51
|
Biedenkopf N, Lange-Grünweller K, Schulte FW, Weißer A, Müller C, Becker D, Becker S, Hartmann RK, Grünweller A. The natural compound silvestrol is a potent inhibitor of Ebola virus replication. Antiviral Res 2016; 137:76-81. [PMID: 27864075 DOI: 10.1016/j.antiviral.2016.11.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 12/31/2022]
Abstract
The DEAD-box RNA helicase eIF4A, which is part of the heterotrimeric translation initiation complex in eukaryotes, is an important novel drug target in cancer research because its helicase activity is required to unwind extended and highly structured 5'-UTRs of several proto-oncogenes. Silvestrol, a natural compound isolated from the plant Aglaia foveolata, is a highly efficient, non-toxic and specific inhibitor of eIF4A. Importantly, 5'-capped viral mRNAs often contain structured 5'-UTRs as well, which may suggest a dependence on eIF4A for their translation by the host protein synthesis machinery. In view of the recent Ebola virus (EBOV) outbreak in West Africa, the identification of potent antiviral compounds is urgently required. Since Ebola mRNAs are 5'-capped and harbor RNA secondary structures in their extended 5'-UTRs, we initiated a BSL4 study to analyze silvestrol in EBOV-infected Huh-7 cells and in primary human macrophages for its antiviral activity. We observed that silvestrol inhibits EBOV infection at low nanomolar concentrations, as inferred from large reductions of viral titers. This correlated with an almost complete disappearance of EBOV proteins, comparable in effect to the translational shutdown of expression of the proto-oncoprotein PIM1, a cellular kinase known to be affected by silvestrol. Effective silvestrol concentrations were non-toxic in the tested cell systems. Thus, silvestrol appears to be a promising first-line drug for the treatment of acute EBOV and possibly other viral infections.
Collapse
Affiliation(s)
- Nadine Biedenkopf
- Institut für Virologie, Philipps-Universität Marburg, Hans-Meerwein-Str. 2, 35043, Marburg, Germany; Deutsches Zentrum für Infektionsforschung (DZIF) at the Partner Site Gießen-Marburg-Langen, Germany
| | - Kerstin Lange-Grünweller
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35037, Marburg, Germany
| | - Falk W Schulte
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35037, Marburg, Germany
| | - Aileen Weißer
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35037, Marburg, Germany
| | - Christin Müller
- Institut für Medizinische Virologie, Justus-Liebig-Universität Gießen, Schubertstraße 81, 35392, Gießen, Germany; Deutsches Zentrum für Infektionsforschung (DZIF) at the Partner Site Gießen-Marburg-Langen, Germany
| | - Dirk Becker
- Institut für Virologie, Philipps-Universität Marburg, Hans-Meerwein-Str. 2, 35043, Marburg, Germany; Deutsches Zentrum für Infektionsforschung (DZIF) at the Partner Site Gießen-Marburg-Langen, Germany
| | - Stephan Becker
- Institut für Virologie, Philipps-Universität Marburg, Hans-Meerwein-Str. 2, 35043, Marburg, Germany; Deutsches Zentrum für Infektionsforschung (DZIF) at the Partner Site Gießen-Marburg-Langen, Germany
| | - Roland K Hartmann
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35037, Marburg, Germany
| | - Arnold Grünweller
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35037, Marburg, Germany.
| |
Collapse
|
52
|
Dapat E, Jacinto S, Efferth T. Substrate Specificity of Aglaia loheri Active Isolate towards P-glycoprotein in Multidrug-Resistant Cancer Cells. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601101115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Multidrug resistance (MDR) is a major contributory factor in the failure of chemotherapy. Concrete interpretation of P-glycoprotein (P-gp) substrate specificity, whether a substance is a substrate or an inhibitor, represents an important feature of a compound's pharmaceutical profiling in drug design and development. In this work, the P-gp substrate specificity of Maldi 531.2[M+H]+, a phenol ester from Aglaia loheri Blanco leaves was investigated. This study focuses on the effect of Maldi 531.2[M+H]+ on P-gp ATPase activity, which was examined by measuring the amount of inorganic phosphates (Pi) released as a result of ATP hydrolysis. To test the effects of Maldi 531.2[M+H]+ on MDR activity, an attempt to combine Maldi 531.2[M+H]+ with a potent P-gp substrate such as verapamil was performed. As a result of this combination treatment, two distinct patterns of interaction with P-gp activity were determined by a calcein-acetoxymethyl ester (AM) assay. Depending on the concentratgion, both stimulation and inhibition of MDR activity were observed at certain drug concentrations suggesting biphasic reactions, which can be understood as cooperative stimulation and competitive inhibition, respectively. Verapamil is a strong substrate to P-gp. Substrate specificity of Maldi 531.2[M+H]+ may be less than the substrate specificity of verapamil, but it acts additively together with low concentrations of verapamil in stimulating ATPase activity. On the one hand, verapamil and Maldi 531.2[M+H]+ exerted cooperative stimulation on P-gp. On the other hand, Maldi 531.2[M+H]+ acts as competitive inhibitor at higher concentrations.
Collapse
Affiliation(s)
- Else Dapat
- Department of Biology, University of the Philippines, Ermita, Manila City, Philippines
- Institute of Biology, University of the Philippines, Diliman, Quezon City, Philippines
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Sonia Jacinto
- Institute of Biology, University of the Philippines, Diliman, Quezon City, Philippines
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
- German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
53
|
Chu J, Cargnello M, Topisirovic I, Pelletier J. Translation Initiation Factors: Reprogramming Protein Synthesis in Cancer. Trends Cell Biol 2016; 26:918-933. [PMID: 27426745 DOI: 10.1016/j.tcb.2016.06.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/03/2016] [Accepted: 06/13/2016] [Indexed: 12/11/2022]
Abstract
Control of mRNA translation plays a crucial role in the regulation of gene expression and is critical for cellular homeostasis. Dysregulation of translation initiation factors has been documented in several pathologies including cancer. Aberrant function of translation initiation factors leads to translation reprogramming that promotes proliferation, survival, angiogenesis, and metastasis. In such context, understanding how altered levels (and presumably activity) of initiation factors can contribute to tumor initiation and/or maintenance is of major interest for the development of novel therapeutic strategies. In this review we provide an overview of translation initiation mechanisms and focus on recent findings describing the role of individual initiation factors and their aberrant activity in cancer.
Collapse
Affiliation(s)
- Jennifer Chu
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Marie Cargnello
- Lady Davis Institute, SMBD JGH, McGill University, Montreal, Quebec, Canada; Gerald Bronfman Department of Oncology, McGill University, Quebec, Canada
| | - Ivan Topisirovic
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada; Lady Davis Institute, SMBD JGH, McGill University, Montreal, Quebec, Canada; Gerald Bronfman Department of Oncology, McGill University, Quebec, Canada.
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada; Gerald Bronfman Department of Oncology, McGill University, Quebec, Canada; The Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
54
|
Othman N, Pan L, Mejin M, Voong JC, Chai HB, Pannell CM, Kinghorn AD, Yeo TC. Cyclopenta[b]benzofuran and Secodammarane Derivatives from the Stems of Aglaia stellatopilosa. JOURNAL OF NATURAL PRODUCTS 2016; 79:784-91. [PMID: 26974604 PMCID: PMC4841703 DOI: 10.1021/acs.jnatprod.5b00810] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Four new 2,3-secodammarane triterpenoids, stellatonins A-D (3-6), together with a new 3,4-secodammarane triterpenoid, stellatonin E (7), and the known silvestrol (1), 5‴-episilvestrol (2), and β-sitosterol, were isolated from a methanol extract of the stems of Aglaia stellatopilosa through bioassay-guided fractionation. The structures of the new compounds were elucidated using spectroscopic and chemical methods. The compounds were evaluated for their cytotoxic activity against three human cancer cell lines and for their antimicrobial activity using a microtiter plate assay against a panel of Gram-positive and Gram-negative bacteria and fungi.
Collapse
Affiliation(s)
- Nuraqilah Othman
- Sarawak Biodiversity Centre, KM20, Jalan Borneo Heights, Semengoh, Locked Bag No. 3032, Kuching 93990, Sarawak, Malaysia
| | - Li Pan
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Michele Mejin
- Sarawak Biodiversity Centre, KM20, Jalan Borneo Heights, Semengoh, Locked Bag No. 3032, Kuching 93990, Sarawak, Malaysia
| | - Julian C.L. Voong
- Sarawak Biodiversity Centre, KM20, Jalan Borneo Heights, Semengoh, Locked Bag No. 3032, Kuching 93990, Sarawak, Malaysia
| | - Hee-byung Chai
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Caroline M. Pannell
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, United Kingdom
| | - A. Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Tiong C. Yeo
- Sarawak Biodiversity Centre, KM20, Jalan Borneo Heights, Semengoh, Locked Bag No. 3032, Kuching 93990, Sarawak, Malaysia
| |
Collapse
|
55
|
Daker M, Yeo JT, Bakar N, Abdul Rahman ASAA, Ahmad M, Yeo TC, Khoo ASB. Inhibition of nasopharyngeal carcinoma cell proliferation and synergism of cisplatin with silvestrol and episilvestrol isolated from Aglaia stellatopilosa. Exp Ther Med 2016; 11:2117-2126. [PMID: 27284293 PMCID: PMC4887938 DOI: 10.3892/etm.2016.3201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 12/01/2015] [Indexed: 12/17/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a type of tumour that arises from the epithelial cells that line the surface of the nasopharynx. NPC is treated with radiotherapy and cytotoxic chemotherapeutic drugs such as cisplatin and 5-fluorouracil. However, current strategies are often associated with potential toxicities. This has prompted efforts to identify alternative methods of treatment. The present study aimed to investigate silvestrol and episilvestrol-mediated inhibition of cell proliferation in human NPC cells. The growth kinetics of NPC cells treated with silvestrol or episilvestrol were monitored dynamically using a real-time, impedance-based cell analyzer, and dose-response profiles were generated using a colorimetric cell viability assay. Furthermore, apoptosis was evaluated using flow cytometry and high content analysis. In addition, flow cytometry was performed to determine cell cycle distribution. Finally, the effects of combining silvestrol or episilvestrol with cisplatin on NPC cells was examined. Apoptosis was not observed in silvestrol and episilvestrol-treated NPC cells, although cell cycle perturbation was evident. Treatment with both compounds induced a significant increase in the percentage of cells in the G2/M phase, as compared with the control. In vitro cultures combining silvestrol or episilvestrol with cisplatin showed synergistic effects against NPC cells. The results of the present study suggested that silvestrol and episilvestrol had an anti-tumour activity in NPC cells. Silvestrol and episilvestrol, particularly in combination with cisplatin, merit further investigation, so as to determine the cellular mechanisms underlying their action(s) as anti-NPC agents.
