significantly higher in MEC samples than in the control group (P < .01), and the proteins were especially overexpressed in epidermoid cells of MEC. CONCLUSIONS We suggest that there is an association between the NOTCH1 signaling pathway activated by IH and the biologic behavior of MEC.
Collapse
|
53
|
Zhang X, Li Y, Ma Y, Yang L, Wang T, Meng X, Zong Z, Sun X, Hua X, Li H. Yes-associated protein (YAP) binds to HIF-1α and sustains HIF-1α protein stability to promote hepatocellular carcinoma cell glycolysis under hypoxic stress. J Exp Clin Cancer Res 2018; 37:216. [PMID: 30180863 PMCID: PMC6123950 DOI: 10.1186/s13046-018-0892-2] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/24/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Hypoxia-inducible factor 1α (HIF-1α) is essential in hepatocellular carcinoma (HCC) glycolysis and progression. Yes-associated protein (YAP) is a powerful regulator and is overexpressed in many cancers, including HCC. The regulatory mechanism of YAP and HIF-1α in HCC glycolysis is unknown. METHODS We detected YAP expression in 54 matched HCC tissues and the adjacent noncancerous tissues. The relationship between YAP mRNA expression and that of HIF-1α was analyzed using The Cancer Genome Atlas HCC tissue data. We cultured HepG2 and Huh7 HCC cells under normoxic (20% O2) and hypoxic (1% O2) conditions, and measured the lactate and glucose levels, migration and invasive capability, and the molecular mechanism of HCC cell glycolysis and progression. RESULTS In this study, we detected YAP expression in 54 matched HCC tissues and the adjacent noncancerous tissues. We observed that hypoxia-induced YAP activation is crucial for accelerating HCC cell glycolysis. Hypoxia inhibited the Hippo signaling pathway and promoted YAP nuclear localization, and decreased phosphorylated YAP expression in HCC cells. YAP knockdown inhibited HCC cell glycolysis under hypoxic. Mechanistically, hypoxic stress in the HCC cells promoted YAP binding to HIF-1α in the nucleus and sustained HIF-1α protein stability to bind to PKM2 gene and directly activates PKM2 transcription to accelerate glycolysis. CONCLUSIONS Our findings describe a new regulatory mechanism of hypoxia-mediated HCC metabolism, and YAP might be a promising therapeutic target in HCC.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, 4 Chongshan East Street, Shenyang, Liaoning 110032 People’s Republic of China
| | - Yan Li
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, 4 Chongshan East Street, Shenyang, Liaoning 110032 People’s Republic of China
- Department of Oncology, Tumour Angiogenesis and Microenvironment Laboratory (TAML), The First Affiliated Hospital of Jinzhou Medical College, Jinzhou, China
| | - Yingbo Ma
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, 4 Chongshan East Street, Shenyang, Liaoning 110032 People’s Republic of China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, 4 Chongshan East Street, Shenyang, Liaoning 110032 People’s Republic of China
| | - Tao Wang
- Department of Pathology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning China
| | - Xin Meng
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, China Medical University, Shenyang, China
| | - Zhihong Zong
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, China Medical University, Shenyang, China
| | - Xun Sun
- Department of Immunology, College of Basic Medicine, China Medical University, Shenyang, China
| | - Xiangdong Hua
- Department of Hepatobiliary Surgery, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, 4 Chongshan East Street, Shenyang, Liaoning 110032 People’s Republic of China
| |
Collapse
|
54
|
Hypoxia promotes breast cancer cell invasion through HIF-1α-mediated up-regulation of the invadopodial actin bundling protein CSRP2. Sci Rep 2018; 8:10191. [PMID: 29976963 PMCID: PMC6033879 DOI: 10.1038/s41598-018-28637-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/13/2018] [Indexed: 12/20/2022] Open
Abstract
Hypoxia is a common feature of solid tumours that promotes invasion and metastatic dissemination. Invadopodia are actin-rich membrane protrusions that direct extracellular matrix proteolysis and facilitate tumour cell invasion. Here, we show that CSRP2, an invadopodial actin bundling protein, is upregulated by hypoxia in various breast cancer cell lines, as well as in pre-clinical and clinical breast tumour specimens. We functionally characterized two hypoxia responsive elements within the proximal promoter of CSRP2 gene which are targeted by hypoxia-inducible factor-1 (HIF-1) and required for promoter transactivation in response to hypoxia. Remarkably, CSRP2 knockdown significantly inhibits hypoxia-stimulated invadopodium formation, ECM degradation and invasion in MDA-MB-231 cells, while CSRP2 forced expression was sufficient to enhance the invasive capacity of HIF-1α-depleted cells under hypoxia. In MCF-7 cells, CSRP2 upregulation was required for hypoxia-induced formation of invadopodium precursors that were unable to promote ECM degradation. Collectively, our data support that CSRP2 is a novel and direct cytoskeletal target of HIF-1 which facilitates hypoxia-induced breast cancer cell invasion by promoting invadopodia formation.
Collapse
|
55
|
Miao W, Li L, Wang Y. A Targeted Proteomic Approach for Heat Shock Proteins Reveals DNAJB4 as a Suppressor for Melanoma Metastasis. Anal Chem 2018; 90:6835-6842. [PMID: 29722524 DOI: 10.1021/acs.analchem.8b00986] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Heat shock proteins are molecular chaperones that are involved in protein folding. In this study, we developed a targeted proteomic method, relying on LC-MS/MS in the parallel-reaction monitoring (PRM) mode, for assessing quantitatively the human heat shock proteome. The method facilitated the coverage of approximately 70% of the human heat shock proteome and displayed much better throughput and sensitivity than the shotgun proteomic approach. We also applied the PRM method for assessing the differential expression of heat shock proteins in three matched primary/metastatic pairs of melanoma cell lines. We were able to quantify ∼45 heat shock proteins in each pair of cell lines, and the quantification results revealed that DNAJB4 is down-regulated in the three lines of metastatic melanoma cells relative to the corresponding primary melanoma cells. Interrogation of The Cancer Genome Atlas data showed that lower levels of DNAJB4 expression conferred poorer prognosis in melanoma patients. Moreover, we found that DNAJB4 suppresses the invasion of cultured melanoma cells through diminished expression and activities of matrix metalloproteinases 2 and 9 (MMP-2 and MMP-9). Together, we established, for the first time, a high-throughput targeted proteomics method for profiling quantitatively the human heat shock proteome and discovered DNAJB4 as a suppressor for melanoma metastasis.
Collapse
Affiliation(s)
- Weili Miao
- Department of Chemistry , University of California , Riverside , California 92521-0403 , United States
| | - Lin Li
- Department of Chemistry , University of California , Riverside , California 92521-0403 , United States
| | - Yinsheng Wang
- Department of Chemistry , University of California , Riverside , California 92521-0403 , United States
| |
Collapse
|
56
|
Almendros I, Martínez-García MÁ, Campos-Rodríguez F, Riveiro-Falkenbach E, Rodríguez-Peralto JL, Nagore E, Martorell-Calatayud A, Hernández Blasco L, Bañuls Roca J, Chiner Vives E, Sánchez-de-la-Torre A, Abad-Capa J, Montserrat JM, Pérez-Gil A, Cabriada-Nuño V, Cano-Pumarega I, Corral-Peñafiel J, Diaz-Cambriles T, Mediano O, Dalmau-Arias J, Farré R, Gozal D. Intermittent Hypoxia Is Associated With High Hypoxia Inducible Factor-1α but Not High Vascular Endothelial Growth Factor Cell Expression in Tumors of Cutaneous Melanoma Patients. Front Neurol 2018; 9:272. [PMID: 29755400 PMCID: PMC5932170 DOI: 10.3389/fneur.2018.00272] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 04/06/2018] [Indexed: 01/04/2023] Open
Abstract
Epidemiological associations linking between obstructive sleep apnea and poorer solid malignant tumor outcomes have recently emerged. Putative pathways proposed to explain that these associations have included enhanced hypoxia inducible factor (HIF)-1α and vascular endothelial growth factor (VEGF) cell expression in the tumor and altered immune functions via intermittent hypoxia (IH). Here, we examined relationships between HIF-1α and VEGF expression and nocturnal IH in cutaneous melanoma (CM) tumor samples. Prospectively recruited patients with CM tumor samples were included and underwent overnight polygraphy. General clinical features, apnea–hypopnea index (AHI), desaturation index (DI4%), and CM characteristics were recorded. Histochemical assessments of VEGF and HIF-1α were performed, and the percentage of positive cells (0, <25, 25–50, 51–75, >75%) was blindly tabulated for VEGF expression, and as 0, 0–5.9, 6.0–10.0, >10.0% for HIF-1α expression, respectively. Cases with HIF-1α expression >6% (high expression) were compared with those <6%, and VEGF expression >75% of cells was compared with those with <75%. 376 patients were included. High expression of VEGF and HIF-1α were seen in 88.8 and 4.2% of samples, respectively. High expression of VEGF was only associated with increasing age. However, high expression of HIF-1α was significantly associated with age, Breslow index, AHI, and DI4%. Logistic regression showed that DI4% [OR 1.03 (95% CI: 1.01–1.06)] and Breslow index [OR 1.28 (95% CI: 1.18–1.46)], but not AHI, remained independently associated with the presence of high HIF-1α expression. Thus, IH emerges as an independent risk factor for higher HIF-1α expression in CM tumors and is inferentially linked to worse clinical CM prognostic indicators.
Collapse
Affiliation(s)
- Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | - Erica Riveiro-Falkenbach
- Pathology Department, Medical School, Universidad Complutense, Instituto i + 12, Hospital Universitario 12 de Octubre, CIBERONC, Madrid, Spain
| | - José L Rodríguez-Peralto
- Pathology Department, Medical School, Universidad Complutense, Instituto i + 12, Hospital Universitario 12 de Octubre, CIBERONC, Madrid, Spain
| | - Eduardo Nagore
- Dermatology Department, Instituto Valenciano de Oncología, Valencia, Spain
| | | | - Luis Hernández Blasco
- Respiratory Department, ISABIAL, Hospital Gral, Univ. Alicante, Alicante, Spain.,Departamento Medicina Clinica, Univ. Miguel Hernandez, Elche, Spain
| | - Jose Bañuls Roca
- Respiratory Department, ISABIAL, Hospital Gral, Univ. Alicante, Alicante, Spain.,Departamento Medicina Clinica, Univ. Miguel Hernandez, Elche, Spain
| | | | - Alicia Sánchez-de-la-Torre
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Respiratory Department, Group of Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
| | - Jorge Abad-Capa
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Respiratory Department, Hospital Germans Trias i Pujol, Centro de investigacion Biomedica, Madrid, Spain
| | - Josep Maria Montserrat
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Respiratory Department, Hospital Clinic-IDIBAPS, Barcelona, Spain
| | | | | | | | - Jaime Corral-Peñafiel
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Respiratory Department, Hospital Universitario S. Pedro Alcántara, Cáceres, Spain
| | | | - Olga Mediano
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Respiratory Department, Hospital Universitario de Guadalajara, CIBER de enfermedades respiratorias, Madrid, Spain
| | - Joan Dalmau-Arias
- Dermatology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - David Gozal
- Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, United States
| | | |
Collapse
|
57
|
Warren JSA, Xiao Y, Lamar JM. YAP/TAZ Activation as a Target for Treating Metastatic Cancer. Cancers (Basel) 2018; 10:cancers10040115. [PMID: 29642615 PMCID: PMC5923370 DOI: 10.3390/cancers10040115] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/01/2018] [Accepted: 04/03/2018] [Indexed: 12/20/2022] Open
Abstract
Yes-Associated Protein (YAP) and Transcriptional Co-activator with PDZ-binding Motif (TAZ) have both emerged as important drivers of cancer progression and metastasis. YAP and TAZ are often upregulated or nuclear localized in aggressive human cancers. There is abundant experimental evidence demonstrating that YAP or TAZ activation promotes cancer formation, tumor progression, and metastasis. In this review we summarize the evidence linking YAP/TAZ activation to metastasis, and discuss the roles of YAP and TAZ during each step of the metastatic cascade. Collectively, this evidence strongly suggests that inappropriate YAP or TAZ activity plays a causal role in cancer, and that targeting aberrant YAP/TAZ activation is a promising strategy for the treatment of metastatic disease. To this end, we also discuss several potential strategies for inhibiting YAP/TAZ activation in cancer and the challenges each strategy poses.
