51
|
Schartner V, Laporte J, Böhm J. Abnormal Excitation-Contraction Coupling and Calcium Homeostasis in Myopathies and Cardiomyopathies. J Neuromuscul Dis 2020; 6:289-305. [PMID: 31356215 DOI: 10.3233/jnd-180314] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Muscle contraction requires specialized membrane structures with precise geometry and relies on the concerted interplay of electrical stimulation and Ca2+ release, known as excitation-contraction coupling (ECC). The membrane structure hosting ECC is called triad in skeletal muscle and dyad in cardiac muscle, and structural or functional defects of triads and dyads have been observed in a variety of myopathies and cardiomyopathies. Based on their function, the proteins localized at the triad/dyad can be classified into three molecular pathways: the Ca2+ release complex (CRC), store-operated Ca2+ entry (SOCE), and membrane remodeling. All three are mechanistically linked, and consequently, aberrations in any of these pathways cause similar disease entities. This review provides an overview of the clinical and genetic spectrum of triad and dyad defects with a main focus of attention on the underlying pathomechanisms.
Collapse
Affiliation(s)
- Vanessa Schartner
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,INSERM U1258, Illkirch, France.,CNRS UMR7104, Illkirch, France.,Strasbourg University, Illkirch, France
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,INSERM U1258, Illkirch, France.,CNRS UMR7104, Illkirch, France.,Strasbourg University, Illkirch, France
| | - Johann Böhm
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,INSERM U1258, Illkirch, France.,CNRS UMR7104, Illkirch, France.,Strasbourg University, Illkirch, France
| |
Collapse
|
52
|
Sartori M, Mendes T, Desai S, Lasorsa A, Herledan A, Malmanche N, Mäkinen P, Marttinen M, Malki I, Chapuis J, Flaig A, Vreulx AC, Ciancia M, Amouyel P, Leroux F, Déprez B, Cantrelle FX, Maréchal D, Pradier L, Hiltunen M, Landrieu I, Kilinc D, Herault Y, Laporte J, Lambert JC. BIN1 recovers tauopathy-induced long-term memory deficits in mice and interacts with Tau through Thr 348 phosphorylation. Acta Neuropathol 2019; 138:631-652. [PMID: 31065832 PMCID: PMC6778065 DOI: 10.1007/s00401-019-02017-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 12/14/2022]
Abstract
The bridging integrator 1 gene (BIN1) is a major genetic risk factor for Alzheimer's disease (AD). In this report, we investigated how BIN1-dependent pathophysiological processes might be associated with Tau. We first generated a cohort of control and transgenic mice either overexpressing human MAPT (TgMAPT) or both human MAPT and BIN1 (TgMAPT;TgBIN1), which we followed-up from 3 to 15 months. In TgMAPT;TgBIN1 mice short-term memory deficits appeared earlier than in TgMAPT mice; however-unlike TgMAPT mice-TgMAPT;TgBIN1 mice did not exhibit any long-term or spatial memory deficits for at least 15 months. After killing the cohort at 18 months, immunohistochemistry revealed that BIN1 overexpression prevents both Tau mislocalization and somatic inclusion in the hippocampus, where an increase in BIN1-Tau interaction was also observed. We then sought mechanisms controlling the BIN1-Tau interaction. We developed a high-content screening approach to characterize modulators of the BIN1-Tau interaction in an agnostic way (1,126 compounds targeting multiple pathways), and we identified-among others-an inhibitor of calcineurin, a Ser/Thr phosphatase. We determined that calcineurin dephosphorylates BIN1 on a cyclin-dependent kinase phosphorylation site at T348, promoting the open conformation of the neuronal BIN1 isoform. Phosphorylation of this site increases the availability of the BIN1 SH3 domain for Tau interaction, as demonstrated by nuclear magnetic resonance experiments and in primary neurons. Finally, we observed that although the levels of the neuronal BIN1 isoform were unchanged in AD brains, phospho-BIN1(T348):BIN1 ratio was increased, suggesting a compensatory mechanism. In conclusion, our data support the idea that BIN1 modulates the AD risk through an intricate regulation of its interaction with Tau. Alteration in BIN1 expression or activity may disrupt this regulatory balance with Tau and have direct effects on learning and memory.
