51
|
Kuboniwa M, Sakanaka A. Letter to the Editor: “Examining Bias and Reporting in Oral Health Prediction Modeling Studies”. J Dent Res 2020; 99:1306. [DOI: 10.1177/0022034520934721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- M. Kuboniwa
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - A. Sakanaka
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| |
Collapse
|
52
|
Schulte F, King OD, Paster BJ, Moscicki AB, Yao TJ, Van Dyke RB, Shiboski C, Ryder M, Seage G, Hardt M. Salivary metabolite levels in perinatally HIV-infected youth with periodontal disease. Metabolomics 2020; 16:98. [PMID: 32915320 PMCID: PMC7784422 DOI: 10.1007/s11306-020-01719-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 08/28/2020] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Salivary metabolite profiles are altered in adults with HIV compared to their uninfected counterparts. Less is known about youth with HIV and how oral disorders that commonly accompany HIV infection impact salivary metabolite levels. OBJECTIVE As part of the Adolescent Master Protocol multi-site cohort study of the Pediatric HIV/AIDS Cohort Study (PHACS) network we compared the salivary metabolome of youth with perinatally-acquired HIV (PHIV) and youth HIV-exposed, but uninfected (PHEU) and determined whether metabolites differ in PHIV versus PHEU. METHODS We used three complementary targeted and discovery-based liquid chromatography-tandem mass spectrometry (LC-MS/MS) workflows to characterize salivary metabolite levels in 20 PHIV and 20 PHEU youth with and without moderate periodontitis. We examined main effects associated with PHIV and periodontal disease, and the interaction between them. RESULTS We did not identify differences in salivary metabolite profiles that remained significant under stringent control for both multiple between-group comparisons and multiple metabolites. Levels of cadaverine, a known periodontitis-associated metabolite, were more abundant in individuals with periodontal disease with the difference being more pronounced in PHEU than PHIV. In the discovery-based dataset, we identified a total of 564 endogenous peptides in the metabolite extracts, showing that proteolytic processing and amino acid metabolism are important to consider in the context of HIV infection. CONCLUSION The salivary metabolite profiles of PHIV and PHEU youth were overall very similar. Individuals with periodontitis particularly among the PHEU youth had higher levels of cadaverine, suggesting that HIV infection, or its treatment, may influence the metabolism of oral bacteria.
Collapse
Affiliation(s)
- Fabian Schulte
- Forsyth Center for Salivary Diagnostics, Department of Applied Oral Sciences, The Forsyth Institute, 245 First Street, Cambridge, MA, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Oliver D King
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Bruce J Paster
- Forsyth Center for Salivary Diagnostics, Department of Applied Oral Sciences, The Forsyth Institute, 245 First Street, Cambridge, MA, USA
| | - Anna-Barbara Moscicki
- Department of Pediatrics, Division of Adolescent and Young Adult Medicine, University of California, Los Angeles, CA, USA
| | - Tzy-Jyun Yao
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Caroline Shiboski
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, CA, USA
| | - Mark Ryder
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, CA, USA
| | - George Seage
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Markus Hardt
- Forsyth Center for Salivary Diagnostics, Department of Applied Oral Sciences, The Forsyth Institute, 245 First Street, Cambridge, MA, USA.
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA.
| | | |
Collapse
|
53
|
Li A, Chen Y, van der Sluis LWM, Schuller AA, Tjakkes GH. White Blood Cell Count Mediates the Association Between Periodontal Inflammation and Cognitive Performance Measured by Digit Symbol Substitution Test Among Older U.S. Adults. J Gerontol A Biol Sci Med Sci 2020; 76:1309-1315. [DOI: 10.1093/gerona/glaa223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Indexed: 02/07/2023] Open
Abstract
Abstract
Background
Systemic effects of periodontal infection may increase the risk of central neuroinflammation, aggravating impaired cognition. This study aims to examine whether systemic inflammatory factors mediate the possible association between periodontal inflammation and cognitive function.
Methods
We conducted a cross-sectional analysis of 766 participants aged ≥ 60 years and who had completed periodontal and cognitive examinations in the National Health and Nutrition Examination Survey (NHANES) 2001–2002. We used multivariable linear regression to investigate the overall association between periodontal health and cognitive function as measured by the digit symbol substitution test (DSST). Bleeding on probing (BOP) and periodontal inflamed surface area (PISA) were used to assess the periodontal inflammatory activity and burden, respectively. Mediation analyses were used to test the indirect effects of the BOP/PISA on DSST via C-reactive protein, white blood cell (WBC) count, and fibrinogen.
Results
Participants with superior periodontal health obtained higher DSST scores than those with poorer periodontal health, adjusting for demographic factors and chronic conditions. Concerning the inflammatory activity, WBC count acted as a full mediator in the association between BOP and DSST (β = −0.091; 95% confidence interval [CI] = −0.174 to −0.008) and mediated 27.5% of the total association. Regarding the inflammatory burden, WBC count acted as a partial mediator in the association between PISA and DSST (β = −0.059; 95% CI = −0.087 to −0.031) and mediated 20.3% of the total association.
Conclusion
Our study indicated the potential role of systemic inflammatory factors as a mediator of associations between periodontal inflammation and cognitive function in the U.S. geriatric population.
Collapse
Affiliation(s)
- An Li
- Center for Dentistry and Oral Hygiene, University Medical Center Groningen (UMCG), University of Groningen, the Netherlands
| | - Yuntao Chen
- Medical Statistics and Decision Making, Department of Epidemiology, University Medical Center Groningen (UMCG), University of Groningen, the Netherlands
| | - Luc W M van der Sluis
- Center for Dentistry and Oral Hygiene, University Medical Center Groningen (UMCG), University of Groningen, the Netherlands
| | - Annemarie A Schuller
- Center for Dentistry and Oral Hygiene, University Medical Center Groningen (UMCG), University of Groningen, the Netherlands
- Department of Child Health, the Netherlands Organization for Applied Scientific Research (TNO), Leiden, the Netherlands
| | - Geerten-Has Tjakkes
- Center for Dentistry and Oral Hygiene, University Medical Center Groningen (UMCG), University of Groningen, the Netherlands
| |
Collapse
|
54
|
Iwasaki M, Usui M, Ariyoshi W, Nakashima K, Nagai-Yoshioka Y, Inoue M, Nishihara T. A Preliminary Study on the Ability of the Trypsin-Like Peptidase Activity Assay Kit to Detect Periodontitis. Dent J (Basel) 2020; 8:dj8030098. [PMID: 32882821 PMCID: PMC7558553 DOI: 10.3390/dj8030098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/19/2022] Open
Abstract
This study aimed to explore whether the Trypsin-Like Peptidase Activity Assay Kit (TLP-AA-Kit), which measures the activity of N-benzoyl-dl-arginine peptidase (trypsin-like peptidase), can be used as a reliable tool for periodontitis detection in population-based surveillance. In total, 105 individuals underwent a full-mouth periodontal examination and provided tongue swabs as specimens for further analyses. The results of the TLP-AA-Kit were scored between 1 and 5; higher scores indicated higher trypsin concentrations. Receiver operating characteristic analyses were used to evaluate the predictive validity of the TLP-AA-Kit, where the periodontitis case definition provided by the Centers for Disease Control/American Academy of Periodontology served as the reference. Severe and moderate periodontitis were identified in 4.8% and 16.2% of the study population, respectively. The TLP-AA-Kit showed high diagnostic accuracy for severe periodontitis, with an area under the curve of 0.93 (95% confidence interval = 0.88-0.99). However, the diagnostic accuracy of the TLP-AA-Kit for moderate/severe periodontitis was not reliable. While further studies are necessary to validate our results, the results provided herein highlight the potential of the TLP-AA-Kit as a useful tool for the detection of periodontitis, particularly in severe cases, for population-based surveillance.
