51
|
Sapio RT, Nezdyur AN, Krevetski M, Anikin L, Manna VJ, Minkovsky N, Pestov DG. Inhibition of post-transcriptional steps in ribosome biogenesis confers cytoprotection against chemotherapeutic agents in a p53-dependent manner. Sci Rep 2017; 7:9041. [PMID: 28831158 PMCID: PMC5567254 DOI: 10.1038/s41598-017-09002-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/17/2017] [Indexed: 12/11/2022] Open
Abstract
The p53-mediated nucleolar stress response associated with inhibition of ribosomal RNA transcription was previously shown to potentiate killing of tumor cells. Here, we asked whether targeting of ribosome biogenesis can be used as the basis for selective p53-dependent cytoprotection of nonmalignant cells. Temporary functional inactivation of the 60S ribosome assembly factor Bop1 in a 3T3 cell model markedly increased cell recovery after exposure to camptothecin or methotrexate. This was due, at least in part, to reversible pausing of the cell cycle preventing S phase associated DNA damage. Similar cytoprotective effects were observed after transient shRNA-mediated silencing of Rps19, but not several other tested ribosomal proteins, indicating distinct cellular responses to the inhibition of different steps in ribosome biogenesis. By temporarily inactivating Bop1 function, we further demonstrate selective killing of p53-deficient cells with camptothecin while sparing isogenic p53-positive cells. Thus, combining cytotoxic treatments with inhibition of select post-transcriptional steps of ribosome biogenesis holds potential for therapeutic targeting of cells that have lost p53.
Collapse
Affiliation(s)
- Russell T Sapio
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, 08084, USA.,Graduate School of Biomedical Sciences, Rowan University School of Osteopathic Medicine, Stratford, NJ, 08084, USA
| | - Anastasiya N Nezdyur
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, 08028, USA
| | - Matthew Krevetski
- Department of Biological Sciences, Rowan University, Glassboro, NJ, 08028, USA
| | - Leonid Anikin
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, 08084, USA.,Graduate School of Biomedical Sciences, Rowan University School of Osteopathic Medicine, Stratford, NJ, 08084, USA
| | - Vincent J Manna
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, 08084, USA.,Graduate School of Biomedical Sciences, Rowan University School of Osteopathic Medicine, Stratford, NJ, 08084, USA
| | - Natalie Minkovsky
- Department of Biological Sciences, Rowan University, Glassboro, NJ, 08028, USA
| | - Dimitri G Pestov
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, 08084, USA.
| |
Collapse
|
52
|
Debnath S, Jaako P, Siva K, Rothe M, Chen J, Dahl M, Gaspar HB, Flygare J, Schambach A, Karlsson S. Lentiviral Vectors with Cellular Promoters Correct Anemia and Lethal Bone Marrow Failure in a Mouse Model for Diamond-Blackfan Anemia. Mol Ther 2017; 25:1805-1814. [PMID: 28434866 PMCID: PMC5542636 DOI: 10.1016/j.ymthe.2017.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/28/2017] [Accepted: 04/01/2017] [Indexed: 01/22/2023] Open
Abstract
Diamond-Blackfan anemia is a congenital erythroid hypoplasia and is associated with physical malformations and a predisposition to cancer. Twenty-five percent of patients with Diamond-Blackfan anemia have mutations in a gene encoding ribosomal protein S19 (RPS19). Through overexpression of RPS19 using a lentiviral vector with the spleen focus-forming virus promoter, we demonstrated that the Diamond-Blackfan anemia phenotype can be successfully treated in Rps19-deficient mice. In our present study, we assessed the efficacy of a clinically relevant promoter, the human elongation factor 1α short promoter, with or without the locus control region of the β-globin gene for treatment of RPS19-deficient Diamond-Blackfan anemia. The findings demonstrate that these vectors rescue the proliferation defect and improve erythroid development of transduced RPS19-deficient bone marrow cells. Remarkably, bone marrow failure and severe anemia in Rps19-deficient mice was cured with enforced expression of RPS19 driven by the elongation factor 1α short promoter. We also demonstrate that RPS19-deficient bone marrow cells can be transduced and these cells have the capacity to repopulate bone marrow in long-term reconstituted mice. Our results collectively demonstrate the feasibility to cure RPS19-deficient Diamond-Blackfan anemia using lentiviral vectors with cellular promoters that possess a reduced risk of insertional mutagenesis.
Collapse
Affiliation(s)
- Shubhranshu Debnath
- Molecular Medicine and Gene Therapy, Lund Strategic Center for Stem Cell Biology, Lund University, Lund 22184, Sweden
| | - Pekka Jaako
- Molecular Medicine and Gene Therapy, Lund Strategic Center for Stem Cell Biology, Lund University, Lund 22184, Sweden
| | - Kavitha Siva
- Molecular Medicine and Gene Therapy, Lund Strategic Center for Stem Cell Biology, Lund University, Lund 22184, Sweden
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Jun Chen
- Molecular Medicine and Gene Therapy, Lund Strategic Center for Stem Cell Biology, Lund University, Lund 22184, Sweden
| | - Maria Dahl
- Molecular Medicine and Gene Therapy, Lund Strategic Center for Stem Cell Biology, Lund University, Lund 22184, Sweden
| | - H Bobby Gaspar
- Molecular Immunology Unit, Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Johan Flygare
- Molecular Medicine and Gene Therapy, Lund Strategic Center for Stem Cell Biology, Lund University, Lund 22184, Sweden
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Stefan Karlsson
- Molecular Medicine and Gene Therapy, Lund Strategic Center for Stem Cell Biology, Lund University, Lund 22184, Sweden.
| |
Collapse
|
53
|
Takafuji T, Kayama K, Sugimoto N, Fujita M. GRWD1, a new player among oncogenesis-related ribosomal/nucleolar proteins. Cell Cycle 2017; 16:1397-1403. [PMID: 28722511 DOI: 10.1080/15384101.2017.1338987] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Increasing attention has been paid to certain ribosomal or ribosome biosynthesis-related proteins involved in oncogenesis. Members of one group are classified as "tumor suppressive factors" represented by RPL5 and RPL11; loss of their functions leads to cancer predisposition. RPL5 and RPL11 prevent tumorigenesis by binding to and inhibiting the MDM2 ubiquitin ligase and thereby up-regulating p53. Many other candidate tumor suppressive ribosomal/nucleolar proteins have been suggested. However, it remains to be experimentally clarified whether many of these factors can actually prevent tumorigenesis and if so, how they do so. Conversely, some ribosomal/nucleolar proteins promote tumorigenesis. For example, PICT1 binds to and anchors RPL11 in nucleoli, down-regulating p53 and promoting tumorigenesis. GRWD1 was recently identified as another such factor. When overexpressed, GRWD1 suppresses p53 and transforms normal human cells, probably by binding to RPL11 and sequestrating it from MDM2. However, other pathways may also be involved.
Collapse
Affiliation(s)
- Takuya Takafuji
- a Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences , Kyushu University , Higashi-ku, Fukuoka , Japan
| | - Kota Kayama
- a Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences , Kyushu University , Higashi-ku, Fukuoka , Japan
| | - Nozomi Sugimoto
- a Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences , Kyushu University , Higashi-ku, Fukuoka , Japan
| | - Masatoshi Fujita
- a Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences , Kyushu University , Higashi-ku, Fukuoka , Japan
| |
Collapse
|
54
|
Zhang L, McGraw KL, Sallman DA, List AF. The role of p53 in myelodysplastic syndromes and acute myeloid leukemia: molecular aspects and clinical implications. Leuk Lymphoma 2016; 58:1777-1790. [PMID: 27967292 DOI: 10.1080/10428194.2016.1266625] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
TP53 gene mutations occurring in patients with myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) are associated with high-risk karyotypes including 17p abnormalities, monosomal and complex cytogenetics. TP53 mutations in these disorders portend rapid disease progression and resistance to conventional therapeutics. Notably, the size of the TP53 mutant clone as measured by mutation allele burden is directly linked to overall survival (OS) confirming the importance of p53 as a negative prognostic variable. In nucleolar stress-induced ribosomopathies, such as del(5q) MDS, disassociation of MDM2 and p53 results in p53 accumulation in erythroid precursors manifested as erythroid hypoplasia. P53 antagonism by lenalidomide or other therapeutics such as antisense oligonucleotides, repopulates erythroid precursors and enhances effective erythropoiesis. These findings demonstrate that p53 is an intriguing therapeutic target that is currently under investigation in MDS and AML. This study reviews molecular advances in understanding the role of p53 in MDS and AML, and explores potential therapeutic strategies in this era of personalized medicine.
Collapse
Affiliation(s)
- Ling Zhang
- a Department of Hematopathology and Laboratory Medicine , H. Lee Moffitt Cancer Center and Research Institute , Tampa , FL , USA
| | - Kathy L McGraw
- b Department of Malignant Hematology , H. Lee Moffitt Cancer Center and Research Institute , Tampa , FL , USA
| | - David A Sallman
- b Department of Malignant Hematology , H. Lee Moffitt Cancer Center and Research Institute , Tampa , FL , USA
| | - Alan F List
- b Department of Malignant Hematology , H. Lee Moffitt Cancer Center and Research Institute , Tampa , FL , USA
| |
Collapse
|
55
|
Fahl SP, Wang M, Zhang Y, Duc ACE, Wiest DL. Regulatory Roles of Rpl22 in Hematopoiesis: An Old Dog with New Tricks. Crit Rev Immunol 2016; 35:379-400. [PMID: 26853850 DOI: 10.1615/critrevimmunol.v35.i5.30] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ribosomal proteins have long been known to serve critical roles in facilitating the biogenesis of the ribosome and its ability to synthesize proteins. However, evidence is emerging that suggests ribosomal proteins are also capable of performing tissue-restricted, regulatory functions that impact normal development and pathological conditions, including cancer. The challenge in studying such regulatory functions is that elimination of many ribosomal proteins also disrupts ribosome biogenesis and/or function. Thus, it is difficult to determine whether developmental abnormalities resulting from ablation of a ribosomal protein result from loss of core ribosome functions or from loss of the regulatory function of the ribosomal protein. Rpl22, a ribosomal protein component of the large 60S subunit, provides insight into this conundrum; Rpl22 is dispensable for both ribosome biogenesis and protein synthesis yet its ablation causes tissue-restricted disruptions in development. Here we review evidence supporting the regulatory functions of Rpl22 and other ribosomal proteins.