Collapse
Affiliation(s)
- Maxime Sartori
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404, Illkirch, France
- INSERM U1258, Illkirch, France
- CNRS UMR7104, Illkirch, France
- Strasbourg University, Illkirch, France
| | - Tiago Mendes
- INSERM U1167, RID-AGE: Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, 1 rue du Pr. Calmette, 59019, Lille, France
- Institut Pasteur de Lille, Lille, France
- University of Lille, DISTALZ Laboratory of Excellence (LabEx), Lille, France
- SANOFI Neuroscience Therapeutic Area, Chilly-Mazarin, France
| | - Shruti Desai
- INSERM U1167, RID-AGE: Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, 1 rue du Pr. Calmette, 59019, Lille, France
- Institut Pasteur de Lille, Lille, France
- University of Lille, DISTALZ Laboratory of Excellence (LabEx), Lille, France
| | - Alessia Lasorsa
- University of Lille, DISTALZ Laboratory of Excellence (LabEx), Lille, France
- CNRS UMR8576, Lille, France
| | - Adrien Herledan
- Institut Pasteur de Lille, Lille, France
- University of Lille, EGID, Lille, France
- INSERM U1177, Drugs and Molecules for Living Systems, Lille, France
| | - Nicolas Malmanche
- INSERM U1167, RID-AGE: Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, 1 rue du Pr. Calmette, 59019, Lille, France
- Institut Pasteur de Lille, Lille, France
- University of Lille, DISTALZ Laboratory of Excellence (LabEx), Lille, France
| | - Petra Mäkinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Mikael Marttinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Idir Malki
- University of Lille, DISTALZ Laboratory of Excellence (LabEx), Lille, France
- CNRS UMR8576, Lille, France
| | - Julien Chapuis
- INSERM U1167, RID-AGE: Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, 1 rue du Pr. Calmette, 59019, Lille, France
- Institut Pasteur de Lille, Lille, France
- University of Lille, DISTALZ Laboratory of Excellence (LabEx), Lille, France
| | - Amandine Flaig
- INSERM U1167, RID-AGE: Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, 1 rue du Pr. Calmette, 59019, Lille, France
- Institut Pasteur de Lille, Lille, France
- University of Lille, DISTALZ Laboratory of Excellence (LabEx), Lille, France
| | - Anaïs-Camille Vreulx
- INSERM U1167, RID-AGE: Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, 1 rue du Pr. Calmette, 59019, Lille, France
- Institut Pasteur de Lille, Lille, France
- University of Lille, DISTALZ Laboratory of Excellence (LabEx), Lille, France
| | - Marion Ciancia
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404, Illkirch, France
- INSERM U1258, Illkirch, France
- CNRS UMR7104, Illkirch, France
- Strasbourg University, Illkirch, France
| | - Philippe Amouyel
- INSERM U1167, RID-AGE: Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, 1 rue du Pr. Calmette, 59019, Lille, France
- Institut Pasteur de Lille, Lille, France
- University of Lille, DISTALZ Laboratory of Excellence (LabEx), Lille, France
| | - Florence Leroux
- Institut Pasteur de Lille, Lille, France
- University of Lille, EGID, Lille, France
- INSERM U1177, Drugs and Molecules for Living Systems, Lille, France
| | - Benoit Déprez
- Institut Pasteur de Lille, Lille, France
- University of Lille, EGID, Lille, France
- INSERM U1177, Drugs and Molecules for Living Systems, Lille, France
| | - François-Xavier Cantrelle
- University of Lille, DISTALZ Laboratory of Excellence (LabEx), Lille, France
- CNRS UMR8576, Lille, France
| | - Damien Maréchal
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404, Illkirch, France
- INSERM U1258, Illkirch, France
- CNRS UMR7104, Illkirch, France
- Strasbourg University, Illkirch, France
| | - Laurent Pradier
- SANOFI Neuroscience Therapeutic Area, Chilly-Mazarin, France
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Isabelle Landrieu
- University of Lille, DISTALZ Laboratory of Excellence (LabEx), Lille, France
- CNRS UMR8576, Lille, France
| | - Devrim Kilinc
- INSERM U1167, RID-AGE: Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, 1 rue du Pr. Calmette, 59019, Lille, France
- Institut Pasteur de Lille, Lille, France
- University of Lille, DISTALZ Laboratory of Excellence (LabEx), Lille, France
| | - Yann Herault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404, Illkirch, France.
- INSERM U1258, Illkirch, France.
- CNRS UMR7104, Illkirch, France.
- Strasbourg University, Illkirch, France.
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404, Illkirch, France.
