51
|
Monson TA, Hlusko LJ. Breaking the rules: Phylogeny, not life history, explains dental eruption sequence in primates. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 167:217-233. [DOI: 10.1002/ajpa.23618] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Tesla A. Monson
- Department of Integrative Biology; University of California; Berkeley California 94720
- Museum of Vertebrate Zoology, Department of Integrative Biology; University of California; Berkeley California 94720
- Human Evolution Research Center, Department of Integrative Biology; University of California; Berkeley California 94720
| | - Leslea J. Hlusko
- Department of Integrative Biology; University of California; Berkeley California 94720
- Museum of Vertebrate Zoology, Department of Integrative Biology; University of California; Berkeley California 94720
- Human Evolution Research Center, Department of Integrative Biology; University of California; Berkeley California 94720
| |
Collapse
|
52
|
Babu BS, Shankar TA, Chattaraj M, Kongkana K, Venugopal S, Nayyar AS. Multiple impacted Permanent Teeth-An Indicator for Early Detection of Hypoparathyroidism: A Rare Case Report. Indian J Endocrinol Metab 2018; 22:715-717. [PMID: 30294589 PMCID: PMC6166552 DOI: 10.4103/ijem.ijem_56_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- B Suresh Babu
- Department of Oral and Maxillofacial Surgery, Saraswati-Dhanwantari Dental College and Hospital and Post-Graduate Research Institute, Parbhani, Maharashtra, India
| | - Thatapudi A. Shankar
- Department of Prosthodontics and Crown and Bridge, Kalinga Institute of Dental Sciences, Bhubaneswar, Orissa, India
| | - Moon Chattaraj
- Department of Prosthodontics and Crown and Bridge, Kalinga Institute of Dental Sciences, Bhubaneswar, Orissa, India
| | - K Kongkana
- Department of Dentistry, Tezpur Medical College and Hospital, Tezpur, Assam, India
| | - S Venugopal
- Department of Prosthodontics and Crown and Bridge, AECS Maruti College of Dental Sciences and Research Centre, Bangalore, Karnataka, India
| | - Abhishek Singh Nayyar
- Department of Oral Medicine and Radiology, Saraswati-Dhanwantari Dental College and Hospital and Post-Graduate Research Institute, Parbhani, Maharashtra, India
| |
Collapse
|
53
|
Huang H, Wang J, Zhang Y, Zhu G, Li YP, Ping J, Chen W. Bone resorption deficiency affects tooth root development in RANKL mutant mice due to attenuated IGF-1 signaling in radicular odontoblasts. Bone 2018; 114:161-171. [PMID: 29292230 DOI: 10.1016/j.bone.2017.12.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/27/2017] [Accepted: 12/28/2017] [Indexed: 01/05/2023]
Abstract
The tooth root is essential for normal tooth physiological function. Studies on mice with mutations or targeted gene deletions revealed that osteoclasts (OCs) play an important role in tooth root development. However, knowledge on the cellular and molecular mechanism underlying how OCs mediate root formation is limited. During bone formation, growth factors (e.g. Insulin-like growth factor-1, IGF-1) liberated from bone matrix by osteoclastic bone resorption stimulate osteoblast differentiation. Thus, we hypothesize that OC-osteoblast coupling may also apply to OC-odontoblast coupling; therefore OCs may have a direct impact on odontoblast differentiation through the release of growth factor(s) from bone matrix, and consequently regulate tooth root formation. To test this hypothesis, we used a receptor activator of NF-κB ligand (RANKL) knockout mouse model in which OC differentiation and function was entirely blocked. We found that molar root formation and tooth eruption were defective in RANKL-/- mice. Disrupted elongation and disorganization of Hertwig's epithelial root sheath (HERS) was observed in RANKL-/- mice. Reduced expression of nuclear factor I C (NFIC), osterix, and dentin sialoprotein, markers essential for radicular (root) odontogenic cell differentiation indicated that odontoblast differentiation was disrupted in RANKL deficient mice likely contributing to the defect in root formation. Moreover, down-regulation of IGF/AKT/mTOR activity in odontoblast indicated that IGF signaling transduction in odontoblasts of the mutant mice was impaired. Treating odontoblast cells in vitro with conditioned medium from RANKL-/- OCs cultured on bone slices resulted in inhibition of odontoblast differentiation. Moreover, depletion of IGF-1 in bone resorption-conditioned medium (BRCM) from wild-type (WT) OC significantly compromised the ability of WT osteoclastic BRCM to induce odontoblast differentiation while addition of IGF-1 into RANKL-/- osteoclastic BRCM rescued impaired odontoblast differentiation, confirming that root and eruption defect in RANKL deficiency mice may result from failure of releasing of IGF-1 from bone matrix through OC bone resorption. These results suggest that OCs are important for odontoblast differentiation and tooth root formation, possibly through IGF/AKT/mTOR signaling mediated by cell-bone matrix interaction. These findings provide significant insights into regulatory mechanism of tooth root development, and also lay the foundation for root regeneration studies.
Collapse
Affiliation(s)
- Hong Huang
- The Affiliated Hospital of Stomatology, Chongqing Medical University, 5 Shangqingsi Rd, Yuzhong Qu, Chongqing Shi 400065, China; Department of Pathology, School of Medicine, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL 35294, USA
| | - Jue Wang
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL 35294, USA
| | - Yan Zhang
- The Affiliated Hospital of Stomatology, Chongqing Medical University, 5 Shangqingsi Rd, Yuzhong Qu, Chongqing Shi 400065, China; Department of Pathology, School of Medicine, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL 35294, USA
| | - Guochun Zhu
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL 35294, USA
| | - Yi-Ping Li
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL 35294, USA
| | - Ji Ping
- The Affiliated Hospital of Stomatology, Chongqing Medical University, 5 Shangqingsi Rd, Yuzhong Qu, Chongqing Shi 400065, China.
| | - Wei Chen
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL 35294, USA.
| |
Collapse
|
54
|
Guazzo R, Gardin C, Bellin G, Sbricoli L, Ferroni L, Ludovichetti FS, Piattelli A, Antoniac I, Bressan E, Zavan B. Graphene-Based Nanomaterials for Tissue Engineering in the Dental Field. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E349. [PMID: 29783786 PMCID: PMC5977363 DOI: 10.3390/nano8050349] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 12/12/2022]
Abstract
The world of dentistry is approaching graphene-based nanomaterials as substitutes for tissue engineering. Apart from its exceptional mechanical strength, electrical conductivity and thermal stability, graphene and its derivatives can be functionalized with several bioactive molecules. They can also be incorporated into different scaffolds used in regenerative dentistry, generating nanocomposites with improved characteristics. This review presents the state of the art of graphene-based nanomaterial applications in the dental field. We first discuss the interactions between cells and graphene, summarizing the available in vitro and in vivo studies concerning graphene biocompatibility and cytotoxicity. We then highlight the role of graphene-based nanomaterials in stem cell control, in terms of adhesion, proliferation and differentiation. Particular attention will be given to stem cells of dental origin, such as those isolated from dental pulp, periodontal ligament or dental follicle. The review then discusses the interactions between graphene-based nanomaterials with cells of the immune system; we also focus on the antibacterial activity of graphene nanomaterials. In the last section, we offer our perspectives on the various opportunities facing the use of graphene and its derivatives in associations with titanium dental implants, membranes for bone regeneration, resins, cements and adhesives as well as for tooth-whitening procedures.
Collapse
Affiliation(s)
- Riccardo Guazzo
- Department of Neurosciences, Institute of Clinical Dentistry, University of Padova, 35128 Padova, Italy.
| | - Chiara Gardin
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy.
- Maria Pia Hospital, GVM Care & Research, 10132 Torino, Italy.
| | - Gloria Bellin
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy.
- Maria Pia Hospital, GVM Care & Research, 10132 Torino, Italy.
| | - Luca Sbricoli
- Department of Neurosciences, Institute of Clinical Dentistry, University of Padova, 35128 Padova, Italy.
| | - Letizia Ferroni
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy.
- Maria Pia Hospital, GVM Care & Research, 10132 Torino, Italy.
| | | | - Adriano Piattelli
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy.
| | - Iulian Antoniac
- Department Materials Science and Engineering, University Politehnica of Bucharest, 060032 Bucharest, Romania.
| | - Eriberto Bressan
- Department of Neurosciences, Institute of Clinical Dentistry, University of Padova, 35128 Padova, Italy.
| | - Barbara Zavan
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy.
- Maria Cecilia Hospital, GVM Care & Research, 48033 Ravenna, Italy.
| |
Collapse
|
55
|
Grippaudo C, Cafiero C, D'Apolito I, Ricci B, Frazier-Bowers SA. Primary failure of eruption: Clinical and genetic findings in the mixed dentition. Angle Orthod 2018; 88:275-282. [PMID: 29376733 DOI: 10.2319/062717-430.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE To test the hypothesis that mutations in the parathyroid hormone 1 receptor ( PTH1R) include effects in both primary and permanent teeth. MATERIALS AND METHODS DNA was extracted from saliva samples of 29 patients (8 familial and 21 sporadic) who presented with clinical evidence of infraoccluded teeth, and their unaffected relatives (N = 22). Sequencing followed by mutational analysis of the coding regions of PTH1R gene was completed for all individuals (N = 29). RESULTS Eight of 29 cases revealed a heterozygous pathogenic variant in the PTH1R gene; five of eight variants represented distinct mutations based on comparison with the dbSNP, HGMD, and ESP databases. One mutation (c.1765 T>C p.Trp89Arg) was found to segregate within a family (n = 3). In silico analyses for all variants revealed a putative pathogenic effect. A genotype-phenotype correlation was reported as defined by a functional mutation in PTH1R and corresponding effects on one or more posterior teeth only; unilateral or bilateral involvement, infraoccluded primary teeth. CONCLUSIONS Novel mutations were reported in the PTH1R gene that included PFE-affected primary molars, thus providing the basis for using a genetic diagnostic tool for early diagnosis leading to proper management.
Collapse
|
56
|
Dashash M, Al-Jazar N. Timing and sequence of emergence of permanent teeth in Syrian schoolchildren. ACTA ACUST UNITED AC 2017; 9:e12311. [DOI: 10.1111/jicd.12311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/30/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Mayssoon Dashash
- Department of Pediatric Dentistry; Faculty of Dentistry; Damascus University; Damascus Syria
| | - Noor Al-Jazar
- Department of Prosthodontics; Faculty of Dentistry; Damascus University; Damascus Syria
| |
Collapse
|
57
|
Hartsfield JK, Jacob GJ, Morford LA. Heredity, Genetics and Orthodontics - How Much Has This Research Really Helped? Semin Orthod 2017; 23:336-347. [PMID: 29290679 DOI: 10.1053/j.sodo.2017.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Uncovering the genetic factors that correlate with a clinical deviation of previously unknown etiology helps to diminish the unknown variation influencing the phenotype. Clinical studies, particularly those that consider the effects of an appliance or treatment regimen on growth, need to be a part of these types of genetic investigations in the future. While the day-to-day utilization of "testing" for genetic factors is not ready for practice yet, genetic testing for monogenic traits such as Primary Failure of Eruption (PFE) and Class III malocclusion is showing more promise as knowledge and technology advances. Although the heterogeneous complexity of such things as facial and dental development, the physiology of tooth movement, and the occurrence of External Apical Root Resorption (EARR) make their precise prediction untenable, investigations into the genetic factors that influence different phenotypes, and how these factors may relate to or impact environmental factors (including orthodontic treatment) are becoming better understood. The most important "genetic test" the practitioner can do today is to gather the patient's individual and family history. This would greatly benefit the patient, and augment the usefulness of these families in future clinical research in which clinical findings, environmental, and genetic factors can be studied.