Collapse
Affiliation(s)
- Maelinda Daker
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, Kuala Lumpur 50588, Malaysia
| | - Jiun-Tzen Yeo
- Sarawak Biodiversity Centre, KM20, Semengoh, Kuching, Sarawak 93990, Malaysia
| | - Norhasimah Bakar
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, Kuala Lumpur 50588, Malaysia
| | | | - Munirah Ahmad
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, Kuala Lumpur 50588, Malaysia
| | - Tiong-Chia Yeo
- Sarawak Biodiversity Centre, KM20, Semengoh, Kuching, Sarawak 93990, Malaysia
| | - Alan Soo-Beng Khoo
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, Kuala Lumpur 50588, Malaysia
| |
Collapse
|
56
|
Oblinger JL, Burns SS, Akhmametyeva EM, Huang J, Pan L, Ren Y, Shen R, Miles-Markley B, Moberly AC, Kinghorn AD, Welling DB, Chang LS. Components of the eIF4F complex are potential therapeutic targets for malignant peripheral nerve sheath tumors and vestibular schwannomas. Neuro Oncol 2016; 18:1265-77. [PMID: 26951381 DOI: 10.1093/neuonc/now032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/06/2016] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The eukaryotic initiation factor 4F (eIF4F) complex plays a pivotal role in protein translation initiation; however, its importance in malignant and benign Schwann cell tumors has not been explored, and whether blocking eIF4F function is effective for treating these tumors is not known. METHODS Immunostaining was performed on human malignant peripheral nerve sheath tumors (MPNSTs) and vestibular schwannomas (VSs) for eIF4F components. The role of eIF4A and eIF4E in cell growth was assessed by RNA interference. Various natural compounds were screened for their growth-inhibitory activity. Flow cytometry and Western blotting were performed to characterize the action of silvestrol, and its antitumor activity was verified in orthotopic mouse models. RESULTS MPNSTs and VSs frequently overexpressed eIF4A, eIF4E, and/or eIF4G. Depletion of eIF4A1, eIF4A2, and eIF4E substantially reduced MPNST cell growth. From screening a panel of plant-derived compounds, the eIF4A inhibitor silvestrol was identified as a leading agent with nanomolar IC50 values in MPNST and VS cells. Silvestrol induced G2/M arrest in both NF1-deficient and NF1-expressing MPNST cells and primary VS cells. Silvestrol consistently decreased the levels of multiple cyclins, Aurora A, and mitogenic kinases AKT and ERKs. Silvestrol treatment dramatically suppressed tumor growth in mouse models for NF1(-/-) MPNST and Nf2(-/-) schwannoma. This decreased tumor growth was accompanied by elevated phospho-histone H3 and TUNEL labeling, consistent with G2/M arrest and apoptosis in silvestrol-treated tumor cells. CONCLUSIONS The eIF4F complex is a potential therapeutic target in MPNSTs and VS, and silvestrol may be a promising agent for treating these tumors.
Collapse
Affiliation(s)
- Janet L Oblinger
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio (J.L.O, S.S.B, E.M.A, J.H., L.-S.C.); Department of Otolaryngology-Head and Neck Surgery, The Ohio State University College of Medicine, Columbus, Ohio (J.L.O, S.S.B, B.M.M, A.C.M, D.B.W, L.-S.C.); Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio (R.S., L.-S.C.); Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University College of Pharmacy, Columbus, Ohio (L.P., Y.R., A.D.K.)
| | - Sarah S Burns
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio (J.L.O, S.S.B, E.M.A, J.H., L.-S.C.); Department of Otolaryngology-Head and Neck Surgery, The Ohio State University College of Medicine, Columbus, Ohio (J.L.O, S.S.B, B.M.M, A.C.M, D.B.W, L.-S.C.); Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio (R.S., L.-S.C.); Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University College of Pharmacy, Columbus, Ohio (L.P., Y.R., A.D.K.)
| | - Elena M Akhmametyeva
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio (J.L.O, S.S.B, E.M.A, J.H., L.-S.C.); Department of Otolaryngology-Head and Neck Surgery, The Ohio State University College of Medicine, Columbus, Ohio (J.L.O, S.S.B, B.M.M, A.C.M, D.B.W, L.-S.C.); Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio (R.S., L.-S.C.); Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University College of Pharmacy, Columbus, Ohio (L.P., Y.R., A.D.K.)
| | - Jie Huang
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio (J.L.O, S.S.B, E.M.A, J.H., L.-S.C.); Department of Otolaryngology-Head and Neck Surgery, The Ohio State University College of Medicine, Columbus, Ohio (J.L.O, S.S.B, B.M.M, A.C.M, D.B.W, L.-S.C.); Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio (R.S., L.-S.C.); Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University College of Pharmacy, Columbus, Ohio (L.P., Y.R., A.D.K.)
| | - Li Pan
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio (J.L.O, S.S.B, E.M.A, J.H., L.-S.C.); Department of Otolaryngology-Head and Neck Surgery, The Ohio State University College of Medicine, Columbus, Ohio (J.L.O, S.S.B, B.M.M, A.C.M, D.B.W, L.-S.C.); Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio (R.S., L.-S.C.); Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University College of Pharmacy, Columbus, Ohio (L.P., Y.R., A.D.K.)
| | - Yulin Ren
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio (J.L.O, S.S.B, E.M.A, J.H., L.-S.C.); Department of Otolaryngology-Head and Neck Surgery, The Ohio State University College of Medicine, Columbus, Ohio (J.L.O, S.S.B, B.M.M, A.C.M, D.B.W, L.-S.C.); Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio (R.S., L.-S.C.); Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University College of Pharmacy, Columbus, Ohio (L.P., Y.R., A.D.K.)
| | - Rulong Shen
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio (J.L.O, S.S.B, E.M.A, J.H., L.-S.C.); Department of Otolaryngology-Head and Neck Surgery, The Ohio State University College of Medicine, Columbus, Ohio (J.L.O, S.S.B, B.M.M, A.C.M, D.B.W, L.-S.C.); Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio (R.S., L.-S.C.); Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University College of Pharmacy, Columbus, Ohio (L.P., Y.R., A.D.K.)
| | - Beth Miles-Markley
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio (J.L.O, S.S.B, E.M.A, J.H., L.-S.C.); Department of Otolaryngology-Head and Neck Surgery, The Ohio State University College of Medicine, Columbus, Ohio (J.L.O, S.S.B, B.M.M, A.C.M, D.B.W, L.-S.C.); Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio (R.S., L.-S.C.); Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University College of Pharmacy, Columbus, Ohio (L.P., Y.R., A.D.K.)
| | - Aaron C Moberly
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio (J.L.O, S.S.B, E.M.A, J.H., L.-S.C.); Department of Otolaryngology-Head and Neck Surgery, The Ohio State University College of Medicine, Columbus, Ohio (J.L.O, S.S.B, B.M.M, A.C.M, D.B.W, L.-S.C.); Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio (R.S., L.-S.C.); Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University College of Pharmacy, Columbus, Ohio (L.P., Y.R., A.D.K.)
| | - A Douglas Kinghorn
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio (J.L.O, S.S.B, E.M.A, J.H., L.-S.C.); Department of Otolaryngology-Head and Neck Surgery, The Ohio State University College of Medicine, Columbus, Ohio (J.L.O, S.S.B, B.M.M, A.C.M, D.B.W, L.-S.C.); Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio (R.S., L.-S.C.); Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University College of Pharmacy, Columbus, Ohio (L.P., Y.R., A.D.K.)
| | - D Bradley Welling
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio (J.L.O, S.S.B, E.M.A, J.H., L.-S.C.); Department of Otolaryngology-Head and Neck Surgery, The Ohio State University College of Medicine, Columbus, Ohio (J.L.O, S.S.B, B.M.M, A.C.M, D.B.W, L.-S.C.); Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio (R.S., L.-S.C.); Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University College of Pharmacy, Columbus, Ohio (L.P., Y.R., A.D.K.)
| | - Long-Sheng Chang
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio (J.L.O, S.S.B, E.M.A, J.H., L.-S.C.); Department of Otolaryngology-Head and Neck Surgery, The Ohio State University College of Medicine, Columbus, Ohio (J.L.O, S.S.B, B.M.M, A.C.M, D.B.W, L.-S.C.); Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio (R.S., L.-S.C.); Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University College of Pharmacy, Columbus, Ohio (L.P., Y.R., A.D.K.)
| |
Collapse
|
57
|
An FL, Wang XB, Wang H, Li ZR, Yang MH, Luo J, Kong LY. Cytotoxic Rocaglate Derivatives from Leaves of Aglaia perviridis. Sci Rep 2016; 6:20045. [PMID: 26818797 PMCID: PMC4730247 DOI: 10.1038/srep20045] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/11/2015] [Indexed: 12/11/2022] Open
Abstract
Rocaglates are a series of structurally complex secondary metabolites with considerable cytotoxicity that have been isolated from plants of the Aglaia genus (Meliaceae). A new rocaglate (aglapervirisin A, 1) and its eight new biosynthetic precursors of rocaglate (aglapervirisins B-J, 2-9) together with five known compounds, were isolated from the leaves of Aglaia perviridis. Their structures were elucidated based on a joint effort of spectroscopic methods [IR, UV, MS, ECD, 1D- and 2D-NMR, HRESIMS], chemical conversion and single-crystal X-ray diffraction. Among these isolates, three (1, 10-11) were silvestrols, a rare subtype rocaglates, exhibiting notable cytotoxicity against four human tumor cell lines, with IC50 values between 8.0 and 15.0 nM. Aglapervirisin A (1) induces cell cycle arrest at the G2/M-phase boundary at concentration 10 nM accompanied by reductions in the expression levels of Cdc2 and Cdc25C in HepG2 cells after 72h co-incubation, and further induces the apoptosis of HepG2 cells at concentrations over 160 nM.