Collapse
Affiliation(s)
- Shawn P Fahl
- Blood Cell Development and Function Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Minshi Wang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Yong Zhang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Anne-Cecile E Duc
- Blood Cell Development and Function Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - David L Wiest
- Blood Cell Development and Function Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| |
Collapse
|
56
|
Abstract
The recent advent of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR associated protein 9 (Cas9) system for precise genome editing has revolutionized methodologies in haematology and oncology studies. CRISPR-Cas9 technology can be used to remove and correct genes or mutations, and to introduce site-specific therapeutic genes in human cells. Inherited haematological disorders represent ideal targets for CRISPR-Cas9-mediated gene therapy. Correcting disease-causing mutations could alleviate disease-related symptoms in the near future. The CRISPR-Cas9 system is also a useful tool for delineating molecular mechanisms involving haematological malignancies. Prior to the use of CRISPR-Cas9-mediated gene correction in humans, appropriate delivery systems with higher efficiency and specificity must be identified, and ethical guidelines for applying the technology with controllable safety must be established. Here, the latest applications of CRISPR-Cas9 technology in haematological disorders, current challenges and future directions are reviewed and discussed.
Collapse
Affiliation(s)
- Han Zhang
- The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), University of Texas-Health Science Centre at Houston, Houston, TX, USA
| | - Nami McCarty
- The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), University of Texas-Health Science Centre at Houston, Houston, TX, USA.
| |
Collapse
|
57
|
Danilova N, Gazda HT. Ribosomopathies: how a common root can cause a tree of pathologies. Dis Model Mech 2016; 8:1013-26. [PMID: 26398160 PMCID: PMC4582105 DOI: 10.1242/dmm.020529] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Defects in ribosome biogenesis are associated with a group of diseases called the ribosomopathies, of which Diamond-Blackfan anemia (DBA) is the most studied. Ribosomes are composed of ribosomal proteins (RPs) and ribosomal RNA (rRNA). RPs and multiple other factors are necessary for the processing of pre-rRNA, the assembly of ribosomal subunits, their export to the cytoplasm and for the final assembly of subunits into a ribosome. Haploinsufficiency of certain RPs causes DBA, whereas mutations in other factors cause various other ribosomopathies. Despite the general nature of their underlying defects, the clinical manifestations of ribosomopathies differ. In DBA, for example, red blood cell pathology is especially evident. In addition, individuals with DBA often have malformations of limbs, the face and various organs, and also have an increased risk of cancer. Common features shared among human DBA and animal models have emerged, such as small body size, eye defects, duplication or overgrowth of ectoderm-derived structures, and hematopoietic defects. Phenotypes of ribosomopathies are mediated both by p53-dependent and -independent pathways. The current challenge is to identify differences in response to ribosomal stress that lead to specific tissue defects in various ribosomopathies. Here, we review recent findings in this field, with a particular focus on animal models, and discuss how, in some cases, the different phenotypes of ribosomopathies might arise from differences in the spatiotemporal expression of the affected genes. Summary: This paper reviews recent data on Diamond Blackfan anemia and discusses them in connection with other ribosomopathies.
Collapse
Affiliation(s)
- Nadia Danilova
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Hanna T Gazda
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA Broad Institute, Cambridge, MA 02142, USA
| |
Collapse
|
58
|
Noack Watt KE, Achilleos A, Neben CL, Merrill AE, Trainor PA. The Roles of RNA Polymerase I and III Subunits Polr1c and Polr1d in Craniofacial Development and in Zebrafish Models of Treacher Collins Syndrome. PLoS Genet 2016; 12:e1006187. [PMID: 27448281 PMCID: PMC4957770 DOI: 10.1371/journal.pgen.1006187] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 06/22/2016] [Indexed: 12/30/2022] Open
Abstract
Ribosome biogenesis is a global process required for growth and proliferation of all cells, yet perturbation of ribosome biogenesis during human development often leads to tissue-specific defects termed ribosomopathies. Transcription of the ribosomal RNAs (rRNAs) by RNA polymerases (Pol) I and III, is considered a rate limiting step of ribosome biogenesis and mutations in the genes coding for RNA Pol I and III subunits, POLR1C and POLR1D cause Treacher Collins syndrome, a rare congenital craniofacial disorder. Our understanding of the functions of individual RNA polymerase subunits, however, remains poor. We discovered that polr1c and polr1d are dynamically expressed during zebrafish embryonic development, particularly in craniofacial tissues. Consistent with this pattern of activity, polr1c and polr1d homozygous mutant zebrafish exhibit cartilage hypoplasia and cranioskeletal anomalies characteristic of humans with Treacher Collins syndrome. Mechanistically, we discovered that polr1c and polr1d loss-of-function results in deficient ribosome biogenesis, Tp53-dependent neuroepithelial cell death and a deficiency of migrating neural crest cells, which are the primary progenitors of the craniofacial skeleton. More importantly, we show that genetic inhibition of tp53 can suppress neuroepithelial cell death and ameliorate the skeletal anomalies in polr1c and polr1d mutants, providing a potential avenue to prevent the pathogenesis of Treacher Collins syndrome. Our work therefore has uncovered tissue-specific roles for polr1c and polr1d in rRNA transcription, ribosome biogenesis, and neural crest and craniofacial development during embryogenesis. Furthermore, we have established polr1c and polr1d mutant zebrafish as models of Treacher Collins syndrome together with a unifying mechanism underlying its pathogenesis and possible prevention. Ribosomes synthesize all proteins, and are therefore critical for cell growth and proliferation. Ribosome biogenesis, or the process of making ribosomes, is one of the most energy consuming processes within a cell, and disruptions in ribosome biogenesis can lead to congenital disorders termed ribosomopathies. Interestingly, individual ribosomopathies are characterized by tissue-specific phenotypes, which is surprising given the universal importance of ribosomes. Treacher Collins syndrome (TCS) for example, is a ribosomopathy characterized by anomalies of facial bones, palate, eyes and ears. Mutations in TCOF1, POLR1C, and POLR1D are associated with the underlying etiology of TCS. TCOF1 plays an important role in the synthesis of ribosomal RNA, one of the rate-limiting steps of ribosome biogenesis. Consequently, TCOF1 is essential for the survival and proliferation of neural crest cell progenitors, which are the precursors of craniofacial bone, cartilage and connective tissue. In contrast, the functions of POLR1C and POLR1D, which are subunits of RNA Polymerases I and III remain unknown. Here we examined the function of polr1c and polr1d during zebrafish development and discovered that these genes display dynamic spatiotemporal activity during embryogenesis with enriched expression in craniofacial tissues. Furthermore, we observed that polr1c and polr1d loss-of-function zebrafish exhibit anomalies in craniofacial cartilage development, which reflects the characteristic features of TCS. An examination of polr1c-/- and polr1d-/- mutants revealed that diminished ribosome biogenesis results in neuroepithelial cell death and a deficiency of migrating neural crest cells, which are the progenitors of the craniofacial skeleton. Moreover, the cell death observed in polr1c-/- and polr1d-/- mutants is Tp53-dependent, and inhibition of tp53 is sufficient to repress cell death and rescue cranioskeletal cartilage formation in polr1c-/- and polr1d-/- mutant embryos. These studies provide evidence for tissue-specific functions of polr1c and polr1d during embryonic development, while also establishing polr1c and polr1d loss-of-function zebrafish mutants as models of Treacher Collins syndrome.
Collapse
Affiliation(s)
- Kristin E. Noack Watt
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Annita Achilleos
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Cynthia L. Neben
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Amy E. Merrill
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Paul A. Trainor
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
59
|
Jaako P, Ugale A, Wahlestedt M, Velasco-Hernandez T, Cammenga J, Lindström MS, Bryder D. Induction of the 5S RNP–Mdm2–p53 ribosomal stress pathway delays the initiation but fails to eradicate established murine acute myeloid leukemia. Leukemia 2016; 31:213-221. [DOI: 10.1038/leu.2016.159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 05/10/2016] [Accepted: 05/23/2016] [Indexed: 01/05/2023]
|
60
|
Yang Z, Keel SB, Shimamura A, Liu L, Gerds AT, Li HY, Wood BL, Scott BL, Abkowitz JL. Delayed globin synthesis leads to excess heme and the macrocytic anemia of Diamond Blackfan anemia and del(5q) myelodysplastic syndrome. Sci Transl Med 2016; 8:338ra67. [PMID: 27169803 PMCID: PMC5010382 DOI: 10.1126/scitranslmed.aaf3006] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/07/2016] [Indexed: 12/17/2022]
Abstract
Diamond Blackfan anemia (DBA) and myelodysplastic syndrome (MDS) with isolated del(5q) are severe macrocytic anemias; although both are associated with impaired ribosome assembly, why the anemia occurs is not known. We cultured marrow cells from DBA (n = 3) and del(5q) MDS (n = 6) patients and determined how heme (a toxic chemical) and globin (a protein) are coordinated. We show that globin translation initiates slowly, whereas heme synthesis proceeds normally. This results in insufficient globin protein, excess heme and excess reactive oxygen species in early erythroid precursors, and CFU-E (colony-forming unit-erythroid)/proerythroblast cell death. The cells that can more rapidly and effectively export heme or can slow heme synthesis preferentially survive and appropriately mature. Consistent with these observations, treatment with 10 μM succinylacetone, a specific inhibitor of heme synthesis, improved the erythroid cell output of DBA and del(5q) MDS marrow cultures by 68 to 95% (P = 0.03 to 0.05), whereas the erythroid cell output of concurrent control marrow cultures decreased by 4 to 13%. Our studies demonstrate that erythropoiesis fails when heme exceeds globin. Our data further suggest that therapies that decrease heme synthesis (or facilitate heme export) could improve the red blood cell production of persons with DBA, del(5q) MDS, and perhaps other macrocytic anemias.
Collapse
Affiliation(s)
- Zhantao Yang
- University of Washington, Seattle, WA 98195, USA
| | | | - Akiko Shimamura
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA. Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Li Liu
- University of Washington, Seattle, WA 98195, USA
| | - Aaron T Gerds
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | - Brent L Wood
- University of Washington, Seattle, WA 98195, USA
| | - Bart L Scott
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | |
Collapse
|
61
|
De Keersmaecker K. A novel mouse model provides insights into the neutropenia associated with the ribosomopathy Shwachman-Diamond syndrome. Haematologica 2016; 100:1237-9. [PMID: 26432381 DOI: 10.3324/haematol.2015.133777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Kim De Keersmaecker
- KU Leuven Department of Oncology, Leuven, Belgium VIB Center for the Biology of Disease, Leuven, Belgium
| |
Collapse
|
62
|
Liu Y, Deisenroth C, Zhang Y. RP-MDM2-p53 Pathway: Linking Ribosomal Biogenesis and Tumor Surveillance. Trends Cancer 2016; 2:191-204. [PMID: 28741571 DOI: 10.1016/j.trecan.2016.03.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/03/2016] [Accepted: 03/04/2016] [Indexed: 12/18/2022]
Abstract
Ribosomal biogenesis is tightly associated with cellular activities, such as growth, proliferation, and cell cycle progression. Perturbations in ribosomal biogenesis can initiate so-called nucleolar stress. The process through which ribosomal proteins (RPs) transduce nucleolar stress signals via MDM2 to p53 has been described as a crucial tumor-suppression mechanism. In this review we focus on recent progress pertaining to the function and mechanism of RPs in association with the MDM2-p53 tumor-suppression network, and the potential implications this surveillance network has for cancer development.