Collapse
Affiliation(s)
- Masanori Iwasaki
- Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-Ku, Tokyo 173-0015, Japan
- Correspondence: ; Tel.: +81-33-964-3241 (ext. 4215); Fax: +81-33-964-1844
| | - Michihiko Usui
- Division of Periodontology, Kyushu Dental University, Kitakyushu 803-8580, Japan; (M.U.); (K.N.)
| | - Wataru Ariyoshi
- Division of Infections and Molecular Biology, Kyushu Dental University, Kitakyushu 803-8580, Japan; (W.A.); (Y.N.-Y.); (M.I.); (T.N.)
| | - Keisuke Nakashima
- Division of Periodontology, Kyushu Dental University, Kitakyushu 803-8580, Japan; (M.U.); (K.N.)
| | - Yoshie Nagai-Yoshioka
- Division of Infections and Molecular Biology, Kyushu Dental University, Kitakyushu 803-8580, Japan; (W.A.); (Y.N.-Y.); (M.I.); (T.N.)
| | - Maki Inoue
- Division of Infections and Molecular Biology, Kyushu Dental University, Kitakyushu 803-8580, Japan; (W.A.); (Y.N.-Y.); (M.I.); (T.N.)
| | - Tatsuji Nishihara
- Division of Infections and Molecular Biology, Kyushu Dental University, Kitakyushu 803-8580, Japan; (W.A.); (Y.N.-Y.); (M.I.); (T.N.)
| |
Collapse
|
55
|
Alqahtani S, Cooper B, Spears CA, Wright C, Shannahan J. Electronic nicotine delivery system-induced alterations in oral health via saliva assessment. Exp Biol Med (Maywood) 2020; 245:1319-1325. [PMID: 32640897 PMCID: PMC7441347 DOI: 10.1177/1535370220941258] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/21/2020] [Indexed: 11/17/2022] Open
Abstract
IMPACT STATEMENT The use of traditional tobacco products is a known risk factor for the development of diseases including periodontal disease. To date, the potential oral health effects related to electronic nicotine delivery systems (ENDS) use is unknown. This study collected saliva from ENDS users and never tobacco users to examine differences in the oral cavity of inflammatory cytokines and metabolites. The identification and measurement of these ENDS-related changes provide insight into disease pathways potentially associated with ENDS use. The utilization of saliva samples collected from human participates enhances the application of the findings compared to the majority of studies using cell culture and animal models. In addition, these foundational findings can inform future studies to examining specific pathways identified, interventional approaches, and application of translatable biomarkers of ENDS use.
Collapse
Affiliation(s)
- Saeed Alqahtani
- School of Health Sciences, Purdue
University, West Lafayette, IN 47907, USA
- National Center for Pharmaceuticals,
Life Science and Environment Research Institute, King Abdulaziz City for Science
and Technology, Riyadh 12354, Saudi Arabia
| | - Bruce Cooper
- Purdue Metabolite Profiling
Facility, Purdue University, West Lafayette, IN 47907, USA
| | - Claire A Spears
- School of Public Health,
Georgia
State University, Atlanta, GA 30303,
USA
| | - Christa Wright
- School of Public Health,
Georgia
State University, Atlanta, GA 30303,
USA
| | - Jonathan Shannahan
- School of Health Sciences, Purdue
University, West Lafayette, IN 47907, USA
| |
Collapse
|
56
|
Du M, Haag D, Lynch J, Mittinty M. Response to the Letter to the Editor: "Examining Bias and Reporting in Oral Health Prediction Modeling Studies". J Dent Res 2020; 99:1307. [PMID: 32635805 DOI: 10.1177/0022034520940275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- M Du
- School of Public Health, The University of Adelaide, Adelaide, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, Australia
| | - D Haag
- School of Public Health, The University of Adelaide, Adelaide, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, Australia
- Australian Research Centre for Population Oral Health, Adelaide Dental School, The University of Adelaide, Adelaide, Australia
| | - J Lynch
- School of Public Health, The University of Adelaide, Adelaide, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, Australia
- Population Health Sciences, University of Bristol, Bristol, UK
| | - M Mittinty
- School of Public Health, The University of Adelaide, Adelaide, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
57
|
Song G, Li L, Wang H, Zhang M, Yu X, Wang J, Xue J, Shen Q. Real-time assessing the lipid oxidation of prawn (Litopenaeus vannamei) during air-frying by iKnife coupling rapid evaporative ionization mass spectrometry. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.107066] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
58
|
Pei J, Li F, Xie Y, Liu J, Yu T, Feng X. Microbial and metabolomic analysis of gingival crevicular fluid in general chronic periodontitis patients: lessons for a predictive, preventive, and personalized medical approach. EPMA J 2020; 11:197-215. [PMID: 32547651 PMCID: PMC7272536 DOI: 10.1007/s13167-020-00202-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/10/2020] [Indexed: 12/14/2022]
Abstract
Objectives General chronic periodontitis (GCP) is a bacterial inflammatory disease with complex pathology. Despite extensive studies published on the variation in the oral microbiota and metabolic profiles of GCP patients, information is lacking regarding the correlation between host-bacterial interactions and biochemical metabolism. This study aimed to analyze the oral microbiome, the oral metabolome, and the link between them and to identify potential molecules as useful biomarkers for predictive, preventive, and personalized medicine (PPPM) in GCP. Methods In this study, gingival crevicular fluid (GCF) samples were collected from patients with GCP (n = 30) and healthy controls (n = 28). The abundance of oral microbiota constituents was obtained by Illumina sequencing, and the relative level of metabolites was measured by gas chromatography-mass spectrometry. Full-mouth probing depth, clinical attachment loss, and bleeding on probing were recorded as indices of periodontal disease. Results The relative abundances of 7 phyla and 82 genera differed significantly between the GCP and healthy groups. Seventeen differential metabolites involved in different metabolism pathways were selected based on variable influence on projection values (VIP > 1) and P values (P < 0.05). Through Spearman's correlation analysis, microorganisms, metabolites in GCF, and clinical data together showed a clear trend, and clinical data regarding periodontitis can be reflected in the shift of the oral microbial community and the change in metabolites in GCF. A combination of citramalic acid and N-carbamylglutamate yielded satisfactory accuracy (AUC = 0.876) for the predictive diagnosis of GCP. Conclusions Dysbiosis in the polymicrobial community structure and changes in metabolism could be mechanisms underlying periodontitis. The differential microorganisms and metabolites in GCF between periodontitis patients and healthy individuals are possibly biomarkers, pointing to a potential strategy for the prediction, diagnosis, prognosis, and management of personalized periodontal therapy.