- INSERM U1258, Illkirch, France.
- CNRS UMR7104, Illkirch, France.
- Strasbourg University, Illkirch, France.
| | - Jean-Charles Lambert
- INSERM U1167, RID-AGE: Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, 1 rue du Pr. Calmette, 59019, Lille, France.
- Institut Pasteur de Lille, Lille, France.
- University of Lille, DISTALZ Laboratory of Excellence (LabEx), Lille, France.
| |
Collapse
|
53
|
Volpatti JR, Al-Maawali A, Smith L, Al-Hashim A, Brill JA, Dowling JJ. The expanding spectrum of neurological disorders of phosphoinositide metabolism. Dis Model Mech 2019; 12:12/8/dmm038174. [PMID: 31413155 PMCID: PMC6737944 DOI: 10.1242/dmm.038174] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Phosphoinositides (PIPs) are a ubiquitous group of seven low-abundance phospholipids that play a crucial role in defining localized membrane properties and that regulate myriad cellular processes, including cytoskeletal remodeling, cell signaling cascades, ion channel activity and membrane traffic. PIP homeostasis is tightly regulated by numerous inositol kinases and phosphatases, which phosphorylate and dephosphorylate distinct PIP species. The importance of these phospholipids, and of the enzymes that regulate them, is increasingly being recognized, with the identification of human neurological disorders that are caused by mutations in PIP-modulating enzymes. Genetic disorders of PIP metabolism include forms of epilepsy, neurodegenerative disease, brain malformation syndromes, peripheral neuropathy and congenital myopathy. In this Review, we provide an overview of PIP function and regulation, delineate the disorders associated with mutations in genes that modulate or utilize PIPs, and discuss what is understood about gene function and disease pathogenesis as established through animal models of these diseases. Summary: This Review highlights the intersection between phosphoinositides and the enzymes that regulate their metabolism, which together are crucial regulators of myriad cellular processes and neurological disorders.
Collapse
Affiliation(s)
- Jonathan R Volpatti
- Division of Neurology and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Almundher Al-Maawali
- Division of Neurology and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Lindsay Smith
- Division of Neurology and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Aqeela Al-Hashim
- Division of Neurology and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Neuroscience, King Fahad Medical City, Riyadh 11525, Saudi Arabia
| | - Julie A Brill
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.,Program in Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - James J Dowling
- Division of Neurology and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada .,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
54
|
Lionello VM, Nicot AS, Sartori M, Kretz C, Kessler P, Buono S, Djerroud S, Messaddeq N, Koebel P, Prokic I, Hérault Y, Romero NB, Laporte J, Cowling BS. Amphiphysin 2 modulation rescues myotubular myopathy and prevents focal adhesion defects in mice. Sci Transl Med 2019; 11:11/484/eaav1866. [DOI: 10.1126/scitranslmed.aav1866] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/14/2018] [Accepted: 02/28/2019] [Indexed: 12/13/2022]
Abstract
Centronuclear myopathies (CNMs) are severe diseases characterized by muscle weakness and myofiber atrophy. Currently, there are no approved treatments for these disorders. Mutations in the phosphoinositide 3-phosphatase myotubularin (MTM1) are responsible for X-linked CNM (XLCNM), also called myotubular myopathy, whereas mutations in the membrane remodeling Bin/amphiphysin/Rvs protein amphiphysin 2 [bridging integrator 1 (BIN1)] are responsible for an autosomal form of the disease. Here, we investigated the functional relationship between MTM1 and BIN1 in healthy skeletal muscle and in the physiopathology of CNM. Genetic overexpression of human BIN1 efficiently rescued the muscle weakness and life span in a mouse model of XLCNM. Exogenous human BIN1 expression with adeno-associated virus after birth also prevented the progression of the disease, suggesting that human BIN1 overexpression can compensate for the lack of MTM1 expression in this mouse model. Our results showed that MTM1 controls cell adhesion and integrin localization in mammalian muscle. Alterations in this pathway in Mtm1−/y mice were associated with defects in myofiber shape and size. BIN1 expression rescued integrin and laminin alterations and restored myofiber integrity, supporting the idea that MTM1 and BIN1 are functionally linked and necessary for focal adhesions in skeletal muscle. The results suggest that BIN1 modulation might be an effective strategy for treating XLCNM.