Collapse
Affiliation(s)
- James K Hartsfield
- E. Preston Hicks Professor of Orthodontics and Oral Health Research, University of Kentucky Center for the Biologic Basis of Oral/Systemic Diseases, Hereditary Genetics/Genomics Core
| | - George Jeryn Jacob
- Craniofacial Genetics Fellow, University of Kentucky Center for the Biologic Basis of Oral/Systemic Diseases, Hereditary Genetics/Genomics Core
| | - Lorri Ann Morford
- Research Assistant Professor, University of Kentucky Center for the Biologic Basis of Oral/Systemic Diseases, Hereditary Genetics/Genomics CoreThe University of Kentucky College of Dentistry, 800 Rose Street, Lexington, Kentucky USA 40536-0297
| |
Collapse
|
58
|
Nibali L. Development of the gingival sulcus at the time of tooth eruption and the influence of genetic factors. Periodontol 2000 2017; 76:35-42. [DOI: 10.1111/prd.12158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
59
|
Odeh R, Mihailidis S, Townsend G, Lähdesmäki R, Hughes T, Brook A. Prevalence of infraocclusion of primary molars determined using a new 2D image analysis methodology. Aust Dent J 2017; 61:183-9. [PMID: 26174549 DOI: 10.1111/adj.12349] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2015] [Indexed: 11/27/2022]
Abstract
BACKGROUND The reported prevalence of infraocclusion varies widely, reflecting differences in definitions and measurement/scoring approaches. This study aimed to quantify the prevalence and extent of infraocclusion in singletons and twins during the late mixed dentition stage of dental development using a new diagnostic imaging method and objective criteria. The study also aimed to determine any associations between infraocclusion and gender, arch type, arch side and tooth type. METHODS Two samples were analysed, 1454 panoramic radiographs of singletons and 270 dental models of twins. Both samples ranged in age from 8 to 11 years. Adobe Photoshop CS5 was used to measure the extent of infraocclusion. Repeatability tests showed systematic and random errors were small. RESULTS The prevalence in the maxilla was low (<1%), whereas the prevalence in the mandible was 22% in the singleton sample and 32% in the twin sample. The primary mandibular first molar was affected more often than the second molar. There was no significant difference in the expression between genders or sides. CONCLUSIONS A new technique for measuring infraocclusion has been developed with high intra- and interoperator reproducibility. This method should enhance early diagnosis of tooth developmental abnormalities and treatment planning during the late mixed dentition stage of development.
Collapse
Affiliation(s)
- R Odeh
- School of Dentistry, The University of Adelaide, South Australia, Australia
| | - S Mihailidis
- School of Dentistry, The University of Adelaide, South Australia, Australia
| | - G Townsend
- School of Dentistry, The University of Adelaide, South Australia, Australia
| | - R Lähdesmäki
- Research Center for Oral Health Sciences, Faculty of Medicine, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - T Hughes
- School of Dentistry, The University of Adelaide, South Australia, Australia
| | - A Brook
- School of Dentistry, The University of Adelaide, South Australia, Australia.,Institute of Dentistry, Queen Mary University of London, United Kingdom
| |
Collapse
|
60
|
Mistry VN, Barker CS, James Spencer R. The first permanent molar: spontaneous eruption after a five-year failure. Int J Paediatr Dent 2017; 27:428-433. [PMID: 28247574 DOI: 10.1111/ipd.12293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND It is rare for a first permanent molar (FPM) to temporarily exhibit clinical features of failure of eruption, followed by regeneration of full eruptive capacity 5 years later. Indeterminate failure of eruption (IFE) is a diagnosis of exclusion where the distinction between primary failure of eruption (PFE) and mechanical failure of eruption (MFE) is unclear, including patients too young to specify. CASE REPORT An 11-year-old girl attended the orthodontic clinic at Mid Yorkshire Hospitals NHS Trust regarding an unerupted lower right FPM. Her medical and dental trauma history was unremarkable. She presented with a Class II division 2 malocclusion in the mixed dentition, with all other FPMs fully erupted. CONCLUSION This report documents that an unerupted FPM in an 11-year-old patient may still have the eruptive potential to become functional within the dentition. The period spent monitoring the FPM's outcome prior to surgical intervention has avoided an operation under general anaesthetic and potentially unnecessary orthodontic treatment, as the tooth subsequently erupted without treatment.
Collapse
Affiliation(s)
- Vinay N Mistry
- Dental Core Trainee 2 in Oral & Maxillofacial Surgery, The York Hospital, York, UK
| | - Christopher S Barker
- Consultant Orthodontist, Oral & Facial Department, Pinderfields Hospital, Wakefield, UK
| | - R James Spencer
- Consultant Orthodontist, Oral & Facial Department, Pinderfields Hospital, Wakefield, UK
| |
Collapse
|
61
|
Zhang W, Wu SZ, Zhou J, Chen HM, Gong YL, Peng FF, Zhang BF. Parathyroid hormone-related peptide (1-34) reduces alveolar bone loss in type 1 diabetic rats. Arch Oral Biol 2017; 83:13-19. [PMID: 28689017 DOI: 10.1016/j.archoralbio.2017.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/17/2017] [Accepted: 06/13/2017] [Indexed: 01/18/2023]
Abstract
OBJECTIVE To investigate the role of parathyroid hormone related protein (PTHrP) in diabetic periodontitis. METHODS After injected with 55mg/kg streptozotocin, diabetic rats were treated subcutaneously with low-dose (40μg/kg, once daily for 5days per week), middle-dose (80μg/kg) or high-dose (160μg/kg) PTHrP(1-34) peptide. Treatment continued for 12 weeks. Changes in periodontal tissues were confirmed by micro-computerized tomography assay and H&E analysis. We used tartrate resistant acid phosphatase (TRAP) staining to identify osteoclast cells. The expression of TNF-α, IL-1β and IL-6 was assessed by immunohistochemistry and Western blot. RESULTS Tooth-supporting structure loss was observed in periodontal tissues of diabetic rats. PTHrP (1-34) attenuated alveolar bone loss, especially in the middle-dose and high-dose group. Whereas TNF-α, IL-1β and IL-6 protein levels were increased in the diabetic gingival tissues, PTHrP (1-34) treatment inhibited the increase of IL-1β and IL-6, but had no effect on TNF-α. CONCLUSION Type 1 diabetes increased the susceptibility to periodontal disease. Intermittent administration of PTHrP (1-34) exhibited an inhibitory effect on alveolar bone resorption and the gingival inflammation in periodontal tissues of diabetic rats.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Biochemistry, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, China; Nursing and Medical School of Technology, Jianghan University, Wuhan, China
| | - Su-Zhen Wu
- Department of Biochemistry, Gannan Medical University, Ganzhou, China
| | - Jian Zhou
- Department of Biochemistry, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Hong-Min Chen
- Department of Biochemistry, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Ye-Li Gong
- Medical School, Jianghan University, Wuhan, China
| | - Fang-Fang Peng
- Department of Biochemistry, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Bai-Fang Zhang
- Department of Biochemistry, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, China.
| |
Collapse
|
62
|
Sojod B, Chateau D, Mueller CG, Babajko S, Berdal A, Lézot F, Castaneda B. RANK/RANKL/OPG Signalization Implication in Periodontitis: New Evidence from a RANK Transgenic Mouse Model. Front Physiol 2017; 8:338. [PMID: 28596739 PMCID: PMC5442248 DOI: 10.3389/fphys.2017.00338] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 05/09/2017] [Indexed: 11/13/2022] Open
Abstract
Periodontitis is based on a complex inflammatory over-response combined with possible genetic predisposition factors. The RANKL/RANK/OPG signaling pathway is implicated in bone resorption through its key function in osteoclast differentiation and activation, as well as in the inflammatory response. This central element of osteo-immunology has been suggested to be perturbed in several diseases, including periodontitis, as it is a predisposing factor for this disease. The aim of the present study was to validate this hypothesis using a transgenic mouse line, which over-expresses RANK (RTg) and develops a periodontitis-like phenotype at 5 months of age. RTg mice exhibited severe alveolar bone loss, an increased number of TRAP positive cells, and disorganization of periodontal ligaments. This phenotype was more pronounced in females. We also observed dental root resorption lacunas. Hyperplasia of the gingival epithelium, including Malassez epithelial rests, was visible as early as 25 days, preceding any other symptoms. These results demonstrate that perturbations of the RANKL/RANK/OPG system constitute a core element of periodontitis, and more globally, osteo-immune diseases.
Collapse
Affiliation(s)
- Bouchra Sojod
- INSERM, UMR-1138, Laboratoire de Physiopathologie Orale Moléculaire, Centre de Recherche des CordeliersParis, France
| | - Danielle Chateau
- INSERM, UMR-1138, Intestine: Nutrition, Barrier, and Diseases Group, Centre de Recherche des CordeliersParis, France
| | - Christopher G Mueller
- Laboratoire Immunologie et Chimie Thérapeutiques, Centre National de la Recherche Scientifique, UPR-9021, Institut de Biologie Moléculaire et Cellulaire, Université de StrasbourgStrasbourg, France
| | - Sylvie Babajko
- INSERM, UMR-1138, Laboratoire de Physiopathologie Orale Moléculaire, Centre de Recherche des CordeliersParis, France
| | - Ariane Berdal
- INSERM, UMR-1138, Laboratoire de Physiopathologie Orale Moléculaire, Centre de Recherche des CordeliersParis, France
| | - Frédéric Lézot
- INSERM, UMR-957, Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Faculté de Médecine, Université de NantesNantes, France
| | - Beatriz Castaneda
- INSERM, UMR-1138, Laboratoire de Physiopathologie Orale Moléculaire, Centre de Recherche des CordeliersParis, France.,Department of Basic Studies, Faculty of Odontology, University of AntioquiaMedellin, Colombia
| |
Collapse
|
63
|
Robert Moshy J, Singh Sohal K, Chindia M. Concurrent manifestation of clinical hypodontia and blindness: a case report. J Dent Res Dent Clin Dent Prospects 2017; 11:53-55. [PMID: 28413597 PMCID: PMC5390127 DOI: 10.15171/joddd.2017.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 08/09/2016] [Indexed: 11/09/2022] Open
Abstract
A case is reported of a 26-year-old blind man with hypodontia and multiple apparently underdeveloped impacted teeth. The patient reported that he had progressively developed visual impairment at the age of 11 years whence he became totally blind when he turned 12 years. The aim of this report is to open an academic and professional debate on the challenges of its definitive diagnosis and appropriate intervention.Blindness is not reported in any of the previously described syndromes; therefore, concurrent manifestation of "hypodontia, blindness, failure of eruption and digital lesions" can be proposed as a syndrome. However, in the absence of genetic studies, it is difficult to characterize this case with any one of the specifically documented syndromes; therefore, academic and professional discourse is suggested with regard to appropriate intervention.