Collapse
Affiliation(s)
- Jun Pei
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000 China.,National Clinical Research Center for Oral Diseases, Shanghai, 200000 China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200000 China
| | - Fei Li
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000 China.,National Clinical Research Center for Oral Diseases, Shanghai, 200000 China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200000 China
| | - Youhua Xie
- Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, 200000 China
| | - Jing Liu
- Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, 200000 China
| | - Tian Yu
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000 China.,National Clinical Research Center for Oral Diseases, Shanghai, 200000 China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200000 China
| | - Xiping Feng
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000 China.,National Clinical Research Center for Oral Diseases, Shanghai, 200000 China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200000 China
| |
Collapse
|
59
|
Nguyen T, Sedghi L, Ganther S, Malone E, Kamarajan P, Kapila YL. Host-microbe interactions: Profiles in the transcriptome, the proteome, and the metabolome. Periodontol 2000 2020; 82:115-128. [PMID: 31850641 DOI: 10.1111/prd.12316] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Periodontal studies using transcriptomics, proteomics, and metabolomics encompass the collection of mRNA transcripts, proteins, and small-molecule chemicals in the context of periodontal health and disease. The number of studies using these approaches has significantly increased in the last decade and they have provided new insight into the pathogenesis and host-microbe interactions that define periodontal diseases. This review provides an overview of current molecular findings using -omic approaches that underlie periodontal disease, including modulation of the host immune response, tissue homeostasis, and complex metabolic processes of the host and the oral microbiome. Integration of these -omic approaches will broaden our perspective of the molecular mechanisms involved in periodontal disease, advancing and improving the diagnosis and treatment of various stages and forms of periodontal disease.
Collapse
Affiliation(s)
- Trang Nguyen
- School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Lea Sedghi
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Sean Ganther
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Erin Malone
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Pachiyappan Kamarajan
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Yvonne L Kapila
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
60
|
Assad DX, Mascarenhas ECP, de Lima CL, de Toledo IP, Chardin H, Combes A, Acevedo AC, Guerra ENS. Salivary metabolites to detect patients with cancer: a systematic review. Int J Clin Oncol 2020; 25:1016-1036. [PMID: 32221803 DOI: 10.1007/s10147-020-01660-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/10/2020] [Indexed: 12/16/2022]
Abstract
Novel adjunctive screening aids are needed to reduce the morbidity and mortality related to cancer, and every effort should be made for early diagnosis. This systematic review aimed to evaluate salivary metabolites and their diagnostic value in patients with cancer.The systematic review was performed in two phases and included studies that focused on the diagnostic value of salivary metabolites in humans with solid malignant neoplasms. Five electronic databases were searched, and the risk of bias in individual studies was evaluated using the revised Quality Assessment of Diagnostic Accuracy Studies criteria (QUADAS-2). All procedures were performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.Of the 1151 studies retrieved, 25 were included; 13 studies used targeted and 12 untargeted metabolomics approaches. Most studies included patients with breast and oral cancer. Except for one, all studies had case-control designs, and none fulfilled all quality assessments. Overall, 140 salivary metabolites were described. The most frequently reported metabolites were alanine, valine, and leucine. Among the 11 studies that reported diagnostic test accuracy (DTA) values, proline, threonine, and histidine in combination and monoacylglycerol alone demonstrated the highest DTA for breast cancer. Combined choline, betaine, pipecolinic acid, and L-carnitine showed better discriminatory performance for early oral cancer.This systematic review highlights the current evidence on salivary metabolites that may be used as a future strategy to diagnose cancer. Further studies including larger sample sizes with confirmation of the results by untargeted analysis are warranted.
Collapse
Affiliation(s)
- Daniele Xavier Assad
- Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasília, Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brazil.,Medical Oncology Department, Hospital Sírio-Libanês, SGAS 613 Conj. E Bl. B, Brasília, DF, 70200-730, Brazil
| | - Elisa Cançado Porto Mascarenhas
- Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasília, Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brazil.,Medical Oncology Department, Cettro-Centro de Câncer de Brasília, SMH/N Quadra 02, 12° Andar, Brasilia, DF, 70710-904, Brazil
| | - Caroline Lourenço de Lima
- Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasília, Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brazil
| | - Isabela Porto de Toledo
- Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasília, Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brazil
| | - Hélène Chardin
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), ESPCI Paris, UMR CBI 8231, PSL Research University, 10 Rue Vauquelin, Paris, 75005, France.,Faculté de Chirurgie Dentaire, Université de Paris, 1 rue M. Arnoux, 92120, Montrouge, France
| | - Audrey Combes
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), ESPCI Paris, UMR CBI 8231, PSL Research University, 10 Rue Vauquelin, Paris, 75005, France
| | - Ana Carolina Acevedo
- Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasília, Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brazil
| | - Eliete Neves Silva Guerra
- Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasília, Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brazil.
| |
Collapse
|
61
|
Du M, Haag D, Song Y, Lynch J, Mittinty M. Examining Bias and Reporting in Oral Health Prediction Modeling Studies. J Dent Res 2020; 99:374-387. [DOI: 10.1177/0022034520903725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recent efforts to improve the reliability and efficiency of scientific research have caught the attention of researchers conducting prediction modeling studies (PMSs). Use of prediction models in oral health has become more common over the past decades for predicting the risk of diseases and treatment outcomes. Risk of bias and insufficient reporting present challenges to the reproducibility and implementation of these models. A recent tool for bias assessment and a reporting guideline—PROBAST (Prediction Model Risk of Bias Assessment Tool) and TRIPOD (Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis)—have been proposed to guide researchers in the development and reporting of PMSs, but their application has been limited. Following the standards proposed in these tools and a systematic review approach, a literature search was carried out in PubMed to identify oral health PMSs published in dental, epidemiologic, and biostatistical journals. Risk of bias and transparency of reporting were assessed with PROBAST and TRIPOD. Among 2,881 papers identified, 34 studies containing 58 models were included. The most investigated outcomes were periodontal diseases (42%) and oral cancers (30%). Seventy-five percent of the studies were susceptible to at least 4 of 20 sources of bias, including measurement error in predictors ( n = 12) and/or outcome ( n = 7), omitting samples with missing data ( n = 10), selecting variables based on univariate analyses ( n = 9), overfitting ( n = 13), and lack of model performance assessment ( n = 24). Based on TRIPOD, at least 5 of 31 items were inadequately reported in 95% of the studies. These items included sampling approaches ( n = 15), participant eligibility criteria ( n = 6), and model-building procedures ( n = 16). There was a general lack of transparent reporting and identification of bias across the studies. Application of the recommendations proposed in PROBAST and TRIPOD can benefit future research and improve the reproducibility and applicability of prediction models in oral health.
