51
|
Zhao X, Liu D, Gong W, Zhao G, Liu L, Yang L, Hou Y. The toll-like receptor 3 ligand, poly(I:C), improves immunosuppressive function and therapeutic effect of mesenchymal stem cells on sepsis via inhibiting MiR-143. Stem Cells 2014; 32:521-33. [PMID: 24105952 DOI: 10.1002/stem.1543] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 08/02/2013] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are attractive candidates for clinical therapeutic applications. Recent studies indicate MSCs express active Toll-like receptors (TLRs), but their effect on MSCs and the underlying mechanisms remain unclear. In this study, we found that, after treating human umbilical cord MSCs with various TLR ligands, only TLR3 ligand, poly(I:C), could significantly increase the expression of cyclooxygenase-2 (COX-2). Furthermore, poly(I:C) could enhance MSCs' anti-inflammatory effect on macrophages. Next, we focused on the regulatory roles of microRNAs (miRNAs) in the process of poly(I:C) activating MSCs. Our experiments indicated that miR-143 expression was significantly decreased in MSCs with poly(I:C) treatment, and the expression level of miR-143 could regulate the effect of poly(I:C) on MSCs' immunosuppressive function. Subsequent results showed that the reporter genes with putative miR-143 binding sites from the transforming growth factor-β-activated kinase-1 (TAK1) and COX-2 3' untranslated regions were downregulated in the presence of miR-143. In addition, mRNA and protein expression of TAK1 and COX-2 in MSCs was also downregulated with miR-143 overexpression, suggesting that TAK1 and COX-2 are target genes of miR-143 in MSCs. Consistent with miR-143 overexpression, TAK1 interference also attenuated MSCs' immunosuppressive function enhanced by poly(I:C). Additionally, it was shown that TLR3-activated MSCs could improve survival in cecal ligation and puncture (CLP)-induced sepsis, while miR-143 overexpression reduced the effectiveness of this therapy. These results proved that poly(I:C) improved the immunosuppressive abilities of MSCs, revealed the regulatory role of miRNAs in the process, and may provide an opportunity for potential novel therapies for sepsis.
Collapse
Affiliation(s)
- Xiaoyin Zhao
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|
52
|
Eom YW, Oh JE, Lee JI, Baik SK, Rhee KJ, Shin HC, Kim YM, Ahn CM, Kong JH, Kim HS, Shim KY. The role of growth factors in maintenance of stemness in bone marrow-derived mesenchymal stem cells. Biochem Biophys Res Commun 2014; 445:16-22. [PMID: 24491556 DOI: 10.1016/j.bbrc.2014.01.084] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 01/18/2014] [Indexed: 01/13/2023]
Abstract
Mesenchymal stem cells (MSCs) are an active topic of research in regenerative medicine due to their ability to secrete a variety of growth factors and cytokines that promote healing of damaged tissues and organs. In addition, these secreted growth factors and cytokines have been shown to exert an autocrine effect by regulating MSC proliferation and differentiation. We found that expression of EGF, FGF-4 and HGF were down-regulated during serial passage of bone marrow-derived mesenchymal stem cells (BMSCs). Proliferation and differentiation potentials of BMSCs treated with these growth factors for 2 months were evaluated and compared to BMSCs treated with FGF-2, which increased proliferation of BMSCs. FGF-2 and -4 increased proliferation potentials at high levels, about 76- and 26-fold, respectively, for 2 months, while EGF and HGF increased proliferation of BMSCs by less than 2.8-fold. Interestingly, differentiation potential, especially adipogenesis, was maintained only by HGF treatment. Treatment with FGF-2 rapidly induced activation of AKT and later induced ERK activation. The basal level of phosphorylated ERK increased during serial passage of BMSCs treated with FGF-2. The expression of LC3-II, an autophagy marker, was gradually increased and the population of senescent cells was increased dramatically at passage 7 in non-treated controls. But FGF-2 and FGF-4 suppressed LC3-II expression and down-regulated senescent cells during long-term (i.e. 2month) cultures. Taken together, depletion of growth factors during serial passage could induce autophagy, senescence and down-regulation of stemness (proliferation via FGF-2/-4 and differentiation via HGF) through suppression of AKT and ERK signaling.
Collapse
Affiliation(s)
- Young Woo Eom
- Cell Therapy and Tissue Engineering Center, Wonju College of Medicine, Yonsei Univ., Wonju, Republic of Korea
| | - Ji-Eun Oh
- Cell Therapy and Tissue Engineering Center, Wonju College of Medicine, Yonsei Univ., Wonju, Republic of Korea
| | - Jong In Lee
- Department of Hematology-Oncology, Wonju College of Medicine, Yonsei Univ., Wonju, Republic of Korea
| | - Soon Koo Baik
- Cell Therapy and Tissue Engineering Center, Wonju College of Medicine, Yonsei Univ., Wonju, Republic of Korea; Department of Internal Medicine, Wonju College of Medicine, Yonsei Univ., Wonju, Republic of Korea
| | - Ki-Jong Rhee
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei Univ., Wonju, Republic of Korea
| | | | - Yong Man Kim
- Pharmicell Co., Ltd., Sungnam, Republic of Korea
| | - Chan Mug Ahn
- Department of Basic Science, Wonju College of Medicine, Yonsei Univ., Wonju, Republic of Korea
| | - Jee Hyun Kong
- Department of Hematology-Oncology, Wonju College of Medicine, Yonsei Univ., Wonju, Republic of Korea
| | - Hyun Soo Kim
- Pharmicell Co., Ltd., Sungnam, Republic of Korea.
| | - Kwang Yong Shim
- Department of Hematology-Oncology, Wonju College of Medicine, Yonsei Univ., Wonju, Republic of Korea.
| |
Collapse
|
53
|
Varkey M, Ding J, Tredget EE. Superficial dermal fibroblasts enhance basement membrane and epidermal barrier formation in tissue-engineered skin: implications for treatment of skin basement membrane disorders. Tissue Eng Part A 2013; 20:540-52. [PMID: 24004160 DOI: 10.1089/ten.tea.2013.0160] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Basement membrane is a highly specialized structure that binds the dermis and the epidermis of the skin, and is mainly composed of laminins, nidogen, collagen types IV and VII, and the proteoglycans, collagen type XVIII and perlecan, all of which play critical roles in the function and resilience of skin. Both dermal fibroblasts and epidermal keratinocytes contribute to the development of the basement membrane, and in turn the basement membrane and underlying dermis influence the development and function of the epidermal barrier. Disruption of the basement membrane results in skin fragility, extensive painful blistering, and severe recurring wounds as seen in skin basement membrane disorders such as epidermolysis bullosa, a family of life-threatening congenital skin disorders. Currently, there are no successful strategies for treatment of these disorders; we propose the use of tissue-engineered skin as a promising approach for effective wound coverage and to enhance healing. Fibroblasts and keratinocytes isolated from superficial and deep dermis and epidermis, respectively, of tissue from abdominoplasty patients were independently cocultured on collagen-glycosaminoglycan matrices, and the resulting tissue-engineered skin was assessed for functional differences based on the underlying specific dermal fibroblast subpopulation. Tissue-engineered skin with superficial fibroblasts and keratinocytes formed a continuous epidermis with increased epidermal barrier function and expressed higher levels of epidermal proteins, keratin-5, and E-cadherin, compared to that with deep fibroblasts and keratinocytes, which had an intermittent epidermis. Further, tissue-engineered skin with superficial fibroblasts and keratinocytes formed better basement membrane, and produced more laminin-5, nidogen, collagen type VII, compared to that with deep fibroblasts and keratinocytes. Overall, our results demonstrate that tissue-engineered skin with superficial fibroblasts and keratinocytes forms significantly better basement membrane with higher expression of dermo-epidermal adhesive and anchoring proteins, and superior epidermis with enhanced barrier function compared to that with deep fibroblasts and keratinocytes, or with superficial fibroblasts, deep fibroblasts, and keratinocytes. The specific use of superficial fibroblasts in tissue-engineered skin may thus be more beneficial to promote adhesion of newly formed skin and wound healing, and is therefore promising for the treatment of patients with basement membrane disorders and other skin blistering diseases.
Collapse
Affiliation(s)
- Mathew Varkey
- 1 Wound Healing Research Group, Division of Plastic and Reconstructive Surgery, University of Alberta , Edmonton, Canada
| | | | | |
Collapse
|
54
|
Abstract
Cell therapy is currently considered as a potential therapeutic alternative to traditional treatments of diabetes. Islet and whole pancreas transplantations provided the proof-of-concept of glucose homeostasis restoration after replenishment of the deficiency of β cells responsible for the disease. Current limitations of these procedures have led to the search for strategies targeting replication of pre-existing β cells or transdifferentiation of progenitors and adult cells. These investigations revealed an unexpected plasticity towards β cells of adult cells residing in pancreatic epithelium (eg, acinar, duct, and α cells). Here we discuss recent developments in β-cell replication and β-cell transdifferentiation of adult epithelial pancreatic cells, with an emphasis on techniques with a potential for clinical translation.
Collapse
Affiliation(s)
| | | | - Susan Bonner-Weir
- Correspondence to: Susan Bonner-Weir, PhD, Joslin Diabetes Center, 1 Joslin Place, Boston, MA 02215, USA; ; Phone 617-309-2581, Fax 617-309-2650
| |
Collapse
|
55
|
Transplantation of mesenchymal stem cells for the treatment of liver diseases, is there enough evidence? Stem Cell Res 2013; 11:1348-64. [PMID: 24090934 DOI: 10.1016/j.scr.2013.08.011] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 08/18/2013] [Accepted: 08/21/2013] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells or multipotent mesenchymal stromal cells (MSCs) have been extensively investigated in small animal models to treat both acute and chronic liver injuries. Mechanisms of action are not clearly elucidated but may include their ability to differentiate into hepatocyte-like cells, to reduce inflammation, and to enhance tissue repair at the site of injury. This approach is controversial and evidence in large animals is missing. Side effects of MSC infusion such as the contribution to a fibrotic process have been reported in experimental settings. Nevertheless, MSCs moved quickly from bench to bedside and over 280 clinical trials are registered, of which 28 focus on the treatment of liver diseases. If no severe side-effects were observed so far, long-term benefits remain uncertain. More preclinical data regarding mechanisms of action, long term safety and efficacy are warranted before initiating large scale clinical application. The proposal of this review is to visit the current state of knowledge regarding mechanisms behind the therapeutic effects of MSCs in the treatment of experimental liver diseases, to address questions about efficacy and risk, and to discuss recent clinical advances involving MSC-based therapies.