Collapse
Affiliation(s)
- Yong Liu
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chad Deisenroth
- The Hamner Institutes for Health Sciences, Institute for Chemical Safety Sciences, 6 Davis Drive, PO Box 12137, Research Triangle Park, NC 27709, USA
| | - Yanping Zhang
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu 221002, China.
| |
Collapse
|
63
|
Mice with a Mutation in the Mdm2 Gene That Interferes with MDM2/Ribosomal Protein Binding Develop a Defect in Erythropoiesis. PLoS One 2016; 11:e0152263. [PMID: 27042854 PMCID: PMC4820113 DOI: 10.1371/journal.pone.0152263] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/13/2016] [Indexed: 11/19/2022] Open
Abstract
MDM2, an E3 ubiquitin ligase, is an important negative regulator of tumor suppressor p53. In turn the Mdm2 gene is a transcriptional target of p53, forming a negative feedback loop that is important in cell cycle control. It has recently become apparent that the ubiquitination of p53 by MDM2 can be inhibited when certain ribosomal proteins, including RPL5 and RPL11, bind to MDM2. This inhibition, and the resulting increase in p53 levels has been proposed to be responsible for the red cell aplasia seen in Diamond-Blackfan anemia (DBA) and in 5q- myelodysplastic syndrome (MDS). DBA and 5q- MDS are associated with inherited (DBA) or acquired (5q- MDS) haploinsufficiency of ribosomal proteins. A mutation in Mdm2 causing a C305F amino acid substitution blocks the binding of ribosomal proteins. Mice harboring this mutation (Mdm2C305F), retain a normal p53 response to DNA damage, but lack the p53 response to perturbations in ribosome biogenesis. While studying the interaction between RP haploinsufficiency and the Mdm2C305F mutation we noticed that Mdm2C305F homozygous mice had altered hematopoiesis. These mice developed a mild macrocytic anemia with reticulocytosis. In the bone marrow (BM), these mice showed a significant decrease in Ter119hi cells compared to wild type (WT) littermates, while no decrease in the number of mature erythroid cells (Ter119hiCD71low) was found in the spleen, which showed compensated bone marrow hematopoiesis. In methylcellulose cultures, BFU-E colonies from the mutant mice were slightly reduced in number and there was a significant reduction in CFU-E colony numbers in mutant mice compared with WT controls (p < 0.01). This erythropoietic defect was abrogated by concomitant p53 deficiency (Trp53ko/ko). Further investigation revealed that in Mdm2C305F animals, there was a decrease in Lin-Sca-1+c-Kit+ (LSK) cells, accompanied by significant decreases in multipotent progenitor (MPP) cells (p < 0.01). Competitive BM repopulation experiments showed that donor BM harboring the Mdm2C305F mutation possessed decreased repopulation capacity compared to WT BM, suggesting a functional stem cell deficit. These results suggest that there is a fine tuned balance in the interaction of ribosomal proteins with the MDM2/p53 axis which is important in normal hematopoiesis.
Collapse
|
64
|
Kollek M, Müller A, Egle A, Erlacher M. Bcl-2 proteins in development, health, and disease of the hematopoietic system. FEBS J 2016; 283:2779-810. [DOI: 10.1111/febs.13683] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 01/29/2016] [Accepted: 02/12/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Matthias Kollek
- Division of Pediatric Hematology and Oncology; Department of Pediatrics and Adolescent Medicine; University Medical Center of Freiburg; Germany
- Faculty of Biology; University of Freiburg; Germany
| | - Alexandra Müller
- Division of Pediatric Hematology and Oncology; Department of Pediatrics and Adolescent Medicine; University Medical Center of Freiburg; Germany
| | - Alexander Egle
- Laboratory for Immunological and Molecular Cancer Research; 3rd Medical Department for Hematology; Paracelsus Private Medical University Hospital; Salzburg Austria
| | - Miriam Erlacher
- Division of Pediatric Hematology and Oncology; Department of Pediatrics and Adolescent Medicine; University Medical Center of Freiburg; Germany
| |
Collapse
|
65
|
Wan Y, Zhang Q, Zhang Z, Song B, Wang X, Zhang Y, Jia Q, Cheng T, Zhu X, Leung AYH, Yuan W, Jia H, Fang X. Transcriptome analysis reveals a ribosome constituents disorder involved in the RPL5 downregulated zebrafish model of Diamond-Blackfan anemia. BMC Med Genomics 2016; 9:13. [PMID: 26961822 PMCID: PMC4785739 DOI: 10.1186/s12920-016-0174-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 03/03/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Diamond-Blackfan anemia (DBA) was the first ribosomopathy associated with mutations in ribosome protein (RP) genes. The clinical phenotypes of DBA include failure of erythropoiesis, congenital anomalies and cancer predisposition. Mutations in RPL5 are reported in approximately 9 ~ 21 % of DBA patients, which represents the most common pathological condition related to a large-subunit ribosomal protein. However, it remains unclear how RPL5 downregulation results in severe phenotypes of this disease. RESULTS In this study, we generated a zebrafish model of DBA with RPL5 morphants and implemented high-throughput RNA-seq and ncRNA-seq to identify key genes, lncRNAs, and miRNAs during zebrafish development and hematopoiesis. We demonstrated that RPL5 is required for both primitive and definitive hematopoiesis processes. By comparing with other DBA zebrafish models and processing functional coupling network, we identified some common regulated genes, lncRNAs and miRNAs, that might play important roles in development and hematopoiesis. CONCLUSIONS Ribosome biogenesis and translation process were affected more in RPL5 MO than in other RP MOs. Both P53 dependent (for example, cell cycle pathway) and independent pathways (such as Aminoacyl-tRNA biosynthesis pathway) play important roles in DBA pathology. Our results therefore provide a comprehensive basis for the study of molecular pathogenesis of RPL5-mediated DBA and other ribosomopathies.
Collapse
Affiliation(s)
- Yang Wan
- />State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| | - Qian Zhang
- />CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Zhaojun Zhang
- />CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Binfeng Song
- />Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074 China
| | - Xiaomin Wang
- />State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| | - Yingchi Zhang
- />State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| | - Qiong Jia
- />Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074 China
| | - Tao Cheng
- />State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| | - Xiaofan Zhu
- />State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| | | | - Weiping Yuan
- />State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| | - Haibo Jia
- />Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074 China
| | - Xiangdong Fang
- />CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
66
|
Goudarzi KM, Lindström MS. Role of ribosomal protein mutations in tumor development (Review). Int J Oncol 2016; 48:1313-24. [PMID: 26892688 PMCID: PMC4777597 DOI: 10.3892/ijo.2016.3387] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/07/2016] [Indexed: 12/16/2022] Open
Abstract
Ribosomes are cellular machines essential for protein synthesis. The biogenesis of ribosomes is a highly complex and energy consuming process that initiates in the nucleolus. Recently, a series of studies applying whole-exome or whole-genome sequencing techniques have led to the discovery of ribosomal protein gene mutations in different cancer types. Mutations in ribosomal protein genes have for example been found in endometrial cancer (RPL22), T-cell acute lymphoblastic leukemia (RPL10, RPL5 and RPL11), chronic lymphocytic leukemia (RPS15), colorectal cancer (RPS20), and glioma (RPL5). Moreover, patients suffering from Diamond-Blackfan anemia, a bone marrow failure syndrome caused by mutant ribosomal proteins are also at higher risk for developing leukemia, or solid tumors. Different experimental models indicate potential mechanisms whereby ribosomal proteins may initiate cancer development. In particular, deregulation of the p53 tumor suppressor network and altered mRNA translation are mechanisms likely to be involved. We envisage that changes in expression and the occurrence of ribosomal protein gene mutations play important roles in cancer development. Ribosome biology constitutes a re-emerging vital area of basic and translational cancer research.
Collapse
Affiliation(s)
- Kaveh M Goudarzi
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska, CCK R8:05, Karolinska University Hospital in Solna, Stockholm, Sweden
| | - Mikael S Lindström
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
67
|
Gao R, Chen S, Kobayashi M, Yu H, Zhang Y, Wan Y, Young SK, Soltis A, Yu M, Vemula S, Fraenkel E, Cantor A, Antipin Y, Xu Y, Yoder MC, Wek RC, Ellis SR, Kapur R, Zhu X, Liu Y. Bmi1 promotes erythroid development through regulating ribosome biogenesis. Stem Cells 2015; 33:925-38. [PMID: 25385494 DOI: 10.1002/stem.1896] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 10/23/2014] [Accepted: 10/26/2014] [Indexed: 12/26/2022]
Abstract
While Polycomb group protein Bmi1 is important for stem cell maintenance, its role in lineage commitment is largely unknown. We have identified Bmi1 as a novel regulator of erythroid development. Bmi1 is highly expressed in mouse erythroid progenitor cells and its deficiency impairs erythroid differentiation. BMI1 is also important for human erythroid development. Furthermore, we discovered that loss of Bmi1 in erythroid progenitor cells results in decreased transcription of multiple ribosomal protein genes and impaired ribosome biogenesis. Bmi1 deficiency stabilizes p53 protein, leading to upregulation of p21 expression and subsequent G0/G1 cell cycle arrest. Genetic inhibition of p53 activity rescues the erythroid defects seen in the Bmi1 null mice, demonstrating that a p53-dependent mechanism underlies the pathophysiology of the anemia. Mechanistically, Bmi1 is associated with multiple ribosomal protein genes and may positively regulate their expression in erythroid progenitor cells. Thus, Bmi1 promotes erythroid development, at least in part through regulating ribosome biogenesis. Ribosomopathies are human disorders of ribosome dysfunction, including Diamond-Blackfan anemia (DBA) and 5q- syndrome, in which genetic abnormalities cause impaired ribosome biogenesis, resulting in specific clinical phenotypes. We observed that BMI1 expression in human hematopoietic stem and progenitor cells from patients with DBA is correlated with the expression of some ribosomal protein genes, suggesting that BMI1 deficiency may play a pathological role in DBA and other ribosomopathies.
