51
|
Voskou S, Aslan M, Fanis P, Phylactides M, Kleanthous M. Oxidative stress in β-thalassaemia and sickle cell disease. Redox Biol 2015; 6:226-239. [PMID: 26285072 PMCID: PMC4543215 DOI: 10.1016/j.redox.2015.07.018] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 12/21/2022] Open
Abstract
Sickle cell disease and β-thalassaemia are inherited haemoglobinopathies resulting in structural and quantitative changes in the β-globin chain. These changes lead to instability of the generated haemoglobin or to globin chain imbalance, which in turn impact the oxidative environment both intracellularly and extracellularly. The ensuing oxidative stress and the inability of the body to adequately overcome it are, to a large extent, responsible for the pathophysiology of these diseases. This article provides an overview of the main players and control mechanisms involved in the establishment of oxidative stress in these haemoglobinopathies.
Collapse
Affiliation(s)
- S Voskou
- The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - M Aslan
- Akdeniz University, Faculty of Medicine, Department of Medical Biochemistry, Antalya, Turkey
| | - P Fanis
- The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - M Phylactides
- The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.
| | - M Kleanthous
- The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
52
|
Wang J, Tran J, Wang H, Luo W, Guo C, Harro D, Campbell AD, Eitzman DT. Melanoma tumor growth is accelerated in a mouse model of sickle cell disease. Exp Hematol Oncol 2015; 4:19. [PMID: 26161296 PMCID: PMC4496890 DOI: 10.1186/s40164-015-0014-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 06/26/2015] [Indexed: 12/13/2022] Open
Abstract
Background The effect of sickle cell disease (SCD) on tumor growth is unknown. Sickled red blood cells may form aggregates within the microvasculature of hypoxic tumors and reduce blood flow leading to impairment of tumor growth. However, there is a paucity of data related to tumor growth in SCD. Methods To investigate the effect of SCD on tumor growth in a melanoma model, we generated SCD and control mice using bone marrow transplantation and inoculated the chest wall with B16-F10 melanoma cells. Tumor growth was monitored and angiogenesis was studied in vivo and in vitro. Results From day 1 to 21, tumor growth rate was nearly identical between SCD and WT mice, however from day 22 to day 29 tumor growth was accelerated in SCD mice compared to WT mice. Disparity in tumor size was confirmed at autopsy with an approximate 2-fold increase in tumor weights from SCD mice. Tumors from SCD mice showed increased vascularity and elevated levels of heme oxygenase-1 (HO-1). HO-1 inhibition with zinc protoporphyrin (ZnPP) blocked the angiogenic and tumor growth response to SCD in vivo and the response to hemin in vitro. Conclusions Growth of melanoma tumors is potentiated in a mouse model of SCD. Therapies targeting angiogenesis or HO-1 may be useful in SCD patients with malignant tumors.
Collapse
Affiliation(s)
- Jintao Wang
- Department of Internal Medicine, Cardiovascular Research Center, University of Michigan, 7301A MSRB III, 1150 West Medical Center Drive, Ann Arbor, MI 48109-0644 USA
| | - Jennifer Tran
- Department of Pediatrics, University of Michigan, Ann Arbor, MI USA
| | - Hui Wang
- Department of Internal Medicine, Cardiovascular Research Center, University of Michigan, 7301A MSRB III, 1150 West Medical Center Drive, Ann Arbor, MI 48109-0644 USA
| | - Wei Luo
- Department of Internal Medicine, Cardiovascular Research Center, University of Michigan, 7301A MSRB III, 1150 West Medical Center Drive, Ann Arbor, MI 48109-0644 USA
| | - Chiao Guo
- Department of Internal Medicine, Cardiovascular Research Center, University of Michigan, 7301A MSRB III, 1150 West Medical Center Drive, Ann Arbor, MI 48109-0644 USA
| | - David Harro
- Chemical Pathology, University of Michigan Hospital, Ann Arbor, MI USA
| | | | - Daniel T Eitzman
- Department of Internal Medicine, Cardiovascular Research Center, University of Michigan, 7301A MSRB III, 1150 West Medical Center Drive, Ann Arbor, MI 48109-0644 USA
| |
Collapse
|
53
|
Abstract
Red blood cell (RBC) alloimmunization can be a life-threatening complication for patients with sickle cell disease (SCD) receiving therapeutic transfusions. Despite provision of extended antigen-matched donor RBCs, patients continue to develop antibodies due to high degree of polymorphisms in the immunogenic antigens in individuals of African ancestry. Identification of biomarkers of alloimmunization in this patient population is therefore of great interest and will help to identify in advance patients most likely to make antibodies in response to transfusion. We have recently identified altered T cell responses and innate immune abnormalities in alloimmunized SCD patients. In this paper, we summarize this work and propose our working model of how innate immune abnormalities can contribute to pathogenic T cell responses in alloimmunized SCD patients. We believe that unravelling the basis of such altered interactions at the cellular and molecular level will help future identification of biomarkers of alloimmunization with the goal that this information will ultimately help guide therapy in these patients.
Collapse
Affiliation(s)
- K Yazdanbakhsh
- Laboratory of Complement Biology, New York Blood Center, 310, East 67th Street, 10065 New York, United States.
| |
Collapse
|
54
|
Abstract
Sickle cell disease (SCD) substantially alters renal structure and function, and causes various renal syndromes and diseases. Such diverse renal outcomes reflect the uniquely complex vascular pathobiology of SCD and the propensity of red blood cells to sickle in the renal medulla because of its hypoxic, acidotic, and hyperosmolar conditions. Renal complications and involvement in sickle cell nephropathy (SCN) include altered haemodynamics, hypertrophy, assorted glomerulopathies, chronic kidney disease, acute kidney injury, impaired urinary concentrating ability, distal nephron dysfunction, haematuria, and increased risks of urinary tract infections and renal medullary carcinoma. SCN largely reflects an underlying vasculopathy characterized by cortical hyperperfusion, medullary hypoperfusion, and an increased, stress-induced vasoconstrictive response. Renal involvement is usually more severe in homozygous disease (sickle cell anaemia, HbSS) than in compound heterozygous types of SCD (for example HbSC and HbSβ(+)-thalassaemia), and is typically mild, albeit prevalent, in the heterozygous state (sickle cell trait, HbAS). Renal involvement contributes substantially to the diminished life expectancy of patients with SCD, accounting for 16-18% of mortality. As improved clinical care promotes survival into adulthood, SCN imposes a growing burden on both individual health and health system costs. This Review addresses the renal manifestations of SCD and focuses on their underlying mechanisms.
Collapse
Affiliation(s)
- Karl A Nath
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, 200 First Street S. W., Rochester, MN 55905, USA
| | - Robert P Hebbel
- Division of Haematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Mayo Mail Code 480, 420 Delaware Street S. E., Minneapolis, MN 55455, USA
| |
Collapse
|
55
|
Sparkenbaugh EM, Chantrathammachart P, Wang S, Jonas W, Kirchhofer D, Gailani D, Gruber A, Kasthuri R, Key NS, Mackman N, Pawlinski R. Excess of heme induces tissue factor-dependent activation of coagulation in mice. Haematologica 2015; 100:308-14. [PMID: 25596265 DOI: 10.3324/haematol.2014.114728] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
An excess of free heme is present in the blood during many types of hemolytic anemia. This has been linked to organ damage caused by heme-mediated oxidative stress and vascular inflammation. We investigated the mechanism of heme-induced coagulation activation in vivo. Heme caused coagulation activation in wild-type mice that was attenuated by an anti-tissue factor antibody and in mice expressing low levels of tissue factor. In contrast, neither factor XI deletion nor inhibition of factor XIIa-mediated factor XI activation reduced heme-induced coagulation activation, suggesting that the intrinsic coagulation pathway is not involved. We investigated the source of tissue factor in heme-induced coagulation activation. Heme increased the procoagulant activity of mouse macrophages and human PBMCs. Tissue factor-positive staining was observed on leukocytes isolated from the blood of heme-treated mice but not on endothelial cells in the lungs. Furthermore, heme increased vascular permeability in the mouse lungs, kidney and heart. Deletion of tissue factor from either myeloid cells, hematopoietic or endothelial cells, or inhibition of tissue factor expressed by non-hematopoietic cells did not reduce heme-induced coagulation activation. However, heme-induced activation of coagulation was abolished when both non-hematopoietic and hematopoietic cell tissue factor was inhibited. Finally, we demonstrated that coagulation activation was partially attenuated in sickle cell mice treated with recombinant hemopexin to neutralize free heme. Our results indicate that heme promotes tissue factor-dependent coagulation activation and induces tissue factor expression on leukocytes in vivo. We also demonstrated that free heme may contribute to thrombin generation in a mouse model of sickle cell disease.
Collapse
Affiliation(s)
- Erica M Sparkenbaugh
- Division of Hematology/Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Pichika Chantrathammachart
- Division of Hematology/Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA Department of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Shaobin Wang
- Division of Hematology/Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Will Jonas
- Division of Hematology/Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Daniel Kirchhofer
- Department of Early Discovery Biochemistry, Genentech Inc., South San Francisco, CA, USA
| | - David Gailani
- Department of Pathology, Vanderbilt University, Nashville, TN, USA
| | - Andras Gruber
- Departments of Biomedical Engineering and Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Raj Kasthuri
- Division of Hematology/Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nigel S Key
- Division of Hematology/Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nigel Mackman
- Division of Hematology/Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rafal Pawlinski
- Division of Hematology/Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
56
|
Periapical cytokine expression in sickle cell disease. J Endod 2015; 41:358-62. [PMID: 25576201 DOI: 10.1016/j.joen.2014.11.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 09/08/2014] [Accepted: 11/26/2014] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Sickle cell anemia (SCA) is the most prevalent genetic disease worldwide. Patients with SCA exhibit increased levels of proinflammatory mediators as part of a permanently activated immunoinflammatory status. METHODS The aim of this study was to evaluate the mRNA expression levels of the cytokines interferon (IFN-γ), tumor necrosis factor, interleukin (IL-1β, IL-17A, IL-10), receptor activator for nuclear factor kappa B ligand, and the chemokines CCL2/MCP-1 and CCL5 in the periapical interstitial fluid from SCA individuals compared with healthy individuals. Samples were collected from 12 teeth of SCA patients and 12 non-SCA patients with apical periodontitis. In addition, 12 teeth were sampled from the periapical region of healthy patients with vital pulp (control). The expression of cytokine mRNA was detected by using real-time polymerase chain reaction. RESULTS The expression of mRNA for the Th1-associated cytokines IFN-γ, tumor necrosis factor-α, and IL-1β were significantly higher in SCA individuals than in the control individuals (P < .05). Among Th1-associated cytokines, only IFN-γ was significantly increased in non-SCA compared with control patients (vital pulp). The expression of IL-17A mRNA was significant higher in SCA cases than in control samples (P < .05), whereas the IL-10 mRNA expression was significantly increased in SCA and non-SCA individuals when compared with the control group. Similar levels of receptor activator for nuclear factor kappa B ligand, CCL2, and CCL5 mRNA expression were observed in all samples. However, no significant differences were observed in the expression of cytokine or chemokine mRNA between SCA and non-SCA individuals (P > .05). CONCLUSIONS The results were able to demonstrate that SCA patients presented prone proinflammatory ability, despite the fact that any differences in periapical immune responses between SCA and non-SCA individuals were not observed.