Collapse
Affiliation(s)
- Jeremiah Robert Moshy
- Senior Lecturer, Department of Oral and Maxillofacial Surgery, Muhimbili University of Health and Allied Sciences, Dar-es-Salaam, Tanzania
| | - Karpal Singh Sohal
- Postgraduate Student, Department of Oral and Maxillofacial Surgery, Department of Dental Services, Muhimbili National Hospital, Dar-es-Salaam, Tanzania
| | - Mark Chindia
- Professor, Department of Oral and Maxillofacial Surgery, Oral Pathology and Oral Medicine, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
64
|
Liao X, Feng B, Zhang D, Liu P, Zhou X, Li R, Ye L. The Sirt6 gene: Does it play a role in tooth development? PLoS One 2017; 12:e0174255. [PMID: 28355287 PMCID: PMC5371306 DOI: 10.1371/journal.pone.0174255] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/06/2017] [Indexed: 02/05/2023] Open
Abstract
Dental Mesenchymal Cells (DMCs) are known to play a role in tooth development as well as in the repair and regeneration of dental tissue. A large number of signaling molecules regulate the proliferation and differentiation of DMC, though the underlying mechanisms are still not fully understood. Sirtuin-6 (SIRT6), a key regulator of aging, can exert an impact on embryonic stem cell (ESC) differentiation. The experimental deletion of Sirt6 in mouse bone marrow cells has been found to have an inhibiting impact on the bone mineral density and the osteogenic differentiation of these cells. The possible role of Sirt6 in tooth development, however, has at present remained largely unexplored. In the present study, we found that SIRT6 had no effect on tooth development before birth. However, Sirt6 gene deletion in knockout mice did have two post-natal impacts: a delay in tooth eruption and sluggishness in the development of dental roots. We propose an explanation of the possible molecular basis of the changes observed in Sirt6-/- mice. SIRT6 is expressed in mouse odontoblasts. Sirt6 deletion enhanced the proliferation of DMCs, as well as their capacity for adipogenic differentiation. On the other hand, it inhibited their capacity for in vitro osteogenic/chondrogenic differentiation. Further studies suggested that other factors may mediate the role of Sirt6 in odontogenesis. These include the nuclear factor kappa B (NF-κB), p38 mitogen-activated protein kinase (p38-MAPK), extracellular regulated MAP kinase (ERK) pathways and the mitochondrial energy. We demonstrated that Sirt6 plays a role in tooth root formation and confirmed that SIRT6 is necessary for DMC differentiation as well as for the development of the tooth root and for eventual tooth eruption. These results establish a new link between SIRT6 and tooth development.
Collapse
Affiliation(s)
- Xueyang Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Peng Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ruimin Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, Stomatology Hospital, General Hospital of NingXia Medical University, Yinchuan, China
- * E-mail: (LY); (RML)
| | - Ling Ye
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- * E-mail: (LY); (RML)
| |
Collapse
|
65
|
Kanno CM, de Oliveira JA, Garcia JF, Roth H, Weber BHF. Twenty-year follow-up of a familial case of PTH1R-associated primary failure of tooth eruption. Am J Orthod Dentofacial Orthop 2017; 151:598-606. [PMID: 28257744 DOI: 10.1016/j.ajodo.2016.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 09/01/2016] [Accepted: 09/01/2016] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Nonsyndromic primary failure of eruption (PFE) is a rare autosomal dominant disorder of dental eruption with no obvious dental or soft tissue interference. The purposes of this study were to genetically and clinically characterize a family with many members affected by PFE and to describe the natural evolution of the disorder. METHODS Three generations of a family with 18 members, 10 of them clinically affected by PFE, were evaluated periodically during 20 years of clinical follow-up. PFE was observed in varying degrees of severity in both sexes. Clinical presentation became more severe in adulthood. One patient had spontaneous reeruption of 2 posterior teeth. Cervical root resorptions were observed in 3 members. Genetic analysis showed a deleterious heterozygous mutation in intron 9 of the PTH1R gene (c.639-2A>G) and diagnosed an additional affected member. CONCLUSIONS The long-term follow-up of PFE cases in this family permitted the following observations: (1) the onset occurred from the preemergence to the postemergence phases, (2) PFE appeared to be closely related to ankylosis, (3) affected teeth maintained the eruptive potential even in adulthood, (4) the earlier the onset the more severe the open bite, and (5) cervical root resorptions occurred in 3 affected members.
Collapse
Affiliation(s)
- Cláudia Misue Kanno
- Emergency Department, Araçatuba Dental School, Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil.
| | - José Américo de Oliveira
- Division of Anatomy, Department of Basic Sciences, Araçatuba Dental School, Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - José Fernando Garcia
- Laboratory of Animal Biochemistry and Molecular Biology, Veterinary Medicine School of Araçatuba, Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - Helmut Roth
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Bernhard H F Weber
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| |
Collapse
|
66
|
Abstract
PURPOSE OF REVIEW The ebb and flow of genetic influence relative to the understanding of craniofacial and dental disorders has evolved into a tacit acceptance of the current genetic paradigm. This review explores the science behind craniofacial and dental disorders through the lens of recent past and current findings and using tooth agenesis as a model of advances in craniofacial genetics. RECENT FINDINGS Contemporary studies of craniofacial biology takes advantage of the technological resources stemming from the genomic and post-genomic eras. Emerging data highlights the role of key genes and the epigenetic landscape controlling these genes, in causing dentofacial abnormalities. We also report here a novel Glu78FS MSX1 mutation in one family segregating an autosomal dominant form of severe tooth agenesis as an illustration of an evolving theme, i.e., different mutations in the same gene can result in a spectrum of dentofacial phenotypic severity. The future of clinical therapeutics will benefit from advances in genetics and molecular biology that refine the genotype-phenotype correlation. Indeed, the past century suggests a continued convergence of genetic science in the practice of clinical dentistry.
Collapse
Affiliation(s)
- Sylvia A Frazier-Bowers
- Department of Orthodontics, School of Dentistry, University of North Carolina at Chapel Hill, CB #7450, Chapel Hill, NC, 27599-7450, USA.
| | - Siddharth R Vora
- Department of Oral Health Sciences, Faculty of Dentistry, University of British Columbia, JBM-184 - 2199 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
67
|
Gozes I, Van Dijck A, Hacohen-Kleiman G, Grigg I, Karmon G, Giladi E, Eger M, Gabet Y, Pasmanik-Chor M, Cappuyns E, Elpeleg O, Kooy RF, Bedrosian-Sermone S. Premature primary tooth eruption in cognitive/motor-delayed ADNP-mutated children. Transl Psychiatry 2017; 7:e1043. [PMID: 28221363 PMCID: PMC5438031 DOI: 10.1038/tp.2017.27] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/20/2016] [Accepted: 01/17/2017] [Indexed: 12/19/2022] Open
Abstract
A major flaw in autism spectrum disorder (ASD) management is late diagnosis. Activity-dependent neuroprotective protein (ADNP) is a most frequent de novo mutated ASD-related gene. Functionally, ADNP protects nerve cells against electrical blockade. In mice, complete Adnp deficiency results in dysregulation of over 400 genes and failure to form a brain. Adnp haploinsufficiency results in cognitive and social deficiencies coupled to sex- and age-dependent deficits in the key microtubule and ion channel pathways. Here, collaborating with parents/caregivers globally, we discovered premature tooth eruption as a potential early diagnostic biomarker for ADNP mutation. The parents of 44/54 ADNP-mutated children reported an almost full erupted dentition by 1 year of age, including molars and only 10 of the children had teeth within the normal developmental time range. Looking at Adnp-deficient mice, by computed tomography, showed significantly smaller dental sacs and tooth buds at 5 days of age in the deficient mice compared to littermate controls. There was only trending at 2 days, implicating age-dependent dysregulation of teething in Adnp-deficient mice. Allen Atlas analysis showed Adnp expression in the jaw area. RNA sequencing (RNAseq) and gene array analysis of human ADNP-mutated lymphoblastoids, whole-mouse embryos and mouse brains identified dysregulation of bone/nervous system-controlling genes resulting from ADNP mutation/deficiency (for example, BMP1 and BMP4). AKAP6, discovered here as a major gene regulated by ADNP, also links cognition and bone maintenance. To the best of our knowledge, this is the first time that early primary (deciduous) teething is related to the ADNP syndrome, providing for early/simple diagnosis and paving the path to early intervention/specialized treatment plan.
Collapse
Affiliation(s)
- I Gozes
- The Lily and Avraham Gildor Chair for the Investigation of Growth Factors, The Elton Laboratory for Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv, Israel,Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, Israel,Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Einstein Street, Tel Aviv 6997801, Israel. E-mail:
| | - A Van Dijck
- Department of Medical Genetics, University and University Hospital of Antwerp, Antwerp, Belgium
| | - G Hacohen-Kleiman
- The Lily and Avraham Gildor Chair for the Investigation of Growth Factors, The Elton Laboratory for Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv, Israel,Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, Israel
| | - I Grigg
- The Lily and Avraham Gildor Chair for the Investigation of Growth Factors, The Elton Laboratory for Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv, Israel,Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, Israel
| | - G Karmon
- The Lily and Avraham Gildor Chair for the Investigation of Growth Factors, The Elton Laboratory for Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv, Israel,Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, Israel
| | - E Giladi
- The Lily and Avraham Gildor Chair for the Investigation of Growth Factors, The Elton Laboratory for Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv, Israel,Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, Israel
| | - M Eger
- Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, Israel,Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Y Gabet
- Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, Israel,Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - M Pasmanik-Chor
- Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, Israel,The Bioinformatics Unit, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - E Cappuyns
- Department of Medical Genetics, University and University Hospital of Antwerp, Antwerp, Belgium
| | - O Elpeleg
- Monique and Jacques Roboh Department of Genetic, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - R F Kooy
- Department of Medical Genetics, University and University Hospital of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
68
|
Oshima M, Tsuji T. Functional Tooth Regeneration. ORGAN REGENERATION BASED ON DEVELOPMENTAL BIOLOGY 2017:73-95. [DOI: 10.1007/978-981-10-3768-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
69
|
Siddiqui JA, Partridge NC. CCL2/Monocyte Chemoattractant Protein 1 and Parathyroid Hormone Action on Bone. Front Endocrinol (Lausanne) 2017; 8:49. [PMID: 28424660 PMCID: PMC5372820 DOI: 10.3389/fendo.2017.00049] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/27/2017] [Indexed: 11/13/2022] Open
Abstract
Chemokines are small molecules that play a crucial role as chemoattractants for several cell types, and their components are associated with host immune responses and repair mechanisms. Chemokines selectively recruit monocytes, neutrophils, and lymphocytes and induce chemotaxis through the activation of G protein-coupled receptors. Two well-described chemokine families (CXC and CC) are known to regulate the localization and trafficking of immune cells in cases of injury, infection, and tumors. Monocyte chemoattractant protein 1 (MCP-1/CCL2) is one of the important chemokines from the CC family that controls migration and infiltration of monocytes/macrophages during inflammation. CCL2 is profoundly expressed in osteoporotic bone and prostate cancer-induced bone resorption. CCL2 also regulates physiological bone remodeling in response to hormonal and mechanical stimuli. Parathyroid hormone (PTH) has multifaceted effects on bone, depending on the mode of administration. Intermittent PTH increases bone in vivo by increasing the number and activity of osteoblasts, whereas a continuous infusion of PTH decreases bone mass by stimulating a net increase in bone resorption. CCL2 is essential for both anabolic and catabolic effects of PTH. In this review, we will discuss the pharmacological role of PTH and involvement of CCL2 in the processes of PTH-mediated bone remodeling.
Collapse
Affiliation(s)
- Jawed Akhtar Siddiqui
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, USA
| | - Nicola C. Partridge
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, USA
- *Correspondence: Nicola C. Partridge,
| |
Collapse
|
70
|
TGF-β and Physiological Root Resorption of Deciduous Teeth. Int J Mol Sci 2016; 18:ijms18010049. [PMID: 28035998 PMCID: PMC5297684 DOI: 10.3390/ijms18010049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/22/2016] [Accepted: 12/23/2016] [Indexed: 11/17/2022] Open
Abstract
The present study was performed to examine how transforming growth factor β (TGF-β) in root-surrounding tissues on deciduous teeth regulates the differentiation induction into odontoclasts during physiological root resorption. We prepared root-surrounding tissues with (R) or without (N) physiological root resorption scraped off at three regions (R1–R3 or N1–N3) from the cervical area to the apical area of the tooth and measured both TGF-β and the tartrate-resistant acid phosphatase (TRAP) activities. The TGF-β activity level was increased in N1–N3, whereas the TRAP activity was increased in R2 and R3. In vitro experiments for the receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-mediated osteoclast differentiation revealed that proteins from N1–N3 and R1–R3 enhanced the TRAP activity in RAW264 cells. A genetic study indicated that the mRNA levels of TGF-β1 in N1 and N2 were significantly increased, and corresponded with levels of osteoprotegerin (OPG). In contrast, the expression level of RANKL was increased in R2 and R3. Our findings suggest that TGF-β is closely related to the regulation of OPG induction and RANKL-mediated odontoclast differentiation depending on the timing of RANKL and OPG mRNA expression in the root-surrounding tissues of deciduous teeth during physiological root resorption.
