51
|
Chattapadhyaya S, Haldar S, Banerjee S. Microvesicles promote megakaryopoiesis by regulating DNA methyltransferase and methylation of Notch1 promoter. J Cell Physiol 2019; 235:2619-2630. [PMID: 31502256 DOI: 10.1002/jcp.29166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/26/2019] [Indexed: 01/03/2023]
Abstract
Megakaryopoiesis is the process of formation of mature megakaryocytes that takes place in the bone marrow niche resulting in the release of platelets into the peripheral blood. It has been suggested that cell to cell communication in this dense bone marrow niche may influence the fate of the cells. Numerous studies point to the role of exosomes and microvesicles not only as a messenger of the cellular crosstalk but also in growth and developmental process of various cell types. In the current study, we explored the effects of megakaryocyte-derived microvesicles in hematopoietic cell lines in the context of differentiation. Our study demonstrated that microvesicles isolated from the induced megakaryocytic cell lines have the ability to stimulate noninduced cells specifically into that particular lineage. We showed that this lineage commencement comes from the change in the methylation status of Notch1 promoter, which is regulated by DNA methyltransferases.
Collapse
Affiliation(s)
- Saran Chattapadhyaya
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute, Kolkata, India
| | - Srijan Haldar
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute, Kolkata, India
| | - Subrata Banerjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute, Kolkata, India
| |
Collapse
|
52
|
Abstract
Ageing is the main risk factor for the development of cardiovascular diseases. A central mechanism by which ageing promotes vascular pathologies is compromising endothelial health. The age-related attenuation of endothelium-dependent dilator responses (endothelial dysfunction) associated with impairment of angiogenic processes and the subsequent pathological remodelling of the microcirculation contribute to compromised tissue perfusion and exacerbate functional decline in older individuals. This Review focuses on cellular, molecular, and functional changes that occur in the endothelium during ageing. We explore the links between oxidative and nitrative stress and the conserved molecular pathways affecting endothelial dysfunction and impaired angiogenesis during ageing. We also speculate on how these pathological processes could be therapeutically targeted. An improved understanding of endothelial biology in older patients is crucial for all cardiologists because maintenance of a competently functioning endothelium is critical for adequate tissue perfusion and long-term cardiac health.
Collapse
|
53
|
Kiss T, Giles CB, Tarantini S, Yabluchanskiy A, Balasubramanian P, Gautam T, Csipo T, Nyúl-Tóth Á, Lipecz A, Szabo C, Farkas E, Wren JD, Csiszar A, Ungvari Z. Nicotinamide mononucleotide (NMN) supplementation promotes anti-aging miRNA expression profile in the aorta of aged mice, predicting epigenetic rejuvenation and anti-atherogenic effects. GeroScience 2019; 41:419-439. [PMID: 31463647 PMCID: PMC6815288 DOI: 10.1007/s11357-019-00095-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022] Open
Abstract
Understanding molecular mechanisms involved in vascular aging is essential to develop novel interventional strategies for treatment and prevention of age-related vascular pathologies. Recent studies provide critical evidence that vascular aging is characterized by NAD+ depletion. Importantly, in aged mice, restoration of cellular NAD+ levels by treatment with the NAD+ booster nicotinamide mononucleotide (NMN) exerts significant vasoprotective effects, improving endothelium-dependent vasodilation, attenuating oxidative stress, and rescuing age-related changes in gene expression. Strong experimental evidence shows that dysregulation of microRNAs (miRNAs) has a role in vascular aging. The present study was designed to test the hypothesis that age-related NAD+ depletion is causally linked to dysregulation of vascular miRNA expression. A corollary hypothesis is that functional vascular rejuvenation in NMN-treated aged mice is also associated with restoration of a youthful vascular miRNA expression profile. To test these hypotheses, aged (24-month-old) mice were treated with NMN for 2 weeks and miRNA signatures in the aortas were compared to those in aortas obtained from untreated young and aged control mice. We found that protective effects of NMN treatment on vascular function are associated with anti-aging changes in the miRNA expression profile in the aged mouse aorta. The predicted regulatory effects of NMN-induced differentially expressed miRNAs in aged vessels include anti-atherogenic effects and epigenetic rejuvenation. Future studies will uncover the mechanistic role of miRNA gene expression regulatory networks in the anti-aging effects of NAD+ booster treatments and determine the links between miRNAs regulated by NMN and sirtuin activators and miRNAs known to act in the conserved pathways of aging and major aging-related vascular diseases.
Collapse
Affiliation(s)
- Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Department of Medical Physics and Informatics / Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Cory B Giles
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Oklahoma Medical Research Foundation, Genes & Human Disease Research Program, Oklahoma City, OK and Department of Biochemistry and Molecular Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Tripti Gautam
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Department of Medical Physics and Informatics / Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
- Department of Public Health / Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Institute of Biophysics, Biological Research Centre / Theoretical Medicine Doctoral School, Hungarian Academy of Sciences, Szeged, Hungary
| | - Agnes Lipecz
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Department of Medical Physics and Informatics / Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
- Department of Public Health / Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Csaba Szabo
- Chair of Pharmacology, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Eszter Farkas
- Department of Medical Physics and Informatics / Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Jonathan D Wren
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Oklahoma Medical Research Foundation, Genes & Human Disease Research Program, Oklahoma City, OK and Department of Biochemistry and Molecular Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Department of Medical Physics and Informatics / Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.
- Department of Medical Physics and Informatics / Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary.
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
- Department of Public Health / Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest, Hungary.
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
54
|
Glucose impairs angiogenesis and promotes ventricular remodelling following myocardial infarction via upregulation of microRNA-17. Exp Cell Res 2019; 381:191-200. [DOI: 10.1016/j.yexcr.2019.04.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/27/2019] [Accepted: 04/30/2019] [Indexed: 01/07/2023]
|
55
|
Xiong X, Sun Y, Wang X. HIF1A/miR‐20a‐5p/TGFβ1 axis modulates adipose‐derived stem cells in a paracrine manner to affect the angiogenesis of human dermal microvascular endothelial cells. J Cell Physiol 2019; 235:2091-2101. [PMID: 31368162 DOI: 10.1002/jcp.29111] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/14/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Xiang Xiong
- Department of Plastic Surgery and Burns Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yang Sun
- Department of Plastic Surgery and Burns Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiancheng Wang
- Department of Plastic Surgery and Burns Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
56
|
Kreutzer FP, Fiedler J, Thum T. Non-coding RNAs: key players in cardiac disease. J Physiol 2019; 598:2995-3003. [PMID: 31291008 DOI: 10.1113/jp278131] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/29/2019] [Indexed: 01/18/2023] Open
Abstract
Molecular mechanisms underlying heart failure (HF) are only partly understood. Non-coding RNAs (ncRNAs) have been reported to control function and signalling routes in the myocardium. As ncRNAs such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs) or circular RNAs (circRNAs) can be selectively targeted via pharmacological approaches, this opens new avenues for diagnostic and therapeutic approaches. Here, we review the main ncRNA classes and how they influence cardiac biology. In addition we provide insight into the role of ncRNAs in chemotherapy-induced cardiac dysfunction. To provide a better understanding of ncRNAs in cardiovascular biology we present an outlook on specialized functions such as chromatin remodelling, biomarker potential and the recently discovered ncRNA-derived micropeptides.
Collapse
Affiliation(s)
- Fabian Philipp Kreutzer
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Jan Fiedler
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,National Heart and Lung Institute, Imperial College London, London, UK.,Excellence Cluster REBIRTH, Hannover Medical School, Hannover, Germany
| |
Collapse
|
57
|
miR-19 family: A promising biomarker and therapeutic target in heart, vessels and neurons. Life Sci 2019; 232:116651. [PMID: 31302195 DOI: 10.1016/j.lfs.2019.116651] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/06/2019] [Accepted: 07/10/2019] [Indexed: 12/17/2022]
Abstract
The miR-19 family, including miR-19a, miR-19b-1 and miR-19b-2, arises from two different paralogous clusters miR-17-92 and miR-106a-363. Although it is identified as oncogenic miRNA, the miR-19 family has also been found to play important roles in regulating normal tissue development. The precise control of miR-19 family level is essential for keeping tissue homeostasis and normal development of organisms. Its dysregulation leads to dysplasia, disease and even cancer. Therefore, this review focuses on the roles of miR-19 family in the development and disease of heart, vessels and neurons to estimate the potential value of miR-19 family as diagnostic biomarker or therapeutic target of cardiac, neurological, and vascular diseases.
Collapse
|
58
|
Jiang Y, Ma R, Zhao Y, Li G, Wang A, Lin W, Lan X, Zhong S, Cai J. MEF
2C/miR‐133a‐3p.1 circuit‐stabilized
AQP
1
expression maintains endothelial water homeostasis. FEBS Lett 2019; 593:2566-2573. [PMID: 31254364 DOI: 10.1002/1873-3468.13516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/19/2019] [Accepted: 05/20/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Yong Jiang
- Department of Laboratory Medicine Jilin Medical University China
| | - Rui Ma
- Department of Laboratory Medicine Jilin Medical University China
| | - Ying Zhao
- Department of Cardiology Jilin Central Hospital China
| | - Guo‐jie Li
- Department of Laboratory Medicine Jilin Medical University China
| | - Ai‐kun Wang
- Department of Laboratory Medicine Jilin Medical University China
| | - Wen‐long Lin
- Department of Laboratory Medicine Jilin Medical University China
| | - Xin‐mei Lan
- Department of Laboratory Medicine Jilin Medical University China
| | | | - Jian‐hui Cai
- Department of Surgery Jilin Medical University China
| |
Collapse
|
59
|
Lareyre F, Clément M, Moratal C, Loyer X, Jean-Baptiste E, Hassen-Khodja R, Chinetti G, Mallat Z, Raffort J. Differential micro-RNA expression in diabetic patients with abdominal aortic aneurysm. Biochimie 2019; 162:1-7. [DOI: 10.1016/j.biochi.2019.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/18/2019] [Indexed: 12/29/2022]
|
60
|
Di Stefano AB, Massihnia D, Grisafi F, Castiglia M, Toia F, Montesano L, Russo A, Moschella F, Cordova A. Adipose tissue, angiogenesis and angio-MIR under physiological and pathological conditions. Eur J Cell Biol 2019; 98:53-64. [DOI: 10.1016/j.ejcb.2018.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 01/06/2023] Open
|
61
|
Kikuchi S, Yoshioka Y, Prieto-Vila M, Ochiya T. Involvement of Extracellular Vesicles in Vascular-Related Functions in Cancer Progression and Metastasis. Int J Mol Sci 2019; 20:ijms20102584. [PMID: 31130715 PMCID: PMC6566766 DOI: 10.3390/ijms20102584] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/23/2019] [Accepted: 05/25/2019] [Indexed: 02/07/2023] Open
Abstract
The primary cause of mortality among patients with cancer is the progression of the tumor, better known as cancer invasion and metastasis. Cancer progression involves a series of biologically important steps in which the cross-talk between cancer cells and the cells in the surrounding environment is positioned as an important issue. Notably, angiogenesis is a key tumorigenic phenomenon for cancer progression. Cancer-related extracellular vesicles (EVs) commonly contribute to the modulation of a microenvironment favorable to cancer cells through their function of cell-to-cell communication. Vascular-related cells such as endothelial cells (ECs) and platelets activated by cancer cells and cancer-derived EVs develop procoagulant and proinflammatory statuses, which help excite the tumor environment, and play major roles in tumor progression, including in tumor extravasation, tumor cell microthrombi formation, platelet aggregation, and metastasis. In particular, cancer-derived EVs influence ECs, which then play multiple roles such as contributing to tumor angiogenesis, loss of endothelial vascular barrier by binding to ECs, and the subsequent endothelial-to-mesenchymal transition, i.e., extracellular matrix remodeling. Thus, cell-to-cell communication between cancer cells and ECs via EVs may be an important target for controlling cancer progression. This review describes the current knowledge regarding the involvement of EVs, especially exosomes derived from cancer cells, in EC-related cancer progression.
Collapse
Affiliation(s)
- Shinsuke Kikuchi
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo 104-0045, Japan.
- Department of Vascular Surgery, Asahikawa Medical University, Asahikawa 078-8510, Japan.
| | - Yusuke Yoshioka
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo 104-0045, Japan.