Collapse
|
57
|
Bondar G, Cadeiras M, Wisniewski N, Maque J, Chittoor J, Chang E, Bakir M, Starling C, Shahzad K, Ping P, Reed E, Deng M. Comparison of whole blood and peripheral blood mononuclear cell gene expression for evaluation of the perioperative inflammatory response in patients with advanced heart failure. PLoS One 2014; 9:e115097. [PMID: 25517110 PMCID: PMC4269402 DOI: 10.1371/journal.pone.0115097] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/14/2014] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Heart failure (HF) prevalence is increasing in the United States. Mechanical Circulatory Support (MCS) therapy is an option for Advanced HF (AdHF) patients. Perioperatively, multiorgan dysfunction (MOD) is linked to the effects of device implantation, augmented by preexisting HF. Early recognition of MOD allows for better diagnosis, treatment, and risk prediction. Gene expression profiling (GEP) was used to evaluate clinical phenotypes of peripheral blood mononuclear cells (PBMC) transcriptomes obtained from patients' blood samples. Whole blood (WB) samples are clinically more feasible, but their performance in comparison to PBMC samples has not been determined. METHODS We collected blood samples from 31 HF patients (57±15 years old) undergoing cardiothoracic surgery and 7 healthy age-matched controls, between 2010 and 2011, at a single institution. WB and PBMC samples were collected at a single timepoint postoperatively (median day 8 postoperatively) (25-75% IQR 7-14 days) and subjected to Illumina single color Human BeadChip HT12 v4 whole genome expression array analysis. The Sequential Organ Failure Assessment (SOFA) score was used to characterize the severity of MOD into low (≤ 4 points), intermediate (5-11), and high (≥ 12) risk categories correlating with GEP. RESULTS Results indicate that the direction of change in GEP of individuals with MOD as compared to controls is similar when determined from PBMC versus WB. The main enriched terms by Gene Ontology (GO) analysis included those involved in the inflammatory response, apoptosis, and other stress response related pathways. The data revealed 35 significant GO categories and 26 pathways overlapping between PBMC and WB. Additionally, class prediction using machine learning tools demonstrated that the subset of significant genes shared by PBMC and WB are sufficient to train as a predictor separating the SOFA groups. CONCLUSION GEP analysis of WB has the potential to become a clinical tool for immune-monitoring in patients with MOD.
Collapse
Affiliation(s)
- Galyna Bondar
- University of California Los Angeles, Los Angeles, CA, United States of America
| | - Martin Cadeiras
- University of California Los Angeles, Los Angeles, CA, United States of America
| | - Nicholas Wisniewski
- University of California Los Angeles, Los Angeles, CA, United States of America
| | - Jetrina Maque
- University of California Los Angeles, Los Angeles, CA, United States of America
| | - Jay Chittoor
- University of California Los Angeles, Los Angeles, CA, United States of America
| | - Eleanor Chang
- University of California Los Angeles, Los Angeles, CA, United States of America
| | - Maral Bakir
- University of California Los Angeles, Los Angeles, CA, United States of America
| | - Charlotte Starling
- University of California Los Angeles, Los Angeles, CA, United States of America
| | - Khurram Shahzad
- Columbia University, New York, NY, United States of America
- East Carolina University, Greenville, NC, United States of America
| | - Peipei Ping
- University of California Los Angeles, Los Angeles, CA, United States of America
| | - Elaine Reed
- University of California Los Angeles, Los Angeles, CA, United States of America
| | - Mario Deng
- University of California Los Angeles, Los Angeles, CA, United States of America
- Columbia University, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
58
|
Tatari-Calderone Z, Luban NLC, Vukmanovic S. Genetics of transfusion recipient alloimmunization: can clues from susceptibility to autoimmunity pave the way? ACTA ACUST UNITED AC 2014; 41:436-45. [PMID: 25670931 DOI: 10.1159/000369145] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/01/2014] [Indexed: 01/08/2023]
Abstract
The search for genetic determinants of alloimmunization in sickle cell disease transfusion recipients was based on two premises: i) that polymorphisms responsible for stronger immune and/or inflammatory responses and hemoglobin β(S) mutation were co-selected by malaria; and ii) that stronger responder status contributes to development of lupus. We found a marker of alloimmunization in the gene encoding for Ro52 protein, also known as Sjögren syndrome antigen 1 (SSA1) and TRIM21. Surprisingly, the nature of the association was opposite of that with lupus; the same variant of a polymorphism (rs660) that was associated with lupus incidence was also associated with induction of tolerance to red blood cell antigens during early childhood. The dual function of Ro52 can explain this apparent contradiction. We propose that other lupus/autoimmunity susceptibility loci may reveal roles of additional molecules in various aspects of alloimmunization induced by transfusion as well as during pregnancy.
Collapse
Affiliation(s)
- Zohreh Tatari-Calderone
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, Washington, DC, USA ; Department of Pediatrics, George Washington University School of Medicine, Washington, DC, USA
| | - Naomi L C Luban
- Department of Pediatrics, George Washington University School of Medicine, Washington, DC, USA ; Division of Laboratory Medicine, Children's National Medical Center, Washington, DC, USA
| | - Stanislav Vukmanovic
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, Washington, DC, USA ; Department of Pediatrics, George Washington University School of Medicine, Washington, DC, USA
| |
Collapse
|
59
|
Yetik-Anacak G, Sorrentino R, Linder AE, Murat N. Gas what: NO is not the only answer to sexual function. Br J Pharmacol 2014; 172:1434-54. [PMID: 24661203 DOI: 10.1111/bph.12700] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/18/2014] [Accepted: 03/17/2014] [Indexed: 01/08/2023] Open
Abstract
The ability to get and keep an erection is important to men for several reasons and the inability is known as erectile dysfunction (ED). ED has started to be accepted as an early indicator of systemic endothelial dysfunction and subsequently of cardiovascular diseases. The role of NO in endothelial relaxation and erectile function is well accepted. The discovery of NO as a small signalling gasotransmitter led to the investigation of the role of other endogenously derived gases, carbon monoxide (CO) and hydrogen sulphide (H2 S) in physiological and pathophysiological conditions. The role of NO and CO in sexual function and dysfunction has been investigated more extensively and, recently, the involvement of H2 S in erectile function has also been confirmed. In this review, we focus on the role of these three sister gasotransmitters in the physiology, pharmacology and pathophysiology of sexual function in man, specifically erectile function. We have also reviewed the role of soluble guanylyl cyclase/cGMP pathway as a common target of these gasotransmitters. Several studies have proposed alternative therapies targeting different mechanisms in addition to PDE-5 inhibition for ED treatment, since some patients do not respond to these drugs. This review highlights complementary and possible coordinated roles for these mediators and treatments targeting these gasotransmitters in erectile function/ED.
Collapse
Affiliation(s)
- G Yetik-Anacak
- Department of Pharmacology, Faculty of Pharmacy, Ege University, İzmir, Turkey
| | | | | | | |
Collapse
|
60
|
Zhong H, Bao W, Friedman D, Yazdanbakhsh K. Hemin controls T cell polarization in sickle cell alloimmunization. THE JOURNAL OF IMMUNOLOGY 2014; 193:102-10. [PMID: 24879794 DOI: 10.4049/jimmunol.1400105] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Patients with sickle cell disease (SCD) often require transfusions to treat and prevent worsening anemia and other SCD complications. However, transfusions can trigger alloimmunization against transfused RBCs with serious clinical sequelae. Risk factors for alloimmunization in SCD remain poorly understood. We recently reported altered regulatory T cell (Treg) and Th responses with higher circulating Th1 (IFN-γ(+)) cytokines in chronically transfused SCD patients with alloantibodies as compared with those without alloantibodies. Because monocytes play a critical role in polarization of T cell subsets and participate in clearance of transfused RBCs, we tested the hypothesis that in response to the RBC breakdown product hemin, monocyte control of T cell polarization will differ between alloimmunized and non-alloimmunized SCD patients. Exogenous hemin induced Treg polarization in purified T cell/monocyte cocultures from healthy volunteers through the monocyte anti-inflammatory heme-degrading enzyme heme oxygenase-1. Importantly, hemin primarily through its effect on CD16+ monocytes induced an anti-inflammatory (higher Treg/lower Th1) polarization state in the non-alloimmunized SCD group, whereas it had little effect in the alloimmunized group. Non-alloimmunized SCD CD16+ monocytes expressed higher basal levels of heme oxygenase-1. Furthermore, IL-12, which contributed to a proinflammatory polarization state (low Treg/high Th1) in SCD, was dampened in hemin-treated stimulated monocytes from non-alloimmunized SCD patients, but not in the alloimmunized group. These data suggest that unlike alloimmunized patients, non-alloimmunized SCD CD16+ monocytes in response to transfused RBC breakdown products promote an anti-inflammatory state that is less conducive to alloimmunization.
Collapse
Affiliation(s)
- Hui Zhong
- Laboratory of Complement Biology, New York Blood Center, New York, NY 10065
| | - Weili Bao
- Laboratory of Complement Biology, New York Blood Center, New York, NY 10065
| | - David Friedman
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104; and Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Karina Yazdanbakhsh
- Laboratory of Complement Biology, New York Blood Center, New York, NY 10065;
| |
Collapse
|
61
|
Vercellotti GM, Khan FB, Nguyen J, Chen C, Bruzzone CM, Bechtel H, Brown G, Nath KA, Steer CJ, Hebbel RP, Belcher JD. H-ferritin ferroxidase induces cytoprotective pathways and inhibits microvascular stasis in transgenic sickle mice. Front Pharmacol 2014; 5:79. [PMID: 24860503 PMCID: PMC4029007 DOI: 10.3389/fphar.2014.00079] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/31/2014] [Indexed: 01/17/2023] Open
Abstract
Hemolysis, oxidative stress, inflammation, vaso-occlusion, and organ infarction are hallmarks of sickle cell disease (SCD). We have previously shown that increases in heme oxygenase-1 (HO-1) activity detoxify heme and inhibit vaso-occlusion in transgenic mouse models of SCD. HO-1 releases Fe(2+) from heme, and the ferritin heavy chain (FHC) ferroxidase oxidizes Fe(2+) to catalytically inactive Fe(3+) inside ferritin. FHC overexpression has been shown to be cytoprotective. In this study, we hypothesized that overexpression of FHC and its ferroxidase activity will inhibit inflammation and microvascular stasis in transgenic SCD mice in response to plasma hemoglobin. We utilized a Sleeping Beauty (SB) transposase plasmid to deliver a human wild-type-ferritin heavy chain (wt-hFHC) transposable element by hydrodynamic tail vein injections into NY1DD SCD mice. Control SCD mice were infused with the same volume of lactated Ringer's solution (LRS) or a human triple missense FHC (ms-hFHC) plasmid with no ferroxidase activity. 8 weeks later, LRS-injected mice had ~40% microvascular stasis (% non-flowing venules) 1 h after infusion of stroma-free hemoglobin, while mice overexpressing wt-hFHC had only 5% stasis (p < 0.05), and ms-hFHC mice had 33% stasis suggesting vascular protection by ferroxidase active wt-hFHC. The wt-hFHC SCD mice had marked increases in splenic hFHC mRNA and hepatic hFHC protein, ferritin light chain (FLC), 5-aminolevulinic acid synthase (ALAS), heme content, ferroportin, nuclear factor erythroid 2-related factor 2 (Nrf2), and HO-1 activity and protein. There was also a decrease in hepatic activated nuclear factor-kappa B (NF-κB) phospho-p65 and vascular cell adhesion molecule-1 (VCAM-1). Inhibition of HO-1 activity with tin protoporphyrin demonstrated HO-1 was not essential for the protection by wt-hFHC. We conclude that wt-hFHC ferroxidase activity enhances cytoprotective Nrf2-regulated proteins including HO-1, thereby resulting in decreased NF-κB-activation, adhesion molecules, and microvascular stasis in transgenic SCD mice.