Collapse
|
71
|
PTH1R Mutants Found in Patients with Primary Failure of Tooth Eruption Disrupt G-Protein Signaling. PLoS One 2016; 11:e0167033. [PMID: 27898723 PMCID: PMC5127517 DOI: 10.1371/journal.pone.0167033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 11/08/2016] [Indexed: 11/19/2022] Open
Abstract
AIM Primary failure of tooth eruption (PFE) is causally linked to heterozygous mutations of the parathyroid hormone receptor (PTH1R) gene. The mutants described so far lead to exchange of amino acids or truncation of the protein that may result in structural changes of the expressed PTH1R. However, functional effects of these mutations have not been investigated yet. MATERIALS AND METHODS In HEK293 cells, PTH1R wild type was co-transfected with selected PTH1R mutants identified in patients with PFE. The effects on activation of PTH-regulated intracellular signaling pathways were analyzed by ELISA and Western immunoblotting. Differential effects of wild type and mutated PTH1R on TRESK ion channel regulation were analyzed by electrophysiological recordings in Xenopus laevis oocytes. RESULTS In HEK293 cells, activation of PTH1R wild type increases cAMP and in response activates cAMP-stimulated protein kinase as detected by phosphorylation of the vasodilator stimulated phosphoprotein (VASP). In contrast, the PTH1R mutants are functionally inactive and mutant PTH1R/Gly452Glu has a dominant negative effect on the signaling of PTH1R wild type. Confocal imaging revealed that wild type PTH1R is expressed on the cell surface, whereas PTH1R/Gly452Glu mutant is mostly retained inside the cell. Furthermore, in contrast to wild type PTH1R which substantially augmented K+ currents of TRESK channels, coupling of mutated PTH1R to TRESK channels was completely abolished. CONCLUSIONS PTH1R mutations affect intracellular PTH-regulated signaling in vitro. In patients with primary failure of tooth eruption defective signaling of PTH1R mutations is suggested to occur in dento-alveolar cells and thus may lead to impaired tooth movement.
Collapse
|
72
|
|
73
|
Khan UA, Hashimi SM, Bakr MM, Forwood MR, Morrison NA. CCL2 and CCR2 are Essential for the Formation of Osteoclasts and Foreign Body Giant Cells. J Cell Biochem 2016. [PMID: 26205994 DOI: 10.1002/jcb.25282] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Osteoclasts are multinucleated cells responsible for bone resorption. They are derived from the fusion of cells in the monocyte/macrophage lineage. Monocytes and macrophages can also fuse to form foreign body giant cells (FBGC). Foreign body giant cells are observed at the interface between a host and a foreign body such as implants during a foreign body reaction. Macrophages are attracted to the site of bone resorption and foreign body reactions by different cytokines. Chemokine (C-C) ligand-2 (CCL2) is an important chemotactic factor and binds to a receptor CCR2. In this study we investigated the importance of CCL2 and the receptor CCR2 in the formation of osteoclasts and FBGC. CCL2 mRNA was more highly expressed in giant cell culture than macrophages, being 9-fold and 16-fold more abundant in osteoclasts and FBGC respectively. Significantly fewer osteoclasts and FBGC were cultured from the bone marrow of CCL2 and CCR2 knockout mice, when compared to wild type. Not only were the number of giant cells reduced but there was a significant reduction in the number of nuclei and the size of these cells in the cultures of CCL2 and CCR2 knockout mice. Formation of osteoclasts and FBGC were recovered in cultures by addition of exogenous CCL2 to the media containing marrow cells from CCL2-/- mice. We conclude that CCL2 and its receptor CCR2 are important for the formation of osteoclasts and FBGC and absence of these genes causes inhibition of osteoclast and FBGC formation.
Collapse
Affiliation(s)
- Usman A Khan
- School of Medical Science, Griffith University Gold Coast Campus, Queensland, 4215, Australia.,Senior Dentist Dalby Dental Clinic, Western Down, Queensland, 4405, Australia
| | - Saeed M Hashimi
- School of Medical Science, Griffith University Gold Coast Campus, Queensland, 4215, Australia.,Regenerative Medicine Centre, Molecular Basis for Disease, School of Dentistry and Oral Health, Menzies Health Institute Queensland, Griffith University Gold Coast Campus, Queensland, 4215, Australia
| | - Mahmoud M Bakr
- Regenerative Medicine Centre, Molecular Basis for Disease, School of Dentistry and Oral Health, Menzies Health Institute Queensland, Griffith University Gold Coast Campus, Queensland, 4215, Australia
| | - Mark R Forwood
- School of Medical Science, Griffith University Gold Coast Campus, Queensland, 4215, Australia
| | - Nigel A Morrison
- School of Medical Science, Griffith University Gold Coast Campus, Queensland, 4215, Australia
| |
Collapse
|
74
|
Un Lam C, Hsu CYS, Yee R, Koh D, Lee YS, Chong MFF, Cai M, Kwek K, Saw SM, Gluckman P, Chong YS. Early-life factors affect risk of pain and fever in infants during teething periods. Clin Oral Investig 2016; 20:1861-1870. [PMID: 26592811 DOI: 10.1007/s00784-015-1658-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 11/10/2015] [Indexed: 12/25/2022]
Abstract
AIM This longitudinal study aimed to investigate the prevalence of teething-related pain and fever and the early-life factors that may affect the risk of experiencing these disturbances within the first 1.5 years of life. MATERIALS AND METHODS Participants were recruited (n = 1033) through the Growing Up in Singapore Towards healthy Outcomes (GUSTO) birth cohort (n = 1237). Interviews were performed tri-monthly regarding the prevalence of teething pain and fever in children from 6 to 18 months of age. Crude and multivariable analyses were conducted using Poisson-log regression models. RESULTS Prevalence rates for teething pain and fever were 35.5 and 49.9 % respectively. Multivariable Poisson regression analysis showed maternal second-hand tobacco smoke (SHS) exposure to increase the risk of both pain (mean ratio = 1.35; p = 0.006) and fever (mean ratio = 1.22; p = 0.025), whereas SHS exposure plus active smoking further increased risk of teething pain in the children (mean ratio = 1.89; p = 0.029). Delivery via Caesarean section increased risk of teething pain (mean ratio = 1.27; p = 0.033), while prenatal plasma vitamin D insufficiency lowered such a risk (mean ratio = 0.62; p = 0.012). Compared to Chinese infants, Indian babies exhibited lower risk of teething pain and fever (both p ≤ 0.001). CONCLUSIONS Early-life factors such as tobacco smoke exposure and vitamin insufficiency during pregnancy, ethnicity and childbirth via Caesarean section may significantly affect the child's susceptibility to teething-related pain and fever. CLINICAL RELEVANCE Knowledge of prevalence and risk factors of teething disturbances may better equip primary caregivers and healthcare professionals to accurately detect teething-related local and/or systemic signs/symptoms and effectively facilitate tobacco cessation among pregnant women.
Collapse
Affiliation(s)
- Carolina Un Lam
- Discipline of Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | - Chin-Ying Stephen Hsu
- Discipline of Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore, Singapore.
| | - Robert Yee
- Discipline of Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | - David Koh
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Yung Seng Lee
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mary Foong-Fong Chong
- Singapore Institute for Clinical Sciences, Agency for Science and Technology Research (A*STAR), Brenner Centre for Molecular Medicine, Singapore, Singapore
| | - Meijin Cai
- Discipline of Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | - Kenneth Kwek
- Department of Maternal Fetal Medicine, KK Women's and Children's Hospital (KKH), Singapore, Singapore
| | - Seang Mei Saw
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Peter Gluckman
- Singapore Institute for Clinical Sciences, Agency for Science and Technology Research (A*STAR), Brenner Centre for Molecular Medicine, Singapore, Singapore
| | - Yap Seng Chong
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
75
|
Comparison of Stemness and Gene Expression between Gingiva and Dental Follicles in Children. Stem Cells Int 2016; 2016:8596520. [PMID: 27656218 PMCID: PMC5021492 DOI: 10.1155/2016/8596520] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 08/10/2016] [Indexed: 01/09/2023] Open
Abstract
The aim of this study was to compare the differential gene expression and stemness in the human gingiva and dental follicles (DFs) according to their biological characteristics. Gingiva (n = 9) and DFs (n = 9) were collected from 18 children. Comparative gene expression profiles were collected using cDNA microarray. The expression of development, chemotaxis, mesenchymal stem cells (MSCs), and induced pluripotent stem cells (iPSs) related genes was assessed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Histological analysis was performed using hematoxylin-eosin and immunohistochemical staining. Gingiva had greater expression of genes related to keratinization, ectodermal development, and chemotaxis whereas DFs exhibited higher expression levels of genes related to tooth and embryo development. qRT-PCR analysis showed that the expression levels of iPSc factors including SOX2, KLF4, and C-MYC were 58.5 ± 26.3, 12.4 ± 3.5, and 12.2 ± 1.9 times higher in gingiva and VCAM1 (CD146) and ALCAM (CD166) were 33.5 ± 6.9 and 4.3 ± 0.8 times higher in DFs. Genes related to MSCs markers including CD13, CD34, CD73, CD90, and CD105 were expressed at higher levels in DFs. The results of qRT-PCR and IHC staining supported the microarray analysis results. Interestingly, this study demonstrated transcription factors of iPS cells were expressed at higher levels in the gingiva. Given the minimal surgical discomfort and simple accessibility, gingiva is a good candidate stem cell source in regenerative dentistry.
Collapse
|
76
|
Shetty K, Kumar M, Amanna S, Sridharan S, Reddy S. Management of a rare case of idiopathic multiple unerupted impacted permanent teeth in an adult female patient. J Indian Prosthodont Soc 2016; 16:303-6. [PMID: 27621553 PMCID: PMC5000573 DOI: 10.4103/0972-4052.161572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This clinical case report describes the multi-disciplinary approach in the management of an unusual presentation of idiopathic multiple unerupted impacted permanent teeth in a 20-year-old female patient. The case was unique in that, not only were there multiple missing permanent teeth, but also over retained deciduous teeth and attrited existing permanent teeth with loss of vertical dimension of occlusion. Since the patient was young, it was decided to retain all the erupted permanent teeth and extract the infected deciduous teeth with the objective of fabricating overlay complete dentures. This is a simple, reversible and an economical treatment modality, which satisfies both the esthetic and functional demands where the extraction of teeth is not generally indicated and, in addition, provides a stable occlusion.