Collapse
|
56
|
TSG-6 released from intradermally injected mesenchymal stem cells accelerates wound healing and reduces tissue fibrosis in murine full-thickness skin wounds. J Invest Dermatol 2013; 134:526-537. [PMID: 23921952 DOI: 10.1038/jid.2013.328] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 06/27/2013] [Accepted: 07/02/2013] [Indexed: 12/14/2022]
Abstract
Proper activation of macrophages (Mφ) in the inflammatory phase of acute wound healing is essential for physiological tissue repair. However, there is a strong indication that robust Mφ inflammatory responses may be causal for the fibrotic response always accompanying adult wound healing. Using a complementary approach of in vitro and in vivo studies, we here addressed the question of whether mesenchymal stem cells (MSCs)-due to their anti-inflammatory properties-would control Mφ activation and tissue fibrosis in a murine model of full-thickness skin wounds. We have shown that the tumor necrosis factor-α (TNF-α)-stimulated protein 6 (TSG-6) released from MSCs in co-culture with activated Mφ or following injection into wound margins suppressed the release of TNF-α from activated Mφ and concomitantly induced a switch from a high to an anti-fibrotic low transforming growth factor-β1 (TGF-β1)/TGF-β3 ratio. This study provides insight into what we believe to be a previously undescribed multifaceted role of MSC-released TSG-6 in wound healing. MSC-released TSG-6 was identified to improve wound healing by limiting Mφ activation, inflammation, and fibrosis. TSG-6 and MSC-based therapies may thus qualify as promising strategies to enhance tissue repair and to prevent excessive tissue fibrosis.
Collapse
|
57
|
TSG-6 released from intradermally injected mesenchymal stem cells accelerates wound healing and reduces tissue fibrosis in murine full-thickness skin wounds. THE JOURNAL OF INVESTIGATIVE DERMATOLOGY 2013. [PMID: 23921952 DOI: 10.1038/jid.2013.328.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Proper activation of macrophages (Mφ) in the inflammatory phase of acute wound healing is essential for physiological tissue repair. However, there is a strong indication that robust Mφ inflammatory responses may be causal for the fibrotic response always accompanying adult wound healing. Using a complementary approach of in vitro and in vivo studies, we here addressed the question of whether mesenchymal stem cells (MSCs)-due to their anti-inflammatory properties-would control Mφ activation and tissue fibrosis in a murine model of full-thickness skin wounds. We have shown that the tumor necrosis factor-α (TNF-α)-stimulated protein 6 (TSG-6) released from MSCs in co-culture with activated Mφ or following injection into wound margins suppressed the release of TNF-α from activated Mφ and concomitantly induced a switch from a high to an anti-fibrotic low transforming growth factor-β1 (TGF-β1)/TGF-β3 ratio. This study provides insight into what we believe to be a previously undescribed multifaceted role of MSC-released TSG-6 in wound healing. MSC-released TSG-6 was identified to improve wound healing by limiting Mφ activation, inflammation, and fibrosis. TSG-6 and MSC-based therapies may thus qualify as promising strategies to enhance tissue repair and to prevent excessive tissue fibrosis.
Collapse
|
58
|
Nair AM, Tsai YT, Shah KM, Shen J, Weng H, Zhou J, Sun X, Saxena R, Borrelli J, Tang L. The effect of erythropoietin on autologous stem cell-mediated bone regeneration. Biomaterials 2013; 34:7364-71. [PMID: 23831188 DOI: 10.1016/j.biomaterials.2013.06.031] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/18/2013] [Indexed: 12/20/2022]
Abstract
Mesenchymal stem cells (MSCs) although used for bone tissue engineering are limited by the requirement of isolation and culture prior to transplantation. Our recent studies have shown that biomaterial implants can be engineered to facilitate the recruitment of MSCs. In this study, we explore the ability of these implants to direct the recruitment and the differentiation of MSCs in the setting of a bone defect. We initially determined that both stromal derived factor-1alpha (SDF-1α) and erythropoietin (Epo) prompted different degrees of MSC recruitment. Additionally, we found that Epo and bone morphogenetic protein-2 (BMP-2), but not SDF-1α, triggered the osteogenic differentiation of MSCs in vitro. We then investigated the possibility of directing autologous MSC-mediated bone regeneration using a murine calvaria model. Consistent with our in vitro observations, Epo-releasing scaffolds were found to be more potent in bridging the defect than BMP-2 loaded scaffolds, as determined by computed tomography (CT) scanning, fluorescent imaging and histological analyses. These results demonstrate the tremendous potential, directing the recruitment and differentiation of autologous MSCs has in the field of tissue regeneration.
Collapse
Affiliation(s)
- Ashwin M Nair
- Bioengineering Department, University of Texas Southwestern Medical Center and The University of Texas at Arlington, Arlington, TX 76019, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Xi J, Yan X, Zhou J, Yue W, Pei X. Mesenchymal stem cells in tissue repairing and regeneration: Progress and future. BURNS & TRAUMA 2013; 1:13-20. [PMID: 27574617 PMCID: PMC4994498 DOI: 10.4103/2321-3868.113330] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The presence of mesenchymal progenitor cells within bone marrow has been known since the late nineteenth century. To date, mesenchymal stem cells (MSCs) have been isolated from several different connective tissues, such as adipose tissue, muscle, placenta, umbilical cord matrix, blood, liver, and dental pulp. Bone marrow, however, is still one of the major sources of MSCs for preclinical and clinical research. MSCs were first evaluated for regenerative applications and have since been shown to directly influence the immune system and to promote neovascularization of ischemic tissues. These observations have prompted a new era of MSC transplantation as a treatment for various diseases. In this review, we summarize the important studies that have investigated the use of MSCs as a therapeutic agent for regenerative medicine, immune disorders, cancer, and gene therapy. Furthermore, we discuss the mechanisms involved in MSC-based therapies and clinical-grade MSC manufacturing.
Collapse
Affiliation(s)
- Jiafei Xi
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, 27, Tai Ping Road, Beijing, 100850 China
| | - Xinlong Yan
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, 27, Tai Ping Road, Beijing, 100850 China
| | - Junnian Zhou
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, 27, Tai Ping Road, Beijing, 100850 China
| | - Wen Yue
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, 27, Tai Ping Road, Beijing, 100850 China
| | - Xuetao Pei
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, 27, Tai Ping Road, Beijing, 100850 China
| |
Collapse
|
60
|
Lee JW, Krasnodembskaya A, McKenna DH, Song Y, Abbott J, Matthay MA. Therapeutic effects of human mesenchymal stem cells in ex vivo human lungs injured with live bacteria. Am J Respir Crit Care Med 2013; 187:751-60. [PMID: 23292883 DOI: 10.1164/rccm.201206-0990oc] [Citation(s) in RCA: 269] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
RATIONALE Mesenchymal stem cells secrete paracrine factors that can regulate lung permeability and decrease inflammation, making it a potentially attractive therapy for acute lung injury. However, concerns exist whether mesenchymal stem cells' immunomodulatory properties may have detrimental effects if targeted toward infectious causes of lung injury. OBJECTIVES Therefore, we tested the effect of mesenchymal stem cells on lung fluid balance, acute inflammation, and bacterial clearance. METHODS We developed an Escherichia coli pneumonia model in our ex vivo perfused human lung to test the therapeutic effects of mesenchymal stem cells on bacterial-induced acute lung injury. MEASUREMENTS AND MAIN RESULTS Clinical-grade human mesenchymal stem cells restored alveolar fluid clearance to a normal level, decreased inflammation, and were associated with increased bacterial killing and reduced bacteremia, in part through increased alveolar macrophage phagocytosis and secretion of antimicrobial factors. Keratinocyte growth factor, a soluble factor secreted by mesenchymal stem cells, duplicated most of the antimicrobial effects. In subsequent in vitro studies, we discovered that human monocytes expressed the keratinocyte growth factor receptor, and that keratinocyte growth factor decreased apoptosis of human monocytes through AKT phosphorylation, an effect that increased bacterial clearance. Inhibition of keratinocyte growth factor by a neutralizing antibody reduced the antimicrobial effects of mesenchymal stem cells in the ex vivo perfused human lung and monocytes grown in vitro injured with E. coli bacteria. CONCLUSIONS In E. coli-injured human lungs, mesenchymal stem cells restored alveolar fluid clearance, reduced inflammation, and exerted antimicrobial activity, in part through keratinocyte growth factor secretion.
Collapse
Affiliation(s)
- Jae W Lee
- Department of Anesthesiology, University of California-San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|
61
|
Kim YM, Yi T, Choi JS, Lee S, Jang YH, Kim CH, Song SU, Lim JY. Bone marrow-derived clonal mesenchymal stem cells as a source of cell therapy for promoting vocal fold wound healing. Ann Otol Rhinol Laryngol 2013; 122:121-30. [PMID: 23534127 DOI: 10.1177/000348941312200208] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES We investigated whether mouse bone marrow-derived clonal mesenchymal stem cells (BM-cMSCs) could promote vocal fold (VF) wound healing by using a xenograft animal model. METHODS Homogeneous BM-cMSCs isolated by a subfractionation culturing method from the bone marrow aspirates of green fluorescent protein transgenic mice were injected into the VFs of rabbits immediately after direct mechanical injury. Macroscopic, biomechanical (rheometric), histologic, immunohistochemical, and transcriptional evaluations were performed on the scarred VFs 1 to 3 months after injury. Engraftment of the implanted BM-cMSCs was determined by detection of green fluorescent protein cells in the recipient VF by confocal microscopy. RESULTS The BM-cMSC-treated VFs showed improved morphological properties and viscoelasticity as compared to control VFs injected with phosphate-buffered saline solution. Histologic and immunohistochemical evaluations showed less excessive collagen deposition and increased density of glycosaminoglycans in the BM-cMSC-treated VFs as compared to the control VFs at 3 months after injury (p = 0.003 and p = 0.037, respectively). BM-cMSC transplantation led to a significant attenuation of fibronectin (p = 0.036) and transforming growth factor beta1 (p = 0.042) messenger RNA expression at 1 month after injury. Green fluorescent protein-expressing BM-cMSCs engrafted in recipient VFs were found at 1 month after implantation. CONCLUSIONS BM-cMSCs appeared to survive in the injured xenogeneic VFs after transplantation for up to 1 month and favorably enhanced the wound healing of VFs after injury. We conclude that BM-cMSCs are a possible source of cell therapy for vocal fold regeneration.