Collapse
Affiliation(s)
- Gregory M Vercellotti
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN USA ; Vascular Biology Center, Department of Medicine, University of Minnesota Medical School Minneapolis, MN, USA
| | - Fatima B Khan
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN USA ; Vascular Biology Center, Department of Medicine, University of Minnesota Medical School Minneapolis, MN, USA
| | - Julia Nguyen
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN USA ; Vascular Biology Center, Department of Medicine, University of Minnesota Medical School Minneapolis, MN, USA
| | - Chunsheng Chen
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN USA ; Vascular Biology Center, Department of Medicine, University of Minnesota Medical School Minneapolis, MN, USA
| | - Carol M Bruzzone
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN USA ; Vascular Biology Center, Department of Medicine, University of Minnesota Medical School Minneapolis, MN, USA
| | - Heather Bechtel
- Mercy Clinic Children's Cancer and Hematology, St. Louis, MO USA
| | - Graham Brown
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN USA ; Vascular Biology Center, Department of Medicine, University of Minnesota Medical School Minneapolis, MN, USA
| | - Karl A Nath
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic/Foundation Rochester, MN, USA
| | - Clifford J Steer
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Minnesota Medical School Minneapolis, MN, USA
| | - Robert P Hebbel
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN USA ; Vascular Biology Center, Department of Medicine, University of Minnesota Medical School Minneapolis, MN, USA
| | - John D Belcher
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN USA ; Vascular Biology Center, Department of Medicine, University of Minnesota Medical School Minneapolis, MN, USA
| |
Collapse
|
62
|
Tatari-Calderone Z, Fasano RM, Miles MR, Pinto LA, Luban NLC, Vukmanovic S. High multi-cytokine levels are not a predictive marker of alloimmunization in transfused sickle cell disease patients. Cytokine 2014; 68:59-64. [PMID: 24746244 DOI: 10.1016/j.cyto.2014.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 02/10/2014] [Accepted: 03/24/2014] [Indexed: 11/18/2022]
Abstract
Patients with sickle cell disease (SCD) receive multiple red blood cell (RBC) transfusions for both prevention of and therapy for disease-related complications. In some patients, transfusion results in development of both allo- and auto-antibodies to RBC antigens. What precipitates the antibody formation is currently unclear. It has been hypothesized that a pro-inflammatory state preceding the therapeutic transfusion may be a predisposing factor. Plasma levels of ten cytokines were evaluated upon recruitment to the study of 83 children with SCD undergoing therapeutic RBC transfusions. The levels of cytokines were correlated with development of anti-RBC antibodies prior, or during seven years post recruitment. Twelve subjects displayed significantly higher levels of all cytokines examined, with pro-, as well as anti-inflammatory properties. Surprisingly, the elevated levels of cytokines were preferentially found in patients without anti-RBC allo- and/or auto-antibodies. Further, presence of high cytokine levels was not predictive of anti-RBC antibody development during the subsequent seven year follow up. These data suggest that the increased concentration of multiple cytokines is not a biomarker of either the presence of or susceptibility to the development of RBC alloimmunization.
Collapse
Affiliation(s)
- Zohreh Tatari-Calderone
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC, United States; Department of Pediatrics, George Washington University School of Medicine, Washington, DC, United States
| | - Ross M Fasano
- Department of Pediatrics, George Washington University School of Medicine, Washington, DC, United States; Division of Hematology and Oncology, Children's National Medical Center, Washington, DC, United States; Division of Laboratory Medicine, Children's National Medical Center, Washington, DC, United States
| | - Megan R Miles
- Division of Laboratory Medicine, Children's National Medical Center, Washington, DC, United States
| | - Ligia A Pinto
- HPV Immunology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Naomi L C Luban
- Department of Pediatrics, George Washington University School of Medicine, Washington, DC, United States; Division of Hematology and Oncology, Children's National Medical Center, Washington, DC, United States; Division of Laboratory Medicine, Children's National Medical Center, Washington, DC, United States
| | - Stanislav Vukmanovic
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC, United States; Department of Pediatrics, George Washington University School of Medicine, Washington, DC, United States.
| |
Collapse
|
63
|
Hoppe CC. Inflammatory Mediators of Endothelial Injury in Sickle Cell Disease. Hematol Oncol Clin North Am 2014; 28:265-86. [DOI: 10.1016/j.hoc.2013.11.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
64
|
Cox SE, Makani J, Soka D, L'Esperence VS, Kija E, Dominguez-Salas P, Newton CRJ, Birch AA, Prentice AM, Kirkham FJ. Haptoglobin, alpha-thalassaemia and glucose-6-phosphate dehydrogenase polymorphisms and risk of abnormal transcranial Doppler among patients with sickle cell anaemia in Tanzania. Br J Haematol 2014; 165:699-706. [PMID: 24666344 PMCID: PMC4154124 DOI: 10.1111/bjh.12791] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 01/05/2014] [Indexed: 02/04/2023]
Abstract
Transcranial Doppler ultrasonography measures cerebral blood flow velocity (CBFv) of basal intracranial vessels and is used clinically to detect stroke risk in children with sickle cell anaemia (SCA). Co‐inheritance in SCA of alpha‐thalassaemia and glucose‐6‐phosphate dehydrogenase (G6PD) polymorphisms is reported to associate with high CBFv and/or risk of stroke. The effect of a common functional polymorphism of haptoglobin (HP) is unknown. We investigated the effect of co‐inheritance of these polymorphisms on CBFv in 601 stroke‐free Tanzanian SCA patients aged <24 years. Homozygosity for alpha‐thalassaemia 3·7 deletion was significantly associated with reduced mean CBFv compared to wild‐type (β‐coefficient −16·1 cm/s, P = 0·002) adjusted for age and survey year. Inheritance of 1 or 2 alpha‐thalassaemia deletions was associated with decreased risk of abnormally high CBFv, compared to published data from Kenyan healthy control children (Relative risk ratio [RRR] = 0·53 [95% confidence interval (CI):0·35–0·8] & RRR = 0·43 [95% CI:0·23–0·78]), and reduced risk of abnormally low CBFv for 1 deletion only (RRR = 0·38 [95% CI:0·17–0·83]). No effects were observed for G6PD or HP polymorphisms. This is the first report of the effects of co‐inheritance of common polymorphisms, including the HP polymorphism, on CBFv in SCA patients resident in Africa and confirms the importance of alpha‐thalassaemia in reducing risk of abnormal CBFv.
Collapse
Affiliation(s)
- Sharon E Cox
- MRC International Nutrition Group, London School of Hygiene & Tropical Medicine, London, UK; Muhimbili Wellcome Programme, Muhimbili University of Health & Allied Sciences, Dar es Salaam, Tanzania
| | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Heme triggers TLR4 signaling leading to endothelial cell activation and vaso-occlusion in murine sickle cell disease. Blood 2013; 123:377-90. [PMID: 24277079 DOI: 10.1182/blood-2013-04-495887] [Citation(s) in RCA: 499] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Treatment of sickle cell disease (SCD) is hampered by incomplete understanding of pathways linking hemolysis to vaso-occlusion. We investigated these pathways in transgenic sickle mice. Infusion of hemoglobin or heme triggered vaso-occlusion in sickle, but not normal, mice. Methemoglobin, but not heme-stabilized cyanomethemoglobin, induced vaso-occlusion, indicating heme liberation is necessary. In corroboration, hemoglobin-induced vaso-occlusion was blocked by the methemoglobin reducing agent methylene blue, haptoglobin, or the heme-binding protein hemopexin. Untreated HbSS mice, but not HbAA mice, exhibited ∼10% vaso-occlusion in steady state that was inhibited by haptoglobin or hemopexin infusion. Antibody blockade of adhesion molecules P-selectin, von Willebrand factor (VWF), E-selectin, vascular cell adhesion molecule 1, intercellular adhesion molecule 1, platelet endothelial cell (EC) adhesion molecule 1, α4β1, or αVβ3 integrin prevented vaso-occlusion. Heme rapidly (5 minutes) mobilized Weibel-Palade body (WPB) P-selectin and VWF onto EC and vessel wall surfaces and activated EC nuclear factor κB (NF-κB). This was mediated by TLR4 as TAK-242 blocked WPB degranulation, NF-κB activation, vaso-occlusion, leukocyte rolling/adhesion, and heme lethality. TLR4(-/-) mice transplanted with TLR4(+/+) sickle bone marrow exhibited no heme-induced vaso-occlusion. The TLR4 agonist lipopolysaccharide (LPS) activated ECs and triggered vaso-occlusion that was inhibited by TAK-242, linking hemolysis- and infection-induced vaso-occlusive crises to TLR4 signaling. Heme and LPS failed to activate VWF and NF-κB in TLR4(-/-) ECs. Anti-LPS immunoglobulin G blocked LPS-induced, but not heme-induced, vaso-occlusion, illustrating LPS-independent TLR4 signaling by heme. Inhibition of protein kinase C, NADPH oxidase, or antioxidant treatment blocked heme-mediated stasis, WPB degranulation, and oxidant production. We conclude that intravascular hemolysis in SCD releases heme that activates endothelial TLR4 signaling leading to WPB degranulation, NF-κB activation, and vaso-occlusion.
Collapse
|
66
|
Cazenave M, Koehl B, Nochy D, Tharaux PL, Audard V. [Spectrum of renal manifestations in sickle cell disease]. Nephrol Ther 2013; 10:10-6. [PMID: 24113202 DOI: 10.1016/j.nephro.2013.07.366] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/18/2013] [Accepted: 07/21/2013] [Indexed: 01/13/2023]
Abstract
Sickle cell disease (SCD), the most common hemoglobinopathy, is an increasing cause of chronic kidney disease. In the last decade, we have witnessed a better understanding in the characterization of clinical manifestations and pathogenesis of sickle cell nephropathy. The spectrum of renal diseases during SCD includes various renal manifestations such as impairment of urinary concentrating ability, defect in urine acidification, renal papillary necrosis and proteinuria related to glomerular injury leading to progressive end-stage renal disease. Endothelial dysfunction related to chronic hemolysis and the relative renal hypoxia caused by vaso-occlusive sickle red blood cells are probably two key factors for SCN development. Optimal therapeutic management (including the use of blockers of the renin-angiotensin system) of patients with proteinuria remains to be determined. Renal replacement therapy with dialysis is required in SCD patients with end-stage renal disease but these patients should probably undergo kidney transplantation that requires careful management.