Collapse
Affiliation(s)
- Karunakar Shetty
- Department of Prosthodontics, Bangalore Institute of Dental Sciences and Postgraduate Research Centre, Bengaluru, Karnataka, India
| | - Mahesh Kumar
- Department of Prosthodontics, Bangalore Institute of Dental Sciences and Postgraduate Research Centre, Bengaluru, Karnataka, India
| | - Susan Amanna
- Department of Prosthodontics, Bangalore Institute of Dental Sciences and Postgraduate Research Centre, Bengaluru, Karnataka, India
| | - Srirangarajan Sridharan
- Department of Periodontics, Bangalore Institute of Dental Sciences and Postgraduate Research Centre, Bengaluru, Karnataka, India
| | - Satyanarayan Reddy
- Department of Conservative Dentistry and Endodontics, Bangalore Institute of Dental Sciences and Postgraduate Research Centre, Bengaluru, Karnataka, India
| |
Collapse
|
77
|
Sun X, Wang X, Zhang C, Liu Y, Yang X, Yan W, Liu Z, Wang Y, Zheng S. RUNX2 mutation impairs bone remodelling of dental follicle cells and periodontal ligament cells in patients with cleidocranial dysplasia. Mutagenesis 2016; 31:677-685. [PMID: 27509906 DOI: 10.1093/mutage/gew039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
RUNX2 is an important osteo-specific factor with crucial functions in bone formation and remodelling as well as resorption of teeth. Heterozygous mutation of RUNX2 can cause cleidocranial dysplasia (CCD), a systemic disease with extensive skeletal dysplasia and abnormality of tooth growth. In our study, dental follicle cells (DFCs) and periodontal ligament cells (PDLCs) were isolated, cultured and identified from one patient with CCD and compared with normal controls. This CCD patient was confirmed to have a heterozygous frameshift mutation of RUNX2 (c.514delT, p.Ser172fs) in the previous study. The results showed that the proliferation abilities of DFCs and PDLCs were both disturbed by the RUNX2 mutation in the CCD patient compared with the normal control. A co-culture system of these cells with human peripheral blood mononuclear cells was then used to investigate the effect of RUNX2 mutation on osteoclastogenesis. We found that the RUNX2 mutation in CCD reduced the expression of osteoclast-related genes, such as RUNX2, CTR, CTSK, RANKL and OPG The ability of osteoclastogenesis in DFCs and PDLCs detected by tartrate-resistant acid phosphatase staining in the co-culture system was also reduced by the RUNX2 mutation compared with the normal control. These outcomes indicate that the RUNX2 mutation disturbs the modulatory effects of DFCs and PDLCs on the differentiation of osteoclasts and osteoblasts, thereby interfering with bone remodelling. These effects may contribute in part to the pathological manifestations of retention of primary teeth and delayed eruption of permanent teeth in patients with CCD.
Collapse
Affiliation(s)
- Xiangyu Sun
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, People's Republic of China
| | - Xiaozhe Wang
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, People's Republic of China
| | - Chenying Zhang
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, People's Republic of China
| | - Yang Liu
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, People's Republic of China
| | - Xiang Yang
- Department of Stomatology, Dongzhimen Hospital of Beijing University of Chinese Medicine, 5 Haiyuncang Lane, Dongcheng District, Beijing 100081, People's Republic of China
| | - Wenjuan Yan
- Outpatient Center of Peking University School and Hospital of Stomatology, A37 Xishiku Street, Xicheng District, Beijing 100081, People's Republic of China
| | - Zhongning Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, People's Republic of China and
| | - Yixiang Wang
- Central Laboratory, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, People's Republic of China
| | - Shuguo Zheng
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, People's Republic of China,
| |
Collapse
|
78
|
Chen C, Xie N, Ling J, Du Y, Gu H. Proteomic analysis of the effects of CSF-1 and IL-1α on dental follicle cells. Mol Med Rep 2016; 14:2405-14. [PMID: 27484316 DOI: 10.3892/mmr.2016.5567] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 05/23/2016] [Indexed: 11/06/2022] Open
Abstract
Tooth eruption is a complex physiological process involving both osteogenesis and bone resorption. Signals from the dental follicle (DF) regulate bone remodeling during tooth eruption. Interleukin-1α (IL-1α) may be the initial promoter of tooth eruption, whereas colony‑stimulating factor‑1 (CSF‑1) may attract monocytes into the DF and stimulate osteoclast differentiation. In the present study, differential proteomics was employed to explore protein changes in rat DF cells (DFCs) under the effects of CSF‑1 and IL‑1α. A total of 47 protein spots were differentially expressed in rat DFCs, and 40 protein spots were identified by MALDI‑TOF‑MS. The identified proteins were grouped into functional categories including cytoskeletal proteins, metal‑binding proteins, proteins involved in secretion and degradation, cell cycle proteins and stress proteins. In IL‑1α‑induced rat DFCs, 31 proteins were upregulated compared with the control and included heat shock protein β‑1 (HSP25, also known as HSP27/HSPβ1), vimentin, TMEM43, the GTP‑binding protein Rab‑3D, 6‑pyruvoyl tetrahydrobiopterin synthase and actin. In total, 7 proteins were downregulated, including serum albumin, GIPC1, DNA primase large subunit, cullin‑5 and cyclin‑G1. In CSF‑1‑induced rat DFCs, 3 proteins were upregulated and 7 proteins were downregulated when compared with the controls. The upregulated proteins included the GTP‑binding protein Rab‑3D and α‑actin. The downregulated proteins included cullin‑5, serum albumin, PDZ domain‑containing protein and cyclin‑G1. The differential expression of vimentin, actin, HSP25 and Rab‑3D was verified by western blotting and reverse transcription‑quantitative polymerase chain reaction analyses. The present findings provide an insight into the mechanisms involved in tooth eruption.
Collapse
Affiliation(s)
- Chanchan Chen
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Research Institute of Stomatology, Guangdong Province Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Nan Xie
- Department of Oral Pathology, Guanghua School of Stomatology, Research Institute of Stomatology, Guangdong Province Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Junqi Ling
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Research Institute of Stomatology, Guangdong Province Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Yu Du
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Research Institute of Stomatology, Guangdong Province Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Haijing Gu
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Research Institute of Stomatology, Guangdong Province Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
79
|
Jamal HA. Tooth Organ Bioengineering: Cell Sources and Innovative Approaches. Dent J (Basel) 2016; 4:dj4020018. [PMID: 29563460 PMCID: PMC5851265 DOI: 10.3390/dj4020018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/22/2016] [Accepted: 05/27/2016] [Indexed: 01/02/2023] Open
Abstract
Various treatment approaches for restoring missing teeth are being utilized nowadays by using artificial dental crowns/bridges or the use of dental implants. All aforementioned restorative modalities are considered to be the conventional way of treating such cases. Although these artificial therapies are commonly used for tooth loss rehabilitation, they are still less conservative, show less biocompatibility and fail to restore the natural biological and physiological function. Adding to that, they are considered to be costly due to the risk of failure and they also require regular maintenance. Regenerative dentistry is currently considered a novel therapeutic concept with high potential for a complete recovery of the natural function and esthetics of teeth. Biological-cell based dental therapies would involve replacement of teeth by using stem cells that will ultimately grow a bioengineered tooth, thereby restoring both the biological and physiological functions of the natural tooth, and are considered to be the ultimate goal in regenerative dentistry. In this review, various stem cell-based therapeutic approaches for tooth organ bioengineering will be discussed.
Collapse
Affiliation(s)
- Hasan A Jamal
- Independent Researcher, Ibrahim Al- Jaffali, Awali, Mecca 21955, Saudi Arabia.
| |
Collapse
|
80
|
TGF-β in jaw tumor fluids induces RANKL expression in stromal fibroblasts. Int J Oncol 2016; 49:499-508. [PMID: 27279422 PMCID: PMC4922833 DOI: 10.3892/ijo.2016.3548] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/16/2016] [Indexed: 12/24/2022] Open
Abstract
Odontogenic tumors and cysts, arising in the jawbones, grow by resorption and destruction of the jawbones. However, mechanisms underlying bone resorption by odontogenic tumors/cysts remain unclear. Odontogenic tumors/cysts comprise odontogenic epithelial cells and stromal fibroblasts, which originate from the developing tooth germ. It has been demonstrated that odontogenic epithelial cells of the developing tooth germ induce osteoclastogenesis to prevent the tooth germ from invading the developing bone to maintain its structure in developing bones. Thus, we hypothesized that odontogenic epithelial cells of odontogenic tumors/cysts induce osteoclast formation, which plays potential roles in tumor/cyst outgrowth into the jawbone. The purpose of this study was to examine osteoclastogenesis by cytokines, focusing on transforming growth factor-β (TGF-β), produced by odontogenic epithelial cells. We observed two pathways for receptor activator of NF-κB ligand (RANKL) induction by keratocystic odontogenic tumor fluid: the cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) pathway through interleukin-1α (IL-1α) signaling and non-COX-2/PGE2 pathway through TGF-β receptor signaling. TGF-β1 and IL-1α produced by odontogenic tumors/cysts induced osteoclastogenesis directly in the osteoclast precursor cells and indirectly via increased RANKL induction in the stroma.
Collapse
|
81
|
Secretome Profiling of Periodontal Ligament from Deciduous and Permanent Teeth Reveals a Distinct Expression Pattern of Laminin Chains. PLoS One 2016; 11:e0154957. [PMID: 27149379 PMCID: PMC4858149 DOI: 10.1371/journal.pone.0154957] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/21/2016] [Indexed: 11/24/2022] Open
Abstract
It has been suggested that there are histological and functional distinctions between the periodontal ligament (PDL) of deciduous (DecPDL) and permanent (PermPDL) teeth. Thus, we hypothesized that DecPDL and PermPDL display differences in the constitutive expression of genes/proteins involved with PDL homeostasis. Primary PDL cell cultures were obtained for DecPDL (n = 3) and PermPDL (n = 3) to allow us to perform label-free quantitative secretome analysis. Although a highly similar profile was found between DecPDL and PermPDL cells, comparative secretome analysis evidenced that one of the most stickling differences involved cell adhesion molecules, including laminin subunit gamma 1 (LAMC1) and beta 2 (LAMB2). Next, total RNA and protein extracts were obtained from fresh PDL tissues of deciduous (n = 6) and permanent (n = 6) teeth, and Western blotting and qPCR analysis were used to validate our in vitro findings. Western blot analysis confirmed that LAMC1 was increased in DecPDL fresh tissues (p<0.05). Furthermore, qPCR data analysis revealed that mRNA levels for laminin subunit beta 1 (LAMB1), beta 3 (LAMB3), LAMC1, and gamma 2 (LAMC2) were higher in DecPDL fresh tissues, whereas transcripts for LAMB2 were increased in PermPDL (p<0.05). In conclusion, the differential expression of laminin chains in DecPDL and PermPDL suggests an involvement of laminin-dependent pathways in the control of physiological differences between them.
Collapse
|
82
|
Oshima M, Tsuji T. Whole Tooth Regeneration as a Future Dental Treatment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 881:255-69. [PMID: 26545754 DOI: 10.1007/978-3-319-22345-2_14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dental problems caused by dental caries, periodontal disease and tooth injury compromise the oral and general health issues. Current advances for the development of regenerative therapy have been influenced by our understanding of embryonic development, stem cell biology, and tissue engineering technology. Tooth regenerative therapy for tooth tissue repair and whole tooth replacement is currently expected a novel therapeutic concept with the full recovery of tooth physiological functions. Dental stem cells and cell-activating cytokines are thought to be candidate approach for tooth tissue regeneration because they have the potential to differentiate into tooth tissues in vitro and in vivo. Whole tooth replacement therapy is considered to be an attractive concept for next generation regenerative therapy as a form of bioengineered organ replacement. For realization of whole tooth regeneration, we have developed a novel three-dimensional cell manipulation method designated the "organ germ method". This method involves compartmentalisation of epithelial and mesenchymal cells at a high cell density to mimic multicellular assembly conditions and epithelial-mesenchymal interactions in organogenesis. The bioengineered tooth germ generates a structurally correct tooth in vitro, and erupted successfully with correct tooth structure when transplanted into the oral cavity. We have ectopically generated a bioengineered tooth unit composed of a mature tooth, periodontal ligament and alveolar bone, and that tooth unit was engrafted into an adult jawbone through bone integration. Bioengineered teeth were also able to perform physiological tooth functions such as mastication, periodontal ligament function and response to noxious stimuli. In this review, we describe recent findings and technologies underpinning whole tooth regenerative therapy.
Collapse
Affiliation(s)
- Masamitsu Oshima
- Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8525, Japan.
- RIKEN Center for Developmental Biology, Kobe, Hyogo, 650-0047, Japan.
| | - Takashi Tsuji
- RIKEN Center for Developmental Biology, Kobe, Hyogo, 650-0047, Japan.
- Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510, Japan.