Collapse
|
55
|
Jimah JR, Hinshaw JE. Structural Insights into the Mechanism of Dynamin Superfamily Proteins. Trends Cell Biol 2019; 29:257-273. [DOI: 10.1016/j.tcb.2018.11.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/30/2018] [Accepted: 11/02/2018] [Indexed: 12/28/2022]
|
56
|
Tasfaout H, Cowling BS, Laporte J. Centronuclear myopathies under attack: A plethora of therapeutic targets. J Neuromuscul Dis 2019; 5:387-406. [PMID: 30103348 PMCID: PMC6218136 DOI: 10.3233/jnd-180309] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Centronuclear myopathies are a group of congenital myopathies characterized by severe muscle weakness, genetic heterogeneity, and defects in the structural organization of muscle fibers. Their names are derived from the central position of nuclei on biopsies, while they are at the fiber periphery under normal conditions. No specific therapy exists yet for these debilitating diseases. Mutations in the myotubularin phosphoinositides phosphatase, the GTPase dynamin 2, or amphiphysin 2 have been identified to cause respectively X-linked centronuclear myopathies (also called myotubular myopathy) or autosomal dominant and recessive forms. Mutations in additional genes, as RYR1, TTN, SPEG or CACNA1S, were linked to phenotypes that can overlap with centronuclear myopathies. Numerous animal models of centronuclear myopathies have been studied over the last 15 years, ranging from invertebrate to large mammalian models. Their characterization led to a partial understanding of the pathomechanisms of these diseases and allowed the recent validation of therapeutic proof-of-concepts. Here, we review the different therapeutic strategies that have been tested so far for centronuclear myopathies, some of which may be translated to patients.
Collapse
Affiliation(s)
- Hichem Tasfaout
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Belinda S. Cowling
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Jocelyn Laporte
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
- Correspondence to: Jocelyn Laporte, Tel.: 33 0 388653412; E-mail:
| |
Collapse
|
57
|
Maani N, Sabha N, Rezai K, Ramani A, Groom L, Eltayeb N, Mavandadnejad F, Pang A, Russo G, Brudno M, Haucke V, Dirksen RT, Dowling JJ. Tamoxifen therapy in a murine model of myotubular myopathy. Nat Commun 2018; 9:4849. [PMID: 30451841 PMCID: PMC6242823 DOI: 10.1038/s41467-018-07057-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/12/2018] [Indexed: 02/07/2023] Open
Abstract
Myotubular myopathy (MTM) is a severe X-linked disease without existing therapies. Here, we show that tamoxifen ameliorates MTM-related histopathological and functional abnormalities in mice, and nearly doubles survival. The beneficial effects of tamoxifen are mediated primarily via estrogen receptor signaling, as demonstrated through in vitro studies and in vivo phenotypic rescue with estradiol. RNA sequencing and protein expression analyses revealed that rescue is mediated in part through post-transcriptional reduction of dynamin-2, a known MTM modifier. These findings demonstrate an unexpected ability of tamoxifen to improve the murine MTM phenotype, providing preclinical evidence to support clinical translation.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Drug Evaluation, Preclinical
- Dynamin II/genetics
- Dynamin II/metabolism
- Estradiol/metabolism
- Estradiol/pharmacology
- Excitation Contraction Coupling/drug effects
- Female
- Gene Expression/drug effects
- High-Throughput Nucleotide Sequencing
- Humans
- Longevity/drug effects
- Male
- Mice
- Mice, Knockout
- Motor Activity/drug effects
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Myofibrils/drug effects
- Myofibrils/metabolism
- Myofibrils/ultrastructure
- Myopathies, Structural, Congenital/drug therapy
- Myopathies, Structural, Congenital/genetics
- Myopathies, Structural, Congenital/metabolism
- Myopathies, Structural, Congenital/pathology
- Protective Agents/pharmacology
- Protein Tyrosine Phosphatases, Non-Receptor/deficiency
- Protein Tyrosine Phosphatases, Non-Receptor/genetics
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Tamoxifen/pharmacology