- Division of Molecular and Cellular Medicine, Institute of Medical Science Tokyo Medical University, Tokyo 160-0023, Japan.
| | - Marta Prieto-Vila
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo 104-0045, Japan.
- Division of Molecular and Cellular Medicine, Institute of Medical Science Tokyo Medical University, Tokyo 160-0023, Japan.
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo 104-0045, Japan.
- Division of Molecular and Cellular Medicine, Institute of Medical Science Tokyo Medical University, Tokyo 160-0023, Japan.
| |
Collapse
|
62
|
Postpartum profiling of microRNAs involved in pathogenesis of cardiovascular/cerebrovascular diseases in women exposed to pregnancy-related complications. Int J Cardiol 2019; 291:158-167. [PMID: 31151766 DOI: 10.1016/j.ijcard.2019.05.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/06/2019] [Accepted: 05/15/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND METHODS Gestational hypertension (GH), preeclampsia (PE) and fetal growth restriction (FGR) may predispose to later onset of cardiovascular/cerebrovascular diseases. We examined if pregnancy complications induce postpartum alterations in gene expression of cardiovascular/cerebrovascular disease associated microRNAs. 29 microRNAs were tested in peripheral blood of women, compared between groups with a history of GH, PE, FGR and controls, and correlated with the severity of the disease regarding clinical signs, delivery date, and Doppler parameters. RESULTS GH was associated with the up-regulation of miR-20a-5p, miR-143-3p, miR-146a-5p, miR-181a-5p, miR-199a-5p, miR-221-3p, and miR-499a-5p. The up-regulation of miR-17-5p, miR-20b-5p, miR-29a-3p, and miR-126-3p was a mutual phenomenon of GH and severe PE. GH and early PE were associated with up-regulation of miR-1-3p and miR-17-5p. GH and late PE showed up-regulation of miR-17-5p, miR-20b-5p, and miR-29a-3p. Severe PE induced up-regulation of miR-133a-3p and down-regulation of miR-130b-3p. MiR-133a-3p up-regulation was also observed in early PE. PE and/or FGR with abnormal Doppler parameters demonstrated up-regulation of miR-100-5p, miR-125b-5p, miR-133a-3p, and miR-145-5p. The combination screening was superior over using individual microRNAs for patients with GH, PE regardless of the severity of the disease, severe PE and early PE. A cardiovascular risk at patients with late PE, PE and/or FGR with abnormal Doppler parameters was identified more accurately using the single microRNA only. CONCLUSION Epigenetic changes characteristic for cardiovascular/cerebrovascular diseases are present in women with a prior exposure to pregnancy complications. Screening of microRNAs may be used to identify patients at a higher risk of later development of cardiovascular/cerebrovascular diseases.
Collapse
|
63
|
He B, Tran JT, Sanchez DJ. Manipulation of Type I Interferon Signaling by HIV and AIDS-Associated Viruses. J Immunol Res 2019; 2019:8685312. [PMID: 31089479 PMCID: PMC6476103 DOI: 10.1155/2019/8685312] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/14/2019] [Indexed: 12/20/2022] Open
Abstract
Type I Interferons were first described for their profound antiviral abilities in cell culture and animal models, and later, they were translated into potent antiviral therapeutics. However, as additional studies into the function of Type I Interferons progressed, it was also seen that pathogenic viruses have coevolved to encode potent mechanisms allowing them to evade or suppress the impact of Type I Interferons on their replication. For chronic viral infections, such as HIV and many of the AIDS-associated viruses, including HTLV, HCV, KSHV, and EBV, the clinical efficacy of Type I Interferons is limited by these mechanisms. Here, we review some of the ways that HIV and AIDS-associated viruses thrive in Type I Interferon-rich environments via mechanisms that block the function of this important antiviral cytokine. Overall, a better understanding of these mechanisms creates avenues to better understand the innate immune response to these viruses as well as plan the development of antivirals that would allow the natural antiviral effect of Type I Interferons to manifest during these infections.
Collapse
Affiliation(s)
- Buyuan He
- Pharmaceutical Sciences Department, College of Pharmacy, Western University of Health Sciences, Pomona 91766, California, USA
| | - James T. Tran
- Pharmaceutical Sciences Department, College of Pharmacy, Western University of Health Sciences, Pomona 91766, California, USA
| | - David Jesse Sanchez
- Pharmaceutical Sciences Department, College of Pharmacy, Western University of Health Sciences, Pomona 91766, California, USA
| |
Collapse
|
64
|
Icli B, Wu W, Ozdemir D, Li H, Haemmig S, Liu X, Giatsidis G, Cheng HS, Avci SN, Kurt M, Lee N, Guimaraes RB, Manica A, Marchini JF, Rynning SE, Risnes I, Hollan I, Croce K, Orgill DP, Feinberg MW. MicroRNA-135a-3p regulates angiogenesis and tissue repair by targeting p38 signaling in endothelial cells. FASEB J 2019; 33:5599-5614. [PMID: 30668922 PMCID: PMC6436660 DOI: 10.1096/fj.201802063rr] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/02/2019] [Indexed: 12/26/2022]
Abstract
Angiogenesis is a critical process in repair of tissue injury that is regulated by a delicate balance between pro- and antiangiogenic factors. In disease states associated with impaired angiogenesis, we identified that miR-135a-3p is rapidly induced and serves as an antiangiogenic microRNA (miRNA) by targeting endothelial cell (EC) p38 signaling in vitro and in vivo. MiR-135a-3p overexpression significantly inhibited EC proliferation, migration, and network tube formation in matrigel, whereas miR-135-3p neutralization had the opposite effects. Mechanistic studies using transcriptomic profiling, bioinformatics, 3'-UTR reporter and miRNA ribonucleoprotein complex -immunoprecipitation assays, and small interfering RNA dependency studies revealed that miR-135a-3p inhibits the p38 signaling pathway in ECs by targeting huntingtin-interacting protein 1 (HIP1). Local delivery of miR-135a-3p inhibitors to wounds of diabetic db/db mice markedly increased angiogenesis, granulation tissue thickness, and wound closure rates, whereas local delivery of miR-135a-3p mimics impaired these effects. Finally, through gain- and loss-of-function studies in human skin organoids as a model of tissue injury, we demonstrated that miR-135a-3p potently modulated p38 signaling and angiogenesis in response to VEGF stimulation by targeting HIP1. These findings establish miR-135a-3p as a pivotal regulator of pathophysiological angiogenesis and tissue repair by targeting a VEGF-HIP1-p38K signaling axis, providing new targets for angiogenic therapy to promote tissue repair.-Icli, B., Wu, W., Ozdemir, D., Li, H., Haemmig, S., Liu, X., Giatsidis, G., Cheng, H. S., Avci, S. N., Kurt, M., Lee, N., Guimaraes, R. B., Manica, A., Marchini, J. F., Rynning, S. E., Risnes, I., Hollan, I., Croce, K., Orgill, D. P., Feinberg, M. W. MicroRNA-135a-3p regulates angiogenesis and tissue repair by targeting p38 signaling in endothelial cells.
Collapse
Affiliation(s)
- Basak Icli
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Winona Wu
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Denizhan Ozdemir
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medical Biology, Hacettepe University, Ankara, Turkey
| | - Hao Li
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Stefan Haemmig
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Xin Liu
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Giorgio Giatsidis
- Division of Plastic Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Henry S. Cheng
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Seyma Nazli Avci
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Merve Kurt
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nathan Lee
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Raphael Boesche Guimaraes
- Instituto de Cardiologia do Rio Grande do Sul, Fundação Universitária de Cardiologia (ICFUC), Porto Alegre, Rio Grande do Sul, Brazil
| | - Andre Manica
- Instituto de Cardiologia do Rio Grande do Sul, Fundação Universitária de Cardiologia (ICFUC), Porto Alegre, Rio Grande do Sul, Brazil
| | - Julio F. Marchini
- Heart Institute, University of São Paulo Medical School, São Paulo, Brazil
| | - Stein Erik Rynning
- Department of Cardiac Surgery, LHL Hospital Gardermoen, Jessheim, Norway
| | - Ivar Risnes
- Department of Cardiac Surgery, LHL Hospital Gardermoen, Jessheim, Norway
| | - Ivana Hollan
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Rheumatology Department, Lillehamer Hospital for Rheumatic Diseases, Lillehamer, Norway
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway
| | - Kevin Croce
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Dennis P. Orgill
- Division of Plastic Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark W. Feinberg
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
65
|
Atif H, Hicks SD. A Review of MicroRNA Biomarkers in Traumatic Brain Injury. J Exp Neurosci 2019; 13:1179069519832286. [PMID: 30886525 PMCID: PMC6410383 DOI: 10.1177/1179069519832286] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/29/2019] [Indexed: 12/13/2022] Open
Abstract
There is growing public concern surrounding traumatic brain injury (TBI). TBI can cause significant morbidity, and the long-term sequelae are poorly understood. TBI diagnosis and management rely on patient-reported symptoms and subjective clinical assessment. There are no biologic tools to detect mild TBI or to track brain recovery. Emerging evidence suggests that microRNAs (miRNAs) may provide information about the injured brain. These tiny epigenetic molecules are expressed throughout the body. However, they are particularly important in neurons, can cross the blood-brain barrier, and are securely transported from cell to cell, where they regulate gene expression. miRNA levels may identify patients with TBI and predict symptom duration. This review synthesizes miRNA findings from 14 human studies. We distill more than 291 miRNAs to 17 biomarker candidates that overlap across multiple studies and multiple biofluids. The goal of this review is to establish a collective understanding of miRNA biology in TBI and identify clinical priorities for future investigations of this promising biomarker.
Collapse
Affiliation(s)
| | - Steven D Hicks
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| |
Collapse
|
66
|
Micrornas at the Interface between Osteogenesis and Angiogenesis as Targets for Bone Regeneration. Cells 2019; 8:cells8020121. [PMID: 30717449 PMCID: PMC6406308 DOI: 10.3390/cells8020121] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/25/2019] [Accepted: 01/30/2019] [Indexed: 12/17/2022] Open
Abstract
Bone formation and regeneration is a multistep complex process crucially determined by the formation of blood vessels in the growth plate region. This is preceded by the expression of growth factors, notably the vascular endothelial growth factor (VEGF), secreted by osteogenic cells, as well as the corresponding response of endothelial cells, although the exact mechanisms remain to be clarified. Thereby, coordinated coupling between osteogenesis and angiogenesis is initiated and sustained. The precise interplay of these two fundamental processes is crucial during times of rapid bone growth or fracture repair in adults. Deviations in this balance might lead to pathologic conditions such as osteoarthritis and ectopic bone formation. Besides VEGF, the recently discovered important regulatory and modifying functions of microRNAs also support this key mechanism. These comprise two principal categories of microRNAs that were identified with specific functions in bone formation (osteomiRs) and/or angiogenesis (angiomiRs). However, as hypoxia is a major driving force behind bone angiogenesis, a third group involved in this process is represented by hypoxia-inducible microRNAs (hypoxamiRs). This review was focused on the identification of microRNAs that were found to have an active role in osteogenesis as well as angiogenesis to date that were termed "CouplingmiRs (CPLGmiRs)". Outlined representatives therefore represent microRNAs that already have been associated with an active role in osteogenic-angiogenic coupling or are presumed to have its potential. Elucidation of the molecular mechanisms governing bone angiogenesis are of great relevance for improving therapeutic options in bone regeneration, tissue-engineering, and the treatment of bone-related diseases.