- Organ Technologies Inc, Tokyo, 101-0048, Japan.
| |
Collapse
|
83
|
Frazier-Bowers SA, Long S, Tucker M. Primary failure of eruption and other eruption disorders—Considerations for management by the orthodontist and oral surgeon. Semin Orthod 2016. [DOI: 10.1053/j.sodo.2015.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
84
|
Vasconcelos DFP, Vasconcelos ACCG. PTH intermittent administration may be a useful therapeutic agent to avoid premature eruption of the tooth. Med Hypotheses 2016; 88:27-9. [DOI: 10.1016/j.mehy.2015.12.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 12/28/2015] [Indexed: 11/15/2022]
|
85
|
Functional polymorphisms of Monocyte Chemoattractant Protein-1 gene and Pott’s disease risk. Immunobiology 2016; 221:462-7. [DOI: 10.1016/j.imbio.2015.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 11/12/2015] [Accepted: 11/13/2015] [Indexed: 02/01/2023]
|
86
|
Multiple essential MT1-MMP functions in tooth root formation, dentinogenesis, and tooth eruption. Matrix Biol 2016; 52-54:266-283. [PMID: 26780723 DOI: 10.1016/j.matbio.2016.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/07/2016] [Accepted: 01/07/2016] [Indexed: 11/23/2022]
Abstract
Membrane-type matrix metalloproteinase 1 (MT1-MMP) is a transmembrane zinc-endopeptidase that breaks down extracellular matrix components, including several collagens, during tissue development and physiological remodeling. MT1-MMP-deficient mice (MT1-MMP(-/-)) feature severe defects in connective tissues, such as impaired growth, osteopenia, fibrosis, and conspicuous loss of molar tooth eruption and root formation. In order to define the functions of MT1-MMP during root formation and tooth eruption, we analyzed the development of teeth and surrounding tissues in the absence of MT1-MMP. In situ hybridization showed that MT1-MMP was widely expressed in cells associated with teeth and surrounding connective tissues during development. Multiple defects in dentoalveolar tissues were associated with loss of MT1-MMP. Root formation was inhibited by defective structure and function of Hertwig's epithelial root sheath (HERS). However, no defect was found in creation of the eruption pathway, suggesting that tooth eruption was hampered by lack of alveolar bone modeling/remodeling coincident with reduced periodontal ligament (PDL) formation and integration with the alveolar bone. Additionally, we identified a significant defect in dentin formation and mineralization associated with the loss of MT1-MMP. To segregate these multiple defects and trace their cellular origin, conditional ablation of MT1-MMP was performed in epithelia and mesenchyme. Mice featuring selective loss of MT1-MMP activity in the epithelium were indistinguishable from wild type mice, and importantly, featured a normal HERS structure and molar eruption. In contrast, selective knock-out of MT1-MMP in Osterix-expressing mesenchymal cells, including osteoblasts and odontoblasts, recapitulated major defects from the global knock-out including altered HERS structure, short roots, defective dentin formation and mineralization, and reduced alveolar bone formation, although molars were able to erupt. These data indicate that MT1-MMP activity in the dental mesenchyme, and not in epithelial-derived HERS, is essential for proper tooth root formation and eruption. In summary, our studies point to an indispensable role for MT1-MMP-mediated matrix remodeling in tooth eruption through effects on bone formation, soft tissue remodeling and organization of the follicle/PDL region.
Collapse
|
87
|
Influence of metabolic-linked early life factors on the eruption timing of the first primary tooth. Clin Oral Investig 2015; 20:1871-1879. [PMID: 26620731 DOI: 10.1007/s00784-015-1670-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 11/18/2015] [Indexed: 01/22/2023]
Abstract
AIM Early eruption of permanent teeth has been associated with childhood obesity and diabetes mellitus, suggesting links between tooth eruption and metabolic conditions. This longitudinal study aimed to identify pre-, peri- and postnatal factors with metabolic consequences during infancy that may affect the eruption timing of the first primary tooth (ETFT) in children from an ethnically heterogeneous population residing within the same community. MATERIAL AND METHODS Participants were recruited (n = 1033) through the GUSTO (Growing Up in Singapore Towards healthy Outcomes) birth cohort (n = 1237). Oral examinations were performed at 3-month intervals from 6 to 18 months of age. Crude and adjusted analyses, with generalized linear modelling, were conducted to link ETFT to potential determinants occurring during pregnancy, delivery/birth and early infancy. RESULTS Overall mean eruption age of the first primary tooth was 8.5 (SD 2.6) months. Earlier tooth eruption was significantly associated with infant's rate of weight gain during the first 3 months of life and increased maternal childbearing age. Compared to their Chinese counterparts, Malay and Indian children experienced significantly delayed tooth eruption by 1.2 and 1.7 months, respectively. CONCLUSIONS Infant weight gain from birth to 3 months, ethnicity and maternal childbearing age were significant determinants of first tooth eruption timing. Early life influences can affect primary tooth development, possibly via metabolic pathways. CLINICAL RELEVANCE Timing of tooth eruption is linked to general growth and metabolic function. Therefore, it has potential in forecasting oral and systemic conditions such as caries and obesity.
Collapse
|
88
|
Rody WJ, Wijegunasinghe M, Holliday LS, McHugh KP, Wallet SM. Immunoassay analysis of proteins in gingival crevicular fluid samples from resorbing teeth. Angle Orthod 2015; 86:187-92. [DOI: 10.2319/032415-195.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
ABSTRACT
Objective:
To carry out an immunoassay analysis of biomarkers expressed in gingival crevicular fluid (GCF) with the main goal of finding a useful diagnostic pattern to distinguish between resorbing deciduous teeth and nonresorbing controls.
Materials and Methods:
A split-mouth design was used in this study with a total of 22 GCF samples collected from 11 patients in the mixed dentition. For each child, one deciduous molar with radiographic evidence of root resorption was used as the test tooth whereas the contralateral first permanent molar with formed roots was used as the control tooth. Samples were processed with immunoassays using a panel of selected biomarkers including interleukin-1 beta (IL-1b), interleukin-1 receptor antagonist (IL-1RA), nuclear factor kappa B ligand (RANKL), osteoprotegerin (OPG), matrix metalloproteinase-9 (MMP-9), and dentin sialoprotein (DSP).
Results:
There were no statistically significant differences in levels of IL-1b, OPG, and MMP-9 between test and control sites (P > .05). IL-1RA was the only biomarker to show a significant down-regulation (P = .04) in GCF samples collected from resorbing teeth. RANKL data showed a heavily skewed distribution and was deemed unreliable. Only one deciduous GCF sample had detectable levels of DSP; therefore, no further statistical calculation was applicable because of the limited amount of data for this biomarker.
Conclusions:
This study indicated that IL1-RA is down-regulated in GCF from resorbing primary molars, thus suggesting this cytokine as a potential analyte to be included in a panel that can discriminate between resorbing and nonresorbing teeth.
Collapse
Affiliation(s)
- Wellington J. Rody
- Assistant Professor, Department of Orthodontics, College of Dentistry, University of Florida, Gainesville, Fla
| | - Manjula Wijegunasinghe
- Laboratory Assistant, Department of Chemistry, University of Manitoba, Winnipeg MB, Canada
| | - L. Shannon Holliday
- Associate Professor, Department of Orthodontics, College of Dentistry, University of Florida, Gainesville, Fla
| | - Kevin P. McHugh
- Associate Professor, Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Fla
| | - Shannon M. Wallet
- Associate Professor, Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Fla
| |
Collapse
|
89
|
Sun H, Li Q, Zhang Y, Bi Y, Li X, Shu Y, Chen X, Jin Z, Ge C. Regulation of OPG and RANKL expressed by human dental follicle cells in osteoclastogenesis. Cell Tissue Res 2015; 362:399-405. [PMID: 26149648 DOI: 10.1007/s00441-015-2214-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 05/12/2015] [Indexed: 11/25/2022]
Abstract
We investigate whether the expression of the receptor activator of nuclear factor kappa-B ligand (RANKL) and osteoprotegerin (OPG) in human dental follicle cells (HDFCs) regulated by colony stimulating factor 1 (CSF-1), parathyroid hormone-related protein (PTHrP) and bone morphogenetic protein-2 (BMP-2) contributes to osteoclastogenesis. Adolescent human impacted third mandibular molars were used to separate HDFCs. These cells were incubated with PTHrP (10 ng/ml), CSF-1 (25 ng/ml), or BMP-2 (100 ng/ml) for 0.5, 1, 3, 6 and 12 h. The expression of OPG and RANKL was investigated by immunohistochemistry and reverse transcription polymerase chain reaction (RT-PCR). Two co-culture systems and tartrate-resistant acid phosphatase (TRAP) staining were used to examine osteoclast formation. Scanning electron microscopy was utilized for the resorption pit assay. RANKL and OPG were expressed innately in HDFCs. Exogenous PTHrP, CSF-1 and BMP-2 chronologically regulated the expression of RANKL and OPG in HDFCs. PTHrP and CSF-1 had similar regulative patterns leading to the up-regulated expression of RANKL and the down-regulated expression of OPG and opposite for BMP-2. The number of TRAP-positive peripheral blood mononuclear cells (PBMCs) slightly increased in contacted co-culture of HDFCs and PBMCs, whereas secreted OPG from HDFCs inhibited osteoclastogenesis in the transwell co-culture system. Contacted co-culture of HDFCs and PBMCs exhibited small and shallow resorption pits, whereas in the transwell co-culture system, secreted OPG from HDFCs reduced the resorption pits, reflecting the difference in osteoclast production. Collectively, we found a dual action of HDFCs in osteoclastogenesis; moreover, PTHrP, CSF-1 and BMP-2 might influence osteoclastogenesis by regulating the expression of RANKL and OPG in HDFCs.
Collapse
Affiliation(s)
- Haiyan Sun
- Department of Stomatology, Affiliated Hospital, Academy of Military Medical Sciences, 8th Dong Da Street, Beijing, 100071, China
| | - Qihong Li
- Department of Stomatology, Affiliated Hospital, Academy of Military Medical Sciences, 8th Dong Da Street, Beijing, 100071, China
| | - Yongkuan Zhang
- Department of Stomatology, 150th Hospital, PLA, Luoyang, 471000, China
| | - Yingchun Bi
- Department of Stomotology, General Hospital of Ji'nan Military Area, Jinan, 25000, China
| | - Xia Li
- Department of Stomatology, Affiliated Hospital, Academy of Military Medical Sciences, 8th Dong Da Street, Beijing, 100071, China
| | - Yao Shu
- Department of Stomatology, Affiliated Hospital, Academy of Military Medical Sciences, 8th Dong Da Street, Beijing, 100071, China
| | - Xuepeng Chen
- Department of Orthodontics, College of Stomatology, Zhe Jiang University, Hangzhou, 31000, China
| | - Zuolin Jin
- Department of Orthodontics, Hospital of Stomatology, Fourth Military University, 145th Chang Le West Road, Xi'an, 710032, China.
| | - Cheng Ge
- Department of Stomatology, Affiliated Hospital, Academy of Military Medical Sciences, 8th Dong Da Street, Beijing, 100071, China.
| |
Collapse
|
90
|
Suzuki K, Lovera M, Schmachtenberg O, Couve E. Axonal Degeneration in Dental Pulp Precedes Human Primary Teeth Exfoliation. J Dent Res 2015; 94:1446-53. [PMID: 26149320 DOI: 10.1177/0022034515593055] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The dental pulp in human primary teeth is densely innervated by a plethora of nerve endings at the coronal pulp-dentin interface. This study analyzed how the physiological root resorption (PRR) process affects dental pulp innervation before exfoliation of primary teeth. Forty-four primary canine teeth, classified into 3 defined PRR stages (early, middle, and advanced) were fixed and demineralized. Longitudinal cryosections of each tooth were stained for immunohistochemical and quantitative analysis of dental pulp nerve fibers and associated components with confocal and electron microscopy. During PRR, axonal degeneration was prominent and progressive in a Wallerian-like scheme, comprising nerve fiber bundles and nerve endings within the coronal and root pulp. Neurofilament fragmentation increased significantly during PRR progression and was accompanied by myelin degradation and a progressive loss of myelinated axons. Myelin sheath degradation involved activation of autophagic activity by Schwann cells to remove myelin debris. These cells expressed a sequence of responses comprising dedifferentiation, proliferative activity, GAP-43 overexpression, and Büngner band formation. During the advanced PRR stage, increased immune cell recruitment within the dental pulp and major histocompatibility complex (MHC) class II upregulation by Schwann cells characterized an inflammatory condition associated with the denervation process in preexfoliative primary teeth. The ensuing loss of dental pulp axons is likely to be responsible for the progressive reduction of sensory function of the dental pulp during preexfoliative stages.
