51
|
Viher PV, Stegmayer K, Bracht T, Federspiel A, Bohlhalter S, Strik W, Wiest R, Walther S. Neurological Soft Signs Are Associated With Altered White Matter in Patients With Schizophrenia. Schizophr Bull 2021; 48:220-230. [PMID: 34355246 PMCID: PMC8781326 DOI: 10.1093/schbul/sbab089] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neurological soft signs (NSS) are related to grey matter and functional brain abnormalities in schizophrenia. Studies in healthy subjects suggest, that NSS are also linked to white matter. However, the association between NSS and white matter abnormalities in schizophrenia remains to be elucidated. The present study investigated, if NSS are related to white matter alterations in patients with schizophrenia. The total sample included 42 healthy controls and 41 patients with schizophrenia. We used the Neurological Evaluation Scale (NES), and we acquired diffusion weighted magnetic resonance imaging to assess white matter on a voxel-wise between subject statistic. In patients with schizophrenia, linear associations between NES with fractional anisotropy (FA), radial, axial, and mean diffusivity were analyzed with tract-based spatial statistics while controlling for age, medication dose, the severity of the disease, and motion. The main pattern of results in patients showed a positive association of NES with all diffusion measures except FA in important motor pathways: the corticospinal tract, internal capsule, superior longitudinal fascicle, thalamocortical radiations and corpus callosum. In addition, exploratory tractography analysis revealed an association of the right aslant with NES in patients. These results suggest that specific white matter alterations, that is, increased diffusivity might contribute to NSS in patients with schizophrenia.
Collapse
Affiliation(s)
- Petra Verena Viher
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland,To whom correspondence should be addressed; Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Switzerland; tel: +41-31-930-97-57, fax: +41-31-930-94-04, e-mail:
| | - Katharina Stegmayer
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Tobias Bracht
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Andrea Federspiel
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Stephan Bohlhalter
- Department of Clinical Research, University Hospital, Inselspital, Bern, Switzerland,Neurocenter, Luzerner Kantonsspital, Switzerland
| | - Werner Strik
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Roland Wiest
- Support Center of Advanced Neuroimaging, Institute of Neuroradiology, University of Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| |
Collapse
|
52
|
Corticospinal Motor Circuit Plasticity After Spinal Cord Injury: Harnessing Neuroplasticity to Improve Functional Outcomes. Mol Neurobiol 2021; 58:5494-5516. [PMID: 34341881 DOI: 10.1007/s12035-021-02484-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
Spinal cord injury (SCI) is a devastating condition that affects approximately 294,000 people in the USA and several millions worldwide. The corticospinal motor circuitry plays a major role in controlling skilled movements and in planning and coordinating movements in mammals and can be damaged by SCI. While axonal regeneration of injured fibers over long distances is scarce in the adult CNS, substantial spontaneous neural reorganization and plasticity in the spared corticospinal motor circuitry has been shown in experimental SCI models, associated with functional recovery. Beneficially harnessing this neuroplasticity of the corticospinal motor circuitry represents a highly promising therapeutic approach for improving locomotor outcomes after SCI. Several different strategies have been used to date for this purpose including neuromodulation (spinal cord/brain stimulation strategies and brain-machine interfaces), rehabilitative training (targeting activity-dependent plasticity), stem cells and biological scaffolds, neuroregenerative/neuroprotective pharmacotherapies, and light-based therapies like photodynamic therapy (PDT) and photobiomodulation (PMBT). This review provides an overview of the spontaneous reorganization and neuroplasticity in the corticospinal motor circuitry after SCI and summarizes the various therapeutic approaches used to beneficially harness this neuroplasticity for functional recovery after SCI in preclinical animal model and clinical human patients' studies.
Collapse
|
53
|
Sokoloff G, Dooley JC, Glanz RM, Wen RY, Hickerson MM, Evans LG, Laughlin HM, Apfelbaum KS, Blumberg MS. Twitches emerge postnatally during quiet sleep in human infants and are synchronized with sleep spindles. Curr Biol 2021; 31:3426-3432.e4. [PMID: 34139191 DOI: 10.1016/j.cub.2021.05.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/03/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022]
Abstract
In humans and other mammals, the stillness of sleep is punctuated by bursts of rapid eye movements (REMs) and myoclonic twitches of the limbs.1 Like the spontaneous activity that arises from the sensory periphery in other modalities (e.g., retinal waves),2 sensory feedback arising from twitches is well suited to drive activity-dependent development of the sensorimotor system.3 It is partly because of the behavioral activation of REM sleep that this state is also called active sleep (AS), in contrast with the behavioral quiescence that gives quiet sleep (QS)-the second major stage of sleep-its name. In human infants, for which AS occupies 8 h of each day,4 twitching helps to identify the state;5-8 nonetheless, we know little about the structure and functions of twitching across development. Recently, in sleeping infants,9 we documented a shift in the temporal expression of twitching beginning around 3 months of age that suggested a qualitative change in how twitches are produced. Here, we combine behavioral analysis with high-density electroencephalography (EEG) to demonstrate that this shift reflects the emergence of limb twitches during QS. Twitches during QS are not only unaccompanied by REMs, but they also occur synchronously with sleep spindles, a hallmark of QS. As QS-related twitching increases with age, sleep spindle rate also increases along the sensorimotor strip. The emerging synchrony between subcortically generated twitches and cortical oscillations suggests the development of functional connectivity among distant sensorimotor structures, with potential implications for detecting and explaining atypical developmental trajectories.
Collapse
Affiliation(s)
- Greta Sokoloff
- Department of Psychological and Brain Sciences, University of Iowa, 340 Iowa Avenue, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA.
| | - James C Dooley
- Department of Psychological and Brain Sciences, University of Iowa, 340 Iowa Avenue, Iowa City, IA 52242, USA
| | - Ryan M Glanz
- Department of Psychological and Brain Sciences, University of Iowa, 340 Iowa Avenue, Iowa City, IA 52242, USA
| | - Rebecca Y Wen
- Department of Psychological and Brain Sciences, University of Iowa, 340 Iowa Avenue, Iowa City, IA 52242, USA
| | - Meredith M Hickerson
- Department of Psychological and Brain Sciences, University of Iowa, 340 Iowa Avenue, Iowa City, IA 52242, USA
| | - Laura G Evans
- Department of Psychological and Brain Sciences, University of Iowa, 340 Iowa Avenue, Iowa City, IA 52242, USA
| | - Haley M Laughlin
- Department of Psychological and Brain Sciences, University of Iowa, 340 Iowa Avenue, Iowa City, IA 52242, USA
| | - Keith S Apfelbaum
- Department of Psychological and Brain Sciences, University of Iowa, 340 Iowa Avenue, Iowa City, IA 52242, USA
| | - Mark S Blumberg
- Department of Psychological and Brain Sciences, University of Iowa, 340 Iowa Avenue, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
54
|
Lockyer EJ, Compton CT, Forman DA, Pearcey GE, Button DC, Power KE. Moving forward: methodological considerations for assessing corticospinal excitability during rhythmic motor output in humans. J Neurophysiol 2021; 126:181-194. [PMID: 34133230 DOI: 10.1152/jn.00027.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The use of transcranial magnetic stimulation to assess the excitability of the central nervous system to further understand the neural control of human movement is expansive. The majority of the work performed to-date has assessed corticospinal excitability either at rest or during relatively simple isometric contractions. The results from this work are not easily extrapolated to rhythmic, dynamic motor outputs, given that corticospinal excitability is task-, phase-, intensity-, direction-, and muscle-dependent (Power KE, Lockyer EJ, Forman DA, Button DC. Appl Physiol Nutr Metab 43: 1176-1185, 2018). Assessing corticospinal excitability during rhythmic motor output, however, involves technical challenges that are to be overcome, or at the minimum considered, when attempting to design experiments and interpret the physiological relevance of the results. The purpose of this narrative review is to highlight the research examining corticospinal excitability during a rhythmic motor output and, importantly, to provide recommendations regarding the many factors that must be considered when designing and interpreting findings from studies that involve limb movement. To do so, the majority of work described herein refers to work performed using arm cycling (arm pedaling or arm cranking) as a model of a rhythmic motor output used to examine the neural control of human locomotion.
Collapse
Affiliation(s)
- Evan J Lockyer
- Human Neurophysiology Lab, School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.,Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Chris T Compton
- Human Neurophysiology Lab, School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.,Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Davis A Forman
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Gregory E Pearcey
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Shirley Ryan Ability Lab, Chicago, Illinois
| | - Duane C Button
- Human Neurophysiology Lab, School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.,Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Kevin E Power
- Human Neurophysiology Lab, School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.,Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|
55
|
Ribeiro Gomes AR, Olivier E, Killackey HP, Giroud P, Berland M, Knoblauch K, Dehay C, Kennedy H. Refinement of the Primate Corticospinal Pathway During Prenatal Development. Cereb Cortex 2021; 30:656-671. [PMID: 31343065 DOI: 10.1093/cercor/bhz116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 11/14/2022] Open
Abstract
Perturbation of the developmental refinement of the corticospinal (CS) pathway leads to motor disorders. While non-primate developmental refinement is well documented, in primates invasive investigations of the developing CS pathway have been confined to neonatal and postnatal stages when refinement is relatively modest. Here, we investigated the developmental changes in the distribution of CS projection neurons in cynomolgus monkey (Macaca fascicularis). Injections of retrograde tracer at cervical levels of the spinal cord at embryonic day (E) 95 and E105 show that: (i) areal distribution of back-labeled neurons is more extensive than in the neonate and dense labeling is found in prefrontal, limbic, temporal, and occipital cortex; (ii) distributions of contralateral and ipsilateral projecting CS neurons are comparable in terms of location and numbers of labeled neurons, in contrast to the adult where the contralateral projection is an order of magnitude higher than the ipsilateral projection. Findings from one largely restricted injection suggest a hitherto unsuspected early innervation of the gray matter. In the fetus there was in addition dense labeling in the central nucleus of the amygdala, the hypothalamus, the subthalamic nucleus, and the adjacent region of the zona incerta, subcortical structures with only minor projections in the adult control.
Collapse
Affiliation(s)
- Ana Rita Ribeiro Gomes
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute, Bron, France
| | - Etienne Olivier
- Institute of Neuroscience, Université Catholique de Louvain, Belgium
| | - Herbert P Killackey
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Pascale Giroud
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute, Bron, France
| | - Michel Berland
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute, Bron, France
| | - Kenneth Knoblauch
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute, Bron, France
| | - Colette Dehay
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute, Bron, France
| | - Henry Kennedy
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute, Bron, France.,Institute of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
56
|
Cheng HJ, Ng KK, Qian X, Ji F, Lu ZK, Teo WP, Hong X, Nasrallah FA, Ang KK, Chuang KH, Guan C, Yu H, Chew E, Zhou JH. Task-related brain functional network reconfigurations relate to motor recovery in chronic subcortical stroke. Sci Rep 2021; 11:8442. [PMID: 33875691 PMCID: PMC8055891 DOI: 10.1038/s41598-021-87789-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Stroke leads to both regional brain functional disruptions and network reorganization. However, how brain functional networks reconfigure as task demand increases in stroke patients and whether such reorganization at baseline would facilitate post-stroke motor recovery are largely unknown. To address this gap, brain functional connectivity (FC) were examined at rest and motor tasks in eighteen chronic subcortical stroke patients and eleven age-matched healthy controls. Stroke patients underwent a 2-week intervention using a motor imagery-assisted brain computer interface-based (MI-BCI) training with or without transcranial direct current stimulation (tDCS). Motor recovery was determined by calculating the changes of the upper extremity component of the Fugl-Meyer Assessment (FMA) score between pre- and post-intervention divided by the pre-intervention FMA score. The results suggested that as task demand increased (i.e., from resting to passive unaffected hand gripping and to active affected hand gripping), patients showed greater FC disruptions in cognitive networks including the default and dorsal attention networks. Compared to controls, patients had lower task-related spatial similarity in the somatomotor-subcortical, default-somatomotor, salience/ventral attention-subcortical and subcortical-subcortical connections, suggesting greater inefficiency in motor execution. Importantly, higher baseline network-specific FC strength (e.g., dorsal attention and somatomotor) and more efficient brain network reconfigurations (e.g., somatomotor and subcortical) from rest to active affected hand gripping at baseline were related to better future motor recovery. Our findings underscore the importance of studying functional network reorganization during task-free and task conditions for motor recovery prediction in stroke.
Collapse
Affiliation(s)
- Hsiao-Ju Cheng
- Center for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Kwun Kei Ng
- Center for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xing Qian
- Center for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Fang Ji
- Center for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhong Kang Lu
- Institute for Infocomm Research, Agency for Science Technology and Research, Singapore, Singapore
| | - Wei Peng Teo
- National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Xin Hong
- Singapore Bioimaging Consortium, Agency for Science Technology and Research, Singapore, Singapore
| | - Fatima Ali Nasrallah
- Singapore Bioimaging Consortium, Agency for Science Technology and Research, Singapore, Singapore
- Queensland Brain Institute and Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - Kai Keng Ang
- Institute for Infocomm Research, Agency for Science Technology and Research, Singapore, Singapore
- School of Computer Science and Engineering, Nanyang Technology University, Singapore, Singapore
| | - Kai-Hsiang Chuang
- Singapore Bioimaging Consortium, Agency for Science Technology and Research, Singapore, Singapore
- Queensland Brain Institute and Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - Cuntai Guan
- School of Computer Science and Engineering, Nanyang Technology University, Singapore, Singapore
| | - Haoyong Yu
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Effie Chew
- Division of Neurology/Rehabilitation Medicine, National University Hospital, Singapore, Singapore.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 11, Singapore, 119228, Singapore.
| | - Juan Helen Zhou
- Center for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Center for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Tahir Foundation Building (MD1), 12 Science Drive 2, #13-05C, Singapore, 117549, Singapore.