Collapse
Affiliation(s)
- Maud Cazenave
- Inserm U970, Paris cardiovascular centre (PARCC), université Paris Descartes, Sorbonne Paris cité, 75015 Paris, France
| | - Bérengère Koehl
- Service de pédiatrie générale, hôpital Robert-Debré, université Paris Diderot, AP-HP, 75019 Paris, France
| | - Dominique Nochy
- Service d'anatomopathologie, hôpital européen Georges-Pompidou, université Paris Descartes, AP-HP, 75015 Paris, France
| | - Pierre-Louis Tharaux
- Inserm U970, Paris cardiovascular centre (PARCC), université Paris Descartes, Sorbonne Paris cité, 75015 Paris, France; Service de néphrologie, hôpital européen Georges-Pompidou, université Paris Descartes, AP-HP, 75015 Paris, France
| | - Vincent Audard
- Inserm U 955, service de néphrologie et de transplantation, institut francilien de recherche en néphrologie et transplantation (IFRNT), hôpital Henri-Mondor, université Paris Est Créteil, AP-HP, 51, avenue du Maréchal-de-Lattre-de-Tassigny, 94010 Créteil, France.
| |
Collapse
|
67
|
Vasculotoxic and Proinflammatory Effects of Plasma Heme: Cell Signaling and Cytoprotective Responses. ACTA ACUST UNITED AC 2013; 2013. [PMID: 25506596 PMCID: PMC4261193 DOI: 10.1155/2013/831596] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The proinfammatory vasculotoxic effects of intravascular hemolysis are modulated by plasma hemoglobin and heme clearance via the haptoglobin/CD163 system and the hemopexin/CD91 system, respectively, and detoxification through the heme oxygenase/ferritin system. However, sudden or excessive hemolysis can overwhelm these protective systems leading to heme interacting with cells of the vasculature. Heme presents a damage-associated molecular pattern to the innate immune system. Heme is an extracellular inflammatory signaling molecule with strict binding specificity for TLR4 on monocyte/macrophages, endothelial, and other cells. The resulting TLR4 signaling cascade rapidly leads to intracellular oxidative stress and an inflammatory response. Heme also induces a cytoprotective response that includes Nrf2 responsive genes such as heme oxygenase-1, ferritin, haptoglobin, hemopexin, and other antioxidant response genes. It is the balance between the pro-inflammatory/vasculotoxic effects of plasma hemoglobin/heme and the cytoprotective responses that ultimately determines the pathophysiologic outcome in patients.
Collapse
|
68
|
The association of CD81 polymorphisms with alloimmunization in sickle cell disease. Clin Dev Immunol 2013; 2013:937846. [PMID: 23762099 PMCID: PMC3674646 DOI: 10.1155/2013/937846] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/17/2013] [Accepted: 04/18/2013] [Indexed: 01/19/2023]
Abstract
The goal of the present work was to identify the candidate genetic markers predictive of alloimmunization in sickle cell disease (SCD). Red blood cell (RBC) transfusion is indicated for acute treatment, prevention, and abrogation of some complications of SCD. A well-known consequence of multiple RBC transfusions is alloimmunization. Given that a subset of SCD patients develop multiple RBC allo-/autoantibodies, while others do not in a similar multiple transfusional setting, we investigated a possible genetic basis for alloimmunization. Biomarker(s) which predicts (predict) susceptibility to alloimmunization could identify patients at risk before the onset of a transfusion program and thus may have important implications for clinical management. In addition, such markers could shed light on the mechanism(s) underlying alloimmunization. We genotyped 27 single nucleotide polymorphisms (SNPs) in the CD81, CHRNA10, and ARHG genes in two groups of SCD patients. One group (35) of patients developed alloantibodies, and another (40) had no alloantibodies despite having received multiple transfusions. Two SNPs in the CD81 gene, that encodes molecule involved in the signal modulation of B lymphocytes, show a strong association with alloimmunization. If confirmed in prospective studies with larger cohorts, the two SNPs identified in this retrospective study could serve as predictive biomarkers for alloimmunization.
Collapse
|
69
|
Wang H, Luo W, Wang J, Guo C, Wolffe SL, Wang J, Sun EB, Bradley KN, Campbell AD, Eitzman DT. Paradoxical protection from atherosclerosis and thrombosis in a mouse model of sickle cell disease. Br J Haematol 2013; 162:120-9. [PMID: 23590132 DOI: 10.1111/bjh.12342] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/08/2013] [Indexed: 01/26/2023]
Abstract
Sickle cell disease (SCD) is associated with vascular complications including premature stroke. The role of atherothrombosis in these vascular complications is unclear. To determine the effect of SCD on atherosclerosis and thrombosis, mice with SCD along with controls were generated by transplantation of bone marrow from mice carrying the homozygous sickle cell mutation (Hbb(hβs/hβs) ) or wild-type mice (Hbb(+/+) ) into C57BL6/J or apolipoprotein E deficient (Apoe(-/-) ) recipient mice. At the time of sacrifice, 23-28 weeks following bone marrow transplantation, anaemia, reticulocytosis, and splenomegaly were present in mice receiving Hbb(hβs/hβs) bone marrow compared with control mice. Analysis of atherosclerosis involving the aortic root revealed reduced atherosclerotic lesion area with reduced macrophage content and increased collagen content in Apoe(-/-) , Hbb(hβs/hβs) mice compared to Apoe(-/-) , Hbb(+/+) mice. In a carotid thrombosis model, the time to thrombosis was prolonged in Hbb(hβs/hβs) mice compared to Hbb(+/+) mice. This apparent protective effect of SCD on atherosclerosis and thrombosis was diminished by inhibition of heme oxygenase-1 (HMOX1) using zinc protoporphyrin IX. We conclude that SCD in mice is paradoxically protective against atherosclerosis and thrombosis, highlighting the complexity of vascular events in SCD. This protective effect is at least partially mediated by induction of HMOX1.
Collapse
Affiliation(s)
- Hui Wang
- Department of Internal Medicine, Cardiovascular Research Center, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Expression of regulatory platelet microRNAs in patients with sickle cell disease. PLoS One 2013; 8:e60932. [PMID: 23593351 PMCID: PMC3625199 DOI: 10.1371/journal.pone.0060932] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 03/04/2013] [Indexed: 02/06/2023] Open
Abstract
Background Increased platelet activation in sickle cell disease (SCD) contributes to a state of hypercoagulability and confers a risk of thromboembolic complications. The role for post-transcriptional regulation of the platelet transcriptome by microRNAs (miRNAs) in SCD has not been previously explored. This is the first study to determine whether platelets from SCD exhibit an altered miRNA expression profile. Methods and Findings We analyzed the expression of miRNAs isolated from platelets from a primary cohort (SCD = 19, controls = 10) and a validation cohort (SCD = 7, controls = 7) by hybridizing to the Agilent miRNA microarrays. A dramatic difference in miRNA expression profiles between patients and controls was noted in both cohorts separately. A total of 40 differentially expressed platelet miRNAs were identified as common in both cohorts (p-value 0.05, fold change>2) with 24 miRNAs downregulated. Interestingly, 14 of the 24 downregulated miRNAs were members of three families - miR-329, miR-376 and miR-154 - which localized to the epigenetically regulated, maternally imprinted chromosome 14q32 region. We validated the downregulated miRNAs, miR-376a and miR-409-3p, and an upregulated miR-1225-3p using qRT-PCR. Over-expression of the miR-1225-3p in the Meg01 cells was followed by mRNA expression profiling to identify mRNA targets. This resulted in significant transcriptional repression of 1605 transcripts. A combinatorial approach using Meg01 mRNA expression profiles following miR-1225-3p overexpression, a computational prediction analysis of miRNA target sequences and a previously published set of differentially expressed platelet transcripts from SCD patients, identified three novel platelet mRNA targets: PBXIP1, PLAGL2 and PHF20L1. Conclusions We have identified significant differences in functionally active platelet miRNAs in patients with SCD as compared to controls. These data provide an important inventory of differentially expressed miRNAs in SCD patients and an experimental framework for future studies of miRNAs as regulators of biological pathways in platelets.
Collapse
|
71
|
Gee BE. Biologic complexity in sickle cell disease: implications for developing targeted therapeutics. ScientificWorldJournal 2013; 2013:694146. [PMID: 23589705 PMCID: PMC3621302 DOI: 10.1155/2013/694146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 01/29/2013] [Indexed: 01/01/2023] Open
Abstract
Current therapy for sickle cell disease (SCD) is limited to supportive treatment of complications, red blood cell transfusions, hydroxyurea, and stem cell transplantation. Difficulty in the translation of mechanistically based therapies may be the result of a reductionist approach focused on individual pathways, without having demonstrated their relative contribution to SCD complications. Many pathophysiologic processes in SCD are likely to interact simultaneously to contribute to acute vaso-occlusion or chronic vasculopathy. Applying concepts of systems biology and network medicine, models were developed to show relationships between the primary defect of sickle hemoglobin (Hb S) polymerization and the outcomes of acute pain and chronic vasculopathy. Pathophysiologic processes such as inflammation and oxidative stress are downstream by-products of Hb S polymerization, transduced through secondary pathways of hemolysis and vaso-occlusion. Pain, a common clinical trials endpoint, is also complex and may be influenced by factors outside of sickle cell polymerization and vascular occlusion. Future sickle cell research needs to better address the biologic complexity of both sickle cell disease and pain. The relevance of individual pathways to important sickle cell outcomes needs to be demonstrated in vivo before investing in expensive and labor-intensive clinical trials.
Collapse
Affiliation(s)
- Beatrice E Gee
- Department of Pediatrics, Cardiovascular Research Institute, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA 30310-1495, USA.
| |
Collapse
|
72
|
Nekhai S, Kumari N, Dhawan S. Role of cellular iron and oxygen in the regulation of HIV-1 infection. Future Virol 2013; 8:301-311. [PMID: 23678366 DOI: 10.2217/fvl.13.6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite efficient antiretroviral therapy, eradication of HIV-1 infection is challenging and requires novel biological insights and therapeutic strategies. Among other physiological and environmental factors, intracellular iron greatly affects HIV-1 replication. Higher iron stores were shown to be associated with faster progression of HIV-1 infection and to inversely correlate with the survival of HIV-1 infected patients. Iron is required for several steps in the HIV-1 life cycle, including reverse transcription, HIV-1 gene expression and capsid assembly. Here, the authors present a comprehensive review of the molecular mechanisms involved in iron- and oxygen-mediated regulation of HIV-1 replication. We also propose key intracellular pathways that may be involved in regulating HIV-1 replication, via protein kinase complexes, CDK9/cyclin T1 and CDK 2/cyclin E, protein phosphatase-1 and other host factors.