Collapse
Affiliation(s)
- Janine S A Warren
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA.
| | - Yuxuan Xiao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA.
| | - John M Lamar
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
58
|
Li Y, Li X, Kan Q, Zhang M, Li X, Xu R, Wang J, Yu D, Goscinski MA, Wen JG, Nesland JM, Suo Z. Mitochondrial pyruvate carrier function is negatively linked to Warburg phenotype in vitro and malignant features in esophageal squamous cell carcinomas. Oncotarget 2018; 8:1058-1073. [PMID: 27911865 PMCID: PMC5352034 DOI: 10.18632/oncotarget.13717] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/28/2016] [Indexed: 02/07/2023] Open
Abstract
Aerobic glycolysis is one of the emerging hallmarks of cancer cells. In this study, we investigated the relationship between blocking mitochondrial pyruvate carrier (MPC) with MPC blocker UK5099 and the metabolic alteration as well as aggressive features of esophageal squamous carcinoma. It was found that blocking pyruvate transportation into mitochondria attenuated mitochondrial oxidative phosphorylation (OXPHOS) and triggered aerobic glycolysis, a feature of Warburg effect. In addition, the HIF-1α expression and ROS production were also activated upon UK5099 application. It was further revealed that the UK5099-treated cells became significantly more resistant to chemotherapy and radiotherapy, and the UK5099-treated tumor cells also exhibited stronger invasive capacity compared to the parental cells. In contrast to esophageal squamous epithelium cells, decreased MPC protein expression was observed in a series of 157 human squamous cell carcinomas, and low/negative MPC1 expression predicted an unfavorable clinical outcome. All these results together revealed the potential connection of altered MPC expression/activity with the Warburg metabolic reprogramming and tumor aggressiveness in cell lines and clinical samples. Collectively, our findings highlighted a therapeutic strategy targeting Warburg reprogramming of human esophageal squamous cell carcinomas.
Collapse
Affiliation(s)
- Yaqing Li
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China.,Department of Pathology, the Norwegian Radium Hospital, Oslo University Hospital, University of Oslo, Oslo, 0379, Norway
| | - Xiaoran Li
- Department of Pathology, the Norwegian Radium Hospital, Oslo University Hospital, University of Oslo, Oslo, 0379, Norway.,Department of Pathology, the Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, 0379, Norway
| | - Quancheng Kan
- Department of Clinical Pharmacology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Mingzhi Zhang
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Xiaoli Li
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China.,Department of Pathology, the Norwegian Radium Hospital, Oslo University Hospital, University of Oslo, Oslo, 0379, Norway
| | - Ruiping Xu
- Department of Oncology, the Anyang Tumor Hospital, Anyang, 455000, Henan Province, China
| | - Junsheng Wang
- Department of Oncology, the Anyang Tumor Hospital, Anyang, 455000, Henan Province, China
| | - Dandan Yu
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China.,Department of Pathology, the Norwegian Radium Hospital, Oslo University Hospital, University of Oslo, Oslo, 0379, Norway
| | - Mariusz Adam Goscinski
- Department of Surgery, the Norwegian Radium Hospital, Oslo University Hospital, University of Oslo, Oslo, 0379, Norway
| | - Jian-Guo Wen
- Institute of Clinical Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Jahn M Nesland
- Department of Pathology, the Norwegian Radium Hospital, Oslo University Hospital, University of Oslo, Oslo, 0379, Norway.,Department of Pathology, the Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, 0379, Norway
| | - Zhenhe Suo
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China.,Department of Pathology, the Norwegian Radium Hospital, Oslo University Hospital, University of Oslo, Oslo, 0379, Norway.,Department of Pathology, the Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, 0379, Norway
| |
Collapse
|
59
|
Hypoxia-activated prodrug enhances therapeutic effect of sunitinib in melanoma. Oncotarget 2017; 8:115140-115152. [PMID: 29383148 PMCID: PMC5777760 DOI: 10.18632/oncotarget.22944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/16/2017] [Indexed: 02/06/2023] Open
Abstract
Angiogenesis is a critical step during tumor progression. Anti-angiogenic therapy has only provided modest benefits in delaying tumor progression despite its early promise in cancer treatment. It has been postulated that anti-angiogenic therapy may promote the emergence of a more aggressive cancer cell phenotype by generating increased tumor hypoxia—a well-recognized promoter of tumor progression. TH-302 is a 2-nitroimidazole triggered hypoxia-activated prodrug (HAP) which has been shown to selectively target the hypoxic tumor compartment and reduce tumor volume. Here, we show that melanoma cells grown under hypoxic conditions exhibit increased resistance to a wide variety of therapeutic agents in vitro and generate larger and more aggressive tumors in vivo than melanoma cells grown under normoxic conditions. However, hypoxic melanoma cells exhibit a pronounced sensitivity to TH-302 which is further enhanced by the addition of sunitinib. Short term sunitinib treatment fails to prolong the survival of melanoma bearing genetically engineered mice (Tyr::CreER; BRafCA;Ptenlox/lox) but increases tumor hypoxia. Long term TH-302 alone modestly prolongs the overall survival of melanoma bearing mice. Combination therapy of TH-302 with sunitinib further increases the survival of treated mice. These studies provide a translational rationale for combining hypoxic tumor cell targeted therapies with anti-angiogenics for treatment of melanoma.
Collapse
|
60
|
Antony S, Jiang G, Wu Y, Meitzler JL, Makhlouf HR, Haines DC, Butcher D, Hoon DS, Ji J, Zhang Y, Juhasz A, Lu J, Liu H, Dahan I, Konate M, Roy KK, Doroshow JH. NADPH oxidase 5 (NOX5)-induced reactive oxygen signaling modulates normoxic HIF-1α and p27 Kip1 expression in malignant melanoma and other human tumors. Mol Carcinog 2017; 56:2643-2662. [PMID: 28762556 PMCID: PMC5675809 DOI: 10.1002/mc.22708] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/19/2017] [Accepted: 07/28/2017] [Indexed: 12/14/2022]
Abstract
NADPH oxidase 5 (NOX5) generated reactive oxygen species (ROS) have been implicated in signaling cascades that regulate cancer cell proliferation. To evaluate and validate NOX5 expression in human tumors, we screened a broad range of tissue microarrays (TMAs), and report substantial overexpression of NOX5 in malignant melanoma and cancers of the prostate, breast, and ovary. In human UACC-257 melanoma cells that possesses high levels of functional endogenous NOX5, overexpression of NOX5 resulted in enhanced cell growth, increased numbers of BrdU positive cells, and increased γ-H2AX levels. Additionally, NOX5-overexpressing (stable and inducible) UACC-257 cells demonstrated increased normoxic HIF-1α expression and decreased p27Kip1 expression. Similarly, increased normoxic HIF-1α expression and decreased p27Kip1 expression were observed in stable NOX5-overexpressing clones of KARPAS 299 human lymphoma cells and in the human prostate cancer cell line, PC-3. Conversely, knockdown of endogenous NOX5 in UACC-257 cells resulted in decreased cell growth, decreased HIF-1α expression, and increased p27Kip1 expression. Likewise, in an additional human melanoma cell line, WM852, and in PC-3 cells, transient knockdown of endogenous NOX5 resulted in increased p27Kip1 and decreased HIF-1α expression. Knockdown of endogenous NOX5 in UACC-257 cells resulted in decreased Akt and GSK3β phosphorylation, signaling pathways known to modulate p27Kip1 levels. In summary, our findings suggest that NOX5 expression in human UACC-257 melanoma cells could contribute to cell proliferation due, in part, to the generation of high local concentrations of extracellular ROS that modulate multiple pathways that regulate HIF-1α and networks that signal through Akt/GSK3β/p27Kip1 .
Collapse
Affiliation(s)
- Smitha Antony
- Division of Cancer Treatment and DiagnosisNational Cancer InstituteBethesdaMaryland
| | - Guojian Jiang
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer InstituteBethesdaMaryland
| | - Yongzhong Wu
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer InstituteBethesdaMaryland
| | - Jennifer L. Meitzler
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer InstituteBethesdaMaryland
| | - Hala R. Makhlouf
- Division of Cancer Treatment and DiagnosisNational Cancer InstituteBethesdaMaryland
| | - Diana C. Haines
- Pathology/Histotechnology Laboratory, Leidos Inc./Frederick National Laboratory for Cancer ResearchNational Cancer InstituteFrederickMaryland
| | - Donna Butcher
- Pathology/Histotechnology Laboratory, Leidos Inc./Frederick National Laboratory for Cancer ResearchNational Cancer InstituteFrederickMaryland
| | - Dave S. Hoon
- Department of Molecular OncologyJohn Wayne Cancer InstituteSanta MonicaCalifornia
| | - Jiuping Ji
- Division of Cancer Treatment and DiagnosisNational Cancer InstituteBethesdaMaryland
| | - Yiping Zhang
- Division of Cancer Treatment and DiagnosisNational Cancer InstituteBethesdaMaryland
| | - Agnes Juhasz
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer InstituteBethesdaMaryland
| | - Jiamo Lu
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer InstituteBethesdaMaryland
| | - Han Liu
- Division of Cancer Treatment and DiagnosisNational Cancer InstituteBethesdaMaryland
| | - Iris Dahan
- Division of Cancer Treatment and DiagnosisNational Cancer InstituteBethesdaMaryland
| | - Mariam Konate
- Division of Cancer Treatment and DiagnosisNational Cancer InstituteBethesdaMaryland
| | - Krishnendu K. Roy
- Division of Cancer Treatment and DiagnosisNational Cancer InstituteBethesdaMaryland
| | - James H. Doroshow
- Division of Cancer Treatment and DiagnosisNational Cancer InstituteBethesdaMaryland
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer InstituteBethesdaMaryland
| |
Collapse
|
61
|
Choudhury AR, Singh KK. Mitochondrial determinants of cancer health disparities. Semin Cancer Biol 2017; 47:125-146. [PMID: 28487205 PMCID: PMC5673596 DOI: 10.1016/j.semcancer.2017.05.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/25/2017] [Accepted: 05/03/2017] [Indexed: 01/10/2023]
Abstract
Mitochondria, which are multi-functional, have been implicated in cancer initiation, progression, and metastasis due to metabolic alterations in transformed cells. Mitochondria are involved in the generation of energy, cell growth and differentiation, cellular signaling, cell cycle control, and cell death. To date, the mitochondrial basis of cancer disparities is unknown. The goal of this review is to provide an understanding and a framework of mitochondrial determinants that may contribute to cancer disparities in racially different populations. Due to maternal inheritance and ethnic-based diversity, the mitochondrial genome (mtDNA) contributes to inherited racial disparities. In people of African ancestry, several germline, population-specific haplotype variants in mtDNA as well as depletion of mtDNA have been linked to cancer predisposition and cancer disparities. Indeed, depletion of mtDNA and mutations in mtDNA or nuclear genome (nDNA)-encoded mitochondrial proteins lead to mitochondrial dysfunction and promote resistance to apoptosis, the epithelial-to-mesenchymal transition, and metastatic disease, all of which can contribute to cancer disparity and tumor aggressiveness related to racial disparities. Ethnic differences at the level of expression or genetic variations in nDNA encoding the mitochondrial proteome, including mitochondria-localized mtDNA replication and repair proteins, miRNA, transcription factors, kinases and phosphatases, and tumor suppressors and oncogenes may underlie susceptibility to high-risk and aggressive cancers found in African population and other ethnicities. The mitochondrial retrograde signaling that alters the expression profile of nuclear genes in response to dysfunctional mitochondria is a mechanism for tumorigenesis. In ethnic populations, differences in mitochondrial function may alter the cross talk between mitochondria and the nucleus at epigenetic and genetic levels, which can also contribute to cancer health disparities. Targeting mitochondrial determinants and mitochondrial retrograde signaling could provide a promising strategy for the development of selective anticancer therapy for dealing with cancer disparities. Further, agents that restore mitochondrial function to optimal levels should permit sensitivity to anticancer agents for the treatment of aggressive tumors that occur in racially diverse populations and hence help in reducing racial disparities.