Collapse
Affiliation(s)
- Fa-Liang An
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People’s Republic of China
| | - Xiao-Bing Wang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People’s Republic of China
| | - Hui Wang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People’s Republic of China
| | - Zhong-Rui Li
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People’s Republic of China
| | - Ming-Hua Yang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People’s Republic of China
| | - Jun Luo
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People’s Republic of China
| | - Ling-Yi Kong
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People’s Republic of China
| |
Collapse
|
58
|
Chen WL, Pan L, Kinghorn AD, Swanson SM, Burdette JE. Silvestrol induces early autophagy and apoptosis in human melanoma cells. BMC Cancer 2016; 16:17. [PMID: 26762417 PMCID: PMC4712514 DOI: 10.1186/s12885-015-1988-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 12/08/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Silvestrol is a cyclopenta[b]benzofuran that was isolated from the fruits and twigs of Aglaia foveolata, a plant indigenous to Borneo in Southeast Asia. The purpose of the current study was to determine if inhibition of protein synthesis caused by silvestrol triggers autophagy and apoptosis in cultured human cancer cells derived from solid tumors. METHODS In vitro cell viability, flow cytometry, fluorescence microscopy, qPCR and immunoblot was used to study the mechanism of action of silvestrol in MDA-MB-435 melanoma cells. RESULTS By 24 h, a decrease in cyclin B and cyclin D expression was observed in silvestrol-treated cells relative to control. In addition, silvestrol blocked progression through the cell cycle at the G2-phase. In silvestrol-treated cells, DAPI staining of nuclear chromatin displayed nucleosomal fragments. Annexin V staining demonstrated an increase in apoptotic cells after silvestrol treatment. Silvestrol induced caspase-3 activation and apoptotic cell death in a time- and dose-dependent manner. Furthermore, both silvestrol and SAHA enhanced autophagosome formation in MDA-MB-435 cells. MDA-MB-435 cells responded to silvestrol treatment with accumulation of LC3-II and time-dependent p62 degradation. Bafilomycin A, an autophagy inhibitor, resulted in the accumulation of LC3 in cells treated with silvestrol. Silvestrol-mediated cell death was attenuated in ATG7-null mouse embryonic fibroblasts (MEFs) lacking a functional autophagy protein. CONCLUSIONS Silvestrol potently inhibits cell growth and induces cell death in human melanoma cells through induction of early autophagy and caspase-mediated apoptosis. Silvestrol represents a natural product scaffold that exhibits potent cytotoxic activity and could be used for the further study of autophagy and its relationship to apoptosis in cancer cells.
Collapse
Affiliation(s)
- Wei-Lun Chen
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| | - Li Pan
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Ohio State University, Columbus, OH, 43210, USA.
| | - A Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Ohio State University, Columbus, OH, 43210, USA.
| | - Steven M Swanson
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL, 60607, USA. .,School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| | - Joanna E Burdette
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
59
|
Cencic R, Pelletier J. Hippuristanol - A potent steroid inhibitor of eukaryotic initiation factor 4A. ACTA ACUST UNITED AC 2016; 4:e1137381. [PMID: 27335721 DOI: 10.1080/21690731.2015.1137381] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 12/08/2015] [Accepted: 12/24/2015] [Indexed: 01/02/2023]
Abstract
Protein synthesis and its regulatory signaling pathways play essential roles in the initiation and maintenance of the cancer phenotype. Insight obtained over the last 3 decades on the mechanisms regulating translation in normal and transformed cells have revealed that perturbed control in cancer cells may offer an Achilles' heel for the development of novel anti-neoplastic agents. Several small molecule inhibitors have been identified and characterized that target translation initiation - more specifically, the rate-limiting step where ribosomes are recruited to mRNA templates. Among these, hippuristanol, a polyhydroxysteroid from the gorgonian Isis hippuris has been found to inhibit translation initiation by blocking the activity of eukaryotic initiation factor (eIF) 4A, an essential RNA helicase involved in this process. Herein, we highlight the biological properties of this compound, its potential development as an anti-cancer agent, and its use to validate eIF4A as an anti-neoplastic target.
Collapse
Affiliation(s)
- Regina Cencic
- Department of Biochemistry, McGill University , Montreal, Québec, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Québec, Canada; The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Québec, Canada; Department of Oncology, McGill University, Montreal, Québec, Canada
| |
Collapse
|
60
|
Nhu D, Lessene G, Huang DCS, Burns CJ. Small molecules targeting Mcl-1: the search for a silver bullet in cancer therapy. MEDCHEMCOMM 2016. [DOI: 10.1039/c5md00582e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Progress towards the development of potent and selective inhibitors of the pro-survival protein Mcl-1 is reviewed.
Collapse
Affiliation(s)
- Duong Nhu
- The Walter and Eliza Hall Institute of Medical Research
- Australia
- Department of Medical Biology
- The University of Melbourne
- Australia
| | - Guillaume Lessene
- The Walter and Eliza Hall Institute of Medical Research
- Australia
- Department of Medical Biology
- The University of Melbourne
- Australia
| | - David C. S. Huang
- The Walter and Eliza Hall Institute of Medical Research
- Australia
- Department of Medical Biology
- The University of Melbourne
- Australia
| | - Christopher J. Burns
- The Walter and Eliza Hall Institute of Medical Research
- Australia
- Department of Medical Biology
- The University of Melbourne
- Australia
| |
Collapse
|
61
|
Jacob JA, Salmani JMM, Chen B. Drugs under preclinical and clinical study for treatment of acute and chronic lymphoblastic leukemia. Patient Prefer Adherence 2016; 10:1115-9. [PMID: 27382259 PMCID: PMC4920255 DOI: 10.2147/ppa.s109477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Targeted therapy has modernized the treatment of both chronic and acute lymphoblastic leukemia. The introduction of monoclonal antibodies and combinational drugs has increased the survival rate of patients. Preclinical studies with various agents have resulted in positive outputs with Phase III trial drugs and monoclonal antibodies entering clinical trials. Most of the monoclonal antibodies target the CD20 and CD22 receptors. This has led to the approval of a few of these drugs by the US Food and Drug Administration. This review focuses on the drugs under preclinical and clinical study in the ongoing efforts for treatment of acute and chronic lymphoblastic leukemia.
Collapse
Affiliation(s)
- Joe Antony Jacob
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Jumah Masoud Mohammad Salmani
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People’s Republic of China
- Correspondence: Baoan Chen, Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao 87, Gulou District, Nanjing 210009, Jiangsu Province, People’s Republic of China, Tel +86 25 8327 2006, Fax +86 25 8327 2011, Email
| |
Collapse
|
62
|
Total synthesis of a biotinylated rocaglate: Selective targeting of the translation factors eIF4AI/II. Bioorg Med Chem Lett 2015; 26:262-264. [PMID: 26718843 DOI: 10.1016/j.bmcl.2015.12.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 10/26/2015] [Accepted: 12/12/2015] [Indexed: 01/09/2023]
Abstract
The total synthesis of a biotinylated derivative of methyl rocaglate is described. This compound was accessed from synthetic methyl rocaglate (2) via formation of the propargyl amide and subsequent click reaction with a biotin azide. Affinity purification revealed that biotinylated rocaglate (8) and methyl rocaglate (2) bind with high specificity to translation factors eIF4AI/II. This remarkable selectivity is in line with that found for the more complex rocaglate silvestrol (3).
Collapse
|
63
|
The translation inhibitor silvestrol exhibits direct anti-tumor activity while preserving innate and adaptive immunity against EBV-driven lymphoproliferative disease. Oncotarget 2015; 6:2693-708. [PMID: 25393910 PMCID: PMC4413611 DOI: 10.18632/oncotarget.2098] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/11/2014] [Indexed: 01/25/2023] Open
Abstract
Treatment options for patients with Epstein-Barr Virus-driven lymphoproliferative diseases (EBV-LPD) are limited. Chemo-immunotherapeutic approaches often lead to immune suppression, risk of lethal infection and EBV reactivation, thus it is essential to identify agents that can deliver direct anti-tumor activity while preserving innate and adaptive host immune surveillance. Silvestrol possesses direct anti-tumor activity in multiple hematologic malignancies while causing minimal toxicity to normal mononuclear cells. However, the effects of silvestrol on immune function have not been described. We utilized in vitro and in vivo models of EBV-LPD to simultaneously examine the impact of silvestrol on both tumor and normal immune function. We show that silvestrol induces direct anti-tumor activity against EBV-transformed lymphoblastoid cell lines (LCL), with growth inhibition, decreased expression of the EBV oncogene latent membrane protein-1, and inhibition of the downstream AKT, STAT1 and STAT3 signaling pathways. Silvestrol promoted potent indirect anti-tumor effects by preserving expansion of innate and EBV antigen-specific adaptive immune effector subsets capable of effective clearance of LCL tumor targets in autologous co-cultures. In an animal model of spontaneous EBV-LPD, silvestrol demonstrated significant therapeutic activity dependent on the presence of CD8-positive T-cells. These findings establish a novel immune-sparing activity of silvestrol, justifying further exploration in patients with EBV-positive malignancies.
Collapse
|
64
|
Chu J, Cencic R, Wang W, Porco JA, Pelletier J. Translation Inhibition by Rocaglates Is Independent of eIF4E Phosphorylation Status. Mol Cancer Ther 2015; 15:136-41. [PMID: 26586722 DOI: 10.1158/1535-7163.mct-15-0409] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 10/29/2015] [Indexed: 02/06/2023]
Abstract
Rocaglates are natural products that inhibit protein synthesis in eukaryotes and exhibit antineoplastic activity. In vitro biochemical assays, affinity chromatography experiments coupled with mass spectrometry analysis, and in vivo genetic screens have identified eukaryotic initiation factor (eIF) 4A as a direct molecular target of rocaglates. eIF4A is the RNA helicase subunit of eIF4F, a complex that mediates cap-dependent ribosome recruitment to mRNA templates. The eIF4F complex has been implicated in tumor initiation and maintenance through elevated levels or increased phosphorylation status of its cap-binding subunit, eIF4E, thus furthering the interest toward developing rocaglates as antineoplastic agents. Recent experiments have indicated that rocaglates also interact with prohibitins 1 and 2, proteins implicated in c-Raf-MEK-ERK signaling. Because increased ERK signaling stimulates eIF4E phosphorylation status, rocaglates are also expected to inhibit eIF4E phosphorylation status, a point that has not been thoroughly investigated. It is currently unknown whether the effects on translation observed with rocaglates are solely through eIF4A inhibition or also a feature of blocking eIF4E phosphorylation. Here, we show that rocaglates inhibit translation through an eIF4E phosphorylation-independent mechanism.