Collapse
|
67
|
Hromadnikova I, Kotlabova K, Dvorakova L, Krofta L, Sirc J. Postnatal Expression Profile of microRNAs Associated with Cardiovascular and Cerebrovascular Diseases in Children at the Age of 3 to 11 Years in Relation to Previous Occurrence of Pregnancy-Related Complications. Int J Mol Sci 2019; 20:ijms20030654. [PMID: 30717412 PMCID: PMC6387366 DOI: 10.3390/ijms20030654] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 02/07/2023] Open
Abstract
Children descending from pregnancies complicated by gestational hypertension (GH), preeclampsia (PE) or fetal growth restriction (FGR) have a lifelong cardiovascular risk. The aim of the study was to verify if pregnancy complications induce postnatal alterations in gene expression of microRNAs associated with cardiovascular/cerebrovascular diseases. Twenty-nine microRNAs were assessed in peripheral blood, compared between groups, and analyzed in relation to both aspects, the current presence of cardiovascular risk factors and cardiovascular complications and the previous occurrence of pregnancy complications with regard to the clinical signs, dates of delivery, and Doppler ultrasound examination. The expression profile of miR-21-5p differed between controls and children with a history of uncomplicated pregnancies with abnormal clinical findings. Abnormal expression profile of multiple microRNAs was found in children affected with GH (miR-1-3p, miR-17-5p, miR-20a-5p, miR-21-5p, miR-23a-3p, miR-26a-5p, miR-29a-3p, miR-103a-3p, miR-125b-5p, miR-126-3p, miR-133a-3p, miR-146a-5p, miR-181a-5p, miR-195-5p, and miR-342-3p), PE (miR-1-3p, miR-20a-5p, miR-20b-5p, miR-103a-3p, miR-133a-3p, miR-342-3p), and FGR (miR-17-5p, miR-126-3p, miR-133a-3p). The index of pulsatility in the ductus venosus showed a strong positive correlation with miR-210-3p gene expression in children exposed to PE and/or FGR. Any of changes in epigenome (up-regulation of miR-1-3p and miR-133a-3p) that were induced by pregnancy complications are long-acting and may predispose children affected with GH, PE, or FGR to later development of cardiovascular/cerebrovascular diseases. Novel epigenetic changes (aberrant expression profile of microRNAs) appeared in a proportion of children that were exposed to GH, PE, or FGR. Screening of particular microRNAs may stratify a highly risky group of children that might benefit from implementation of early primary prevention strategies.
Collapse
Affiliation(s)
- Ilona Hromadnikova
- Department of Molecular Biology and Cell Pathology, Third Faculty of Medicine, Charles University, 10000 Prague, Czech Republic.
| | - Katerina Kotlabova
- Department of Molecular Biology and Cell Pathology, Third Faculty of Medicine, Charles University, 10000 Prague, Czech Republic.
| | - Lenka Dvorakova
- Department of Molecular Biology and Cell Pathology, Third Faculty of Medicine, Charles University, 10000 Prague, Czech Republic.
| | - Ladislav Krofta
- Institute for the Care of the Mother and Child, Third Faculty of Medicine, Charles University, 14700 Prague, Czech Republic.
| | - Jan Sirc
- Institute for the Care of the Mother and Child, Third Faculty of Medicine, Charles University, 14700 Prague, Czech Republic.
| |
Collapse
|
68
|
Impact of angiogenic activation and inhibition on miRNA profiles of human retinal endothelial cells. Exp Eye Res 2019; 181:98-104. [PMID: 30615884 DOI: 10.1016/j.exer.2019.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 01/01/2019] [Accepted: 01/03/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Human retinal microvascular endothelial cells (HRMVECs) are involved in the pathogenesis of retinopathy of prematurity. In this study, the microRNA (miRNA) expression profiles of HRMVECs were investigated under resting conditions, angiogenic stimulation (VEGF treatment) and anti-VEGF treatment. MATERIALS AND METHODS The miRNA profiles of HRMVECs under resting and angiogenic conditions (VEGF treatment), as well as after addition of aflibercept, bevacizumab or ranibizumab were evaluated by analyzing the transcriptome of small non-coding RNAs. Differentially expressed miRNAs were validated using qPCR and classified using Gene Ontology enrichment analysis. RESULTS Ten miRNAs were found to be significantly changed more than 2-fold. Seven of these miRNAs were changed between resting conditions and angiogenic stimulation. Four of these miRNAs (miR-139-5p/-3p and miR-335-5p/-3p) were validated by qPCR in independent experiments and were found to be associated with angiogenesis and cell migration in Gene Ontology analysis. In addition, analysis of the most abundant miRNAs in the HRMVEC miRNome (representing at least 1% of the miRNome) was conducted and identified miR-21-5p, miR-29a-3p, miR-100-5p and miR-126-5p/-3p to be differently expressed by at least 15% between resting conditions and angiogenic conditions. These miRNAs were found to be associated with apoptotic signaling, regulation of kinase activity, intracellular signal transduction, cell surface receptor signaling and positive regulation of cell differentiation in Gene Ontology analysis. No differentially regulated miRNAs between angiogenic stimulation and angiogenic stimulation plus anti-VEGF treatment were identified. CONCLUSION In this study we characterized the miRNA profile of HRMVECs under resting, angiogenic and anti-angiogenic conditions and identified several miRNAs of potential pathophysiologic importance for angioproliferative retinal diseases. Our results have implications for possible miRNA-targeted angiomodulatory approaches in diseases like diabetic retinopathy or retinopathy of prematurity.
Collapse
|
69
|
Fernández-Hernando C, Suárez Y. MicroRNAs in endothelial cell homeostasis and vascular disease. Curr Opin Hematol 2019; 25:227-236. [PMID: 29547400 DOI: 10.1097/moh.0000000000000424] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Since the first discovery of microRNAs (miRNAs) in 1993, the involvement of miRNAs in different aspects of vascular disease has emerged as an important research field. In this review, we summarize the fundamental roles of miRNAs in controlling endothelial cell functions and their implication with several aspects of vascular dysfunction. RECENT FINDINGS MiRNAs have been found to be critical modulators of endothelial homeostasis. The dysregulation of miRNAs has been linked to endothelial dysfunction and the development and progression of vascular disease which and open new opportunities of using miRNAs as potential therapeutic targets for vascular disease. SUMMARY Further determination of miRNA regulatory circuits and defining miRNAs-specific target genes remains key to future miRNA-based therapeutic applications toward vascular disease prevention. Many new and unanticipated roles of miRNAs in the control of endothelial functions will assist clinicians and researchers in developing potential therapeutic applications.
Collapse
Affiliation(s)
- Carlos Fernández-Hernando
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Department of Pathology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
70
|
Shi S, Jin Y, Song H, Chen X. MicroRNA-34a attenuates VEGF-mediated retinal angiogenesis via targeting Notch1. Biochem Cell Biol 2018; 97:423-430. [PMID: 30571142 DOI: 10.1139/bcb-2018-0304] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Pathological angiogenesis in the retina is one of the main ocular diseases closely associated with vision loss. This work investigated the roles of microRNA-34a (miR-34a) and its potential target Notch1, in retinal angiogenesis. For this we used oxygen-induced retinopathy (OIR) rats and human retinal microvascular endothelial cells (HRMECs) stimulated with vascular endothelial growth factor (VEGF). We performed hematoxylin-eosin staining, Western blot for VEGF, and immunofluorescence staining for CD31 to verify the establishment of our OIR model. We observed down-regulation of miR-34a, and up-regulation of Notch1 and Hey1 in retinas from OIR rats. We found similar results with the VEGF-stimulated HRMECs. By performing MTT assay, cell scratch assay, tube formation assay, and by detecting the expression of matrix-metalloproteinase-2 (MMP-2), MMP-9, tissue inhibitors of metalloproteinases-1 (TIMP-1), and TIMP-2, we found that transfection of miR-34a ameliorated VEGF-mediated angiogenesis of HRMECs. We further observed that siRNA-induced gene silencing of Notch1 prevented VEGF-induced angiogenesis via regulating cell proliferation, cell migration, and tube formation of HRMECs. Additionally, activation of Notch1 by transfection of Notch1 plasmid attenuated the inhibitory effects of miR-34a on tube formation, in the present of VEGF. Results from our dual-luciferase reporter gene assay suggested that miR-34a targets Notch1. In summary, our data demonstrate that miR-34a attenuates retinal angiogenesis via targeting Notch1.
Collapse
Affiliation(s)
- Shaoyang Shi
- a Department of Ophthalmology, 202 Hospital of Chinese PLA, Shenyang 110003, People's Republic of China
| | - Yong Jin
- b Department of Medical Affairs, 202 Hospital of Chinese PLA, Shenyang 110003, People's Republic of China
| | - Haishan Song
- a Department of Ophthalmology, 202 Hospital of Chinese PLA, Shenyang 110003, People's Republic of China
| | - Xiaolong Chen
- c Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| |
Collapse
|
71
|
MicroRNAs as Diagnostic and Prognostic Biomarkers in Ischemic Stroke-A Comprehensive Review and Bioinformatic Analysis. Cells 2018; 7:cells7120249. [PMID: 30563269 PMCID: PMC6316722 DOI: 10.3390/cells7120249] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/01/2018] [Accepted: 12/02/2018] [Indexed: 12/14/2022] Open
Abstract
Stroke is the second-most common cause of death worldwide. The pathophysiology of ischemic stroke (IS) is related to inflammation, atherosclerosis, blood coagulation, and platelet activation. MicroRNAs (miRNAs) play important roles in physiological and pathological processes of neurodegenerative diseases and progression of certain neurological diseases, such as IS. Several different miRNAs, and their target genes, are recognized to be involved in the pathophysiology of IS. The capacity of miRNAs to simultaneously regulate several target genes underlies their unique value as diagnostic and prognostic markers in IS. In this review, we focus on the role of miRNAs as diagnostic and prognostic biomarkers in IS. We discuss the most common and reliable detection methods available and promising tests currently under development. We also present original results from bioinformatic analyses of published results, identifying the ten most significant genes (HMGB1, YWHAZ, PIK3R1, STAT3, MAPK1, CBX5, CAPZB, THBS1, TNFRSF10B, RCOR1) associated with inflammation, blood coagulation, and platelet activation and targeted by miRNAs in IS. Additionally, we created miRNA-gene target interaction networks based on Gene Ontology (GO) information derived from publicly available databases. Among our most interesting findings, miR-19a-3p is the most widely modulated miRNA across all selected ontologies and might be proposed as novel biomarker in IS to be tested in future studies.
Collapse
|
72
|
Ast V, Kordaß T, Oswald M, Kolte A, Eisel D, Osen W, Eichmüller SB, Berndt A, König R. MiR-192, miR-200c and miR-17 are fibroblast-mediated inhibitors of colorectal cancer invasion. Oncotarget 2018; 9:35559-35580. [PMID: 30473751 PMCID: PMC6238973 DOI: 10.18632/oncotarget.26263] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/06/2018] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer remains a leading cause of cancer-related death worldwide. A previous transcriptomics based study characterized molecular subgroups of which the stromal subgroup was associated with the worst clinical outcome. Micro-RNAs (miRNAs) are well-known regulators of gene expression and can follow a non-linear repression mechanism. We set up a model combining piecewise linear and linear regression and applied this combined regression model to a comprehensive colon adenocarcinoma dataset. We identified miRNAs involved in regulating characteristic gene sets, particularly extracellular matrix remodeling in the stromal subgroup. Comparison of expression data from separated (epithelial) cancer cells and stroma cells or fibroblasts associate these regulatory interactions with infiltrating stromal or tumor-associated fibroblasts. MiR-200c, miR-17 and miR-192 were identified as the most promising candidates regulating genes crucial for extracellular matrix remodeling. We validated our computational findings by in vitro assays. Enforced expression of either miR-200c, miR-17 or miR-192 in untransformed human colon fibroblasts down-regulated 85% of all predicted target genes. Expressing these miRNAs singly or in combination in human colon fibroblasts co-cultured with colon cancer cells considerably reduced cancer cell invasion validating these miRNAs as cancer cell infiltration suppressors in tumor associated fibroblasts.