Collapse
Affiliation(s)
- Rui Gao
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Morgado-Palacin L, Varetti G, Llanos S, Gómez-López G, Martinez D, Serrano M. Partial Loss of Rpl11 in Adult Mice Recapitulates Diamond-Blackfan Anemia and Promotes Lymphomagenesis. Cell Rep 2015; 13:712-722. [PMID: 26489471 DOI: 10.1016/j.celrep.2015.09.038] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 08/10/2015] [Accepted: 09/14/2015] [Indexed: 01/01/2023] Open
Abstract
Diamond-Blackfan anemia (DBA) is characterized by anemia and cancer susceptibility and is caused by mutations in ribosomal genes, including RPL11. Here, we report that Rpl11-heterozygous mouse embryos are not viable and that Rpl11 homozygous deletion in adult mice results in death within a few weeks, accompanied by bone marrow aplasia and intestinal atrophy. Importantly, Rpl11 heterozygous deletion in adult mice results in anemia associated with decreased erythroid progenitors and defective erythroid maturation. These defects are also present in mice transplanted with inducible heterozygous Rpl11 bone marrow and, therefore, are intrinsic to the hematopoietic system. Additionally, heterozygous Rpl11 mice present increased susceptibility to radiation-induced lymphomagenesis. In this regard, total or partial deletion of Rpl11 compromises p53 activation upon ribosomal stress or DNA damage in fibroblasts. Moreover, fibroblasts and hematopoietic tissues from heterozygous Rpl11 mice present higher basal cMYC levels. We conclude that Rpl11-deficient mice recapitulate DBA disorder, including cancer predisposition.
Collapse
Affiliation(s)
- Lucia Morgado-Palacin
- Tumor Suppression Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid E28029, Spain
| | - Gianluca Varetti
- Tumor Suppression Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid E28029, Spain
| | - Susana Llanos
- Tumor Suppression Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid E28029, Spain
| | - Gonzalo Gómez-López
- Bioniformatics Unit, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid E28029, Spain
| | - Dolores Martinez
- Flow Cytometry Unit, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO), Madrid E28029, Spain
| | - Manuel Serrano
- Tumor Suppression Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid E28029, Spain.
| |
Collapse
|
69
|
Macrì S, Pavesi E, Crescitelli R, Aspesi A, Vizziello C, Botto C, Corti P, Quarello P, Notari P, Ramenghi U, Ellis SR, Dianzani I. Immunophenotypic Profiling of Erythroid Progenitor-Derived Extracellular Vesicles in Diamond-Blackfan Anaemia: A New Diagnostic Strategy. PLoS One 2015; 10:e0138200. [PMID: 26394034 PMCID: PMC4578940 DOI: 10.1371/journal.pone.0138200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 08/27/2015] [Indexed: 01/08/2023] Open
Abstract
Diamond-Blackfan Anaemia (DBA) is a rare inherited anaemia caused by heterozygous mutations in one of 13 ribosomal protein genes. Erythroid progenitors (BFU-E and CFU-E) in bone marrow (BM) show a proapoptotic phenotype. Suspicion of DBA is reached after exclusion of other forms of BM failure syndromes. To improve DBA diagnosis, which is confirmed by mutation analysis, we tested a new approach based on the study of extracellular vesicles (EVs) isolated from plasma by differential centrifugations and analysed by flow cytometry. We chose CD34, CD71 and CD235a markers to study erythroid EVs. We characterised the EVs immunophentoypic profiles of 13 DBA patients, 22 healthy controls and 16 patients with other haematological diseases. Among the three EVs clusters we found, only the CD34+/CD71low population showed statistically significant differences between DBA patients and controls (p< 0.05). The absence of this cluster is in agreement with the low levels of BFU-E found in DBA patients. The assessment of ROC curves demonstrated the potential diagnostic value of this population. We suggest that this assay may be useful to improve DBA diagnosis as a quicker and less invasive alternative to BM BFU-E culture analysis.
Collapse
Affiliation(s)
- Serena Macrì
- Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Elisa Pavesi
- Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | | | - Anna Aspesi
- Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Claudia Vizziello
- Chemical Clinical Analysis laboratory, SCDU, Azienda Universitaria Ospedaliera Maggiore della Carità, Novara, Italy
| | - Carlotta Botto
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Paola Corti
- Department of Pediatric Hematology, San Gerardo’s Hospital, Monza, Italy
| | - Paola Quarello
- Pediatric Onco-Hematology, Regina Margherita Children’s Hospital, Turin, Italy
| | - Patrizia Notari
- Chemical Clinical Analysis laboratory, SCDU, Azienda Universitaria Ospedaliera Maggiore della Carità, Novara, Italy
| | - Ugo Ramenghi
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Steven Robert Ellis
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky, United States of America
| | - Irma Dianzani
- Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
- * E-mail:
| |
Collapse
|
70
|
Sjögren SE, Siva K, Soneji S, George AJ, Winkler M, Jaako P, Wlodarski M, Karlsson S, Hannan RD, Flygare J. Glucocorticoids improve erythroid progenitor maintenance and dampen Trp53 response in a mouse model of Diamond-Blackfan anaemia. Br J Haematol 2015; 171:517-29. [PMID: 26305041 PMCID: PMC5014181 DOI: 10.1111/bjh.13632] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/03/2015] [Indexed: 01/06/2023]
Abstract
Diamond-Blackfan anaemia (DBA) is a rare congenital disease causing severe anaemia and progressive bone marrow failure. The majority of patients carry mutations in ribosomal proteins, which leads to depletion of erythroid progenitors in the bone marrow. As many as 40% of all DBA patients receive glucocorticoids to alleviate their anaemia. However, despite their use in DBA treatment for more than half a century, the therapeutic mechanisms of glucocorticoids remain largely unknown. Therefore we sought to study disease specific effects of glucocorticoid treatment using a ribosomal protein s19 (Rps19) deficient mouse model of DBA. This study determines for the first time that a mouse model of DBA can respond to glucocorticoid treatment, similar to DBA patients. Our results demonstrate that glucocorticoid treatment reduces apoptosis, rescues erythroid progenitor depletion and premature differentiation of erythroid cells. Furthermore, glucocorticoids prevent Trp53 activation in Rps19-deficient cells- in a disease-specific manner. Dissecting the therapeutic mechanisms behind glucocorticoid treatment of DBA provides indispensible insight into DBA pathogenesis. Identifying mechanisms important for DBA treatment also enables development of more disease-specific treatments of DBA.
Collapse
Affiliation(s)
- Sara E Sjögren
- Department of Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden.,Lund Stem Cell Centre, Lund University, Lund, Sweden
| | - Kavitha Siva
- Department of Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden.,Lund Stem Cell Centre, Lund University, Lund, Sweden
| | - Shamit Soneji
- Lund Stem Cell Centre, Lund University, Lund, Sweden
| | - Amee J George
- Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.,Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Marcus Winkler
- Department of Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden.,Lund Stem Cell Centre, Lund University, Lund, Sweden
| | - Pekka Jaako
- Lund Stem Cell Centre, Lund University, Lund, Sweden.,Division of Molecular Haematology, Lund University, Lund, Sweden
| | - Marcin Wlodarski
- Division of Paediatric Haematology and Oncology, University of Freiburg, Freiburg, Germany
| | - Stefan Karlsson
- Department of Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden.,Lund Stem Cell Centre, Lund University, Lund, Sweden
| | - Ross D Hannan
- Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.,Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Johan Flygare
- Department of Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden.,Lund Stem Cell Centre, Lund University, Lund, Sweden
| |
Collapse
|
71
|
Abstract
A veritable explosion of primary research papers within the past 10 years focuses on nucleolar and ribosomal stress, and for good reason: with ribosome biosynthesis consuming ~80% of a cell’s energy, nearly all metabolic and signaling pathways lead ultimately to or from the nucleolus. We begin by describing p53 activation upon nucleolar stress resulting in cell cycle arrest or apoptosis. The significance of this mechanism cannot be understated, as oncologists are now inducing nucleolar stress strategically in cancer cells as a potential anti-cancer therapy. We also summarize the human ribosomopathies, syndromes in which ribosome biogenesis or function are impaired leading to birth defects or bone narrow failures; the perplexing problem in the ribosomopathies is why only certain cells are affected despite the fact that the causative mutation is systemic. We then describe p53-independent nucleolar stress, first in yeast which lacks p53, and then in other model metazoans that lack MDM2, the critical E3 ubiquitin ligase that normally inactivates p53. Do these presumably ancient p53-independent nucleolar stress pathways remain latent in human cells? If they still exist, can we use them to target >50% of known human cancers that lack functional p53?
Collapse
Affiliation(s)
- Allison James
- a Department of Biological Sciences; Louisiana State University; Baton Rouge, LA USA
| | | | | | | | | |
Collapse
|
72
|
Mercurio S, Aspesi A, Silengo L, Altruda F, Dianzani I, Chiabrando D. Alteration of heme metabolism in a cellular model of Diamond-Blackfan anemia. Eur J Haematol 2015; 96:367-74. [PMID: 26058344 DOI: 10.1111/ejh.12599] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2015] [Indexed: 01/23/2023]
Abstract
Diamond-Blackfan anemia (DBA) is a congenital pure red cell aplasia often associated with skeletal malformations. Mutations in ribosomal protein coding genes, mainly in RPS19, account for the majority of DBA cases. The molecular mechanisms underlying DBA pathogenesis are still not completely understood. Alternative spliced isoforms of FLVCR1 (feline leukemia virus subgroup C receptor 1) transcript coding for non-functional proteins have been reported in some DBA patients. Consistently, a phenotype very close to DBA has been described in animal models of FLVCR1 deficiency. FLVCR1 gene codes for two proteins: the plasma membrane heme exporter FLVCR1a and the mitochondrial heme exporter FLVCR1b. The coordinated expression of both FLVCR1 isoforms regulates an intracellular heme pool, necessary for proper expansion and differentiation of erythroid precursors. Here, we investigate the role of FLVCR1 isoforms in a cellular model of DBA. RPS19-downregulated TF1 cells show reduced FLVCR1a and FLVCR1b mRNA levels associated with heme overload. The downregulation of FLVCR1 isoforms affects cell cycle progression and apoptosis in differentiating K562 cells, a phenotype similar to DBA. Taken together, these data suggest that alteration of heme metabolism could play a role in the pathogenesis of DBA.