Collapse
Affiliation(s)
| | - Keshav K Singh
- Departments of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Departments of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Departments of Environmental Health, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Center for Aging, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Birmingham Veterans Affairs Medical Center, Birmingham, AL, 35294, USA.
| |
Collapse
|
62
|
Martínez-García MÁ, Riveiro-Falkenbach E, Rodríguez-Peralto JL, Nagore E, Martorell-Calatayud A, Campos-Rodríguez F, Farré R, Hernández Blasco L, Bañuls Roca J, Chiner Vives E, Sánchez-de-la-Torre A, Abad Capa J, Montserrat JM, Almendros I, Pérez-Gil A, Cabriada Nuño V, Cano-Pumarega I, Corral Peñafiel J, Diaz Cambriles T, Mediano O, Dalmau Arias J, Gozal D. A prospective multicenter cohort study of cutaneous melanoma: clinical staging and potential associations with HIF-1α and VEGF expressions. Melanoma Res 2017; 27:558-564. [PMID: 28885396 DOI: 10.1097/cmr.0000000000000393] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Melanoma is a highly prevalent cancer that is associated with substantial mortality. Although clinical staging procedures can serve as relatively robust prognostic indicators, we aimed to determine whether assessments of the abundance of hypoxia inducible factor-1α (HIF-1α) or vascular endothelial growth factor (VEGF) in postexcisional melanoma tumor tissues may enable more accurate determination of tumor aggressiveness. We carried out a multicenter prospective study, in which we systematically evaluated 376 consecutive patients diagnosed with melanoma, and performed histochemical assessments for both HIF-1α and VEGF immunoreactivity in the tumor biopsies. Multivariate analyses showed that higher HIF-1α expression, but not high VEGF, were associated significantly and independently with increased tumor aggressiveness as derived from several well-established aggressiveness criteria. A limitation of this study was that this was a descriptive prospective study lacking a post-hoc verification arm. Thus, the presence of increased numbers of positively labeled HIF-1α cells in melanoma tumors may potentially serve as an indicator of tumor phenotype and prognosis, and accordingly guide therapy.
Collapse
Affiliation(s)
- Miguel Ángel Martínez-García
- aDepartment of Respiratory, Hospital Universitario y Politécnico la Fe bDepartment of Dermatology, Instituto Valenciano de Oncología cDepartment of Dermatology, Hospital de Manises, Valencia dCentro de Investigacio[Combining Acute Accent]n Biome[Combining Acute Accent]dica en Red de Enfermedades Respiratorias (CIBERES) eDepartment of Pathology, Medical School, Universidad Complutense, Instituto i+12, Hospital Universitario 12 de Octubre fDepartment of Respiratory, Hospital 12 de Octubre gDepartment of Respiratory, Hospital Universitario de Getafe, Madrid hDepartment of Respiratory, Hospital Universitario de Valme iDepartment of Dermatology, Hospital de Valme, Seville jDepartment of Medicine and Health Sciences, Biophysics and Bioengineering Unit, University of Barcelona kDepartment of Respiratory, Hospital Clinic-IDIBAPS lDepartment of Dermatology, Hospital de la Santa Creu i Sant Pau, Barcelona mDepartment of Respiratory nDepartment of Dermatology, ISABIAL, Hospital General Universitario de Alicante oDepartment of Respiratory, Hospital san Juan de Alicante, Alicante pDepartment of Medicine, Miguel Hernandez University, Elche qDepartment of Respiratory, Group of Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova and Santa Maria, IRBLleida, Lleida rDepartment of Respiratory, Hospital Germans Trias i Pujol, Badalona sDepartment of Respiratory, Hospital Universitario Cruces, Bilbao tDepartment of Respiratory, Hospital Universitario S. Pedro Alcántara, Cáceres uDepartment of Respiratory, Hospital Universitario de Guadalajara, Guadalajara, Spain vDepartment of Pediatrics, Biological Sciences Division, Pritzker School of Medicine, The University of Chicago, Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Abstract
Inhibition of the BRAF/MAPK pathway belongs to the standard therapies for patients with activating BRAFV600E/K mutations. However, even in well-responding tumors, anti-tumorigenic effect and clinical benefit are only transient, and the original tumors often relapse. This demonstrates that there are remaining residual tumors, which have withstood therapy-induced apoptosis and which have the potential to resume growth. Although BRAF mutant melanoma cells seem to depend on BRAF/MAPK signaling, the inhibition of this pathway triggers several events, which modulate the tumor as well as the tumor niche. After a certain adaptation period, this can turn out to be beneficial for tumor growth and metastasis-even in cases of good initial tumor response. This review sheds light on the biology of BRAF/MEK inhibitor-sensitive melanoma cells, which survive targeted therapy and will address the crosstalk signaling events occurring in BRAF mutant melanomas when the BRAF/MAPK pathway is fully blocked. The knowledge of these events is important for potential future drug combinations, which enhance the inhibitory effect of BRAF/MEK inhibition, particularly in patients not eligible for immune therapy.
Collapse
Affiliation(s)
- Svenja Meierjohann
- Department of Physiological Chemistry, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany. .,Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
64
|
Swayampakula M, McDonald PC, Vallejo M, Coyaud E, Chafe SC, Westerback A, Venkateswaran G, Shankar J, Gao G, Laurent EMN, Lou Y, Bennewith KL, Supuran CT, Nabi IR, Raught B, Dedhar S. The interactome of metabolic enzyme carbonic anhydrase IX reveals novel roles in tumor cell migration and invadopodia/MMP14-mediated invasion. Oncogene 2017; 36:6244-6261. [PMID: 28692057 PMCID: PMC5684442 DOI: 10.1038/onc.2017.219] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/05/2017] [Accepted: 05/30/2017] [Indexed: 12/15/2022]
Abstract
Carbonic anhydrase IX (CAIX) is a hypoxia inducible factor 1-induced, cell surface pH regulating enzyme with an established role in tumor progression and clinical outcome. However, the molecular basis of CAIX-mediated tumor progression remains unclear. Here, we have utilized proximity dependent biotinylation (BioID) to map the CAIX ‘interactome’ in breast cancer cells in order to identify physiologically relevant CAIX-associating proteins with potential roles in tumor progression. High confidence proteins identified include metabolic transporters, β1 integrins, integrin-associated protein CD98hc and matrix metalloprotease 14 (MMP14). Biochemical studies validate the association of CAIX with α2β1 integrin, CD98hc and MMP14, and immunofluorescence microscopy demonstrates colocalization of CAIX with α2β1 integrin and MMP14 in F-actin/cofilin-positive lamellipodia/pseudopodia, and with MMP14 to cortactin/Tks5-positive invadopodia. Modulation of CAIX expression and activity results in significant changes in cell migration, collagen degradation and invasion. Mechanistically, we demonstrate that CAIX associates with MMP14 through potential phosphorylation residues within its intracellular domain, and that CAIX enhances MMP14-mediated collagen degradation by directly contributing hydrogen ions required for MMP14 catalytic activity. These findings establish hypoxia-induced CAIX as a novel metabolic component of cellular migration and invasion structures, and provide new mechanistic insights into its role in tumor cell biology.
Collapse
Affiliation(s)
- M Swayampakula
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - P C McDonald
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - M Vallejo
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - E Coyaud
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - S C Chafe
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - A Westerback
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - G Venkateswaran
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - J Shankar
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - G Gao
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - E M N Laurent
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Y Lou
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - K L Bennewith
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - C T Supuran
- Laboratorio di Chimica Bioinorganica, Universita degli Studi di Firenze, Sesto Fiorentino, Florence, Italy
| | - I R Nabi
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - B Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - S Dedhar
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
65
|
Chen Q, Shi R, Jiang D, Liu W, Jia Z. Lycium barbarum polysaccharide inhibits gastric cancer cell proliferation, migration and invasion by down-regulation of MMPs and suppressing epithelial-mesenchymal transition. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:7369-7374. [PMID: 31966578 PMCID: PMC6965242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/13/2017] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To evaluate the effect of Lycium barbarum polysaccharide (LBP) on gastric cancer (GC) cells and to explore the associated mechanism. METHODS Human GC SGC-7901 cells were divided into control, 10 μM LBP, 20 μM LBP and 50 μM LBP groups. CCK8 assay and Transwell assay were performed to evaluate the proliferation, migration and invasion of SGC-7901 cells. Western blotting was used to determine protein expressions. RESULTS The proliferation, migration and invasion decreased significantly in 20 μM LBP and 50 μM LBP groups. As the result of Western blotting, protein levels of MMP2, MMP9, Snail and vimentin decreased in 20 μM LBP and 50 μM LBP groups with different degrees. The expression E-cadherin significantly increased in all three experimental groups. The phosphorylation levels of AKT and PI3K in 20 μM LBP and 50 μM LBP groups were much lower than control group. CONCLUSION LBP could inhibit the proliferation, migration and invasion of human GC cells bydown-regulation of MMPs and suppression of epithelial-mesenchymal transition (EMT).
Collapse
Affiliation(s)
- Qian Chen
- Department of General Surgery, Minhang Hospital, Fudan UniversityChina
| | - Rongliang Shi
- Department of General Surgery, Minhang Hospital, Fudan UniversityChina
| | - Daowen Jiang
- Department of General Surgery, Minhang Hospital, Fudan UniversityChina
| | - Weiyan Liu
- Department of General Surgery, Minhang Hospital, Fudan UniversityChina
| | - Zhenyi Jia
- Department of General Surgery, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong UniversityChina
| |
Collapse
|
66
|
Paterson EK, Courtneidge SA. Invadosomes are coming: new insights into function and disease relevance. FEBS J 2017; 285:8-27. [PMID: 28548369 DOI: 10.1111/febs.14123] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/09/2017] [Accepted: 05/24/2017] [Indexed: 12/21/2022]
Abstract
Invadopodia and podosomes are discrete, actin-based molecular protrusions that form in cancer cells and normal cells, respectively, in response to diverse signaling pathways and extracellular matrix cues. Although they participate in a host of different cellular processes, they share a common functional theme of controlling pericellular proteolytic activity, which sets them apart from other structures that function in migration and adhesion, including focal adhesions, lamellipodia, and filopodia. In this review, we highlight research that explores the function of these complex structures, including roles for podosomes in embryonic and postnatal development, in angiogenesis and remodeling of the vasculature, in maturation of the postsynaptic membrane, in antigen sampling and recognition, and in cell-cell fusion mechanisms, as well as the involvement of invadopodia at multiple steps of the metastatic cascade, and how all of this may apply in the treatment of human disease states. Finally, we explore recent research that implicates a novel role for exosomes and microvesicles in invadopodia-dependent and invadopodia-independent mechanisms of invasion, respectively.
Collapse
Affiliation(s)
- Elyse K Paterson
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Sara A Courtneidge
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA.,Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA.,Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
67
|
Melanocytic nevi and melanoma: unraveling a complex relationship. Oncogene 2017; 36:5771-5792. [PMID: 28604751 DOI: 10.1038/onc.2017.189] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 12/11/2022]
Abstract
Approximately 33% of melanomas are derived directly from benign, melanocytic nevi. Despite this, the vast majority of melanocytic nevi, which typically form as a result of BRAFV600E-activating mutations, will never progress to melanoma. Herein, we synthesize basic scientific insights and data from mouse models with common observations from clinical practice to comprehensively review melanocytic nevus biology. In particular, we focus on the mechanisms by which growth arrest is established after BRAFV600E mutation. Means by which growth arrest can be overcome and how melanocytic nevi relate to melanoma are also considered. Finally, we present a new conceptual paradigm for understanding the growth arrest of melanocytic nevi in vivo termed stable clonal expansion. This review builds upon the canonical hypothesis of oncogene-induced senescence in growth arrest and tumor suppression in melanocytic nevi and melanoma.