Collapse
Affiliation(s)
- Volker Ast
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany
- Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute Jena, 07745 Jena, Germany
| | - Theresa Kordaß
- GMP & T Cell Therapy Unit, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Marcus Oswald
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany
- Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute Jena, 07745 Jena, Germany
| | - Amol Kolte
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany
- Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute Jena, 07745 Jena, Germany
| | - David Eisel
- GMP & T Cell Therapy Unit, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Wolfram Osen
- GMP & T Cell Therapy Unit, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Stefan B. Eichmüller
- GMP & T Cell Therapy Unit, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Alexander Berndt
- Institute of Forensic Medicine, Section Pathology, Jena University Hospital, 07747 Jena, Germany
| | - Rainer König
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany
- Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute Jena, 07745 Jena, Germany
| |
Collapse
|
73
|
Indolfi C, Iaconetti C, Gareri C, Polimeni A, De Rosa S. Non-coding RNAs in vascular remodeling and restenosis. Vascul Pharmacol 2018; 114:49-63. [PMID: 30368024 DOI: 10.1016/j.vph.2018.10.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 10/08/2018] [Accepted: 10/18/2018] [Indexed: 02/06/2023]
Abstract
Vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) are crucial in vascular remodeling. They exert pivotal roles in the development and progression of atherosclerosis, vascular response to injury, and restenosis after transcatheter angioplasty. As a witness of their importance in the cardiovascular system, a large body of evidence has accumulated about the role played by micro RNAs (miRNA) in modulating both VSMCs and ECs. More recently, a growing number of long noncoding RNA (lncRNAs) came beneath the spotlights in this research field. Several mechanisms have been revealed by which lncRNAs are able to exert a relevant biological impact on vascular remodeling. The aim of this review is to provide an integrated summary of ncRNAs that exert a relevant biological function in VSMCs and ECs of the vascular wall, with emphasis on the available clinical evidence of the potential usefulness of these molecules as circulating biomarkers of in-stent restenosis.
Collapse
Affiliation(s)
- Ciro Indolfi
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Italy; URT CNR of IFC, University Magna Graecia, Italy.
| | - Claudio Iaconetti
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Italy
| | - Clarice Gareri
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Italy
| | - Alberto Polimeni
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Italy
| | - Salvatore De Rosa
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Italy
| |
Collapse
|
74
|
Xi T, Jin F, Zhu Y, Wang J, Tang L, Wang Y, Liebeskind DS, Scalzo F, He Z. miR-27a-3p protects against blood-brain barrier disruption and brain injury after intracerebral hemorrhage by targeting endothelial aquaporin-11. J Biol Chem 2018; 293:20041-20050. [PMID: 30337368 DOI: 10.1074/jbc.ra118.001858] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 10/16/2018] [Indexed: 12/21/2022] Open
Abstract
Previous studies have reported that miR-27a-3p is down-regulated in the serum of patients with intracerebral hemorrhage (ICH), but the implication of miR-27a-3p down-regulation in post-ICH complications remains elusive. Here we verified miR-27a-3p levels in the serum of ICH patients by real-time PCR and observed that miR-27a-3p is also significantly reduced in the serum of these patients. We then further investigated the effect of miR-27a-3p on post-ICH complications by intraventricular administration of a miR-27a-3p mimic in rats with collagenase-induced ICH. We found that the hemorrhage markedly reduced miR-27a-3p levels in the hematoma, perihematomal tissue, and serum and that intracerebroventricular administration of the miR-27a-3p mimic alleviated behavioral deficits 24 h after ICH. Moreover, ICH-induced brain edema, vascular leakage, and leukocyte infiltration were also attenuated by this mimic. Of note, miR-27a-3p mimic treatment also inhibited neuronal apoptosis and microglia activation in the perihematomal zone. We further observed that the miR-27a-3p mimic suppressed the up-regulation of aquaporin-11 (AQP11) in the perihematomal area and in rat brain microvascular endothelial cells (BMECs). Moreover, miR-27a-3p down-regulation increased BMEC monolayer permeability and impaired BMEC proliferation and migration. In conclusion, miR-27a-3p down-regulation contributes to brain edema, blood-brain barrier disruption, neuron loss, and neurological deficits following ICH. We conclude that application of exogenous miR-27a-3p may protect against post-ICH complications by targeting AQP11 in the capillary endothelial cells of the brain.
Collapse
Affiliation(s)
- Tianyang Xi
- From the Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang 110001, China and
| | - Feng Jin
- From the Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang 110001, China and
| | - Ying Zhu
- From the Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang 110001, China and
| | - Jialu Wang
- From the Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang 110001, China and
| | - Ling Tang
- From the Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang 110001, China and
| | - Yanzhe Wang
- From the Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang 110001, China and
| | - David S Liebeskind
- the Department of Neurology, University of California, Los Angeles, California 90095-7334
| | - Fabien Scalzo
- the Department of Neurology, University of California, Los Angeles, California 90095-7334
| | - Zhiyi He
- From the Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang 110001, China and.
| |
Collapse
|
75
|
Sun L, Li W, Lei F, Li X. The regulatory role of microRNAs in angiogenesis-related diseases. J Cell Mol Med 2018; 22:4568-4587. [PMID: 29956461 PMCID: PMC6156236 DOI: 10.1111/jcmm.13700] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/17/2018] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at a post-transcriptional level via either the degradation or translational repression of a target mRNA. They play an irreplaceable role in angiogenesis by regulating the proliferation, differentiation, apoptosis, migration and tube formation of angiogenesis-related cells, which are indispensable for multitudinous physiological and pathological processes, especially for the occurrence and development of vascular diseases. Imbalance between the regulation of miRNAs and angiogenesis may cause many diseases such as cancer, cardiovascular disease, aneurysm, Kawasaki disease, aortic dissection, phlebothrombosis and diabetic microvascular complication. Therefore, it is important to explore the essential role of miRNAs in angiogenesis, which might help to uncover new and effective therapeutic strategies for vascular diseases. This review focuses on the interactions between miRNAs and angiogenesis, and miRNA-based biomarkers in the diagnosis, treatment and prognosis of angiogenesis-related diseases, providing an update on the understanding of the clinical value of miRNAs in targeting angiogenesis.
Collapse
Affiliation(s)
- Li‐Li Sun
- Department of Vascular Surgerythe Affiliated Drum Tower HospitalNanjing University Medical SchoolNanjingChina
- Department of Vascular Surgerythe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Wen‐Dong Li
- Department of Vascular Surgerythe Affiliated Drum Tower HospitalNanjing University Medical SchoolNanjingChina
| | - Feng‐Rui Lei
- Department of Vascular Surgerythe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xiao‐Qiang Li
- Department of Vascular Surgerythe Affiliated Drum Tower HospitalNanjing University Medical SchoolNanjingChina
| |
Collapse
|
76
|
Hourigan ST, Solly EL, Nankivell VA, Ridiandries A, Weimann BM, Henriquez R, Tepper ER, Zhang JQJ, Tsatralis T, Clayton ZE, Vanags LZ, Robertson S, Nicholls SJ, Ng MKC, Bursill CA, Tan JTM. The regulation of miRNAs by reconstituted high-density lipoproteins in diabetes-impaired angiogenesis. Sci Rep 2018; 8:13596. [PMID: 30206364 PMCID: PMC6133943 DOI: 10.1038/s41598-018-32016-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 08/28/2018] [Indexed: 01/08/2023] Open
Abstract
Diabetic vascular complications are associated with impaired ischaemia-driven angiogenesis. We recently found that reconstituted high-density lipoproteins (rHDL) rescue diabetes-impaired angiogenesis. microRNAs (miRNAs) regulate angiogenesis and are transported within HDL to sites of injury/repair. The role of miRNAs in the rescue of diabetes-impaired angiogenesis by rHDL is unknown. Using a miRNA array, we found that rHDL inhibits hsa-miR-181c-5p expression in vitro and using a hsa-miR-181c-5p mimic and antimiR identify a novel anti-angiogenic role for miR-181c-5p. miRNA expression was tracked over time post-hindlimb ischaemic induction in diabetic mice. Early post-ischaemia when angiogenesis is important, rHDL suppressed hindlimb mmu-miR-181c-5p. mmu-miR-181c-5p was not detected in the plasma or within HDL, suggesting rHDL specifically targets mmu-miR-181c-5p at the ischaemic site. Three known angiogenic miRNAs (mmu-miR-223-3p, mmu-miR-27b-3p, mmu-miR-92a-3p) were elevated in the HDL fraction of diabetic rHDL-infused mice early post-ischaemia. This was accompanied by a decrease in plasma levels. Only mmu-miR-223-3p levels were elevated in the hindlimb 3 days post-ischaemia, indicating that rHDL regulates mmu-miR-223-3p in a time-dependent and site-specific manner. The early regulation of miRNAs, particularly miR-181c-5p, may underpin the rescue of diabetes-impaired angiogenesis by rHDL and has implications for the treatment of diabetes-related vascular complications.
Collapse
Affiliation(s)
- Samuel T Hourigan
- The Heart Research Institute, Sydney, Australia.,The University of Sydney, Sydney Medical School, Sydney, Australia
| | - Emma L Solly
- Heart Health Theme, South Australian Health & Medical Research Institute, Adelaide, Australia
| | - Victoria A Nankivell
- Heart Health Theme, South Australian Health & Medical Research Institute, Adelaide, Australia
| | - Anisyah Ridiandries
- The Heart Research Institute, Sydney, Australia.,The University of Sydney, Sydney Medical School, Sydney, Australia
| | - Benjamin M Weimann
- Heart Health Theme, South Australian Health & Medical Research Institute, Adelaide, Australia.,Adelaide Medical School, Faculty of Health & Medical Sciences, The University of Adelaide, Adelaide, Australia
| | | | - Edward R Tepper
- The Heart Research Institute, Sydney, Australia.,The University of Sydney, Sydney Medical School, Sydney, Australia
| | - Jennifer Q J Zhang
- The Heart Research Institute, Sydney, Australia.,The University of Sydney, Sydney Medical School, Sydney, Australia
| | | | - Zoe E Clayton
- The Heart Research Institute, Sydney, Australia.,The University of Sydney, Sydney Medical School, Sydney, Australia
| | - Laura Z Vanags
- The Heart Research Institute, Sydney, Australia.,The University of Sydney, Sydney Medical School, Sydney, Australia
| | - Stacy Robertson
- The Heart Research Institute, Sydney, Australia.,The University of Sydney, Sydney Medical School, Sydney, Australia
| | - Stephen J Nicholls
- Heart Health Theme, South Australian Health & Medical Research Institute, Adelaide, Australia.,Adelaide Medical School, Faculty of Health & Medical Sciences, The University of Adelaide, Adelaide, Australia
| | - Martin K C Ng
- The Heart Research Institute, Sydney, Australia.,The University of Sydney, Sydney Medical School, Sydney, Australia.,Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Christina A Bursill
- The Heart Research Institute, Sydney, Australia.,The University of Sydney, Sydney Medical School, Sydney, Australia.,Heart Health Theme, South Australian Health & Medical Research Institute, Adelaide, Australia.,Adelaide Medical School, Faculty of Health & Medical Sciences, The University of Adelaide, Adelaide, Australia
| | - Joanne T M Tan
- The Heart Research Institute, Sydney, Australia. .,The University of Sydney, Sydney Medical School, Sydney, Australia. .,Heart Health Theme, South Australian Health & Medical Research Institute, Adelaide, Australia. .,Adelaide Medical School, Faculty of Health & Medical Sciences, The University of Adelaide, Adelaide, Australia.