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore.
| |
Collapse
|
57
|
Parallel and Serial Sensory Processing in Developing Primary Somatosensory and Motor Cortex. J Neurosci 2021; 41:3418-3431. [PMID: 33622773 DOI: 10.1523/jneurosci.2614-20.2021] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/23/2020] [Accepted: 02/16/2021] [Indexed: 01/21/2023] Open
Abstract
It is generally supposed that primary motor cortex (M1) receives somatosensory input predominantly via primary somatosensory cortex (S1). However, a growing body of evidence indicates that M1 also receives direct sensory input from the thalamus, independent of S1; such direct input is particularly evident at early ages before M1 contributes to motor control. Here, recording extracellularly from the forelimb regions of S1 and M1 in unanesthetized rats at postnatal day (P)8 and P12, we compared S1 and M1 responses to self-generated (i.e., reafferent) forelimb movements during active sleep and wake, and to other-generated (i.e., exafferent) forelimb movements. At both ages, reafferent responses were processed in parallel by S1 and M1; in contrast, exafferent responses were processed in parallel at P8 but serially, from S1 to M1, at P12. To further assess this developmental difference in processing, we compared exafferent responses to proprioceptive and tactile stimulation. At both P8 and P12, proprioceptive stimulation evoked parallel responses in S1 and M1, whereas tactile stimulation evoked parallel responses at P8 and serial responses at P12. Independent of the submodality of exafferent stimulation, pairs of S1-M1 units exhibited greater coactivation during active sleep than wake. These results indicate that S1 and M1 independently develop somatotopy before establishing the interactive relationship that typifies their functionality in adults.SIGNIFICANCE STATEMENT Learning any new motor task depends on the ability to use sensory information to update motor outflow. Thus, to understand motor learning, we must also understand how animals process sensory input. Primary somatosensory cortex (S1) and primary motor cortex (M1) are two interdependent structures that process sensory input throughout life. In adults, the functional relationship between S1 and M1 is well established; however, little is known about how S1 and M1 begin to transmit or process sensory information in early life. In this study, we investigate the early development of S1 and M1 as a sensory processing unit. Our findings provide new insights into the fundamental principles of sensory processing and the development of functional connectivity between these important sensorimotor structures.
Collapse
|
58
|
Sohn WJ, Sanger TD. Constraint-induced intervention as an emergent phenomenon from synaptic competition in biological systems. J Comput Neurosci 2021; 49:175-188. [PMID: 33825082 PMCID: PMC8046695 DOI: 10.1007/s10827-021-00782-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/20/2020] [Accepted: 02/10/2021] [Indexed: 01/03/2023]
Abstract
The principle of constraint-induced therapy is widely practiced in rehabilitation. In hemiplegic cerebral palsy (CP) with impaired contralateral corticospinal projection due to unilateral injury, function improves after imposing a temporary constraint on limbs from the less affected hemisphere. This type of partially-reversible impairment in motor control by early brain injury bears a resemblance to the experience-dependent plastic acquisition and modification of neuronal response selectivity in the visual cortex. Previously, such mechanism was modeled within the framework of BCM (Bienenstock-Cooper-Munro) theory, a rate-based synaptic modification theory. Here, we demonstrate a minimally complex yet sufficient neural network model which provides a fundamental explanation for inter-hemispheric competition using a simplified spike-based model of information transmission and plasticity. We emulate the restoration of function in hemiplegic CP by simulating the competition between cells of the ipsilateral and contralateral corticospinal tracts. We use a high-speed hardware neural simulation to provide realistic numbers of spikes and realistic magnitudes of synaptic modification. We demonstrate that the phenomenon of constraint-induced partial reversal of hemiplegia can be modeled by simplified neural descending tracts with 2 layers of spiking neurons and synapses with spike-timing-dependent plasticity (STDP). We further demonstrate that persistent hemiplegia following unilateral cortical inactivation or deprivation is predicted by the STDP-based model but is inconsistent with BCM model. Although our model is a highly simplified and limited representation of the corticospinal system, it offers an explanation of how constraint as an intervention can help the system to escape from a suboptimal solution. This is a display of an emergent phenomenon from the synaptic competition.
Collapse
Affiliation(s)
- Won J Sohn
- Department of Neurology, University of California at Irvine, 200 S. Manchester Ave, Orange, CA, 92868, USA
| | - Terence D Sanger
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, CA, 90089, USA. .,Department of Biokinesiology, University of Southern California, 1042 Downey Way, Los Angeles, CA, 90089, USA. .,Department of Neurology, University of Southern California, 1042 Downey Way, Los Angeles, CA, 90089, USA.
| |
Collapse
|
59
|
Sharif H, Alexander H, Azam A, Martin JH. Dual motor cortex and spinal cord neuromodulation improves rehabilitation efficacy and restores skilled locomotor function in a rat cervical contusion injury model. Exp Neurol 2021; 341:113715. [PMID: 33819448 PMCID: PMC10150584 DOI: 10.1016/j.expneurol.2021.113715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/14/2021] [Accepted: 03/31/2021] [Indexed: 01/11/2023]
Abstract
Motor recovery after spinal cord injury is limited due to sparse descending pathway axons caudal to the injury. Rehabilitation is the primary treatment for paralysis in humans with SCI, but only produces modest functional recovery. Here, we determined if dual epidural motor cortex (M1) intermittent theta burst stimulation (iTBS) and cathodal transcutaneous spinal direct stimulation (tsDCS) enhances the efficacy of rehabilitation in improving motor function after cervical SCI. iTBS produces CST axon sprouting and tsDCS enhances M1-evoked spinal activity and muscle contractions after SCI. Rats were trained to perform the horizontal ladder task. Animals received a moderate midline C4 contusion, producing bilateral forelimb impairments. After 2 weeks, animals either received 10 days of iTBS+tsDCS or no stimulation; subsequently, all animals received 6 weeks of daily rehabilitation on the horizontal ladder task. Lesion size was not different in the two animal groups. Rehabilitation alone improved performance by a 22% reduction in skilled locomotion error rate, whereas stimulation+rehabilitation was markedly more effective (52%), and restored error rate to pre-injury levels. Stimulation+rehabilitation significantly increased CST axon length caudal to the injury and the amount of ventral horn label was positively correlated with functional improvement. The stimulation+rehabilitation group had significantly less proprioceptive afferent terminal labelling in the intermediate zone and fewer synapses on motoneurons . Afferent fiber terminal labeling was negatively correlated with motor recovery. Thus, the dual neuromodulation protocol promotes adaptive plasticity in corticospinal and proprioceptive afferents networks after contusion SCI, leading to enhanced rehabilitation efficacy and recovery of skilled locomotion.
Collapse
Affiliation(s)
- Hisham Sharif
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY, USA
| | - Heather Alexander
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY, USA
| | - Anika Azam
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY, USA
| | - John H Martin
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY, USA; Neuroscience Program, Graduate Center of the City University of New York, New York, NY, USA.
| |
Collapse
|
60
|
Schmidt E, Raposo P, Vavrek R, Fouad K. Inducing inflammation following subacute spinal cord injury in female rats: A double-edged sword to promote motor recovery. Brain Behav Immun 2021; 93:55-65. [PMID: 33358981 DOI: 10.1016/j.bbi.2020.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/20/2020] [Accepted: 12/16/2020] [Indexed: 12/20/2022] Open
Abstract
The inflammatory response following spinal cord injury is associated with increased tissue damage and impaired functional recovery. However, inflammation can also promote plasticity and the secretion of growth-promoting substances. Previously we have shown that inducing inflammation with a systemic injection of lipopolysaccharide in the chronic (8 weeks) stage of spinal cord injury enhances neuronal sprouting and the efficacy of rehabilitative training in rats. Here, we tested whether administration of lipopolysaccharide in female rats in the subacute (10 days) stage of spinal cord injury would have a similar effect. Since the lesioned environment is already in a pro-inflammatory state at this earlier time after injury, we hypothesized that triggering a second immune response may not be beneficial for recovery. Contrary to our hypothesis, we found that eliciting an inflammatory response 10 days after spinal cord injury enhanced the recovery of the ipsilesional forelimb in rehabilitative training. Compared to rats that received rehabilitative training without treatment, rats that received systemic lipopolysaccharide showed restored motor function without the use of compensatory strategies that translated beyond the trained task. Furthermore, lipopolysaccharide treatment paradoxically promoted the resolution of chronic neuroinflammation around the lesion site. Unfortunately, re-triggering a systemic immune response after spinal cord injury also resulted in a long-term increase in anxiety-like behaviour.
Collapse
Affiliation(s)
- Emma Schmidt
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Pamela Raposo
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | - Romana Vavrek
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | - Karim Fouad
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada; Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada.
| |
Collapse
|
61
|
Walter JR, Günther M, Haeufle DFB, Schmitt S. A geometry- and muscle-based control architecture for synthesising biological movement. BIOLOGICAL CYBERNETICS 2021; 115:7-37. [PMID: 33590348 PMCID: PMC7925510 DOI: 10.1007/s00422-020-00856-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
A key problem for biological motor control is to establish a link between an idea of a movement and the generation of a set of muscle-stimulating signals that lead to the movement execution. The number of signals to generate is thereby larger than the body's mechanical degrees of freedom in which the idea of the movement may be easily expressed, as the movement is actually executed in this space. A mathematical formulation that provides a solving link is presented in this paper in the form of a layered, hierarchical control architecture. It is meant to synthesise a wide range of complex three-dimensional muscle-driven movements. The control architecture consists of a 'conceptional layer', where the movement is planned, a 'structural layer', where the muscles are stimulated, and between both an additional 'transformational layer', where the muscle-joint redundancy is resolved. We demonstrate the operativeness by simulating human stance and squatting in a three-dimensional digital human model (DHM). The DHM considers 20 angular DoFs and 36 Hill-type muscle-tendon units (MTUs) and is exposed to gravity, while its feet contact the ground via reversible stick-slip interactions. The control architecture continuously stimulates all MTUs ('structural layer') based on a high-level, torque-based task formulation within its 'conceptional layer'. Desired states of joint angles (postural plan) are fed to two mid-level joint controllers in the 'transformational layer'. The 'transformational layer' communicates with the biophysical structures in the 'structural layer' by providing direct MTU stimulation contributions and further input signals for low-level MTU controllers. Thereby, the redundancy of the MTU stimulations with respect to the joint angles is resolved, i.e. a link between plan and execution is established, by exploiting some properties of the biophysical structures modelled. The resulting joint torques generated by the MTUs via their moment arms are fed back to the conceptional layer, closing the high-level control loop. Within our mathematical formulations of the Jacobian matrix-based layer transformations, we identify the crucial information for the redundancy solution to be the muscle moment arms, the stiffness relations of muscle and tendon tissue within the muscle model, and the length-stimulation relation of the muscle activation dynamics. The present control architecture allows the straightforward feeding of conceptional movement task formulations to MTUs. With this approach, the problem of movement planning is eased, as solely the mechanical system has to be considered in the conceptional plan.
Collapse
Affiliation(s)
- Johannes R Walter
- Institute for Modelling and Simulation of Biomechanical Systems, Computational Biophysics and Biorobotics, University of Stuttgart, Nobelstraße 15, 70569, Stuttgart, Germany.
| | - Michael Günther
- Institute for Modelling and Simulation of Biomechanical Systems, Computational Biophysics and Biorobotics, University of Stuttgart, Nobelstraße 15, 70569, Stuttgart, Germany
| | - Daniel F B Haeufle
- Center of Neurology, Hertie Institute for Clinical Brain Research, Otfried-Müller-Strasse 25, 72076, Tübingen, Germany
| | - Syn Schmitt
- Institute for Modelling and Simulation of Biomechanical Systems, Computational Biophysics and Biorobotics, University of Stuttgart, Nobelstraße 15, 70569, Stuttgart, Germany
- Stuttgart Center of Simulation Science (SimTech), Pfaffenwaldring 7a, 70569, Stuttgart, Germany
| |
Collapse
|
62
|
Abstract
To date, both in monkeys and humans, very few studies have addressed the issue of the lateralization of the cortical parietal and premotor areas involved in the organization of voluntary movements and in-action understanding. In this review, we will first analyze studies in the monkey, describing the functional properties of neurons of the parieto-frontal circuits, involved in the organization of reaching-grasping actions, in terms of unilateral or bilateral control. We will concentrate, in particular, on the properties of the mirror neuron system (MNS). Then, we will consider the evidence about the mirror neuron mechanism in humans, describing studies in which action perception, as well as action execution, produces unilateral or bilateral brain activation. Finally, we will report some investigations demonstrating plastic changes of the MNS following specific unilateral brain damage, discussing how this plasticity can be related to the rehabilitation outcome
Collapse
|
63
|
Säisänen L, Könönen M, Niskanen E, Lakka T, Lintu N, Vanninen R, Julkunen P, Määttä S. Primary hand motor representation areas in healthy children, preadolescents, adolescents, and adults. Neuroimage 2020; 228:117702. [PMID: 33385558 DOI: 10.1016/j.neuroimage.2020.117702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 01/28/2023] Open
Abstract
The development of the organization of the motor representation areas in children and adolescents is not well-known. This cross-sectional study aimed to provide an understanding for the development of the functional motor areas of the upper extremity muscles by studying healthy right-handed children (6-9 years, n = 10), preadolescents (10-12 years, n = 13), adolescents (15-17 years, n = 12), and adults (22-34 years, n = 12). The optimal representation site and resting motor threshold (rMT) for the abductor pollicis brevis (APB) were assessed in both hemispheres using navigated transcranial magnetic stimulation (nTMS). Motor mapping was performed at 110% of the rMT while recording the EMG of six upper limb muscles in the hand and forearm. The association between the motor map and manual dexterity (box and block test, BBT) was examined. The mapping was well-tolerated and feasible in all but the youngest participant whose rMT exceeded the maximum stimulator output. The centers-of-gravity (CoG) for individual muscles were scattered to the greatest extent in the group of preadolescents and centered and became more focused with age. In preadolescents, the CoGs in the left hemisphere were located more laterally, and they shifted medially with age. The proportion of hand compared to arm representation increased with age (p = 0.001); in the right hemisphere, this was associated with greater fine motor ability. Similarly, there was less overlap between hand and forearm muscles representations in children compared to adults (p<0.001). There was a posterior-anterior shift in the APB hotspot coordinate with age, and the APB coordinate in the left hemisphere exhibited a lateral to medial shift with age from adolescence to adulthood (p = 0.006). Our results contribute to the elucidation of the developmental course in the organization of the motor cortex and its associations with fine motor skills. It was shown that nTMS motor mapping in relaxed muscles is feasible in developmental studies in children older than seven years of age.
