51
|
Berendsen MR, van Bladel DA, Hesius E, Berganza Irusquieta C, Rijntjes J, van Spriel AB, van der Spek E, Pruijt JF, Kroeze LI, Hebeda KM, Croockewit S, Stevens WB, van Krieken JHJ, Groenen PJ, van den Brand M, Scheijen B. Clonal Relationship and Mutation Analysis in Lymphoplasmacytic Lymphoma/Waldenström Macroglobulinemia Associated With Diffuse Large B-cell Lymphoma. Hemasphere 2023; 7:e976. [PMID: 37928625 PMCID: PMC10621888 DOI: 10.1097/hs9.0000000000000976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/21/2023] [Indexed: 11/07/2023] Open
Abstract
Patients with lymphoplasmacytic lymphoma/Waldenström macroglobulinemia (LPL/WM) occasionally develop diffuse large B-cell lymphoma (DLBCL). This mostly results from LPL/WM transformation, although clonally unrelated DLBCL can also arise. LPL/WM is characterized by activating MYD88L265P (>95%) and CXCR4 mutations (~30%), but the genetic drivers of transformation remain to be identified. Here, in thirteen LPL/WM patients who developed DLBCL, the clonal relationship of LPL and DLBCL together with mutations contributing to transformation were investigated. In 2 LPL/WM patients (15%), high-throughput sequencing of immunoglobulin gene rearrangements showed evidence of >1 clonal B-cell population in LPL tissue biopsies. In the majority of LPL/WM patients, DLBCL presentations were clonally related to the dominant clone in LPL, providing evidence of transformation. However, in 3 patients (23%), DLBCL was clonally unrelated to the major malignant B-cell clone in LPL, of which 2 patients developed de novo DLBCL. In this study cohort, LPL displayed MYD88L265P mutation in 8 out of eleven patients analyzed (73%), while CXCR4 mutations were observed in 6 cases (55%). MYD88WT LPL biopsies present in 3 patients (27%) were characterized by CD79B and TNFAIP3 mutations. Upon transformation, DLBCL acquired novel mutations targeting BTG1, BTG2, CD79B, CARD11, TP53, and PIM1. Together, we demonstrate variable clonal B-cell dynamics in LPL/WM patients developing DLBCL, and the occurrence of clonally unrelated DLBCL in about one-quarter of LPL/WM patients. Moreover, we identified commonly mutated genes upon DLBCL transformation, which together with preserved mutations already present in LPL characterize the mutational landscape of DLBCL occurrences in LPL/WM patients.
Collapse
Affiliation(s)
| | - Diede A.G. van Bladel
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eva Hesius
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Jos Rijntjes
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Annemiek B. van Spriel
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Johannes F.M. Pruijt
- Department of Hematology, Jeroen Bosch Hospital, ‘s-Hertogenbosch, The Netherlands
| | - Leonie I. Kroeze
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Konnie M. Hebeda
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sandra Croockewit
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wendy B.C. Stevens
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | | | - Blanca Scheijen
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
52
|
Tsumura A, Levis D, Tuscano JM. Checkpoint inhibition in hematologic malignancies. Front Oncol 2023; 13:1288172. [PMID: 37920162 PMCID: PMC10619902 DOI: 10.3389/fonc.2023.1288172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 10/04/2023] [Indexed: 11/04/2023] Open
Abstract
Checkpoint inhibitor therapy has emerged as an effective therapeutic strategy for many types of malignancies, especially in solid tumors. Within the last two decades, numerous monoclonal antibody drugs targeting the CTLA-4 and PD-1/PD-L1 checkpoint pathways have seen FDA approval. Within hematologic malignancies, Hodgkin Lymphoma has seen the greatest clinical benefits thus far with more recent data showing efficacy in the front-line setting. As our understanding of checkpoint inhibition expands, using these pathways as a therapeutic target has shown some utility in the treatment of other hematologic malignancies as well, primarily in the relapsed/refractory settings. Checkpoint inhibition also appears to have a role as a synergistic agent to augment clinical responses to other forms of therapy such as hematopoietic stem cell transplant. Moreover, alternative checkpoint molecules that bypass the well-studied CTLA-4 and PD-1/PD-L1 pathways have emerged as exciting new therapeutic targets. Most excitingly is the use of anti-CD47 blockade in the treatment of high risk MDS and TP-53 mutated AML. Overall, there has been tremendous progress in understanding the benefits of checkpoint inhibition in hematologic malignancies, but further studies are needed in all areas to best utilize these agents. This is a review of the most recent developments and progress in Immune Checkpoint Inhibition in Hematologic Malignancies in the last decade.