| |
Collapse
|
77
|
Mohseni Z, Spaanderman MEA, Oben J, Calore M, Derksen E, Al-Nasiry S, de Windt LJ, Ghossein-Doha C. Cardiac remodeling and pre-eclampsia: an overview of microRNA expression patterns. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2018; 52:310-317. [PMID: 28466998 DOI: 10.1002/uog.17516] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 03/13/2017] [Accepted: 03/31/2017] [Indexed: 06/07/2023]
Abstract
Pre-eclampsia (PE) is strongly associated with heart failure (HF) later in life. During PE pregnancy, the left ventricle undergoes concentric remodeling which often persists after delivery. This aberrant remodeling can induce a molecular signature that can be evaluated in terms of microRNAs (miRNAs) and which may help to explain the associated increased risk of HF. For this review, we performed a literature search of PubMed (National Center for Biotechnology Information), identifying studies on miRNA expression in concentric remodeling and on miRNA expression in PE. The miRNA data were stratified based on origin (isolated from humans or animals and from tissue or the circulation) and both datasets compared in order to generate a list of miRNA expression patterns in concentric remodeling and in PE. The nine miRNAs identified in both concentric remodeling and PE-complicated pregnancy were: miR-1, miR-18, miR-21, miR-29b, miR-30, miR-125b, miR-181b, miR-195 and miR-499-5p. We found five of these miRNAs (miR-18, miR-21, miR-125b, miR-195 and miR-499-5p) to be upregulated in both PE pregnancy and cardiac remodeling and two (miR-1 and miR-30) to be downregulated in both; the remaining two miRNAs (miR-29b and miR-181b) showed upregulation during PE but downregulation in cardiac remodeling. This innovative approach may be a step towards finding relevant biomarkers for complicated pregnancy and elucidating their relationship with remote cardiovascular disease. Copyright © 2017 ISUOG. Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Z Mohseni
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - M E A Spaanderman
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - J Oben
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - M Calore
- Department of Cardiology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - E Derksen
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - S Al-Nasiry
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - L J de Windt
- Department of Cardiology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - C Ghossein-Doha
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| |
Collapse
|
78
|
Chen T, Huang JB, Dai J, Zhou Q, Raj JU, Zhou G. PAI-1 is a novel component of the miR-17~92 signaling that regulates pulmonary artery smooth muscle cell phenotypes. Am J Physiol Lung Cell Mol Physiol 2018; 315:L149-L161. [PMID: 29644896 PMCID: PMC6139661 DOI: 10.1152/ajplung.00137.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 03/30/2018] [Accepted: 04/04/2018] [Indexed: 01/13/2023] Open
Abstract
We have previously reported that miR-17~92 is critically involved in the pathogenesis of pulmonary hypertension (PH). We also identified two novel mR-17/20a direct targets, PDZ and LIM domain protein 5 (PDLIM5) and prolyl hydroxylase 2 (PHD2), and elucidated the signaling pathways by which PDLIM5 and PHD2 regulate functions of pulmonary artery smooth muscle cells (PASMCs). In addition, we have shown that plasminogen activator inhibitor-1 (PAI-1) is also downregulated in PASMCs that overexpress miR-17~92. However, it is unclear whether PAI-1 is a direct target of miR-17~92 and whether it plays a role in regulating the PASMC phenotype. In this study, we have identified PAI-1 as a novel target of miR-19a/b, two members of the miR-17~92 cluster. We found that the 3'-untranslated region (UTR) of PAI-1 contains a miR-19a/b binding site and that miR-19a/b can target this site to suppress PAI-1 protein expression. MiR-17/20a, two other members of miR-17~92, may also indirectly suppress PAI-1 expression through PDLIM5. PAI-1 is a negative regulator of miR-17~92-mediated PASMC proliferation. Silencing of PAI-1 induces Smad2/calponin signaling in PASMCs, suggesting that PAI-1 is a negative regulator of the PASMC contractile phenotype. We also found that PAI-1 is essential for the metabolic gene expression in PASMCs. Furthermore, although there is no significant change in PAI-1 levels in PASMCs isolated from idiopathic pulmonary arterial hypertension and associated pulmonary arterial hypertension patients, PAI-1 is downregulated in hypoxia/Sugen-induced hypertensive rat lungs. These results suggest that miR-17~92 regulates the PASMC contractile phenotype and proliferation coordinately and synergistically by direct and indirect targeting of PAI-1.
Collapse
MESH Headings
- 3' Untranslated Regions
- Animals
- Cell Proliferation
- Gene Expression Regulation
- Humans
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Male
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Muscle Contraction/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Plasminogen Activator Inhibitor 1/biosynthesis
- Plasminogen Activator Inhibitor 1/genetics
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Rats
- Rats, Sprague-Dawley
- Signal Transduction
Collapse
Affiliation(s)
- Tianji Chen
- Department of Pediatrics, University of Illinois at Chicago , Chicago, Illinois
| | - Jason B Huang
- Department of Pediatrics, University of Illinois at Chicago , Chicago, Illinois
| | - Jingbo Dai
- Department of Pediatrics, University of Illinois at Chicago , Chicago, Illinois
| | - Qiyuan Zhou
- Department of Pediatrics, University of Illinois at Chicago , Chicago, Illinois
| | - J Usha Raj
- Department of Pediatrics, University of Illinois at Chicago , Chicago, Illinois
| | - Guofei Zhou
- Department of Pediatrics, University of Illinois at Chicago , Chicago, Illinois
| |
Collapse
|
79
|
Endothelial Cell Aging: How miRNAs Contribute? J Clin Med 2018; 7:jcm7070170. [PMID: 29996516 PMCID: PMC6068727 DOI: 10.3390/jcm7070170] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/04/2018] [Accepted: 07/09/2018] [Indexed: 12/19/2022] Open
Abstract
Endothelial cells (ECs) form monolayers and line the interior surfaces of blood vessels in the entire body. In most mammalian systems, the capacity of endothelial cells to divide is limited and endothelial cells are prone to be senescent. Aging of ECs and resultant endothelial dysfunction lead to a variety of vascular diseases such as atherosclerosis, diabetes mellites, hypertension, and ischemic injury. However, the mechanism by which ECs get old and become senescent and the impact of endothelial senescence on the vascular function are not fully understood. Recent research has unveiled the crucial roles of miRNAs, which are small non-coding RNAs, in regulating endothelial cellular functions, including nitric oxide production, vascular inflammation, and anti-thromboformation. In this review, how senescent-related miRNAs are involved in controlling the functions of ECs will be discussed.
Collapse
|
80
|
Das A, Samidurai A, Salloum FN. Deciphering Non-coding RNAs in Cardiovascular Health and Disease. Front Cardiovasc Med 2018; 5:73. [PMID: 30013975 PMCID: PMC6036139 DOI: 10.3389/fcvm.2018.00073] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/29/2018] [Indexed: 12/16/2022] Open
Abstract
After being long considered as “junk” in the human genome, non-coding RNAs (ncRNAs) currently represent one of the newest frontiers in cardiovascular disease (CVD) since they have emerged in recent years as potential therapeutic targets. Different types of ncRNAs exist, including small ncRNAs that have fewer than 200 nucleotides, which are mostly known as microRNAs (miRNAs), and long ncRNAs that have more than 200 nucleotides. Recent discoveries on the role of ncRNAs in epigenetic and transcriptional regulation, atherosclerosis, myocardial ischemia/reperfusion (I/R) injury and infarction (MI), adverse cardiac remodeling and hypertrophy, insulin resistance, and diabetic cardiomyopathy prompted vast interest in exploring candidate ncRNAs for utilization as potential therapeutic targets and/or diagnostic/prognostic biomarkers in CVDs. This review will discuss our current knowledge concerning the roles of different types of ncRNAs in cardiovascular health and disease and provide some insight on the cardioprotective signaling pathways elicited by the non-coding genome. We will highlight important basic and clinical breakthroughs that support employing ncRNAs for treatment or early diagnosis of a variety of CVDs, and also depict the most relevant limitations that challenge this novel therapeutic approach.
Collapse
Affiliation(s)
- Anindita Das
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Arun Samidurai
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Fadi N Salloum
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
81
|
Kabekkodu SP, Shukla V, Varghese VK, D' Souza J, Chakrabarty S, Satyamoorthy K. Clustered miRNAs and their role in biological functions and diseases. Biol Rev Camb Philos Soc 2018; 93:1955-1986. [PMID: 29797774 DOI: 10.1111/brv.12428] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 04/20/2018] [Accepted: 04/26/2018] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are endogenous, small non-coding RNAs known to regulate expression of protein-coding genes. A large proportion of miRNAs are highly conserved, localized as clusters in the genome, transcribed together from physically adjacent miRNAs and show similar expression profiles. Since a single miRNA can target multiple genes and miRNA clusters contain multiple miRNAs, it is important to understand their regulation, effects and various biological functions. Like protein-coding genes, miRNA clusters are also regulated by genetic and epigenetic events. These clusters can potentially regulate every aspect of cellular function including growth, proliferation, differentiation, development, metabolism, infection, immunity, cell death, organellar biogenesis, messenger signalling, DNA repair and self-renewal, among others. Dysregulation of miRNA clusters leading to altered biological functions is key to the pathogenesis of many diseases including carcinogenesis. Here, we review recent advances in miRNA cluster research and discuss their regulation and biological functions in pathological conditions.
Collapse
Affiliation(s)
- Shama P Kabekkodu
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Vaibhav Shukla
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Vinay K Varghese
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Jeevitha D' Souza
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| |
Collapse
|
82
|
Litwińska Z, Łuczkowska K, Machaliński B. Extracellular vesicles in hematological malignancies. Leuk Lymphoma 2018; 60:29-36. [DOI: 10.1080/10428194.2018.1459606] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Zofia Litwińska
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Karolina Łuczkowska
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
83
|
Luengo-Gil G, Gonzalez-Billalabeitia E, Perez-Henarejos SA, Navarro Manzano E, Chaves-Benito A, Garcia-Martinez E, Garcia-Garre E, Vicente V, Ayala de la Peña F. Angiogenic role of miR-20a in breast cancer. PLoS One 2018; 13:e0194638. [PMID: 29617404 PMCID: PMC5884522 DOI: 10.1371/journal.pone.0194638] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 03/07/2018] [Indexed: 01/02/2023] Open
Abstract
Background Angiogenesis is a key process for tumor progression and a target for treatment. However, the regulation of breast cancer angiogenesis and its relevance for clinical resistance to antiangiogenic drugs is still incompletely understood. Recent developments on the contribution of microRNA to tumor angiogenesis and on the oncogenic effects of miR-17-92, a miRNA cluster, point to their potential role on breast cancer angiogenesis. The aim of this work was to establish the contribution of miR-20a, a member of miR-17-92 cluster, to tumor angiogenesis in patients with invasive breast carcinoma. Methods Tube-formation in vitro assays with conditioned medium from MCF7 and MDA-MB-231 breast cancer cell lines were performed after transfection with miR-20a and anti-miR20a. For clinical validation of the experimental findings, we performed a retrospective analysis of a series of consecutive breast cancer patients (n = 108) treated with neoadjuvant chemotherapy and with a full characterization of their vessel pattern and expression of angiogenic markers in pre-treatment biopsies. Expression of members of the cluster miR-17-92 and of angiogenic markers was determined by RT-qPCR after RNA purification from FFPE samples. Results In vitro angiogenesis assays with endothelial cells and conditioned media from breast cancer cell lines showed that transfection with anti-miR20a in MDA-MB-231 significantly decreased mean mesh size and total mesh area, while transfection with miR-20a in MCF7 cells increased mean mesh size. MiR-20a angiogenic effects were abrogated by treatment with aflibercept, a VEGF trap. These results were supported by clinical data showing that mir-20a expression was higher in tumors with no estrogen receptor or with more extensive nodal involvement (cN2-3). A higher miR-20a expression was associated with higher mean vessel size (p = 0.015) and with an angiogenic pattern consisting in larger vessels, higher VEGFA expression and presence of glomeruloid microvascular proliferations (p<0.001). This association was independent of tumor subtype and VEGFA expression. Conclusions Transfection of breast cancer cells with miR-20a induces vascular changes in endothelial tube-formation assays. Expression of miR-20a in breast invasive carcinomas is associated with a distinctive angiogenic pattern consisting in large vessels, anomalous glomeruloid microvascular proliferations and high VEGFA expression. Our results suggest a role for miR-20a in the regulation of breast cancer angiogenesis, and raise the possibility of its use as an angiogenic biomarker.