Collapse
Affiliation(s)
- M. Du
- School of Public Health, The University of Adelaide, Adelaide, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, Australia
| | - D. Haag
- School of Public Health, The University of Adelaide, Adelaide, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, Australia
| | - Y. Song
- Australian Research Centre for Population Oral Health, Adelaide Dental School, The University of Adelaide, Adelaide, Australia
| | - J. Lynch
- School of Public Health, The University of Adelaide, Adelaide, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, Australia
- Population Health Sciences, University of Bristol, Bristol, UK
| | - M. Mittinty
- School of Public Health, The University of Adelaide, Adelaide, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
62
|
Liebsch C, Pitchika V, Pink C, Samietz S, Kastenmüller G, Artati A, Suhre K, Adamski J, Nauck M, Völzke H, Friedrich N, Kocher T, Holtfreter B, Pietzner M. The Saliva Metabolome in Association to Oral Health Status. J Dent Res 2019; 98:642-651. [PMID: 31026179 DOI: 10.1177/0022034519842853] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Periodontitis is one of the most prevalent oral diseases worldwide and is caused by multifactorial interactions between host and oral bacteria. Altered cellular metabolism of host and microbes releases a number of intermediary end products known as metabolites. There is an increasing interest in identifying metabolites from oral fluids such as saliva to widen the understanding of the complex pathogenesis of periodontitis. It is believed that some metabolites might serve as indicators toward early detection and screening of periodontitis and perhaps even for monitoring its prognosis in the future. Because contemporary periodontal screening methods are deficient, there is an urgent need for novel approaches in periodontal screening procedures. To this end, we associated oral parameters (clinical attachment level, periodontal probing depth, supragingival plaque, supragingival calculus, number of missing teeth, and removable denture) with a large set of salivary metabolites ( n = 284) obtained by mass spectrometry among a subsample ( n = 909) of nondiabetic participants from the Study of Health in Pomerania (SHIP-Trend-0). Linear regression analyses were performed in age-stratified groups and adjusted for potential confounders. A multifaceted image of associated metabolites ( n = 107) was revealed with considerable differences according to age groups. In the young (20 to 39 y) and middle-aged (40 to 59 y) groups, metabolites were predominantly associated with periodontal variables, whereas among the older subjects (≥60 y), tooth loss was strongly associated with metabolite levels. Metabolites associated with periodontal variables were clearly linked to tissue destruction, host defense mechanisms, and bacterial metabolism. Across all age groups, the bacterial metabolite phenylacetate was significantly associated with periodontal variables. Our results revealed alterations of the salivary metabolome in association with age and oral health status. Among our comprehensive panel of metabolites, periodontitis was significantly associated with the bacterial metabolite phenylacetate, a promising substance for further biomarker research.
Collapse
Affiliation(s)
- C Liebsch
- 1 Unit of Periodontology, Department of Restorative Dentistry, Periodontology, Endodontology, and Pediatric and Preventive Dentistry, Dental School, University Medicine Greifswald, Greifswald, Germany
| | - V Pitchika
- 1 Unit of Periodontology, Department of Restorative Dentistry, Periodontology, Endodontology, and Pediatric and Preventive Dentistry, Dental School, University Medicine Greifswald, Greifswald, Germany
| | - C Pink
- 1 Unit of Periodontology, Department of Restorative Dentistry, Periodontology, Endodontology, and Pediatric and Preventive Dentistry, Dental School, University Medicine Greifswald, Greifswald, Germany
| | - S Samietz
- 2 Department of Prosthetic Dentistry, Gerodontology and Biomaterials, Dental School, University Medicine Greifswald, Greifswald, Germany
| | - G Kastenmüller
- 3 Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - A Artati
- 4 Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - K Suhre
- 3 Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany.,5 Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - J Adamski
- 4 Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, Neuherberg, Germany.,6 Lehrstuhl für Experimentelle Genetik, Technische Universität München, Freising-Weihenstephan, Germany.,7 German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - M Nauck
- 8 Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany.,9 DZHK (German Center for Cardiovascular Research), Greifswald, Germany
| | - H Völzke
- 9 DZHK (German Center for Cardiovascular Research), Greifswald, Germany.,10 Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - N Friedrich
- 8 Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany.,9 DZHK (German Center for Cardiovascular Research), Greifswald, Germany
| | - T Kocher
- 1 Unit of Periodontology, Department of Restorative Dentistry, Periodontology, Endodontology, and Pediatric and Preventive Dentistry, Dental School, University Medicine Greifswald, Greifswald, Germany
| | - B Holtfreter
- 1 Unit of Periodontology, Department of Restorative Dentistry, Periodontology, Endodontology, and Pediatric and Preventive Dentistry, Dental School, University Medicine Greifswald, Greifswald, Germany
| | - M Pietzner
- 8 Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany.,9 DZHK (German Center for Cardiovascular Research), Greifswald, Germany
| |
Collapse
|
63
|
Matsuda S, Okanobu A, Hatano S, Kajiya M, Sasaki S, Hamamoto Y, Iwata T, Ouhara K, Takeda K, Mizuno N, Fujita T, Kurihara H. Relationship between periodontal inflammation and calcium channel blockers induced gingival overgrowth—a cross-sectional study in a Japanese population. Clin Oral Investig 2019; 23:4099-4105. [DOI: 10.1007/s00784-019-02846-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 02/07/2019] [Indexed: 12/20/2022]
|
64
|
Epigenetic findings in periodontitis in UK twins: a cross-sectional study. Clin Epigenetics 2019; 11:27. [PMID: 30760334 PMCID: PMC6375219 DOI: 10.1186/s13148-019-0614-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/11/2019] [Indexed: 02/08/2023] Open
Abstract
Background Genetic and environmental risk factors contribute to periodontal disease, but the underlying susceptibility pathways are not fully understood. Epigenetic mechanisms are malleable regulators of gene function that can change in response to genetic and environmental stimuli, thereby providing a potential mechanism for mediating risk effects in periodontitis. The aim of this study is to identify epigenetic changes across tissues that are associated with periodontal disease. Methods Self-reported gingival bleeding and history of gum disease, or tooth mobility, were used as indicators of periodontal disease. DNA methylation profiles were generated using the Infinium HumanMethylation450 BeadChip in whole blood, buccal, and adipose tissue samples from predominantly older female twins (mean age 58) from the TwinsUK cohort. Epigenome-wide association scans (EWAS) of gingival bleeding and tooth mobility were conducted in whole blood in 528 and 492 twins, respectively. Subsequently, targeted candidate gene analysis at 28 genomic regions was carried out testing for phenotype-methylation associations in 41 (tooth mobility) and 43 (gingival bleeding) buccal, and 501 (tooth mobility) and 556 (gingival bleeding) adipose DNA samples. Results Epigenome-wide analyses in blood identified one CpG-site (cg21245277 in ZNF804A) associated with gingival bleeding (FDR = 0.03, nominal p value = 7.17e−8) and 58 sites associated with tooth mobility (FDR < 0.05) with the top signals in IQCE and XKR6. Epigenetic variation at 28 candidate regions (247 CpG-sites) for chronic periodontitis showed an enrichment for association with periodontal traits, and signals in eight genes (VDR, IL6ST, TMCO6, IL1RN, CD44, IL1B, WHAMM, and CXCL1) were significant in both traits. The methylation-phenotype association signals validated in buccal samples, and a subset (25%) also validated in adipose tissue. Conclusions Epigenome-wide analyses in adult female twins identified specific DNA methylation changes linked to self-reported periodontal disease. Future work will explore the environmental basis and functional impact of these results to infer potential for strategic personalized treatments and prevention of chronic periodontitis. Electronic supplementary material The online version of this article (10.1186/s13148-019-0614-4) contains supplementary material, which is available to authorized users.