Collapse
|
68
|
Sakamoto T, Seiki M. Integrated functions of membrane-type 1 matrix metalloproteinase in regulating cancer malignancy: Beyond a proteinase. Cancer Sci 2017; 108:1095-1100. [PMID: 28267240 PMCID: PMC5480062 DOI: 10.1111/cas.13231] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 12/19/2022] Open
Abstract
Membrane‐type 1 matrix metalloproteinase (MT1‐MMP) is expressed in different types of invasive and proliferative cells, including cancer cells and stromal cells. MT1‐MMP cleaves extracellular matrix proteins, membrane proteins and other pericellular proteins, thereby changing the cellular microenvironment and regulating signal activation. Critical roles of protease activity in cancer cell proliferation, invasion and metastasis have been demonstrated by many groups. MT1‐MMP also has a non‐protease activity in that it inhibits the oxygen‐dependent suppression of hypoxia‐inducible factors (HIFs) via Munc18‐1‐interacting protein 3 (Mint3) and thereby enhances the expression of HIF target genes. Elevated HIF activity in MT1‐MMP‐expressing cancer cells is a fundamental mechanism underlying the Warburg effect, a well‐known phenomenon where malignant cancer cells exhibit a higher rate of glucose metabolism. Because specific intervention of HIF activation by MT1‐MMP suppresses tumor formation by cancer cells in mice, both the proteolytic and non‐proteolytic activities of MT1‐MMP are important for tumor malignancy and function in an integrated manner. In this review, we summarize recent findings relating to how MT1‐MMP activates HIF and its effects on cancer cells and stromal cells.
Collapse
Affiliation(s)
- Takeharu Sakamoto
- Division of Molecular PathologyThe Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Motoharu Seiki
- Faculty of MedicineInstitute of Medical, Pharmaceutical and Health Sciences, Kanazawa UniversityKanazawaJapan
| |
Collapse
|
69
|
Loftus SK, Baxter LL, Cronin JC, Fufa TD, Pavan WJ. Hypoxia-induced HIF1α targets in melanocytes reveal a molecular profile associated with poor melanoma prognosis. Pigment Cell Melanoma Res 2017; 30:339-352. [PMID: 28168807 DOI: 10.1111/pcmr.12579] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/01/2017] [Indexed: 12/20/2022]
Abstract
Hypoxia and HIF1α signaling direct tissue-specific gene responses regulating tumor progression, invasion, and metastasis. By integrating HIF1α knockdown and hypoxia-induced gene expression changes, this study identifies a melanocyte-specific, HIF1α-dependent/hypoxia-responsive gene expression signature. Integration of these gene expression changes with HIF1α ChIP-Seq analysis identifies 81 HIF1α direct target genes in melanocytes. The expression levels for 10 of the HIF1α direct targets - GAPDH, PKM, PPAT, DARS, DTWD1, SEH1L, ZNF292, RLF, AGTRAP, and GPC6 - are significantly correlated with reduced time of disease-free status in melanoma by logistic regression (P-value = 0.0013) and ROC curve analysis (AUC = 0.826, P-value < 0.0001). This HIF1α-regulated profile defines a melanocyte-specific response under hypoxia, and demonstrates the role of HIF1α as an invasive cell state gatekeeper in regulating cellular metabolism, chromatin and transcriptional regulation, vascularization, and invasion.
Collapse
Affiliation(s)
- Stacie K Loftus
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Laura L Baxter
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Julia C Cronin
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Temesgen D Fufa
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | -
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - William J Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
70
|
Tsai HC, Tzeng HE, Huang CY, Huang YL, Tsai CH, Wang SW, Wang PC, Chang AC, Fong YC, Tang CH. WISP-1 positively regulates angiogenesis by controlling VEGF-A expression in human osteosarcoma. Cell Death Dis 2017; 8:e2750. [PMID: 28406476 PMCID: PMC5477571 DOI: 10.1038/cddis.2016.421] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/13/2016] [Accepted: 11/17/2016] [Indexed: 12/14/2022]
Abstract
In recent years, much research has focused on the role of angiogenesis in osteosarcoma, which occurs predominantly in adolescents and young adults. The vascular endothelial growth factor-A (VEGF-A) pathway is the key regulator of angiogenesis and in osteosarcoma. VEGF-A expression has been recognized as a prognostic marker in angiogenesis. Aberrant WNT1-inducible signaling pathway protein-1 (WISP-1) expression is associated with various cancers. However, the function of WISP-1 in osteosarcoma angiogenesis is poorly understood. We demonstrate a positive correlation between WISP-1 and VEGF-A expression in human osteosarcoma. Moreover, we show that WISP-1 promotes VEGF-A expression in human osteosarcoma cells, subsequently inducing human endothelial progenitor cell (EPC) migration and tube formation. The focal adhesion kinase (FAK), Jun amino-terminal kinase (JNK), and hypoxia-inducible factor (HIF)-1α signaling pathways were activated after WISP-1 stimulation, while FAK, JNK, and HIF-1α inhibitors or small interfering RNA (siRNA) abolished WISP-1-induced VEGF-A expression and angiogenesis. In vitro and in vivo studies revealed down-regulation of microRNA-381 (miR-381) in WISP-1-induced VEGF-A expression and angiogenesis. Our findings reveal that WISP-1 enhances VEGF-A expression and angiogenesis through the FAK/JNK/HIF-1α signaling pathways, as well as via down-regulation of miR-381 expression. WISP-1 may be a promising target in osteosarcoma angiogenesis.
Collapse
Affiliation(s)
- Hsiao-Chi Tsai
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Huey-En Tzeng
- Division of Hematology/Oncology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan
| | - Chun-Yin Huang
- School of Medicine, China Medical University, Taichung, Taiwan.,Department of Orthopaedic Surgery, China Medical University Beigang Hospital, Yun-Lin County, Taiwan
| | - Yuan-Li Huang
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Chun-Hao Tsai
- School of Medicine, China Medical University, Taichung, Taiwan.,Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Po-Chuan Wang
- Department of Gastroenterology, Hsinchu MacKay Memorial Hospital, Hsinchu City, Taiwan
| | - An-Chen Chang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Chin Fong
- Department of Orthopaedic Surgery, China Medical University Beigang Hospital, Yun-Lin County, Taiwan.,Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
71
|
GATA3 interacts with and stabilizes HIF-1α to enhance cancer cell invasiveness. Oncogene 2017; 36:4243-4252. [PMID: 28263977 PMCID: PMC5537608 DOI: 10.1038/onc.2017.8] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/23/2016] [Accepted: 01/11/2017] [Indexed: 12/11/2022]
Abstract
GATA binding protein 3 (GATA3) is indispensable in development of human organs. However, the role of GATA3 in cancers remains elusive. Hypoxia inducible factor (HIF)-1 plays an important role in pathogenesis of human cancers. Regulation of HIF-1α degradation is orchestrated through collaboration of its interacting proteins. In this study, we discover that GATA3 is upregulated in head and neck squamous cell carcinoma (HNSCC) and is an independent predictor for poor disease-free survival. GATA3 promotes invasive behaviours of HNSCC and melanoma cells in vitro and in immunodeficient mice. Mechanistically, GATA3 physically associates with HIF-1α under hypoxia to inhibit ubiquitination and proteasomal degradation of HIF-1α, which is independent of HIF-1α prolyl hydroxylation. Chromatin immunoprecipitation assays show that the GATA3/HIF-1α complex binds to and regulates HIF-1 target genes, which is also supported by the microarray analysis. Notably, the GATA3-mediated invasiveness can be significantly reversed by HIF-1α knockdown, suggesting a critical role of HIF-1α in the underlying mechanism of GATA3-mediated effects. Our findings suggest that GATA3 stabilizes HIF-1α to enhance cancer invasiveness under hypoxia and support the GATA3/HIF-1α axis as a potential therapeutic target for cancer treatment.
Collapse
|
72
|
Pautu V, Leonetti D, Lepeltier E, Clere N, Passirani C. Nanomedicine as a potent strategy in melanoma tumor microenvironment. Pharmacol Res 2017; 126:31-53. [PMID: 28223185 DOI: 10.1016/j.phrs.2017.02.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/14/2017] [Accepted: 02/14/2017] [Indexed: 12/19/2022]
Abstract
Melanoma originated from melanocytes is the most aggressive type of skin cancer. Despite considerable progresses in clinical treatment with the discovery of BRAF or MEK inhibitors and monoclonal antibodies, the durability of response to treatment is often limited to the development of acquired resistance and systemic toxicity. The limited success of conventional treatment highlights the importance of understanding the role of melanoma tumor microenvironment in tumor developement and drug resistance. Nanoparticles represent a promising strategy for the development of new cancer treatments able to improve the bioavailability of drugs and increase their penetration by targeting specifically tumors cells and/or tumor environment. In this review, we will discuss the main influence of tumor microenvironment in melanoma growth and treatment outcome. Furthermore, third generation loaded nanotechnologies represent an exciting tool for detection, treatment, and escape from possible mechanism of resistance mediated by tumor microenvironment, and will be highlighted in this review.
Collapse
Affiliation(s)
- Vincent Pautu
- MINT, UNIV Angers, INSERM, CNRS, Université Bretagne Loire, IBS-CHU, 4 rue Larrey, F-49933 Angers, France
| | | | - Elise Lepeltier
- MINT, UNIV Angers, INSERM, CNRS, Université Bretagne Loire, IBS-CHU, 4 rue Larrey, F-49933 Angers, France
| | - Nicolas Clere
- MINT, UNIV Angers, INSERM, CNRS, Université Bretagne Loire, IBS-CHU, 4 rue Larrey, F-49933 Angers, France
| | - Catherine Passirani
- MINT, UNIV Angers, INSERM, CNRS, Université Bretagne Loire, IBS-CHU, 4 rue Larrey, F-49933 Angers, France.
| |
Collapse
|
73
|
Lehmann S, te Boekhorst V, Odenthal J, Bianchi R, van Helvert S, Ikenberg K, Ilina O, Stoma S, Xandry J, Jiang L, Grenman R, Rudin M, Friedl P. Hypoxia Induces a HIF-1-Dependent Transition from Collective-to-Amoeboid Dissemination in Epithelial Cancer Cells. Curr Biol 2017; 27:392-400. [DOI: 10.1016/j.cub.2016.11.057] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 09/27/2016] [Accepted: 11/29/2016] [Indexed: 10/20/2022]
|
74
|
Kumar D, Gorain M, Kundu G, Kundu GC. Therapeutic implications of cellular and molecular biology of cancer stem cells in melanoma. Mol Cancer 2017; 16:7. [PMID: 28137308 PMCID: PMC5282877 DOI: 10.1186/s12943-016-0578-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/25/2016] [Indexed: 01/04/2023] Open
Abstract
Melanoma is a form of cancer that initiates in melanocytes. Melanoma has multiple phenotypically distinct subpopulation of cells, some of them have embryonic like plasticity which are involved in self-renewal, tumor initiation, metastasis and progression and provide reservoir of therapeutically resistant cells. Cancer stem cells (CSCs) can be identified and characterized based on various unique cell surface and intracellular markers. CSCs exhibit different molecular pattern with respect to non-CSCs. They maintain their stemness and chemoresistant features through specific signaling cascades. CSCs are weak in immunogenicity and act as immunosupressor in the host system. Melanoma treatment becomes difficult and survival is greatly reduced when the patient develop metastasis. Standard conventional oncology treatments such as chemotherapy, radiotherapy and surgical resection are only responsible for shrinking the bulk of the tumor mass and tumor tends to relapse. Thus, targeting CSCs and their microenvironment niche addresses the alternative of traditional cancer therapy. Combined use of CSCs targeted and traditional therapies may kill the bulk tumor and CSCs and offer a promising therapeutic strategy for the management of melanoma.
Collapse
Affiliation(s)
- Dhiraj Kumar
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, 411007, India
| | - Mahadeo Gorain
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, 411007, India
| | - Gautam Kundu
- Deapartment of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Gopal C Kundu
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, 411007, India.
| |
Collapse
|
75
|
Generation of metastatic melanoma specific antibodies by affinity purification. Sci Rep 2016; 6:37253. [PMID: 27853253 PMCID: PMC5112778 DOI: 10.1038/srep37253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/26/2016] [Indexed: 12/03/2022] Open
Abstract
Melanoma is the most aggressive type of skin cancer and one of the most frequent tumours in young adults. Identification of primary tumours prone to develop metastasis is of paramount importance for further patient stratification. However, till today, no markers exist that are routinely used to predict melanoma progression. To ameliorate this problem, we generated antiserum directed against metastatic melanoma tissue lysate and applied a novel approach to purify the obtained serum via consecutive affinity chromatography steps. The established antibody, termed MHA-3, showed high reactivity against metastatic melanoma cell lines both in vitro and in vivo. We also tested MHA-3 on 227 melanoma patient samples and compared staining with the melanoma marker S100b. Importantly, MHA-3 was able to differentiate between metastatic and non-metastatic melanoma samples. By proteome analysis we identified 18 distinct antigens bound by MHA-3. Combined expression profiling of all identified proteins revealed a significant survival difference in melanoma patients. In conclusion, we developed a polyclonal antibody, which is able to detect metastatic melanoma on paraffin embedded sections. Hence, we propose that this antibody will represent a valuable additional tool for precise melanoma diagnosis.