Collapse
Affiliation(s)
- Gines Luengo-Gil
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer y Centro Regional de Hemodonación, Murcia, Spain
- Department of Internal Medicine, University of Murcia, Murcia, Spain
- IMIB-Arrixaca, Murcia, Spain
| | - Enrique Gonzalez-Billalabeitia
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer y Centro Regional de Hemodonación, Murcia, Spain
- IMIB-Arrixaca, Murcia, Spain
- Universidad Católica San Antonio de Murcia (UCAM), Murcia, Spain
| | - Sergio Alejo Perez-Henarejos
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer y Centro Regional de Hemodonación, Murcia, Spain
- IMIB-Arrixaca, Murcia, Spain
| | - Esther Navarro Manzano
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer y Centro Regional de Hemodonación, Murcia, Spain
- IMIB-Arrixaca, Murcia, Spain
| | | | - Elena Garcia-Martinez
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer y Centro Regional de Hemodonación, Murcia, Spain
- IMIB-Arrixaca, Murcia, Spain
- Universidad Católica San Antonio de Murcia (UCAM), Murcia, Spain
| | - Elisa Garcia-Garre
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer y Centro Regional de Hemodonación, Murcia, Spain
- IMIB-Arrixaca, Murcia, Spain
| | - Vicente Vicente
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer y Centro Regional de Hemodonación, Murcia, Spain
- Department of Internal Medicine, University of Murcia, Murcia, Spain
- IMIB-Arrixaca, Murcia, Spain
| | - Francisco Ayala de la Peña
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer y Centro Regional de Hemodonación, Murcia, Spain
- Department of Internal Medicine, University of Murcia, Murcia, Spain
- IMIB-Arrixaca, Murcia, Spain
- * E-mail:
| |
Collapse
|
84
|
Yin R, Guo L, Gu J, Li C, Zhang W. Over expressing miR-19b-1 suppress breast cancer growth by inhibiting tumor microenvironment induced angiogenesis. Int J Biochem Cell Biol 2018; 97:43-51. [DOI: 10.1016/j.biocel.2018.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/01/2018] [Accepted: 02/05/2018] [Indexed: 12/26/2022]
|
85
|
Pheiffer C, Dias S, Rheeder P, Adam S. Decreased Expression of Circulating miR-20a-5p in South African Women with Gestational Diabetes Mellitus. Mol Diagn Ther 2018; 22:345-352. [DOI: 10.1007/s40291-018-0325-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
86
|
Yang S, Fan T, Hu Q, Xu W, Yang J, Xu C, Zhang B, Chen J, Jiang H. Downregulation of microRNA-17-5p improves cardiac function after myocardial infarction via attenuation of apoptosis in endothelial cells. Mol Genet Genomics 2018. [PMID: 29536180 PMCID: PMC6061060 DOI: 10.1007/s00438-018-1426-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
MicroRNA-17-5p (miR-17-5p) was indicated to suppress the formation of blood vessels, which is associated with cardiac function after myocardial infarction. In this study, the relationship between miR-17-5p and cardiac function was researched. Human umbilical vein endothelial cells were infected with adenoviruses. Apoptosis was determined by Annexin V-7AAD/PI. Real-time RT-PCR was used to evaluate miR-17-5p and ERK levels. Western blotting was used to determine the levels of ERK, the anti-apoptosis protein bcl-2 and apoptosis proteins, including bax, caspase 3, and caspase 9. An in vivo acute myocardial infarction (AMI) model was established in SD male rats. Heart function was evaluated by echocardiography prior to inducing AMI and after 7 and 28 days later. The heart was removed to perform histological examination, real-time RT-PCR, and western blotting, as described above. The result indicated that the ERK pathway was activated by miR-17-5p downregulation and an increase in the level of the anti-apoptosis protein bcl-2; however, the levels of apoptosis proteins (bax/caspase 3/caspase 9) were decreased. The results were completely reversed when miR-17-5p was up-regulated. At 7 and 28 days after the induction of AMI, in the miR-17-5p inhibition group, the infarction areas and collagen fibers were decreased, apoptosis in cardiac tissues was inhibited, and the endothelial growth process was promoted. Therefore, MiR-17-5p silencing protects heart function after AMI through decreasing the rate of apoptosis and repairing vascular injury.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, 238 JieFang Road, Wuhan, 430060, China
| | - Tao Fan
- Department of Thoracic Surgery, Remin Hospital of Wuhan University, Wuhan, China
| | - Qi Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, 238 JieFang Road, Wuhan, 430060, China
| | - Weipan Xu
- Department of Cardiology, Huangshi Central Hospital, Huangshi, China
| | - Jian Yang
- Department of Cardiology, Yichang Central People's Hospital, Yichang, China
| | - Changwu Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, 238 JieFang Road, Wuhan, 430060, China
| | - Bofang Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, 238 JieFang Road, Wuhan, 430060, China
| | - Jing Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, 238 JieFang Road, Wuhan, 430060, China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, 238 JieFang Road, Wuhan, 430060, China.
| |
Collapse
|
87
|
Witkowski M, Tabaraie T, Steffens D, Friebel J, Dörner A, Skurk C, Witkowski M, Stratmann B, Tschoepe D, Landmesser U, Rauch U. MicroRNA-19a contributes to the epigenetic regulation of tissue factor in diabetes. Cardiovasc Diabetol 2018; 17:34. [PMID: 29477147 PMCID: PMC6389222 DOI: 10.1186/s12933-018-0678-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/17/2018] [Indexed: 12/21/2022] Open
Abstract
Background Diabetes mellitus is characterized by chronic vascular disorder and presents a main risk factor for cardiovascular mortality. In particular, hyperglycaemia and inflammatory cytokines induce vascular circulating tissue factor (TF) that promotes pro-thrombotic conditions in diabetes. It has recently become evident that alterations of the post-transcriptional regulation of TF via specific microRNA(miR)s, such as miR-126, contribute to the pathogenesis of diabetes and its complications. The endothelial miR-19a is involved in vascular homeostasis and atheroprotection. However, its role in diabetes-related thrombogenicity is unknown. Understanding miR-networks regulating procoagulability in diabetes may help to develop new treatment options preventing vascular complications. Methods and results Plasma of 44 patients with known diabetes was assessed for the expression of miR-19a, TF protein, TF activity, and markers for vascular inflammation. High miR-19a expression was associated with reduced TF protein, TF-mediated procoagulability, and vascular inflammation based on expression of vascular adhesion molecule-1 and leukocyte count. We found plasma expression of miR-19a to strongly correlate with miR-126. miR-19a reduced the TF expression on mRNA and protein level in human microvascular endothelial cells (HMEC) as well as TF activity in human monocytes (THP-1), while anti-miR-19a increased the TF expression. Interestingly, miR-19a induced VCAM expression in HMEC. However, miR-19a and miR-126 co-transfection reduced total endothelial VCAM expression and exhibited additive inhibition of a luciferase reporter construct containing the F3 3′UTR. Conclusions While both miRs have differential functions on endothelial VCAM expression, miR-19a and miR-126 cooperate to exhibit anti-thrombotic properties via regulating vascular TF expression. Modulating the post-transcriptional control of TF in diabetes may provide a future anti-thrombotic and anti-inflammatory therapy. Electronic supplementary material The online version of this article (10.1186/s12933-018-0678-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marco Witkowski
- Charité Centrum 11, Depart. of Cardiology, Campus Benjamin Franklin, Charité University Medicine Berlin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Termeh Tabaraie
- Charité Centrum 11, Depart. of Cardiology, Campus Benjamin Franklin, Charité University Medicine Berlin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Daniel Steffens
- Charité Centrum 11, Depart. of Cardiology, Campus Benjamin Franklin, Charité University Medicine Berlin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Julian Friebel
- Charité Centrum 11, Depart. of Cardiology, Campus Benjamin Franklin, Charité University Medicine Berlin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Andrea Dörner
- Charité Centrum 11, Depart. of Cardiology, Campus Benjamin Franklin, Charité University Medicine Berlin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Carsten Skurk
- Charité Centrum 11, Depart. of Cardiology, Campus Benjamin Franklin, Charité University Medicine Berlin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Mario Witkowski
- Institute of Microbiology and Infection Immunology, Charité University Medicine Berlin, Berlin, Germany
| | - Bernd Stratmann
- Heart and Diabetes Center NRW, Ruhr University of Bochum, Bad Oeynhausen, Germany
| | - Diethelm Tschoepe
- Heart and Diabetes Center NRW, Ruhr University of Bochum, Bad Oeynhausen, Germany
| | - Ulf Landmesser
- Charité Centrum 11, Depart. of Cardiology, Campus Benjamin Franklin, Charité University Medicine Berlin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Ursula Rauch
- Charité Centrum 11, Depart. of Cardiology, Campus Benjamin Franklin, Charité University Medicine Berlin, Hindenburgdamm 30, 12200, Berlin, Germany.
| |
Collapse
|
88
|
Zhou Y, Xia L, Lin J, Wang H, Oyang L, Tan S, Tian Y, Su M, Wang H, Cao D, Liao Q. Exosomes in Nasopharyngeal Carcinoma. J Cancer 2018; 9:767-777. [PMID: 29581754 PMCID: PMC5868140 DOI: 10.7150/jca.22505] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/29/2017] [Indexed: 12/21/2022] Open
Abstract
Exosomes are nanosized (30-100nm) membrane microvesicles secreted through a complex cellular process. Exosomes contain a variety of bioactive molecules, such as proteins, microRNAs(miRNAs or miRs) and long non-coding RNAs (lncRNAs), playing an important role in the cell-to-cell substance transportation and signal transduction. Nasopharyngeal carcinoma-related exosomes (NPC-Exo) have been identified in circulating blood and contribute to tumor cell proliferation, angiopoiesis, and immune tolerance through remodeling of tumor microenvironment (TME). Nasopharyngeal carcinoma-related exosomes may also induce epithelial-mesenchymal transition (EMT), thus promoting tumor metastasis and chemoradioresistance. Clinically, the exosomes may serve as novel biomarkers for diagnosis and targeted therapies of nasopharyngeal carcinoma. This review article updates the understanding of exosomes in nasopharyngeal carcinoma(NPC).
Collapse
Affiliation(s)
- Yujuan Zhou
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Jingguan Lin
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Heran Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Shiming Tan
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Yutong Tian
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Min Su
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Deliang Cao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
- Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine. 913 N. Rutledge Street, Springfield, IL 62794, USA
| | - Qianjin Liao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| |
Collapse
|
89
|
Gou L, Zhao L, Song W, Wang L, Liu J, Zhang H, Huang Y, Lau CW, Yao X, Tian XY, Wong WT, Luo JY, Huang Y. Inhibition of miR-92a Suppresses Oxidative Stress and Improves Endothelial Function by Upregulating Heme Oxygenase-1 in db/db Mice. Antioxid Redox Signal 2018; 28:358-370. [PMID: 28683566 DOI: 10.1089/ars.2017.7005] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AIMS Inhibition of microRNA-92a (miR-92a) is reported to suppress endothelial inflammation and delay atherogenesis. We hypothesize that miR-92a inhibition protects endothelial function through suppressing oxidative stress in diabetic db/db mice. RESULTS In this study, we found elevated expression of miR-92a in aortic endothelium from db/db mice and in renal arteries from diabetic subjects. Endothelial cells (ECs) exposed to advanced glycation end products (AGEs) and oxidized low-density lipoprotein express higher level of miR-92a. Overexpression of miR-92a impairs endothelium-dependent relaxations (EDRs) in C57BL/6 mouse aortas. Overexpression of miR-92a suppresses expression of heme oxygenase-1 (HO-1), a critical cytoprotective enzyme, whereas inhibition of miR-92a increases HO-1 expression in human umbilical vein ECs (HUVECs) and db/db mouse aortas. Importantly, miR-92a inhibition by Ad-anti-miR-92a improved EDRs and reduced reactive oxygen species (ROS) production in db/db mouse aortas. HO-1 inhibition by SnMP or HO-1 knockdown by shHO-1 reversed the suppressive effect of miR-92a inhibition on ROS production induced by AGE treatment in C57BL/6 mouse aortas. In addition, SnMP reversed miR-92a inhibition-induced improvement of EDRs in AGE-treated C57BL/6 mouse aortas and in db/db mouse aortas. INNOVATION Expression of miR-92a is increased in diabetic aortic endothelium and inhibition of miR-92a exerts vasoprotective effect in diabetic mice through HO-1 upregulation in ECs. CONCLUSION MiR-92a expression is elevated in diabetic ECs. MiR-92a overexpression impairs endothelial function and suppresses HO-1 expression in ECs. Inhibition of miR-92a attenuates oxidative stress and improves endothelial function through enhancing HO-1 expression and activity in db/db mouse aortas. Antioxid. Redox Signal. 28, 358-370.