Collapse
Affiliation(s)
- Aaron Tsumura
- Division of Malignant Hematology/Cellular Therapy and Transplantation, University of California Davis, Sacramento, CA, United States
| | - Daniel Levis
- School of Medicine, University of California Davis, Sacramento, CA, United States
| | - Joseph M. Tuscano
- Division of Malignant Hematology/Cellular Therapy and Transplantation, University of California Davis, Sacramento, CA, United States
- School of Medicine, University of California Davis, Sacramento, CA, United States
| |
Collapse
|
53
|
Mandato E, Yan Q, Ouyang J, Paczkowska J, Qin Y, Hao Y, Bojarczuk K, Hansen J, Chapuy B, Rodig SJ, Khan SJ, Redd RA, Shipp MA. MYD88L265P augments proximal B-cell receptor signaling in large B-cell lymphomas via an interaction with DOCK8. Blood 2023; 142:1219-1232. [PMID: 37467575 DOI: 10.1182/blood.2023019865] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/31/2023] [Accepted: 06/16/2023] [Indexed: 07/21/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a clinically and genetically heterogeneous disease with at least 5 recognized molecular subtypes. Cluster 5 (C5)/MCD tumors frequently exhibit concurrent alterations in the toll-like receptor (TLR) and B-cell receptor (BCR) pathway members, MYD88L265P and CD79B, and have a less favorable prognosis. In healthy B cells, the synergy between TLR and BCR signaling pathways integrates innate and adaptive immune responses and augments downstream NF-κB activation. In addition, physiologic TLR9 pathway engagement via MYD88, protein tyrosine kinase 2 (PYK2), and dedicator of cytokinesis 8 (DOCK8) increases proximal BCR signaling in healthy murine B cells. Although C5/MCD DLBCLs are selectively sensitive to Bruton tyrosine kinase (BTK) inhibition in in vitro studies and certain clinical trials, the role of mutated MYD88 in proximal BCR signaling remains undefined. Using engineered DLBCL cell line models, we found that concurrent MYD88L265P and CD79B alterations significantly increased the magnitude and duration of proximal BCR signaling, at the level of spleen tyrosine kinase and BTK, and augmented PYK2-dependent DOCK8 phosphorylation. MYD88L265P DLBCLs have significantly increased colocalization of DOCK8 with both MYD88 and the proximal BCR-associated Src kinase, LYN, in comparison with MYD88WT DLBCLs, implicating DOCK8 in MYD88L265P/proximal BCR cross talk. Additionally, DOCK8 depletion selectively decreased proximal BCR signaling, cellular proliferation, and viability of DLBCLs with endogenous MYD88L265P/CD79BY196F alterations and increased the efficacy of BTK blockade in these lymphomas. Therefore, MYD88L265P/DOCK8-enhanced proximal BCR signaling is a likely mechanism for the increased sensitivity of C5/MCD DLBCLs to BTK blockade.
Collapse
Affiliation(s)
- Elisa Mandato
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Qingsheng Yan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Jing Ouyang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Bristol Myers Squibb, Cambridge, MA
| | - Julia Paczkowska
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Yan Qin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Parthenon Therapeutics, Boston, MA
| | - Yansheng Hao
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Pathology, University of Rochester Medical Center, Rochester, NY
| | - Kamil Bojarczuk
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Julia Hansen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Björn Chapuy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Hematology, Oncology, and Tumor Immunology, Charité - University Medical Center Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Scott J Rodig
- Department of Pathology, Brigham and Women's Hospital, Boston, MA
| | - Sumbul Jawed Khan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Robert A Redd
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | - Margaret A Shipp
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
54
|
Yuan X, Yu T, Zhao J, Jiang H, Hao Y, Lei W, Liang Y, Li B, Qian W. Analysis of the genomic landscape of primary central nervous system lymphoma using whole-genome sequencing in Chinese patients. Front Med 2023; 17:889-906. [PMID: 37418076 DOI: 10.1007/s11684-023-0994-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/06/2023] [Indexed: 07/08/2023]
Abstract
Primary central nervous system lymphoma (PCNSL) is an uncommon non-Hodgkin's lymphoma with poor prognosis. This study aimed to depict the genetic landscape of Chinese PCNSLs. Whole-genome sequencing was performed on 68 newly diagnosed Chinese PCNSL samples, whose genomic characteristics and clinicopathologic features were also analyzed. Structural variations were identified in all patients with a mean of 349, which did not significantly influence prognosis. Copy loss occurred in all samples, while gains were detected in 77.9% of the samples. The high level of copy number variations was significantly associated with poor progression-free survival (PFS) and overall survival (OS). A total of 263 genes mutated in coding regions were identified, including 6 newly discovered genes (ROBO2, KMT2C, CXCR4, MYOM2, BCLAF1, and NRXN3) detected in ⩾ 10% of the cases. CD79B mutation was significantly associated with lower PFS, TMSB4X mutation and high expression of TMSB4X protein was associated with lower OS. A prognostic risk scoring system was also established for PCNSL, which included Karnofsky performance status and six mutated genes (BRD4, EBF1, BTG1, CCND3, STAG2, and TMSB4X). Collectively, this study comprehensively reveals the genomic landscape of newly diagnosed Chinese PCNSLs, thereby enriching the present understanding of the genetic mechanisms of PCNSL.