Collapse
Affiliation(s)
- Sonia Mercurio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Anna Aspesi
- Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Lorenzo Silengo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Fiorella Altruda
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Irma Dianzani
- Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Deborah Chiabrando
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| |
Collapse
|
73
|
Ribosome biogenesis dysfunction leads to p53-mediated apoptosis and goblet cell differentiation of mouse intestinal stem/progenitor cells. Cell Death Differ 2015; 22:1865-76. [PMID: 26068591 DOI: 10.1038/cdd.2015.57] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 03/31/2015] [Accepted: 04/13/2015] [Indexed: 02/07/2023] Open
Abstract
Ribosome biogenesis is an essential cellular process. Its impairment is associated with developmental defects and increased risk of cancer. The in vivo cellular responses to defective ribosome biogenesis and the underlying molecular mechanisms are still incompletely understood. In particular, the consequences of impaired ribosome biogenesis within the intestinal epithelium in mammals have not been investigated so far. Here we adopted a genetic approach to investigate the role of Notchless (NLE), an essential actor of ribosome biogenesis, in the adult mouse intestinal lineage. Nle deficiency led to defects in the synthesis of large ribosomal subunit in crypts cells and resulted in the rapid elimination of intestinal stem cells and progenitors through distinct types of cellular responses, including apoptosis, cell cycle arrest and biased differentiation toward the goblet cell lineage. Similar observations were made using the rRNA transcription inhibitor CX-5461 on intestinal organoids culture. Importantly, we found that p53 activation was responsible for most of the cellular responses observed, including differentiation toward the goblet cell lineage. Moreover, we identify the goblet cell-specific marker Muc2 as a direct transcriptional target of p53. Nle-deficient ISCs and progenitors disappearance persisted in the absence of p53, underlying the existence of p53-independent cellular responses following defective ribosome biogenesis. Our data indicate that NLE is a crucial factor for intestinal homeostasis and provide new insights into how perturbations of ribosome biogenesis impact on cell fate decisions within the intestinal epithelium.
Collapse
|
74
|
Jaako P, Debnath S, Olsson K, Zhang Y, Flygare J, Lindström MS, Bryder D, Karlsson S. Disruption of the 5S RNP-Mdm2 interaction significantly improves the erythroid defect in a mouse model for Diamond-Blackfan anemia. Leukemia 2015; 29:2221-9. [PMID: 25987256 DOI: 10.1038/leu.2015.128] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/10/2015] [Accepted: 05/06/2015] [Indexed: 02/07/2023]
Abstract
Diamond-Blackfan anemia (DBA) is a congenital erythroid hypoplasia caused by haploinsufficiency of genes encoding ribosomal proteins (RPs). Perturbed ribosome biogenesis in DBA has been shown to induce a p53-mediated ribosomal stress response. However, the mechanisms of p53 activation and its relevance for the erythroid defect remain elusive. Previous studies have indicated that activation of p53 is caused by the inhibition of mouse double minute 2 (Mdm2), the main negative regulator of p53, by the 5S ribonucleoprotein particle (RNP). Meanwhile, it is not clear whether this mechanism solely mediates the p53-dependent component found in DBA. To approach this question, we crossed our mouse model for RPS19-deficient DBA with Mdm2(C305F) knock-in mice that have a disrupted 5S RNP-Mdm2 interaction. Upon induction of the Rps19 deficiency, Mdm2(C305F) reversed the p53 response and improved expansion of hematopoietic progenitors in vitro, and ameliorated the anemia in vivo. Unexpectedly, disruption of the 5S RNP-Mdm2 interaction also led to selective defect in erythropoiesis. Our findings highlight the sensitivity of erythroid progenitor cells to aberrations in p53 homeostasis mediated by the 5S RNP-Mdm2 interaction. Finally, we provide evidence indicating that physiological activation of the 5S RNP-Mdm2-p53 pathway may contribute to functional decline of the hematopoietic system in a cell-autonomous manner over time.
Collapse
Affiliation(s)
- P Jaako
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden.,Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - S Debnath
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - K Olsson
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Y Zhang
- Department of Radiation Oncology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - J Flygare
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - M S Lindström
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - D Bryder
- Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - S Karlsson
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| |
Collapse
|
75
|
Zhou X, Liao WJ, Liao JM, Liao P, Lu H. Ribosomal proteins: functions beyond the ribosome. J Mol Cell Biol 2015; 7:92-104. [PMID: 25735597 DOI: 10.1093/jmcb/mjv014] [Citation(s) in RCA: 457] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/05/2014] [Indexed: 01/05/2023] Open
Abstract
Although ribosomal proteins are known for playing an essential role in ribosome assembly and protein translation, their ribosome-independent functions have also been greatly appreciated. Over the past decade, more than a dozen of ribosomal proteins have been found to activate the tumor suppressor p53 pathway in response to ribosomal stress. In addition, these ribosomal proteins are involved in various physiological and pathological processes. This review is composed to overview the current understanding of how ribosomal stress provokes the accumulation of ribosome-free ribosomal proteins, as well as the ribosome-independent functions of ribosomal proteins in tumorigenesis, immune signaling, and development. We also propose the potential of applying these pieces of knowledge to the development of ribosomal stress-based cancer therapeutics.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Wen-Juan Liao
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jun-Ming Liao
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Peng Liao
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Hua Lu
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
76
|
Kim TH, Leslie P, Zhang Y. Ribosomal proteins as unrevealed caretakers for cellular stress and genomic instability. Oncotarget 2015; 5:860-71. [PMID: 24658219 PMCID: PMC4011588 DOI: 10.18632/oncotarget.1784] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ribosomal proteins (RPs) have gained much attention for their extraribosomal functions particularly with respect to p53 regulation. To date, about fourteen RPs have shown to bind to MDM2 and regulate p53. Upon binding to MDM2, the RPs suppress MDM2 E3 ubiquitin ligase activity resulting in the stabilization and activation of p53. Of the RPs that bind to MDM2, RPL5 and RPL11 are the most studied and RPL11 appears to have the most significant role in p53 regulation. Considering that more than 17% of RP species have been shown to interact with MDM2, one of the questions remains unresolved is why so many RPs bind MDM2 and modulate p53. Genes encoding RPs are widely dispersed on different chromosomes in both mice and humans. As components of ribosome, RP expression is tightly regulated to meet the appropriate stoichiometric ratio between RPs and rRNAs. Once genomic instability (e.g. aneuploidy) occurs, transcriptional and translational changes due to change of DNA copy number can result in an imbalance in the expression of RPs including those that bind to MDM2. Such an imbalance in RP expression could lead to failure to assemble functional ribosomes resulting in ribosomal stress. We propose that RPs have evolved ability to regulate MDM2 in response to genomic instability as an additional layer of p53 regulation. Full understanding of the biological roles of RPs could potentially establish RPs as a novel class of therapeutic targets in human diseases such as cancer.
Collapse
Affiliation(s)
- Tae-Hyung Kim
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, NC, USA
| | | | | |
Collapse
|
77
|
Abstract
A rare disease is defined as a condition that affects less than 1 in 2000 individuals. Currently more than 7000 rare diseases have been documented, and most are thought to be of genetic origin. Rare diseases primarily affect children, and congenital craniofacial syndromes and disorders constitute a significant proportion of rare diseases, with over 700 having been described to date. Modeling craniofacial disorders in animal models has been instrumental in uncovering the etiology and pathogenesis of numerous conditions and in some cases has even led to potential therapeutic avenues for their prevention. In this chapter, we focus primarily on two general classes of rare disorders, ribosomopathies and ciliopathies, and the surprising finding that the disruption of fundamental, global processes can result in tissue-specific craniofacial defects. In addition, we discuss recent advances in understanding the pathogenesis of an extremely rare and specific craniofacial condition known as syngnathia, based on the first mouse models for this condition. Approximately 1% of all babies are born with a minor or major developmental anomaly, and individuals suffering from rare diseases deserve the same quality of treatment and care and attention to their disease as other patients.
Collapse
Affiliation(s)
- Annita Achilleos
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, Missouri, USA; Department of Anatomy & Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
78
|
Jaako P, Debnath S, Olsson K, Modlich U, Rothe M, Schambach A, Flygare J, Karlsson S. Gene therapy cures the anemia and lethal bone marrow failure in a mouse model of RPS19-deficient Diamond-Blackfan anemia. Haematologica 2014; 99:1792-8. [PMID: 25216681 DOI: 10.3324/haematol.2014.111195] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Diamond-Blackfan anemia is a congenital erythroid hypoplasia caused by functional haploinsufficiency of genes encoding ribosomal proteins. Mutations involving the ribosomal protein S19 gene are detected in 25% of patients. Enforced expression of ribosomal protein S19 improves the overall proliferative capacity, erythroid colony-forming potential and erythroid differentiation of hematopoietic progenitors from ribosomal protein S19-deficient patients in vitro and in vivo following xenotransplantation. However, studies using animal models are needed to assess the therapeutic efficacy and safety of the viral vectors. In the present study we have validated the therapeutic potential of gene therapy using mouse models of ribosomal protein S19-deficient Diamond-Blackfan anemia. Using lentiviral gene transfer we demonstrated that enforced expression of ribosomal protein S19 cures the anemia and lethal bone marrow failure in recipients transplanted with ribosomal protein S19-deficient cells. Furthermore, gene-corrected ribosomal protein S19-deficient cells showed an increased pan-hematopoietic contribution over time compared to untransduced cells without signs of vector-mediated toxicity. Our study provides a proof of principle for the development of clinical gene therapy to cure ribosomal protein 19-deficient Diamond-Blackfan anemia.