Collapse
Affiliation(s)
- Lingshan Gou
- 1 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences , Hong Kong, China
- 2 School of Biomedical Sciences, Chinese University of Hong Kong , Hong Kong, China
| | - Lei Zhao
- 1 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences , Hong Kong, China
- 2 School of Biomedical Sciences, Chinese University of Hong Kong , Hong Kong, China
| | - Wencong Song
- 1 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences , Hong Kong, China
- 2 School of Biomedical Sciences, Chinese University of Hong Kong , Hong Kong, China
| | - Li Wang
- 1 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences , Hong Kong, China
- 2 School of Biomedical Sciences, Chinese University of Hong Kong , Hong Kong, China
| | - Jian Liu
- 1 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences , Hong Kong, China
- 2 School of Biomedical Sciences, Chinese University of Hong Kong , Hong Kong, China
| | - Hongsong Zhang
- 1 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences , Hong Kong, China
- 2 School of Biomedical Sciences, Chinese University of Hong Kong , Hong Kong, China
| | - Yuhong Huang
- 1 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences , Hong Kong, China
- 2 School of Biomedical Sciences, Chinese University of Hong Kong , Hong Kong, China
| | - Chi Wai Lau
- 1 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences , Hong Kong, China
- 2 School of Biomedical Sciences, Chinese University of Hong Kong , Hong Kong, China
| | - Xiaoqiang Yao
- 1 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences , Hong Kong, China
- 2 School of Biomedical Sciences, Chinese University of Hong Kong , Hong Kong, China
| | - Xiao Yu Tian
- 1 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences , Hong Kong, China
- 2 School of Biomedical Sciences, Chinese University of Hong Kong , Hong Kong, China
| | - Wing Tak Wong
- 3 School of Life Sciences, Chinese University of Hong Kong , Hong Kong, China
| | - Jiang-Yun Luo
- 1 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences , Hong Kong, China
- 2 School of Biomedical Sciences, Chinese University of Hong Kong , Hong Kong, China
| | - Yu Huang
- 1 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences , Hong Kong, China
- 2 School of Biomedical Sciences, Chinese University of Hong Kong , Hong Kong, China
| |
Collapse
|
90
|
The emerging roles of exosomes in leukemogeneis. Oncotarget 2018; 7:50698-50707. [PMID: 27191983 PMCID: PMC5226614 DOI: 10.18632/oncotarget.9333] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 05/05/2016] [Indexed: 12/21/2022] Open
Abstract
Communication between leukemia cells and their environment is essential for the development and progression of leukemia. Exosomes are microvesicles secreted by many types of cells that contain protein and RNA and mediate intercellular communication. The involvement of exosomes has been demonstrated in the crosstalk between leukemic cells, stromal cells and endothelial cells, consequently promoting the survival of leukemic cells, protection of leukemic cells from the cytotoxic effects of chemotherapeutic drugs, angiogenesis and cell migration. At the same time, exosomes can be used for the detection and monitoring of leukemia, with some advantage over current methods of detection and surveillance. As they are involved in immune response towards leukemic cells, exosomes can also potentially be exploited to augment immunotherapy in leukemia. In this review, we first describe the general characteristics of exosomes and biogenesis of exosomes. We then highlight the emerging role of exosomes in different types of leukemia. Finally, the clinical value of exosomes as biomarkers, in vivo drug carriers and novel exosome-based immunotherapy are discussed.
Collapse
|
91
|
Zhang X, Li Y, Qi P, Ma Z. Biology of MiR-17-92 Cluster and Its Progress in Lung Cancer. Int J Med Sci 2018; 15:1443-1448. [PMID: 30443163 PMCID: PMC6216058 DOI: 10.7150/ijms.27341] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/29/2018] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs, a class of short endogenous RNAs, acting as post-transcriptional regulators of gene expression, mostly silence gene expression via binding imperfectly matched sequences in the 3'UTR of target mRNA. MiR-17-92, a highly conserved gene cluster, has 6 members including miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1 and miR-92a. The miR-17-92 cluster, regarded as oncogene, is overexpressed in human cancers. Lung cancer is the leading cause of death all over the world. The molecular mechanism of lung cancer has been partly known at the levels of genes and proteins in last decade. However, new prognosis biomarkers and more target drugs should be developed in future. Therefore, noncoding RNAs, especially miRNAs, make them as new potentially clinical biomarkers for diagnosis and prognosis. In this review, we focus the current progress of miR-17-92 cluster in lung cancer.
Collapse
Affiliation(s)
- Xinju Zhang
- Lab for Noncoding RNA & Cancer, School of Life Sciences Shanghai University, Shanghai 200444
| | - Yanli Li
- Lab for Noncoding RNA & Cancer, School of Life Sciences Shanghai University, Shanghai 200444
| | - Pengfei Qi
- Lab for Noncoding RNA & Cancer, School of Life Sciences Shanghai University, Shanghai 200444
| | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer, School of Life Sciences Shanghai University, Shanghai 200444
| |
Collapse
|
92
|
Ranchoux B, Harvey LD, Ayon RJ, Babicheva A, Bonnet S, Chan SY, Yuan JXJ, Perez VDJ. Endothelial dysfunction in pulmonary arterial hypertension: an evolving landscape (2017 Grover Conference Series). Pulm Circ 2018; 8:2045893217752912. [PMID: 29283043 PMCID: PMC5798691 DOI: 10.1177/2045893217752912] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/18/2017] [Indexed: 02/06/2023] Open
Abstract
Endothelial dysfunction is a major player in the development and progression of vascular pathology in pulmonary arterial hypertension (PAH), a disease associated with small vessel loss and obstructive vasculopathy that leads to increased pulmonary vascular resistance, subsequent right heart failure, and premature death. Over the past ten years, there has been tremendous progress in our understanding of pulmonary endothelial biology as it pertains to the genetic and molecular mechanisms that orchestrate the endothelial response to direct or indirect injury, and how their dysregulation can contribute to the pathogenesis of PAH. As one of the major topics included in the 2017 Grover Conference Series, discussion centered on recent developments in four areas of pulmonary endothelial biology: (1) angiogenesis; (2) endothelial-mesenchymal transition (EndMT); (3) epigenetics; and (4) biology of voltage-gated ion channels. The present review will summarize the content of these discussions and provide a perspective on the most promising aspects of endothelial dysfunction that may be amenable for therapeutic development.
Collapse
Affiliation(s)
| | - Lloyd D. Harvey
- University of Pittsburgh Vascular Medicine Institute Division of Cardiology, Pittsburgh, PA, USA
| | - Ramon J. Ayon
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Aleksandra Babicheva
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | | | - Stephen Y. Chan
- University of Pittsburgh Vascular Medicine Institute Division of Cardiology, Pittsburgh, PA, USA
| | - Jason X.-J. Yuan
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Vinicio de Jesus Perez
- Division of Pulmonary and Critical Care Medicine, Stanford University Medical Center, Stanford, CA, USA
- The Vera Moulton Wall Center for Pulmonary Vascular Medicine, Stanford University Medical Center, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University Medical Center, Stanford, CA, USA
| |
Collapse
|
93
|
Choi SW, Lee JY, Kang KS. miRNAs in stem cell aging and age-related disease. Mech Ageing Dev 2017; 168:20-29. [DOI: 10.1016/j.mad.2017.08.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 07/21/2017] [Accepted: 08/21/2017] [Indexed: 02/07/2023]
|
94
|
Boon RA, Hergenreider E, Dimmeler S. Atheroprotective mechanisms of shear stress-regulated microRNAs. Thromb Haemost 2017; 108:616-20. [DOI: 10.1160/th12-07-0491] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 08/22/2012] [Indexed: 01/05/2023]
Abstract
SummaryMicroRNAs (miRs) are small non-coding RNAs that control gene expression by inhibiting translation or inducing degradation of targeted mRNA. miRs play a crucial role in vascular homeostasis but also during pathophysiological processes. Functionally active endothelial cells maintain homeostasis of the vasculature and protect against cardiovascular disease. The mechanical activation of endothelial cells by laminar shear stress provides a potent atheroprotective effect and reduces endothelial inflammation and cell cycle progression. Laminar shear stress induces profound changes in gene expression and recently was shown to regulate various miRs. The down-regulation of miR-92a by shear stress enhances the expression of the endothelial nitric oxide synthase, whereas the up-regulation of miR-19a contributes to the shear stress-induced inhibition of cell proliferation. In addition, members of the miR-23–27–24 cluster are increased and specifically miR-23b blocks cell cycle progression, whereas miR-27b was shown to reduce endothelial cell repulsive signals. Finally, increased miR-10 expression in atheroprotected regions reduced the inflammatory response of endothelial cells and increased endothelial miR-143/145 levels improved smooth muscle cells functions. Together, the regulation of miRs by shear stress contributes to the anti-inflammatory, cell cycle inhibitory and vasculoprotective effects in endothelial cells.
Collapse
|
95
|
Henique C, Bollée G, Loyer X, Grahammer F, Dhaun N, Camus M, Vernerey J, Guyonnet L, Gaillard F, Lazareth H, Meyer C, Bensaada I, Legrès L, Satoh T, Akira S, Bruneval P, Dimmeler S, Tedgui A, Karras A, Thervet E, Nochy D, Huber TB, Mesnard L, Lenoir O, Tharaux PL. Genetic and pharmacological inhibition of microRNA-92a maintains podocyte cell cycle quiescence and limits crescentic glomerulonephritis. Nat Commun 2017; 8:1829. [PMID: 29184126 PMCID: PMC5705755 DOI: 10.1038/s41467-017-01885-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 10/23/2017] [Indexed: 01/07/2023] Open
Abstract
Crescentic rapidly progressive glomerulonephritis (RPGN) represents the most aggressive form of acquired glomerular disease. While most therapeutic approaches involve potentially toxic immunosuppressive strategies, the pathophysiology remains incompletely understood. Podocytes are glomerular epithelial cells that are normally growth-arrested because of the expression of cyclin-dependent kinase (CDK) inhibitors. An exception is in RPGN where podocytes undergo a deregulation of their differentiated phenotype and proliferate. Here we demonstrate that microRNA-92a (miR-92a) is enriched in podocytes of patients and mice with RPGN. The CDK inhibitor p57Kip2 is a major target of miR-92a that constitutively safeguards podocyte cell cycle quiescence. Podocyte-specific deletion of miR-92a in mice de-repressed the expression of p57Kip2 and prevented glomerular injury in RPGN. Administration of an anti-miR-92a after disease initiation prevented albuminuria and kidney failure, indicating miR-92a inhibition as a potential therapeutic strategy for RPGN. We demonstrate that miRNA induction in epithelial cells can break glomerular tolerance to immune injury. Crescentic rapidly progressive glomerulonephritis is a severe form of glomerula disease characterized by podocyte proliferation and migration. Here Henique et al. demonstrate that inhibition of miRNA-92a prevents kidney failure by promoting the expression of CDK inhibitor p57Kip2 that regulates podocyte cell cycle.