Collapse
|
76
|
Vuillefroy de Silly R, Dietrich PY, Walker PR. Hypoxia and antitumor CD8 + T cells: An incompatible alliance? Oncoimmunology 2016; 5:e1232236. [PMID: 28123871 PMCID: PMC5214994 DOI: 10.1080/2162402x.2016.1232236] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/30/2016] [Accepted: 08/31/2016] [Indexed: 12/27/2022] Open
Abstract
T Lymphocytes face pathologically low O2 tensions within the tumor bed at which they will have to function in order to impact on the malignancy. Recent studies highlighting the importance of O2 and hypoxia-inducible factors for CD8+ T-cell function and fate must now be integrated into tumor immunology concepts if immunotherapies are to progress. Here, we discuss, reinterpret, and reconcile the many apparent contradictions in these data and we propose that O2 is a master regulator of the CD8+ T-cell response. Certain T cell functions are enhanced, others suppressed, but on balance, hypoxia is globally detrimental to the antitumor response.
Collapse
Affiliation(s)
- Romain Vuillefroy de Silly
- Geneva University Hospitals and University of Geneva, Geneva, Switzerland; Ludwig Center for Cancer Research of the University of Lausanne, Biopôle III, Epalinges, Switzerland
| | | | - Paul R Walker
- Geneva University Hospitals and University of Geneva , Geneva, Switzerland
| |
Collapse
|
77
|
Aktary Z, Bertrand JU, Larue L. The WNT-less wonder: WNT-independent β-catenin signaling. Pigment Cell Melanoma Res 2016; 29:524-40. [PMID: 27311806 DOI: 10.1111/pcmr.12501] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/14/2016] [Indexed: 12/18/2022]
Abstract
β-catenin is known as an Armadillo protein that regulates gene expression following WNT pathway activation. However, WNT-independent pathways also activate β-catenin. During the establishment of the melanocyte lineage, β-catenin plays an important role. In the context of physiopathology, β-catenin is activated genetically or transiently in various cancers, including melanoma, where it can be found in the nucleus of tumors. In this review, we discuss alternative pathways that activate β-catenin independent of WNTs and highlight what is known regarding these pathways in melanoma. We also discuss the role of β-catenin as a transcriptional regulator in various cell types, with emphasis on the different transcription factors it associates with independent of WNT induction. Finally, the role of WNT-independent β-catenin in melanocyte development and melanomagenesis is also discussed.
Collapse
Affiliation(s)
- Zackie Aktary
- Normal and Pathological Development of Melanocytes, INSERM U1021, Institut Curie, PSL Research University, Orsay, France.,CNRS UMR 3347, Univ Paris-Sud, Univ Paris-Saclay, Orsay, France.,Equipe Labellisée Ligue Contre le Cancer, Orsay, France
| | - Juliette U Bertrand
- Normal and Pathological Development of Melanocytes, INSERM U1021, Institut Curie, PSL Research University, Orsay, France.,CNRS UMR 3347, Univ Paris-Sud, Univ Paris-Saclay, Orsay, France.,Equipe Labellisée Ligue Contre le Cancer, Orsay, France
| | - Lionel Larue
- Normal and Pathological Development of Melanocytes, INSERM U1021, Institut Curie, PSL Research University, Orsay, France. .,CNRS UMR 3347, Univ Paris-Sud, Univ Paris-Saclay, Orsay, France. .,Equipe Labellisée Ligue Contre le Cancer, Orsay, France.
| |
Collapse
|
78
|
Bailey KM, Airik M, Krook MA, Pedersen EA, Lawlor ER. Micro-Environmental Stress Induces Src-Dependent Activation of Invadopodia and Cell Migration in Ewing Sarcoma. Neoplasia 2016; 18:480-8. [PMID: 27566104 PMCID: PMC5018098 DOI: 10.1016/j.neo.2016.06.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/04/2016] [Accepted: 06/29/2016] [Indexed: 01/05/2023]
Abstract
Metastatic Ewing sarcoma has a very poor prognosis and therefore new investigations into the biologic drivers of metastatic progression are key to finding new therapeutic approaches. The tumor microenvironment is highly dynamic, leading to exposure of different regions of a growing solid tumor to changes in oxygen and nutrient availability. Tumor cells must adapt to such stress in order to survive and propagate. In the current study, we investigate how Ewing sarcoma cells respond to the stress of growth factor deprivation and hypoxia. Our findings reveal that serum deprivation leads to a reversible change in Ewing cell cytoskeletal phenotypes. Using an array of migration and invasion techniques, including gelatin matrix degradation invadopodia assays, we show that exposure of Ewing sarcoma cells to serum deprivation and hypoxia triggers enhanced migration, invadopodia formation, matrix degradation and invasion. Further, these functional changes are accompanied by and dependent on activation of Src kinase. Activation of Src, and the associated invasive cell phenotype, were blocked by exposing hypoxia and serum-deprived cells to the Src inhibitor dasatinib. These results indicate that Ewing sarcoma cells demonstrate significant plasticity in response to rapidly changing micro-environmental stresses that can result from rapid tumor growth and from necrosis-causing therapies. In response to these stresses, Ewing cells transition to a more migratory and invasive state and our data show that Src is an important mediator of this stress response. Our data support exploration of clinically available Src inhibitors as adjuvant agents for metastasis prevention in Ewing sarcoma.
Collapse
Affiliation(s)
- Kelly M Bailey
- University of Michigan, Department of Pediatrics, Ann Arbor, MI, 48109, USA; University of Michigan, Department of Translational Oncology Program, Ann Arbor, MI, 48109, USA
| | - Merlin Airik
- University of Michigan, Department of Pediatrics, Ann Arbor, MI, 48109, USA; University of Michigan, Department of Translational Oncology Program, Ann Arbor, MI, 48109, USA
| | - Melanie A Krook
- University of Michigan, Department of Pediatrics, Ann Arbor, MI, 48109, USA; University of Michigan, Department of Translational Oncology Program, Ann Arbor, MI, 48109, USA
| | - Elisabeth A Pedersen
- University of Michigan, Department of Pathology, Ann Arbor, MI, 48109, USA; University of Michigan, Department of Translational Oncology Program, Ann Arbor, MI, 48109, USA
| | - Elizabeth R Lawlor
- University of Michigan, Department of Pediatrics, Ann Arbor, MI, 48109, USA; University of Michigan, Department of Pathology, Ann Arbor, MI, 48109, USA; University of Michigan, Department of Translational Oncology Program, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
79
|
Insulin-like growth factor binding protein 5 (IGFBP5) functions as a tumor suppressor in human melanoma cells. Oncotarget 2016; 6:20636-49. [PMID: 26010068 PMCID: PMC4653031 DOI: 10.18632/oncotarget.4114] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 04/22/2015] [Indexed: 12/12/2022] Open
Abstract
The insulin-like growth factor binding protein 5 (IGFBP5), which is often dysregulated in human cancers, plays a crucial role in carcinogenesis and cancer development. However, the function and underlying mechanism of IGFBP5 in tumor growth and metastasis has been elusive, particularly in malignant human melanoma. Here, we reported that IGFBP5 acts as an important tumor suppressor in melanoma tumorigenicity and metastasis by a series of experiments including transwell assay, xenograft model, in vivo tumor metastasis experiment, and RNA-Seq. Overexpression of IGFBP5 in A375, a typical human melanoma cell line, inhibited cell malignant behaviors significantly, including in vitro proliferation, anchorage-independent growth, migration and invasion, as well as in vivo tumor growth and pulmonary metastasis. In addition, overexpression of IGFBP5 suppressed epithelial-mesenchymal transition (EMT), and decreased the expression of E-cadherin and the key stem cell markers NANOG, SOX2, OCT4, KLF4, and CD133. Furthermore, IGFBP5 exerts its inhibitory activities by reducing the phosphorylation of IGF1R, ERK1/2, and p38-MAPK kinases and abating the expression of HIF1α and its target genes, VEGF and MMP9. All these findings were confirmed by IGFBP5 knockdown in human melanoma cell line A2058. Taken together, these results shed light on the mechanism of IGFBP5 as a potential tumor-suppressor in melanoma progression, indicating that IGFBP5 might be a novel therapeutic target for human melanoma.
Collapse
|
80
|
Cribb JA, Osborne LD, Beicker K, Psioda M, Chen J, O'Brien ET, Taylor Ii RM, Vicci L, Hsiao JPL, Shao C, Falvo M, Ibrahim JG, Wood KC, Blobe GC, Superfine R. An Automated High-throughput Array Microscope for Cancer Cell Mechanics. Sci Rep 2016; 6:27371. [PMID: 27265611 PMCID: PMC4893602 DOI: 10.1038/srep27371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/18/2016] [Indexed: 12/14/2022] Open
Abstract
Changes in cellular mechanical properties correlate with the progression of metastatic cancer along the epithelial-to-mesenchymal transition (EMT). Few high-throughput methodologies exist that measure cell compliance, which can be used to understand the impact of genetic alterations or to screen the efficacy of chemotherapeutic agents. We have developed a novel array high-throughput microscope (AHTM) system that combines the convenience of the standard 96-well plate with the ability to image cultured cells and membrane-bound microbeads in twelve independently-focusing channels simultaneously, visiting all wells in eight steps. We use the AHTM and passive bead rheology techniques to determine the relative compliance of human pancreatic ductal epithelial (HPDE) cells, h-TERT transformed HPDE cells (HPNE), and four gain-of-function constructs related to EMT. The AHTM found HPNE, H-ras, Myr-AKT, and Bcl2 transfected cells more compliant relative to controls, consistent with parallel tests using atomic force microscopy and invasion assays, proving the AHTM capable of screening for changes in mechanical phenotype.
Collapse
Affiliation(s)
- Jeremy A Cribb
- Department of Physics and Astronomy, UNC-Chapel Hill, Chapel Hill, NC, United States of America
| | - Lukas D Osborne
- Department of Physics and Astronomy, UNC-Chapel Hill, Chapel Hill, NC, United States of America
| | - Kellie Beicker
- Department of Physics and Astronomy, UNC-Chapel Hill, Chapel Hill, NC, United States of America
| | - Matthew Psioda
- Department of Biostatistics, UNC-Chapel Hill, Chapel Hill, NC United States of America
| | - Jian Chen
- Department of Medicine and Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - E Timothy O'Brien
- Department of Physics and Astronomy, UNC-Chapel Hill, Chapel Hill, NC, United States of America
| | - Russell M Taylor Ii
- Department of Physics and Astronomy, UNC-Chapel Hill, Chapel Hill, NC, United States of America.,Department of Computer Science, UNC-Chapel Hill, Chapel Hill, NC, United States of America
| | - Leandra Vicci
- Department of Computer Science, UNC-Chapel Hill, Chapel Hill, NC, United States of America
| | - Joe Ping-Lin Hsiao
- Department of Computer Science, UNC-Chapel Hill, Chapel Hill, NC, United States of America
| | - Chong Shao
- Department of Computer Science, UNC-Chapel Hill, Chapel Hill, NC, United States of America
| | - Michael Falvo
- Department of Physics and Astronomy, UNC-Chapel Hill, Chapel Hill, NC, United States of America
| | - Joseph G Ibrahim
- Department of Biostatistics, The Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Kris C Wood
- Department of Pharmacology and Cancer Biology, Duke University, 450 Research Drive, Durham, NC 27710, United States of America
| | - Gerard C Blobe
- Department of Medicine and Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Richard Superfine
- Department of Physics and Astronomy, UNC-Chapel Hill, Chapel Hill, NC, United States of America
| |
Collapse
|
81
|
Hypoxia: Signaling the Metastatic Cascade. Trends Cancer 2016; 2:295-304. [PMID: 28741527 DOI: 10.1016/j.trecan.2016.05.006] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 11/21/2022]
Abstract
Hypoxia is a potent microenvironmental factor that promotes tumor metastasis. Recent studies have revealed mechanisms by which hypoxia and activation of hypoxia inducible factor (HIF)-dependent signaling promotes metastasis through the regulation of metabolic reprogramming, the stem cell phenotype, invasion, angiogenesis, immune suppression, the premetastatic niche, intravasation and/or extravasation, and resistance to apoptosis. These discoveries suggest novel paradigms in tumor metastasis and identify new opportunities for therapeutic intervention in the prevention and treatment of metastatic disease. Here, we review the impact of hypoxia and hypoxic signaling pathways in tumor and stromal cells on each step of the metastatic cascade.