Collapse
Affiliation(s)
- Pekka Jaako
- Molecular Medicine and Gene Therapy, Lund Strategic Center for Stem Cell Biology, Lund University, Sweden
| | - Shubhranshu Debnath
- Molecular Medicine and Gene Therapy, Lund Strategic Center for Stem Cell Biology, Lund University, Sweden
| | - Karin Olsson
- Molecular Medicine and Gene Therapy, Lund Strategic Center for Stem Cell Biology, Lund University, Sweden
| | - Ute Modlich
- Institute of Experimental Hematology, Hannover Medical School, Germany; LOEWE Research Group for Gene Modification in Stem Cells, Paul-Ehrlich-Institute, 63225 Langen, Germany
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Germany
| | - Johan Flygare
- Molecular Medicine and Gene Therapy, Lund Strategic Center for Stem Cell Biology, Lund University, Sweden
| | - Stefan Karlsson
- Molecular Medicine and Gene Therapy, Lund Strategic Center for Stem Cell Biology, Lund University, Sweden;
| |
Collapse
|
79
|
Wang W, Nag S, Zhang X, Wang MH, Wang H, Zhou J, Zhang R. Ribosomal proteins and human diseases: pathogenesis, molecular mechanisms, and therapeutic implications. Med Res Rev 2014; 35:225-85. [PMID: 25164622 DOI: 10.1002/med.21327] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ribosomes are essential components of the protein synthesis machinery. The process of ribosome biogenesis is well organized and tightly regulated. Recent studies have shown that ribosomal proteins (RPs) have extraribosomal functions that are involved in cell proliferation, differentiation, apoptosis, DNA repair, and other cellular processes. The dysfunction of RPs has been linked to the development and progression of hematological, metabolic, and cardiovascular diseases and cancer. Perturbation of ribosome biogenesis results in ribosomal stress, which triggers activation of the p53 signaling pathway through RPs-MDM2 interactions, resulting in p53-dependent cell cycle arrest and apoptosis. RPs also regulate cellular functions through p53-independent mechanisms. We herein review the recent advances in several forefronts of RP research, including the understanding of their biological features and roles in regulating cellular functions, maintaining cell homeostasis, and their involvement in the pathogenesis of human diseases. We also highlight the translational potential of this research for the identification of molecular biomarkers, and in the discovery and development of novel treatments for human diseases.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106; Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106
| | | | | | | | | | | | | |
Collapse
|
80
|
Defects of protein production in erythroid cells revealed in a zebrafish Diamond-Blackfan anemia model for mutation in RPS19. Cell Death Dis 2014; 5:e1352. [PMID: 25058426 PMCID: PMC4123107 DOI: 10.1038/cddis.2014.318] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/12/2014] [Accepted: 05/14/2014] [Indexed: 01/09/2023]
Abstract
Diamond–Blackfan anemia (DBA) is a rare congenital red cell aplasia that classically presents during early infancy in DBA patients. Approximately, 25% of patients carry a mutation in the ribosomal protein (RP) S19 gene; mutations in RPS24, RPS17, RPL35A, RPL11, and RPL5 have been reported. How ribosome protein deficiency causes defects specifically to red blood cells in DBA has not been well elucidated. To genetically model the predominant ribosome defect in DBA, we generated an rps19 null mutant through the use of TALEN-mediated gene targeting in zebrafish. Molecular characterization of this mutant line demonstrated that rps19 deficiency reproduced the erythroid defects of DBA, including a lack of mature red blood cells and p53 activation. Notably, we found that rps19 mutants' production of globin proteins was significantly inhibited; however, globin transcript level was either increased or unaffected in rps19 mutant embryos. This dissociation of RNA/protein levels of globin genes was confirmed in another zebrafish DBA model with defects in rpl11. Using transgenic zebrafish with specific expression of mCherry in erythroid cells, we showed that protein production in erythroid cells was decreased when either rps19 or rpl11 was mutated. L-Leucine treatment alleviated the defects of protein production in erythroid cells and partially rescued the anemic phenotype in both rps19 and rpl11 mutants. Analysis of this model suggests that the decreased protein production in erythroid cells likely contributes to the blood-specific phenotype of DBA. Furthermore, the newly generated rps19 zebrafish mutant should serve as a useful animal model to study DBA. Our in vivo findings may provide clues for the future therapy strategy for DBA.
Collapse
|
81
|
Altered translation of GATA1 in Diamond-Blackfan anemia. Nat Med 2014; 20:748-53. [PMID: 24952648 PMCID: PMC4087046 DOI: 10.1038/nm.3557] [Citation(s) in RCA: 228] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 04/10/2014] [Indexed: 12/13/2022]
Abstract
Ribosomal protein haploinsufficiency occurs in diverse human diseases including Diamond-Blackfan anemia (DBA),1,2 congenital asplenia,3 and T-cell leukemia.4 Yet how mutations in such ubiquitously expressed proteins result in cell-type and tissue specific defects remains a mystery.5 Here, we show that GATA1 mutations that reduce full-length protein levels of this critical hematopoietic transcription factor can cause DBA in rare instances. We show that ribosomal protein haploinsufficiency, the more common cause of DBA, can similarly reduce translation of GATA1 mRNA - a phenomenon that appears to result from this mRNA having a higher threshold for initiation of translation. In primary hematopoietic cells from patients with RPS19 mutations, a transcriptional signature of GATA1 target genes is globally and specifically reduced, confirming that the activity, but not the mRNA level, of GATA1 is reduced in DBA patients with ribosomal protein mutations. The defective hematopoiesis observed in DBA patients with ribosomal protein haploinsufficiency can be at least partially overcome by increasing GATA1 protein levels. Our results provide a paradigm by which selective defects in translation due to mutations in ubiquitous ribosomal proteins can result in human disease.
Collapse
|
82
|
Heijnen HF, van Wijk R, Pereboom TC, Goos YJ, Seinen CW, van Oirschot BA, van Dooren R, Gastou M, Giles RH, van Solinge W, Kuijpers TW, Gazda HT, Bierings MB, Da Costa L, MacInnes AW. Ribosomal protein mutations induce autophagy through S6 kinase inhibition of the insulin pathway. PLoS Genet 2014; 10:e1004371. [PMID: 24875531 PMCID: PMC4038485 DOI: 10.1371/journal.pgen.1004371] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 03/24/2014] [Indexed: 12/19/2022] Open
Abstract
Mutations affecting the ribosome lead to several diseases known as ribosomopathies, with phenotypes that include growth defects, cytopenia, and bone marrow failure. Diamond-Blackfan anemia (DBA), for example, is a pure red cell aplasia linked to the mutation of ribosomal protein (RP) genes. Here we show the knock-down of the DBA-linked RPS19 gene induces the cellular self-digestion process of autophagy, a pathway critical for proper hematopoiesis. We also observe an increase of autophagy in cells derived from DBA patients, in CD34+ erythrocyte progenitor cells with RPS19 knock down, in the red blood cells of zebrafish embryos with RP-deficiency, and in cells from patients with Shwachman-Diamond syndrome (SDS). The loss of RPs in all these models results in a marked increase in S6 kinase phosphorylation that we find is triggered by an increase in reactive oxygen species (ROS). We show that this increase in S6 kinase phosphorylation inhibits the insulin pathway and AKT phosphorylation activity through a mechanism reminiscent of insulin resistance. While stimulating RP-deficient cells with insulin reduces autophagy, antioxidant treatment reduces S6 kinase phosphorylation, autophagy, and stabilization of the p53 tumor suppressor. Our data suggest that RP loss promotes the aberrant activation of both S6 kinase and p53 by increasing intracellular ROS levels. The deregulation of these signaling pathways is likely playing a major role in the pathophysiology of ribosomopathies. Diseases linked to mutations affecting the ribosome, ribosomopathies, have an exceptionally wide range of phenotypes. However, many ribosomopathies have some features in common including cytopenia and growth defects. Our study aims to clarify the mechanisms behind these common phenotypes. We find that mutations in ribosomal protein genes result in a series of aberrant signaling events that cause cells to start recycling and consuming their own intracellular contents. This basic mechanism of catabolism is activated when cells are starving for nutrients, and also during the tightly regulated process of blood cell maturation. The deregulation of this mechanism provides an explanation as to why blood cells are so acutely affected by mutations in genes that impair the ribosome. Moreover, we find that the signals activating this catabolism are coupled to impairment of the highly conserved insulin-signaling pathway that is essential for growth. Taken together, our in-depth description of the pathways involved as the result of mutations affecting the ribosome increases our understanding about the etiology of these diseases and opens up previously unknown avenues of potential treatment.
Collapse
Affiliation(s)
- Harry F. Heijnen
- Cell Microscopy Center, Department of Cell Biology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Richard van Wijk
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tamara C. Pereboom
- Hubrecht Institute, KNAW and University Medical Center Utrecht, The Netherlands
| | - Yvonne J. Goos
- Hubrecht Institute, KNAW and University Medical Center Utrecht, The Netherlands
| | - Cor W. Seinen
- Cell Microscopy Center, Department of Cell Biology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Brigitte A. van Oirschot
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rowie van Dooren
- Hubrecht Institute, KNAW and University Medical Center Utrecht, The Netherlands
| | - Marc Gastou
- U1009, Institut Gustave Roussy, Université Paris-Sud, Villejuif, France
| | - Rachel H. Giles
- Department of Nephrology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wouter van Solinge
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Taco W. Kuijpers
- Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Academic Medical Center (AMC), Amsterdam, The Netherlands
| | - Hanna T. Gazda
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute, Cambridge, Massachusetts, United States of America
| | - Marc B. Bierings
- Department of Pediatric Hematology/Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lydie Da Costa
- AP-HP, Service d'Hématologie Biologique, Hôpital Robert Debré, Paris, France
- Université Paris VII-Denis Diderot, Sorbonne Paris Cité, Paris, France
- U773, CRB3, Paris, France
| | - Alyson W. MacInnes
- Hubrecht Institute, KNAW and University Medical Center Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
83
|
Vlachos A, Blanc L, Lipton JM. Diamond Blackfan anemia: a model for the translational approach to understanding human disease. Expert Rev Hematol 2014; 7:359-72. [PMID: 24665981 DOI: 10.1586/17474086.2014.897923] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Diamond Blackfan anemia (DBA) is an inherited bone marrow failure syndrome. As with the other rare inherited bone marrow failure syndromes, the study of these disorders provides important insights into basic biology and, in the case of DBA, ribosome biology; the disruption of which characterizes the disorder. Thus DBA serves as a paradigm for translational medicine in which the efforts of clinicians to manage DBA have informed laboratory scientists who, in turn, have stimulated clinical researchers to utilize scientific discovery to provide improved care. In this review we describe the clinical syndrome Diamond Blackfan anemia and, in particular, we demonstrate how the study of DBA has allowed scientific inquiry to create opportunities for progress in its understanding and treatment.
Collapse
|
84
|
Haematopoietic stem cells require a highly regulated protein synthesis rate. Nature 2014; 509:49-54. [PMID: 24670665 PMCID: PMC4015626 DOI: 10.1038/nature13035] [Citation(s) in RCA: 492] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 01/15/2014] [Indexed: 12/19/2022]
Abstract
Many aspects of cellular physiology remain unstudied in somatic stem cells. For example, there are almost no data on protein synthesis in any somatic stem cell. We found that the amount of protein synthesized per hour in haematopoietic stem cells (HSCs) in vivo was lower than in most other haematopoietic cells, even if we controlled for differences in cell cycle status or forced HSCs to undergo self-renewing divisions. Reduced ribosome function in Rpl24Bst/+ mice further reduced protein synthesis in HSCs and impaired HSC function. Pten deletion increased protein synthesis in HSCs but also reduced HSC function. Rpl24Bst/+ cell-autonomously rescued the effects of Pten deletion in HSCs, blocking the increase in protein synthesis, restoring HSC function, and delaying leukaemogenesis. Pten deficiency thus depletes HSCs and promotes leukaemia partly by increasing protein synthesis. Either increased or decreased protein synthesis impairs HSC function.