Collapse
Affiliation(s)
- Sergei Nekhai
- Center for Sickle Cell Disease, Department of Medicine, Howard University, 520 W Street, NW, Washington DC 20059, USA
| | | | | |
Collapse
|
73
|
Erythrocyte NADPH oxidase activity modulated by Rac GTPases, PKC, and plasma cytokines contributes to oxidative stress in sickle cell disease. Blood 2013; 121:2099-107. [PMID: 23349388 DOI: 10.1182/blood-2012-07-441188] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Chronic inflammation has emerged as an important pathogenic mechanism in sickle cell disease (SCD). One component of this inflammatory response is oxidant stress mediated by reactive oxygen species (ROS) generated by leukocytes, endothelial cells, plasma enzymes, and sickle red blood cells (RBC). Sickle RBC ROS generation has been attributed to sickle hemoglobin auto-oxidation and Fenton chemistry reactions catalyzed by denatured heme moieties bound to the RBC membrane. In this study, we demonstrate that a significant part of ROS production in sickle cells is mediated enzymatically by NADPH oxidase, which is regulated by protein kinase C, Rac GTPase, and intracellular Ca(2+) signaling within the sickle RBC. Moreover, plasma from patients with SCD and isolated cytokines, such as transforming growth factor β1 and endothelin-1, enhance RBC NADPH oxidase activity and increase ROS generation. ROS-mediated damage to RBC membrane components is known to contribute to erythrocyte rigidity and fragility in SCD. Erythrocyte ROS generation, hemolysis, vaso-occlusion, and the inflammatory response to tissue damage may therefore act in a positive-feedback loop to drive the pathophysiology of sickle cell disease. These findings suggest a novel pathogenic mechanism in SCD and may offer new therapeutic targets to counteract inflammation and RBC rigidity and fragility in SCD.
Collapse
|
74
|
Barbosa MC, dos Santos TEJ, de Souza GF, de Assis LC, Freitas MVC, Gonçalves RP. Impact of iron overload on interleukin-10 levels, biochemical parameters and oxidative stress in patients with sickle cell anemia. Rev Bras Hematol Hemoter 2013; 35:29-34. [PMID: 23580881 PMCID: PMC3621632 DOI: 10.5581/1516-8484.20130011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 09/03/2012] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE The aim of this study was to evaluate the impact of iron overload on the profile of interleukin-10 levels, biochemical parameters and oxidative stress in sickle cell anemia patients. METHODS A cross-sectional study was performed of 30 patients with molecular diagnosis of sickle cell anemia. Patients were stratified into two groups, according to the presence of iron overload: Iron overload (n = 15) and Non-iron overload (n = 15). Biochemical analyses were performed utilizing the Wiener CM 200 automatic analyzer. The interleukin-10 level was measured by capture ELISA using the BD OptEIAT commercial kit. Oxidative stress parameters were determined by spectrophotometry. Statistical analysis was performed using GraphPad Prism software (version 5.0) and statistical significance was established for p-values < 0.05 in all analyses. RESULTS Biochemical analysis revealed significant elevations in the levels of uric acid, triglycerides, very low-density lipoprotein (VLDL), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), urea and creatinine in the Iron overload Group compared to the Non-iron overload Group and significant decreases in the high-density lipoprotein (HDL) and low-density lipoprotein (LDL). Ferritin levels correlated positively with uric acid concentrations (p-value < 0.05). The Iron overload Group showed lower interleukin-10 levels and catalase activity and higher nitrite and malondialdehyde levels compared with the Non-iron overload Group. CONCLUSION The results of this study are important to develop further consistent studies that evaluate the effect of iron overload on the inflammatory profile and oxidative stress of patients with sickle cell anemia.
Collapse
|
75
|
Raghavachari N. Microarray technology: basic methodology and application in clinical research for biomarker discovery in vascular diseases. Methods Mol Biol 2013; 1027:47-84. [PMID: 23912982 DOI: 10.1007/978-1-60327-369-5_3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Microarray technology is a novel tool in molecular biology, capable of quantitating hundreds or thousands of gene transcripts from a given cell or tissue sample simultaneously. A microarray has thousands of DNA fragments or oligonucleotides of known sequence arrayed in a known sequence of rows and columns on a chip. Hybridization of sample RNA that has been reverse-transcribed and labeled enables the detection and quantitation of specific transcripts. The ability to quantitate systemic gene changes in normal vs. diseased states has led to significant progress in many biomedical disciplines, including lipoprotein and atherosclerosis research, and can be used for discovery of diagnostic/prognostic and predictive biomarkers and to test the effectiveness of potential therapeutic agents. The design and analysis of microarray experiments present some unique problems to clinical medicine due to inherent issues related to biological sample procurement and processing, sensitivity and specificity of the assay, reliability and reproducibility of data, and applicability of the technology in multicenter-based clinical studies. This chapter will provide details on the methodologies that address these problems for successful microarray-based transcriptome analysis of tissues, whole blood, cell subpopulations, and cultured cells.
Collapse
Affiliation(s)
- Nalini Raghavachari
- Genetics and Developmental Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
76
|
Shatat IF, Jakson SM, Blue AE, Johnson MA, Orak JK, Kalpatthi R. Masked hypertension is prevalent in children with sickle cell disease: a Midwest Pediatric Nephrology Consortium study. Pediatr Nephrol 2013; 28:115-20. [PMID: 22886281 DOI: 10.1007/s00467-012-2275-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/12/2012] [Accepted: 07/13/2012] [Indexed: 02/02/2023]
Abstract
BACKGROUND The prevalence of hypertension and abnormal blood pressure (BP) patterns on 24-h ambulatory BP monitoring (ABPM) remains unknown in children with sickle cell disease (SCD). METHODS Thirty-eight asymptomatic children with sickle cell disease (SCD) (12 HbSS receiving routine care, 13 HbSC, and 13 HbSS receiving chronic transfusion therapy) underwent 24-h ABPM. Average clinic BP, demographic and biochemical characteristics were collected. RESULTS Median age was 13 years (range 11-16), body mass index (BMI) 19.1 kg/m(2) (range 18.2-21.1), and 50% were male. Seventeen subjects (43.6%) had ambulatory hypertension, while 4 (10.3%) were hypertensive based on their clinic BP. Mean systolic blood pressure (SBP) and diastolic blood pressure (DBP) dip were 8.3 ± 5.9% and 14.7 ± 7.6% respectively. Twenty-three subjects (59%) had impaired SBP dipping, 7 (18%) had impaired DBP dipping, and 5 (13%) had reversed dipping. Clinic and ABP classification were modestly correlated (rho = 0.38, P = 0.02). CONCLUSION Abnormalities in ABP measurements and patterns in children with SCD are prevalent and require more attention from heath care providers. ABPM is a valuable tool in identifying masked hypertension and abnormalities in circadian BP.
Collapse
Affiliation(s)
- Ibrahim F Shatat
- Division of Pediatric Nephrology and Hypertension, MUSC Children's Hospital, 96 Jonathan Lucas Street, CSB-428, Charleston, SC 29425, USA.
| | | | | | | | | | | |
Collapse
|
77
|
Abstract
Abstract
Sickle cell disease and thalassemia have distinctly different mutations, but both share common complications from a chronic vasculopathy. In the past, fetal hemoglobin–modulating drugs have been the main focus of new therapy, but the increased understanding of the complex pathophysiology of these diseases has led to the development of novel agents targeting multiple pathways that cause vascular injury. This review explores the pathophysiology of hemoglobinopathies and novel drugs that have reached phase 1 and 2 clinical trials. Therapies that alter cellular adhesion to endothelium, inflammation, nitric oxide dysregulation, oxidative injury, altered iron metabolism, and hematopoiesis will be highlighted. To evaluate these therapies optimally, recommendations for improving clinical trial design in hemoglobinopathies are discussed.
Collapse
|
78
|
Kaul DK, Fabry ME, Suzuka SM, Zhang X. Antisickling fetal hemoglobin reduces hypoxia-inducible factor-1α expression in normoxic sickle mice: microvascular implications. Am J Physiol Heart Circ Physiol 2012; 304:H42-50. [PMID: 23125209 DOI: 10.1152/ajpheart.00296.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Chronic inflammation is a salient feature of sickle cell disease (SCD) and transgenic-knockout sickle (BERK) mice. Inflammation is implicated in the activation of hypoxia-inducible factor-1α (HIF-1α) under normoxic conditions. We hypothesize that, in SCD, inflammation coupled with nitric oxide (NO) depletion will induce expression of HIF-1α, a transcription factor with wide-ranging effects including activation of genes for vasoactive molecules. To this end, we have examined the expression of HIF-1α in normoxic BERK mice expressing exclusively human α- and β(S)- globins, and evaluated the effect of fetal hemoglobin (HbF) in BERK mice (i.e., <1.0%, 20%, and 40% HbF). HbF exerts antisickling and anti-inflammatory effects. Here, we show that HIF-1α is expressed in BERK mice under normoxic conditions, accompanied by increased expression of its vasoactive biomarkers such as VEGF, heme oxygenase-1 (HO-1), and serum ET-1 levels. In BERK mice expressing HbF, HIF-1α expression decreases concomitantly with increasing HbF, commensurately with increased NO bioavailability, and shows a strong inverse correlation with plasma NO metabolites (NOx) levels. Reduced HIF-1α expression is associated with decreased HO-1, VEGF, and ET-1. Notably, arteriolar dilation, enhanced volumetric blood flow, and low blood pressure in normoxic BERK mice all show a trend toward normalization with the introduction of HbF. Also, arginine treatment reduced HIF-1α, as well as VEGF expression in normoxic BERK mice, supporting a role of NO bioavailability in HIF-1α activation. Thus HIF-1α expression in normoxic sickle mice is likely a consequence of chronic inflammation, and HbF exerts an ameliorating effect by decreasing sickling, increasing NO bioavailability, and reducing inflammation.
Collapse
Affiliation(s)
- Dhananjay K Kaul
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA.
| | | | | | | |
Collapse
|
79
|
Pourfarzad F, von Lindern M, Azarkeivan A, Hou J, Kia SK, Esteghamat F, van Ijcken W, Philipsen S, Najmabadi H, Grosveld F. Hydroxyurea responsiveness in β-thalassemic patients is determined by the stress response adaptation of erythroid progenitors and their differentiation propensity. Haematologica 2012; 98:696-704. [PMID: 23100274 DOI: 10.3324/haematol.2012.074492] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
β-thalassemia is caused by mutations in the β-globin locus resulting in loss of, or reduced, hemoglobin A (adult hemoglobin, HbA, α2β2) production. Hydroxyurea treatment increases fetal γ-globin (fetal hemoglobin, HbF, α2γ2) expression in postnatal life substituting for the missing adult β-globin and is, therefore, an attractive therapeutic approach. Patients treated with hydroxyurea fall into three categories: i) 'responders' who increase hemoglobin to therapeutic levels; (ii) 'moderate-responders' who increase hemoglobin levels but still need transfusions at longer intervals; and (iii) 'non-responders' who do not reach adequate hemoglobin levels and remain transfusion-dependent. The mechanisms underlying these differential responses remain largely unclear. We generated RNA expression profiles from erythroblast progenitors of 8 responder and 8 non-responder β-thalassemia patients. These profiles revealed that hydroxyurea treatment induced differential expression of many genes in cells from non-responders while it had little impact on cells from responders. Part of the gene program up-regulated by hydroxyurea in non-responders was already highly expressed in responders before hydroxyurea treatment. Baseline HbF expression was low in non-responders, and hydroxyurea treatment induced significant cell death. We conclude that cells from responders have adapted well to constitutive stress conditions and display a propensity to proceed to the erythroid differentiation program.