Collapse
Affiliation(s)
- Laura Säisänen
- Department of Clinical Neurophysiology, Kuopio University Hospital, P.O. Box 100, 70029 KYS, Kuopio, Finland; Institute of Clinical Medicine, University of Eastern Finland, Finland; Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
| | - Mervi Könönen
- Department of Clinical Neurophysiology, Kuopio University Hospital, P.O. Box 100, 70029 KYS, Kuopio, Finland; Department of Applied Physics, University of Eastern Finland, Kuopio, Finland; Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Eini Niskanen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Timo Lakka
- Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Finland; Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Niina Lintu
- Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Finland
| | - Ritva Vanninen
- Institute of Clinical Medicine, University of Eastern Finland, Finland; Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Petro Julkunen
- Department of Clinical Neurophysiology, Kuopio University Hospital, P.O. Box 100, 70029 KYS, Kuopio, Finland; Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Sara Määttä
- Department of Clinical Neurophysiology, Kuopio University Hospital, P.O. Box 100, 70029 KYS, Kuopio, Finland
| |
Collapse
|
64
|
Distinct oligodendrocyte populations have spatial preference and different responses to spinal cord injury. Nat Commun 2020; 11:5860. [PMID: 33203872 PMCID: PMC7673029 DOI: 10.1038/s41467-020-19453-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 10/14/2020] [Indexed: 12/23/2022] Open
Abstract
Mature oligodendrocytes (MOLs) show transcriptional heterogeneity, the functional consequences of which are unclear. MOL heterogeneity might correlate with the local environment or their interactions with different neuron types. Here, we show that distinct MOL populations have spatial preference in the mammalian central nervous system (CNS). We found that MOL type 2 (MOL2) is enriched in the spinal cord when compared to the brain, while MOL types 5 and 6 (MOL5/6) increase their contribution to the OL lineage with age in all analyzed regions. MOL2 and MOL5/6 also have distinct spatial preference in the spinal cord regions where motor and sensory tracts run. OL progenitor cells (OPCs) are not specified into distinct MOL populations during development, excluding a major contribution of OPC intrinsic mechanisms determining MOL heterogeneity. In disease, MOL2 and MOL5/6 present different susceptibility during the chronic phase following traumatic spinal cord injury. Our results demonstrate that the distinct MOL populations have different spatial preference and different responses to disease. The oligodendrocyte lineage is known for its transcriptional heterogeneity, but the functional consequences of this are unclear. Here, the authors show that distinct populations of mature oligodendrocytes have spatial preferences in the brain and spinal cord and show different responses to spinal cord injury.
Collapse
|
65
|
Kalambogias J, Yoshida Y. Converging integration between ascending proprioceptive inputs and the corticospinal tract motor circuit underlying skilled movement control. CURRENT OPINION IN PHYSIOLOGY 2020; 19:187-193. [PMID: 33718693 DOI: 10.1016/j.cophys.2020.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Converging interactions between ascending proprioceptive afferents and descending corticospinal tract projections are critical in the modulation and coordination of skilled motor behaviors. Fundamental to these processes are the functional inputs and the mechanisms of integration in the brain and spinal cord between proprioceptive and corticospinal tract information. In this review, we first highlight key connections between corticospinal tract motor circuit and spinal interneurons that receive proprioceptive inputs. We will also address corticospinal tract access to the presynaptic inhibitory system in the spinal cord and its role in modulating proprioceptive stimuli. Lastly, we will focus on the corticospinal neuron influences on the dorsal column nuclei complex, an integration hub for processing ascending somatosensory information.
Collapse
Affiliation(s)
- John Kalambogias
- Burke Neurological Institute, White Plains, New York 10605.,Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065.,Department of Neurology, Center for Motor Neurons Biology and Disease, Columbia University, 630 W 168 Street, P&S Building, Room 5-423, New York, New York, 10032
| | - Yutaka Yoshida
- Burke Neurological Institute, White Plains, New York 10605.,Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| |
Collapse
|
66
|
Craig BT, Hilderley A, Kinney-Lang E, Long X, Carlson HL, Kirton A. Developmental neuroplasticity of the white matter connectome in children with perinatal stroke. Neurology 2020; 95:e2476-e2486. [PMID: 32887781 PMCID: PMC7682831 DOI: 10.1212/wnl.0000000000010669] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To employ diffusion imaging connectome methods to explore network development in the contralesional hemisphere of children with perinatal stroke and its relationship to clinical function. We hypothesized alterations in global efficiency of the intact hemisphere would correlate with clinical disability. METHODS Children with unilateral perinatal arterial (n = 26) or venous (n = 27) stroke and typically developing controls (n = 32) underwent 3T diffusion and T1 anatomical MRI and completed established motor assessments. A validated atlas coregistered to whole-brain tractography for each individual was used to estimate connectivity between 47 regions. Graph theory metrics (assortativity, hierarchical coefficient of regression, global and local efficiency, and small worldness) were calculated for the left hemisphere of controls and the intact contralesioned hemisphere of both stroke groups. Validated clinical motor assessments were then correlated with connectivity outcomes. RESULTS Global efficiency was higher in arterial strokes compared to venous strokes (p < 0.001) and controls (p < 0.001) and was inversely associated with all motor assessments (all p < 0.012). Additional graph theory metrics including assortativity, hierarchical coefficient of regression, and local efficiency also demonstrated consistent differences in the intact hemisphere associated with clinical function. CONCLUSIONS The structural connectome of the contralesional hemisphere is altered after perinatal stroke and correlates with clinical function. Connectomics represents a powerful tool to understand whole brain developmental plasticity in children with disease-specific cerebral palsy.
Collapse
Affiliation(s)
- Brandon T Craig
- From the Calgary Pediatric Stroke Program (B.T.C., A.H., E.K.-L., H.L.C., A.K.); and Hotchkiss Brain Institute (B.T.C., A.H., E.K.-L., X.L., H.L.C., A.K.), Alberta Children's Hospital Research Institute (B.T.C., A.H., E.K.-L., X.L., H.L.C., A.K.), and Departments of Pediatrics (H.L.C., A.K.) and Clinical Neuroscience (A.K.), Cumming School of Medicine, University of Calgary, Canada
| | - Alicia Hilderley
- From the Calgary Pediatric Stroke Program (B.T.C., A.H., E.K.-L., H.L.C., A.K.); and Hotchkiss Brain Institute (B.T.C., A.H., E.K.-L., X.L., H.L.C., A.K.), Alberta Children's Hospital Research Institute (B.T.C., A.H., E.K.-L., X.L., H.L.C., A.K.), and Departments of Pediatrics (H.L.C., A.K.) and Clinical Neuroscience (A.K.), Cumming School of Medicine, University of Calgary, Canada
| | - Eli Kinney-Lang
- From the Calgary Pediatric Stroke Program (B.T.C., A.H., E.K.-L., H.L.C., A.K.); and Hotchkiss Brain Institute (B.T.C., A.H., E.K.-L., X.L., H.L.C., A.K.), Alberta Children's Hospital Research Institute (B.T.C., A.H., E.K.-L., X.L., H.L.C., A.K.), and Departments of Pediatrics (H.L.C., A.K.) and Clinical Neuroscience (A.K.), Cumming School of Medicine, University of Calgary, Canada
| | - Xiangyu Long
- From the Calgary Pediatric Stroke Program (B.T.C., A.H., E.K.-L., H.L.C., A.K.); and Hotchkiss Brain Institute (B.T.C., A.H., E.K.-L., X.L., H.L.C., A.K.), Alberta Children's Hospital Research Institute (B.T.C., A.H., E.K.-L., X.L., H.L.C., A.K.), and Departments of Pediatrics (H.L.C., A.K.) and Clinical Neuroscience (A.K.), Cumming School of Medicine, University of Calgary, Canada
| | - Helen L Carlson
- From the Calgary Pediatric Stroke Program (B.T.C., A.H., E.K.-L., H.L.C., A.K.); and Hotchkiss Brain Institute (B.T.C., A.H., E.K.-L., X.L., H.L.C., A.K.), Alberta Children's Hospital Research Institute (B.T.C., A.H., E.K.-L., X.L., H.L.C., A.K.), and Departments of Pediatrics (H.L.C., A.K.) and Clinical Neuroscience (A.K.), Cumming School of Medicine, University of Calgary, Canada
| | - Adam Kirton
- From the Calgary Pediatric Stroke Program (B.T.C., A.H., E.K.-L., H.L.C., A.K.); and Hotchkiss Brain Institute (B.T.C., A.H., E.K.-L., X.L., H.L.C., A.K.), Alberta Children's Hospital Research Institute (B.T.C., A.H., E.K.-L., X.L., H.L.C., A.K.), and Departments of Pediatrics (H.L.C., A.K.) and Clinical Neuroscience (A.K.), Cumming School of Medicine, University of Calgary, Canada.
| |
Collapse
|
67
|
Hill NM, Dewald JPA. The Upper Extremity Flexion Synergy Is Minimally Expressed in Young Individuals With Unilateral Cerebral Palsy Following an Early Brain Injury. Front Hum Neurosci 2020; 14:590198. [PMID: 33192425 PMCID: PMC7596321 DOI: 10.3389/fnhum.2020.590198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/25/2020] [Indexed: 01/04/2023] Open
Abstract
Hemiparetic stroke in adulthood often results in the grouped movement pattern of the upper extremity flexion synergy thought to arise from an increased reliance on cortico-reticulospinal pathways due to a loss of lateral corticospinal projections. It is well established that the flexion synergy induces reaching constraints in individuals with adult-onset hemiplegia. The expression of the flexion synergy in individuals with brain injuries onset earlier in the lifespan is currently unknown. An early unilateral brain injury occurring prior to six months post full-term may preserve corticospinal projections which can be used for independent joint control and thus minimizing the expression of the flexion synergy. This study uses kinematics of a ballistic reaching task to evaluate the expression of the flexion synergy in individuals with pediatric hemiplegia (PH) ages six to seventeen years. Fifteen individuals with brain injuries before birth (n = 8) and around full-term (n = 7) and nine age-matched controls with no known neurological impairment completed a set of reaches in an admittance controlled robotic device. Descending drive, and the possible expression of the upper extremity flexion synergy, was modulated by increasing shoulder abduction loading. Individuals with early-onset PH achieved lower peak velocities when reaching with the paretic arm compared to controls; however, no differences in reaching distance were found between groups. Relative maintenance in reaching seen in individuals with early brain injuries highlights minimal expression of the flexion synergy. We interpret this conservation of independent control of the paretic shoulder and elbow as the use of more direct corticospinal projections instead of indirect cortico-reticulospinal pathways used in individuals with adult-onset hemiplegia.
Collapse
Affiliation(s)
- Nayo M Hill
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States.,Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
| | - Julius P A Dewald
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States.,Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States.,Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, United States
| |
Collapse
|
68
|
Hogan MK, Hamilton GF, Horner PJ. Neural Stimulation and Molecular Mechanisms of Plasticity and Regeneration: A Review. Front Cell Neurosci 2020; 14:271. [PMID: 33173465 PMCID: PMC7591397 DOI: 10.3389/fncel.2020.00271] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/31/2020] [Indexed: 12/23/2022] Open
Abstract
Neural stimulation modulates the depolarization of neurons, thereby triggering activity-associated mechanisms of neuronal plasticity. Activity-associated mechanisms in turn play a major role in post-mitotic structure and function of adult neurons. Our understanding of the interactions between neuronal behavior, patterns of neural activity, and the surrounding environment is evolving at a rapid pace. Brain derived neurotrophic factor is a critical mediator of activity-associated plasticity, while multiple immediate early genes mediate plasticity of neurons following bouts of neural activity. New research has uncovered genetic mechanisms that govern the expression of DNA following changes in neural activity patterns, including RNAPII pause-release and activity-associated double stranded breaks. Discovery of novel mechanisms governing activity-associated plasticity of neurons hints at a layered and complex molecular control of neuronal response to depolarization. Importantly, patterns of depolarization in neurons are shown to be important mediators of genetic expression patterns and molecular responses. More research is needed to fully uncover the molecular response of different types of neurons-to-activity patterns; however, known responses might be leveraged to facilitate recovery after neural damage. Physical rehabilitation through passive or active exercise modulates neurotrophic factor expression in the brain and spinal cord and can initiate cortical plasticity commensurate with functional recovery. Rehabilitation likely relies on activity-associated mechanisms; however, it may be limited in its application. Electrical and magnetic stimulation direct specific activity patterns not accessible through passive or active exercise and work synergistically to improve standing, walking, and forelimb use after injury. Here, we review emerging concepts in the molecular mechanisms of activity-derived plasticity in order to highlight opportunities that could add value to therapeutic protocols for promoting recovery of function after trauma, disease, or age-related functional decline.