Collapse
Affiliation(s)
- Nika Maani
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON, CAN M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Medical Science Building, Room 4386, 1 King's College Cir, Toronto, ON, CAN M5S 1A8, Canada
| | - Nesrin Sabha
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON, CAN M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Medical Science Building, Room 4386, 1 King's College Cir, Toronto, ON, CAN M5S 1A8, Canada
- Department of Paediatrics, University of Toronto, Room 1436D, 555 University Avenue, Toronto, ON, CAN M5G 1X8, Canada
| | - Kamran Rezai
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON, CAN M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Medical Science Building, Room 4386, 1 King's College Cir, Toronto, ON, CAN M5S 1A8, Canada
| | - Arun Ramani
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON, CAN M5G 0A4, Canada
- Department of Computer Science, University of Toronto, Pratt Building Room 286C, 6 King's College Rd, Toronto, ON, CAN M5S 3G4, Canada
- Centre for Computational Medicine, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, CAN M5G 0A4, Canada
| | - Linda Groom
- Department of Pharmacology and Physiology, University of Rochester Medical Center School of Medicine and Dentistry, 601 Elmwood Ave, Box 711, Rochester, NY, 14642, USA
| | - Nadine Eltayeb
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON, CAN M5G 0A4, Canada
| | - Faranak Mavandadnejad
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON, CAN M5G 0A4, Canada
| | - Andrea Pang
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON, CAN M5G 0A4, Canada
| | - Giulia Russo
- Department of Molecular Pharmacology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| | - Michael Brudno
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON, CAN M5G 0A4, Canada
- Department of Computer Science, University of Toronto, Pratt Building Room 286C, 6 King's College Rd, Toronto, ON, CAN M5S 3G4, Canada
- Centre for Computational Medicine, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, CAN M5G 0A4, Canada
| | - Volker Haucke
- Department of Molecular Pharmacology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center School of Medicine and Dentistry, 601 Elmwood Ave, Box 711, Rochester, NY, 14642, USA
| | - James J Dowling
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON, CAN M5G 0A4, Canada.
- Department of Molecular Genetics, University of Toronto, Medical Science Building, Room 4386, 1 King's College Cir, Toronto, ON, CAN M5S 1A8, Canada.
- Department of Paediatrics, University of Toronto, Room 1436D, 555 University Avenue, Toronto, ON, CAN M5G 1X8, Canada.
| |
Collapse
|
58
|
Gayi E, Neff LA, Massana Muñoz X, Ismail HM, Sierra M, Mercier T, Décosterd LA, Laporte J, Cowling BS, Dorchies OM, Scapozza L. Tamoxifen prolongs survival and alleviates symptoms in mice with fatal X-linked myotubular myopathy. Nat Commun 2018; 9:4848. [PMID: 30451843 PMCID: PMC6243013 DOI: 10.1038/s41467-018-07058-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/12/2018] [Indexed: 11/08/2022] Open
Abstract
X-linked myotubular myopathy (XLMTM, also known as XLCNM) is a severe congenital muscular disorder due to mutations in the myotubularin gene, MTM1. It is characterized by generalized hypotonia, leading to neonatal death of most patients. No specific treatment exists. Here, we show that tamoxifen, a well-known drug used against breast cancer, rescues the phenotype of Mtm1-deficient mice. Tamoxifen increases lifespan several-fold while improving overall motor function and preventing disease progression including lower limb paralysis. Tamoxifen corrects functional, histological and molecular hallmarks of XLMTM, with improved force output, myonuclei positioning, myofibrillar structure, triad number, and excitation-contraction coupling. Tamoxifen normalizes the expression level of the XLMTM disease modifiers DNM2 and PI3KC2B, likely contributing to the phenotypic rescue. Our findings demonstrate that tamoxifen is a promising candidate for clinical evaluation in XLMTM patients.