Collapse
Affiliation(s)
- Young-Mo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, the Clinical Research Center,Inha University School of Medicine, Incheon, Korea
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Sotoca AM, Weber M, van Zoelen EJJ. Gene Expression Regulation underlying Osteo-, Adipo-, and Chondro-Genic Lineage Commitment of Human Mesenchymal Stem Cells. Bioinformatics 2013. [DOI: 10.4018/978-1-4666-3604-0.ch089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Human mesenchymal stem cells have a high potential in regenerative medicine. They can be isolated from a variety of adult tissues, including bone marrow, and can be differentiated into multiple cell types of the mesodermal lineage, including adipocytes, osteocytes, and chondrocytes. Stem cell differentiation is controlled by a process of interacting lineage-specific and multipotent genes. In this chapter, the authors use full genome microarrays to explore gene expression profiles in the process of Osteo-, Adipo-, and Chondro-Genic lineage commitment of human mesenchymal stem cells.
Collapse
|
63
|
Kim J, Ma T. Endogenous extracellular matrices enhance human mesenchymal stem cell aggregate formation and survival. Biotechnol Prog 2013; 29:441-51. [PMID: 23296993 DOI: 10.1002/btpr.1686] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/07/2012] [Indexed: 02/06/2023]
Abstract
Human mesenchymal stem or stromal cell (hMSC) therapies have promise across a wide range of diseases. However, inefficient cell delivery and low cell survival at injury sites reduce efficacy and are the major barriers in hMSC-based therapy. Formation of three-dimensional (3D) hMSC aggregates has been found to activate hMSC functions from enhancing secretion of therapeutic factors for improving cell migration and survival. As the stromal cells in bone marrow, hMSCs are significant sources of extracellular matrix (ECM) proteins and growth factors, which form an interactive microenvironment to influence hMSC fate via paracrine and autocrine actions. To date, however, the impact of the extracellular microenvironment on hMSC properties in the aggregates remains unknown. In the present study, we investigated the role of endogenous ECM matrices on hMSC aggregate formation and survival under ischemic stress. The results demonstrated that the preservation of endogenous ECM in the aggregates formed by thermal lifting (termed TLAs) as opposed to the aggregates formed by enzymatically detached hMSCs (termed EDAs) enhanced cell proliferation, multilineage potential, and survival under ischemic stress. The improved cell proliferation and viability in the TLAs is attributed to the incorporation of endogenous ECM proteins in the TLAs and their promitotic and antioxidant properties. The results demonstrate a novel method for the formation of hMSC aggregates via thermal responsive surface and highlight the significant contribution of the ECM in preserving hMSC properties in the 3D aggregates.
Collapse
Affiliation(s)
- Junho Kim
- Dept. of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL 32310, USA
| | | |
Collapse
|
64
|
Ogawa M, LaRue AC, Mehrotra M. Hematopoietic stem cells are pluripotent and not just "hematopoietic". Blood Cells Mol Dis 2013; 51:3-8. [PMID: 23453528 DOI: 10.1016/j.bcmd.2013.01.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 01/16/2013] [Indexed: 12/11/2022]
Abstract
Over a decade ago, several preclinical transplantation studies suggested the striking concept of the tissue-reconstituting ability (often referred to as HSC plasticity) of hematopoietic stem cells (HSCs). While this heralded an exciting time of radically new therapies for disorders of many organs and tissues, the concept was soon mired in controversy and remained dormant for almost a decade. This commentary provides a concise review of evidence for HSC plasticity, including more recent findings based on single HSC transplantation in mouse and clinical transplantation studies. There is strong evidence for the concept that HSCs are pluripotent and are the source for the majority, if not all, of the cell types in our body. Also discussed are some biological and experimental issues that need to be considered in the future investigation of HSC plasticity.
Collapse
Affiliation(s)
- Makio Ogawa
- Department of Pathology and Laboratory Medicine, Ralph H. Johnson VAMC, USA.
| | | | | |
Collapse
|
65
|
Lee SH, Lee MW, Yoo KH, Kim DS, Son MH, Sung KW, Cheuh H, Choi SJ, Oh W, Yang YS, Koo HH. Co-transplantation of third-party umbilical cord blood-derived MSCs promotes engraftment in children undergoing unrelated umbilical cord blood transplantation. Bone Marrow Transplant 2013; 48:1040-5. [DOI: 10.1038/bmt.2013.7] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 01/05/2013] [Accepted: 01/10/2013] [Indexed: 12/11/2022]
|
66
|
Jiang D, Qi Y, Walker NG, Sindrilaru A, Hainzl A, Wlaschek M, MacNeil S, Scharffetter-Kochanek K. The effect of adipose tissue derived MSCs delivered by a chemically defined carrier on full-thickness cutaneous wound healing. Biomaterials 2013; 34:2501-15. [PMID: 23317813 DOI: 10.1016/j.biomaterials.2012.12.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 12/14/2012] [Indexed: 12/19/2022]
Abstract
Mesenchymal stem cells (MSCs) have properties which make them promising for the treatment of chronic non-healing wounds. A major so far unmet challenge is the efficient, safe and painless delivery of MSCs to skin wounds. Recently, a surface carrier of medical-grade silicone coated by plasma polymerisation with a thin layer of acrylic acid (ppAAc) was developed, and shown to successfully deliver MSCs to deepithelialised human dermis in vitro. Here we studied the potential of the ppAAc carrier to deliver human adipose tissue derived MSCs (AT-MSCs) to murine full-thickness excisional skin wounds in vivo. Further we investigate the mechanism of action of MSCs in accelerating wound healing in these wounds. AT-MSCs cultured on ppAAc carriers for 4 days or longer fully retained their cell surface marker expression profile, colony-forming-, differentiation- and immunosuppressive potential. Importantly, AT-MSCs delivered to murine wounds by ppAAc carriers significantly accelerated wound healing, similar to AT-MSCs delivered by intradermal injection. More than 80% of AT-MSCs were transferred from carriers to wounds in 3 days. AT-MSCs were detectable in wounds for at least 5 days after wounding. Carrier delivered AT-MSCs were demonstrated to have the capacity to down-modulate TNF-α-dependent inflammation, increase anti-inflammatory M2 macrophage numbers, and induce TGF-β(1)-dependent angiogenesis, myofibroblast differentiation and granulation tissue formation, thereby enhancing overall tissue repair.
Collapse
Affiliation(s)
- Dongsheng Jiang
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm 89081, Germany
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Horie M, Choi H, Lee RH, Reger RL, Ylostalo J, Muneta T, Sekiya IC, Prockop DJ. Intra-articular injection of human mesenchymal stem cells (MSCs) promote rat meniscal regeneration by being activated to express Indian hedgehog that enhances expression of type II collagen. Osteoarthritis Cartilage 2012; 20:1197-207. [PMID: 22750747 PMCID: PMC3788634 DOI: 10.1016/j.joca.2012.06.002] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 06/18/2012] [Accepted: 06/20/2012] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Meniscal regeneration was previously shown to be enhanced by injection of mesenchymal stem/stromal cells (MSCs) but the mode of action of the MSCs was not established. The aim of this study was to define how injection of MSCs enhances meniscal regeneration. DESIGN A hemi-meniscectomy model in rats was used. Rat-MSCs (rMSCs) or human-MSCs (hMSCs) were injected into the right knee joint after the surgery, and PBS was injected into the left. The groups were compared macroscopically and histologically at 2, 4, and 8 weeks. The changes in transcription in both human and rat genes were assayed by species-specific microarrays and real-time RT-PCRs. RESULTS Although the number of hMSCs decreased with time, hMSCs enhanced meniscal regeneration in a manner similar to rMSCs. hMSCs injection increased expression of rat type II collagen (rat-Col II), and inhibited osteoarthritis progression. The small fraction of hMSCs was activated to express high levels of a series of genes including Indian hedgehog (Ihh), parathyroid hormone-like hormone (PTHLH), and bone morphogenetic protein 2 (BMP2). The presence of hMSCs triggered the subsequent expression of rat-Col II. An antagonist of hedgehog signaling inhibited the expression of rat-Col II and an agonist increased expression of rat-Col II in the absence of hMSCs. CONCLUSIONS Despite rapid reduction in cell numbers, intra-articular injected hMSCs were activated to express Ihh, PTHLH, and BMP2 and contributed to meniscal regeneration. The hedgehog signaling was essential in enhancing the expression of rat-Col II, but several other factors provided by the hMSCs probably contributed to the repair.
Collapse
Affiliation(s)
- Masafumi Horie
- Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine at Scott & White, Temple, Texas 76502
- Section of Orthopedic Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hosoon Choi
- Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine at Scott & White, Temple, Texas 76502
| | - Ryang Hwa Lee
- Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine at Scott & White, Temple, Texas 76502
| | - Roxanne L. Reger
- Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine at Scott & White, Temple, Texas 76502
| | - Joni Ylostalo
- Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine at Scott & White, Temple, Texas 76502
| | - Takeshi Muneta
- Section of Orthopedic Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - I chiro Sekiya
- Section of Cartilage Regeneration, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Darwin J. Prockop
- Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine at Scott & White, Temple, Texas 76502
| |
Collapse
|
68
|
Berdasco M, Melguizo C, Prados J, Gómez A, Alaminos M, Pujana MA, Lopez M, Setien F, Ortiz R, Zafra I, Aranega A, Esteller M. DNA methylation plasticity of human adipose-derived stem cells in lineage commitment. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:2079-93. [PMID: 23031258 DOI: 10.1016/j.ajpath.2012.08.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 08/17/2012] [Accepted: 08/23/2012] [Indexed: 01/28/2023]
Abstract
Adult stem cells have an enormous potential for clinical use in regenerative medicine that avoids many of the drawbacks characteristic of embryonic stem cells and induced pluripotent stem cells. In this context, easily obtainable human adipose-derived stem cells offer an interesting option for future strategies in regenerative medicine. However, little is known about their repertoire of differentiation capacities, how closely they resemble the target primary tissues, and the potential safety issues associated with their use. DNA methylation is one of the most widely recognized epigenetic factors involved in cellular identity, prompting us to consider how the analyses of 27,578 CpG sites in the genome of these cells under different conditions reflect their different natural history. We show that human adipose-derived stem cells generate myogenic and osteogenic lineages that share much of the DNA methylation landscape characteristic of primary myocytes and osteocytes. Most important, adult stem cells and in vitro-generated myocytes and osteocytes display a significantly different DNA methylome from that observed in transformed cells from these tissue types, such as rhabdomyosarcoma and osteosarcoma. These results suggest that the plasticity of the DNA methylation patterns plays an important role in lineage commitment of adult stem cells and that it could be used for clinical purposes as a biomarker of efficient and safely differentiated cells.