Collapse
|
65
|
Abstract
BACKGROUND Oral cancer is one of the most frequently occurring cancers. Metabolic reprogramming is an important hallmark of cancer. Metabolomics characterizes all the small molecules in a biological sample, and a complete set of small molecules in such sample is referred as metabolome. Nuclear magnetic resonance spectroscopy and mass spectrometry are two widely used techniques in metabolomics studies. Increasing evidence demonstrates that metabolomics techniques can be used to explore the metabolic signatures in oral cancer. Elucidation of metabolic alterations in oral cancer is also important for the understanding of its pathological mechanisms. AIM OF REVIEW In this paper, we summarize the latest progress of metabolomics study in oral cancer and provide the suggestions for the future studies. KEY SCIENTIFIC CONCEPTS OF REVIEW The metabolomics studies in saliva, serum, and tumor tissues revealed the existence of metabolic signatures in bio-fluids and tissues of oral cancer, and several tumor-specific metabolites identified in individual study could discriminate oral cancer from healthy controls or precancerous lesions, which are potential biomarkers for the screening or early diagnosis of oral cancer. Metabolomics study of oral cancers in the future should aim to establish a routine procedure with high sensitivity, profile intracellular metabolites to find out the metabolic characteristics of tumor cells, and investigate the mechanism behind metabolomic alterations and the metabolic response of cancer cells to chemotherapy.
Collapse
Affiliation(s)
- Xun Chen
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People's Republic of China
| | - Dongsheng Yu
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People's Republic of China.
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Sun Yat-sen University, 56 Lingyuan West Road, Guangzhou, 510055, People's Republic of China.
| |
Collapse
|
66
|
Kawanishi N, Hoshi N, Masahiro S, Enomoto A, Ota S, Kaneko M, Soga T, Tomita M, Kimoto K. Effects of inter-day and intra-day variation on salivary metabolomic profiles. Clin Chim Acta 2018; 489:41-48. [PMID: 30481500 DOI: 10.1016/j.cca.2018.11.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/04/2018] [Accepted: 11/23/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Salivary secretion is an important parameter reflecting the health status of an individual and has been used clinically for the diagnosis of various oral diseases, such as xerostomia. Salivary metabolomic profiling is considered an emerging potential tool for the detection of various systemic diseases. To our knowledge, this is the first study to investigate the quantitative relationship between salivary secretion volume and salivary metabolomic profile. METHODS To evaluate inter- and intra-day variations in salivary secretion, 234 saliva samples were collected three times per day for three days from 13 subjects and analyzed. Capillary electrophoresis-mass spectrometry was used for non-targeted quantification of water-soluble metabolites. RESULTS No significant inter- or intra-day variations were observed in salivary secretion volume. No significant inter-day variations were observed in metabolomic patterns. In contrast, significant intra-day variations were observed in salivary metabolomic profiles. The difference was more obvious for stimulated saliva than for unstimulated saliva. These profile changes were independent of salivary secretion volume. CONCLUSIONS Our results indicated that diurnal change had a greater effect on salivary metabolomic profiles than the other factors. Hence, sampling time should be tightly controlled to minimize unexpected bias in the clinical use of salivary metabolomics.
Collapse
Affiliation(s)
- Norishige Kawanishi
- Division of Prosthodontics and Oral Rehabilitation, Department of Oral Function and Restoration, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka, Yokosuka 238-8580, Japan
| | - Noriyuki Hoshi
- Division of Prosthodontics and Oral Rehabilitation, Department of Oral Function and Restoration, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka, Yokosuka 238-8580, Japan.
| | - Sugimoto Masahiro
- Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka, Yokosuka, Kanagawa 238-8580, Japan; Health Promotion and Preemptive Medicine, Research and Development Center for Minimally Invasive Therapies Tokyo Medical University, 6-1-1 Shinjyuku, Shinjyuku 160-0022, Japan; Institute for Advanced Biosciences, Keio University, 246-2 Turuoka, 997-0052, Japan; Research and Development Center for Precision Medicine, University of Tsukuba, Tukuba, Ibaraki 305-8550, Japan
| | - Ayame Enomoto
- Institute for Advanced Biosciences, Keio University, 246-2 Turuoka, 997-0052, Japan
| | - Sana Ota
- Institute for Advanced Biosciences, Keio University, 246-2 Turuoka, 997-0052, Japan
| | - Miku Kaneko
- Institute for Advanced Biosciences, Keio University, 246-2 Turuoka, 997-0052, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, 246-2 Turuoka, 997-0052, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, 246-2 Turuoka, 997-0052, Japan
| | - Katsuhiko Kimoto
- Division of Prosthodontics and Oral Rehabilitation, Department of Oral Function and Restoration, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka, Yokosuka 238-8580, Japan
| |
Collapse
|
67
|
Romano F, Meoni G, Manavella V, Baima G, Mariani GM, Cacciatore S, Tenori L, Aimetti M. Effect of non-surgical periodontal therapy on salivary metabolic fingerprint of generalized chronic periodontitis using nuclear magnetic resonance spectroscopy. Arch Oral Biol 2018; 97:208-214. [PMID: 30396039 DOI: 10.1016/j.archoralbio.2018.10.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/06/2018] [Accepted: 10/21/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Metabolomic analysis of saliva proved its accuracy in discriminating patients with generalized chronic periodontitis (GCP) from healthy subjects by identifying specific molecular signatures of the disease. There is lack of investigations concerning the effect of periodontal treatment on individual metabolic fingerprints. Therefore, the aim of this study was to determine whether non-surgical periodontal therapy could change salivary metabolomic profile in GCP to one more similar to periodontal health. DESIGN Unstimulated whole saliva of 32 controls and 19 GCP patients were obtained prior to and 3 months after conventional staged non-surgical periodontal therapy. Metabolic profiling was performed using Nuclear Magnetic Resonance (NMR) spectroscopy, followed by univariate and multivariate paired approaches to assess the changes introduced by the therapy. RESULTS In GCP group, periodontal treatment led to an improvement in all clinical parameters (p < 0.001). The accuracy of the multivariate model in discriminating the metabolomic profile of each GCP patient at two time points was 92.5%. Despite the almost perfect separation of the spectra in the metabolic space, the univariate analysis failed to identify significant variations in single metabolite content. The post-treatment metabolic profile of GCP patients could not be assimilated to that of healthy controls who exhibited different levels of lactate, pyruvate, valine, proline, tyrosine, and formate. CONCLUSIONS Based on these data, NMR-spectroscopic analysis revealed that, despite significant changes in the overall metabolomic fingerprint after non-surgical therapy, GCP patients maintained a distinctive metabolic profile compared to healthy individuals.