Collapse
|
80
|
Detchaporn P, Kukongviriyapan U, Prawan A, Jetsrisuparb A, Greenwald SE, Kukongviriyapan V. Altered vascular function, arterial stiffness, and antioxidant gene responses in pediatric thalassemia patients. Pediatr Cardiol 2012; 33:1054-60. [PMID: 22349676 DOI: 10.1007/s00246-012-0225-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 01/03/2012] [Indexed: 01/19/2023]
Abstract
Patients with thalassemia major are susceptible to cardiovascular complications by mechanisms not fully understood. Although overt cardiovascular complications usually occur after puberty, their underlying pathogenesis may begin much earlier. This study investigated whether there were early changes in vascular endothelial function and arterial stiffness in young patients with beta-thalassemia and hemoglobin E, and whether these changes were associated with oxidative stress and expression of antioxidant genes. The study recruited 30 pediatric patients and 30 age-matched control subjects. Compared with the control subjects, the patients had increased levels of oxidant biomarkers including malondialdehyde, protein carbonyl, and non-transferrin-bound iron and a decreased glutathione redox ratio. There were clear signs of vascular endothelial dysfunction and increased arterial stiffness, as shown by marked suppression of forearm blood flow after reactive hyperemia and increased pulse-wave velocity in the trunk and legs. The changes in FBF were associated with oxidative stress markers and free iron. An adaptive antioxidant gene response was activated in blood mononuclear cells, as shown by upregulation of GCLC and Bach-1 mRNA but downregulation of heme oxygenase-1 and thioredoxin mRNA. The results highlight the vascular changes seen even in young patients during treatment. These changes were associated with oxidative stress and suggest an adaptive response that serves to protect host cells from further oxidative damage.
Collapse
Affiliation(s)
- Pantipa Detchaporn
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | | | | | | | | |
Collapse
|
81
|
Klings ES, Morris CR. Making it personal: using genomics to predict pulmonary hypertension in sickle cell disease. Am J Respir Crit Care Med 2012; 186:304-5. [PMID: 22896592 DOI: 10.1164/rccm.201206-1126ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
82
|
Desai AA, Zhou T, Ahmad H, Zhang W, Mu W, Trevino S, Wade MS, Raghavachari N, Kato GJ, Peters-Lawrence MH, Thiruvoipati T, Turner K, Artz N, Huang Y, Patel AR, Yuan JXJ, Gordeuk VR, Lang RM, Garcia JGN, Machado RF. A novel molecular signature for elevated tricuspid regurgitation velocity in sickle cell disease. Am J Respir Crit Care Med 2012; 186:359-68. [PMID: 22679008 PMCID: PMC3443809 DOI: 10.1164/rccm.201201-0057oc] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 05/24/2012] [Indexed: 01/14/2023] Open
Abstract
RATIONALE An increased tricuspid regurgitation jet velocity (TRV > 2.5 m/s) and pulmonary hypertension defined by right heart catheterization both independently confer increased mortality in sickle cell disease (SCD). OBJECTIVES We explored the usefulness of peripheral blood mononuclear cell-derived gene signatures as biomarkers for an elevated TRV in SCD. METHODS Twenty-seven patients with SCD underwent echocardiography and peripheral blood mononuclear cell isolation for expression profiling and 112 patients with SCD were genotyped for single-nucleotide polymorphisms. MEASUREMENTS AND MAIN RESULTS Genome-wide gene and miRNA expression profiles were correlated against TRV, yielding 631 transcripts and 12 miRNAs. Support vector machine analysis identified a 10-gene signature including GALNT13 (encoding polypeptide N-acetylgalactosaminyltransferase 13) that discriminates patients with and without increased TRV with 100% accuracy. This finding was then validated in a cohort of patients with SCD without (n = 10) and with pulmonary hypertension (n = 10, 90% accuracy). Increased TRV-related miRNAs revealed strong in silico binding predictions of miR-301a to GALNT13 corroborated by microarray analyses demonstrating an inverse correlation between their expression. A genetic association study comparing patients with an elevated (n = 49) versus normal (n = 63) TRV revealed five significant single-nucleotide polymorphisms within GALNT13 (P < 0.005), four trans-acting (P < 2.1 × 10(-7)) and one cis-acting (P = 0.6 × 10(-4)) expression quantitative trait locus upstream of the adenosine-A2B receptor gene (ADORA2B). CONCLUSIONS These studies validate the clinical usefulness of genomic signatures as potential biomarkers and highlight ADORA2B and GALNT13 as potential candidate genes in SCD-associated elevated TRV.
Collapse
Affiliation(s)
- Ankit A. Desai
- Institute for Personalized Respiratory Medicine
- Section of Cardiology
| | - Tong Zhou
- Institute for Personalized Respiratory Medicine
| | - Homaa Ahmad
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Wei Zhang
- Department of Pediatrics, Institute of Human Genetics, Cancer Center
| | - Wenbo Mu
- Department of Pediatrics, Institute of Human Genetics, Cancer Center
| | - Sharon Trevino
- Institute for Personalized Respiratory Medicine
- Section of Pulmonary, Critical Care, Sleep, and Allergy, and
| | | | | | - Gregory J. Kato
- Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland; and
| | - Marlene H. Peters-Lawrence
- Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland; and
| | | | - Kristin Turner
- Department of Medicine, Loyola University, Maywood, Illinois
| | - Nicole Artz
- Department of Medicine, Loyola University, Maywood, Illinois
| | - Yong Huang
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Amit R. Patel
- Department of Medicine, University of Chicago, Chicago, Illinois
| | | | - Victor R. Gordeuk
- Comprehensive Sickle Cell Center, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Roberto M. Lang
- Department of Medicine, University of Chicago, Chicago, Illinois
| | | | - Roberto F. Machado
- Institute for Personalized Respiratory Medicine
- Section of Pulmonary, Critical Care, Sleep, and Allergy, and
| |
Collapse
|
83
|
Paroni G, Seripa D, Panza F, Addante F, Copetti M, D’Onofrio G, Pellegrini F, Fontana L, Pilotto A. Klotho locus, metabolic traits, and serum hemoglobin in hospitalized older patients: a genetic association analysis. AGE (DORDRECHT, NETHERLANDS) 2012; 34:949-968. [PMID: 21695423 PMCID: PMC3682056 DOI: 10.1007/s11357-011-9273-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 05/23/2011] [Indexed: 05/30/2023]
Abstract
Klotho (KL) gene has been involved in severe alterations of physiological biochemical parameters leading to premature aging-like phenotypes and strikingly shortening lifespan. KL participates to the regulation of a number of intracellular biochemical pathways, including lipid profile and glucose metabolism. Aim of this study was to investigate the possible association between KL locus and biological parameters commonly accepted as indicators of the clinical status in hospitalized older patients. We genotyped the single-nucleotide polymorphisms (SNPs) rs9536314, rs1207568, and rs564481 at the KL locus in 594 hospitalized older patients (65-99 years), consecutively attending a geriatric ward, and tested the association of these KL variants with biological quantitative traits using analyses of covariance and genetic risk score models. Significant associations of rs9536314 with serum levels of hemoglobin, albumin, and high-density lipoprotein cholesterol (HDL-C) as well as significant associations of rs564481 with serum levels of hemoglobin, fasting insulin, and fasting glucose were observed. Gender-segregated analyses confirmed these associations, and suggested that the associations of KL genotypes with HDL-C, fasting glucose and fasting insulin levels may be driven by the female gender, while the association with serum levels of hemoglobin may be driven by the male gender. The association of KL genotypes with creatinine levels was found only in females, while the association with insulin-like growth factor-1 (IGF-1) and lymphocytes count (LC) was found only in males. The genetic risk score (GRS) models further confirmed significant associations among KL SNPs and hemoglobin, total cholesterol, and HDL-C. Gender-segregated analyses with the GRS-tagged approach confirmed the associations with HDL-C, fasting glucose, and fasting insulin levels in females, and with hemoglobin and LC in males. Our findings suggested that KL locus may influence quantitative traits such as serum levels of lipid, fasting glucose, albumin and hemoglobin in hospitalized older patients, with some gender differences suggested for creatinine, IGF-1 levels, and LC, thus being one of the genetic factors possibly contributing to age-related diseases and longevity.
Collapse
Affiliation(s)
- Giulia Paroni
- />Geriatric Unit and Gerontology-Geriatric Research Laboratory, Department of Medical Sciences, I.R.C.C.S. “Casa Sollievo della Sofferenza, Viale Cappuccini 1, 71013 San Giovanni Rotondo, Foggia Italy
| | - Davide Seripa
- />Geriatric Unit and Gerontology-Geriatric Research Laboratory, Department of Medical Sciences, I.R.C.C.S. “Casa Sollievo della Sofferenza, Viale Cappuccini 1, 71013 San Giovanni Rotondo, Foggia Italy
| | - Francesco Panza
- />Geriatric Unit and Gerontology-Geriatric Research Laboratory, Department of Medical Sciences, I.R.C.C.S. “Casa Sollievo della Sofferenza, Viale Cappuccini 1, 71013 San Giovanni Rotondo, Foggia Italy
| | - Filomena Addante
- />Geriatric Unit and Gerontology-Geriatric Research Laboratory, Department of Medical Sciences, I.R.C.C.S. “Casa Sollievo della Sofferenza, Viale Cappuccini 1, 71013 San Giovanni Rotondo, Foggia Italy
| | - Massimiliano Copetti
- />Unit of Biostatistic, I.R.C.C.S. “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Foggia Italy
| | - Grazia D’Onofrio
- />Geriatric Unit and Gerontology-Geriatric Research Laboratory, Department of Medical Sciences, I.R.C.C.S. “Casa Sollievo della Sofferenza, Viale Cappuccini 1, 71013 San Giovanni Rotondo, Foggia Italy
| | - Fabio Pellegrini
- />Unit of Biostatistic, I.R.C.C.S. “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Foggia Italy
- />Laboratory of Clinical Epidemiology of Diabetes and Chronic Diseases, Consorzio Mario Negri Sud, Chieti, Italy
| | - Luigi Fontana
- />Division of Nutrition and Aging, Istituto Superiore di Sanità, Rome, Italy
| | - Alberto Pilotto
- />Geriatric Unit and Gerontology-Geriatric Research Laboratory, Department of Medical Sciences, I.R.C.C.S. “Casa Sollievo della Sofferenza, Viale Cappuccini 1, 71013 San Giovanni Rotondo, Foggia Italy
| |
Collapse
|
84
|
A systematic comparison and evaluation of high density exon arrays and RNA-seq technology used to unravel the peripheral blood transcriptome of sickle cell disease. BMC Med Genomics 2012; 5:28. [PMID: 22747986 PMCID: PMC3428653 DOI: 10.1186/1755-8794-5-28] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 06/29/2012] [Indexed: 01/02/2023] Open
Abstract
Background Transcriptomic studies in clinical research are essential tools for deciphering the functional elements of the genome and unraveling underlying disease mechanisms. Various technologies have been developed to deduce and quantify the transcriptome including hybridization and sequencing-based approaches. Recently, high density exon microarrays have been successfully employed for detecting differentially expressed genes and alternative splicing events for biomarker discovery and disease diagnostics. The field of transcriptomics is currently being revolutionized by high throughput DNA sequencing methodologies to map, characterize, and quantify the transcriptome. Methods In an effort to understand the merits and limitations of each of these tools, we undertook a study of the transcriptome in sickle cell disease, a monogenic disease comparing the Affymetrix Human Exon 1.0 ST microarray (Exon array) and Illumina’s deep sequencing technology (RNA-seq) on whole blood clinical specimens. Results Analysis indicated a strong concordance (R = 0.64) between Exon array and RNA-seq data at both gene level and exon level transcript expression. The magnitude of differential expression was found to be generally higher in RNA-seq than in the Exon microarrays. We also demonstrate for the first time the ability of RNA-seq technology to discover novel transcript variants and differential expression in previously unannotated genomic regions in sickle cell disease. In addition to detecting expression level changes, RNA-seq technology was also able to identify sequence variation in the expressed transcripts. Conclusions Our findings suggest that microarrays remain useful and accurate for transcriptomic analysis of clinical samples with low input requirements, while RNA-seq technology complements and extends microarray measurements for novel discoveries.