Collapse
MESH Headings
- Animals
- Class II Phosphatidylinositol 3-Kinases/genetics
- Class II Phosphatidylinositol 3-Kinases/metabolism
- Disease Models, Animal
- Disease Progression
- Dynamin II/genetics
- Dynamin II/metabolism
- Electric Stimulation
- Excitation Contraction Coupling/drug effects
- Female
- Gene Expression/drug effects
- Genes, Lethal
- Humans
- Longevity/drug effects
- Male
- Mice
- Mice, Knockout
- Motor Activity/drug effects
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Myofibrils/drug effects
- Myofibrils/metabolism
- Myofibrils/ultrastructure
- Myopathies, Structural, Congenital/drug therapy
- Myopathies, Structural, Congenital/genetics
- Myopathies, Structural, Congenital/metabolism
- Myopathies, Structural, Congenital/pathology
- Protective Agents/pharmacology
- Protein Tyrosine Phosphatases, Non-Receptor/deficiency
- Protein Tyrosine Phosphatases, Non-Receptor/genetics
- Tamoxifen/pharmacology
Collapse
Affiliation(s)
- Elinam Gayi
- Pharmaceutical Biochemistry Group, School of Pharmaceutical Sciences, University of Lausanne, University of Geneva, CMU 5-6, Rue Michel-Servet 1, Geneva, 1211, Switzerland
| | - Laurence A Neff
- Pharmaceutical Biochemistry Group, School of Pharmaceutical Sciences, University of Lausanne, University of Geneva, CMU 5-6, Rue Michel-Servet 1, Geneva, 1211, Switzerland
| | - Xènia Massana Muñoz
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, 67404, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, 67404, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, 67404, France
- Université de Strasbourg, Illkirch, 67404, France
| | - Hesham M Ismail
- Pharmaceutical Biochemistry Group, School of Pharmaceutical Sciences, University of Lausanne, University of Geneva, CMU 5-6, Rue Michel-Servet 1, Geneva, 1211, Switzerland
| | - Marta Sierra
- Pharmaceutical Biochemistry Group, School of Pharmaceutical Sciences, University of Lausanne, University of Geneva, CMU 5-6, Rue Michel-Servet 1, Geneva, 1211, Switzerland
| | - Thomas Mercier
- Division and Laboratory of Clinical Pharmacology, Service of Biomedicine, Department of Laboratories, Lausanne University Hospital, Lausanne, 1011, Switzerland
| | - Laurent A Décosterd
- Division and Laboratory of Clinical Pharmacology, Service of Biomedicine, Department of Laboratories, Lausanne University Hospital, Lausanne, 1011, Switzerland
| | - Jocelyn Laporte
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, 67404, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, 67404, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, 67404, France
- Université de Strasbourg, Illkirch, 67404, France
| | - Belinda S Cowling
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, 67404, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, 67404, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, 67404, France
- Université de Strasbourg, Illkirch, 67404, France
| | - Olivier M Dorchies
- Pharmaceutical Biochemistry Group, School of Pharmaceutical Sciences, University of Lausanne, University of Geneva, CMU 5-6, Rue Michel-Servet 1, Geneva, 1211, Switzerland.
| | - Leonardo Scapozza
- Pharmaceutical Biochemistry Group, School of Pharmaceutical Sciences, University of Lausanne, University of Geneva, CMU 5-6, Rue Michel-Servet 1, Geneva, 1211, Switzerland.
| |
Collapse
|
59
|
Gao Y, Cao Y, Cui X, Wang X, Zhou Y, Huang F, Wang X, Wen J, Xie K, Xu P, Guo X, You L, Ji C. miR-199a-3p regulates brown adipocyte differentiation through mTOR signaling pathway. Mol Cell Endocrinol 2018; 476:155-164. [PMID: 29753771 DOI: 10.1016/j.mce.2018.05.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/23/2018] [Accepted: 05/07/2018] [Indexed: 12/14/2022]
Abstract
Recent discoveries of functional brown adipocytes in mammals illuminates their therapeutic potential for combating obesity and its associated diseases. However, on account of the limited amount and activity in adult humans of brown adipocyte depots, identification of miRNAs and characterization their regulatory roles in human brown adipogenesis are urgently needed. This study focused on the role of microRNA (miR)-199a-3p in human brown adipocyte differentiation and thermogenic capacity. A decreased expression pattern of miR-199a-3p was consistently observed during the differentiation course of brown adipocytes in mice and humans. Conversely, its level was induced during the differentiation course of human white pre-adipocytes derived from visceral fat. miR-199a-3p expression was relatively abundant in interscapular BAT (iBAT) and differentially regulated in the activated and aging BAT in mice. Additionally, miR-199a-3p expression level in human brown adipocytes was observed decreased upon thermogenic activation and increased by aging-related stimuli. Using primary pre-adipocytes, miR-199a-3p over-expression was capable of attenuating lipid accumulation and adipogenic gene expression as well as impairing brown adipocytes' metabolic characteristics as revealed by decreased mitochondrial DNA content and respiration. Suppression of miR-199a-3p by a locked nucleic acid (LNA) modified-anti-miR led to increased differentiation and thermogenesis in human brown adipocytes. By combining target prediction and examination, we identified mechanistic target of rapamycin kinase (mTOR) as a direct target of miR-199a-3p that affected brown adipogenesis and thermogenesis. Our results point to a novel role for miR-199a-3p and its downstream effector mTOR in human brown adipocyte differentiation and maintenance of thermogenic characteristics, which can be manipulated as therapeutic targets against obesity and its related metabolic disorders.