Collapse
Affiliation(s)
- Federica Romano
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Gaia Meoni
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy
| | - Valeria Manavella
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Giacomo Baima
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Giulia Maria Mariani
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Stefano Cacciatore
- Cancer Genomics Research Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
| | - Leonardo Tenori
- Department of Experimental and Clinical Medicine, University of Florence, Sesto Fiorentino, Italy
| | - Mario Aimetti
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy.
| |
Collapse
|
68
|
Romano F, Meoni G, Manavella V, Baima G, Tenori L, Cacciatore S, Aimetti M. Analysis of salivary phenotypes of generalized aggressive and chronic periodontitis through nuclear magnetic resonance-based metabolomics. J Periodontol 2018; 89:1452-1460. [PMID: 29877582 DOI: 10.1002/jper.18-0097] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/06/2018] [Accepted: 05/07/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Recent findings about the differential gene expression signature of periodontal lesions have raised the hypothesis of distinctive biological phenotypes expressed by generalized chronic periodontitis (GCP) and generalized aggressive periodontitis (GAgP) patients. Therefore, this cross-sectional investigation was planned, primarily, to determine the ability of nuclear magnetic resonance (NMR) spectroscopic analysis of unstimulated whole saliva to discriminate GCP and GAgP disease-specific metabolomic fingerprint and, secondarily, to assess potential metabolites discriminating periodontitis patients from periodontally healthy individuals (HI). METHODS NMR-metabolomics spectra were acquired from salivary samples of patients with a clinical diagnosis of GCP (n = 33) or GAgP (n = 28) and from HI (n = 39). The clustering of HI, GCP, and GAgP patients was achieved by using a combination of the Principal Component Analysis and Canonical Correlation Analysis on the NMR profiles. RESULTS These analyses revealed a significant predictive accuracy discriminating HI from GCP, and discriminating HI from GAgP patients (both 81%). In contrast, the GAgP and GCP saliva samples seem to belong to the same metabolic space (60% predictive accuracy). Significantly lower levels (P < 0.05) of pyruvate, N-acetyl groups and lactate and higher levels (P < 0.05) of proline, phenylalanine, and tyrosine were found in GCP and GAgP patients compared with HI. CONCLUSIONS Within the limitations of this study, CGP and GAgP metabolomic profiles were not unequivocally discriminated through a NMR-based spectroscopic analysis of saliva.
Collapse
Affiliation(s)
- Federica Romano
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Gaia Meoni
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy.,Department of Experimental and Clinical Medicine, University of Florence, Sesto Fiorentino, Italy
| | - Valeria Manavella
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Giacomo Baima
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Leonardo Tenori
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy.,Department of Experimental and Clinical Medicine, University of Florence, Sesto Fiorentino, Italy
| | - Stefano Cacciatore
- Department of Surgery & Cancer, Imperial College, London, UK and International Centre for Genetic Engineering and Biotechnology, Cancer Genomics Group, Cape Town, South Africa
| | - Mario Aimetti
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| |
Collapse
|
69
|
Chen HW, Zhou W, Liao Y, Hu SC, Chen TL, Song ZC. Analysis of metabolic profiles of generalized aggressive periodontitis. J Periodontal Res 2018; 53:894-901. [PMID: 29974463 DOI: 10.1111/jre.12579] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVE The specific pathogenesis of generalized aggressive periodontitis (GAgP) has not yet been clarified, and few studies have focused on the association between GAgP and metabolomics. To elucidate the roles of metabolic profiles in the status of GAgP, this study aimed to identify the differential metabolic profiles between patients with GAgP and healthy controls using an untargeted metabolomic profiling method. MATERIAL AND METHODS Serum and gingival crevicular fluid samples were collected from healthy controls (n = 20) and patients with GAgP (n = 20) in this cross-sectional study. The relative levels of biomarkers in the samples were measured by gas chromatography-mass spectrometry. Principal components analysis and orthogonal partial least-squares discriminant analysis were used for statistical analysis. Metabolites were analysed qualitatively using the FiehnLib and NIST databases. Full-mouth probing depth and clinical attachment loss were recorded as indexes of periodontal disease. RESULTS A total of 349 metabolites were qualitatively detected in the gingival crevicular fluid samples, and 200 metabolites were detected in the serum samples. Compared with healthy controls, patients with GAgP showed significant increases in serum urea and allo-inositol levels. In contrast, glutathione, 2,5-dihydroxybenzaldehyde, adipic acid and 2-deoxyguanosine levels were decreased in patients with GAgP. In the gingival crevicular fluid samples, noradrenaline, uridine, α-tocopherol, dehydroascorbic acid, xanthine, galactose, glucose-1-phosphate and ribulose-5-phosphate levels were increased in patients with GAgP, while thymidine, glutathione and ribose-5-phosphate levels were decreased. CONCLUSION The metabolomics analysis by gas chromatography-mass spectrometry is an effective and minimally non-invasive way to differentiate the metabolites characteristic of patients with GAgP. Both serum and gingival crevicular fluid metabolomics are significantly different between patients with GAgP and healthy controls. These metabolic profiles have great potential in detecting GAgP and helping to understand its underlying mechanisms.
Collapse
Affiliation(s)
- H W Chen
- Department of Periodontology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - W Zhou
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China.,Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Y Liao
- Department of Periodontology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - S C Hu
- Department of Periodontology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - T L Chen
- Department of Periodontology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Z C Song
- Department of Periodontology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| |
Collapse
|
70
|
Yamada M, Takahashi N, Matsuda Y, Sato K, Yokoji M, Sulijaya B, Maekawa T, Ushiki T, Mikami Y, Hayatsu M, Mizutani Y, Kishino S, Ogawa J, Arita M, Tabeta K, Maeda T, Yamazaki K. A bacterial metabolite ameliorates periodontal pathogen-induced gingival epithelial barrier disruption via GPR40 signaling. Sci Rep 2018; 8:9008. [PMID: 29899364 PMCID: PMC5998053 DOI: 10.1038/s41598-018-27408-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 06/04/2018] [Indexed: 01/15/2023] Open
Abstract
Several studies have demonstrated the remarkable properties of microbiota and their metabolites in the pathogenesis of several inflammatory diseases. 10-Hydroxy-cis-12-octadecenoic acid (HYA), a bioactive metabolite generated by probiotic microorganisms during the process of fatty acid metabolism, has been studied for its protective effects against epithelial barrier impairment in the intestines. Herein, we examined the effect of HYA on gingival epithelial barrier function and its possible application for the prevention and treatment of periodontal disease. We found that GPR40, a fatty acid receptor, was expressed on gingival epithelial cells; activation of GPR40 by HYA significantly inhibited barrier impairment induced by Porphyromonas gingivalis, a representative periodontopathic bacterium. The degradation of E-cadherin and beta-catenin, basic components of the epithelial barrier, was prevented in a GPR40-dependent manner in vitro. Oral inoculation of HYA in a mouse experimental periodontitis model suppressed the bacteria-induced degradation of E-cadherin and subsequent inflammatory cytokine production in the gingival tissue. Collectively, these results suggest that HYA exerts a protective function, through GPR40 signaling, against periodontopathic bacteria-induced gingival epithelial barrier impairment and contributes to the suppression of inflammatory responses in periodontal diseases.