Collapse
Affiliation(s)
- Jennifer Chu
- Department of Biochemistry, McGill University, Montreal, Québec, Canada
| | - Regina Cencic
- Department of Biochemistry, McGill University, Montreal, Québec, Canada
| | - Wenyu Wang
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts
| | - John A Porco
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Québec, Canada. The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Québec, Canada. Department of Oncology, McGill University, Montreal, Québec, Canada.
| |
Collapse
|
65
|
Rubio CA, Weisburd B, Holderfield M, Arias C, Fang E, DeRisi JL, Fanidi A. Transcriptome-wide characterization of the eIF4A signature highlights plasticity in translation regulation. Genome Biol 2015; 15:476. [PMID: 25273840 PMCID: PMC4203936 DOI: 10.1186/s13059-014-0476-1] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Indexed: 01/13/2023] Open
Abstract
Background Protein synthesis is tightly regulated and alterations to translation are characteristic of many cancers. Translation regulation is largely exerted at initiation through the eukaryotic translation initiation factor 4 F (eIF4F). eIF4F is pivotal for oncogenic signaling as it integrates mitogenic signals to amplify production of pro-growth and pro-survival factors. Convergence of these signals on eIF4F positions this factor as a gatekeeper of malignant fate. While the oncogenic properties of eIF4F have been characterized, genome-wide evaluation of eIF4F translational output is incomplete yet critical for developing novel translation-targeted therapies. Results To understand the impact of eIF4F on malignancy, we utilized a genome-wide ribosome profiling approach to identify eIF4F-driven mRNAs in MDA-MB-231 breast cancer cells. Using Silvestrol, a selective eIF4A inhibitor, we identify 284 genes that rely on eIF4A for efficient translation. Our screen confirmed several known eIF4F-dependent genes and identified many unrecognized targets of translation regulation. We show that 5′UTR complexity determines Silvestrol-sensitivity and altering 5′UTR structure modifies translational output. We highlight physiological implications of eIF4A inhibition, providing mechanistic insight into eIF4F pro-oncogenic activity. Conclusions Here we describe the transcriptome-wide consequence of eIF4A inhibition in malignant cells, define mRNA features that confer eIF4A dependence, and provide genetic support for Silvestrol’s anti-oncogenic properties. Importantly, our results show that eIF4A inhibition alters translation of an mRNA subset distinct from those affected by mTOR-mediated eIF4E inhibition. These results have significant implications for therapeutically targeting translation and underscore a dynamic role for eIF4F in remodeling the proteome toward malignancy. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0476-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Claudia A Rubio
- Novartis Institutes for Biomedical Research, Emeryville, CA 94608-2916, USA
| | | | | | | | | | | | | |
Collapse
|
66
|
Engagement of the B-cell receptor of chronic lymphocytic leukemia cells drives global and MYC-specific mRNA translation. Blood 2015; 127:449-57. [PMID: 26491071 DOI: 10.1182/blood-2015-07-660969] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/15/2015] [Indexed: 12/13/2022] Open
Abstract
Antigenic stimulation via the B-cell receptor (BCR) is a major driver of the proliferation and survival of chronic lymphocytic leukemia (CLL) cells. However, the precise mechanisms by which BCR stimulation leads to accumulation of malignant cells remain incompletely understood. Here, we investigated the ability of BCR stimulation to increase messenger RNA (mRNA) translation, which can promote carcinogenesis by effects on both global mRNA translation and upregulated expression of specific oncoproteins. Re-analysis of gene expression profiles revealed striking upregulation of pathways linked to mRNA translation both in CLL cells derived from lymph nodes, the major site of antigen stimulation in vivo, and after BCR stimulation in vitro. Anti-IgM significantly increased mRNA translation in primary CLL cells, measured using bulk metabolic labeling and a novel flow cytometry assay to quantify responses at a single-cell level. These translational responses were suppressed by inhibitors of BTK (ibrutinib) and SYK (tamatinib). Anti-IgM-induced mRNA translation was associated with increased expression of translation initiation factors eIF4A and eIF4GI, and reduced expression of the eIF4A inhibitor, PDCD4. Anti-IgM also increased mRNA translation in normal blood B cells, but without clear modulatory effects on these factors. In addition, anti-IgM increased translation of mRNA-encoding MYC, a major driver of disease progression. mRNA translation is likely to be an important mediator of the growth-promoting effects of antigen stimulation acting, at least in part, via translational induction of MYC. Differences in mechanisms of translational regulation in CLL and normal B cells may provide opportunities for selective therapeutic attack.
Collapse
|
67
|
Affiliation(s)
- Tiziana Girardi
- KU Leuven Department of Oncology, Leuven, Belgium VIB Center for the Biology of Disease, Leuven, Belgium
| | - Kim De Keersmaecker
- KU Leuven Department of Oncology, Leuven, Belgium VIB Center for the Biology of Disease, Leuven, Belgium
| |
Collapse
|
68
|
Besbes S, Mirshahi M, Pocard M, Billard C. Strategies targeting apoptosis proteins to improve therapy of chronic lymphocytic leukemia. Blood Rev 2015; 29:345-50. [DOI: 10.1016/j.blre.2015.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 03/02/2015] [Accepted: 03/26/2015] [Indexed: 12/21/2022]
|
69
|
Targeting the eIF4A RNA helicase as an anti-neoplastic approach. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:781-91. [DOI: 10.1016/j.bbagrm.2014.09.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/03/2014] [Indexed: 01/22/2023]
|
70
|
Pelletier J, Graff J, Ruggero D, Sonenberg N. Targeting the eIF4F translation initiation complex: a critical nexus for cancer development. Cancer Res 2015; 75:250-63. [PMID: 25593033 DOI: 10.1158/0008-5472.can-14-2789] [Citation(s) in RCA: 267] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Elevated protein synthesis is an important feature of many cancer cells and often arises as a consequence of increased signaling flux channeled to eukaryotic initiation factor 4F (eIF4F), the key regulator of the mRNA-ribosome recruitment phase of translation initiation. In many cellular and preclinical models of cancer, eIF4F deregulation results in changes in translational efficiency of specific mRNA classes. Importantly, many of these mRNAs code for proteins that potently regulate critical cellular processes, such as cell growth and proliferation, enhanced cell survival and cell migration that ultimately impinge on several hallmarks of cancer, including increased angiogenesis, deregulated growth control, enhanced cellular survival, epithelial-to-mesenchymal transition, invasion, and metastasis. By being positioned as the molecular nexus downstream of key oncogenic signaling pathways (e.g., Ras, PI3K/AKT/TOR, and MYC), eIF4F serves as a direct link between important steps in cancer development and translation initiation. Identification of mRNAs particularly responsive to elevated eIF4F activity that typifies tumorigenesis underscores the critical role of eIF4F in cancer and raises the exciting possibility of developing new-in-class small molecules targeting translation initiation as antineoplastic agents.
Collapse
Affiliation(s)
- Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Québec, Canada. The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Québec, Canada. Department of Oncology, McGill University, Montreal, Québec, Canada.
| | - Jeremy Graff
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Davide Ruggero
- School of Medicine and Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal, Québec, Canada. The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Québec, Canada
| |
Collapse
|
71
|
eIF4A1 is a promising new therapeutic target in ER-negative breast cancer. Cell Death Differ 2015; 22:524-5. [PMID: 25613380 DOI: 10.1038/cdd.2014.210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
72
|
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by a typical defect in apoptosis and is still an incurable disease. Numerous apoptosis inducers have been described. These synthetic compounds and natural products (mainly derived from plants) display antileukemic properties in vitro and in vivo and some have even been tested in the clinic in CLL. They act through several different mechanisms. Most of them involve proteins of the Bcl-2 family, which are the key regulators in triggering the mitochondrial pathway of caspase-dependent apoptosis. Thus, the Mcl-1/Noxa axis appeared as a target. Here I overview natural and synthetic apoptosis inducers and their mechanisms of action in CLL cells. Opportunities for developing novel, apoptosis-based therapeutics are presented.
Collapse
Affiliation(s)
- Christian Billard
- INSERM U 872, Centre de Recherche des Cordeliers, Equipe 18, Paris, France
| |
Collapse
|
73
|
Pekarsky Y, Drusco A, Kumchala P, Croce CM, Zanesi N. The long journey of TCL1 transgenic mice: lessons learned in the last 15 years. Gene Expr 2015; 16:129-35. [PMID: 25700368 PMCID: PMC4963004 DOI: 10.3727/105221615x14181438356256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The first transgenic mouse of the TCL1 oncogene was described more than 15 years ago, and since then, the overexpression of the gene in T- and B-cells in vivo has been extensively studied to reveal the molecular details in the pathogenesis of some lymphocytic leukemias. This review discusses the main features of the original TCL1 models and the different lines of research successively developed with particular attention to genetically compound mice and the therapeutic applications in drug development.
Collapse
|
74
|
Luan Z, He Y, He F, Chen Z. Rocaglamide overcomes tumor necrosis factor-related apoptosis-inducing ligand resistance in hepatocellular carcinoma cells by attenuating the inhibition of caspase-8 through cellular FLICE-like-inhibitory protein downregulation. Mol Med Rep 2014; 11:203-11. [PMID: 25333816 PMCID: PMC4237083 DOI: 10.3892/mmr.2014.2718] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 09/04/2014] [Indexed: 12/18/2022] Open
Abstract
The enhancement of apoptosis is a therapeutic strategy used in the treatment of cancer. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising antitumor agent. However, hepatocellular carcinoma (HCC) cells exhibit marked resistance to the induction of cell death by TRAIL. The present study investigated whether rocaglamide, a naturally occurring product isolated from the genus Aglaia, is able to sensitize resistant HCC cells to TRAIL-mediated apoptosis. Two HCC cell lines, HepG2 and Huh-7, were treated with rocaglamide and/or TRAIL and the induction of apoptosis and effects on the TRAIL signaling pathway were investigated. The in vivo efficacy of rocaglamide was determined in TRAIL-resistant Huh-7-derived tumor xenografts. Rocaglamide significantly sensitized the TRAIL-resistant HCC cells to apoptosis by TRAIL, which resulted from the rocaglamide-mediated downregulation of cellular FLICE-like inhibitory protein and subsequent caspase-8 activation. Furthermore, rocaglamide markedly inhibited tumor growth from Huh-7 cells propagated in severe combined immunodeficient mice, suggesting that chemosentization also occurred in vivo. These data suggest that rocaglamide acted synergistically with TRAIL against the TRAIL-resistant HCC cells. Thus, it is concluded that rocaglamide as an adjuvant to TRAIL-based therapy may present a promising therapeutic approach for the treatment of HCC.