Collapse
|
82
|
Pittayapruek P, Meephansan J, Prapapan O, Komine M, Ohtsuki M. Role of Matrix Metalloproteinases in Photoaging and Photocarcinogenesis. Int J Mol Sci 2016; 17:ijms17060868. [PMID: 27271600 PMCID: PMC4926402 DOI: 10.3390/ijms17060868] [Citation(s) in RCA: 609] [Impact Index Per Article: 76.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/13/2016] [Accepted: 05/30/2016] [Indexed: 12/23/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are zinc-containing endopeptidases with an extensive range of substrate specificities. Collectively, these enzymes are able to degrade various components of extracellular matrix (ECM) proteins. Based on their structure and substrate specificity, they can be categorized into five main subgroups, namely (1) collagenases (MMP-1, MMP-8 and MMP-13); (2) gelatinases (MMP-2 and MMP-9); (3) stromelysins (MMP-3, MMP-10 and MMP-11); (4) matrilysins (MMP-7 and MMP-26); and (5) membrane-type (MT) MMPs (MMP-14, MMP-15, and MMP-16). The alterations made to the ECM by MMPs might contribute in skin wrinkling, a characteristic of premature skin aging. In photocarcinogenesis, degradation of ECM is the initial step towards tumor cell invasion, to invade both the basement membrane and the surrounding stroma that mainly comprises fibrillar collagens. Additionally, MMPs are involved in angiogenesis, which promotes cancer cell growth and migration. In this review, we focus on the present knowledge about premature skin aging and skin cancers such as basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma, with our main focus on members of the MMP family and their functions.
Collapse
Affiliation(s)
- Pavida Pittayapruek
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12000, Thailand.
| | - Jitlada Meephansan
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12000, Thailand.
| | - Ornicha Prapapan
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12000, Thailand.
| | - Mayumi Komine
- Department of Dermatology, Jichi Medical University, Tochigi 329-0498, Japan.
| | - Mamitaro Ohtsuki
- Department of Dermatology, Jichi Medical University, Tochigi 329-0498, Japan.
| |
Collapse
|
83
|
Marconi A, Borroni RG, Truzzi F, Longo C, Pistoni F, Pellacani G, Pincelli C. Hypoxia-Inducible Factor-1α and CD271 inversely correlate with melanoma invasiveness. Exp Dermatol 2016; 24:396-8. [PMID: 25739328 DOI: 10.1111/exd.12679] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2015] [Indexed: 12/28/2022]
Abstract
Melanoma is characterized, among other features, by microenvironmental factors and by an altered apoptotic machinery. Melanoma cell response to a hypoxic environment is transcriptionally regulated by the Hypoxia-Inducible Factor (HIF)-1α. p75 neurotrophin receptor (p75(NTR) ), also called CD271, mediates apoptosis in several cell systems. The purpose of this study was to analyze the expression of HIF-1α and CD271 in melanomas at different phases of progression, as evaluated by histology and reflectance confocal microscopy (RCM). By RCM, 41.67% tumors were characterized by the presence of a population of dendritic and pleomorphic cells (D+P), corresponding to in situ melanoma; 25% exhibited a predominantly round-cell (RN) proliferation with histologic features of superficial melanoma, and 33.33% showed the presence of cells aggregated in nests (DN), typical of invasive melanoma. HIF-1α was scarcely detected in D+P and in RN melanomas, while it was highly expressed in DN tumors. By contrast, CD271 positive cells were mostly detected in D+P population, and barely observed in the other subtypes. This work demonstrates that CD271 expression inversely correlates with hypoxia in melanoma, and that the two markers may be used in the future as diagnostic/prognostic tools for this neoplasm.
Collapse
Affiliation(s)
- Alessandra Marconi
- Laboratory of Cutaneous Biology, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | |
Collapse
|
84
|
Abstract
Metastatic disease is the leading cause of cancer-related deaths and involves critical interactions between tumor cells and the microenvironment. Hypoxia is a potent microenvironmental factor promoting metastatic progression. Clinically, hypoxia and the expression of the hypoxia-inducible transcription factors HIF-1 and HIF-2 are associated with increased distant metastasis and poor survival in a variety of tumor types. Moreover, HIF signaling in malignant cells influences multiple steps within the metastatic cascade. Here we review research focused on elucidating the mechanisms by which the hypoxic tumor microenvironment promotes metastatic progression. These studies have identified potential biomarkers and therapeutic targets regulated by hypoxia that could be incorporated into strategies aimed at preventing and treating metastatic disease.
Collapse
Affiliation(s)
- Erinn B Rankin
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University Medical Center, Stanford, CA 94305-5152, USA. Department of Obstetrics and Gynecology, Stanford University Medical Center, Stanford, CA 94305-5152, USA
| | - Amato J Giaccia
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University Medical Center, Stanford, CA 94305-5152, USA.
| |
Collapse
|
85
|
Chen Z, Zhang T, Wu B, Zhang X. Insights into the therapeutic potential of hypoxia-inducible factor-1α small interfering RNA in malignant melanoma delivered via folate-decorated cationic liposomes. Int J Nanomedicine 2016; 11:991-1002. [PMID: 27042054 PMCID: PMC4795592 DOI: 10.2147/ijn.s101872] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Malignant melanoma (MM) represents the most dangerous form of skin cancer, and its incidence is expected to rise in the coming time. However, therapy for MM is limited by low topical drug concentration and multidrug resistance. This article aimed to develop folate-decorated cationic liposomes (fc-LPs) for hypoxia-inducible factor-1α (HIF-1α) small interfering (siRNA) delivery, and to evaluate the potential of such siRNA/liposome complexes in MM therapy. HIF-1α siRNA-loaded fc-LPs (siRNA-fc-LPs) were prepared by a film hydration method followed by siRNA incubation. Folate decoration of liposomes was achieved by incorporation of folate/oleic acid-diacylated oligochitosans. The resulting siRNA-fc-LPs were 95.3 nm in size with a ζ potential of 2.41 mV. The liposomal vectors exhibited excellent loading capacity and protective effect toward siRNA. The in vitro cell transfection efficiency was almost parallel to the commercially available Lipofectamine™ 2000. Moreover, the anti-melanoma activity of HIF-1α siRNA was significantly enhanced through fc-LPs. Western blot analysis and apoptosis test demonstrated that siRNA-fc-LPs substantially reduced the production of HIF-1α-associated protein and induced the apoptosis of hypoxia-tolerant melanoma cells. Our designed liposomal vectors might be applicable as siRNA delivery vehicle to systemically or topically treat MM.
Collapse
Affiliation(s)
- Zhongjian Chen
- Department of Pharmaceutics, Shanghai Dermatology Hospital, Jinan University, Gangzhou, People's Republic of China
| | - Tianpeng Zhang
- Division of Pharmaceutics, College of Pharmacy, Jinan University, Gangzhou, People's Republic of China
| | - Baojian Wu
- Division of Pharmaceutics, College of Pharmacy, Jinan University, Gangzhou, People's Republic of China
| | - Xingwang Zhang
- Division of Pharmaceutics, College of Pharmacy, Jinan University, Gangzhou, People's Republic of China
| |
Collapse
|
86
|
Zhou J, Xu D, Xie H, Tang J, Liu R, Li J, Wang S, Chen X, Su J, Zhou X, Xia K, He Q, Chen J, Xiong W, Cao P, Cao K. miR-33a functions as a tumor suppressor in melanoma by targeting HIF-1α. Cancer Biol Ther 2016; 16:846-55. [PMID: 25891797 DOI: 10.1080/15384047.2015.1030545] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Our previous findings showed that miR-33 expressed abnormally in clinical specimens of melanoma, but the exact molecular mechanism has not been elucidated. OBJECT To determine miR-33's roles in melanoma and confirm whether HIF-1α is a direct target gene of miR-33a. METHODS First miR-33a/b expression levels were detected in HM, WM35, WM451, A375 and SK-MEL-1. Then lentiviral vectors were constructed to intervene miR-33a expression in melanoma cells. Cell proliferation, invasion and metastasis were detected. A375 cells mice model was performed to test the tumorigenesis of melanoma in vivo. Finally the dual reporter gene assay was carried out to confirm whether HIF-1α is a direct target gene of miR-33a. RESULTS MiR-33a/b exhibited a lower expression in WM35, WM451, A375 and SK-MEL-1 of the metastatic skin melanoma cell lines than that in HM. Then inhibition of miR-33a expression in WM35 and WM451 cell lines could promote cell proliferation, invasion and metastasis. Conversely, increased expression of miR-33a in A375 cells could inhibit cellproliferation, invasion and metastasis. In vivo tests also confirmed that overexpression of miR-33a in A375 cells significantly inhibited melanoma tumorigenesis. Finally, we confirmed that HIF-1α is a direct target gene of miR-33a. CONCLUSION The newly identified miR-33a/HIF-1α axis might provide a new strategy for the treatment of melanoma.
Collapse
Affiliation(s)
- Jianda Zhou
- a Department of Plastic Surgery ; Third Xiangya Hospital; Central South University ; Changsha City , China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Pucciarelli D, Lengger N, Takáčová M, Csaderova L, Bartosova M, Breiteneder H, Pastorekova S, Hafner C. Hypoxia increases the heterogeneity of melanoma cell populations and affects the response to vemurafenib. Mol Med Rep 2016; 13:3281-8. [PMID: 26936534 DOI: 10.3892/mmr.2016.4888] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 01/12/2016] [Indexed: 11/05/2022] Open
Abstract
A hypoxic microenvironment is one of the predominant reasons for incomplete response to melanoma treatment. Vemurafenib, which targets the mutated BRAF-V600 kinase, improves melanoma patient survival, however, resistance invariably develops. The present study evaluated the effect of hypoxia on three BRAF-V600E mutant melanoma cell lines, M14, A375 and 518A2, treated with vemurafenib. Compared with the other two cell lines, hypoxic vemurafenib-treated A375 cells exhibited an enhanced cell proliferation rate and migratory capacity compared with normoxic vemurafenib-treated A375 cells. Immunoblotting analyses revealed that the expression levels of hypoxia inducible factor (HIF)1α and carbonic anhydrase IX were reduced in vemurafenib‑treated M14 and 518A2 cells, however, not in A375 cells. The expression levels of the mitogen‑activated protein kinase, Janus kinase-signal transducer and activator of transcription, and phosphatidylinositol-4,5-bisphosphate 3‑kinase signaling pathway proteins revealed a cell‑type specific response to vemurafenib and hypoxia. Knockdown experiments of HIF1α performed in hypoxic A375 cells decreased the expression of phosphorylated (p‑)protein kinase B, which was restored following vemurafenib treatment, and increased the expression of p‑extracellular‑signal‑regulated kinases. Therefore, three melanoma cell lines responded to vemurafenib under hypoxia in a cell type‑specific manner, suggesting that a subset of cells provides a treatment-resistant pool, from which disease relapse may originate. These data confirmed that vemurafenib may be successful in treating the proliferating cells, whereas the non‑proliferating subpopulation must be addressed by a combination of vemurafenib with other treatment strategies.