Collapse
Affiliation(s)
- María Berdasco
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Biomedical Research Institute, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Lim JY, Yi T, Choi JS, Jang YH, Lee S, Kim HJ, Song SU, Kim YM. Intraglandular transplantation of bone marrow-derived clonal mesenchymal stem cells for amelioration of post-irradiation salivary gland damage. Oral Oncol 2012; 49:136-43. [PMID: 22981389 DOI: 10.1016/j.oraloncology.2012.08.010] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 08/15/2012] [Accepted: 08/17/2012] [Indexed: 12/12/2022]
Abstract
OBJECTIVES External irradiation in head and neck cancers may induce irreversible hyposalivation and consequent xerostomia, stemming from radiation damage to salivary glands (SGs). As cell-based therapy has been reported to be able to repair or restore damaged SG tissues, we attempted to determine whether bone marrow-derived clonal mesenchymal stem cells (BM-cMSCs) can ameliorate irradiation-induced salivary gland damage via a murine model. METHODS External irradiation at a dose of 15Gy was delivered to the neck fields of C57BL/6 mice. We directly administered either homologous mouse BM-cMSCs labeled with PKH26 (treatment group) or PBS (control group) into SGs 24h after irradiation. Salivary flow rate (SFR) and lag time of salivation were measured at 12weeks after transplantation. At 4 and 12weeks post-transplantation, we performed morphological, histological, and immunofluorescent examinations. Transdifferentiation of administered BM-cMSCs into salivary epithelial cells was observed by confocal microscopy. RESULTS SFR was significantly increased in BM-cMSCs-transplanted mice compared with PBS-injected mice at 12weeks after transplantation. Administration of BM-cMSCs preserved the microscopic morphologies of SGs, with more functional acini in BM-cMSC-transplanted SGs than in PBS-injected SGs. Immunofluorescent staining revealed less apoptotic cells and increased microvessel density in BM-cMSC-transplanted SGs compared with PBS-injected SGs. PKH-26 labeled BM-cMSCs were detected in transplanted SGs at 4weeks after transplantation and in vivo transdifferentiation of BM-cMSCs into acinar cells was also observed. CONCLUSION This study suggests that BM-cMSCs can ameliorate salivary damage following irradiation and can be used as a source of cell-based therapy for restoration of irradiation-induced salivary hypofunction.
Collapse
Affiliation(s)
- Jae-Yol Lim
- Department of Otorhinolaryngology - Head and Neck Surgery, Inha University School of Medicine, Incheon, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Cantaluppi V, Biancone L, Quercia A, Deregibus MC, Segoloni G, Camussi G. Rationale of mesenchymal stem cell therapy in kidney injury. Am J Kidney Dis 2012; 61:300-9. [PMID: 22938846 DOI: 10.1053/j.ajkd.2012.05.027] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 05/23/2012] [Indexed: 01/06/2023]
Abstract
Numerous preclinical and clinical studies suggest that mesenchymal stem cells, also known as multipotent mesenchymal stromal cells (MSCs), may improve pathologic conditions involving different organs. These beneficial effects initially were ascribed to the differentiation of MSCs into organ parenchymal cells. However, at least in the kidney, this is a very rare event and the kidney-protective effects of MSCs have been attributed mainly to paracrine mechanisms. MSCs release a number of trophic, anti-inflammatory, and immune-modulatory factors that may limit kidney injury and favor recovery. In this article, we provide an overview of the biologic activities of MSCs that may be relevant for the treatment of kidney injury in the context of a case vignette concerning a patient at high immunologic risk who underwent a second kidney transplantation followed by the development of ischemia-reperfusion injury and acute allograft rejection. We discuss the possible beneficial effect of MSC treatment in the light of preclinical and clinical data supporting the regenerative and immunomodulatory potential of MSCs.
Collapse
Affiliation(s)
- Vincenzo Cantaluppi
- Nephrology, Dialysis and Renal Transplantation Unit, Centre for Experimental Medical Research (CeRMS) and Department of Internal Medicine, University of Torino, Torino, Italy
| | | | | | | | | | | |
Collapse
|
71
|
Wu Y, Huang S, Enhe J, Fu X. Insights into bone marrow-derived mesenchymal stem cells safety for cutaneous repair and regeneration. Int Wound J 2012; 9:586-94. [PMID: 22931499 DOI: 10.1111/j.1742-481x.2012.01076.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Wound healing involves the orchestration of a complex process of interactions between numerous types of cell, components of extracellular matrix and signalling molecules following injury, which is usually a highly successful biological course to reconstruct the integrity of the skin. Nevertheless, when skin is severely damaged, the injured skin is limited in its ability to repair itself and possibly results in the hypertrophic scars or so-called keloids, and non healing wound or ulcer. Bone marrow-derived mesenchymal stem cells (BM-MSCs) are being clinically explored as a promising therapy in the field of tissue repair and regeneration. However, potential risks associated with these cell-based therapies remain uncertain. The aim of this review is to summarise the safety issues accompanying the administration of BM-MSCs for acute or chronic skin repair and regeneration. More importantly, this review highlights the requirement for fundamental research to improve future clinical application of these strategies, as well as for regulatory authorities to establish clinical criteria to identify the qualitative requirements for the manufacture process of cells products, which will ensure the manufacture process of the best benefit-to-risk ratio of cell-based therapy for the patients.
Collapse
Affiliation(s)
- Y Wu
- Trauma Center of Chinese PLA General Hospital, Beijing, China
| | | | | | | |
Collapse
|
72
|
Myers TJ, Yan Y, Granero-Molto F, Weis JA, Longobardi L, Li T, Li Y, Contaldo C, Ozkan H, Spagnoli A. Systemically delivered insulin-like growth factor-I enhances mesenchymal stem cell-dependent fracture healing. Growth Factors 2012; 30:230-41. [PMID: 22559791 PMCID: PMC3752908 DOI: 10.3109/08977194.2012.683188] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In this study, we examined the effectiveness of systemic subcutaneous delivery of recombinant Insulin-like growth factor (IGF)-I concurrently with primary cultured bone marrow-derived mesenchymal stem cell (MSC) transplant on fracture repair. We found that the fracture callus volume increased in mice with a stabilized tibia fracture that received IGF-I+MSC when compared with that in either untreated or MSC alone treated mice. In evaluating the callus tissue components, we found that the soft and new bone tissue volumes were significantly increased in IGF-I+MSC recipients. Histological and in-situ hybridization analyses confirmed a characteristic increase of newly forming bone in IGF-I+MSC recipients and that healing progressed mostly through endochondral ossification. The increase in soft and new bone tissue volumes correlated with increased force and toughness as determined by biomechanical testing. In conclusion, MSC transplant concurrent with systemic delivery of IGF-I improves fracture repair suggesting that IGF-I+MSC could be a novel therapeutic approach in patients who have inadequate fracture repair.
Collapse
Affiliation(s)
- Timothy J Myers
- Department of Pediatrics, Division of Endocrinology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7039, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Li X, Ling W, Khan S, Yaccoby S. Therapeutic effects of intrabone and systemic mesenchymal stem cell cytotherapy on myeloma bone disease and tumor growth. J Bone Miner Res 2012; 27:1635-48. [PMID: 22460389 PMCID: PMC3395777 DOI: 10.1002/jbmr.1620] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cytotherapeutic potential of mesenchymal stem cells (MSCs) has been evaluated in various disorders including those involving inflammation, autoimmunity, bone regeneration, and cancer. Multiple myeloma (MM) is a systemic malignancy associated with induction of osteolytic lesions that often are not repaired even after prolonged remission. The aims of this study were to evaluate the effects of intrabone and systemic injections of MSCs on MM bone disease, tumor growth, and tumor regrowth in the severe combined immunodeficiency (SCID)-rab model and to shed light on the exact localization of systemically injected MSCs. Intrabone injection of MSCs, but not hematopoietic stem cells, into myelomatous bones prevented MM-induced bone disease, promoted bone formation, and inhibited MM growth. After remission was induced with melphalan treatment, intrabone-injected MSCs promoted bone formation and delayed myeloma cell regrowth in bone. Most intrabone or systemically injected MSCs were undetected 2 to 4 weeks after injection. The bone-building effects of MSCs were mediated through activation of endogenous osteoblasts and suppression of osteoclast activity. Although a single intravenous injection of MSCs had no effect on MM, sequential weekly intravenous injections of MSCs prevented MM-induced bone disease but had no effect on tumor burden. MSCs expressed high levels of anti-inflammatory (eg, HMOX1) and bone-remodeling (eg, Decorin, CYR61) mediators. In vitro, MSCs promoted osteoblast maturation and suppressed osteoclast formation, and these effects were partially prevented by blocking decorin. A subset of intravenously or intracardially injected MSCs trafficked to myelomatous bone in SCID-rab mice. Although the majority of intravenously injected MSCs were trapped in lungs, intracardially injected MSCs were mainly localized in draining mesenteric lymph nodes. This study shows that exogenous MSCs act as bystander cells to inhibit MM-induced bone disease and tumor growth and that systemically injected MSCs are attracted to bone by myeloma cells or conditions induced by MM and inhibit bone disease.
Collapse
Affiliation(s)
- Xin Li
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | | | | | |
Collapse
|
74
|
Fang CH, Jin J, Joe JH, Song YS, So BI, Lim SM, Cheon GJ, Woo SK, Ra JC, Lee YY, Kim KS. In vivo differentiation of human amniotic epithelial cells into cardiomyocyte-like cells and cell transplantation effect on myocardial infarction in rats: comparison with cord blood and adipose tissue-derived mesenchymal stem cells. Cell Transplant 2012; 21:1687-96. [PMID: 22776022 DOI: 10.3727/096368912x653039] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human amniotic epithelial cells (h-AECs), which have various merits as a cell source for cell therapy, are known to differentiate into cardiomyocytes in vitro. However, the ability of h-AECs to differentiate into cardiomyocytes in vivo and their cell transplantation effects on myocardial infarction are still unknown. In this study, we assessed whether h-AECs could differentiate into cardiomyocytes in vivo and whether h-AECs transplantation can decrease infarct size and improve cardiac function, in comparison to transplantation of cord blood-derived mesenchymal stem cells (MSCs) or adipose tissue-derived MSCs. For our study, we injected h-AECs, cord blood-derived MSCs, adipose tissue-derived MSCs, and saline into areas of myocardial infarction in athymic nude rats. After 4 weeks, 3% of the surviving h-AECs expressed myosin heavy chain, a marker specific to the myocardium. Compared with the saline group, all cell-implanted groups showed a higher ejection fraction, lower infarct area by positron emission tomography and histology, and more abundant myocardial gene and protein expression in the infarct area. We showed that h-AECs can differentiate into cardiomyocyte-like cells, decrease infarct size, and improve cardiac function in vivo. The beneficial effects of h-AECs were comparable to those of cord blood and adipose tissue-derived MSCs. These results support the need for further studies of h-AECs as a cell source for myocardial regeneration due to their plentiful availability, low immunity, and lack of ethical issues related to their use.