Collapse
Affiliation(s)
- Zhou Luan
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Ying He
- Department of Ophthalmology, The Central Hospital of Wuhan, Wuhan, Hubei 430014, P.R. China
| | - Fan He
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhishui Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
75
|
Abstract
Human diffuse large B-cell lymphomas (DLBCLs) often aberrantly express oncogenes that generally contain complex secondary structures in their 5' untranslated region (UTR). Oncogenes with complex 5'UTRs require enhanced eIF4A RNA helicase activity for translation. PDCD4 inhibits eIF4A, and PDCD4 knockout mice have a high penetrance for B-cell lymphomas. Here, we show that on B-cell receptor (BCR)-mediated p70s6K activation, PDCD4 is degraded, and eIF4A activity is greatly enhanced. We identified a subset of genes involved in BCR signaling, including CARD11, BCL10, and MALT1, that have complex 5'UTRs and encode proteins with short half-lives. Expression of these known oncogenic proteins is enhanced on BCR activation and is attenuated by the eIF4A inhibitor Silvestrol. Antigen-experienced immunoglobulin (Ig)G(+) splenic B cells, from which most DLBCLs are derived, have higher levels of eIF4A cap-binding activity and protein translation than IgM(+) B cells. Our results suggest that eIF4A-mediated enhancement of oncogene translation may be a critical component for lymphoma progression, and specific targeting of eIF4A may be an attractive therapeutic approach in the management of human B-cell lymphomas.
Collapse
|
76
|
Abstract
Mouse models that recapitulate human malignancy are valuable tools for the elucidation of the underlying pathogenetic mechanisms and for preclinical studies. Several genetically engineered mouse models have been generated, either mimicking genetic aberrations or deregulated gene expression in chronic lymphocytic leukemia (CLL). The usefulness of such models in the study of the human disease may potentially be hampered by species-specific biological differences in the target cell of the oncogenic transformation. Specifically, do the genetic lesions or the deregulated expression of leukemia-associated genes faithfully recapitulate the spectrum of lymphoproliferations in humans? Do the CLL-like lymphoproliferations in the mouse have the phenotypic, histological, genetic, and clinical features of the human disease? Here we compare the various CLL mouse models with regard to disease phenotype, penetrance, and severity. We discuss similarities and differences of the murine lymphoproliferations compared with human CLL. We propose that the Eμ-TCL1 transgenic and 13q14-deletion models that have been comprehensively studied at the levels of leukemia phenotype, antigen-receptor repertoire, and disease course show close resemblance to the human disease. We conclude that modeling CLL-associated genetic dysregulations in mice can provide important insights into the molecular mechanisms of disease pathogenesis and generate valuable tools for the development of novel therapies.
Collapse
|
77
|
Pan L, Woodard JL, Lucas DM, Fuchs JR, Kinghorn AD. Rocaglamide, silvestrol and structurally related bioactive compounds from Aglaia species. Nat Prod Rep 2014; 31:924-39. [PMID: 24788392 PMCID: PMC4091845 DOI: 10.1039/c4np00006d] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Covering: 2006 to 2013. Investigations on the chemistry and biology of rocaglamide, silvestrol and structurally related bioactive compounds from Aglaia species during the period 2006-2013 are reviewed. Included are new phytochemical studies of naturally occurring rocaglamide derivatives, an update on synthetic methods for cyclopenta[b]benzofurans, and a description of the recent biological evaluation and mechanism-of-action studies on compounds of this type.
Collapse
Affiliation(s)
- Li Pan
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | | | | | | | | |
Collapse
|
78
|
Li-Weber M. Molecular mechanisms and anti-cancer aspects of the medicinal phytochemicals rocaglamides (=flavaglines). Int J Cancer 2014; 137:1791-9. [PMID: 24895251 DOI: 10.1002/ijc.29013] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/29/2014] [Accepted: 06/02/2014] [Indexed: 01/08/2023]
Abstract
Rocaglamides (= flavaglines) are potent natural anti-cancer phytochemicals that inhibit cancer growth at nanomolar concentrations by the following mechanisms: (1) inhibition of translation initiation via inhibition of phosphorylation of the mRNA cap-binding eukaryotic translation initiation factor eIF4E and stabilization of RNA-binding of the translation initiation factor eIF4A in the eIF4F complex; (2) blocking cell cycle progression by activation of the ATM/ATR-Chk1/Chk2 checkpoint pathway; (3) inactivation of the heat shock factor 1 (HSF1) leading to up-regulation of thioredoxin-interacting protein (TXNIP) and consequent reduction of glucose uptake and (4) induction of apoptosis through activation of the MAPK p38 and JNK and inhibition of the Ras-CRaf-MEK-ERK signaling pathway. Besides the anti-cancer activities, rocaglamides are also shown to protect primary cells from chemotherapy-induced cell death and alleviate inflammation- and drug-induced injury in neuronal tissues. This review will focus on the recently discovered molecular mechanisms of the actions of rocaglamides and highlights the benefits of using rocaglamides in cancer treatment.
Collapse
Affiliation(s)
- Min Li-Weber
- Tumorimmunology Program (D030), German Cancer Research Center (DKFZ), D-69120, Heidelberg, Germany
| |
Collapse
|
79
|
Billard C. Targeting antiapoptotic and proapoptotic proteins for novel chronic lymphocytic leukemia therapeutics. Int J Hematol Oncol 2014. [DOI: 10.2217/ijh.14.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
SUMMARY Deficiency in the apoptotic program is one of the hallmarks of chronic lymphocytic leukemia. Defective apoptosis mainly results from the constitutive activation of survival pathways, which leads to the transcription and overexpression of antiapoptotic factors. The latter include proteins of the Bcl-2 family and members of the IAP family. The strategy of inhibiting the expression or activity of these antiapoptotic factors has been extensively investigated. Conversely, upregulation of proapoptotic proteins, notably BH3-only members of the Bcl-2 family (capable of antagonizing their antiapoptotic counterparts) has also been consistently described. Either mechanism can promote apoptosis in chronic lymphocytic leukemia cells ex vivo. The present article recapitulates the mechanistic data and how they contribute to the development of therapeutic agents targeting apoptosis.
Collapse
Affiliation(s)
- Christian Billard
- INSERM U965, Hôpital Lariboisière, Paris, France
- Université Paris Diderot-Paris 7, UMR S965, Paris, France
| |
Collapse
|
80
|
Chen SS, Chiorazzi N. Murine genetically engineered and human xenograft models of chronic lymphocytic leukemia. Semin Hematol 2014; 51:188-205. [PMID: 25048783 DOI: 10.1053/j.seminhematol.2014.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is a genetically complex disease, with multiple factors having an impact on onset, progression, and response to therapy. Genetic differences/abnormalities have been found in hematopoietic stem cells from patients, as well as in B lymphocytes of individuals with monoclonal B-cell lymphocytosis who may develop the disease. Furthermore, after the onset of CLL, additional genetic alterations occur over time, often causing disease worsening and altering patient outcomes. Therefore, being able to genetically engineer mouse models that mimic CLL or at least certain aspects of the disease will help us understand disease mechanisms and improve treatments. This notwithstanding, because neither the genetic aberrations responsible for leukemogenesis and progression nor the promoting factors that support these are likely identical in character or influences for all patients, genetically engineered mouse models will only completely mimic CLL when all of these factors are precisely defined. In addition, multiple genetically engineered models may be required because of the heterogeneity in susceptibility genes among patients that can have an effect on genetic and environmental characteristics influencing disease development and outcome. For these reasons, we review the major murine genetically engineered and human xenograft models in use at the present time, aiming to report the advantages and disadvantages of each.
Collapse
Affiliation(s)
- Shih-Shih Chen
- The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, New York.
| | - Nicholas Chiorazzi
- The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, New York; Departments of Medicine and Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, Manhasset, New York.
| |
Collapse
|
81
|
Tang CHA, Ranatunga S, Kriss CL, Cubitt CL, Tao J, Pinilla-Ibarz JA, Del Valle JR, Hu CCA. Inhibition of ER stress-associated IRE-1/XBP-1 pathway reduces leukemic cell survival. J Clin Invest 2014; 124:2585-98. [PMID: 24812669 DOI: 10.1172/jci73448] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Activation of the ER stress response is associated with malignant progression of B cell chronic lymphocytic leukemia (CLL). We developed a murine CLL model that lacks the ER stress-associated transcription factor XBP-1 in B cells and found that XBP-1 deficiency decelerates malignant progression of CLL-associated disease. XBP-1 deficiency resulted in acquisition of phenotypes that are disadvantageous for leukemic cell survival, including compromised BCR signaling capability and increased surface expression of sphingosine-1-phosphate receptor 1 (S1P1). Because XBP-1 expression requires the RNase activity of the ER transmembrane receptor IRE-1, we developed a potent IRE-1 RNase inhibitor through chemical synthesis and modified the structure to facilitate entry into cells to target the IRE-1/XBP-1 pathway. Treatment of CLL cells with this inhibitor (B-I09) mimicked XBP-1 deficiency, including upregulation of IRE-1 expression and compromised BCR signaling. Moreover, B-I09 treatment did not affect the transport of secretory and integral membrane-bound proteins. Administration of B-I09 to CLL tumor-bearing mice suppressed leukemic progression by inducing apoptosis and did not cause systemic toxicity. Additionally, B-I09 and ibrutinib, an FDA-approved BTK inhibitor, synergized to induce apoptosis in B cell leukemia, lymphoma, and multiple myeloma. These data indicate that targeting XBP-1 has potential as a treatment strategy, not only for multiple myeloma, but also for mature B cell leukemia and lymphoma.
Collapse
MESH Headings
- Adenine/analogs & derivatives
- Animals
- Apoptosis/drug effects
- Cell Line, Tumor
- Cell Survival/drug effects
- DNA-Binding Proteins/antagonists & inhibitors
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Endoplasmic Reticulum Stress/drug effects
- Endoribonucleases/antagonists & inhibitors
- Endoribonucleases/genetics
- Endoribonucleases/metabolism
- Enzyme Inhibitors/chemistry
- Enzyme Inhibitors/pharmacology
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Mice
- Mice, Knockout
- Piperidines
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Pyrazoles/pharmacology
- Pyrimidines/pharmacology
- Regulatory Factor X Transcription Factors
- Signal Transduction/drug effects
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/deficiency
- Transcription Factors/genetics
- Transcription Factors/metabolism
- X-Box Binding Protein 1
Collapse
|
82
|
Akcakanat A, Hong DS, Meric-Bernstam F. Targeting translation initiation in breast cancer. ACTA ACUST UNITED AC 2014; 2:e28968. [PMID: 26779407 PMCID: PMC4705830 DOI: 10.4161/trla.28968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 04/09/2014] [Accepted: 04/22/2014] [Indexed: 12/23/2022]
Abstract
Over the past 20 years, a better understanding of cancer biology, screening for early detection, improved adjuvant treatment, and targeted therapies have decreased the rate of breast cancer deaths. However, resistance to treatment is common, and new approaches are needed. Deregulation of translation initiation is associated with the commencement and progression of cancer. Often, translation initiation factors are overexpressed and the related signaling pathways activated in human tumors. Recently, a significant number of inhibitors that target translation factors and pathways have become available. These inhibitors are being tested alone or in combination with chemotherapeutic agents in clinical trials. The results are varied, and it is not yet clear which drug treatments most effectively inhibit tumor growth. This review highlights the pathways and downstream effects of the activation of translation and discusses targeting the control of translation initiation as a therapeutic approach in cancer, focusing on breast cancer clinical trials.