Collapse
Affiliation(s)
- K Suzuki
- Clínica de Odontología Pediátrica y del Adolescente, Universidad de Valparaíso, Valparaíso, Chile Facultad de Odontología, Universidad de Valparaíso, Valparaíso, Chile
| | - M Lovera
- Facultad de Odontología, Universidad de Valparaíso, Valparaíso, Chile
| | - O Schmachtenberg
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - E Couve
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile Instituto de Biología, Laboratorio de Microscopía Electrónica, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
91
|
Poureslami H, Asl Aminabadi N, Sighari Deljavan A, Erfanparast L, Sohrabi A, Jamali Z, Ghertasi Oskouei S, Hazem K, Shirazi S. Does Timing of Eruption in First Primary Tooth Correlate with that of First Permanent Tooth? A 9-years Cohort Study. J Dent Res Dent Clin Dent Prospects 2015; 9:79-85. [PMID: 26236432 PMCID: PMC4517309 DOI: 10.15171/joddd.2015.0016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/20/2015] [Indexed: 11/09/2022] Open
Abstract
Background and aims. Predicting the teeth eruption time is a valuable tool in pediatric dentistry since it can affects scheduling dental and orthodontic treatments. This study investigated the relationship between the eruption time of first primary and permanent teeth and the variation in the eruption time considering socioeconomic status (SES) in a 9-year population- based cohort study. Materials and methods. 307 subjects were examined at bimonthly intervals during the first and second years of life and then at six-month intervals until the eruption of first permanent tooth. Eruption times of primary and permanent tooth were recorded for each child. A modified form of Kuppuswamy’s scale was used to assess the SES. Results. Among 267 subjects completed all follow-ups, the eruption time for first primary and permanent teeth indicated a direct strong correlation; in that one month delayed or early eruption of firstprimary tooth resulted in 4.21 months delayed or early eruption of first appearing permanent tooth (r = 0.91, n = 267, P <0.001). No significant correlation was observed between the eruption time of first primary and first permanent teeth and SES (P = 0.67, P = 0.75, respectively). Conclusion. The eruption timing for the first primary tooth had a correlation with the first permanent tooth eruption tim-ing, while SES did not have any influence on eruption times.
Collapse
Affiliation(s)
- Hamidreza Poureslami
- Associate Professor, Department of Pediatric Dentistry, Faculty of Dentistry, Kerman University of Medical Sciences, Kerman, Iran
| | - Naser Asl Aminabadi
- Associate Professor, Department of Pediatric Dentistry, Faculty of Dentistry, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Sighari Deljavan
- Associate Professor, Department of Pediatric Dentistry, Faculty of Dentistry, Kerman University of Medical Sciences, Kerman, Iran
| | - Leila Erfanparast
- Associate Professor, Department of Pediatric Dentistry, Faculty of Dentistry, Kerman University of Medical Sciences, Kerman, Iran
| | - Azin Sohrabi
- Associate Professor, Department of Pediatric Dentistry, Faculty of Dentistry, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Jamali
- Associate Professor, Department of Pediatric Dentistry, Faculty of Dentistry, Kerman University of Medical Sciences, Kerman, Iran
| | - Sina Ghertasi Oskouei
- Associate Professor, Department of Pediatric Dentistry, Faculty of Dentistry, Kerman University of Medical Sciences, Kerman, Iran
| | - Kameliya Hazem
- Associate Professor, Department of Pediatric Dentistry, Faculty of Dentistry, Kerman University of Medical Sciences, Kerman, Iran
| | - Sajjad Shirazi
- Associate Professor, Department of Pediatric Dentistry, Faculty of Dentistry, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
92
|
Lee JH, Pryce BA, Schweitzer R, Ryder MI, Ho SP. Differentiating zones at periodontal ligament-bone and periodontal ligament-cementum entheses. J Periodontal Res 2015; 50:870-80. [PMID: 26031604 DOI: 10.1111/jre.12281] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND OBJECTIVE The structural and functional integrity of bone-periodontal ligament (PDL)-cementum complex stems from the load-bearing attachment sites (entheses) between soft (PDL) and hard (bone, cementum) tissues. These attachment sites are responsible for the maintenance of a bone-PDL-cementum complex biomechanical function. The objective was to investigate changes in spatiotemporal expression of key biomolecules in developing and functionally active entheses. MATERIAL AND METHODS Multilabeling technique was performed on hemimandibles of 3 wk and 3 mo-old scleraxis-GFP transgenic mice for CD146, CD31, NG2, osterix and bone sialoprotein. Regions of dominant stretch within the PDL were evaluated by identifying directionality of collagen fibrils, PDL fibroblasts and PDL cell cytoskeleton. RESULTS CD146+ cells adjacent to CD31+ vasculature were identified at PDL-bone enthesis. NG2+ cells were located at coronal bone-PDL and apical cementum-PDL entheses in the 3-wk-old group, but at 3 mo, NG2 was positive at the entheses of the apical region and alveolar crest. NG2 and osterix were colocalized at the osteoid and cementoid regions of the PDL-bone and PDL-cementum entheses. Bone sialoprotein was prominent at the apical region of 3-wk-old mice. The directionality of collagen fibers, fibroblasts and their cytoskeleton overlapped, except in the apical region of 3 wk. CONCLUSION Colocalization of biomolecules at zones of the PDL adjacent to attachment sites may be essential for the formation of precementum and osteoid interfaces at a load-bearing bone-PDL-tooth fibrous joint. Biophysical cues resulting from development and function can regulate recruitment and differentiation of stem cells potentially from a vascular origin toward osteo- and cemento-blastic lineages at the PDL-bone and PDL-cementum entheses. Investigating the coupled effect of biophysical and biochemical stimuli leading to cell differentiation at the functional attachment sites is critical for developing regeneration strategies to enable functional reconstruction of the periodontal complex.
Collapse
Affiliation(s)
- J-H Lee
- Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental Sciences, University of California at San Francisco, San Francisco, CA, USA
| | - B A Pryce
- Portland Shriner's Research Center, Oregon Health & Science University, Portland, OR, USA
| | - R Schweitzer
- Portland Shriner's Research Center, Oregon Health & Science University, Portland, OR, USA
| | - M I Ryder
- Division of Periodontology, Department of Orofacial Sciences, University of California at San Francisco, San Francisco, CA, USA
| | - S P Ho
- Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental Sciences, University of California at San Francisco, San Francisco, CA, USA
| |
Collapse
|
93
|
Radlanski RJ, Renz H, Zimmermann CA, Mey R, Matalova E. Morphogenesis of the compartmentalizing bone around the molar primordia in the mouse mandible during dental developmental stages between lamina, bell-stage, and root formation (E13-P20). Ann Anat 2015; 200:1-14. [PMID: 25723515 DOI: 10.1016/j.aanat.2015.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/15/2015] [Accepted: 01/15/2015] [Indexed: 12/18/2022]
Abstract
Despite increasing knowledge of the basic molecular aspects of bone formation and its regulation, the mechanisms of bone morphogenesis leading to a topologically specific shape remain unknown. The formation of the alveolar bone, which houses the dental primordia and later, the dental roots, may serve as a model to understand the formation of bone form in general. Thirty-eight heads of mice (C57 Bl/6J) ranging from stages E13-P20 were used to prepare histological serial sections. For each stage, virtual 3D-reconstructions were made in order to study the morphogenesis of the mandibular molar primordia concomitantly with their surrounding bone. Special focus was given to recording the remodeling pattern. It has been shown that, in early stages (E13, E14), bone formation is characterized by apposition only. In stage E15, the bony crypt around the dental primordia is remodeled mostly by resorption of bone. In stage E18, the bone remodeling pattern shows resorption all along the bony gutter, which houses the molar primordia. The medial and lateral margins are characterized by apposition. At birth (stage P0), a bony septum has begun to form between the primordium m1 and of m2, arising from both sides and characterized by pure apposition of bone. In stage P4, the crypts of m1 and m2, and also that of m3, show bone resorption inside, while the medial and lateral bony margins show apposition of bone throughout. Generally, during development, the bone gradually encapsulates the dental primordia, in such a way that the bone reaches over the dental primordia and leaves only a continuous longish opening of about 200μm width. The opening at the occlusal surface of m1, at the time of eruption, starting at stage P14, appears to have increased in size again. The distance between bone and dental primordium undergoes change during development. In erupted molars, it is around 100μm, during early developmental stages, it may be as less as 20μm. These data show the inevitability of bone remodeling.
Collapse
Affiliation(s)
- Ralf J Radlanski
- Charité - Campus Benjamin Franklin at Freie Universität Berlin, Center for Dental and Craniofacial Sciences, Department of Craniofacial Developmental Biology, Assmannshauser Str. 4-6, 14197 Berlin, Germany.
| | - Herbert Renz
- Charité - Campus Benjamin Franklin at Freie Universität Berlin, Center for Dental and Craniofacial Sciences, Department of Craniofacial Developmental Biology, Assmannshauser Str. 4-6, 14197 Berlin, Germany
| | - Camilla A Zimmermann
- Charité - Campus Benjamin Franklin at Freie Universität Berlin, Center for Dental and Craniofacial Sciences, Department of Craniofacial Developmental Biology, Assmannshauser Str. 4-6, 14197 Berlin, Germany
| | - Robert Mey
- Charité - Campus Benjamin Franklin at Freie Universität Berlin, Center for Dental and Craniofacial Sciences, Department of Craniofacial Developmental Biology, Assmannshauser Str. 4-6, 14197 Berlin, Germany
| | - Eva Matalova
- Department of Animal Physiology and Genetics CAS, v.v.i., Veveri 97, Brno 602 00, Czech Republic
| |
Collapse
|
94
|
Resende AL, dos Reis LM, Dias CB, Custódio MR, Jorgetti V, Woronik V. Bone disease in newly diagnosed lupus nephritis patients. PLoS One 2014; 9:e106728. [PMID: 25229495 PMCID: PMC4167850 DOI: 10.1371/journal.pone.0106728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 08/03/2014] [Indexed: 12/31/2022] Open
Abstract
Introduction Bone loss in Lupus Nephritis (LN) patients is common and multifactorial. The aim of this study was to evaluate the bone status of newly diagnosed LN patients and their correlation with inflammatory factors involved in LN physiopathology. Methods We studied 15 pre-menopausal patients with ≤2 months of diagnosed SLE and LN. Patients with prior kidney or bone disease were excluded. In addition to biochemical evaluation (including 25-hydroxyvitamin D3 [25(OH)D] and Monocyte Chemotactic Protein (MCP1) dosage), we performed bone biopsies followed by osteoblast culture, histomorphometric and immunohistochemistry analysis. Results LN patients presented a mean age of 29.5±10 years, a proteinuria of 4.7±2.9 g/day and an estimated glomerular filtration rate (GFR) of 37(31–87) ml/min/1,73 m2. They were on glucocorticoid therapy for 34±12 days. All patients presented vitamin D insufficiency (9.9±4.4 ng/ml, range 4–20). Urinary MCP1 correlated negatively with 25(OH)D (r = −0.53, p = 0.003) and positively with serum deoxypyridinoline (r = 0.53, p = 0.004). Osteoblasts isolated from LN bone biopsies presented a significantly higher expression of MCP-1 when compared to controls (32.0.±9.1 vs. 22.9±5.3 mean fluorescence intensities, p = 0.01). LN patients presented a significantly reduced osteoid volume, osteoid thickness, osteoid surface, mineralization surface and bone formation rate, associated with an increased eroded surface and osteoclast surface. Patient’s bone specimens demonstrated a reduced immunostaining for osteoprotegerin (0.61±0.82 vs. 1.08±0.50%, p = 0.003), and an increased expression of Receptor Activator of NF-κB ligand (RANKL) (1.76±0.92 vs. 0.41±0.28%, p<0.001) when compared to controls. Discussion Newly diagnosed LN patients presented a significant disturbance in bone metabolism, characterized by an impaired bone formation and mineralization, associated with an increase in resorption parameters. Glucocorticoid use, vitamin D insufficiency and inflammation might be involved in the physiopathology of bone metabolism disturbance.