Collapse
|
85
|
p53-Independent cell cycle and erythroid differentiation defects in murine embryonic stem cells haploinsufficient for Diamond Blackfan anemia-proteins: RPS19 versus RPL5. PLoS One 2014; 9:e89098. [PMID: 24558476 PMCID: PMC3928369 DOI: 10.1371/journal.pone.0089098] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 01/14/2014] [Indexed: 12/27/2022] Open
Abstract
Diamond Blackfan anemia (DBA) is a rare inherited bone marrow failure syndrome caused by ribosomal protein haploinsufficiency. DBA exhibits marked phenotypic variability, commonly presenting with erythroid hypoplasia, less consistently with non-erythroid features. The p53 pathway, activated by abortive ribosome assembly, is hypothesized to contribute to the erythroid failure of DBA. We studied murine embryonic stem (ES) cell lines harboring a gene trap mutation in a ribosomal protein gene, either Rps19 or Rpl5. Both mutants exhibited ribosomal protein haploinsufficiency and polysome defects. Rps19 mutant ES cells showed significant increase in p53 protein expression, however, there was no similar increase in the Rpl5 mutant cells. Embryoid body formation was diminished in both mutants but nonspecifically rescued by knockdown of p53. When embryoid bodies were further differentiated to primitive erythroid colonies, both mutants exhibited a marked reduction in colony formation, which was again nonspecifically rescued by p53 inhibition. Cell cycle analyses were normal in Rps19 mutant ES cells, but there was a significant delay in the G2/M phase in the Rpl5 mutant cells, which was unaffected by p53 knockdown. Concordantly, Rpl5 mutant ES cells had a more pronounced growth defect in liquid culture compared to the Rps19 mutant cells. We conclude that the defects in our RPS19 and RPL5 haploinsufficient mouse ES cells are not adequately explained by p53 stabilization, as p53 knockdown appears to increase the growth and differentiation potential of both parental and mutant cells. Our studies demonstrate that gene trap mouse ES cells are useful tools to study the pathogenesis of DBA.
Collapse
|
86
|
Pesciotta EN, Sriswasdi S, Tang HY, Speicher DW, Mason PJ, Bessler M. Dysferlin and other non-red cell proteins accumulate in the red cell membrane of Diamond-Blackfan Anemia patients. PLoS One 2014; 9:e85504. [PMID: 24454878 PMCID: PMC3891812 DOI: 10.1371/journal.pone.0085504] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 11/27/2013] [Indexed: 11/18/2022] Open
Abstract
Diamond Blackfan Anemia (DBA) is a congenital anemia usually caused by diverse mutations in ribosomal proteins. Although the genetics of DBA are well characterized, the mechanisms that lead to macrocytic anemia remain unclear. We systematically analyzed the proteomes of red blood cell membranes from multiple DBA patients to determine whether abnormalities in protein translation or erythropoiesis contribute to the observed macrocytosis or alterations in the mature red blood cell membrane. In depth proteome analysis of red cell membranes enabled highly reproducible identification and quantitative comparisons of 1100 or more proteins. These comparisons revealed clear differences between red cell membrane proteomes in DBA patients and healthy controls that were consistent across DBA patients with different ribosomal gene mutations. Proteins exhibiting changes in abundance included those known to be increased in DBA such as fetal hemoglobin and a number of proteins not normally found in mature red cell membranes, including proteins involved in the major histocompatibility complex class I pathway. Most striking was the presence of dysferlin in the red blood cell membranes of DBA patients but absent in healthy controls. Immunoblot validation using red cell membranes isolated from additional DBA patients and healthy controls confirmed a distinct membrane protein signature specific to patients with DBA.
Collapse
Affiliation(s)
- Esther N. Pesciotta
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Sira Sriswasdi
- The Center for Systems and Computational Biology and Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
- Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hsin-Yao Tang
- The Center for Systems and Computational Biology and Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - David W. Speicher
- The Center for Systems and Computational Biology and Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
- Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Philip J. Mason
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Monica Bessler
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Internal Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
87
|
Yadav GV, Chakraborty A, Uechi T, Kenmochi N. Ribosomal protein deficiency causes Tp53-independent erythropoiesis failure in zebrafish. Int J Biochem Cell Biol 2014; 49:1-7. [PMID: 24417973 DOI: 10.1016/j.biocel.2014.01.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 11/17/2013] [Accepted: 01/07/2014] [Indexed: 10/25/2022]
Abstract
Diamond-Blackfan anemia is an inherited genetic disease caused by mutations in ribosomal protein genes. The disease is characterized by bone marrow failure, congenital anomalies, and a severe erythroid defect. The activation of the TP53 pathway has been suggested to be critical for the pathophysiology of Diamond-Blackfan anemia. While this pathway plays a role in the morphological defects that associate with ribosomal protein loss-of-function in animal models, its role in the erythroid defects has not been clearly established. To understand the specificity of erythroid defects in Diamond-Blackfan anemia, we knocked down five RP genes (two Diamond-Blackfan anemia-associated and three non-Diamond-Blackfan anemia-associated) in zebrafish and analyzed the effects on the developmental and erythroid phenotypes in the presence and absence of Tp53. The co-inhibition of Tp53 activity rescued the morphological deformities but did not alleviate the erythroid aplasia indicating that ribosomal protein deficiency causes erythroid failure in a Tp53-independent manner. Interestingly, treatment with L-Leucine or L-Arginine, amino acids that augment mRNA translation via mTOR pathway, rescued the morphological defects and resulted in a substantial recovery of erythroid cells. Our results suggest that altered translation because of impaired ribosome function could be responsible for the morphological and erythroid defects in ribosomal protein-deficient zebrafish.
Collapse
Affiliation(s)
- Gnaneshwar V Yadav
- Frontier Science Research Center, University of Miyazaki, Kiyotake, Miyazaki, Japan
| | - Anirban Chakraborty
- Frontier Science Research Center, University of Miyazaki, Kiyotake, Miyazaki, Japan
| | - Tamayo Uechi
- Frontier Science Research Center, University of Miyazaki, Kiyotake, Miyazaki, Japan
| | - Naoya Kenmochi
- Frontier Science Research Center, University of Miyazaki, Kiyotake, Miyazaki, Japan.
| |
Collapse
|
88
|
Ellis SR. Nucleolar stress in Diamond Blackfan anemia pathophysiology. Biochim Biophys Acta Mol Basis Dis 2014; 1842:765-8. [PMID: 24412987 DOI: 10.1016/j.bbadis.2013.12.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 12/23/2013] [Accepted: 12/31/2013] [Indexed: 01/05/2023]
Abstract
Diamond Blackfan anemia is a red cell hypoplasia that typically presents within the first year of life. Most cases of Diamond Blackfan anemia are caused by ribosome assembly defects linked to haploinsufficiency for structural proteins of either ribosomal subunit. Nucleolar stress associated with abortive ribosome assembly leads to p53 activation via the interaction of free ribosomal proteins with HDM2, a negative regulator of p53. Significant challenges remain in linking this nucleolar stress signaling pathway to the clinical features of Diamond Blackfan anemia. Defining aspects of disease presentation may relate to developmental and physiological triggers that work in conjunction with nucleolar stress signaling to heighten the p53 response in the developing erythron after birth. The growing number of ribosomopathies provides additional challenges for linking molecular mechanisms with clinical phenotypes. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease.
Collapse
Affiliation(s)
- Steven R Ellis
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY 40292, USA.
| |
Collapse
|
89
|
Eid R, Sheibani S, Gharib N, Lapointe JF, Horowitz A, Vali H, Mandato CA, Greenwood MT. Human ribosomal protein L9 is a Bax suppressor that promotes cell survival in yeast. FEMS Yeast Res 2013; 14:495-507. [DOI: 10.1111/1567-1364.12121] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 10/21/2013] [Accepted: 10/24/2013] [Indexed: 11/27/2022] Open
Affiliation(s)
- Rawan Eid
- Department of Chemistry and Chemical Engineering; Royal Military College; Kingston ON Canada
| | - Sara Sheibani
- Department of Chemistry and Chemical Engineering; Royal Military College; Kingston ON Canada
| | - Nada Gharib
- Department of Chemistry and Chemical Engineering; Royal Military College; Kingston ON Canada
| | - Jason F. Lapointe
- Department of Anatomy and Cell Biology; McGill University; Montreal QC Canada
| | - Avital Horowitz
- Department of Chemistry and Chemical Engineering; Royal Military College; Kingston ON Canada
- Department of Anatomy and Cell Biology; McGill University; Montreal QC Canada
| | - Hojatollah Vali
- Department of Anatomy and Cell Biology; McGill University; Montreal QC Canada
| | - Craig A. Mandato
- Department of Anatomy and Cell Biology; McGill University; Montreal QC Canada
| | - Michael T. Greenwood
- Department of Chemistry and Chemical Engineering; Royal Military College; Kingston ON Canada
| |
Collapse
|
90
|
Trainor PA, Merrill AE. Ribosome biogenesis in skeletal development and the pathogenesis of skeletal disorders. Biochim Biophys Acta Mol Basis Dis 2013; 1842:769-78. [PMID: 24252615 DOI: 10.1016/j.bbadis.2013.11.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/05/2013] [Accepted: 11/08/2013] [Indexed: 02/06/2023]
Abstract
The skeleton affords a framework and structural support for vertebrates, while also facilitating movement, protecting vital organs, and providing a reservoir of minerals and cells for immune system and vascular homeostasis. The mechanical and biological functions of the skeleton are inextricably linked to the size and shape of individual bones, the diversity of which is dependent in part upon differential growth and proliferation. Perturbation of bone development, growth and proliferation, can result in congenital skeletal anomalies, which affect approximately 1 in 3000 live births [1]. Ribosome biogenesis is integral to all cell growth and proliferation through its roles in translating mRNAs and building proteins. Disruption of any steps in the process of ribosome biogenesis can lead to congenital disorders termed ribosomopathies. In this review, we discuss the role of ribosome biogenesis in skeletal development and in the pathogenesis of congenital skeletal anomalies. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease.
Collapse
Affiliation(s)
- Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Amy E Merrill
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA; Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
91
|
Bursac S, Brdovcak MC, Donati G, Volarevic S. Activation of the tumor suppressor p53 upon impairment of ribosome biogenesis. Biochim Biophys Acta Mol Basis Dis 2013; 1842:817-30. [PMID: 24514102 DOI: 10.1016/j.bbadis.2013.08.014] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 08/27/2013] [Indexed: 12/31/2022]
Abstract
Errors in ribosome biogenesis can result in quantitative or qualitative defects in protein synthesis and consequently lead to improper execution of the genetic program and the development of specific diseases. Evidence has accumulated over the last decade suggesting that perturbation of ribosome biogenesis triggers a p53-activating checkpoint signaling pathway, often referred to as the ribosome biogenesis stress checkpoint pathway. Although it was originally suggested that p53 has a prominent role in preventing diseases by monitoring the fidelity of ribosome biogenesis, recent work has demonstrated that p53 activation upon impairment of ribosome biogenesis also mediates pathological manifestations in humans. Perturbations of ribosome biogenesis can trigger a p53-dependent checkpoint signaling pathway independent of DNA damage and the tumor suppressor ARF through inhibitory interactions of specific ribosomal components with the p53 negative regulator, Mdm2. Here we review the recent advances made toward understanding of this newly-recognized checkpoint signaling pathway, its role in health and disease, and discuss possible future directions in this exciting research field. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease.