Collapse
Affiliation(s)
- Carole Henique
- Paris Cardiovascular Research Centre-PARCC, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, 75015, France. .,Paris Descartes University, Sorbonne Paris Cité, Paris, 75006, France. .,Institut Mondor de Recherche Biomédicale, team 21, Unité Mixte de Recherche (UMR) 955, Institut National de la Santé et de la Recherche Médicale (INSERM), Créteil, 94000, France. .,Université Paris-Est Créteil, Créteil, 94000, France.
| | - Guillaume Bollée
- Paris Cardiovascular Research Centre-PARCC, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, 75015, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, 75006, France.,Centre de Recherche, Centre Hospitalier de l'Université de Montréal, Montréal, H2X 0A9, QC, Canada
| | - Xavier Loyer
- Paris Cardiovascular Research Centre-PARCC, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, 75015, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, 75006, France
| | - Florian Grahammer
- III. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, 20246, Germany.,Department of Medicine IV, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, P.O. Box 79085, Germany.,BIOSS Centre for Biological Signalling Studies and Center for Biological Systems Analysis (ZBSA), Albert-Ludwigs-University, Freiburg, 79104, Germany
| | - Neeraj Dhaun
- Paris Cardiovascular Research Centre-PARCC, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, 75015, France.,British Heart Foundation Centre of Research Excellence (BHF CoRE), Edinburgh, EH16 4TJ, UK
| | - Marine Camus
- Paris Cardiovascular Research Centre-PARCC, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, 75015, France
| | - Julien Vernerey
- Paris Cardiovascular Research Centre-PARCC, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, 75015, France
| | - Léa Guyonnet
- Paris Cardiovascular Research Centre-PARCC, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, 75015, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, 75006, France
| | - François Gaillard
- Paris Cardiovascular Research Centre-PARCC, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, 75015, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, 75006, France
| | - Hélène Lazareth
- Paris Cardiovascular Research Centre-PARCC, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, 75015, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, 75006, France
| | - Charlotte Meyer
- BIOSS Centre for Biological Signalling Studies and Center for Biological Systems Analysis (ZBSA), Albert-Ludwigs-University, Freiburg, 79104, Germany
| | - Imane Bensaada
- Paris Cardiovascular Research Centre-PARCC, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, 75015, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, 75006, France
| | - Luc Legrès
- Unité Mixte de Recherche (UMR_S) 1165, Institut National de la Santé et de la Recherche Médicale (INSERM), Plateforme MicroLaser Biotech, Paris, 75010, France
| | - Takashi Satoh
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka, 565-0871, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka, 565-0871, Japan
| | - Patrick Bruneval
- Paris Descartes University, Sorbonne Paris Cité, Paris, 75006, France.,Department of Pathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, 75015, France.,Département Hospitalo-Universitaire, Paris Descartes University-Hôpitaux Universitaires Paris Ouest, Paris, 75015, France
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Frankfurt, 60590, Germany
| | - Alain Tedgui
- Paris Cardiovascular Research Centre-PARCC, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, 75015, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, 75006, France
| | - Alexandre Karras
- Paris Cardiovascular Research Centre-PARCC, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, 75015, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, 75006, France.,Département Hospitalo-Universitaire, Paris Descartes University-Hôpitaux Universitaires Paris Ouest, Paris, 75015, France.,Renal Division, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, 75015, France
| | - Eric Thervet
- Paris Cardiovascular Research Centre-PARCC, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, 75015, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, 75006, France.,Département Hospitalo-Universitaire, Paris Descartes University-Hôpitaux Universitaires Paris Ouest, Paris, 75015, France.,Renal Division, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, 75015, France
| | - Dominique Nochy
- Paris Descartes University, Sorbonne Paris Cité, Paris, 75006, France.,Department of Pathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, 75015, France.,Département Hospitalo-Universitaire, Paris Descartes University-Hôpitaux Universitaires Paris Ouest, Paris, 75015, France
| | - Tobias B Huber
- III. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, 20246, Germany.,Department of Medicine IV, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, P.O. Box 79085, Germany.,BIOSS Centre for Biological Signalling Studies and Center for Biological Systems Analysis (ZBSA), Albert-Ludwigs-University, Freiburg, 79104, Germany
| | - Laurent Mesnard
- Unité Mixte de Recherche (UMR) 702, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, 75020, France.,Faculty of Medicine, University Pierre and Marie Curie, Paris, 75020, France
| | - Olivia Lenoir
- Paris Cardiovascular Research Centre-PARCC, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, 75015, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, 75006, France
| | - Pierre-Louis Tharaux
- Paris Cardiovascular Research Centre-PARCC, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, 75015, France. .,Paris Descartes University, Sorbonne Paris Cité, Paris, 75006, France. .,Renal Division, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, 75015, France.
| |
Collapse
|
96
|
Ball S, Nugent K. Microparticles in Hematological Malignancies: Role in Coagulopathy and Tumor Pathogenesis. Am J Med Sci 2017; 355:207-214. [PMID: 29549921 DOI: 10.1016/j.amjms.2017.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/09/2017] [Accepted: 11/25/2017] [Indexed: 12/12/2022]
Abstract
Microparticles (MP) are submicron vesicles released from various cells in response to activation, injury or apoptosis. They contain different structural and functional proteins and RNAs, which contribute to physiological intercellular "crosstalk" and to the pathogenesis of various diseases including cancer. In hematological malignancies, these MPs participate in the initiation and propagation of thrombosis through different pathways. They have a role in the angiogenesis, malignant cell survival and metastasis. MPs act as a mediator of resistance of leukemic cells to chemotherapy. The number of MPs is one of the prognostic factors following stem cell transplant, and studies have also found they contribute to the pathogenesis of graft versus host disease. MPs are being tested as therapeutic options in leukemias and graft versus host disease. Future studies should help us understand the interactions between MPs and cancer cells better, thereby opening new approaches for treatment of hematological malignancies.
Collapse
Affiliation(s)
- Somedeb Ball
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas.
| | - Kenneth Nugent
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
97
|
Li S, Geng Q, Chen H, Zhang J, Cao C, Zhang F, Song J, Liu C, Liang W. The potential inhibitory effects of miR‑19b on vulnerable plaque formation via the suppression of STAT3 transcriptional activity. Int J Mol Med 2017; 41:859-867. [PMID: 29207010 PMCID: PMC5752162 DOI: 10.3892/ijmm.2017.3263] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 11/06/2017] [Indexed: 02/01/2023] Open
Abstract
Atherosclerotic plaque growth requires angiogenesis, and acute coronary syndrome (ACS) is usually triggered by the rupture of unstable atherosclerotic plaques. Previous studies have identified typically circulating microRNA (miRNA/miR) profiles in patients with ACS. miRNAs serve important roles in the pathophysiology of atherosclerotic plaque progression. The present study aimed to investigate the potential role and mechanism of miR‑19b in plaque stability. miRNA array data indicated that 28 miRNAs were differentially expressed in the plasma of patients with unstable angina (UA; n=12) compared with in control individuals (n=12), and miR‑19b exhibited the most marked upregulation. Circulating miR‑19b levels were further validated in another independent cohort, which consisted of 34 patients with UA and 24 controls, by quantitative polymerase chain reaction. Gene Ontology annotations of the predicted target genes of miR‑19b suggested that miR‑19b may be involved in endothelial cell (EC) proliferation, migration and angiogenesis, which was confirmed by Cell Counting kit‑8, wound healing and tube formation assays in the present study. Finally, the present study indicated that miR‑19b may suppress signal transducer and activator of transcription 3 (STAT3) tyrosine phosphorylation and transcriptional activity in ECs, as determined by western blot analysis and luciferase reporter assay. In conclusion, the present study revealed that increased miR‑19b expression may delay unstable plaque progression in patients with UA by inhibiting EC proliferation, migration and angiogenesis via the suppression of STAT3 transcriptional activity.
Collapse
Affiliation(s)
- Sufang Li
- Department of Cardiology, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Qiang Geng
- Department of Cardiology, Qingdao Municipal Hospital, Qingdao, Shandong 266011, P.R. China
| | - Hong Chen
- Department of Cardiology, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Jing Zhang
- Department of Cardiology, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Chengfu Cao
- Department of Cardiology, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Feng Zhang
- Department of Cardiology, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Junxian Song
- Department of Cardiology, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Chuanfen Liu
- Department of Cardiology, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Wenqing Liang
- Department of Cardiology, Peking University People's Hospital, Beijing 100044, P.R. China
| |
Collapse
|
98
|
Spheroids as vascularization units: From angiogenesis research to tissue engineering applications. Biotechnol Adv 2017; 35:782-791. [DOI: 10.1016/j.biotechadv.2017.07.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/03/2017] [Accepted: 07/05/2017] [Indexed: 02/08/2023]
|
99
|
Liu J, Zhu G, Xu S, Liu S, Lu Q, Tang Z. Analysis of miRNA expression profiling in human umbilical vein endothelial cells affected by heat stress. Int J Mol Med 2017; 40:1719-1730. [PMID: 29039486 PMCID: PMC5716433 DOI: 10.3892/ijmm.2017.3174] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/28/2017] [Indexed: 12/20/2022] Open
Abstract
To investigate the regulation of endothelial cell (EC) microRNAs (miRNAs) altered by heat stress, miRNA microarrays and bioinformatics methods were used to determine changes in miRNA profiles and the pathophysiological characteristics of differentially expressed miRNAs. A total of 31 differentially expressed miRNAs were identified, including 20 downregulated and 11 upregulated miRNAs. Gene Ontology (GO) enrichment analysis revealed that the validated targets of the differentially expressed miRNAs were significantly enriched in gene transcription regulation. The pathways were also significantly enriched in the Kyoto Encyclopedia of Genes and Genomes analysis, and most were cancer-related, including the mitogen-activated protein kinase signaling pathway, pathways involved in cancer, the Wnt signaling pathway, the Hippo signaling pathway, proteoglycans involved in cancer and axon guidance. The miRNA-gene and miRNA-GO network analyses revealed several hub miRNAs, genes and functions. Notably, miR-3613-3p played a dominant role in both networks. MAP3K2, MGAT4A, TGFBR1, UBE2R2 and SMAD4 were most likely to be controlled by the altered miRNAs in the miRNA-gene network. The miRNA-GO network analysis revealed significantly complicated associations between miRNAs and different functions, and that the significantly enriched functions targeted by the differentially expressed miRNAs were mostly involved in regulating gene transcription. The present study demonstrated that miRNAs are involved in the pathophysiology of heat-treated ECs. Understanding the functions of miRNAs may provide novel insights into the molecular mechanisms underlying the heat-induced pathophysiology of ECs.
Collapse
Affiliation(s)
- Jie Liu
- Department of Emergency, Wuhan General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| | - Guoguo Zhu
- Department of Emergency, Wuhan General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| | - Siya Xu
- Department of Emergency, Wuhan General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| | - Shixin Liu
- Department of Emergency, Wuhan General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| | - Qiping Lu
- Department of General Surgery, Wuhan General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| | - Zhongzhi Tang
- Department of Emergency, Wuhan General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| |
Collapse
|
100
|
Howe GA, Kazda K, Addison CL. MicroRNA-30b controls endothelial cell capillary morphogenesis through regulation of transforming growth factor beta 2. PLoS One 2017; 12:e0185619. [PMID: 28977001 PMCID: PMC5627931 DOI: 10.1371/journal.pone.0185619] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 09/15/2017] [Indexed: 01/08/2023] Open
Abstract
The importance of microRNA (miRNA) to vascular biology is becoming increasingly evident; however, the function of a significant number of miRNA remains to be determined. In particular, the effect of growth factor regulation of miRNAs on endothelial cell morphogenesis is incomplete. Thus, we aimed to identify miRNAs regulated by pro-angiogenic vascular endothelial growth factor (VEGF) and determine the effects of VEGF-regulated miRNAs and their targets on processes important for angiogenesis. Human umbilical vein endothelial cells (HUVECs) were thus stimulated with VEGF and miRNA levels assessed using microarrays. We found that VEGF altered expression of many miRNA, and for this study focused on one of the most significantly down-regulated miRNA in HUVECs following VEGF treatment, miR-30b. Using specific miRNA mimics, we found that overexpression of miR-30b inhibited capillary morphogenesis in vitro, while depletion of endogenous miR-30b resulted in increased capillary morphogenesis indicating the potential significance of down-regulation of miR-30b as a pro-angiogenic response to VEGF stimulation. MiR-30b overexpression in HUVEC regulated transforming growth factor beta 2 (TGFβ2) production, which led to increased phosphorylation of Smad2, indicating activation of an autocrine TGFβ signaling pathway. Up-regulation of TGFβ2 by miR-30b overexpression was found to be dependent on ATF2 activation, a transcription factor known to regulate TGFβ2 expression, as miR-30b overexpressing cells exhibited increased levels of phosphorylated ATF2 and depletion of ATF2 inhibited miR-30b-induced TGFβ2 expression. However, miR-30b effects on ATF2 were indirect and found to be via targeting of the known ATF2 repressor protein JDP2 whose mRNA levels were indirectly correlated with miR-30b levels. Increased secretion of TGFβ2 from HUVEC was shown to mediate the inhibitory effects of miR-30b on capillary morphogenesis as treatment with a neutralizing antibody to TGFβ2 restored capillary morphogenesis to normal levels in miR-30b overexpressing cells. These results support that the regulation of miR-30b by VEGF in HUVEC is important for capillary morphogenesis, as increased miR-30b expression inhibits capillary morphogenesis through enhanced expression of TGFβ2.
Collapse
Affiliation(s)
- Grant A. Howe
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Kayla Kazda
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Christina L. Addison
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Department of Medicine, University of Ottawa, Ottawa, ON, Canada
- * E-mail:
| |
Collapse
|