Collapse
Affiliation(s)
- Argun Akcakanat
- Department of Investigational Cancer Therapeutics; Houston, TX USA
| | - David S Hong
- Department of Investigational Cancer Therapeutics; Houston, TX USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics; Houston, TX USA; Department of Surgical Oncology; The University of Texas MD Anderson Cancer Center; Houston, TX USA
| |
Collapse
|
83
|
Hawkins BC, Lindqvist LM, Nhu D, Sharp PP, Segal D, Powell AK, Campbell M, Ryan E, Chambers JM, White JM, Rizzacasa MA, Lessene G, Huang DCS, Burns CJ. Simplified silvestrol analogues with potent cytotoxic activity. ChemMedChem 2014; 9:1556-66. [PMID: 24677741 DOI: 10.1002/cmdc.201400024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Indexed: 01/11/2023]
Abstract
The complex natural products silvestrol (1) and episilvestrol (2) are inhibitors of translation initiation through binding to the DEAD-box helicase eukaryotic initiation factor 4A (eIF4A). Both compounds are potently cytotoxic to cancer cells in vitro, and 1 has demonstrated efficacy in vivo in several xenograft cancer models. Here we show that 2 has limited plasma membrane permeability and is metabolized in liver microsomes in a manner consistent with that reported for 1. In addition, we have prepared a series of analogues of these compounds where the complex pseudo-sugar at C6 has been replaced with chemically simpler moieties to improve drug-likeness. Selected compounds from this work possess excellent activity in biochemical and cellular translation assays with potent activity against leukemia cell lines.
Collapse
Affiliation(s)
- Bill C Hawkins
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052 (Australia); Department of Medical Biology, The University of Melbourne, VIC 3010 (Australia)
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Jong WW, Tan PJ, Kamarulzaman FA, Mejin M, Lim D, Ang I, Naming M, Yeo TC, Ho ASH, Teo SH, Lee HB. Photodynamic activity of plant extracts from Sarawak, Borneo. Chem Biodivers 2014; 10:1475-86. [PMID: 23939795 DOI: 10.1002/cbdv.201200303] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Indexed: 11/09/2022]
Abstract
Photodynamic therapy (PDT) is a medical treatment that involves the irradiation of an administered photosensitizing drug with light of a particular wavelength to activate the photosensitizer to kill abnormal cells. To date, only a small number of photosensitizers have been clinically approved for PDT, and researchers continue to look for new molecules that have more desirable properties for clinical applications. Natural products have long been important sources of pharmaceuticals, and there is a great potential for discovery of novel chemotypes from under-explored biodiversities in the world. The objective of this study is to mine the terrestrial plants in Sarawak, Borneo Island, for new photosensitizers for PDT. In a screening program from 2004 to 2008, we prepared and studied 2,400 extracts from 888 plants for their photosensitizing activities. This report details the bioprospecting process, preparation and testing of extracts, analysis of the active samples, fractionation of four samples, and isolation and characterization of photosensitizers.
Collapse
Affiliation(s)
- Wan Wui Jong
- Sarawak Biodiversity Centre (SBC), KM 20 Jalan Borneo Heights, Semengoh, Locked Bag No. 3032, 93990 Kuching, Sarawak, Malaysia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Flavaglines target primitive leukemia cells and enhance anti-leukemia drug activity. Leukemia 2014; 28:1960-8. [PMID: 24577530 DOI: 10.1038/leu.2014.93] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 02/19/2014] [Accepted: 02/21/2014] [Indexed: 01/28/2023]
Abstract
Identification of agents that target human leukemia stem cells is an important consideration for the development of new therapies. The present study demonstrates that rocaglamide and silvestrol, closely related natural products from the flavagline class of compounds, are able to preferentially kill functionally defined leukemia stem cells, while sparing normal stem and progenitor cells. In addition to efficacy as single agents, flavaglines sensitize leukemia cells to several anticancer compounds, including front-line chemotherapeutic drugs used to treat leukemia patients. Mechanistic studies indicate that flavaglines strongly inhibit protein synthesis, leading to the reduction of short-lived antiapoptotic proteins. Notably though, treatment with flavaglines, alone or in combination with other drugs, yields a much stronger cytotoxic activity toward leukemia cells than the translational inhibitor temsirolimus. These results indicate that the underlying cell death mechanism of flavaglines is more complex than simply inhibiting general protein translation. Global gene expression profiling and cell biological assays identified Myc inhibition and the disruption of mitochondrial integrity to be features of flavaglines, which we propose contribute to their efficacy in targeting leukemia cells. Taken together, these findings indicate that rocaglamide and silvestrol are distinct from clinically available translational inhibitors and represent promising candidates for the treatment of leukemia.
Collapse
|
86
|
The CD37-targeted antibody-drug conjugate IMGN529 is highly active against human CLL and in a novel CD37 transgenic murine leukemia model. Leukemia 2014; 28:1501-10. [PMID: 24445867 PMCID: PMC4090271 DOI: 10.1038/leu.2014.32] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 12/27/2013] [Accepted: 01/08/2014] [Indexed: 12/18/2022]
Abstract
Therapeutic regimens for chronic lymphocytic leukemia (CLL) have increasingly utilized monoclonal antibodies since the chimeric anti-CD20 antibody rituximab was introduced. Despite improved clinical outcomes, current CLL therapies are not curative. Therefore, antibodies with greater efficacy and novel targets are desirable. One promising target is CD37, a tetraspanin protein highly expressed on malignant B-cells in CLL and non-Hodgkin lymphoma. Although several novel CD37-directed therapeutics are emerging, detailed preclinical evaluation of these agents is limited by lack of appropriate animal models with spontaneous leukemia expressing the human CD37 (hCD37) target. To address this, we generated a murine CLL model that develops transplantable hCD37+ leukemia. Subsequently, we engrafted healthy mice with this leukemia to evaluate IMGN529, a novel hCD37-targeting antibody-drug conjugate. IMGN529 rapidly eliminated peripheral blood leukemia and improved overall survival. In contrast, the antibody component of IMGN529 could not alter disease course despite exhibiting substantial in vitro cytotoxicity. Furthermore, IMGN529 is directly cytotoxic to human CLL in vitro, depletes B-cells in patient whole blood and promotes killing by macrophages and natural killer cells. Our results demonstrate the utility of a novel mouse model for evaluating anti-human CD37 therapeutics and highlight the potential of IMGN529 for treatment of CLL and other CD37-positive B-cell malignancies.
Collapse
|
87
|
Lü S, Wang J. Homoharringtonine and omacetaxine for myeloid hematological malignancies. J Hematol Oncol 2014; 7:2. [PMID: 24387717 PMCID: PMC3884015 DOI: 10.1186/1756-8722-7-2] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 12/26/2013] [Indexed: 01/16/2023] Open
Abstract
Homoharringtonine (HHT), a plant alkaloid with antitumor properties originally identified nearly 40 years ago, has a unique mechanism of action by preventing the initial elongation step of protein synthesis. HHT has been used widely in China for the treatment of chronic myeloid leukemia (CML), acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). Omacetaxine, a semisynthetic form of HHT, with excellent bioavailability by the subcutaneous route, has recently been approved by FDA of the United States for the treatment of CML refractory to tyrosine kinase inhibitors. This review summarized preclinical and clinical development of HHT and omacetaxine for myeloid hematological malignancies.
Collapse
Affiliation(s)
| | - Jianmin Wang
- Department of Hematology, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China.
| |
Collapse
|
88
|
Flavaglines: potent anticancer drugs that target prohibitins and the helicase eIF4A. Future Med Chem 2013; 5:2185-97. [DOI: 10.4155/fmc.13.177] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Flavaglines are complex natural products that are found in several medicinal plants of Southeast Asia in the genus Aglaia; these compounds have shown exceptional anticancer and cytoprotective activities. This review describes the significance of flavaglines as a new class of pharmacological agents and presents recent developments in their synthesis, structure–activity relationships, identification of their molecular targets and modes of action. Flavaglines display a unique profile of anticancer activities that are mediated by two classes of unrelated proteins: prohibitins and the translation initiation factor eIF4A. The identification of these molecular targets is expected to accelerate advancement toward clinical studies. The selectivity of cytotoxicity towards cancer cells has been shown to be due to an inhibition of the transcription factor HSF1 and an upregulation of the tumor suppressor TXNIP. In addition, flavaglines display potent anti-inflammatory, cardioprotective and neuroprotective activities; however, the mechanisms underlying these activities are yet to be elucidated.
Collapse
|
89
|
Rubus parvifolius L. inhibited the growth of leukemia K562 cells in vitro and in vivo. Chin J Integr Med 2013; 20:36-42. [DOI: 10.1007/s11655-013-1537-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Indexed: 01/14/2023]
|
90
|
Dapat E, Jacinto S, Efferth T. A phenolic ester from Aglaia loheri leaves reveals cytotoxicity towards sensitive and multidrug-resistant cancer cells. Altern Ther Health Med 2013; 13:286. [PMID: 24160768 PMCID: PMC3816152 DOI: 10.1186/1472-6882-13-286] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 10/25/2013] [Indexed: 12/23/2022]
Abstract
BACKGROUND Bioactivity-guided fractionation of extracts of Aglaia loheri Blanco (Meliaceae) yielded a cytotoxic isolate, termed Maldi 531.2[M + H]+. This phenolic ester was further investigated for its in vitro cytotoxicity toward human CCRF-CEM leukemia cells and their multi-drug resistant (MDR) subline, CEM/ADR5000. The intrinsic mitochondrial membrane potential (ΔΨm) and induction of apoptosis by this isolate were evaluated. METHODS Chromatography techniques, mass spectrometry and proton NMR were employed to isolate Maldi 531.2[M + H]+. XTT cell proliferation and viability assay was used for cytotoxic test, and JC-1[5',5',6,6',-tetrachloro-1,1',3,3'-tetraethylbenzimidazoyl carbocyanine iodide was used to assess ΔΨm and initiation of apoptosis; Annexin V/FITC-PI staining was employed to analyse apoptosis. RESULTS Maldi 531.2[M + H]+ was cytotoxic towards both CCRF-CEM and CEM/ADR5000 cells with IC50 values of 0.02 and 0.03 μM, respectively. The mitochondrial membrane potential (ΔΨm) of MDR cells was significantly reduced in a dose-dependent manner leading to apoptosis as detected by flow cytometric Annexin V-FITC/ PI staining. CONCLUSION Maldi 531.2[M + H]+ may be a potential anti-cancer drug candidate whose mode of action include reduction of the mitochondrial membrane potential and induction of apoptosis.