Collapse
Affiliation(s)
- Matthew K Hogan
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
| | - Gillian F Hamilton
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
| | - Philip J Horner
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
69
|
Yao ZF, Sligte IG, Moreau D, Hsieh S, Yang CT, Ridderinkhof KR, Muggleton NG, Wang CH. The brains of elite soccer players are subject to experience-dependent alterations in white matter connectivity. Cortex 2020; 132:79-91. [PMID: 32956909 DOI: 10.1016/j.cortex.2020.07.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/26/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023]
Abstract
Soccer is the only major sport with voluntary unprotected head-to-ball contact. It is crucial to determine if head impact through long-term soccer training is manifested in brain structure and connectivity, and whether such alterations are due to sustained training per se. Using diffusion tensor imaging, we documented a comprehensive view of soccer players' brains in a sample of twenty-five right-handed male elite soccer players aged from 18 to 22 years and twenty-five non-athletic controls aged 19-24 years. Importantly, none had recalled a history of concussion. We performed a whole-brain tract-based spatial statistical analysis, and a tract-specific probabilistic tractography method to measure the differences of white matter properties between groups. Whole-brain integrity analysis showed stronger microstructural integrity within the corpus callosum tract in soccer players compared to controls. Further, tract-specific probabilistic tractography revealed that the anterior part of corpus callosum may be the brain structure most relevant to training experience, which may put into perspective prior evidence showing corpus callosum alteration in retired or concussed athletes practicing contact sports. Intriguingly, experience-related alterations showed left hemispheric lateralization of potential early signs of concussion-like effects. In sum, we concluded that the observed gains and losses may be due to a consequence of engagement in protracted soccer training that incurs prognostic hallmarks associated with minor injury-induced neural inflammation.
Collapse
Affiliation(s)
- Zai-Fu Yao
- Brain and Cognition, Department of Psychology, University of Amsterdam, the Netherlands
| | - Ilja G Sligte
- Brain and Cognition, Department of Psychology, University of Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, the Netherlands
| | - David Moreau
- Centre for Brain Research, School of Psychology, The University of Auckland, New Zealand
| | - Shulan Hsieh
- Cognitive Electrophysiology Laboratory: Control, Aging, Sleep, and Emotion (CASE), Department of Psychology, National Cheng Kung University, Taiwan; Institute of Allied Health Sciences, National Cheng Kung University, Taiwan; Department and Institute of Public Health, National Cheng Kung University, Taiwan; Department of Psychology, National Cheng Kung University, Taiwan
| | - Cheng-Ta Yang
- Institute of Allied Health Sciences, National Cheng Kung University, Taiwan; Department of Psychology, National Cheng Kung University, Taiwan
| | - K Richard Ridderinkhof
- Brain and Cognition, Department of Psychology, University of Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, the Netherlands
| | - Neil G Muggleton
- Institute of Cognitive Neuroscience, National Central University, Taoyuan City, Taiwan; Institute of Cognitive Neuroscience, University College London, London, United Kingdom; Department of Psychology, Goldsmiths, University of London, London, United Kingdom
| | - Chun-Hao Wang
- Institute of Physical Education, Health & Leisure Studies, National Cheng Kung University, Taiwan.
| |
Collapse
|
70
|
Smith CC, Brownstone RM. Spinal motoneuron firing properties mature from rostral to caudal during postnatal development of the mouse. J Physiol 2020; 598:5467-5485. [PMID: 32851667 PMCID: PMC8436765 DOI: 10.1113/jp280274] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022] Open
Abstract
Key points Many mammals are born with immature motor systems that develop through a critical period of postnatal development. In rodents, postnatal maturation of movement occurs from rostral to caudal, correlating with maturation of descending supraspinal and local spinal circuits. We asked whether development of fundamental electrophysiological properties of spinal motoneurons follows the same rostro‐caudal sequence. We show that in both regions, repetitive firing parameters increase and excitability decreases with development; however, these characteristics mature earlier in cervical motoneurons. We suggest that in addition to autonomous mechanisms, motoneuron development depends on activity resulting from their circuit milieu.
Abstract Altricial mammals are born with immature nervous systems comprised of circuits that do not yet have the neuronal properties and connectivity required to produce future behaviours. During the critical period of postnatal development, neuronal properties are tuned to participate in functional circuits. In rodents, cervical motoneurons are born prior to lumbar motoneurons, and spinal cord development follows a sequential rostro‐caudal pattern. Here we asked whether birth order is reflected in the postnatal development of electrophysiological properties. We show that motoneurons of both regions have similar properties at birth and follow the same developmental profile, with maximal firing increasing and excitability decreasing into the third postnatal week. However, these maturative processes occur in cervical motoneurons prior to lumbar motoneurons, correlating with the maturation of premotor descending and local spinal systems. These results suggest that motoneuron properties do not mature by cell autonomous mechanisms alone, but also depend on developing premotor circuits. Many mammals are born with immature motor systems that develop through a critical period of postnatal development. In rodents, postnatal maturation of movement occurs from rostral to caudal, correlating with maturation of descending supraspinal and local spinal circuits. We asked whether development of fundamental electrophysiological properties of spinal motoneurons follows the same rostro‐caudal sequence. We show that in both regions, repetitive firing parameters increase and excitability decreases with development; however, these characteristics mature earlier in cervical motoneurons. We suggest that in addition to autonomous mechanisms, motoneuron development depends on activity resulting from their circuit milieu.
Collapse
Affiliation(s)
- Calvin C Smith
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Robert M Brownstone
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
71
|
Cappellini G, Sylos-Labini F, Dewolf AH, Solopova IA, Morelli D, Lacquaniti F, Ivanenko Y. Maturation of the Locomotor Circuitry in Children With Cerebral Palsy. Front Bioeng Biotechnol 2020; 8:998. [PMID: 32974319 PMCID: PMC7462003 DOI: 10.3389/fbioe.2020.00998] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/30/2020] [Indexed: 12/26/2022] Open
Abstract
The first years of life represent an important phase of maturation of the central nervous system, processing of sensory information, posture control and acquisition of the locomotor function. Cerebral palsy (CP) is the most common group of motor disorders in childhood attributed to disturbances in the fetal or infant brain, frequently resulting in impaired gait. Here we will consider various findings about functional maturation of the locomotor output in early infancy, and how much the dysfunction of gait in children with CP can be related to spinal neuronal networks vs. supraspinal dysfunction. A better knowledge about pattern generation circuitries in infancy may improve our understanding of developmental motor disorders, highlighting the necessity for regulating the functional properties of abnormally developed neuronal locomotor networks as a target for early sensorimotor rehabilitation. Various clinical approaches and advances in biotechnology are also considered that might promote acquisition of the locomotor function in infants at risk for locomotor delays.
Collapse
Affiliation(s)
- Germana Cappellini
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy.,Department of Pediatric Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | | | - Arthur H Dewolf
- Centre of Space Bio-medicine and Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Irina A Solopova
- Laboratory of Neurobiology of Motor Control, Institute for Information Transmission Problems, Moscow, Russia
| | - Daniela Morelli
- Department of Pediatric Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Francesco Lacquaniti
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy.,Centre of Space Bio-medicine and Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Yury Ivanenko
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
72
|
Kaur N, Han W, Li Z, Madrigal MP, Shim S, Pochareddy S, Gulden FO, Li M, Xu X, Xing X, Takeo Y, Li Z, Lu K, Imamura Kawasawa Y, Ballester-Lurbe B, Moreno-Bravo JA, Chédotal A, Terrado J, Pérez-Roger I, Koleske AJ, Sestan N. Neural Stem Cells Direct Axon Guidance via Their Radial Fiber Scaffold. Neuron 2020; 107:1197-1211.e9. [PMID: 32707082 DOI: 10.1016/j.neuron.2020.06.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/06/2020] [Accepted: 06/26/2020] [Indexed: 10/23/2022]
Abstract
Neural stem cells directly or indirectly generate all neurons and macroglial cells and guide migrating neurons by using a palisade-like scaffold made of their radial fibers. Here, we describe an unexpected role for the radial fiber scaffold in directing corticospinal and other axons at the junction between the striatum and globus pallidus. The maintenance of this scaffold, and consequently axon pathfinding, is dependent on the expression of an atypical RHO-GTPase, RND3/RHOE, together with its binding partner ARHGAP35/P190A, a RHO GTPase-activating protein, in the radial glia-like neural stem cells within the ventricular zone of the medial ganglionic eminence. This role is independent of RND3 and ARHGAP35 expression in corticospinal neurons, where they regulate dendritic spine formation, axon elongation, and pontine midline crossing in a FEZF2-dependent manner. The prevalence of neural stem cell scaffolds and their expression of RND3 and ARHGAP35 suggests that these observations might be broadly relevant for axon guidance and neural circuit formation.
Collapse
Affiliation(s)
- Navjot Kaur
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Wenqi Han
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Zhuo Li
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Graduate Program in Histology and Embryology, Zhengzhou University, 450001 Zhengzhou, China
| | - M Pilar Madrigal
- Department of Biomedical Sciences, School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Moncada, 46113 Valencia, Spain
| | - Sungbo Shim
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Biochemistry, Chungbuk National University, Cheongju 28644, Korea
| | - Sirisha Pochareddy
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Forrest O Gulden
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Mingfeng Li
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Xuming Xu
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Xiaojun Xing
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Genome Editing Center, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Yutaka Takeo
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Zhen Li
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Kangrong Lu
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Yuka Imamura Kawasawa
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology and of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Begoña Ballester-Lurbe
- Department of Biomedical Sciences, School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Moncada, 46113 Valencia, Spain
| | | | - Alain Chédotal
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - José Terrado
- Department of Biomedical Sciences, School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Moncada, 46113 Valencia, Spain
| | - Ignacio Pérez-Roger
- Department of Biomedical Sciences, School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Moncada, 46113 Valencia, Spain
| | - Anthony J Koleske
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Molecular Biochemistry and Biophysics, Yale University, New Haven, CT 06520, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Departments of Genetics, Psychiatry, and Comparative Medicine, Kavli Institute for Neuroscience, Program in Cellular Neuroscience, Neurodegeneration, and Repair, and Yale Child Study Center, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
73
|
Jack AS, Hurd C, Martin J, Fouad K. Electrical Stimulation as a Tool to Promote Plasticity of the Injured Spinal Cord. J Neurotrauma 2020; 37:1933-1953. [PMID: 32438858 DOI: 10.1089/neu.2020.7033] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Unlike their peripheral nervous system counterparts, the capacity of central nervous system neurons and axons for regeneration after injury is minimal. Although a myriad of therapies (and different combinations thereof) to help promote repair and recovery after spinal cord injury (SCI) have been trialed, few have progressed from bench-top to bedside. One of the few such therapies that has been successfully translated from basic science to clinical applications is electrical stimulation (ES). Although the use and study of ES in peripheral nerve growth dates back nearly a century, only recently has it started to be used in a clinical setting. Since those initial experiments and seminal publications, the application of ES to restore function and promote healing have greatly expanded. In this review, we discuss the progression and use of ES over time as it pertains to promoting axonal outgrowth and functional recovery post-SCI. In doing so, we consider four major uses for the study of ES based on the proposed or documented underlying mechanism: (1) using ES to introduce an electric field at the site of injury to promote axonal outgrowth and plasticity; (2) using spinal cord ES to activate or to increase the excitability of neuronal networks below the injury; (3) using motor cortex ES to promote corticospinal tract axonal outgrowth and plasticity; and (4) leveraging the timing of paired stimuli to produce plasticity. Finally, the use of ES in its current state in the context of human SCI studies is discussed, in addition to ongoing research and current knowledge gaps, to highlight the direction of future studies for this therapeutic modality.
Collapse
Affiliation(s)
- Andrew S Jack
- Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, California, USA
| | - Caitlin Hurd
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - John Martin
- Department of Molecular, Cellular, and Biomedical Sciences, City University of New York School of Medicine, and City University of New York Graduate Center, New York, New York, USA
| | - Karim Fouad
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada.,Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
74
|
Viher PV, Stegmayer K, Federspiel A, Bohlhalter S, Wiest R, Walther S. Altered diffusion in motor white matter tracts in psychosis patients with catatonia. Schizophr Res 2020; 220:210-217. [PMID: 32295753 DOI: 10.1016/j.schres.2020.03.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 02/25/2020] [Accepted: 03/08/2020] [Indexed: 01/25/2023]
Abstract
Catatonia is a complex psychomotor symptom frequently observed in schizophrenia. Neural activity within the motor system is altered in catatonia. Likewise, white matter (WM) is also expected to be abnormal. The aim of this study was to test, if schizophrenia patients with catatonia show specific WM alterations. Forty-eight patients with schizophrenia and 43 healthy controls were included. Catatonia was currently present in 13 patients with schizophrenia. Tract-Based Spatial Statistics was used to test for differences in fractional anisotropy (FA) in the whole brain between the three groups. We detected a group effect (F-test) of WM within the corpus callosum (CC). In the t-test, patients with catatonia showed higher FA in many left lateralized WM clusters involved in motor behaviour compared to patients without catatonia, including the CC, internal and external capsule, superior longitudinal fascicle (SLF) and corticospinal tract (CST). Similarly, patients with catatonia showed also higher FA in the left internal capsule and left CST compared to healthy controls. In contrast, the group comparison between patients without catatonia and healthy controls revealed lower FA in many right lateralized clusters, comprising the CC, internal capsule, SLF, and inferior longitudinal fascicle in patients without catatonia. Our results are in line with the notion of an altered motor system in catatonia. Thus, our study provides evidence for increased WM connectivity, especially in motor tracts in schizophrenia patients with catatonia.