Collapse
|
85
|
Nouraie M, Nekhai S, Gordeuk VR. Sickle cell disease is associated with decreased HIV but higher HBV and HCV comorbidities in U.S. hospital discharge records: a cross-sectional study. Sex Transm Infect 2012; 88:528-33. [PMID: 22628662 DOI: 10.1136/sextrans-2011-050459] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Some studies suggest that HIV infection progresses slowly in patients with sickle cell disease (SCD). The authors aimed to determine the relationships between SCD and HIV infection. METHODS National Hospital Discharge Survey data from adult African-Americans in the period of 1997-2009 were analysed. The comorbidities of SCD with HIV infections in hospital discharges were analysed. Multiple logistic regression was used to test the association between SCD and HIV. For comparative purposes, the relationships of SCD with hepatitis B virus (HBV) and hepatitis C virus (HCV) were also assessed. RESULTS 423,431 records were divided into two time periods 1997-2003 (53% of records) and 2004-2009 (47% of records). The frequency of HIV diagnosis was lower in patients with SCD (1.5% vs 3.3% in patients without SCD). In logistic regression, SCD diagnosis was associated with an OR of 0.24 (95% CI 0.18 to 0.32) for HIV diagnosis in the first period and with an OR of 0.31 (95% CI 0.22 to 0.42) in the second period. In contrast, SCD was associated with higher risk of HCV (OR=2.01, 95% CI 1.56 to 2.59 in the first period and OR=2.12, 95% CI 1.71 to 2.63 in the second period). SCD was also associated with a higher risk of HBV (OR=1.15, 95% CI 0.72 to 1.83 in the first period and OR=1.82, 95% CI 1.24 to 2.68 in the second period). CONCLUSIONS The lower risk of HIV comorbidity, but not HCV and HBV, with SCD is consistent with the possibility that SCD has a unique effect in altering the risk of HIV infection or progression. Investigation of how the haemolytic and immunological changes of SCD influence HIV might lead to new therapeutic or preventive approaches.
Collapse
Affiliation(s)
- Mehdi Nouraie
- Center for Sickle Cell Disease, Howard University, Washington, DC, USA.
| | | | | |
Collapse
|
86
|
Red blood cell alloimmunization in sickle cell disease: pathophysiology, risk factors, and transfusion management. Blood 2012; 120:528-37. [PMID: 22563085 DOI: 10.1182/blood-2011-11-327361] [Citation(s) in RCA: 271] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Red blood cell transfusions have reduced morbidity and mortality for patients with sickle cell disease. Transfusions can lead to erythrocyte alloimmunization, however, with serious complications for the patient including life-threatening delayed hemolytic transfusion reactions and difficulty in finding compatible units, which can cause transfusion delays. In this review, we discuss the risk factors associated with alloimmunization with emphasis on possible mechanisms that can trigger delayed hemolytic transfusion reactions in sickle cell disease, and we describe the challenges in transfusion management of these patients, including opportunities and emerging approaches for minimizing this life-threatening complication.
Collapse
|
87
|
van Beers EJ, Kato GJ. Comment on "The influence of hydroxyurea on oxidative stress in sickle cell anemia". Rev Bras Hematol Hemoter 2012; 34:405-6. [PMID: 23323059 PMCID: PMC3545422 DOI: 10.5581/1516-8484.20120099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 11/20/2012] [Indexed: 01/29/2023] Open
Affiliation(s)
- Eduard Johannes van Beers
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health - NIH, Bethesda, Maryland, USA
| | - Gregory James Kato
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health - NIH, Bethesda, Maryland, USA
| |
Collapse
|
88
|
Joehanes R, Johnson AD, Barb JJ, Raghavachari N, Liu P, Woodhouse KA, O'Donnell CJ, Munson PJ, Levy D. Gene expression analysis of whole blood, peripheral blood mononuclear cells, and lymphoblastoid cell lines from the Framingham Heart Study. Physiol Genomics 2011; 44:59-75. [PMID: 22045913 DOI: 10.1152/physiolgenomics.00130.2011] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Despite a growing number of reports of gene expression analysis from blood-derived RNA sources, there have been few systematic comparisons of various RNA sources in transcriptomic analysis or for biomarker discovery in the context of cardiovascular disease (CVD). As a pilot study of the Systems Approach to Biomarker Research (SABRe) in CVD Initiative, this investigation used Affymetrix Exon arrays to characterize gene expression of three blood-derived RNA sources: lymphoblastoid cell lines (LCL), whole blood using PAXgene tubes (PAX), and peripheral blood mononuclear cells (PBMC). Their performance was compared in relation to identifying transcript associations with sex and CVD risk factors, such as age, high-density lipoprotein, and smoking status, and the differential blood cell count. We also identified a set of exons that vary substantially between participants, but consistently in each RNA source. Such exons are thus stable phenotypes of the participant and may potentially become useful fingerprinting biomarkers. In agreement with previous studies, we found that each of the RNA sources is distinct. Unlike PAX and PBMC, LCL gene expression showed little association with the differential blood count. LCL, however, was able to detect two genes related to smoking status. PAX and PBMC identified Y-chromosome probe sets similarly and slightly better than LCL.
Collapse
Affiliation(s)
- Roby Joehanes
- The National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, Massachusetts, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Cox SE, Makani J, Komba AN, Soka D, Newton CR, Kirkham FJ, Prentice AM. Global arginine bioavailability in Tanzanian sickle cell anaemia patients at steady-state: a nested case control study of deaths versus survivors. Br J Haematol 2011; 155:522-4. [PMID: 21595648 PMCID: PMC3592384 DOI: 10.1111/j.1365-2141.2011.08715.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
90
|
|
91
|
Hendrickson JE, Hod EA, Perry JR, Ghosh S, Chappa P, Adisa O, Kean LS, Ofori-Acquah SF, Archer DR, Spitalnik SL, Zimring JC. Alloimmunization to transfused HOD red blood cells is not increased in mice with sickle cell disease. Transfusion 2011; 52:231-40. [PMID: 21790627 DOI: 10.1111/j.1537-2995.2011.03255.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Increased rates of red blood cell (RBC) alloimmunization in patients with sickle cell disease may be due to transfusion frequency, genetic predisposition, or immune dysregulation. To test the hypothesis that sickle cell pathophysiology influences RBC alloimmunization, we utilized two transgenic mouse models of sickle cell disease. STUDY DESIGN AND METHODS Transgenic sickle mice, which express human α and β(S) globin, were transfused with fresh or 14-day-stored RBCs containing the HOD (hen egg lysozyme, ovalbumin, and human Duffy(b) ) antigen; some recipients were inflamed with poly(I : C) before transfusion. Anti-HOD alloantibody responses were subsequently measured by enzyme-linked immunosorbent assay and flow crossmatch; a cohort of recipients had posttransfusion serum cytokines measured by bead array. RESULTS Both Berkeley and Townes homozygous (SS) and heterozygous (AS) mice had similar rates and magnitude of anti-HOD RBC alloimmunization after fresh HOD RBC transfusion compared with control animals; under no tested condition did homozygous SS recipients make higher levels of alloantibodies than control animals. Unexpectedly, homozygous SS recipients had blunted cytokine responses and lower levels of anti-HOD alloantibodies after transfusion of 14-day stored RBCs, compared with control animals. CONCLUSIONS In sum, homozygous β(S) expression and the ensuing disease state are not alone sufficient to enhance RBC alloimmunization to transfused HOD RBCs in two distinct humanized murine models of sickle cell disease under the conditions examined. These data suggest that other factors may contribute to the high rates of RBC alloimmunization observed in humans with sickle cell disease.
Collapse
Affiliation(s)
- Jeanne E Hendrickson
- Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Children's Healthcare of Atlanta, Atlanta, GA 30322, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Hanson MS, Piknova B, Keszler A, Diers AR, Wang X, Gladwin MT, Hillery CA, Hogg N. Methaemalbumin formation in sickle cell disease: effect on oxidative protein modification and HO-1 induction. Br J Haematol 2011; 154:502-11. [PMID: 21595649 DOI: 10.1111/j.1365-2141.2011.08738.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Normally, cell free haemoglobin is bound by haptoglobin and efficiently cleared. However, the chronic haemolysis in sickle cell disease (SCD) overwhelms haptoglobin binding capacity and protein turnover, resulting in elevated cell free haemoglobin. Cell free haemoglobin acts as both a scavenger of vasoactive nitric oxide and a pro-oxidant. In addition, methaemoglobin (metHb) releases the haem moiety, which can bind to albumin to form methaemalbumin (metHSA). This study used electron paramagnetic resonance to detect metHSA in SCD plasma and demonstrated that haptoglobin prevents haem transfer from metHb to HSA. MetHSA may either provide a second line of defence against haemoglobin/haem-mediated oxidation or contribute to the pro-oxidant environment of SCD plasma. We demonstrated that HSA inhibited oxidative protein modification induced by metHb. Additionally, we showed that while metHb induced haem oxygenase 1 (HO-1), an indicator of oxidative stress, HSA attenuated metHb induction of this enzyme, thereby limiting the potential benefits of HO-1. Furthermore, HO-1 induction by metHSA was less than HO-1 induction by equimolar metHb not bound to albumin. Our findings confirm the presence of metHSA in SCD and suggest that haem transfer from metHb to HSA reduces the oxidative effects of free haemoglobin/haem on endothelium with both beneficial (reduced protein oxidation) and potentially harmful (reduced HO-1 induction) outcomes.