Collapse
|
91
|
Kogure T, Kinghorn AD, Yan I, Bolon B, Lucas DM, Grever MR, Patel T. Therapeutic potential of the translation inhibitor silvestrol in hepatocellular cancer. PLoS One 2013; 8:e76136. [PMID: 24086701 PMCID: PMC3784426 DOI: 10.1371/journal.pone.0076136] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 08/23/2013] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND & AIMS Although hepatocellular cancers (HCC) frequently arise in the setting of fibrosis and a hepatic regenerative response requiring new cell growth, therapeutic strategies for these cancers have not targeted protein synthesis. Silvestrol, a rocaglate isolated from Aglaiafoveolata, can inhibit protein synthesis by modulating the initiation of translation through the eukaryotic initiation factor 4A. In this study, we evaluated the therapeutic efficacy of silvestrol for HCC. METHODS The efficacy of silvestrol was examined using human HCC cells in vitro using an orthotopic tumor cell xenograft model in a fibrotic liver. The impact of silvestrol on the liver was assessed in vivo in wild-type mice. RESULTS Silvestrol inhibited cell growth with an IC50 of 12.5-86 nM in four different HCC cell lines. In vitro, silvestrol increased apoptosis and caspase 3/7 activity accompanied by loss of mitochondrial membrane potential and decreased expression of Mcl-1 and Bcl-xL. A synergistic effect was observed when silvestrol was combined with other therapeutic agents, with a dose-reduction index of 3.42-fold with sorafenib and 1.75-fold with rapamycin at a fractional effect of 0.5. In vivo, an antitumor effect was observed with 0.4 mg/kg silvestrol compared to controls after one week, and survival of tumor-bearing mice was improved with a median survival time of 42 and 28 days in the silvestrol and control groups, respectively. The effect on survival was not observed in orthotopic xenografts in non-fibrotic livers. Silvestrol treatment in vivo did not alter liver structure. CONCLUSIONS These data identify silvestrol as a novel, structurally unique drug with potent anticancer activity for HCC and support the potential value of targeting initiation of translation in the treatment of HCC.
Collapse
Affiliation(s)
- Takayuki Kogure
- Department of Internal Medicine, College of Medicine, Ohio State University, Columbus, Ohio, United States of America
- Departments of Transplantation and Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States of America
| | - A. Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Ohio State University, Columbus, Ohio, United States of America
| | - Irene Yan
- Departments of Transplantation and Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Brad Bolon
- Comparative Pathology and Mouse Phenotyping Shared Resource, Ohio State University Comprehensive Cancer Center, Columbus, Ohio, United States of America
| | - David M. Lucas
- Department of Internal Medicine, College of Medicine, Ohio State University, Columbus, Ohio, United States of America
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Ohio State University, Columbus, Ohio, United States of America
| | - Michael R. Grever
- Department of Internal Medicine, College of Medicine, Ohio State University, Columbus, Ohio, United States of America
| | - Tushar Patel
- Department of Internal Medicine, College of Medicine, Ohio State University, Columbus, Ohio, United States of America
- Departments of Transplantation and Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States of America
- * E-mail:
| |
Collapse
|
92
|
Thuaud F, Ribeiro N, Nebigil CG, Désaubry L. Prohibitin ligands in cell death and survival: mode of action and therapeutic potential. ACTA ACUST UNITED AC 2013; 20:316-31. [PMID: 23521790 PMCID: PMC7111013 DOI: 10.1016/j.chembiol.2013.02.006] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/31/2013] [Accepted: 02/06/2013] [Indexed: 12/21/2022]
Abstract
Prohibitins (PHBs) are scaffold proteins that modulate many signaling pathways controlling cell survival, metabolism, and inflammation. Several drugs that target PHBs have been identified and evaluated for various clinical applications. Preclinical and clinical studies indicate that these PHB ligands may be useful in oncology, cardiology, and neurology, as well as against obesity. This review covers the physiological role of PHBs in health and diseases and current developments concerning PHB ligands.
Collapse
Affiliation(s)
- Frédéric Thuaud
- Therapeutic Innovation Laboratory UMR 7200, CNRS/Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch Cedex, France
| | | | | | | |
Collapse
|
93
|
Sadlish H, Galicia-Vazquez G, Paris CG, Aust T, Bhullar B, Chang L, Helliwell SB, Hoepfner D, Knapp B, Riedl R, Roggo S, Schuierer S, Studer C, Porco JA, Pelletier J, Movva NR. Evidence for a functionally relevant rocaglamide binding site on the eIF4A-RNA complex. ACS Chem Biol 2013; 8:1519-27. [PMID: 23614532 DOI: 10.1021/cb400158t] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Translation initiation is an emerging target in oncology and neurobiology indications. Naturally derived and synthetic rocaglamide scaffolds have been used to interrogate this pathway; however, there is uncertainty regarding their precise mechanism(s) of action. We exploited the genetic tractability of yeast to define the primary effect of both a natural and a synthetic rocaglamide in a cellular context and characterized the molecular target using biochemical studies and in silico modeling. Chemogenomic profiling and mutagenesis in yeast identified the eIF (eukaryotic Initiation Factor) 4A helicase homologue as the primary molecular target of rocaglamides and defined a discrete set of residues near the RNA binding motif that confer resistance to both compounds. Three of the eIF4A mutations were characterized regarding their functional consequences on activity and response to rocaglamide inhibition. These data support a model whereby rocaglamides stabilize an eIF4A-RNA interaction to either alter the level and/or impair the activity of the eIF4F complex. Furthermore, in silico modeling supports the annotation of a binding pocket delineated by the RNA substrate and the residues identified from our mutagenesis screen. As expected from the high degree of conservation of the eukaryotic translation pathway, these observations are consistent with previous observations in mammalian model systems. Importantly, we demonstrate that the chemically distinct silvestrol and synthetic rocaglamides share a common mechanism of action, which will be critical for optimization of physiologically stable derivatives. Finally, these data confirm the value of the rocaglamide scaffold for exploring the impact of translational modulation on disease.
Collapse
Affiliation(s)
- Heather Sadlish
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel,
Switzerland
| | | | - C. Gregory Paris
- Novartis Institutes for BioMedical Research, 250 Massachusetts
Avenue Cambridge Massachusetts 02139, United States
| | - Thomas Aust
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel,
Switzerland
| | - Bhupinder Bhullar
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel,
Switzerland
| | - Lena Chang
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel,
Switzerland
| | - Stephen B. Helliwell
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel,
Switzerland
| | - Dominic Hoepfner
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel,
Switzerland
| | - Britta Knapp
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel,
Switzerland
| | - Ralph Riedl
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel,
Switzerland
| | - Silvio Roggo
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel,
Switzerland
| | - Sven Schuierer
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel,
Switzerland
| | - Christian Studer
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel,
Switzerland
| | - John A. Porco
- Department of Chemistry, Center for Chemical
Methodology and Library Development, Boston University, Boston, Massachusetts, United States
| | | | - N. Rao Movva
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel,
Switzerland
| |
Collapse
|
94
|
Cencic R, Robert F, Galicia-Vázquez G, Malina A, Ravindar K, Somaiah R, Pierre P, Tanaka J, Deslongchamps P, Pelletier J. Modifying chemotherapy response by targeted inhibition of eukaryotic initiation factor 4A. Blood Cancer J 2013; 3:e128. [PMID: 23872707 PMCID: PMC3730203 DOI: 10.1038/bcj.2013.25] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 06/13/2013] [Accepted: 06/18/2013] [Indexed: 12/21/2022] Open
Abstract
Translation is regulated predominantly at the initiation phase by several signal transduction pathways that are often usurped in human cancers, including the PI3K/Akt/mTOR axis. mTOR exerts unique administration over translation by regulating assembly of eukaryotic initiation factor (eIF) 4F, a heterotrimeric complex responsible for recruiting 40S ribosomes (and associated factors) to mRNA 5′ cap structures. Hence, there is much interest in targeted therapies that block eIF4F activity to assess the consequences on tumor cell growth and chemotherapy response. We report here that hippuristanol (Hipp), a translation initiation inhibitor that selectively inhibits the eIF4F RNA helicase subunit, eIF4A, resensitizes Eμ-Myc lymphomas to DNA damaging agents, including those that overexpress eIF4E—a modifier of rapamycin responsiveness. As Mcl-1 levels are significantly affected by Hipp, combining its use with the Bcl-2 family inhibitor, ABT-737, leads to a potent synergistic response in triggering cell death in mouse and human lymphoma and leukemia cells. Suppression of eIF4AI using RNA interference also synergized with ABT-737 in murine lymphomas, highlighting eIF4AI as a therapeutic target for modulating tumor cell response to chemotherapy.
Collapse
Affiliation(s)
- R Cencic
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Santagata S, Mendillo ML, Tang YC, Subramanian A, Perley CC, Roche SP, Wong B, Narayan R, Kwon H, Koeva M, Amon A, Golub TR, Porco JA, Whitesell L, Lindquist S. Tight coordination of protein translation and HSF1 activation supports the anabolic malignant state. Science 2013; 341:1238303. [PMID: 23869022 PMCID: PMC3959726 DOI: 10.1126/science.1238303] [Citation(s) in RCA: 215] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ribosome is centrally situated to sense metabolic states, but whether its activity, in turn, coherently rewires transcriptional responses is unknown. Here, through integrated chemical-genetic analyses, we found that a dominant transcriptional effect of blocking protein translation in cancer cells was inactivation of heat shock factor 1 (HSF1), a multifaceted transcriptional regulator of the heat-shock response and many other cellular processes essential for anabolic metabolism, cellular proliferation, and tumorigenesis. These analyses linked translational flux to the regulation of HSF1 transcriptional activity and to the modulation of energy metabolism. Targeting this link with translation initiation inhibitors such as rocaglates deprived cancer cells of their energy and chaperone armamentarium and selectively impaired the proliferation of both malignant and premalignant cells with early-stage oncogenic lesions.