Collapse
Affiliation(s)
- Cheng-Hu Fang
- Division of Cardiology, Hanyang University College of Medicine, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Rutten MJ, Janes MA, Chang IR, Gregory CR, Gregory KW. Development of a functional schwann cell phenotype from autologous porcine bone marrow mononuclear cells for nerve repair. Stem Cells Int 2012; 2012:738484. [PMID: 22792117 PMCID: PMC3388598 DOI: 10.1155/2012/738484] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 03/29/2012] [Indexed: 01/10/2023] Open
Abstract
Adult bone marrow mononuclear cells (BM-MNCs) are a potential resource for making Schwann cells to repair damaged peripheral nerves. However, many methods of producing Schwann-like cells can be laborious with the cells lacking a functional phenotype. The objective of this study was to develop a simple and rapid method using autologous BM-MNCs to produce a phenotypic and functional Schwann-like cell. Adult porcine bone marrow was collected and enriched for BM-MNCs using a SEPAX device, then cells cultured in Neurobasal media, 4 mM L-glutamine and 20% serum. After 6-8 days, the cultures expressed Schwann cell markers, S-100, O4, GFAP, were FluoroMyelin positive, but had low p75(NGF) expression. Addition of neuregulin (1-25 nM) increased p75(NGF) levels at 24-48 hrs. We found ATP dose-dependently increased intracellular calcium [Ca(2+)](i), with nucleotide potency being UTP = ATP > ADP > AMP > adenosine. Suramin blocked the ATP-induced [Ca(2+)](i) but α, β,-methylene-ATP had little effect suggesting an ATP purinergic P2Y2 G-protein-coupled receptor is present. Both the Schwann cell markers and ATP-induced [Ca(2+)](i) sensitivity decreased in cells passaged >20 times. Our studies indicate that autologous BM-MNCs can be induced to form a phenotypic and functional Schwann-like cell which could be used for peripheral nerve repair.
Collapse
Affiliation(s)
- Michael J. Rutten
- Providence Health and Services, 9555 SW Barnes Rd., Portland, OR 97225, USA
- OHSU Center for Regenerative Medicine, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239, USA
| | - Michael Ann Janes
- Providence Health and Services, 9555 SW Barnes Rd., Portland, OR 97225, USA
| | - Ivy R. Chang
- Providence Health and Services, 9555 SW Barnes Rd., Portland, OR 97225, USA
| | - Cynthia R. Gregory
- OHSU Center for Regenerative Medicine, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239, USA
- Oregon Biomedical Engineering Institute, 25999 SW Canyon Creek Rd., Wilsonville, OR 97070, USA
- Portland VA Medical Center, 3710 SW U.S. Veterans Hospital Rd., Portland, OR 97239, USA
| | - Kenton W. Gregory
- Providence Health and Services, 9555 SW Barnes Rd., Portland, OR 97225, USA
- OHSU Center for Regenerative Medicine, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239, USA
- Oregon Biomedical Engineering Institute, 25999 SW Canyon Creek Rd., Wilsonville, OR 97070, USA
| |
Collapse
|
76
|
Ahmadbeigi N, Soleimani M, Babaeijandaghi F, Mortazavi Y, Gheisari Y, Vasei M, Azadmanesh K, Rostami S, Shafiee A, Nardi NB. The aggregate nature of human mesenchymal stromal cells in native bone marrow. Cytotherapy 2012; 14:917-24. [PMID: 22687188 DOI: 10.3109/14653249.2012.689426] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND AIMS The clinical application of mesenchymal stromal cells (MSC) faces several obstacles, such as the lack of a standard method for direct isolation as well as a low frequency and concern about the safety of their in vitro expansion. Although the density-gradient separation technique is used as the first step in most methods of MSC isolation to enrich mononuclear cells, the efficiency of this method has not so far been examined. This study was designed to address this issue. METHODS Human bone marrow (BM) samples were laid over Ficoll-Paque, and after centrifugation the upper and lower fractions were cultured separately. Surface markers, differentiation potential and the number of emerged cells were determined. RESULTS The isolated cells from both the upper and lower fractions were characteristic of MSC. Although it is commonly believed that MSC are single suspending mononuclear cells and so are enriched in the upper fraction of Ficoll-Paque after density-gradient separation, our data showed that considerable numbers of these cells were accumulated in the lower fraction. Further data indicated that MSC were actually present as cell aggregates in BM and they could be enriched effectively by a simple filtration method. CONCLUSIONS The aggregate nature of MSC in BM is in agreement with the concept that they are one of the main elements of the hematopoietic stem cell niche. In addition, the simple filtration method proposed here to isolate cell aggregates may provide opportunities for instant stem cell therapy without the need for extensive in vitro expansion.
Collapse
Affiliation(s)
- Naser Ahmadbeigi
- Department of Hematology, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Kim J, Breunig MJ, Escalante LE, Bhatia N, Denu RA, Dollar BA, Stein AP, Hanson SE, Naderi N, Radek J, Haughy D, Bloom DD, Assadi-Porter FM, Hematti P. Biologic and immunomodulatory properties of mesenchymal stromal cells derived from human pancreatic islets. Cytotherapy 2012; 14:925-35. [PMID: 22571381 DOI: 10.3109/14653249.2012.684376] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSC) have now been shown to reside in numerous tissues throughout the body, including the pancreas. Ex vivo culture-expanded MSC derived from many tissues display important interactions with different types of immune cells in vitro and potentially play a significant role in tissue homeostasis in vivo. In this study, we investigated the biologic and immunomodulatory properties of human pancreatic islet-derived MSC. METHODS We culture-expanded MSC from cadaveric human pancreatic islets and characterized them using flow cytometry, differentiation assays and nuclear magnetic resonance-based metabolomics. We also investigated the immunologic properties of pancreatic islet-derived MSC compared with bone marrow (BM) MSC. RESULTS Pancreatic islet and BM-derived MSC expressed the same cell-surface markers by flow cytometry, and both could differentiate into bone, fat and cartilage. Metabolomics analysis of MSC from BM and pancreatic islets also showed a similar set of metabolic markers but quantitative polymerase chain reactions showed that pancreatic islet MSC expressed more interleukin(IL)-1b, IL-6, STAT3 and FGF9 compared with BM MSC, and less IL-10. However, similar to BM MSC, pancreatic islet MSC were able to suppress proliferation of allogeneic T lymphocytes stimulated with anti-CD3 and anti-CD28 antibodies. CONCLUSIONS Our in vitro analysis shows pancreatic islet-derived MSC have phenotypic, biologic and immunomodulatory characteristics similar, but not identical, to BM-derived MSC. We propose that pancreatic islet-derived MSC could potentially play an important role in improving the outcome of pancreatic islet transplantation by promoting engraftment and creating a favorable immune environment for long-term survival of islet allografts.
Collapse
Affiliation(s)
- Jaehyup Kim
- University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Krasnodembskaya A, Samarani G, Song Y, Zhuo H, Su X, Lee JW, Gupta N, Petrini M, Matthay MA. Human mesenchymal stem cells reduce mortality and bacteremia in gram-negative sepsis in mice in part by enhancing the phagocytic activity of blood monocytes. Am J Physiol Lung Cell Mol Physiol 2012; 302:L1003-13. [PMID: 22427530 DOI: 10.1152/ajplung.00180.2011] [Citation(s) in RCA: 249] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The potential therapeutic value of cell-based therapy with mesenchymal stem cells (MSC) has been reported in mouse models of polymicrobial peritoneal sepsis. However, the mechanisms responsible for the beneficial effects of MSC have not been well defined. Therefore, we tested the therapeutic effect of intravenous bone marrow-derived human MSC in peritoneal sepsis induced by gram-negative bacteria. At 48 h, survival was significantly increased in mice treated with intravenous MSC compared with control mice treated with intravenous fibroblasts (3T3) or intravenous PBS. There were no significant differences in the levels of TNF-α, macrophage inflammatory protein 2, or IL-10 in the plasma. However, there was a marked reduction in the number of bacterial colony-forming units of Pseudomonas aeruginosa in the blood of MSC-treated mice compared with the 3T3 and PBS control groups. In addition, phagocytic activity was increased in blood monocytes isolated from mice treated with MSC compared with the 3T3 and PBS groups. Furthermore, levels of C5a anaphylotoxin were elevated in the blood of mice treated with MSC, a finding that was associated with upregulation of the phagocytosis receptor CD11b on monocytes. The phagocytic activity of neutrophils was not different among the groups. There was also an increase in alternately activated monocytes/macrophages (CD163- and CD206-positive) in the spleen of the MSC-treated mice compared with the two controls. Thus intravenous MSC increased survival from gram-negative peritoneal sepsis, in part by a monocyte-dependent increase in bacterial phagocytosis.
Collapse
Affiliation(s)
- Anna Krasnodembskaya
- Cardiovascular Research Institute and Department of Anesthesiology, University of California-San Francisco, 505 Parnassus Ave., CA 94143, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Lau AN, Goodwin M, Kim CF, Weiss DJ. Stem cells and regenerative medicine in lung biology and diseases. Mol Ther 2012; 20:1116-30. [PMID: 22395528 DOI: 10.1038/mt.2012.37] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A number of novel approaches for repair and regeneration of injured lung have developed over the past several years. These include a better understanding of endogenous stem and progenitor cells in the lung that can function in reparative capacity as well as extensive exploration of the potential efficacy of administering exogenous stem or progenitor cells to function in lung repair. Recent advances in ex vivo lung engineering have also been increasingly applied to the lung. The current status of these approaches as well as initial clinical trials of cell therapies for lung diseases are reviewed below.