Collapse
Affiliation(s)
- Daniela Pucciarelli
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna A‑1090, Austria
| | - Nina Lengger
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna A‑1090, Austria
| | - Martina Takáčová
- Institute of Virology, Department of Molecular Medicine, Slovak Academy of Sciences, Bratislava 81101, Slovakia
| | - Lucia Csaderova
- Institute of Virology, Department of Molecular Medicine, Slovak Academy of Sciences, Bratislava 81101, Slovakia
| | - Maria Bartosova
- Institute of Virology, Department of Molecular Medicine, Slovak Academy of Sciences, Bratislava 81101, Slovakia
| | - Heimo Breiteneder
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna A‑1090, Austria
| | - Silvia Pastorekova
- Institute of Virology, Department of Molecular Medicine, Slovak Academy of Sciences, Bratislava 81101, Slovakia
| | - Christine Hafner
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna A‑1090, Austria
| |
Collapse
|
88
|
de Almeida CM, de Jesus SF, Poswar FDO, Gomes ESB, Fraga CADC, Farias LC, Santos SHS, Feltenberger JD, de Paula AMB, Guimarães ALS. Increasing demonstration of angiogenic markers in skin neoplastic lesions. Pathol Res Pract 2015; 212:101-5. [PMID: 26708385 DOI: 10.1016/j.prp.2015.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/02/2015] [Accepted: 12/03/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND Skin cancer represents the most common worldwide malignancy. Angiogenesis is an important factor in tumor growth and metastasis. Given these facts, the purpose of the current study was to compare the levels of angiogenic proteins in the context of the most common malignant and premalignant skin lesions. METHODS Immunohistochemistry of CD31, HIF1A, VEGFR1 and VEGFR2 was performed in basal cell carcinoma (BCC), actinic keratosis (AK) and squamous cell carcinoma of the skin (SCCS). RESULTS SCCS presented with increased levels of HIF1A, VEGFR1 and VEGFR2 in comparison to AK. In addition, SCCS also demonstrated increased levels of HIF1A to BCCLR or BCCHR. BCC presented with more vessels than AK. However, no correlation was observed among CD31, HIF1A, VEGFR1 and VEGFR2. CONCLUSIONS SCCS presented with higher levels of HIF1A, VEGFR1 and VEGFR2, while BCC demonstrated an increased number of vessels in relation to AK. These data suggest that antiangiogenic therapy might be useful for skin cancer treatment.
Collapse
Affiliation(s)
| | | | - Fabiano de Oliveira Poswar
- Department of Dentistry, Universidade Estadual de Montes Claros, Montes Claros, MG, Brazil; Department of Medicine, Universidade Estadual de Montes Claros, Montes Claros, MG, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Karakashev SV, Reginato MJ. Hypoxia/HIF1α induces lapatinib resistance in ERBB2-positive breast cancer cells via regulation of DUSP2. Oncotarget 2015; 6:1967-80. [PMID: 25596742 PMCID: PMC4385829 DOI: 10.18632/oncotarget.2806] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 11/25/2014] [Indexed: 11/25/2022] Open
Abstract
ERBB2/HER2 belongs to the EGFR-family of receptor tyrosine kinases and its overexpression can promote tumor progression. Breast cancer patients with ERBB2 amplifications are currently treated with lapatinib, a small-molecule kinase inhibitor that specifically blocks EGFR/ERBB2 signaling. Here, we show that hypoxia, via HIF-1, induces resistance to lapatinib-mediated effects in ERBB2-expressing mammary epithelial and ERBB2-positive breast cancer cells. Lapatinib-mediated growth inhibition and apoptosis in three-dimensional (3D) cultures are decreased under hypoxic conditions. Hypoxia can maintain activation of signaling pathways downstream from ERBB2 including AKT and ERK in the presence of lapatinib. HIF-1 is both required and sufficient to induce lapatinib resistance as overexpression of stable HIF-1 in ERBB2-expressing cells blocks lapatinib-mediated effects and maintains ERBB2-downstream signaling under normoxic conditions. Under hypoxia, activation of ERK signaling is required for lapatinib resistance as treatment with MEK inhibitor trametinib reverses hypoxia-mediated lapatinib resistance. HIF-1 can bypass the lapatinib-treated inhibition of the ERK pathway via inhibition of the dual-specificity phosphatase 2 (DUSP2). Indeed, overexpression of DUSP2 in ErbB2-positve breast cancer cells reverses hypoxia-mediated lapatinib resistance. Thus, our results provide rationale for therapeutic evaluation of the treatment of hypoxic ERBB2 expressing breast tumors with a combination of lapatinib and MEK inhibitors.
Collapse
Affiliation(s)
- Sergey V Karakashev
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Mauricio J Reginato
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| |
Collapse
|
90
|
Miles SL, Fischer AP, Joshi SJ, Niles RM. Ascorbic acid and ascorbate-2-phosphate decrease HIF activity and malignant properties of human melanoma cells. BMC Cancer 2015; 15:867. [PMID: 26547841 PMCID: PMC4636772 DOI: 10.1186/s12885-015-1878-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 10/30/2015] [Indexed: 12/04/2022] Open
Abstract
Background Hypoxia inducible factor-1 alpha (HIF-1α) is thought to play a role in melanoma carcinogenesis. Posttranslational regulation of HIF-1α is dependent on Prolyl hydroxylase (PHD 1–3) and Factor Inhibiting HIF (FIH) hydroxylase enzymes, which require ascorbic acid as a co-factor for optimal function. Depleted intra-tumoral ascorbic acid may thus play a role in the loss of HIF-1α regulation in melanoma. These studies assess the ability of ascorbic acid to reduce HIF-1α protein and transcriptional activity in metastatic melanoma and reduce its invasive potential. Methods HIF-1α protein was evaluated by western blot, while transcriptional activity was measured by HIF-1 HRE-luciferase reporter gene activity. Melanoma cells were treated with ascorbic acid (AA) and ascorbate 2-phosphate (A2P) to assess their ability to reduce HIF-1α accumulation and activity. siRNA was used to deplete cellular PHD2 in order to evaluate this effect on AA’s ability to lower HIF-1α levels. A2P’s effect on invasive activity was measured by the Matrigel invasion assay. Data was analyzed by One-way ANOVA with Tukey’s multiple comparisons test, or Student-T test as appropriate, with p < .05 considered significant. Results Supplementation with both AA and A2P antagonized normoxic as well as cobalt chloride- and PHD inhibitor ethyl 3, 4-dihydroxybenzoate induced HIF-1α protein stabilization and transcriptional activity. Knockdown of the PHD2 isoform with siRNA did not impede the ability of AA to reduce normoxic HIF-1α protein. Additionally, reducing HIF-1α levels with A2P resulted in a significant reduction in the ability of the melanoma cells to invade through Matrigel. Conclusion These studies suggest a positive role for AA in regulating HIF-1α in melanoma by demonstrating that supplementation with either AA, or its oxidation-resistant analog A2P, effectively reduces HIF-1α protein and transcriptional activity in metastatic melanoma cells. Our data, while supporting the function of AA as a necessary cofactor for PHD and likely FIH activity, also suggests a potential non-PHD/FIH role for AA in HIF-1α regulation by its continued ability to reduce HIF-1α in the presence of PHD inhibition. The use of the oxidation-resistant AA analog, A2P, to reduce the ability of HIF-1α to promote malignant progression in melanoma cells and enhance their response to therapy warrants further investigation.
Collapse
Affiliation(s)
- Sarah L Miles
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine, Marshall University, One John Marshall Drive, Huntington, WV, 25755, USA.
| | - Adam P Fischer
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine, Marshall University, One John Marshall Drive, Huntington, WV, 25755, USA.
| | - Sandeep J Joshi
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD, 21201, USA.
| | - Richard M Niles
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine, Marshall University, One John Marshall Drive, Huntington, WV, 25755, USA.
| |
Collapse
|
91
|
Hypoxia Inducible Factor Pathway and Physiological Adaptation: A Cell Survival Pathway? Mediators Inflamm 2015; 2015:584758. [PMID: 26491231 PMCID: PMC4600544 DOI: 10.1155/2015/584758] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 12/28/2014] [Indexed: 12/14/2022] Open
Abstract
Oxygen homeostasis reflects the constant body requirement to generate energy. Hypoxia (0.1–1% O2), physioxia or physoxia (∼1–13%), and normoxia (∼20%) are terms used to define oxygen concentration in the cellular environment. A decrease in oxygen (hypoxia) or excess oxygen (hyperoxia) could be deleterious for cellular adaptation and survival. Hypoxia can occur under both physiological (e.g., exercise, embryonic development, underwater diving, or high altitude) and pathological conditions (e.g., inflammation, solid tumor formation, lung disease, or myocardial infarction). Hypoxia plays a key role in the pathophysiology of heart disease, cancers, stroke, and other causes of mortality. Hypoxia inducible factor(s) (HIFs) are key oxygen sensors that mediate the ability of the cell to cope with decreased oxygen tension. These transcription factors regulate cellular adaptation to hypoxia and protect cells by responding acutely and inducing production of endogenous metabolites and proteins to promptly regulate metabolic pathways. Here, we review the role of the HIF pathway as a metabolic adaptation pathway and how this pathway plays a role in cell survival. We emphasize the roles of the HIF pathway in physiological adaptation, cell death, pH regulation, and adaptation during exercise.
Collapse
|
92
|
Zhang BG, Du T, Zang MD, Chang Q, Fan ZY, Li JF, Yu BQ, Su LP, Li C, Yan C, Gu QL, Zhu ZG, Yan M, Liu B. Androgen receptor promotes gastric cancer cell migration and invasion via AKT-phosphorylation dependent upregulation of matrix metalloproteinase 9. Oncotarget 2015; 5:10584-95. [PMID: 25301736 PMCID: PMC4279395 DOI: 10.18632/oncotarget.2513] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/24/2014] [Indexed: 12/29/2022] Open
Abstract
Androgen receptor (AR) plays an important role in many kinds of cancers. However, the molecular mechanisms of AR in gastric cancer (GC) are poorly characterized. Here, we investigated the role of AR in GC cell migration, invasion and metastatic potential. Our data showed that AR expression was positively correlated with lymph node metastasis and late TNM stages. These findings were accompanied by activation of AKT and upregulation of matrix metalloproteinase 9 (MMP9). AR overexpression induced increases in GC cell migration, invasion and proliferation in vitro and in vivo. These effects were attenuated by inhibition of AKT, AR and MMP9. AR overexpression upregulated MMP9 protein levels, whereas this effect was counteracted by AR siRNA. Inhibition of AKT by siRNA or an inhibitor (MK-2206 2HC) decreased AR protein expression in both stably transfected and parental SGC-7901 cells. Luciferase reporter and chromatin immunoprecipitation assays demonstrated that AR bound to the AR-binding sites of the MMP9 promoter. In summary, AR overexpression induced by AKT phosphorylation upregulated MMP9 by binding to its promoter region to promote gastric carcinogenesis. The AKT/AR/MMP9 pathway plays an important role in GC metastasis and may be a novel therapeutic target for GC treatment.
Collapse
Affiliation(s)
- Bao-gui Zhang
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Du
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Department of Surgery, Shanghai East Hospital, Tongji University School of Medicine, No 150 Jimo Road, Shanghai, China
| | - Ming-de Zang
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Chang
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi-yuan Fan
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-fang Li
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bei-qin Yu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-ping Su
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Li
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Yan
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin-long Gu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng-gang Zhu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Yan
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingya Liu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
93
|
Gould CM, Courtneidge SA. Regulation of invadopodia by the tumor microenvironment. Cell Adh Migr 2015; 8:226-35. [PMID: 24714597 DOI: 10.4161/cam.28346] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The tumor microenvironment consists of stromal cells, extracellular matrix (ECM), and signaling molecules that communicate with cancer cells. As tumors grow and develop, the tumor microenvironment changes. In addition, the tumor microenvironment is not only influenced by signals from tumor cells, but also stromal components contribute to tumor progression and metastasis by affecting cancer cell function. One of the mechanisms that cancer cells use to invade and metastasize is mediated by actin-rich, proteolytic structures called invadopodia. Here, we discuss how signals from the tumor environment, including growth factors, hypoxia, pH, metabolism, and stromal cell interactions, affect the formation and function of invadopodia to regulate cancer cell invasion and metastasis. Understanding how the tumor microenvironment affects invadopodia biology could aid in the development of effective therapeutics to target cancer cell invasion and metastasis.