Collapse
Affiliation(s)
- Sandro Santagata
- Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Marc L. Mendillo
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yun-chi Tang
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Casey C. Perley
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Stéphane P. Roche
- Department of Chemistry, Center for Chemical Methodology and Library Development (CMLD-BU), Boston University, Boston MA, USA
| | - Bang Wong
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rajiv Narayan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hyoungtae Kwon
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Martina Koeva
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Angelika Amon
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Todd R. Golub
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - John A. Porco
- Department of Chemistry, Center for Chemical Methodology and Library Development (CMLD-BU), Boston University, Boston MA, USA
| | - Luke Whitesell
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
96
|
Robert F, Pelletier J. Perturbations of RNA helicases in cancer. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:333-49. [PMID: 23658027 DOI: 10.1002/wrna.1163] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Helicases are implicated in most stages of the gene expression pathway, ranging from DNA replication, RNA transcription, splicing, RNA transport, ribosome biogenesis, mRNA translation, RNA storage and decay. These enzymes utilize energy derived from nucleotide triphosphate hydrolysis to remodel ribonucleoprotein complexes, RNA, or DNA and in this manner affect the information content or output of RNA. Several RNA helicases have been implicated in the oncogenic process--either through altered expression levels, mutations, or due to their role in pathways required for tumor initiation, progression, maintenance, or chemosensitivity. The purpose of this review is to highlight those RNA helicases for which there is significant evidence implicating them in cancer biology.
Collapse
Affiliation(s)
- Francis Robert
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
97
|
Willimott S, Beck D, Ahearne MJ, Adams VC, Wagner SD. Cap-translation inhibitor, 4EGI-1, restores sensitivity to ABT-737 apoptosis through cap-dependent and -independent mechanisms in chronic lymphocytic leukemia. Clin Cancer Res 2013; 19:3212-23. [PMID: 23633452 DOI: 10.1158/1078-0432.ccr-12-2185] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The lymph node microenvironment promotes resistance to chemotherapy in chronic lymphocytic leukemia (CLL), partly through induction of BCL2 family prosurvival proteins. Currently available inhibitors do not target all BCL2 family prosurvival proteins and their effectiveness is also modified by proapoptotic BCL2 homology domain 3 (BH3) only protein expression. The goal of this study was to evaluate synergy between the eIF4E/eIF4G interaction inhibitor, 4EGI-1, and the BH3 mimetic, ABT-737. EXPERIMENTAL DESIGN CLL cells were cultured in conditions to mimic the lymph node microenvironment. Protein synthesis and cap-complex formation were determined. Polysome association of mRNAs from BCL2 family survival genes was analyzed by translational profiling. The effects of 4EGI-1 and the BCL2/BCL2L1 antagonist, ABT-737, on CLL cell apoptosis were determined. RESULTS Protein synthesis was increased approximately 6-fold by stromal cell/CD154 culture in a phosphoinositide 3-kinase α (PI3Kα)-specific manner and was reduced by 4EGI-1. PI3K inhibitors and 4EGI-1 also reduced cap-complex formation but only 4EGI-1 consistently reduced BCL2L1 and BCL2A1 protein levels. 4EGI-1, but not PI3K inhibitors or rapamycin, induced an endoplasmic reticulum stress response including proapoptotic NOXA and the translation inhibitor phosphorylated eIF2α. 4EGI-1 and ABT-737 synergized to cause apoptosis, independent of levels of prosurvival protein expression in individual patients. CONCLUSIONS Overall protein synthesis and cap-complex formation are induced by microenvironment stimuli in CLL. Inhibition of the cap-complex was not sufficient to repress BCL2 family prosurvival expression, but 4EGI-1 inhibited BCL2A1 and BCL2L1 while inducing NOXA through cap-dependent and -independent mechanisms. 4EGI-1 and ABT-737 synergized to produce apoptosis, and these agents may be the basis for a therapeutically useful combination.
Collapse
Affiliation(s)
- Shaun Willimott
- Department of Cancer Studies and Molecular Medicine and MRC Toxicology Unit, University of Leicester, Leicester, United Kingdom
| | | | | | | | | |
Collapse
|
98
|
Jin C, Rajabi H, Rodrigo CM, Porco JA, Kufe D. Targeting the eIF4A RNA helicase blocks translation of the MUC1-C oncoprotein. Oncogene 2013; 32:2179-88. [PMID: 22689062 PMCID: PMC3443512 DOI: 10.1038/onc.2012.236] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 05/07/2012] [Accepted: 05/10/2012] [Indexed: 12/15/2022]
Abstract
The oncogenic MUC1 C-terminal subunit (MUC1-C) subunit is aberrantly overexpressed in most human breast cancers by mechanisms that are not well understood. The present studies demonstrate that stimulation of non-malignant MCF-10A cells with epidermal growth factor (EGF) or heregulin (HRG) results in marked upregulation of MUC1-C translation. Growth factor-induced MUC1-C translation was found to be mediated by PI3KAKT, and not by MEKERK1/2, signaling. We also show that activation of the mammalian target of rapamycin complex 1 (mTORC1)ribosomal protein S6 kinase 1 (S6K1) pathway decreases tumor suppressor programmed cell death protein 4 (PDCD4), an inhibitor of the eIF4A RNA helicase, and contributes to the induction of MUC1-C translation. In concert with these results, treatment of growth factor-stimulated MCF-10A cells with the eIF4A RNA helicase inhibitors, silvestrol and CR-1-31-B, blocked increases in MUC1-C abundance. The functional significance of the increase in MUC1-C translation is supported by the demonstration that MUC1-C, in turn, forms complexes with EGF receptor (EGFR) and promotes EGFR-mediated activation of the PI3KAKT pathway and the induction of growth. Compared with MCF-10A cells, constitutive overexpression of MUC1-C in breast cancer cells was unaffected by EGF stimulation, but was blocked by inhibiting PI3KAKT signaling. The overexpression of MUC1-C in breast cancer cells was also inhibited by blocking eIF4A RNA helicase activity with silvestrol and CR-1-31-B. These findings indicate that EGF-induced MUC1-C expression is mediated by the PI3KAKT pathway and the eIF4A RNA helicase, and that this response promotes EGFR signaling in an autoinductive loop. The findings also indicate that targeting the eIF4A RNA helicase is a novel approach for blocking MUC1-C overexpression in breast cancer cells.
Collapse
Affiliation(s)
- C Jin
- Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | | | | |
Collapse
|
99
|
Pan L, Acuña UM, Li J, Jena N, Ninh TN, Pannell CM, Chai H, Fuchs JR, Carcache de Blanco EJ, Soejarto DD, Kinghorn AD. Bioactive flavaglines and other constituents isolated from Aglaia perviridis. JOURNAL OF NATURAL PRODUCTS 2013; 76:394-404. [PMID: 23301897 PMCID: PMC3606667 DOI: 10.1021/np3007588] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Eight new compounds, including two cyclopenta[b]benzopyran derivatives (1, 2), two cyclopenta[b]benzofuran derivatives (3, 4), three cycloartane triterpenoids (5-7), and an apocarotenoid (8), together with 16 known compounds, were isolated from the chloroform-soluble partitions of separate methanol extracts of a combination of the fruits, leaves, and twigs and of the roots of Aglaia perviridis collected in Vietnam. Isolation work was monitored using human colon cancer cells (HT-29) and facilitated with an LC/MS dereplication procedure. The structures of the new compounds (1-8) were determined on the basis of spectroscopic data interpretation. The Mosher ester method was employed to determine the absolute configurations of 5-7, and the absolute configuration of the 9,10-diol unit of compound 8 was established by a dimolybdenum tetraacetate [Mo2(AcO)4] induced circular dichroism procedure. Seven known rocaglate derivatives (9-15) exhibited significant cytotoxicity against the HT-29 cell line, with rocaglaol (9) being the most potent (ED50 0.0007 μM). The new compounds 2-4 were also active against this cell line, with ED50 values ranging from 0.46 to 4.7 μM. The cytotoxic compounds were evaluated against a normal colon cell line, CCD-112CoN. In addition, the new compound perviridicin B (2), three known rocaglate derivatives (9, 11, 12), and a known sesquiterpene, 2-oxaisodauc-5-en-12-al (17), showed significant NF-κB (p65) inhibitory activity in an ELISA assay.
Collapse
Affiliation(s)
- Li Pan
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ulyana Muñoz Acuña
- Division of Pharmacy Practice and Administration, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jie Li
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nivedita Jena
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Tran Ngoc Ninh
- Institute of Ecology and Biological Resources, Vietnamese Academy of Science and Technology, Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Caroline M. Pannell
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, U. K
| | - Heebyung Chai
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - James R. Fuchs
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Esperanza J. Carcache de Blanco
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Division of Pharmacy Practice and Administration, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Djaja D. Soejarto
- Program for Collaborative Research in the Pharmaceutical Science and Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Department of Botany, Field Museum of Natural History, 1400 S. Lake Shore Drive, Chicago, Illinois 60605, United States
| | - A. Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
100
|
Lin CJ, Nasr Z, Premsrirut PK, Porco JA, Hippo Y, Lowe SW, Pelletier J. Targeting synthetic lethal interactions between Myc and the eIF4F complex impedes tumorigenesis. Cell Rep 2013; 1:325-33. [PMID: 22573234 DOI: 10.1016/j.celrep.2012.02.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The energetically demanding process of translation is linked to multiple signaling events through mTOR-mediated regulation of eukaryotic initiation factor (eIF)4F complex assembly. Disrupting mTOR constraints on eIF4F activity can be oncogenic and alter chemotherapy response, making eIF4F an attractive antineoplastic target. Here, we combine a newly developed inducible RNAi platform and pharmacological targeting of eIF4F activity to define a critical role for endogenous eIF4F in Myc-dependent tumor initiation. We find elevated Myc levels are associated with deregulated eIF4F activity in the prelymphomatous stage of the Eμ-Myc lymphoma model. Inhibition of eIF4F is synthetic lethal with elevated Myc in premalignant pre-B/B cells resulting in reduced numbers of cycling pre-B/B cells and delayed tumor onset. At the organismal level, eIF4F suppression affected a subset of normal regenerating cells, but this was well tolerated and rapidly and completely reversible. Therefore, eIF4F is a key Myc client that represents a tumor-specific vulnerability.
Collapse
Affiliation(s)
- Chen-Ju Lin
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | | | | | | | |
Collapse
|