Collapse
Affiliation(s)
- Sladana Bursac
- Department of Molecular Medicine and Biotechnology, School of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Maja Cokaric Brdovcak
- Department of Molecular Medicine and Biotechnology, School of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Giulio Donati
- Catalan Institute of Oncology, Bellvitge Biomedical Research Institute, Institut d'Investigacio' Biome'dica de Bellvitge (IDIBELL), 08908 Hospitalet de Llobregat, Barcelona, Spain
| | - Sinisa Volarevic
- Department of Molecular Medicine and Biotechnology, School of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia.
| |
Collapse
|
92
|
Khan AA, Quigley JG. Heme and FLVCR-related transporter families SLC48 and SLC49. Mol Aspects Med 2013; 34:669-82. [PMID: 23506900 DOI: 10.1016/j.mam.2012.07.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 03/14/2012] [Indexed: 12/11/2022]
Abstract
Heme is critical for a variety of cellular processes, but excess intracellular heme may result in oxidative stress and membrane injury. Feline leukemia virus subgroup C receptor (FLVCR1), a member of the SLC49 family of four paralogous genes, is a cell surface heme exporter, essential for erythropoiesis and systemic iron homeostasis. Disruption of FLVCR1 function blocks development of erythroid progenitors, likely due to heme toxicity. Mutations of SLC49A1 encoding FLVCR1 are noted in patients with a rare neurodegenerative disorder: posterior column ataxia with retinitis pigmentosa. FLVCR2 is highly homologous to FLVCR1 and may function as a cellular heme importer. Mutations of SLC49A2 encoding FLVCR2 are observed in Fowler syndrome, a rare proliferative vascular disorder of the brain. The functions of the remaining members of the SLC49 family, MFSD7 and DIRC2 (encoded by the SLC49A3 and SLC49A4 genes), are unknown, although the latter is implicated in hereditary renal carcinomas. SLC48A1 (heme responsive gene-1, HRG-1), the sole member of the SLC48 family, is associated with the endosome and appears to transport heme from the endosome into the cytosol.
Collapse
Affiliation(s)
- Anwar A Khan
- Department of Medicine, Section of Hematology/Oncology, University of Illinois at Chicago, Chicago, IL, USA.
| | | |
Collapse
|
93
|
Raiser DM, Narla A, Ebert BL. The emerging importance of ribosomal dysfunction in the pathogenesis of hematologic disorders. Leuk Lymphoma 2013; 55:491-500. [DOI: 10.3109/10428194.2013.812786] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
94
|
Fbw7-dependent cyclin E regulation ensures terminal maturation of bone marrow erythroid cells by restraining oxidative metabolism. Oncogene 2013; 33:3161-71. [PMID: 23873023 PMCID: PMC3939062 DOI: 10.1038/onc.2013.289] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/01/2013] [Accepted: 06/18/2013] [Indexed: 12/24/2022]
Abstract
The mechanisms that coordinate the final mitotic divisions of terminally differentiated bone marrow erythroid cells with components of their structural and functional maturation program remain largely undefined. We previously identified phenotypes resembling those found in early-stage myelodysplastic syndromes, including ineffective erythropoiesis, morphologic dysplasia, and hyper-cellular bone marrow, in a knock-in mouse model in which cyclin E mutations were introduced at its two Cdc4 phosphodegrons (CPDs) to ablate Fbw7-dependent ubiquitination and degradation. Here we have examined the physiologic consequences of cyclin E dysregulation in bone marrow erythroid cells during terminal maturation in vivo. We found cyclin E protein levels in bone marrow erythroid cells are dynamically regulated in a CPD-dependent manner and that disruption of Fbw7-dependent cyclin E regulation impairs terminal erythroid cell maturation at a discrete stage prior to enucleation. At this stage of erythroid cell maturation, CPD phosphorylation of cyclin E regulates both cell cycle arrest and survival. We also found normal regulation of cyclin E restrains mitochondrial reactive oxygen species accumulation and expression of genes that promote mitochondrial biogenesis and oxidative metabolism during terminal erythroid maturation. In the setting of dysregulated cyclin E expression, p53 is activated in bone marrow erythroid cells as part of a DNA damage response-type pathway, which mitigates ineffective erythropoiesis, in contrast to the role of p53 induction in other models of dyserythropoiesis. Finally, cyclin E dysregulation and ROS accumulation induce histone H3 lysine 9 hyper-methylation and disrupt components of the normal terminal erythroid maturation gene expression program. Thus, ubiquitin-proteasome pathway control of G1-to-S-phase progression is intrinsically linked to regulation of metabolism and gene expression in terminally differentiating bone marrow erythroid cells.
Collapse
|
95
|
Ribosomal and hematopoietic defects in induced pluripotent stem cells derived from Diamond Blackfan anemia patients. Blood 2013; 122:912-21. [PMID: 23744582 DOI: 10.1182/blood-2013-01-478321] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Diamond Blackfan anemia (DBA) is a congenital disorder with erythroid (Ery) hypoplasia and tissue morphogenic abnormalities. Most DBA cases are caused by heterozygous null mutations in genes encoding ribosomal proteins. Understanding how haploinsufficiency of these ubiquitous proteins causes DBA is hampered by limited availability of tissues from affected patients. We generated induced pluripotent stem cells (iPSCs) from fibroblasts of DBA patients carrying mutations in RPS19 and RPL5. Compared with controls, DBA fibroblasts formed iPSCs inefficiently, although we obtained 1 stable clone from each fibroblast line. RPS19-mutated iPSCs exhibited defects in 40S (small) ribosomal subunit assembly and production of 18S ribosomal RNA (rRNA). Upon induced differentiation, the mutant clone exhibited globally impaired hematopoiesis, with the Ery lineage affected most profoundly. RPL5-mutated iPSCs exhibited defective 60S (large) ribosomal subunit assembly, accumulation of 12S pre-rRNA, and impaired erythropoiesis. In both mutant iPSC lines, genetic correction of ribosomal protein deficiency via complementary DNA transfer into the "safe harbor" AAVS1 locus alleviated abnormalities in ribosome biogenesis and hematopoiesis. Our studies show that pathological features of DBA are recapitulated by iPSCs, provide a renewable source of cells to model various tissue defects, and demonstrate proof of principle for genetic correction strategies in patient stem cells.
Collapse
|
96
|
Nonnekens J, Perez-Fernandez J, Theil AF, Gadal O, Bonnart C, Giglia-Mari G. Mutations in TFIIH causing trichothiodystrophy are responsible for defects in ribosomal RNA production and processing. Hum Mol Genet 2013; 22:2881-93. [DOI: 10.1093/hmg/ddt143] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
97
|
Growth control and ribosomopathies. Curr Opin Genet Dev 2013; 23:63-71. [PMID: 23490481 DOI: 10.1016/j.gde.2013.02.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 02/05/2013] [Accepted: 02/05/2013] [Indexed: 02/07/2023]
Abstract
Ribosome biogenesis and protein synthesis are two of the most energy consuming processes in a growing cell. Moreover, defects in their molecular components can alter the pattern of gene expression. Thus it is understandable that cells have developed a surveillance system to monitor the status of the translational machinery. Recent discoveries of causative mutations and deletions in genes linked to ribosome biogenesis have defined a group of similar pathologies termed ribosomopathies. Over the past decade, much has been learned regarding the relationship between growth control and ribosome biogenesis. The discovery of extra-ribosomal functions of several ribosome proteins and their regulation of p53 levels has provided a link from ribosome impairment to cell cycle regulation. Yet, evidence suggesting p53 and/or Hdm2 independent pathways also exists. In this review, we summarize recent advances in understanding the mechanisms underlying the pathologies of ribosomopathies and discuss the relationship between ribosome production and tumorigenesis.
Collapse
|
98
|
Specialization from synthesis: How ribosome diversity can customize protein function. FEBS Lett 2013; 587:1189-97. [DOI: 10.1016/j.febslet.2013.02.032] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 02/14/2013] [Accepted: 02/18/2013] [Indexed: 11/20/2022]
|
99
|
Sezgin G, Henson AL, Nihrane A, Singh S, Wattenberg M, Alard P, Ellis SR, Liu JM. Impaired growth, hematopoietic colony formation, and ribosome maturation in human cells depleted of Shwachman-Diamond syndrome protein SBDS. Pediatr Blood Cancer 2013; 60:281-6. [PMID: 22997148 DOI: 10.1002/pbc.24300] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 08/06/2012] [Indexed: 12/14/2022]
Abstract
BACKGROUND Shwachman-Diamond syndrome (SDS), associated with SBDS mutations, is characterized by pancreatic exocrine dysfunction and marrow failure. Sdo1, the yeast ortholog of SBDS, is implicated in maturation of the 60S ribosomal subunit, with delayed export of 60S-like particles from the nucleoplasm when depleted. Sdo1 is needed for release of the anti-subunit association factor Tif6 from 60S subunits, and Tif6 may not be recycled to the nucleus when Sdo1 is absent. METHODS To clarify the role of SBDS in human ribosome function, TF-1 erythroleukemia and A549 lung carcinoma cells were transfected with vectors expressing RNAi against SBDS. RESULTS Growth and hematopoietic colony forming potential of TF-1 knockdown cells were markedly hindered when compared to controls. To analyze the effect of SBDS on 60S subunit maturation in A549 cells, subunit localization was assessed by transfection with a vector expressing a fusion between human RPL29 and GFP: we found a higher percentage of SBDS-depleted cells with nuclear localization of 60S subunits. Polysome analysis of TF-1 knockdown cells showed a decrease in free 60S and 80S subunits. We also analyzed the levels of eIF6 (human ortholog of Tif6) following near-complete knockdown of SBDS in TF-1 cells and found an approximately 20% increase in the amount of eIF6 associated with the 60S subunit. CONCLUSIONS We conclude that knockdown of SBDS leads to growth inhibition and defects in ribosome maturation, suggesting a role for wild-type SBDS in nuclear export of pre-60S subunits. Furthermore, knockdown of SBDS may interfere with eIF6 recycling.
Collapse
Affiliation(s)
- Gulay Sezgin
- The Feinstein Institute for Medical Research, Manhasset, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Abstract
The oncoprotein MDM2 is both the transcriptional target and the predominant antagonist of the tumor suppressor p53. MDM2 inhibits the functions of p53 via a negative feedback loop that can be circumvented by several ribosomal proteins in response to nucleolar or ribosomal stress. Stress conditions in the nucleolus can be triggered by a variety of extracellular and intracellular insults that impair ribosomal biogenesis and function, such as chemicals, nutrient deprivation, DNA damaging agents, or genetic alterations. The past decade has witnessed a tremendous progress in understanding this previously underinvestigated ribosomal stress-MDM2-p53 pathway. Here, we review the recent progress in understanding this unique signaling pathway, discuss its biological and pathological significance, and share with readers our insight into the research in this field.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA
| | | | | | | |
Collapse
|