Collapse
Affiliation(s)
- Petra V Viher
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Katharina Stegmayer
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Andrea Federspiel
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Stephan Bohlhalter
- Department of Clinical Research, University Hospital, Inselspital, Bern, Switzerland; Neurocenter, Luzerner Kantonsspital, Lucerne, Switzerland
| | - Roland Wiest
- Support Center of Advanced Neuroimaging, Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
| |
Collapse
|
75
|
Semaphorin-Mediated Corticospinal Axon Elimination Depends on the Activity-Induced Bax/Bak-Caspase Pathway. J Neurosci 2020; 40:5402-5412. [PMID: 32471877 DOI: 10.1523/jneurosci.3190-18.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022] Open
Abstract
Axon guidance molecules and neuronal activity have been implicated in the establishment and refinement of neural circuits during development. It is unclear, however, whether these guidance molecule- and activity-dependent mechanisms interact with one another to shape neural circuit formation. The formation of corticospinal (CS) circuits, which are essential for voluntary movements, involves both guidance molecule- and activity-dependent components during development. We previously showed that semaphorin6D (Sema6D)-plexinA1 (PlexA1) signaling eliminates ipsilateral projections of CS neurons in the spinal cord, while other studies demonstrate that CS projections to the spinal cord are eliminated in an activity-dependent manner. Here we show that inhibition of cortical neurons during postnatal development causes defects in elimination of ipsilateral CS projections in mice. We further show that mice that lack the activity-dependent Bax/Bak pathway or caspase-9 similarly exhibit defects in elimination of ipsilateral CS projections, suggesting that the activity-dependent Bax/Bak-caspase-9 pathway is essential for the removal of ipsilateral CS projections. Interestingly, either inhibition of neuronal activity in the cortex or deletion of Bax/Bak in mice causes a reduction in PlexA1 protein expression in corticospinal neurons. Finally, intracortical microstimulation induces activation of only contralateral forelimb muscles in control mice, whereas it induces activation of both contralateral and ipsilateral muscles in mice with cortical inhibition, suggesting that the ipsilaterally projecting CS axons that have been maintained in mice with cortical inhibition form functional connections. Together, these results provide evidence of a potential link between the repellent signaling of Sema6D-PlexA1 and neuronal activity to regulate axon elimination.SIGNIFICANCE STATEMENT Both axon guidance molecules and neuronal activity regulate axon elimination to refine neuronal circuits during development. However, the degree to which these mechanisms operate independently or cooperatively to guide network generation is unclear. Here, we show that neuronal activity-driven Bax/Bak-caspase signaling induces expression of the PlexA1 receptor for the repellent Sema6D molecule in corticospinal neurons (CSNs). This cascade eliminates ipsilateral projections of CSNs in the spinal cord during early postnatal development. The absence of PlexA1, neuronal activity, Bax and Bak, or caspase-9 leads to the maintenance of ipsilateral projections of CSNs, which can form functional connections with spinal neurons. Together, these studies reveal how the Sema6D-PlexA1 signaling and neuronal activity may play a cooperative role in refining CS axonal projections.
Collapse
|
76
|
Bleyenheuft Y, Dricot L, Ebner-Karestinos D, Paradis J, Saussez G, Renders A, De Volder A, Araneda R, Gordon AM, Friel KM. Motor Skill Training May Restore Impaired Corticospinal Tract Fibers in Children With Cerebral Palsy. Neurorehabil Neural Repair 2020; 34:533-546. [PMID: 32407247 DOI: 10.1177/1545968320918841] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background. In children with unilateral cerebral palsy (UCP), the fibers of the corticospinal tract (CST) emerging from the lesioned hemisphere are damaged following the initial brain injury. The extent to which the integrity of these fibers is restorable with training is unknown. Objective. To assess changes in CST integrity in children with UCP following Hand-and-Arm-Bimanual-Intensive-Therapy-Including-Lower-Extremity (HABIT-ILE) compared to a control group. Methods. Forty-four children with UCP participated in this study. Integrity of the CSTs was measured using diffusion tensor imaging before and after 2 weeks of HABIT-ILE (treatment group, n = 23) or 2 weeks apart without intensive treatment (control group, n = 18). Fractional anisotropy (FA) and mean diffusivity (MD) were the endpoints for assessing the integrity of CST. Results. As highlighted in our whole tract analysis, the FA of the CST originating from the nonlesioned and lesioned hemispheres increased significantly after therapy in the treatment group compared to the control group (group * test session interaction: P < .001 and P = .049, respectively). A decrease in MD was also observed in the CST emerging from the nonlesioned and lesioned hemispheres (group * time interaction: both P < .001). In addition, changes in manual ability correlated with changes in FA in both CSTs (r = 0.463, P = .024; r = 0.643, P < .001) and changes in MD in CST emerging from nonlesioned hemisphere (r = -0.662, P < .001). Conclusions. HABIT-ILE improves FA/MD in the CST and hand function of children with UCP, suggesting that CST fibers retain a capacity for functional restoration. This finding supports the application of intensive motor skill training in clinical practice for the benefit of numerous patients.
Collapse
Affiliation(s)
- Yannick Bleyenheuft
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Laurence Dricot
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | | | - Julie Paradis
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Geoffroy Saussez
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Anne Renders
- Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Anne De Volder
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Rodrigo Araneda
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | | | - Kathleen M Friel
- Teachers College, Columbia University, New York, NY, USA.,Burke-Cornell Medical Research Institute, White Plains, NY, USA
| |
Collapse
|
77
|
Delivet-Mongrain H, Dea M, Gossard JP, Rossignol S. Recovery of locomotion in cats after severe contusion of the low thoracic spinal cord. J Neurophysiol 2020; 123:1504-1525. [PMID: 32101502 DOI: 10.1152/jn.00498.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Large bilateral contusions of the T10 thoracic spinal cord were performed in 16 adult cats using a calibrated impactor. EMG and video recordings allowed weekly assessments of key locomotor parameters during treadmill training for 5 wk. Thirty-five days postcontusion, several hindlimb locomotor parameters were very similar to the prelesion ones despite some long-term deficits such as paw drag and disrupted fore-hindlimb coupling. Nine out of ten tested cats could step over obstacles placed on the treadmill. Acute electrophysiological experiments showed viable connectivity between segments rostral and caudal to the contusion. At the fifth postcontusion week, a complete spinalization was performed at T13 in 10 cats and all expressed remarkable bilateral hindlimb locomotion within 24-72 h. From our histological evaluation, we concluded that only a small percentage (~10%) of spinal cord pathways was necessary to initiate and maintain a voluntary quadrupedal locomotor pattern on a treadmill and even to negotiate obstacles. Our findings suggest that hindlimb stepping largely resulted from the activity of spinal locomotor circuits, which gradually recovered autonomy week after week. Our histological and electrophysiological evidence indicated that the persistence of specific deficits or else the maintenance of specific functions was related to the integrity of specific supraspinal and propriospinal pathways. The conclusion is that the recovery of locomotion after large spinal contusions depends on a homeostatic recalibration of a tripartite control system involving interactions between spinal circuits (central pattern generator), supraspinal influences, and sensory feedback activated through locomotor training.NEW & NOTEWORTHY The recovery of quadrupedal treadmill locomotion after a large bilateral contusion at the low thoracic T10 spinal level and the ability to negotiate obstacles were studied for 5 wk in 16 cats. Ten cats were further completely spinalized at T13 and were found to walk with the hindlimbs within 24-72 h. We conclude that the extent of locomotor recovery after large spinal contusions hinges both on remnant supraspinal pathways and on a spinal pattern generator.
Collapse
Affiliation(s)
- Hugo Delivet-Mongrain
- Department of Neuroscience, Groupe de Recherche sur le Système Nerveux Central (GRSNC of FRQ-S), Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Melvin Dea
- Department of Neuroscience, Groupe de Recherche sur le Système Nerveux Central (GRSNC of FRQ-S), Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Jean-Pierre Gossard
- Department of Neuroscience, Groupe de Recherche sur le Système Nerveux Central (GRSNC of FRQ-S), Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Serge Rossignol
- Department of Neuroscience, Groupe de Recherche sur le Système Nerveux Central (GRSNC of FRQ-S), Faculty of Medicine, Université de Montréal, Montreal, Canada
| |
Collapse
|
78
|
Wolter S, Haberl H, Spies C, Sargut TA, Martin JH, Tafelski S, van Riesen A, Küchler I, Wegner B, Scholtz K, Thomale UW, Michael T, Murphy JF, Schulz M. Frequency distribution in intraoperative stimulation-evoked EMG responses during selective dorsal rhizotomy in children with cerebral palsy-part 2: gender differences and left-biased asymmetry. Childs Nerv Syst 2020; 36:1955-1965. [PMID: 32588175 PMCID: PMC7434795 DOI: 10.1007/s00381-020-04735-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Spinal reflexes reorganize in cerebral palsy (CP), producing hyperreflexia and spasticity. CP is more common among male infants, and gender might also influence brain and spinal-cord reorganization. This retrospective study investigated the frequency of higher-graded EMG responses elicited by electrical nerve-root stimulation during selective dorsal rhizotomy (SDR), prior to partial nerve- root deafferentation, considering not only segmental level and body side, but also gender. METHODS Intraoperative neuromonitoring (IOM) was used in SDR to pinpoint the rootlets most responsible for exacerbated stimulation-evoked EMG patterns recorded from lower-limb muscle groups. Responses were graded according to an objective response-classification system, ranging from no abnormalities (grade 0) to highly abnormal (grade 4+), based on ipsilateral spread and contralateral involvement. Non-parametric analysis of data with repeated measures was primarily used in investigating the frequency distribution of these various EMG response grades. Over 7000 rootlets were stimulated, and the results for 65 girls and 81 boys were evaluated, taking changes in the composition of patient groups into account when considering GMFCS levels. RESULTS The distribution of graded EMG responses varied according to gender, laterality, and level. Higher-graded EMG responses were markedly more frequent in the boys and at lower segmental levels (L5, S1). Left-biased asymmetry in higher-graded rootlets was also more noticeable in the boys and in patients with GMFCS level I. A close link was observed between higher-grade assessments and left-biased asymmetry. CONCLUSIONS Detailed insight into the patient's initial spinal-neurofunctional state prior to deafferentation suggests that differences in asymmetrical spinal reorganization might be attributable to a hemispheric imbalance.
Collapse
Affiliation(s)
- Simone Wolter
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Hannes Haberl
- Division of Pediatric Neurosurgery, Universitätsklinikum Bonn, 53127, Bonn, Germany
| | - Claudia Spies
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - T Alp Sargut
- Division of Pediatric Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353, Berlin, Germany
| | - John H Martin
- Department of Molecular, Cellular, and Basic Medical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY, USA
- Neuroscience Program, Graduate Center of the City University of New York, New York, NY, USA
| | - Sascha Tafelski
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Anne van Riesen
- Center for Chronically Sick Children (SPZ), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353, Berlin, Germany
| | - Ingeborg Küchler
- Institute of Medical Biometry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Brigitte Wegner
- Institute of Medical Biometry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Kathrin Scholtz
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Ulrich-W Thomale
- Division of Pediatric Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353, Berlin, Germany
| | - Theodor Michael
- Division of Pediatric Neurosurgery, Universitätsklinikum Bonn, 53127, Bonn, Germany
| | - James F Murphy
- Dahlem Research School, Freie Universität Berlin, 14195, Berlin, Germany
| | - Matthias Schulz
- Division of Pediatric Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353, Berlin, Germany
| |
Collapse
|
79
|
Wallerian Degeneration of the Cerebral Peduncle and Association with Motor Outcome in Childhood Stroke. Pediatr Neurol 2020; 102:67-73. [PMID: 31607421 DOI: 10.1016/j.pediatrneurol.2019.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 07/12/2019] [Indexed: 11/21/2022]
Abstract
BACKGROUND To evaluate the presence of Wallerian degeneration and its relationship with sensorimotor deficits following childhood-onset arterial ischemic stroke (AIS). METHODS Children surviving unilateral AIS older than one month of age were assessed for severity of sensorimotor neurological deficit with the Pediatric Stroke Outcome Measure at least one year post stroke (mean follow-up = 2.9 years, S.D. = ±1.6). The area (mm3) of each cerebral peduncle was measured on T2-weighted magnetic resonance images to calculate an Asymmetry Index (AI). The AI between patients with childhood stroke (cases) and controls (children with normal MRI) was compared. In the stroke group, the AI between patients with good and poor motor outcome, and the correlation between the AI and motor outcome was calculated. RESULTS Asymmetry was compared in 52 children with stroke (cases) and 20 controls (normal brain MRIs). The AI was greater in patients with stroke (mean = 6.8%, S.D. = ±5.9) compared with controls (mean = 3.4%, S.D. = ±3.5, P < 0.02). Patients with poor outcome had an AI of 10% or greater compared with patients with good outcome (mean 10.4 versus 4, P < 0.001), and the AI was moderately correlated with motor deficit severity (r = 0.582, P = 0.001). CONCLUSIONS Asymmetry of the cerebral peduncle is a feasible method of assessing Wallerian degeneration in children with unilateral AIS. The degree of asymmetry in the cerebral peduncles was moderately correlated with neurological outcome severity and reflects the degree of motor deficit in children following stroke.
Collapse
|
80
|
Atkinson DA, Mendez L, Goodrich N, Aslan SC, Ugiliweneza B, Behrman AL. Muscle Activation Patterns During Movement Attempts in Children With Acquired Spinal Cord Injury: Neurophysiological Assessment of Residual Motor Function Below the Level of Lesion. Front Neurol 2019; 10:1295. [PMID: 31920919 PMCID: PMC6933608 DOI: 10.3389/fneur.2019.01295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/25/2019] [Indexed: 11/26/2022] Open
Abstract
Introduction: Characterization of residual neuromotor capacity after spinal cord injury (SCI) is challenging. The current gold standard for measurement of sensorimotor function after SCI, the International Society for Neurological Classification of Spinal Cord Injury (ISNCSCI) exam, seeks to determine isolated intentional muscle activation, however many individuals with SCI exhibit intentional movements and muscle activation patterns which are not confined to specific joint or muscle. Further, isolated muscle activation is a feature of the neuromuscular system that emerges during development, and thus may not be an appropriate measurement standard for children younger than 6. Methods: We utilized neurophysiological assessment methodology, long studied in adult SCI populations, to evaluate residual neuromotor capacity in 24 children with SCI, as well as 19 typically developing (TD) children. Surface electromyography (EMG) signals were recorded from 11 muscles bilaterally, representing spinal motor output from all regions (i.e., cervical, thoracic, and lumbosacral), during standardized movement attempts. EMG records were subjectively analyzed based on spatiotemporal muscle activation characteristics, while the voluntary response index (VRI) was utilized for objective analysis of unilateral leg movement tasks. Results: Evidence of intentional leg muscle activation below the level of lesion was found in 11/24 children with SCI, and was classified based on activation pattern. Trace activation, bilateral (generalized) activation, and unilateral or isolated activation occurred in 32, 49, and 8% of movement tasks, respectively. Similarly, VRI analyses objectively identified significant differences between TD and SCI children in both magnitude (p < 0.01) and similarity index (p < 0.05) for all unilateral leg movement tasks. Activation of the erector spinae muscles, recorded at the T10–T12 vertebral level, was observed in all children with SCI, regardless of injury level or severity. Conclusions: Residual descending influence on spinal motor circuits may be present after SCI in children. Assessment of multi-muscle activation patterns during intentional movement attempts can provide objective evidence of the presence and extent of such residual muscle activation, and may provide an indicator of motor recovery potential following injury. The presence of residual intentional muscle activation has important implications for rehabilitation following pediatric-onset SCI.