Collapse
Affiliation(s)
- Miki Yamada
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Naoki Takahashi
- Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | - Yumi Matsuda
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Keisuke Sato
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Mai Yokoji
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Benso Sulijaya
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tomoki Maekawa
- Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tatsuo Ushiki
- Division of Microscopic Anatomy and Bio-imaging, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yoshikazu Mikami
- Division of Microscopic Anatomy and Bio-imaging, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Manabu Hayatsu
- Division of Microscopic Anatomy and Bio-imaging, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yusuke Mizutani
- Division of Microscopic Anatomy and Bio-imaging, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shigenobu Kishino
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Jun Ogawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Koichi Tabeta
- Division of Periodontology, Department of Oral Biological Science, Niigata University Faculty of Dentistry, Niigata, Japan
| | - Takeyasu Maeda
- Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kazuhisa Yamazaki
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| |
Collapse
|
71
|
Kravchenko-Balasha N, Aframian DJ. A novel strategy for diagnosing viral vs
bacterial infection: implications for oral diseases. Oral Dis 2018; 24:491-493. [DOI: 10.1111/odi.12629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 12/20/2016] [Accepted: 12/20/2016] [Indexed: 11/26/2022]
Affiliation(s)
- N Kravchenko-Balasha
- Bio-Medical Sciences Department; Institute of Dental Sciences; Faculty of Dental Medicine; The Hebrew University; Jerusalem Israel
| | - DJ Aframian
- Department of Oral Medicine, Sedation and Maxillofacial Imaging; Faculty of Dental Medicine; Hadassah Medical Center; The Hebrew University; Jerusalem Israel
| |
Collapse
|
72
|
Ghallab NA. Diagnostic potential and future directions of biomarkers in gingival crevicular fluid and saliva of periodontal diseases: Review of the current evidence. Arch Oral Biol 2018; 87:115-124. [DOI: 10.1016/j.archoralbio.2017.12.022] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 12/04/2017] [Accepted: 12/21/2017] [Indexed: 11/25/2022]
|
73
|
On site visual detection of Porphyromonas gingivalis related periodontitis by using a magnetic-nanobead based assay for gingipains protease biomarkers. Mikrochim Acta 2018; 185:149. [PMID: 29594603 DOI: 10.1007/s00604-018-2677-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 01/12/2018] [Indexed: 12/27/2022]
Abstract
Porphyromonas gingivalis (P. gingivalis) is a pathogen causing periodontitis. A rapid assay is described for the diagnosis of periodontal infections related to P. gingivalis. The method is making use of gingipains, a group of P. gingivalis specific proteases as a detection biomarker. Magnetic-nanobeads were labeled with gingipain-specific peptide substrates and immobilized on a gold biosensing platform via gold-thiol linkage. As a result of this, the color of the gold layer turns black. Upon cleavage of the immobilized substrates by gingipains, the magnetic-nanobeads-peptide fragments were attracted by a magnet so that the golden surface color becomes visible again. This assay is highly sensitive and specific. It is capable of detecting as little as 49 CFU·mL-1 of P. gingivalis within 30 s. Examination of periodontitis patients and healthy control saliva samples showed the potential of the assay. The simplicity and rapidity of the assay makes it an effective point-of-care device. Graphical abstract Schematic of the assay for the detection of P. gingivalis proteases as one of the promising biomarkers associated with periodontal diseases.
Collapse
|
74
|
Kim HA, Lee HS, Shin TH, Jung JY, Baek WY, Park HJ, Lee G, Paik MJ, Suh CH. Polyamine patterns in plasma of patients with systemic lupus erythematosus and fever. Lupus 2018; 27:930-938. [PMID: 29308729 DOI: 10.1177/0961203317751860] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease with various clinical manifestations and serologic markers. In this study, we analyzed nine polyamine (PA) profiles of plasma from patients with SLE and healthy controls (HCs), and the relationship between the PA profiles and disease activity. PA alterations in plasma of 44 patients with SLE and fever were investigated using gas chromatography mass spectrometry (GC-MS) in selected ion monitoring mode using N-ethoxycarbonyl/ N-pentafluoropropionyl derivatives, and compared with those of 43 HCs. Patients with SLE and HCs showed differences in five of nine PA profiles. Among five changed PA levels, four PAs, namely N1-acetylcadaverine, spermidine, N1-acetylspermidine, and spermine, were dramatically decreased. However, the level of cadaverine was increased in patients with SLE. In the partial correlation with PA profiles and disease activity markers of SLE, several disease activity markers and nutritional markers were correlated with cadaverine, spermidine, and N 8-acetylspermidine. Thus, our results provide a comprehensive understanding of the relationship between PA metabolomics and disease activity markers in patients with SLE.
Collapse
Affiliation(s)
- H A Kim
- 1 Department of Rheumatology and BK21 Division of Cell Transformation and Restoration, 37977 Ajou University School of Medicine , Suwon, Republic of Korea
| | - H S Lee
- 2 College of Pharmacy, 65380 Sunchon National University , Suncheon, Republic of Korea
| | - T H Shin
- 3 Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - J Y Jung
- 1 Department of Rheumatology and BK21 Division of Cell Transformation and Restoration, 37977 Ajou University School of Medicine , Suwon, Republic of Korea
| | - W Y Baek
- 1 Department of Rheumatology and BK21 Division of Cell Transformation and Restoration, 37977 Ajou University School of Medicine , Suwon, Republic of Korea
| | - H J Park
- 3 Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - G Lee
- 3 Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - M J Paik
- 2 College of Pharmacy, 65380 Sunchon National University , Suncheon, Republic of Korea
| | - C H Suh
- 1 Department of Rheumatology and BK21 Division of Cell Transformation and Restoration, 37977 Ajou University School of Medicine , Suwon, Republic of Korea
| |
Collapse
|
75
|
Rzeznik M, Triba MN, Levy P, Jungo S, Botosoa E, Duchemann B, Le Moyec L, Bernaudin JF, Savarin P, Guez D. Identification of a discriminative metabolomic fingerprint of potential clinical relevance in saliva of patients with periodontitis using 1H nuclear magnetic resonance (NMR) spectroscopy. PLoS One 2017; 12:e0182767. [PMID: 28837579 PMCID: PMC5570357 DOI: 10.1371/journal.pone.0182767] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 07/24/2017] [Indexed: 12/31/2022] Open
Abstract
Periodontitis is characterized by the loss of the supporting tissues of the teeth in an inflammatory-infectious context. The diagnosis relies on clinical and X-ray examination. Unfortunately, clinical signs of tissue destruction occur late in the disease progression. Therefore, it is mandatory to identify reliable biomarkers to facilitate a better and earlier management of this disease. To this end, saliva represents a promising fluid for identification of biomarkers as metabolomic fingerprints. The present study used high-resolution 1H-nuclear magnetic resonance (NMR) spectroscopy coupled with multivariate statistical analysis to identify the metabolic signature of active periodontitis. The metabolome of stimulated saliva of 26 patients with generalized periodontitis (18 chronic and 8 aggressive) was compared to that of 25 healthy controls. Principal Components Analysis (PCA), performed with clinical variables, indicated that the patient population was homogeneous, demonstrating a strong correlation between the clinical and the radiological variables used to assess the loss of periodontal tissues and criteria of active disease. Orthogonal Projection to Latent Structure (OPLS) analysis showed that patients with periodontitis can be discriminated from controls on the basis of metabolite concentrations in saliva with satisfactory explained variance (R2X = 0.81 and R2Y = 0.61) and predictability (Q2Y = 0.49, CV-AUROC = 0.94). Interestingly, this discrimination was irrespective of the type of generalized periodontitis, i.e. chronic or aggressive. Among the main discriminating metabolites were short chain fatty acids as butyrate, observed in higher concentrations, and lactate, γ-amino-butyrate, methanol, and threonine observed in lower concentrations in periodontitis. The association of lactate, GABA, and butyrate to generate an aggregated variable reached the best positive predictive value for diagnosis of periodontitis. In conclusion, this pilot study showed that 1H-NMR spectroscopy analysis of saliva could differentiate patients with periodontitis from controls. Therefore, this simple, robust, non-invasive method, may offer a significant help for early diagnosis and follow-up of periodontitis.