Collapse
Affiliation(s)
- Yao Gao
- Nanjing Maternity and Child Health Care Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Yan Cao
- Nanjing Maternity and Child Health Care Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Xianwei Cui
- Nanjing Maternity and Child Health Care Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Xingyun Wang
- Nanjing Maternity and Child Health Care Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Yahui Zhou
- Nanjing Maternity and Child Health Care Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Fangyan Huang
- Nanjing Maternity and Child Health Care Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Xing Wang
- Nanjing Maternity and Child Health Care Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Juan Wen
- Nanjing Maternity and Child Health Care Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Kaipeng Xie
- Nanjing Maternity and Child Health Care Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Pengfei Xu
- Nanjing Maternity and Child Health Care Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Xirong Guo
- Nanjing Maternity and Child Health Care Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Lianghui You
- Nanjing Maternity and Child Health Care Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China.
| | - Chenbo Ji
- Nanjing Maternity and Child Health Care Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China.
| |
Collapse
|
60
|
Reducing dynamin 2 (DNM2) rescues DNM2-related dominant centronuclear myopathy. Proc Natl Acad Sci U S A 2018; 115:11066-11071. [PMID: 30291191 DOI: 10.1073/pnas.1808170115] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Centronuclear myopathies (CNM) are a group of severe muscle diseases for which no effective therapy is currently available. We have previously shown that reduction of the large GTPase DNM2 in a mouse model of the X-linked form, due to loss of myotubularin phosphatase MTM1, prevents the development of the skeletal muscle pathophysiology. As DNM2 is mutated in autosomal dominant forms, here we tested whether DNM2 reduction can rescue DNM2-related CNM in a knock-in mouse harboring the p.R465W mutation (Dnm2 RW/+) and displaying a mild CNM phenotype similar to patients with the same mutation. A single intramuscular injection of adeno-associated virus-shRNA targeting Dnm2 resulted in reduction in protein levels 5 wk post injection, with a corresponding improvement in muscle mass and fiber size distribution, as well as an improvement in histopathological CNM features. To establish a systemic treatment, weekly i.p. injections of antisense oligonucleotides targeting Dnm2 were administered to Dnm2 RW/+mice for 5 wk. While muscle mass, histopathology, and muscle ultrastructure were perturbed in Dnm2 RW/+mice compared with wild-type mice, these features were indistinguishable from wild-type mice after reducing DNM2. Therefore, DNM2 knockdown via two different strategies can efficiently correct the myopathy due to DNM2 mutations, and it provides a common therapeutic strategy for several forms of centronuclear myopathy. Furthermore, we provide an example of treating a dominant disease by targeting both alleles, suggesting that this strategy may be applied to other dominant diseases.
Collapse
|
61
|
Abstract
Dynamin 2 (DNM2) belongs to a family of large GTPases that are well known for mediating membrane fission by oligomerizing at the neck of membrane invaginations. Autosomal dominant mutations in the ubiquitously expressed DNM2 cause 2 discrete neuromuscular diseases: autosomal dominant centronuclear myopathy (ADCNM) and dominant intermediate Charcot-Marie-Tooth neuropathy (CMT). CNM and CMT mutations may affect DNM2 in distinct manners: CNM mutations may cause protein hyperactivity with elevated GTPase and fission activities, while CMT mutations could impair DNM2 lipid binding and activity. DNM2 is also a modifier of the X-linked and autosomal recessive forms of CNM, as DNM2 protein levels are upregulated in animal models and patient muscle samples. Strikingly, reducing DNM2 has been shown to revert muscle phenotypes in preclinical models of CNM. As DNM2 emerges as the key player in CNM pathogenesis, the role(s) of DNM2 in skeletal muscle remains unclear. This review aims to provide insights into potential pathomechanisms related to DNM2-CNM mutations, and discuss exciting outcomes of current and future therapeutic approaches targeting DNM2 hyperactivity.
Collapse
Affiliation(s)
- Mo Zhao
- Genetics and Genome Biology Program, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Nika Maani
- Genetics and Genome Biology Program, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - James J Dowling
- Genetics and Genome Biology Program, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
- Division of Neurology, Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada.
- Department of Pediatrics, University of Toronto, Toronto, ON, M5G 1X8, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|