Collapse
Affiliation(s)
- Aline Lázara Resende
- Nephrology Division, Sao Paulo University Medical School, Sao Paulo, Brazil
- * E-mail:
| | | | | | | | - Vanda Jorgetti
- Nephrology Division, Sao Paulo University Medical School, Sao Paulo, Brazil
| | - Viktoria Woronik
- Nephrology Division, Sao Paulo University Medical School, Sao Paulo, Brazil
| |
Collapse
|
95
|
Redwood C, Townsend GC, Ghabriel M, Brook AH. Under your nose: a rare finding during dissection provides insights into maxillary supernumerary teeth. Aust Dent J 2014; 59:379-85. [PMID: 24861905 DOI: 10.1111/adj.12194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND A supernumerary tooth was found during anatomical dissection. The position of this tooth, still impacted in the maxilla, and the associated pathology make this a rare case. METHODS During dissection by dental students of the sagittally-sectioned head of a cadaver, a supernumerary tooth was identified in the mid-palatal area. Further dissection revealed a swelling with a thin bony covering related to the crown of the tooth. The maxilla was removed en bloc and radiographic examination, CT scanning, electron microscopy and histology were undertaken. RESULTS The tooth had a crenulated occlusal surface and a single root. It was 25 mm posterior to the root apex of the permanent upper central incisor. The swelling, confirmed by radiographs and CT imaging to be associated with the crown, occupied approximately one-third of the maxillary sinus. The 3D shape of the cystic lesion was visualized by a composite digital movie. CONCLUSIONS The crown form, position of the tooth and the associated dentigerous cyst suggested it was a palatally developing supernumerary premolar which had been displaced to the palatal midline by the expanding cyst. This rare case highlights the learning and teaching opportunities available during dissection, showing important variations in both development and clinical anatomy.
Collapse
Affiliation(s)
- C Redwood
- Centre for Orofacial Research and Learning, School of Dentistry, The University of Adelaide, South Australia
| | | | | | | |
Collapse
|
96
|
Oshima M, Tsuji T. Functional tooth regenerative therapy: tooth tissue regeneration and whole-tooth replacement. Odontology 2014; 102:123-36. [PMID: 25052182 DOI: 10.1007/s10266-014-0168-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/14/2014] [Indexed: 12/22/2022]
Abstract
Oral and general health is compromised by irreversible dental problems, including dental caries, periodontal disease and tooth injury. Regenerative therapy for tooth tissue repair and whole-tooth replacement is currently considered a novel therapeutic concept with the potential for the full recovery of tooth function. Several types of stem cells and cell-activating cytokines have been identified in oral tissues. These cells are thought to be candidate cell sources for tooth tissue regenerative therapies because they have the ability to differentiate into tooth tissues in vitro and in vivo. Whole-tooth replacement therapy is regarded as an important model for the development of an organ regenerative concept. A novel three-dimensional cell-manipulation method, designated the organ germ method, has been developed to recapitulate organogenesis. This method involves compartmentalisation of epithelial and mesenchymal cells at a high cell density to mimic multicellular assembly conditions and epithelial-mesenchymal interactions. A bioengineered tooth germ can generate a structurally correct tooth in vitro and erupt successfully with the correct tooth structure when transplanted into the oral cavity. We have ectopically generated a bioengineered tooth unit composed of a mature tooth, periodontal ligament and alveolar bone, and that tooth unit was successfully engrafted into an adult jawbone through bone integration. Such bioengineered teeth were able to perform normal physiological tooth functions, such as developing a masticatory potential in response to mechanical stress and a perceptive potential for noxious stimuli. In this review, we describe recent findings and technologies underpinning tooth regenerative therapy.
Collapse
Affiliation(s)
- Masamitsu Oshima
- Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8525, Japan,
| | | |
Collapse
|
97
|
Aruna U, Annamalai PR, Nayar S, Bhuminathan S. Primary failure of eruption- a case report with cone beam computerized tomographic imaging. J Clin Diagn Res 2014; 8:ZD14-6. [PMID: 24959522 DOI: 10.7860/jcdr/2014/8606.4306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 02/16/2014] [Indexed: 11/24/2022]
Abstract
Tooth eruption is an intricate and complex process which can fail to occur due to several reasons. Failure of tooth eruption in the absence of any systemic condition or any obstruction in the eruptive pathway can be attributed to lack of inherent eruptive potential of the tooth, termed as Primary Failure of Eruption (PFE). This is a rare condition and usually has a genetic etiology. Here we report a rare case in which there is Primary Failure of Eruption in the mandibular right quadrant. There is also mechanical failure of eruption of maxillary right canine and supernumerary teeth palatal to the maxillary central incisors. This association of supernumerary teeth and mechanical failure of eruption along with primary failure of eruption has not been reported so far. Proper diagnosis is very important in cases of Primary Failure of Eruption. There are several diagnostic criteria to identify these cases. Since these cases do not respond to orthodontic force, early diagnosis is of essential importance.
Collapse
Affiliation(s)
- U Aruna
- Reader, Department of Prosthodontics, Sree Balaji Dental College and Hospital , Chennai, India
| | - P R Annamalai
- Reader, Department of Orthodontics, Chettinad Dental College and Hospital , Chennai, India
| | - Sanjna Nayar
- Professor & HOD, Department of Prosthodontics, Sree Balaji Dental College and Hospital , Chennai, India
| | - S Bhuminathan
- Professor, Department of Prosthodontics, Sree Balaji Dental College and Hospital , Chennai, India
| |
Collapse
|
98
|
Relationship between gestational age, birth weight and deciduous tooth eruption. EGYPTIAN PEDIATRIC ASSOCIATION GAZETTE 2014. [DOI: 10.1016/j.epag.2014.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
99
|
Popowics T, Boyd T, Hinderberger H. Eruptive and functional changes in periodontal ligament fibroblast orientation in CD44 wild-type vs. knockout mice. J Periodontal Res 2014; 49:355-62. [PMID: 23808836 PMCID: PMC4527325 DOI: 10.1111/jre.12113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2013] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVE Periodontal ligament (PDL) fibroblasts establish principal fibers of the ligament during tooth eruption, and maintain these fibers during occlusion. PDL development and occlusal adaptation includes changes in the orientation of PDL fibroblasts; however, the mechanism for these changes in orientation is unclear. The objective of this study was to compare PDL fibroblast orientation in different stages corresponding with first molar eruption and occlusion in CD44 wild-type (WT) and knockout (KO) mice. MATERIAL AND METHODS CD44 WT and KO mice were raised to six postnatal stages corresponding with first molar (M1 ) eruption (postnatal day 8, 11, 14 and 18) and occlusion (postnatal day 26 and 41). Coronal sections of the first mandibular molar (M1 ) were prepared and the orientation of fibroblasts in the cervical root region was measured. Angle measurements were compared across developmental stages and between strains using Watson-Williams F-test (oriana software) and ANCOVA. RESULTS PDL fibroblast orientation increased significantly in CD44 WT (9-87°) and KO mice (14-93°; p ≤ 0.05) between intraosseous eruption (day 11), mucosal penetration (day 14) and preocclusal eruption (day 18); however, the PDL fibroblast orientation did not change significantly with the onset of occlusion (day 26) or continued function (day 41). Within each strain, the variance in fibroblast orientation during preocclusal eruption (day 18) was significantly higher than the variance of all other time points (p < 0.0005). CD44 WT and KO mice showed a similar pattern of PDL development and eruption with a significant difference in CD44 WT vs. KO fibroblast orientations only during early function (day 26, 92° vs 116°; p = 0.05). CONCLUSIONS The development of PDL fibroblast orientation is highly similar between CD44 WT and KO mice. Between early (day 11) and late (day 18) eruptive stages PDL fibroblast orientation increases, corresponding with the upward movement of M1 . The PDL fibroblast orientation established in preocclusal eruption (day 18) is maintained during early (day 26) and late (day 41) stages of occlusal function, suggesting that PDL cells adapt to mechanical loads in the oral cavity before M1 occlusion.
Collapse
|
100
|
Pilz P, Meyer-Marcotty P, Eigenthaler M, Roth H, Weber BHF, Stellzig-Eisenhauer A. Differential diagnosis of primary failure of eruption (PFE) with and without evidence of pathogenic mutations in the PTHR1 gene. J Orofac Orthop 2014; 75:226-39. [PMID: 24825834 DOI: 10.1007/s00056-014-0215-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 10/23/2013] [Indexed: 12/23/2022]
Abstract
BACKGROUND Primary failure of eruption (PFE) may be associated with pathogenic mutations in the PTHR1 gene. It has numerous manifestations and is characterized by severe posterior open bite. However, there are also phenotypically similar types of eruption anomalies not associated with a known pathogenic PTHR1 mutation. The purpose of this study was to evaluate whether a distinction can be made between PTHR1-mutation carriers and noncarriers based on clinical and radiological findings. PATIENTS AND METHODS A total of 36 patients with suspected PFE diagnoses were included and analyzed in accordance with specific clinical and radiographic criteria. In addition, all patients underwent Sanger DNA sequencing analysis of all coding sequences (and the immediate flanking intronic sequences) of the PTHR1 gene. RESULTS Of these patients, 23 exhibited a heterozygous pathogenic mutation in the PTHR1 gene (PTHR1-mutation carriers), while molecular genetic analysis revealed nosequence alteration in the other 13 patients (non-PTHR1-mutation carriers). Relevant family histories were obtained from 5 patients in the carrier group; hence, this group included a total of 13 familial and 10 simplex cases. The group of noncarriers revealed no relevant family histories. All patients in the carrier group met six of the clinical and radiographic criteria explored in this study: (1) posterior teeth more often affected; (2) eruption disturbance of an anterior tooth in association with additional posterior-teeth involvement; (3) affected teeth resorbing the alveolar bone located coronal to them; (4) involvement of both deciduous and permanent teeth; (5) impaired vertical alveolar-process growth; and (6) severe subsequent finding of posterior open bite. None of the analyzed criteria were, by contrast, met by all patients in the noncarrier group. All patients in the carrier group could be assigned to one of three classifications indicating the extent of eruption disturbance, whereas 4 of the 13 noncarriers presented none of these three patterns. The clinical and radiographic criteria employed in this study would have correctly identified 10 of the 13 PFE patients in the noncarrier group as possessing no detectable PTHR1 mutation. CONCLUSION The evaluation of clinical and radiographic characteristics can heighten the specificity of ruling out suspected PTHR1 involvement in PFE patients. A hereditary element of PTHR1-associated PFE is clearly identifiable. More studies with more patients are needed to optimize the sensitivity of this preliminary approach on the differential identification of PTHR1-mutation carriers versus noncarriers by multivariate analysis.
Collapse
Affiliation(s)
- P Pilz
- Department of Orthodontics, Dental Clinic of the Medical Faculty, University of Würzburg Medical School, Pleicherwall 2, 97070, Wuerzburg, Germany
| | | | | | | | | | | |
Collapse
|