Collapse
Affiliation(s)
- Allison N Lau
- Department of Genetics, Stem Cell Program, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
80
|
Lysy PA, Weir GC, Bonner-Weir S. Concise review: pancreas regeneration: recent advances and perspectives. Stem Cells Transl Med 2012. [PMID: 23197762 DOI: 10.5966/sctm.2011-0025] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The replacement of functional pancreatic β-cells is seen as an attractive potential therapy for diabetes, because diabetes results from an inadequate β-cell mass. Inducing replication of the remaining β-cells and new islet formation from progenitors within the pancreas (neogenesis) are the most direct ways to increase the β-cell mass. Stimulation of both replication and neogenesis have been reported in rodents, but their clinical significance must still be shown. Because human islet transplantation is limited by the scarcity of donors and graft failure within a few years, efforts have recently concentrated on the use of stem cells to replace the deficient β-cells. Currently, embryonic stem cells and induced pluripotent stem cells achieve high levels of β-cell differentiation, but their clinical use is still hampered by ethical issues and/or the risk of developing tumors after transplantation. Pancreatic epithelial cells (duct, acinar, or α-cells) represent an appealing alternative to stem cells because they demonstrate β-cell differentiation capacities. Yet translation of such capacity to human cells after significant in vitro expansion has yet to be achieved. Besides providing new β-cells, cell therapy also has to address the question on how to protect the transplanted cells from destruction by the immune system via either allo- or autoimmunity. Encouraging developments have been made in encapsulation and immunomodulation techniques, but many challenges still remain. Herein, we discuss recent advances in the search for β-cell replacement therapies, current strategies for circumventing the immune system, and mandatory steps for new techniques to be translated from bench to clinics.
Collapse
Affiliation(s)
- Philippe A Lysy
- Joslin Diabetes Center, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
81
|
Abstract
Mesenchymal stromal cells (MSCs) originally isolated from marrow have multipotent differentiation potential and favorable immunomodulatory and anti-inflammatory properties that make them very attractive for regenerative cellular therapy. Cells with similar phenotypic characteristics have now been derived from almost all fetal, neonatal, and adult tissues; furthermore, more recently similar cells have also been generated from human embryonic stem cells (ESCs). Generation of MSCs from human ESCs provides an opportunity to study the developmental biology of human mesenchymal lineage generation in vitro. Generation of bone and cartilage from human ESC-derived MSCs and their functional characterization, both in vitro and in vivo, is also an active area of investigation as ESCs could provide an unlimited source of MSCs for potential repair of bone and cartilage defects. MSCs from adult sources are being investigated in numerous Phase I-III clinical trials for a wide variety of indications, mainly based on their immunomodulatory properties. Our group and others have shown MSCs derived from human ESCs possess immunomodulatory properties similar to marrow-derived MSCs. Immunomodulatory properties of ESC-derived MSCs could prove to be highly valuable for their potential clinical applications in the future as derivatives of human ESCs have already entered clinical arena in the context of Phase I clinical trials.
Collapse
Affiliation(s)
- Peiman Hematti
- Department of Medicine, Division of Hematology/Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705-2275, USA.
| |
Collapse
|
82
|
Li X, Ling W, Pennisi A, Wang Y, Khan S, Heidaran M, Pal A, Zhang X, He S, Zeitlin A, Abbot S, Faleck H, Hariri R, Shaughnessy JD, van Rhee F, Nair B, Barlogie B, Epstein J, Yaccoby S. Human placenta-derived adherent cells prevent bone loss, stimulate bone formation, and suppress growth of multiple myeloma in bone. Stem Cells 2011; 29:263-73. [PMID: 21732484 DOI: 10.1002/stem.572] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Human placenta has emerged as a valuable source of transplantable cells of mesenchymal and hematopoietic origin for multiple cytotherapeutic purposes, including enhanced engraftment of hematopoietic stem cells, modulation of inflammation, bone repair, and cancer. Placenta-derived adherent cells (PDACs) are mesenchymal-like stem cells isolated from postpartum human placenta. Multiple myeloma is closely associated with induction of bone disease and large lytic lesions, which are often not repaired and are usually the sites of relapses. We evaluated the antimyeloma therapeutic potential, in vivo survival, and trafficking of PDACs in the severe combined immunodeficiency (SCID)-rab model of medullary myeloma-associated bone loss. Intrabone injection of PDACs into nonmyelomatous and myelomatous implanted bone in SCID-rab mice promoted bone formation by stimulating endogenous osteoblastogenesis, and most PDACs disappeared from bone within 4 weeks. PDACs inhibitory effects on myeloma bone disease and tumor growth were dose-dependent and comparable with those of fetal human mesenchymal stem cells (MSCs). Intrabone, but not subcutaneous, engraftment of PDACs inhibited bone disease and tumor growth in SCID-rab mice. Intratumor injection of PDACs had no effect on subcutaneous growth of myeloma cells. A small number of intravenously injected PDACs trafficked into myelomatous bone. Myeloma cell growth rate in vitro was lower in coculture with PDACs than with MSCs from human fetal bone or myeloma patients. PDACs also promoted apoptosis in osteoclast precursors and inhibited their differentiation. This study suggests that altering the bone marrow microenvironment with PDAC cytotherapy attenuates growth of myeloma and that PDAC cytotherapy is a promising therapeutic approach for myeloma osteolysis.
Collapse
Affiliation(s)
- Xin Li
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Oskowitz AZ, Penfornis P, Tucker A, Prockop DJ, Pochampally R. Drosha regulates hMSCs cell cycle progression through a miRNA independent mechanism. Int J Biochem Cell Biol 2011; 43:1563-72. [PMID: 21794839 PMCID: PMC3476475 DOI: 10.1016/j.biocel.2011.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 06/29/2011] [Accepted: 07/11/2011] [Indexed: 12/19/2022]
Abstract
Recently we demonstrated that the miRNA regulate human mesenchymal stem cells (hMSCs) differentiation. To determine the role of the miRNA pathway in hMSCs proliferation, Drosha and Dicer knockdown hMSCs were generated using a lentiviral based tetracycline inducible shRNA. hMSCs with reduced Drosha expression had a significantly reduced proliferation rate, while hMSCs with reduced Dicer expression displayed a proliferation rate similar to untransduced cells. Cell cycle analysis identified that unlike Dicer knockdown, Drosha knockdown hMSCs contained an increased number of G1 phase cells, with a reduced level of cells in S phase, compared to controls. ELISAs of hMSCs revealed decreased levels of pRB and stable levels of total RB with Drosha knockdown. Two key regulators of the G1/S phase transition, cyclin dependent kinase inhibitor 2A (p16) and cyclin dependent kinase inhibitor 2B (p15), were increased in Drosha knockdown cells but not in Dicer knockdown. Transcripts of 28S and 18S rRNA were significantly reduced in Drosha knockdown hMSCs, with no change in rRNA levels in Dicer knockdown hMSCs. 45S pre-rRNA transcripts were not significantly different in either knockdown model. The above results indicate that Drosha modifies hMSCs proliferation through a miRNA independent mechanism, potentially by regulating rRNA processing.
Collapse
Affiliation(s)
- Adam Z Oskowitz
- Center for Stem Cell Research and Regenerative Medicine, New Orleans, LA 70112, U.S.A
| | - Patrice Penfornis
- Center for Stem Cell Research and Regenerative Medicine, New Orleans, LA 70112, U.S.A
| | - Alan Tucker
- Center for Stem Cell Research and Regenerative Medicine, New Orleans, LA 70112, U.S.A
| | - Darwin J Prockop
- Center for Stem Cell Research and Regenerative Medicine, New Orleans, LA 70112, U.S.A
- Department of Biochemistry Tulane University Health Sciences Center, New Orleans, LA 70112, U.S.A
| | - Radhika Pochampally
- Center for Stem Cell Research and Regenerative Medicine, New Orleans, LA 70112, U.S.A
- Department of Pharmacology, New Orleans, LA 70112, U.S.A
| |
Collapse
|
84
|
Nair A, Shen J, Lotfi P, Ko CY, Zhang CC, Tang L. Biomaterial implants mediate autologous stem cell recruitment in mice. Acta Biomater 2011; 7:3887-95. [PMID: 21784181 DOI: 10.1016/j.actbio.2011.06.050] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 05/26/2011] [Accepted: 06/28/2011] [Indexed: 12/29/2022]
Abstract
Autologous stem cells, recognized as the best cells for stem cell therapy, are associated with difficult extraction procedures which often lead to more traumas for the patients and time-consuming laboratory work, which delays their subsequent application. To combat such challenges, it was recently uncovered that, shortly after biomaterial implantation, following the recruitment of inflammatory cells, substantial numbers of mesenchymal stem cells (MSC) and hematopoietic stem cells (HSC) were recruited to the implantation sites. These multipotent MSC could be differentiated into various lineages in vitro. Inflammatory signals may be responsible for the gathering of stem cells, since there is a good relationship between biomaterial-mediated inflammatory responses and stem cell accumulation in vivo. In addition, the treatment with the anti-inflammatory drug dexamethasone substantially reduced the recruitment of both MSC and HSC. The results from this work support that such strategies could be further developed towards localized recruitment and differentiation of progenitor cells. This may permit the future development of autologous stem cell therapies without the need for tedious cell isolation, culture and transplantation.
Collapse
Affiliation(s)
- A Nair
- Bioengineering Department, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | | | | | | | | | | |
Collapse
|
85
|
Arno A, Smith AH, Blit PH, Shehab MA, Gauglitz GG, Jeschke MG. Stem Cell Therapy: A New Treatment for Burns? Pharmaceuticals (Basel) 2011; 4:1355-1380. [PMID: 27721328 PMCID: PMC4060129 DOI: 10.3390/ph4101355] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 09/21/2011] [Accepted: 10/10/2011] [Indexed: 12/12/2022] Open
Abstract
Stem cell therapy has emerged as a promising new approach in almost every medicine specialty. This vast, heterogeneous family of cells are now both naturally (embryonic and adult stem cells) or artificially obtained (induced pluripotent stem cells or iPSCs) and their fates have become increasingly controllable, thanks to ongoing research in this passionate new field. We are at the beginning of a new era in medicine, with multiple applications for stem cell therapy, not only as a monotherapy, but also as an adjunct to other strategies, such as organ transplantation or standard drug treatment. Regrettably, serious preclinical concerns remain and differentiation, cell fusion, senescence and signalling crosstalk with growth factors and biomaterials are still challenges for this promising multidisciplinary therapeutic modality. Severe burns have several indications for stem cell therapy, including enhancement of wound healing, replacement of damaged skin and perfect skin regeneration - incorporating skin appendages and reduced fibrosis -, as well as systemic effects, such as inflammation, hypermetabolism and immunosuppression. The aim of this review is to describe well established characteristics of stem cells and to delineate new advances in the stem cell field, in the context of burn injury and wound healing.