Collapse
Affiliation(s)
- Christine M Gould
- Tumor Microenvironment and Metastasis Program; Cancer Center; Sanford-Burnham Medical Research Institute; La Jolla, CA USA
| | - Sara A Courtneidge
- Tumor Microenvironment and Metastasis Program; Cancer Center; Sanford-Burnham Medical Research Institute; La Jolla, CA USA
| |
Collapse
|
94
|
Melnik BC. MiR-21: an environmental driver of malignant melanoma? J Transl Med 2015; 13:202. [PMID: 26116372 PMCID: PMC4482047 DOI: 10.1186/s12967-015-0570-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 06/10/2015] [Indexed: 01/04/2023] Open
Abstract
Since the mid-1950’s, melanoma incidence has been rising steadily in industrialized Caucasian populations, thereby pointing to the pivotal involvement of environmental factors in melanomagenesis. Recent evidence underlines the crucial role of microRNA (miR) signaling in cancer initiation and progression. Increased miR-21 expression has been observed during the transition from a benign melanocytic lesion to malignant melanoma, exhibiting highest expression of miR-21. Notably, common BRAF and NRAS mutations in cutaneous melanoma are associated with increased miR-21 expression. MiR-21 is an oncomiR that affects critical target genes of malignant melanoma, resulting in sustained proliferation (PTEN, PI3K, Sprouty, PDCD4, FOXO1, TIPE2, p53, cyclin D1), evasion from apoptosis (FOXO1, FBXO11, APAF1, TIMP3, TIPE2), genetic instability (MSH2, FBXO11, hTERT), increased oxidative stress (FOXO1), angiogenesis (PTEN, HIF1α, TIMP3), invasion and metastasis (APAF1, PTEN, PDCD4, TIMP3). The purpose of this review is to provide translational evidence for major environmental and individual factors that increase the risk of melanoma, such as UV irradiation, chemical noxes, air pollution, smoking, chronic inflammation, Western nutrition, obesity, sedentary lifestyle and higher age, which are associated with increased miR-21 signaling. Exosomal miR-21 induced by extrinsic and intrinsic stimuli may be superimposed on mutation-induced miR-21 pathways of melanoma cells. Thus, oncogenic miR-21 signaling may be the converging point of intrinsic and extrinsic stimuli driving melanomagenesis. Future strategies of melanoma treatment and prevention should thus aim at reducing the burden of miR-21 signal transduction.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Sedanstrasse 115, 49090, Osnabrück, Germany.
| |
Collapse
|
95
|
Yu XL, Xia JY, Ye HQ, Li X, Zhang YJ, Mao XG. Retinoic acid aliphatic amide inhibits the AMPK-HIF-1α pathway in human ovarian cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:6416-6424. [PMID: 26261517 PMCID: PMC4525851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 05/22/2015] [Indexed: 06/04/2023]
Abstract
Ovarian carcinoma the commonly observed gynecological cancers has a high mortality rate. In the present study effect of retinoic acid aliphatic amide (RACA) in ovarian cancer cells was investigated using proliferation, migration and invasion assays. Western blot was used to examine the Bcl-2, cleaved caspase 3, p-ERK, MMP-2, p-FAK, P-P38, p-AMPKα and HIF-1α protein expression. CoCl2 was used to induce HIF-1α expression in SKOV3ip. 1 and HEY-A8 cells. The results revealed that RACA treatment prompted cell proliferation, invasion and migration but inhibited apoptosis of SKOV3ip. 1 and HEY-A8 cells. RACA treatment also induced upregulation of Bcl-2 and MMP-2, activation of p-P38, p-ERK and p-FAK, inhibition of cleaved caspase 3. RACA treatment also caused upregulatation of HIF-1α in ovarian cells with the activation of p-AMPKα. Upregulation of HIF-1α expression in CoCl2-treated cancer cells resulted in decrease in SDHB. Thus RACA plays a key role in cell proliferation, invasion, migration and apoptosis of human ovarian carcinoma through AMPK-HIF-1α pathway.
Collapse
Affiliation(s)
- Xiao-Lan Yu
- Department of Obstetrics and Gynecology, The Affiliated TCM Hospital of Sichuan Medical UniversitySichuan, 646000, China
| | - Ji-Yi Xia
- Researh Center for Drug and Functional Food of Sichuan Medical UniversitySichuan, 646000, China
| | - Hai-Qiong Ye
- Department of Obstetrics and Gynecology, Affiliated Hospital of Sichuan Medical UniversitySichuan, 646000, China
| | - Xia Li
- Department of Obstetrics and Gynecology, The Hosipital of Traditional Chinese Medicine of LeshanSichuan, 614000, China
| | - Yu-Jiao Zhang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Sichuan Medical UniversitySichuan, 646000, China
| | - Xi-Guang Mao
- Department of Obstetrics and Gynecology, Affiliated Hospital of Sichuan Medical UniversitySichuan, 646000, China
| |
Collapse
|
96
|
Vuillefroy de Silly R, Ducimetière L, Yacoub Maroun C, Dietrich PY, Derouazi M, Walker PR. Phenotypic switch of CD8(+) T cells reactivated under hypoxia toward IL-10 secreting, poorly proliferative effector cells. Eur J Immunol 2015; 45:2263-75. [PMID: 25929785 PMCID: PMC7163737 DOI: 10.1002/eji.201445284] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 04/13/2015] [Accepted: 04/29/2015] [Indexed: 11/10/2022]
Abstract
CD8(+) T cells controlling pathogens or tumors must function at sites where oxygen tension is frequently low, and never as high as under atmospheric culture conditions. However, T-cell function in vivo is generally analyzed indirectly, or is extrapolated from in vitro studies under nonphysiologic oxygen tensions. In this study, we delineate the role of physiologic and pathologic oxygen tension in vitro during reactivation and differentiation of tumor-specific CD8(+) T cells. Using CD8(+) T cells from pmel-1 mice, we observed that the generation of CTLs under 5% O2, which corresponds to physioxia in lymph nodes, gave rise to a higher effector signature than those generated under atmospheric oxygen fractions (21% O2). Hypoxia (1% O2) did not modify cytotoxicity, but decreasing O2 tensions during CTL and CD8(+) tumor-infiltrating lymphocyte reactivation dose-dependently decreased proliferation, induced secretion of the immunosuppressive cytokine IL-10, and upregulated the expression of CD137 (4-1BB) and CD25. Overall, our data indicate that oxygen tension is a key regulator of CD8(+) T-cell function and fate and suggest that IL-10 release may be an unanticipated component of CD8(+) T cell-mediated immune responses in most in vivo microenvironments.
Collapse
Affiliation(s)
| | - Laura Ducimetière
- Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | | | | | - Madiha Derouazi
- Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Paul R Walker
- Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| |
Collapse
|
97
|
Pucciarelli D, Lengger N, Takacova M, Csaderova L, Bartosova M, Breiteneder H, Pastorekova S, Hafner C. Anti-chondroitin sulfate proteoglycan 4-specific antibodies modify the effects of vemurafenib on melanoma cells differentially in normoxia and hypoxia. Int J Oncol 2015; 47:81-90. [PMID: 25997619 PMCID: PMC4485656 DOI: 10.3892/ijo.2015.3010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 04/16/2015] [Indexed: 02/06/2023] Open
Abstract
Chondroitin sulfate proteoglycan 4 (CSPG4), a highly immunogenic melanoma tumor antigen, is a potential target for antibody-based immunotherapy. The mechanism by which CSPG4 affects melanoma progression is only partly understood, in particular the involvement of other receptor tyrosine kinases and the tumor microenvironment. We have previously reported on a mimotope-based vaccine against CSPG4 in a human melanoma xenograft model that resulted in reduction of tumor growth. Herein we describe the influence of hypoxia on the response to polyclonal anti-CSPG4-antibodies induced by this vaccine in combination with the BRAF inhibitor vemurafenib to enhance therapeutic efficacy by simultaneously targeting multiple signaling pathways. Melanoma cells were treated with polyclonal anti-CSPG4-antibodies and vemurafenib. Proliferation, migration and invasion were evaluated in a real-time setting in the impedance-based x-CELLigence® system. Western blotting and quantitative PCR arrays were used to determine protein and mRNA expression of hypoxia inducible factor 1α (HIF1α), carbonic anhydrase IX (CAIX) and signaling pathway proteins. A melanoma xenograft model was used to detect HIF1α and CAIX expression in vivo. Hypoxia enhanced the antiproliferative response to vemurafenib. The migration and invasion capacities of vemurafenib-treated melanoma cells were increased, in spite of vemurafenib-decreased expression of HIF1α and CAIX. Polyclonal anti-CSPG4-antibodies reduced the Transwell migration of vemurafenib-treated, BRAF V600E-mutant and CSPG4-expressing melanoma cells in hypoxia. This was associated with the downregulation of phosphorylated AKT, a kinase contributing to tumor cell migration. Our results highlight CSPG4 as a potential target for modulating treatment resistance to vemurafenib induced by the hypoxic microenvironment.
Collapse
Affiliation(s)
- Daniela Pucciarelli
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Nina Lengger
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Martina Takacova
- Institute of Virology, Department of Molecular Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lucia Csaderova
- Institute of Virology, Department of Molecular Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Maria Bartosova
- Institute of Virology, Department of Molecular Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Heimo Breiteneder
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Silvia Pastorekova
- Institute of Virology, Department of Molecular Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Christine Hafner
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
98
|
Ainger SA, Sturm RA. Src and SCC: getting to the FAKs. Exp Dermatol 2015; 24:487-8. [DOI: 10.1111/exd.12725] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Stephen A. Ainger
- Dermatology Research Centre; The University of Queensland; School of Medicine; Translational Research Institute; Brisbane Qld Australia
| | - Richard A. Sturm
- Dermatology Research Centre; The University of Queensland; School of Medicine; Translational Research Institute; Brisbane Qld Australia
| |
Collapse
|
99
|
Meierjohann S. Hypoxia-independent drivers of melanoma angiogenesis. Front Oncol 2015; 5:102. [PMID: 26000250 PMCID: PMC4419834 DOI: 10.3389/fonc.2015.00102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/15/2015] [Indexed: 12/28/2022] Open
Abstract
Tumor angiogenesis is a process which is traditionally regarded as the tumor’s response to low nutrient supply occurring under hypoxic conditions. However, hypoxia is not a pre-requisite for angiogenesis. The fact that even single tumor cells or small tumor cell aggregates are capable of attracting blood vessels reveals the early metastatic capability of tumor cells. This review sheds light on the hypoxia-independent mechanisms of tumor angiogenesis in melanoma.
Collapse
Affiliation(s)
- Svenja Meierjohann
- Department of Physiological Chemistry, Biocenter, University of Würzburg , Würzburg , Germany ; Comprehensive Cancer Center Mainfranken, University Hospital Würzburg , Würzburg , Germany
| |
Collapse
|
100
|
Hypoxic induction of AKAP12 variant 2 shifts PKA-mediated protein phosphorylation to enhance migration and metastasis of melanoma cells. Proc Natl Acad Sci U S A 2015; 112:4441-6. [PMID: 25792458 DOI: 10.1073/pnas.1418164112] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Scaffold proteins are critical hubs within cells that have the ability to modulate upstream signaling molecules and their downstream effectors to fine-tune biological responses. Although they can serve as focal points for association of signaling molecules and downstream pathways that regulate tumorigenesis, little is known about how the tumor microenvironment affects the expression and activity of scaffold proteins. This study demonstrates that hypoxia, a common element of solid tumors harboring low oxygen levels, regulates expression of a specific variant of the scaffold protein AKAP12 (A-kinase anchor protein 12), AKAP12v2, in metastatic melanoma. In turn, through a kinome-wide phosphoproteomic and MS study, we demonstrate that this scaffolding protein regulates a shift in protein kinase A (PKA)-mediated phosphorylation events under hypoxia, causing alterations in tumor cell invasion and migration in vitro, as well as metastasis in an in vivo orthotopic model of melanoma. Mechanistically, the shift in AKAP12-dependent PKA-mediated phosphorylations under hypoxia is due to changes in AKAP12 localization vs. structural differences between its two variants. Importantly, our work defines a mechanism through which a scaffold protein can be regulated by the tumor microenvironment and further explains how a tumor cell can coordinate many critical signaling pathways that are essential for tumor growth through one individual scaffolding protein.
Collapse
|