Collapse
Affiliation(s)
- Darryn A Atkinson
- Doctor of Physical Therapy Program, University of St. Augustine for Health Sciences, Austin, TX, United States
| | - Laura Mendez
- Kosair Charities Center for Pediatric NeuroRecovery, University of Louisville, Louisville, KY, United States.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States
| | - Natalie Goodrich
- Kosair Charities Center for Pediatric NeuroRecovery, University of Louisville, Louisville, KY, United States.,Pediatric Neurorecovery Program, Frazier Rehab Institute, Louisville, KY, United States
| | - Sevda C Aslan
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Neurological Surgery, University of Louisville, Louisville, KY, United States
| | - Beatrice Ugiliweneza
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Neurological Surgery, University of Louisville, Louisville, KY, United States
| | - Andrea L Behrman
- Kosair Charities Center for Pediatric NeuroRecovery, University of Louisville, Louisville, KY, United States.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Neurological Surgery, University of Louisville, Louisville, KY, United States
| |
Collapse
|
81
|
Abstract
Given the prevalence of sleep in early development, any satisfactory account of infant brain activity must consider what happens during sleep. Only recently, however, has it become possible to record sleep-related brain activity in newborn rodents. Using such methods in rat pups, it is now clear that sleep, more so than wake, provides a critical context for the processing of sensory input and the expression of functional connectivity throughout the sensorimotor system. In addition, sleep uniquely reveals functional activity in the developing primary motor cortex, which establishes a somatosensory map long before its role in motor control emerges. These findings will inform our understanding of the developmental processes that contribute to the nascent sense of embodiment in human infants.
Collapse
|
82
|
Karl JM, Slack BM, Wilson AM, Wilson CA, Bertoli ME. Increasing task precision demands reveals that the reach and grasp remain subject to different perception-action constraints in 12-month-old human infants. Infant Behav Dev 2019; 57:101382. [PMID: 31580995 DOI: 10.1016/j.infbeh.2019.101382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/29/2019] [Accepted: 09/16/2019] [Indexed: 11/19/2022]
Abstract
The reach and grasp follow different developmental trajectories, but are often considered to have achieved nearly adult-like precision and integration by 12 months of age. This study used frame-by-frame video analysis to investigate whether increasing precision demands, by placing small reaching targets on a narrow pedestal rather than on a flat table, would influence the reach and grasp movements of 12-month-old infants in a complementary or differential fashion. The results reveal that placing the target atop a pedestal impaired the infants's ability to direct an appropriate digit towards the small target, but did not produce a corresponding decrease in the frequency with which they used an index-thumb pincer grip to grasp the target. This was due to the fact that, although infants were more likely to contact the target with a suboptimal part of the hand in the pedestal condition, a greater proportion of these suboptimal contacts ultimately transitioned to a successful index-thumb pincer grip. Thus, increasing task precision demands impaired reach accuracy, but facilitated index-thumb grip formation, in 12-month-old infants. The differential response of the reach and grasp to the increased precision demands of the pedestal condition suggests that the two movements are not fully integrated and, when precision demands are great, remain sensitive to different perception-action constraints in 12-month-old infants.
Collapse
Affiliation(s)
- Jenni M Karl
- Department of Psychology, Thompson Rivers University, Kamloops, BC, Canada.
| | - Braydon M Slack
- Department of Psychology, Thompson Rivers University, Kamloops, BC, Canada
| | - Alexis M Wilson
- Department of Psychology, Thompson Rivers University, Kamloops, BC, Canada
| | | | - Marisa E Bertoli
- Department of Psychology, Thompson Rivers University, Kamloops, BC, Canada
| |
Collapse
|
83
|
Skilled Movements in Mice Require Inhibition of Corticospinal Axon Collateral Formation in the Spinal Cord by Semaphorin Signaling. J Neurosci 2019; 39:8885-8899. [PMID: 31537704 DOI: 10.1523/jneurosci.2832-18.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 11/21/2022] Open
Abstract
Corticospinal (CS) neurons in layer V of the sensorimotor cortex are essential for voluntary motor control. Those neurons project axons to specific segments along the rostro-caudal axis of the spinal cord, and reach their spinal targets by sending collateral branches interstitially along axon bundles. Currently, little is known how CS axon collaterals are formed in the proper spinal cord regions. Here, we show that the semaphorin3A (Sema3A)-neuropilin-1 (Npn-1) signaling pathway is an essential negative regulator of CS axon collateral formation in the spinal cord from mice of either sex. Sema3A is expressed in the ventral spinal cord, whereas CS neurons express Npn-1, suggesting that Sema3A might prevent CS axons from entering the ventral spinal cord. Indeed, the ectopic expression of Sema3A in the spinal cord in vivo inhibits CS axon collateral formation, whereas Sema3A or Npn-1 mutant mice have ectopic CS axon collateral formation within the ventral spinal cord compared with littermate controls. Finally, Npn-1 mutant mice exhibit impaired skilled movements, likely because of aberrantly formed CS connections in the ventral spinal cord. These genetic findings reveal that Sema3A-Npn-1 signaling-mediated inhibition of CS axon collateral formation is critical for proper CS circuit formation and the ability to perform skilled motor behaviors.SIGNIFICANCE STATEMENT CS neurons project axons to the spinal cord to control skilled movements in mammals. Previous studies revealed some of the molecular mechanisms underlying different phases of CS circuit development such as initial axon guidance in the brain, and midline crossing in the brainstem and spinal cord. However, the molecular mechanisms underlying CS axon collateral formation in the spinal gray matter has remained obscure. In this study, using in vivo gain-of- and loss-of-function experiments, we show that Sema3A-Npn-1 signaling functions to inhibit CS axon collateral formation in the ventral spinal cord, allowing for the development of proper skilled movements in mice.
Collapse
|
84
|
Cavarsan CF, Gorassini MA, Quinlan KA. Animal models of developmental motor disorders: parallels to human motor dysfunction in cerebral palsy. J Neurophysiol 2019; 122:1238-1253. [PMID: 31411933 PMCID: PMC6766736 DOI: 10.1152/jn.00233.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 12/12/2022] Open
Abstract
Cerebral palsy (CP) is the most common motor disability in children. Much of the previous research on CP has focused on reducing the severity of brain injuries, whereas very few researchers have investigated the cause and amelioration of motor symptoms. This research focus has had an impact on the choice of animal models. Many of the commonly used animal models do not display a prominent CP-like motor phenotype. In general, rodent models show anatomically severe injuries in the central nervous system (CNS) in response to insults associated with CP, including hypoxia, ischemia, and neuroinflammation. Unfortunately, most rodent models do not display a prominent motor phenotype that includes the hallmarks of spasticity (muscle stiffness and hyperreflexia) and weakness. To study motor dysfunction related to developmental injuries, a larger animal model is needed, such as rabbit, pig, or nonhuman primate. In this work, we describe and compare various animal models of CP and their potential for translation to the human condition.
Collapse
Affiliation(s)
- Clarissa F Cavarsan
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island
| | - Monica A Gorassini
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Katharina A Quinlan
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island
| |
Collapse
|
85
|
Neuronal activity and microglial activation support corticospinal tract and proprioceptive afferent sprouting in spinal circuits after a corticospinal system lesion. Exp Neurol 2019; 321:113015. [PMID: 31326353 DOI: 10.1016/j.expneurol.2019.113015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 05/12/2019] [Accepted: 07/17/2019] [Indexed: 12/17/2022]
Abstract
Spared corticospinal tract (CST) and proprioceptive afferent (PA) axons sprout after injury and contribute to rewiring spinal circuits, affecting motor recovery. Loss of CST connections post-injury results in corticospinal signal loss and associated reduction in spinal activity. We investigated the role of activity loss and injury on CST and PA sprouting. To understand activity-dependence after injury, we compared CST and PA sprouting after motor cortex (MCX) inactivation, produced by chronic MCX muscimol microinfusion, with sprouting after a CST lesion produced by pyramidal tract section (PTx). Activity suppression, which does not produce a lesion, is sufficient to trigger CST axon outgrowth from the active side to cross the midline and to enter the inactivated side of the spinal cord, to the same extent as PTx. Activity loss was insufficient to drive significant CST gray matter axon elongation, an effect of PTx. Activity suppression triggered presynaptic site formation, but less than PTx. Activity loss triggered PA sprouting, as PTx. To understand injury-dependent sprouting further, we blocked microglial activation and associated inflammation after PTX by chronic minocycline administration after PTx. Minocycline inhibited myelin debris phagocytosis contralateral to PTx and abolished CST axon elongation, formation of presynaptic sites, and PA sprouting, but not CST axon outgrowth from the active side to cross the midline. Our findings suggest sprouting after injury has a strong activity dependence and that microglial activation after injury supports axonal elongation and presynaptic site formation. Combining spinal activity support and inflammation control is potentially more effective in promoting functional restoration than either alone.
Collapse
|
86
|
Dooley JC, Sokoloff G, Blumberg MS. Behavioral states modulate sensory processing in early development. CURRENT SLEEP MEDICINE REPORTS 2019; 5:112-117. [PMID: 31662954 DOI: 10.1007/s40675-019-00144-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Purpose of Review Sleep-wake states modulate cortical activity in adults. In infants, however, such modulation is less clear; indeed, early cortical activity comprises bursts of neural activity driven predominantly by peripheral sensory input. Consequently, in many studies of sensory development in rodents, sensory processing has been carefully investigated, but the modulatory role of behavioral state has typically been ignored. Recent Findings In the developing visual and somatosensory systems, it is now known that sleep and wake states modulate sensory processing. Further, in both systems, the nature of this modulation shifts rapidly during the second postnatal week, with subcortical nuclei changing how they gate sensory inputs. Summary The interactions among sleep and wake movements, sensory processing, and development are dynamic and complex. Now that established methods exist to record neural activity in unanesthetized infant animals, we can provide a more comprehensive understanding of how infant sleep-wake states interact with sensory-driven responses to promote developmental plasticity.
Collapse
Affiliation(s)
- James C Dooley
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, IA 52242, USA.,DeLTA Center, University of Iowa, Iowa City, IA 52242 USA
| | - Greta Sokoloff
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, IA 52242, USA.,DeLTA Center, University of Iowa, Iowa City, IA 52242 USA.,Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242 USA
| | - Mark S Blumberg
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, IA 52242, USA.,Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52245, USA.,Department of Biology, University of Iowa, Iowa City, IA, 52242 USA.,DeLTA Center, University of Iowa, Iowa City, IA 52242 USA.,Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242 USA
| |
Collapse
|
87
|
Nemanich ST, Chen CY, Chen M, Zorn E, Mueller B, Peyton C, Elison JT, Stinear J, Rao R, Georgieff M, Menk J, Rudser K, Gillick B. Safety and Feasibility of Transcranial Magnetic Stimulation as an Exploratory Assessment of Corticospinal Connectivity in Infants After Perinatal Brain Injury: An Observational Study. Phys Ther 2019; 99:689-700. [PMID: 30806664 PMCID: PMC6545276 DOI: 10.1093/ptj/pzz028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 02/13/2019] [Indexed: 01/21/2023]
Abstract
BACKGROUND Perinatal brain injuries often impact the corticospinal system, leading to motor impairment and cerebral palsy. Although transcranial magnetic stimulation (TMS) has been widely used to study corticospinal connectivity in adults and older children, similar studies of young infants are limited. OBJECTIVES The objective was to establish the safety and feasibility of advanced TMS assessments of the corticospinal connectivity of young infants with perinatal brain injury. DESIGN This was a pilot, cross-sectional study of 3- to 12-month-old (corrected age) infants with perinatal stroke or intracranial hemorrhage. METHODS Six participants (2 term, 4 preterm) were assessed with stereotactic neuronavigation-guided TMS. Single-pulse TMS was applied to each hemisphere and responses were recorded simultaneously from both upper limbs. During data collection, vital signs and stress responses were measured to assess safety. Developmental motor outcomes were evaluated using the General Movements Assessment and Bayley Scales of Infant and Toddler Development (3rd edition). A clinical diagnosis of cerebral palsy was recorded, if available. RESULTS No adverse events occurred during TMS testing. All sessions were well tolerated. Contralateral motor evoked responses were detected in 4 of 6 participants. Both contralateral and ipsilateral responses were observed in 2 of 6 participants. LIMITATIONS TMS responses were not obtained in all participants. This could be related to the location of brain injury or developmental stage of the corticospinal system controlling the wrist flexor muscle group from which responses were recorded. CONCLUSIONS This study provides a summary of the framework for performing novel TMS assessments in infants with perinatal brain injury. Implementing this approach to measure corticospinal connectivity in hypothesis-driven studies in young infants appears to be justified. Such studies could inform the characterization of corticospinal development and the neural mechanisms driving recovery following early interventions.