Collapse
Affiliation(s)
- Anna Arno
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
- Plastic Surgery Department and Burn Unit, Vall d'Hebron University Hospital, Autonomous University of Barcelona, Passeig de la Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Alexandra H Smith
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| | - Patrick H Blit
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| | - Mohammed Al Shehab
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| | - Gerd G Gauglitz
- Department of Dermatology and Allergology, Ludwig Maximilians University, Geschwister-Scholl-Platz 1, 80539, Munich, Germany
| | - Marc G Jeschke
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada.
| |
Collapse
|
86
|
Kebriaei P, Robinson S. Mesenchymal stem cell therapy in the treatment of acute and chronic graft versus host disease. Front Oncol 2011; 1:16. [PMID: 22655232 PMCID: PMC3356068 DOI: 10.3389/fonc.2011.00016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 06/21/2011] [Indexed: 01/14/2023] Open
Abstract
Mesenchymal stem cells (MSC) are a cellular component of the supportive microenvironment (stroma) found in the bone marrow, umbilical cord, placenta, and adipose tissues. In addition to providing cellular and extracellular cues to support the proliferation and differentiation of cells that comprise functional tissues, MSC also contribute to tissue repair and have immunomodulatory properties. Their ability to modulate immunologic reactions while themselves not provoking immunologic responses from alloreactive T-lymphocytes and/or other effector cells, make MSC a potentially ideal therapeutic agent with which to treat graft versus host disease (GvHD) following hematopoietic transplantation. Despite in vitro experiments confirming that MSC suppress mixed lymphocyte reactions (MLR) and in vivo evidence from mouse models that show evidence that MSC can ameliorate GvHD, clinical trials to date using MSC to treat GvHD have shown mixed results. Whether this is a consequence of suboptimal timing and dose of administered MSC remains to be clarified. It is clear that immunomodulatory potential of MSC as a cellular therapy for GvHD remains to be realized in the clinic.
Collapse
Affiliation(s)
- Partow Kebriaei
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Simon Robinson
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer CenterHouston, TX, USA
| |
Collapse
|
87
|
Moll G, Jitschin R, von Bahr L, Rasmusson-Duprez I, Sundberg B, Lönnies L, Elgue G, Nilsson-Ekdahl K, Mougiakakos D, Lambris JD, Ringdén O, Le Blanc K, Nilsson B. Mesenchymal stromal cells engage complement and complement receptor bearing innate effector cells to modulate immune responses. PLoS One 2011; 6:e21703. [PMID: 21747949 PMCID: PMC3128611 DOI: 10.1371/journal.pone.0021703] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 06/05/2011] [Indexed: 12/16/2022] Open
Abstract
Infusion of human third-party mesenchymal stromal cells (MSCs) appears to be a promising therapy for acute graft-versus-host disease (aGvHD). To date, little is known about how MSCs interact with the body's innate immune system after clinical infusion. This study shows, that exposure of MSCs to blood type ABO-matched human blood activates the complement system, which triggers complement-mediated lymphoid and myeloid effector cell activation in blood. We found deposition of complement component C3-derived fragments iC3b and C3dg on MSCs and fluid-phase generation of the chemotactic anaphylatoxins C3a and C5a. MSCs bound low amounts of immunoglobulins and lacked expression of complement regulatory proteins MCP (CD46) and DAF (CD55), but were protected from complement lysis via expression of protectin (CD59). Cell-surface-opsonization and anaphylatoxin-formation triggered complement receptor 3 (CD11b/CD18)-mediated effector cell activation in blood. The complement-activating properties of individual MSCs were furthermore correlated with their potency to inhibit PBMC-proliferation in vitro, and both effector cell activation and the immunosuppressive effect could be blocked either by using complement inhibitor Compstatin or by depletion of CD14/CD11b-high myeloid effector cells from mixed lymphocyte reactions. Our study demonstrates for the first time a major role of the complement system in governing the immunomodulatory activity of MSCs and elucidates how complement activation mediates the interaction with other immune cells.
Collapse
Affiliation(s)
- Guido Moll
- Department of Laboratory Medicine, Clinical Immunology and Transfusion Medicine, Karolinska Institutet and Hematology Center at Karolinska University Hospital Huddinge, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Weiss DJ, Bertoncello I, Borok Z, Kim C, Panoskaltsis-Mortari A, Reynolds S, Rojas M, Stripp B, Warburton D, Prockop DJ. Stem cells and cell therapies in lung biology and lung diseases. PROCEEDINGS OF THE AMERICAN THORACIC SOCIETY 2011; 8:223-72. [PMID: 21653527 PMCID: PMC3132784 DOI: 10.1513/pats.201012-071dw] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 02/03/2011] [Indexed: 11/20/2022]
Abstract
The University of Vermont College of Medicine and the Vermont Lung Center, with support of the National Heart, Lung, and Blood Institute (NHLBI), the Alpha-1 Foundation, the American Thoracic Society, the Emory Center for Respiratory Health,the Lymphangioleiomyomatosis (LAM) Treatment Alliance,and the Pulmonary Fibrosis Foundation, convened a workshop,‘‘Stem Cells and Cell Therapies in Lung Biology and Lung Diseases,’’ held July 26-29, 2009 at the University of Vermont,to review the current understanding of the role of stem and progenitor cells in lung repair after injury and to review the current status of cell therapy approaches for lung diseases. These are rapidly expanding areas of study that provide further insight into and challenge traditional views of the mechanisms of lung repair after injury and pathogenesis of several lung diseases. The goals of the conference were to summarize the current state of the field, discuss and debate current controversies, and identify future research directions and opportunities for both basic and translational research in cell-based therapies for lung diseases.
Collapse
Affiliation(s)
- Daniel J Weiss
- Vermont Lung Center, University of Vermont College of Medicine, Burlington, Vermont 05405, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Horwitz EM, Maziarz RT, Kebriaei P. MSCs in hematopoietic cell transplantation. Biol Blood Marrow Transplant 2011; 17:S21-9. [PMID: 21195306 DOI: 10.1016/j.bbmt.2010.11.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Edwin M Horwitz
- Division of Oncology/Blood and Marrow Transplantation, The Children's Hospital of Philadelphia, and The University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
90
|
Shimada IS, Spees JL. Stem and progenitor cells for neurological repair: minor issues, major hurdles, and exciting opportunities for paracrine-based therapeutics. J Cell Biochem 2011; 112:374-80. [PMID: 21268056 DOI: 10.1002/jcb.22963] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The transplantation of cultured stem and progenitor cells is a key element in the rapidly growing field of regenerative medicine. Based on their ability to rescue and/or repair injured tissue and partially restore organ function, multiple types of stem/progenitor cells have already entered into clinical trials. However, despite several decades of intense research, the goal to apply culture-expanded stem/progenitor cells in a manner that can effectively replace cells after injury has yet to be realized. Many sources of potentially useful cells are available, but something is clearly missing. In addition, recent studies suggest that paracrine effects of secreted or released factors are responsible for most of the benefits observed after cell transplantation, rather than direct cell replacement. These data call into question the need for cell transplantation for many types of therapy, in particular for acute injuries such as myocardial infarction and stroke. In this review, we examine current progress in the area of cell transplantation and minor issues and major hurdles regarding the clinical application of different cell types. We discuss the "paracrine hypothesis" for the action of transplanted stem/progenitor cells as an opportunity to identify defined combinations of biomolecules to rescue and/or repair tissues after injury. Although many of the concepts in this review will apply to multiple injury/repair systems, we will focus primarily on stem/progenitor cell-based treatments for neurological disorders and stroke.
Collapse
Affiliation(s)
- Issei S Shimada
- Department of Medicine, Stem Cell Core, University of Vermont, Colchester, Vermont 05446, USA
| | | |
Collapse
|
91
|
Tögel F, Westenfelder C. The role of multipotent marrow stromal cells (MSCs) in tissue regeneration. Organogenesis 2011; 7:96-100. [PMID: 21521944 DOI: 10.4161/org.7.2.15781] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
An extensive body of preclinical and clinical data has shown that administration of adult multipotent marrow stromal cells (MSCs) effectively ameliorates experimental and clinical conditions of many different organ systems. Differentiation into organ parenchymal cells, however, is very rare, and the main mechanism for organ protection and regeneration from different types of injury is the exertion of paracrine effects and stimulation of tissue repair. A large number of clinical trials have been conducted and are ongoing to investigate the safety and efficacy of MSCs in different organs after various types of organ injury. This article intends to give a brief overview about current applications of MSCs and mechanisms involved in organ protection and regeneration.
Collapse
|
92
|
Herberts CA, Kwa MSG, Hermsen HPH. Risk factors in the development of stem cell therapy. J Transl Med 2011; 9:29. [PMID: 21418664 PMCID: PMC3070641 DOI: 10.1186/1479-5876-9-29] [Citation(s) in RCA: 465] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 03/22/2011] [Indexed: 02/06/2023] Open
Abstract
Stem cell therapy holds the promise to treat degenerative diseases, cancer and repair of damaged tissues for which there are currently no or limited therapeutic options. The potential of stem cell therapies has long been recognised and the creation of induced pluripotent stem cells (iPSC) has boosted the stem cell field leading to increasing development and scientific knowledge. Despite the clinical potential of stem cell based medicinal products there are also potential and unanticipated risks. These risks deserve a thorough discussion within the perspective of current scientific knowledge and experience. Evaluation of potential risks should be a prerequisite step before clinical use of stem cell based medicinal products. The risk profile of stem cell based medicinal products depends on many risk factors, which include the type of stem cells, their differentiation status and proliferation capacity, the route of administration, the intended location, in vitro culture and/or other manipulation steps, irreversibility of treatment, need/possibility for concurrent tissue regeneration in case of irreversible tissue loss, and long-term survival of engrafted cells. Together these factors determine the risk profile associated with a stem cell based medicinal product. The identified risks (i.e. risks identified in clinical experience) or potential/theoretical risks (i.e. risks observed in animal studies) include tumour formation, unwanted immune responses and the transmission of adventitious agents. Currently, there is no clinical experience with pluripotent stem cells (i.e. embryonal stem cells and iPSC). Based on their characteristics of unlimited self-renewal and high proliferation rate the risks associated with a product containing these cells (e.g. risk on tumour formation) are considered high, if not perceived to be unacceptable. In contrast, the vast majority of small-sized clinical trials conducted with mesenchymal stem/stromal cells (MSC) in regenerative medicine applications has not reported major health concerns, suggesting that MSC therapies could be relatively safe. However, in some clinical trials serious adverse events have been reported, which emphasizes the need for additional knowledge, particularly with regard to biological mechanisms and long term safety.