Collapse
Affiliation(s)
- Matthias Rzeznik
- Paris 13 University, Sorbonne Paris Cité, CSPBAT, UMR 7244, CNRS, Bobigny, France.,APHP, Department of Periodontology, Bretonneau Hospital, Paris-Descartes University, Paris, France
| | - Mohamed Nawfal Triba
- Paris 13 University, Sorbonne Paris Cité, CSPBAT, UMR 7244, CNRS, Bobigny, France
| | - Pierre Levy
- APHP, Department of Public Health, Tenon Hospital, Paris, France.,UMR-S1136 (EPAR team), INSERM UPMC, Sorbonne Universités, Paris, France
| | - Sébastien Jungo
- APHP, Department of Periodontology, Bretonneau Hospital, Paris-Descartes University, Paris, France
| | - Eliot Botosoa
- Paris 13 University, Sorbonne Paris Cité, CSPBAT, UMR 7244, CNRS, Bobigny, France
| | - Boris Duchemann
- Paris 13 University, Sorbonne Paris Cité, CSPBAT, UMR 7244, CNRS, Bobigny, France.,APHP, Department of Pneumology, Avicenne Hospital, Bobigny, France
| | | | - Jean-François Bernaudin
- APHP, Department of Pneumology, Avicenne Hospital, Bobigny, France.,UPMC Paris 6, Sorbonne Universités, Paris, France.,Paris 13 University, Sorbonne Paris Cité, EA2363, Bobigny, France
| | - Philippe Savarin
- Paris 13 University, Sorbonne Paris Cité, CSPBAT, UMR 7244, CNRS, Bobigny, France
| | - Dominique Guez
- APHP, Department of Periodontology, Bretonneau Hospital, Paris-Descartes University, Paris, France
| |
Collapse
|
76
|
Sakanaka A, Kuboniwa M, Hashino E, Bamba T, Fukusaki E, Amano A. Distinct signatures of dental plaque metabolic byproducts dictated by periodontal inflammatory status. Sci Rep 2017; 7:42818. [PMID: 28220901 PMCID: PMC5318866 DOI: 10.1038/srep42818] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/16/2017] [Indexed: 01/05/2023] Open
Abstract
Onset of chronic periodontitis is associated with an aberrant polymicrobial community, termed dysbiosis. Findings regarding its etiology obtained using high-throughput sequencing technique suggested that dysbiosis holds a conserved metabolic signature as an emergent property. The purpose of this study was to identify robust biomarkers for periodontal inflammation severity. Furthermore, we investigated disease-associated metabolic signatures of periodontal microbiota using a salivary metabolomics approach. Whole saliva samples were obtained from adult subjects before and after removal of supragingival plaque (debridement). Periodontal inflamed surface area (PISA) was employed as an indicator of periodontal inflammatory status. Based on multivariate analyses using pre-debridement salivary metabolomics data, we found that metabolites associated with higher PISA included cadaverine and hydrocinnamate, while uric acid and ethanolamine were associated with lower PISA. Next, we focused on dental plaque metabolic byproducts by selecting salivary metabolites significantly decreased following debridement. Metabolite set enrichment analysis revealed that polyamine metabolism, arginine and proline metabolism, butyric acid metabolism, and lysine degradation were distinctive metabolic signatures of dental plaque in the high PISA group, which may be related to the metabolic signatures of disease-associated communities. Collectively, our findings identified potential biomarkers of periodontal inflammatory status and also provide insight into metabolic signatures of dysbiotic communities.
Collapse
Affiliation(s)
- Akito Sakanaka
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masae Kuboniwa
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan
| | - Ei Hashino
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.,Project 'Challenge to Intractable Oral Disease', Osaka University Dental Hospital; 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.,Department of Biotechnology, Osaka University Graduate School of Engineering, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Eiichiro Fukusaki
- AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan.,Department of Biotechnology, Osaka University Graduate School of Engineering, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Atsuo Amano
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
77
|
Velsko IM, Overmyer KA, Speller C, Klaus L, Collins MJ, Loe L, Frantz LAF, Sankaranarayanan K, Lewis CM, Martinez JBR, Chaves E, Coon JJ, Larson G, Warinner C. The dental calculus metabolome in modern and historic samples. Metabolomics 2017; 13:134. [PMID: 29046620 PMCID: PMC5626792 DOI: 10.1007/s11306-017-1270-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/21/2017] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Dental calculus is a mineralized microbial dental plaque biofilm that forms throughout life by precipitation of salivary calcium salts. Successive cycles of dental plaque growth and calcification make it an unusually well-preserved, long-term record of host-microbial interaction in the archaeological record. Recent studies have confirmed the survival of authentic ancient DNA and proteins within historic and prehistoric dental calculus, making it a promising substrate for investigating oral microbiome evolution via direct measurement and comparison of modern and ancient specimens. OBJECTIVE We present the first comprehensive characterization of the human dental calculus metabolome using a multi-platform approach. METHODS Ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) quantified 285 metabolites in modern and historic (200 years old) dental calculus, including metabolites of drug and dietary origin. A subset of historic samples was additionally analyzed by high-resolution gas chromatography-MS (GC-MS) and UPLC-MS/MS for further characterization of metabolites and lipids. Metabolite profiles of modern and historic calculus were compared to identify patterns of persistence and loss. RESULTS Dipeptides, free amino acids, free nucleotides, and carbohydrates substantially decrease in abundance and ubiquity in archaeological samples, with some exceptions. Lipids generally persist, and saturated and mono-unsaturated medium and long chain fatty acids appear to be well-preserved, while metabolic derivatives related to oxidation and chemical degradation are found at higher levels in archaeological dental calculus than fresh samples. CONCLUSIONS The results of this study indicate that certain metabolite classes have higher potential for recovery over long time scales and may serve as appropriate targets for oral microbiome evolutionary studies.
Collapse
Affiliation(s)
- Irina M. Velsko
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford, OX1 3QY UK
- Present Address: Department of Biological Sciences, Clemson University, Clemson, SC 29634 USA
| | | | - Camilla Speller
- BioArCh, Department of Archaeology, University of York, York, YO10 5DD UK
| | - Lauren Klaus
- Department of Periodontics, University of Oklahoma Health Sciences Center, Oklahoma, OK USA
| | - Matthew J. Collins
- BioArCh, Department of Archaeology, University of York, York, YO10 5DD UK
- Museum of Natural History, University of Copenhagen, Copenhagen, Denmark
| | - Louise Loe
- Heritage Burial Services, Oxford Archaeology, Oxford, UK
| | - Laurent A. F. Frantz
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford, OX1 3QY UK
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS UK
| | | | - Cecil M. Lewis
- Department of Anthropology, University of Oklahoma, Norman, OK 73019 USA
| | | | - Eros Chaves
- Department of Periodontics, University of Oklahoma Health Sciences Center, Oklahoma, OK USA
- Present Address: Pinellas Dental Specialties, Largo, FL 33776 USA
| | - Joshua J. Coon
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI 53706 USA
- Departments of Chemistry and Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
- Morgridge Institute for Research, Madison, WI 53706 USA
| | - Greger Larson
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford, OX1 3QY UK
| | - Christina Warinner
- Department of Periodontics, University of Oklahoma Health Sciences Center, Oklahoma, OK USA
- Department of Anthropology, University of Oklahoma, Norman, OK 73019 USA
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07743 Jena, Germany
| |
Collapse
|