Collapse
Affiliation(s)
- Samuel T Nemanich
- Department of Rehabilitation Medicine, University of Minnesota, MMC 388, 420 Delaware St SE, Minneapolis, MN 55455 (USA). Address all correspondence to Dr Nemanich at:
| | - Chao-Ying Chen
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Mo Chen
- Department of Psychiatry and Behavioral Sciences, University of Minnesota
| | | | - Bryon Mueller
- Department of Psychiatry and Behavioral Sciences, University of Minnesota
| | - Colleen Peyton
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Jed T Elison
- Department of Pediatrics; and Institute of Child Development, College of Education and Human Development, University of Minnesota
| | - James Stinear
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
| | - Raghu Rao
- Department of Pediatrics, University of Minnesota
| | | | - Jeremiah Menk
- School of Public Health, Division of Biostatistics, University of Minnesota
| | - Kyle Rudser
- School of Public Health, Division of Biostatistics, University of Minnesota
| | | |
Collapse
|
88
|
Donenberg JG, Fetters L, Johnson R. The effects of locomotor training in children with spinal cord injury: a systematic review. Dev Neurorehabil 2019; 22:272-287. [PMID: 29920126 DOI: 10.1080/17518423.2018.1487474] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE Discuss the effectiveness of locomotor training (LT) in children following spinal cord injury (SCI). This intervention was assessed following an exhaustive search of the literature using the Preferred Reporting Items for Systematic Reviews and Meta- Analyses: The PRISMA Statement as a guideline. METHOD Six databases were searched including PubMed, PEDro, CINAHL, Cochrane, PsycINFO, and Web of Knowledge in January 2016 and November 2016, without date restrictions. Inclusion criteria were: studies in English and peer-reviewed and journal articles with a primary intervention of LT in children following SCI. RESULTS Twelve articles, reporting eleven studies, were included. A systematic review assessing locomotor training in children with SCI published in April 2016 was also included. Participants were ages 15 months to 18 years old. Forms of LT included body-weight supported treadmill or over ground training, functional electrical stimulation, robotics, and virtual reality. Protocols differed in set-up and delivery mode, with improvements seen in ambulation for all 41 participants following LT. CONCLUSION Children might benefit from LT to develop or restore ambulation following SCI. Age, completeness, and level of injury remain the most important prognostic factors to consider with this intervention. Additional benefits include improved bowel/ bladder management and control, bone density, cardiovascular endurance, and overall quality of life. Looking beyond the effects LT has just on ambulation is crucial because it can offer benefits to all children sustaining a SCI, even if restoration or development of walking is not the primary goal. Further rigorous research is required to determine the overall effectiveness of LT.
Collapse
Affiliation(s)
- Jennifer Glenna Donenberg
- a Division of Biokinesiology & Physical Therapy , University of Southern California , Los Angeles , CA , USA
| | - Linda Fetters
- a Division of Biokinesiology & Physical Therapy , University of Southern California , Los Angeles , CA , USA
| | - Robert Johnson
- b Norris Medical Library , University of Southern California , Los Angeles , CA , USA
| |
Collapse
|
89
|
Rodent Models of Developmental Ischemic Stroke for Translational Research: Strengths and Weaknesses. Neural Plast 2019; 2019:5089321. [PMID: 31093271 PMCID: PMC6476045 DOI: 10.1155/2019/5089321] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 12/19/2018] [Accepted: 02/06/2019] [Indexed: 12/25/2022] Open
Abstract
Cerebral ischemia can occur at any stage in life, but clinical consequences greatly differ depending on the developmental stage of the affected brain structures. Timing of the lesion occurrence seems to be critical, as it strongly interferes with neuronal circuit development and determines the way spontaneous plasticity takes place. Translational stroke research requires the use of animal models as they represent a reliable tool to understand the pathogenic mechanisms underlying the generation, progression, and pathological consequences of a stroke. Moreover, in vivo experiments are instrumental to investigate new therapeutic strategies and the best temporal window of intervention. Differently from adults, very few models of the human developmental stroke have been characterized, and most of them have been established in rodents. The models currently used provide a better understanding of the molecular factors involved in the effects of ischemia; however, they still hold many limitations due to matching developmental stages across different species and the complexity of the human disorder that hardly can be described by segregated variables. In this review, we summarize the key factors contributing to neonatal brain vulnerability to ischemic strokes and we provide an overview of the advantages and limitations of the currently available models to recapitulate different aspects of the human developmental stroke.
Collapse
|
90
|
Pujala A, Koyama M. Chronology-based architecture of descending circuits that underlie the development of locomotor repertoire after birth. eLife 2019; 8:42135. [PMID: 30801247 PMCID: PMC6449084 DOI: 10.7554/elife.42135] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/22/2019] [Indexed: 12/17/2022] Open
Abstract
The emergence of new and increasingly sophisticated behaviors after birth is accompanied by dramatic increase of newly established synaptic connections in the nervous system. Little is known, however, of how nascent connections are organized to support such new behaviors alongside existing ones. To understand this, in the larval zebrafish we examined the development of spinal pathways from hindbrain V2a neurons and the role of these pathways in the development of locomotion. We found that new projections are continually layered laterally to existing neuropil, and give rise to distinct pathways that function in parallel to existing pathways. Across these chronologically layered pathways, the connectivity patterns and biophysical properties vary systematically to support a behavioral repertoire with a wide range of kinematics and dynamics. Such layering of new parallel circuits equipped with systematically changing properties may be central to the postnatal diversification and increasing sophistication of an animal’s behavioral repertoire. Newborn babies have limited abilities. Indeed, most of our actions shortly after birth are the result of reflexes that serve our most basic need: to stay alive. As we get older, however, our behaviour gradually becomes more sophisticated. During this time, the billions of cells in our brain form new connections to build intricate ‘circuits’ of neurons that allow for more complicated thoughts and actions. It is clear that the brain circuits that support new behaviours must develop in a way that does not interfere with the existing circuits that are vital for survival. However, the challenge has been to find a way to peer into a brain as it develops to see how these new circuits form. In recent years, zebrafish have revolutionised research into neuronal circuits in animals. Developing over the course of a few days, these small transparent fish provide a window into the brain during the earliest stages of development. Indeed, the circuits of neurons that descend from the brain and connect to the spinal cord have already been mapped in these animals. Now, Pujala and Koyama have begun to follow the careful development of these ‘descending’ neurons, and relate it to the appearance of new behaviours in young zebrafish. Time-lapse imaging with a fluorescent protein that is active only in specific descending neurons revealed that new circuits are laid down over existing ones, like the growth rings in a tree. Next, at different timepoints in zebrafish development, Pujala and Koyama traced these neurons backwards from the spine to the brain to identify which connections formed first. This showed that the spinal connections develop one after the other, in the same order that the neurons mature. Next, Pujala and Koyama asked how the activity of neurons that mature early or late in development relates to specific behaviours in young zebrafish. Early-born circuits connect to neurons that produce powerful, reflex-driven, whole-body movements such as an escape response. The later circuits connect to different neurons through slower, less direct pathways; the late-born neurons also generate the refined movements that are acquired later in a zebrafish’s development and help the fish to explore its environment. These findings show that descending circuits in zebrafish run parallel to each other, but with distinct connections and properties that allow them to control different kinds of movements. While this study was conducted using an animal model, a better understanding of how such circuits develop and the movements they control may one day aid the treatment of patients with neurodegenerative diseases or injuries where connections have been lost.
Collapse
Affiliation(s)
- Avinash Pujala
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Minoru Koyama
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
91
|
Brandes-Aitken A, Anguera JA, Chang YS, Demopoulos C, Owen JP, Gazzaley A, Mukherjee P, Marco EJ. White Matter Microstructure Associations of Cognitive and Visuomotor Control in Children: A Sensory Processing Perspective. Front Integr Neurosci 2019; 12:65. [PMID: 30692921 PMCID: PMC6339953 DOI: 10.3389/fnint.2018.00065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/11/2018] [Indexed: 01/08/2023] Open
Abstract
Objective: Recent evidence suggests that co-occurring deficits in cognitive control and visuomotor control are common to many neurodevelopmental disorders. Specifically, children with sensory processing dysfunction (SPD), a condition characterized by sensory hyper/hypo-sensitivity, show varying degrees of overlapping attention and visuomotor challenges. In this study, we assess associations between cognitive and visuomotor control abilities among children with and without SPD. In this same context, we also examined the common and unique diffusion tensor imaging (DTI) tracts that may support the overlap of cognitive control and visuomotor control. Method: We collected cognitive control and visuomotor control behavioral measures as well as DTI data in 37 children with SPD and 25 typically developing controls (TDCs). We constructed regressions to assess for associations between behavioral performance and mean fractional anisotropy (FA) in selected regions of interest (ROIs). Results: We observed an association between behavioral performance on cognitive control and visuomotor control. Further, our findings indicated that FA in the anterior limb of the internal capsule (ALIC), the anterior thalamic radiation (ATR), and the superior longitudinal fasciculus (SLF) are associated with both cognitive control and visuomotor control, while FA in the superior corona radiata (SCR) uniquely correlate with cognitive control performance and FA in the posterior limb of the internal capsule (PLIC) and the cerebral peduncle (CP) tract uniquely correlate with visuomotor control performance. Conclusions: These findings suggest that children who demonstrate lower cognitive control are also more likely to demonstrate lower visuomotor control, and vice-versa, regardless of clinical cohort assignment. The overlapping neural tracts, which correlate with both cognitive and visuomotor control suggest a possible common neural mechanism supporting both control-based processes.
Collapse
Affiliation(s)
- Annie Brandes-Aitken
- Neuroscape Center, Departments of Neurology, Pediatrics, Physiology, Radiology, and Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - Joaquin A Anguera
- Neuroscape Center, Departments of Neurology, Pediatrics, Physiology, Radiology, and Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - Yi-Shin Chang
- Neuroscape Center, Departments of Neurology, Pediatrics, Physiology, Radiology, and Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - Carly Demopoulos
- Neuroscape Center, Departments of Neurology, Pediatrics, Physiology, Radiology, and Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - Julia P Owen
- Neuroscape Center, Departments of Neurology, Pediatrics, Physiology, Radiology, and Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - Adam Gazzaley
- Neuroscape Center, Departments of Neurology, Pediatrics, Physiology, Radiology, and Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - Pratik Mukherjee
- Neuroscape Center, Departments of Neurology, Pediatrics, Physiology, Radiology, and Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - Elysa J Marco
- Neuroscape Center, Departments of Neurology, Pediatrics, Physiology, Radiology, and Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
92
|
Craig BT, Olsen C, Mah S, Carlson HL, Wei XC, Kirton A. Crossed Cerebellar Atrophy in Perinatal Stroke. Stroke 2019; 50:175-177. [PMID: 30580726 DOI: 10.1161/strokeaha.118.022423] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose- Perinatal stroke causes most hemiparetic cerebral palsy and lifelong disability. Crossed cerebellar atrophy (CCA) is chronic cerebellar volume loss following contralateral motor pathway injury. We hypothesized that CCA is quantifiable in perinatal stroke and associated with poor motor outcome. Methods- Term-born children with perinatal stroke, magnetic resonance imaging beyond 6 months of age, and no additional neurological disorders were recruited. Blinded scorers measured cerebellar volumes expressed as ratios (contralesional/ipsilesional), with values <1 suggesting CCA. Motor outcomes including perinatal stroke outcome measure (PSOM) motor and cognitive scores (good/poor), Assisting Hand Assessment, and Melbourne Assessment were compared with cerebellar volume measures. Results- Seventy-three children met criteria (53% male). Mean cerebellar ratios were <1.0 (0.975±0.04; range, 0.885-1.079; P<0.001) suggesting occurrence of CCA. Cerebellar ratios did not differ between stroke types or across PSOM motor outcomes. Larger ipsilesional cerebellar volume was associated with poor PSOM cognitive outcome (P=0.042), possibly with poor PSOM motor outcome (P=0.063), and overall PSOM score (P=0.034). Conclusions- CCA occurs in perinatal stroke but is not strongly associated with motor outcome. However, ipsilesional cerebellar volume is associated with poor cognitive and overall outcomes.
Collapse
Affiliation(s)
- Brandon T Craig
- From the Calgary Pediatric Stroke Program (B.T.C., C.O., S.M., H.L.C., A.K.), Cumming School of Medicine, University of Calgary, AB, Canada
- Hotchkiss Brain Institute (B.T.C., H.L.C., A.K.), Cumming School of Medicine, University of Calgary, AB, Canada
- Department of Pediatrics (B.T.C., H.L.C., A.K.), Cumming School of Medicine, University of Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Canada (B.T.C., H.L.C., A.K.)
| | - Cheyanne Olsen
- From the Calgary Pediatric Stroke Program (B.T.C., C.O., S.M., H.L.C., A.K.), Cumming School of Medicine, University of Calgary, AB, Canada
| | - Sarah Mah
- From the Calgary Pediatric Stroke Program (B.T.C., C.O., S.M., H.L.C., A.K.), Cumming School of Medicine, University of Calgary, AB, Canada
| | - Helen L Carlson
- From the Calgary Pediatric Stroke Program (B.T.C., C.O., S.M., H.L.C., A.K.), Cumming School of Medicine, University of Calgary, AB, Canada
- Hotchkiss Brain Institute (B.T.C., H.L.C., A.K.), Cumming School of Medicine, University of Calgary, AB, Canada
- Department of Pediatrics (B.T.C., H.L.C., A.K.), Cumming School of Medicine, University of Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Canada (B.T.C., H.L.C., A.K.)
| | - Xing-Chang Wei
- Department of Radiology (A.K., X.-C.W.), Cumming School of Medicine, University of Calgary, AB, Canada
| | - Adam Kirton
- From the Calgary Pediatric Stroke Program (B.T.C., C.O., S.M., H.L.C., A.K.), Cumming School of Medicine, University of Calgary, AB, Canada
- Hotchkiss Brain Institute (B.T.C., H.L.C., A.K.), Cumming School of Medicine, University of Calgary, AB, Canada
- Department of Pediatrics (B.T.C., H.L.C., A.K.), Cumming School of Medicine, University of Calgary, AB, Canada
- Department of Radiology (A.K., X.-C.W.), Cumming School of Medicine, University of Calgary, AB, Canada
- Department of Clinical Neurosciences (A.K.), Cumming School of Medicine, University of Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Canada (B.T.C., H.L.C., A.K.)
| |
Collapse
|
93
|
Transcranial Direct Current Stimulation (tDCS) Paired with Occupation-Centered Bimanual Training in Children with Unilateral Cerebral Palsy: A Preliminary Study. Neural Plast 2018; 2018:9610812. [PMID: 30627151 PMCID: PMC6304908 DOI: 10.1155/2018/9610812] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/18/2018] [Accepted: 08/27/2018] [Indexed: 12/19/2022] Open
Abstract
Objective We investigated the preliminary efficacy of cathodal transcranial direct current stimulation (tDCS) combined with bimanual training in children and young adults with unilateral cerebral palsy based on the principle of exaggerated interhemispheric inhibition (IHI). Methods Eight participants with corticospinal tract (CST) connectivity from the lesioned hemisphere participated in an open-label study of 10 sessions of cathodal tDCS to the nonlesioned hemisphere (20 minutes) concurrently with bimanual, goal-directed training (120 minutes). We measured the frequency of adverse events and intervention efficacy with performance (bimanual-Assisting Hand Assessment (AHA)-and unimanual-Box and Blocks), self-report (Canadian Occupational Performance Measure (COPM), ABILHAND), and neurophysiologic (motor-evoked potential amplitude, cortical silent period (CSP) duration, and motor mapping) assessments. Results All participants completed the study with no serious adverse events. Three of 8 participants showed gains on the AHA, and 4 of 8 participants showed gains in Box and Blocks (more affected hand). Nonlesioned CSP duration decreased in 6 of 6 participants with analyzable data. Cortical representation of the first dorsal interosseous expanded in the nonlesioned hemisphere in 4 of 6 participants and decreased in the lesioned hemisphere in 3 of 4 participants with analyzable data. Conclusions While goal achievement was observed, objective measures of hand function showed inconsistent gains. Neurophysiologic data suggests nonlinear responses to cathodal stimulation of the nonlesioned hemisphere. Future studies examining the contributions of activity-dependent competition and cortical excitability imbalances are indicated.