Collapse
Affiliation(s)
- Madelyn S Hanson
- Department of Biophysics and Redox Biology Program, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Sickle Hemoglobin Confers Tolerance to Plasmodium Infection. Cell 2011; 145:398-409. [DOI: 10.1016/j.cell.2011.03.049] [Citation(s) in RCA: 233] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 01/03/2011] [Accepted: 03/28/2011] [Indexed: 12/20/2022]
|
94
|
Ghosh S, Tan F, Yu T, Li Y, Adisa O, Mosunjac M, Ofori-Acquah SF. Global gene expression profiling of endothelium exposed to heme reveals an organ-specific induction of cytoprotective enzymes in sickle cell disease. PLoS One 2011; 6:e18399. [PMID: 21483798 PMCID: PMC3069101 DOI: 10.1371/journal.pone.0018399] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 03/06/2011] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Sickle cell disease (SCD) is characterized by hemolysis, vaso-occlusion and ischemia reperfusion injury. These events cause endothelial dysfunction and vasculopathies in multiple systems. However, the lack of atherosclerotic lesions has led to the idea that there are adaptive mechanisms that protect the endothelium from major vascular insults in SCD patients. The molecular bases for this phenomenon are poorly defined. This study was designed to identify the global profile of genes induced by heme in the endothelium, and assess expression of the heme-inducible cytoprotective enzymes in major organs impacted by SCD. METHODS AND FINDINGS Total RNA isolated from heme-treated endothelial monolayers was screened with the Affymetrix U133 Plus 2.0 chip, and the microarray data analyzed using multiple bioinformatics software. Hierarchical cluster analysis of significantly differentially expressed genes successfully segregated heme and vehicle-treated endothelium. Validation studies showed that the induction of cytoprotective enzymes by heme was influenced by the origin of endothelial cells, the duration of treatment, as well as the magnitude of induction of individual enzymes. In agreement with these heterogeneities, we found that induction of two major Nrf2-regulated cytoprotective enzymes, heme oxygenase-1 and NAD(P)H:quinone oxidoreductase-1 is organ-specific in two transgenic mouse models of SCD. This data was confirmed in the endothelium of post-mortem lung tissues of SCD patients. CONCLUSIONS Individual organ systems induce unique profiles of cytoprotective enzymes to neutralize heme in SCD. Understanding this heterogeneity may help to develop effective therapies to manage vasculopathies of individual systems.
Collapse
Affiliation(s)
- Samit Ghosh
- Aflac Cancer Center and Blood Disorders Service, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Fang Tan
- Aflac Cancer Center and Blood Disorders Service, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Tianwei Yu
- Department of Biostatics and Bioinformatics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Yuhua Li
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Olufolake Adisa
- Aflac Cancer Center and Blood Disorders Service, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Mario Mosunjac
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Solomon F. Ofori-Acquah
- Aflac Cancer Center and Blood Disorders Service, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Center for Endothelial Biology, Children's Healthcare of Atlanta, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
95
|
Nam TG, Lee J, Walker JR, Brinker A, Cho CY, Schultz PG. Identification and Characterization of Small-Molecule Inducers of Fetal Hemoglobin. ChemMedChem 2011; 6:777-80. [DOI: 10.1002/cmdc.201000505] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 02/24/2011] [Indexed: 11/10/2022]
|
96
|
Kim YM, Pae HO, Park JE, Lee YC, Woo JM, Kim NH, Choi YK, Lee BS, Kim SR, Chung HT. Heme oxygenase in the regulation of vascular biology: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2011; 14:137-67. [PMID: 20624029 PMCID: PMC2988629 DOI: 10.1089/ars.2010.3153] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Heme oxygenases (HOs) are the rate-limiting enzymes in the catabolism of heme into biliverdin, free iron, and carbon monoxide. Two genetically distinct isoforms of HO have been characterized: an inducible form, HO-1, and a constitutively expressed form, HO-2. HO-1 is a kind of stress protein, and thus regarded as a sensitive and reliable indicator of cellular oxidative stress. The HO system acts as potent antioxidants, protects endothelial cells from apoptosis, is involved in regulating vascular tone, attenuates inflammatory response in the vessel wall, and participates in angiogenesis and vasculogenesis. Endothelial integrity and activity are thought to occupy the central position in the pathogenesis of cardiovascular diseases. Cardiovascular disease risk conditions converge in the contribution to oxidative stress. The oxidative stress leads to endothelial and vascular smooth muscle cell dysfunction with increases in vessel tone, cell growth, and gene expression that create a pro-thrombotic/pro-inflammatory environment. Subsequent formation, progression, and obstruction of atherosclerotic plaque may result in myocardial infarction, stroke, and cardiovascular death. This background provides the rationale for exploring the potential therapeutic role for HO system in the amelioration of vascular inflammation and prevention of adverse cardiovascular outcomes.
Collapse
Affiliation(s)
- Young-Myeong Kim
- Vascular System Research Center and Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Kangwon-do, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Yuditskaya S, Suffredini AF, J Kato G. The proteome of sickle cell disease: insights from exploratory proteomic profiling. Expert Rev Proteomics 2010; 7:833-48. [PMID: 21142886 PMCID: PMC3068560 DOI: 10.1586/epr.10.88] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The expanding realm of exploratory proteomics has added a unique dimension to the study of the complex pathophysiology involved in sickle cell disease. A review of proteomic studies published on sickle cell erythrocytes and plasma shows trends of upregulation of antioxidant proteins, an increase in cytoskeletal defects, an increase in protein repair and turnover components, a decrease in lipid raft proteins and apolipoprotein dysregulation. Many of these findings are consistent with the pathophysiology of sickle cell disease, including high oxidant burden, resulting in damage to cytoskeletal and other proteins, and erythrocyte rigidity. More unexpected findings, such as a decrease in lipid raft components and apolipoprotein dysregulation, offer previously unexplored targets for future investigation and potential therapeutic intervention. Exploratory proteomic profiling is a valuable source of hypothesis generation for the cellular and molecular pathophysiology of sickle cell disease.
Collapse
Affiliation(s)
| | | | - Gregory J Kato
- Critical Care Medicine Department, Clinical Center, MD, USA
- Sickle Cell Vascular Disease Section, Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood Institute, NIH, 9000 Rockville Pike, MSC 1476, Building 10-CRC, Room 5-5140, Bethesda, MD 20892-1476, USA
| |
Collapse
|
98
|
Freedman JE, Vitseva O, Tanriverdi K. The role of the blood transcriptome in innate inflammation and stroke. Ann N Y Acad Sci 2010; 1207:41-5. [PMID: 20955424 DOI: 10.1111/j.1749-6632.2010.05731.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cerebrovascular disease is a major cause of death and disability, with a poorer outcome in patients having select risk factors including diabetes and hypertension. Risk factors and the state of cerebral ischemia-reperfusion associated with cerebrovascular occlusion are known to cause inflammatory changes. These events and the inflammatory state are reflected by transcript changes in various components of the blood and can be specifically measured. By defining these changes, new insight into cerebrovascular disease and its therapeutics is being achieved.
Collapse
Affiliation(s)
- Jane E Freedman
- Whitaker Cardiovascular Institute and Evans Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
99
|
Kim YM, Pae HO, Park JE, Lee YC, Woo JM, Kim NH, Choi YK, Lee BS, Kim SR, Chung HT. Heme oxygenase in the regulation of vascular biology: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2010. [PMID: 20624029 DOI: 10.1089/ars.2010.31532988629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heme oxygenases (HOs) are the rate-limiting enzymes in the catabolism of heme into biliverdin, free iron, and carbon monoxide. Two genetically distinct isoforms of HO have been characterized: an inducible form, HO-1, and a constitutively expressed form, HO-2. HO-1 is a kind of stress protein, and thus regarded as a sensitive and reliable indicator of cellular oxidative stress. The HO system acts as potent antioxidants, protects endothelial cells from apoptosis, is involved in regulating vascular tone, attenuates inflammatory response in the vessel wall, and participates in angiogenesis and vasculogenesis. Endothelial integrity and activity are thought to occupy the central position in the pathogenesis of cardiovascular diseases. Cardiovascular disease risk conditions converge in the contribution to oxidative stress. The oxidative stress leads to endothelial and vascular smooth muscle cell dysfunction with increases in vessel tone, cell growth, and gene expression that create a pro-thrombotic/pro-inflammatory environment. Subsequent formation, progression, and obstruction of atherosclerotic plaque may result in myocardial infarction, stroke, and cardiovascular death. This background provides the rationale for exploring the potential therapeutic role for HO system in the amelioration of vascular inflammation and prevention of adverse cardiovascular outcomes.
Collapse
Affiliation(s)
- Young-Myeong Kim
- Vascular System Research Center and Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Kangwon-do, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Freedman JE, Larson MG, Tanriverdi K, O'Donnell CJ, Morin K, Hakanson AS, Vasan RS, Johnson AD, Iafrati MD, Benjamin EJ. Relation of platelet and leukocyte inflammatory transcripts to body mass index in the Framingham heart study. Circulation 2010; 122:119-29. [PMID: 20606121 DOI: 10.1161/circulationaha.109.928192] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Although many genetic epidemiology and biomarker studies have been conducted to examine associations of genetic variants and circulating proteins with cardiovascular disease and risk factors, there has been little study of gene expression or transcriptomics. Quantitative differences in the abundance of transcripts has been demonstrated in malignancies, but gene expression from a large community-based cohort examining risk of cardiovascular disease has never been reported. METHODS AND RESULTS On the basis of preliminary microarray data and previously suggested genes from the literature, we measured expression of 48 genes by high-throughput quantitative reverse-transcriptase polymerase chain reaction in 1846 participants of the Framingham Offspring cohort from RNA derived from isolated platelets and leukocytes. A multivariable stepwise regression model was used to assess clinical correlates of quantitative RNA expression. For specific inflammatory platelet-derived transcripts, including ICAM1, IFNG, IL1R1, IL6, MPO, COX2, TNF, TLR2, and TLR4, there were significant associations with higher body mass index (BMI). Compared with platelets, fewer leukocyte-derived transcripts were associated with BMI or other cardiovascular risk factors. Select transcripts were found to be highly heritable, including GPIBA and COX1. Almost uniformly, heritable transcripts were not those associated with BMI. CONCLUSIONS Inflammatory transcripts derived from platelets, particularly those part of the nuclear factor kappa B pathway, are associated with BMI, whereas others are heritable. This is the first study, using a large community-based cohort, to demonstrate clinical correlates of gene expression and is consistent with the hypothesis that specific peripheral-blood transcripts play a role in the pathogenesis of coronary heart disease and its risk factors.
Collapse
Affiliation(s)
- Jane E Freedman
- Department of Medicine, Boston University School of Medicine, Whitaker Cardiovascular Institute, 700 Albany St, W-507, Boston, MA 02118, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|