Collapse
Affiliation(s)
- Carla A Herberts
- Centre for Biological Medicines and Medical Technology, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
| | | | | |
Collapse
|
93
|
Kebriaei P, Robinson S. Treatment of graft-versus-host-disease with mesenchymal stromal cells. Cytotherapy 2011; 13:262-8. [DOI: 10.3109/14653249.2010.549688] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
94
|
Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells. Lasers Med Sci 2011; 27:237-49. [DOI: 10.1007/s10103-011-0885-2] [Citation(s) in RCA: 282] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 01/05/2011] [Indexed: 12/16/2022]
|
95
|
Tolar J, Le Blanc K, Keating A, Blazar BR. Concise review: hitting the right spot with mesenchymal stromal cells. Stem Cells 2011; 28:1446-55. [PMID: 20597105 DOI: 10.1002/stem.459] [Citation(s) in RCA: 307] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mesenchymal stromal cells or mesenchymal stem cells (MSCs) have captured considerable scientific and public interest because of their potential to limit physical and immune injury, to produce bioactive molecules and to regenerate tissues. MSCs are phenotypically heterogeneous and distinct subpopulations within MSC cultures are presumed to contribute to tissue repair and the modulation of allogeneic immune responses. As the first example of efficacy, clinical trials for prevention and treatment of graft-versus-host disease after hematopoietic cell transplantation show that MSCs can effectively treat human disease. The view of the mechanisms whereby MSCs function as immunomodulatory and reparative cells has evolved simultaneously. Initially, donor MSCs were thought to replace damaged cells in injured tissues of the recipient. More recently, however, it has become increasingly clear that even transient MSC engraftment may exert favorable effects through the secretion of cytokines and other paracrine factors, which engage and recruit recipient cells in productive tissue repair. Thus, an important reason to investigate MSCs in mechanistic preclinical models and in clinical trials with well-defined end points and controls is to better understand the therapeutic potential of these multifunctional cells. Here, we review the controversies and recent insights into MSC biology, the regulation of alloresponses by MSCs in preclinical models, as well as clinical experience with MSC infusions (Table 1) and the challenges of manufacturing a ready supply of highly defined transplantable MSCs.
Collapse
Affiliation(s)
- Jakub Tolar
- Division of Hematology, Oncology, Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA.
| | | | | | | |
Collapse
|
96
|
Rhodes LV, Antoon JW, Muir SE, Elliott S, Beckman BS, Burow ME. Effects of human mesenchymal stem cells on ER-positive human breast carcinoma cells mediated through ER-SDF-1/CXCR4 crosstalk. Mol Cancer 2010; 9:295. [PMID: 21087507 PMCID: PMC2998478 DOI: 10.1186/1476-4598-9-295] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 11/18/2010] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Adult human mesenchymal stem cells (hMSC) have been shown to home to sites of carcinoma and affect biological processes, including tumour growth and metastasis. Previous findings have been conflicting and a clear understanding of the effects of hMSCs on cancer remains to be established. Therefore, we set out to investigate the impact of hMSCs on the oestrogen receptor positive, hormone-dependent breast carcinoma cell line MCF-7. RESULTS In this study, we show the effects of hMSCs on cancer cells are mediated through a secreted factor(s) which are enhanced by cancer cell-hMSC contact/communication. In addition to enhanced proliferation when in co-culture with hMSCs, MCF-7 cells were found to have increased migration potential in vitro. Inhibition of ER signalling by the pure anti-oestrogen ICI 182,780 decreased the effect of hMSCs on MCF-7 cell proliferation and migration supporting a role for ER signalling in the hMSC/MCF-7 cell interaction. Additionally, hMSCs have been shown to secrete a wide variety of growth factors and chemokines including stromal cell-derived factor-1 (SDF-1). This coupled with the knowledge that SDF-1 is an ER-mediated gene linked with hormone-independence and metastasis led to the investigation of the SDF-1/CXCR4 signalling axis in hMSC-MCF-7 cell interaction. Experiments revealed an increase in SDF-1 gene expression both in vivo and in vitro when MCF-7 cells were cultured with hMSCs. SDF-1 treatment of MCF-7 cells alone increased proliferation to just below that seen with hMSC co-culture. Additionally, blocking SDF-1 signalling using a CXCR4-specific inhibitor decreased hMSC induced proliferation and migration of MCF-7. However, the combined treatment of ICI and AMD3100 reduced MCF-7 cell proliferation and migration below control levels, indicating targeting both the ER and CXCR4 pathways is effective in decreasing the hMSCs induction of MCF-7 cell proliferation and migration. CONCLUSIONS The sum of these data reveals the relationship between tumour microenvironment and tumour growth and progression. Better understanding of the mechanisms involved in this tumour stroma cell interaction may provide novel targets for the development of treatment strategies for oestrogen receptor positive, hormone-independent, and endocrine-resistant breast carcinoma.
Collapse
Affiliation(s)
- Lyndsay V Rhodes
- Department of Medicine, Section of Haematology and Medical Oncology, Tulane University Health Science Centre, New Orleans, Louisiana, USA.
| | | | | | | | | | | |
Collapse
|
97
|
Bunnell BA, Betancourt AM, Sullivan DE. New concepts on the immune modulation mediated by mesenchymal stem cells. Stem Cell Res Ther 2010; 1:34. [PMID: 21092149 PMCID: PMC3025436 DOI: 10.1186/scrt34] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are the nonhematopoietic multipotent progenitor cells found in various adult tissues. They are characterized by their ease of isolation and their rapid growth in vitro while maintaining their differentiation potential, allowing for extensive expansion in culture that yields large quantities suitable for therapeutic use. This article reviews the immunomodulatory activities associated with MSCs. Numerous studies have demonstrated that MSCs are potently immunosuppressive in vitro and in vivo. However, this article presents a new paradigm in MSC biology, in which MSCs, at least in vitro, can undergo polarization into either a pro-inflammatory or an immunosuppressive phenotype.
Collapse
Affiliation(s)
- Bruce A Bunnell
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, 1430 Tulane Ave, SL-99, New Orleans, LA 70112, USA.
| | | | | |
Collapse
|
98
|
Abstract
Liver progenitor cells are activated in most human liver diseases. The dynamics, and therefore subpopulations, of progenitor cells are, however, different in acute versus chronic hepatocytic diseases and in biliary diseases. The role of Wnt and Notch signaling pathways in activation and differentiation of human hepatic progenitor cells holds great promise because they can be manipulated by drugs. Hepatocytic differentiation requires inhibition of Notch (numb switched on), whereas cholangiocytic differentiation requires Notch activation. In this way, the patients' own regenerative response could be supported, which could eventually even avoid the need for transplantation in several patients.
Collapse
|
99
|
Halfon S, Abramov N, Grinblat B, Ginis I. Markers distinguishing mesenchymal stem cells from fibroblasts are downregulated with passaging. Stem Cells Dev 2010; 20:53-66. [PMID: 20528146 DOI: 10.1089/scd.2010.0040] [Citation(s) in RCA: 248] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Expansion of plastic-adherent bone marrow-derived mesenchymal stem cells (MSCs) results in gradual loss of osteogenic potential after passage 5-6. One explanation is contamination of MSC cultures with mature cells including fibroblasts. Identification and elimination of fibroblasts from MSC cultures could improve MSC yield and differentiation potential and also prevent tumor formation after MSC transplantation. However, no specific markers currently exist that can reliably discriminate between MSCs and fibroblasts. Flow cytometry analysis demonstrated that markers currently used to define MSCs, such as CD105, CD166, CD90, CD44, CD29, CD73, and CD9, are also expressed on human skin or lung fibroblasts. However, the level of expression of CD166 was significantly higher and that of CD9 was significantly lower in MSCs than in fibroblasts. CD146 was expressed only in MSCs. Using small focused microarrays, new markers differentially expressed in MSCs and fibroblasts were identified. Real-time polymerase chain reaction confirmed that expression of CD106, integrin alpha 11, and insulin-like growth factor-2 in MSCs was at least 10-fold higher than in fibroblasts; whereas expression of matrix metalloproteinase 1 and matrix metalloproteinase 3 was almost 100-fold lower. Flow cytometry and immunostaining demonstrated that CD106 protein expression on cell surface could be upregulated in MSCs but not in fibroblasts by the treatment with tumor necrosis factor-alpha. Comparison of surface expression of commonly used and newly identified MSC markers in MSCs cultures of passage 2 and passage 6 demonstrated that CD106 (with and without tumor necrosis factor-alpha treatment), integrin alpha 11, and CD146 were downregulated in MSCs of passage 6, and CD9 was upregulated; whereas all other markers did not change. Newly identified markers that have robust differences of expression in MSCs and fibroblasts on gene and protein level could be used for quality control of MSC cultures after expansion, cryopreservation, gene transfection, and other manipulations.
Collapse
|
100
|
Ramanauskaitė G, Kašėta V, Vaitkuvienė A, Biziulevičienė G. Skin regeneration with bone marrow-derived cell populations. Int Immunopharmacol 2010; 10:1548-51. [PMID: 20868755 DOI: 10.1016/j.intimp.2010.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 09/06/2010] [Accepted: 09/07/2010] [Indexed: 10/19/2022]
Abstract
Bone marrow-derived cells of distinct differentiation level could differently influence the process of skin regeneration. The results of our study revealed that hematopoietic stem cells (HSC) population influenced the repair of injured tissue slower in comparison with lineage negative (lin⁻) cell population containing not only HSC but also cell progenitors of different differentiation levels. Wound healing process was faster in lin⁻) cell suspension treated group, the stage of proliferation was more intensive and increased number of skin appendages occurred. The adaptation of purified HSC at the site of injury was longer and the stages of wound healing took place later. The results obtained show that in further experiments the complex procedure of HSC isolation and purification could be shortened and heavy skin injuries could be successfully treated with the help of lin⁻ cell population.
Collapse
Affiliation(s)
- Giedrė Ramanauskaitė
- State Research Institute Center for Innovative Medicine, 9 Žygimantų Street, LT-01102 Vilnius, Lithuania
| | | | | | | |
Collapse
|