Collapse
|
94
|
Corticospinal Tract Wiring and Brain Lesion Characteristics in Unilateral Cerebral Palsy: Determinants of Upper Limb Motor and Sensory Function. Neural Plast 2018; 2018:2671613. [PMID: 30344602 PMCID: PMC6158964 DOI: 10.1155/2018/2671613] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/18/2018] [Accepted: 08/05/2018] [Indexed: 11/17/2022] Open
Abstract
Brain lesion characteristics (timing, location, and extent) and the type of corticospinal tract (CST) wiring have been proposed as determinants of upper limb (UL) motor function in unilateral cerebral palsy (uCP), yet an investigation of the relative combined impact of these factors on both motor and sensory functions is still lacking. Here, we first investigated whether structural brain lesion characteristics could predict the underlying CST wiring and we explored the role of CST wiring and brain lesion characteristics to predict UL motor and sensory functions in uCP. Fifty-two participants with uCP (mean age (SD): 11 y and 3 m (3 y and 10 m)) underwent a single-pulse Transcranial Magnetic Stimulation session to determine CST wiring between the motor cortex and the more affected hand (n = 17 contralateral, n = 19 ipsilateral, and n = 16 bilateral) and an MRI to determine lesion timing (n = 34 periventricular (PV) lesion, n = 18 corticosubcortical (CSC) lesion), location, and extent. Lesion location and extent were evaluated with a semiquantitative scale. A standardized protocol included UL motor (grip strength, unimanual capacity, and bimanual performance) and sensory measures. A combination of lesion locations (damage to the PLIC and frontal lobe) significantly contributed to differentiate between the CST wiring groups, reclassifying the participants in their original group with 57% of accuracy. Motor and sensory functions were influenced by each of the investigated neurological factors. However, multiple regression analyses showed that motor function was predicted by the CST wiring (more preserved in individuals with contralateral CST (p < 0.01)), lesion extent, and damage to the basal ganglia and thalamus. Sensory function was predicted by the combination of a large and later lesion and an ipsilateral or bilateral CST wiring, which led to increased sensory deficits (p < 0.05). These novel insights contribute to a better understanding of the underlying pathophysiology of UL function and may be useful to delineate individualized treatment strategies.
Collapse
|
95
|
Barbosa VM, Powlesland J. Behavioral Organization in Infants with Intraventricular Hemorrhage: Characteristics and Clinical Implications. Neonatal Netw 2018; 37:310-318. [PMID: 30567813 DOI: 10.1891/0730-0832.37.5.310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
PURPOSE This study examined the neurobehavioral functioning in preterm infants diagnosed with intraventricular hemorrhage (IVH) grades III and IV, using the Assessment of Preterm Infants' Behavior (APIB). DESIGN AND SAMPLE The APIB was completed on nine infants with IVH III/IV at 36 and 40weeks postmenstrual age to determine the effects of IVH on the neurobehavioral functioning and maturation over time. The APIB neurobehavioral scores (i.e., physiologic, motor, state, attention/interaction, regulatory, and examiner facilitation subsystem scores) were examined in relation to the two different testing times and to infants without lesion. RESULTS APIB scores at 36weeks suggested easily disorganized and poorly modulated behavioral regulation and low threshold of disorganization and stress. At 40 weeks, poor overall behavioral regulation persisted; only motor differences statistically improved between the two ages. Neurobehavior was significantly poor in all but state subsystems when tested at both ages in infants with a brain lesion.
Collapse
MESH Headings
- Cerebral Intraventricular Hemorrhage/complications
- Cerebral Intraventricular Hemorrhage/diagnosis
- Cerebral Intraventricular Hemorrhage/therapy
- Female
- Humans
- Illinois
- Infant
- Infant Behavior/physiology
- Infant, Low Birth Weight
- Infant, Newborn
- Infant, Newborn, Diseases/diagnosis
- Infant, Newborn, Diseases/therapy
- Infant, Premature
- Infant, Premature, Diseases/diagnosis
- Infant, Premature, Diseases/therapy
- Male
Collapse
|
96
|
Nestrasil I, Svatkova A, Rudser KD, Chityala R, Wakumoto A, Mueller BA, Bednařík P, Tuite P, Wu X, Bushara K. White matter measures correlate with essential tremor severity-A pilot diffusion tensor imaging study. Brain Behav 2018; 8:e01039. [PMID: 29964316 PMCID: PMC6085909 DOI: 10.1002/brb3.1039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/15/2018] [Accepted: 06/04/2018] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND An evolving pathophysiological concept of essential tremor (ET) points to diffuse brain network involvement, which emphasizes the need to investigate white matter (WM) changes associated with motor symptoms of ET. OBJECTIVES To investigate ET-related WM changes and WM correlates of tremor severity using tremor clinical rating scales and accelerometry. METHODS Tract-based spatial statistics (TBSS) approach was utilized to compare 3 Tesla diffusion tensor imaging (DTI) data from 12 ET patients and 10 age- and gender-matched healthy individuals. Clinical scales, tremor frequency and amplitude as measured by accelerometry were correlated with DTI data. RESULTS ET patients demonstrated mean (MD) and radial diffusivity (RD) abnormalities in tracts involved in primary and associative motor functions such as bilateral corticospinal tracts, the superior longitudinal fascicles, and the corpus callosum but also in nonmotor regions including the inferior fronto-occipital and longitudinal fascicles, cingulum bundles, anterior thalamic radiations, and uncinate fascicles. A combined tremor frequency and amplitude score correlated with RD and MD in extensive WM areas, which partially overlapped the regions that were associated with tremor frequency. No significant relationship was found between DTI measures and clinical rating scales scores. CONCLUSIONS The results show that ET-related diffusion WM changes and their correlates with tremor severity are preferentially located in the primary and associative motor areas. In contrast, a relationship between WM was not detected with clinical rating scales. Accelerometry parameters may, therefore, serve as a potentially useful clinical measures that relate to WM deficits in ET.
Collapse
Affiliation(s)
- Igor Nestrasil
- Division of Clinical Behavioral NeuroscienceDepartment of PediatricsUniversity of MinnesotaMinneapolisMinnesota
| | - Alena Svatkova
- Division of Clinical Behavioral NeuroscienceDepartment of PediatricsUniversity of MinnesotaMinneapolisMinnesota
- Department of Medicine III, Clinical Division of Endocrinology and MetabolismMedical University of ViennaViennaAustria
- Multimodal and Functional Neuroimaging Research GroupCentral European Institute of TechnologyMasaryk UniversityBrnoCzech Republic
| | - Kyle D. Rudser
- Division of BiostatisticsUniversity of MinnesotaMinneapolisMinnesota
| | | | - Amy Wakumoto
- Division of Clinical Behavioral NeuroscienceDepartment of PediatricsUniversity of MinnesotaMinneapolisMinnesota
| | - Bryon A. Mueller
- Department of PsychiatryUniversity of MinnesotaMinneapolisMinnesota
| | - Petr Bednařík
- Multimodal and Functional Neuroimaging Research GroupCentral European Institute of TechnologyMasaryk UniversityBrnoCzech Republic
- Department of RadiologyCenter for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisMinnesota
- High Field MR CentreDepartment of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
| | - Paul Tuite
- Department of NeurologyUniversity of MinnesotaMinneapolisMinnesota
| | - Xiang Wu
- Psychology DepartmentSun Yet‐Sen UniversityGuangzhouGuangdongChina
| | - Khalaf Bushara
- Department of NeurologyUniversity of MinnesotaMinneapolisMinnesota
- Neurology ServiceVeterans Affairs Medical CenterMinneapolisMinnesota
| |
Collapse
|
97
|
Hayat TTA, Rutherford MA. Neuroimaging perspectives on fetal motor behavior. Neurosci Biobehav Rev 2018; 92:390-401. [PMID: 29886176 DOI: 10.1016/j.neubiorev.2018.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/22/2018] [Accepted: 06/01/2018] [Indexed: 12/19/2022]
Abstract
We are entering a new era of understanding human development with the ability to perform studies at the earliest time points possible. There is a substantial body of evidence to support the concept that early motor behaviour originates from supraspinal motor centres, reflects neurological integrity, and that altered patterns of behaviour precede clinical manifestation of disease. Cine Magnetic Resonance Imaging (cineMRI) has established its value as a novel method to visualise motor behaviour in the human fetus, building on the wealth of knowledge gleaned from ultrasound based studies. This paper presents a state of the art review incorporating findings from human and preclinical models, the insights from which, we propose, can proceed a reconceptualisation of fetal motor behaviour using advanced imaging techniques. Foremost is the need to better understand the role of the intrauterine environment, and its inherent unique set of stimuli that activate sensorimotor pathways and shape early brain development. Finally, an improved model of early motor development, combined with multimodal imaging, will provide a novel source of in utero biomarkers predictive of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Tayyib T A Hayat
- Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom.
| | - Mary A Rutherford
- Centre for the Developing Brain, Perinatal Imaging & Health, Imaging Sciences & Biomedical Engineering Division, King's College London, London, United Kingdom
| |
Collapse
|
98
|
Kerkman JN, Daffertshofer A, Gollo LL, Breakspear M, Boonstra TW. Network structure of the human musculoskeletal system shapes neural interactions on multiple time scales. SCIENCE ADVANCES 2018; 4:eaat0497. [PMID: 29963631 PMCID: PMC6021138 DOI: 10.1126/sciadv.aat0497] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/22/2018] [Indexed: 06/02/2023]
Abstract
Human motor control requires the coordination of muscle activity under the anatomical constraints imposed by the musculoskeletal system. Interactions within the central nervous system are fundamental to motor coordination, but the principles governing functional integration remain poorly understood. We used network analysis to investigate the relationship between anatomical and functional connectivity among 36 muscles. Anatomical networks were defined by the physical connections between muscles, and functional networks were based on intermuscular coherence assessed during postural tasks. We found a modular structure of functional networks that was strongly shaped by the anatomical constraints of the musculoskeletal system. Changes in postural tasks were associated with a frequency-dependent reconfiguration of the coupling between functional modules. These findings reveal distinct patterns of functional interactions between muscles involved in flexibly organizing muscle activity during postural control. Our network approach to the motor system offers a unique window into the neural circuitry driving the musculoskeletal system.
Collapse
Affiliation(s)
- Jennifer N. Kerkman
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences and Institute for Brain and Behavior, Amsterdam, Netherlands
| | - Andreas Daffertshofer
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences and Institute for Brain and Behavior, Amsterdam, Netherlands
| | - Leonardo L. Gollo
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- The University of Queensland, St. Lucia, Queensland 4072, Australia
- Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
- National Institute for Dementia Research, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, Queensland 4006, Australia
| | - Michael Breakspear
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Metro North Mental Health Service, Brisbane, Queensland, Australia
| | - Tjeerd W. Boonstra
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Black Dog Institute, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
99
|
Blumberg MS, Dooley JC. Phantom Limbs, Neuroprosthetics, and the Developmental Origins of Embodiment. Trends Neurosci 2018; 40:603-612. [PMID: 28843655 DOI: 10.1016/j.tins.2017.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/12/2017] [Accepted: 07/25/2017] [Indexed: 01/11/2023]
Abstract
Amputees who wish to rid themselves of a phantom limb must weaken the neural representation of the absent limb. Conversely, amputees who wish to replace a lost limb must assimilate a neuroprosthetic with the existing neural representation. Whether we wish to remove a phantom limb or assimilate a synthetic one, we will benefit from knowing more about the developmental process that enables embodiment. A potentially critical contributor to that process is the spontaneous activity - in the form of limb twitches - that occurs exclusively and abundantly during active (REM) sleep, a particularly prominent state in early development. The sensorimotor circuits activated by twitching limbs, and the developmental context in which activation occurs, could provide a roadmap for creating neuroprosthetics that feel as if they are part of the body.
Collapse
Affiliation(s)
- Mark S Blumberg
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa 52242, USA; Department of Biology, University of Iowa, Iowa City, Iowa 52242, USA; DeLTA Center, University of Iowa, Iowa City, Iowa 52242, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA.
| | - James C Dooley
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa 52242, USA; DeLTA Center, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
100
|
Early manifestation of arm–leg coordination during stepping on a surface in human neonates. Exp Brain Res 2018; 236:1105-1115. [DOI: 10.1007/s00221-018-5201-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/07/2018] [Indexed: 12/23/2022]
|