Collapse
Affiliation(s)
- Xianggui Yuan
- Department of Hematology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Teng Yu
- Department of Hematology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Jianzhi Zhao
- Department of Hematology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Huawei Jiang
- Department of Hematology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yuanyuan Hao
- Department of Hematology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Wen Lei
- Department of Hematology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yun Liang
- Department of Hematology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Baizhou Li
- Department of Pathology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Wenbin Qian
- Department of Hematology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
55
|
Koh H, Yoon SE, Kim SJ, Kim WS, Cho J. Differences in mutational signature of diffuse large B-cell lymphomas according to the primary organ. Cancer Med 2023; 12:19732-19743. [PMID: 37706649 PMCID: PMC10587923 DOI: 10.1002/cam4.6533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/09/2023] [Accepted: 09/01/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Comprehensive molecular subtyping of diffuse large B-cell lymphoma (DLBCL) through genetic profiling has broadened our understanding of DLBCL biology. In this study, we investigated whether DLBCL, not otherwise specified (NOS) shows differences in mutational patterns depending on the primary organ. PATIENTS AND METHODS Panel-based next-generation sequencing was performed on 345 DLBCL from various primary organs, and patterns of mutations according to primary organs were analyzed. RESULTS DLBCL showed a characteristic mutational signature in several primary organs. Among them, the mutational pattern of DLBCL in the breast and ileocecal area was particularly different from that of other DLBCL NOS. In breast DLBCL, MYD88L265P (57.1%), CD79B mutation (42.9%), and CDKN2A/B loss (71.4%) were found at high frequencies, which were similar to the mutation patterns of DLBCL of immune-privileged sites compared with DLBCL NOS. DLBCL in the ileocecal area showed a characteristic mutation pattern with the most frequent TP53 mutation (52.6%) and 18q21 gain (42.1%). This was also different from the mutational pattern observed in the stomach or other intestines. In discriminant analysis, DLBCL of the breast and ileocecal area tended to form separate genetic constellations from other DLBCL NOS. CONCLUSION DLBCL NOS has a characteristic mutational profile that depends on the primary organ. In particular, the mutational signature of DLBCL in the breast and ileocecal area was heterogeneous compared with that of other DLBCL NOS. Further research is needed to determine whether primary DLBCL in the breast and ileocecal area can be classified as an independent subtype.
Collapse
Affiliation(s)
- Hyun‐Hee Koh
- Department of Pathology, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulKorea
- Department of Pathology, Severance HospitalYonsei University College of MedicineSeoulKorea
| | - Sang Eun Yoon
- Division of Hematology and Oncology, Department of Internal MedicineSungkyunkwan University School of MedicineSeoulKorea
| | - Seok Jin Kim
- Division of Hematology and Oncology, Department of Internal MedicineSungkyunkwan University School of MedicineSeoulKorea
| | - Won Seog Kim
- Division of Hematology and Oncology, Department of Internal MedicineSungkyunkwan University School of MedicineSeoulKorea
| | - Junhun Cho
- Department of Pathology, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulKorea
| |
Collapse
|
56
|
Yang H, Xun Y, Ke C, Tateishi K, You H. Extranodal lymphoma: pathogenesis, diagnosis and treatment. MOLECULAR BIOMEDICINE 2023; 4:29. [PMID: 37718386 PMCID: PMC10505605 DOI: 10.1186/s43556-023-00141-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023] Open
Abstract
Approximately 30% of lymphomas occur outside the lymph nodes, spleen, or bone marrow, and the incidence of extranodal lymphoma has been rising in the past decade. While traditional chemotherapy and radiation therapy can improve survival outcomes for certain patients, the prognosis for extranodal lymphoma patients remains unsatisfactory. Extranodal lymphomas in different anatomical sites often have distinct cellular origins, pathogenic mechanisms, and clinical manifestations, significantly influencing their diagnosis and treatment. Therefore, it is necessary to provide a comprehensive summary of the pathogenesis, diagnosis, and treatment progress of extranodal lymphoma overall and specifically for different anatomical sites. This review summarizes the current progress in the common key signaling pathways in the development of extranodal lymphomas and intervention therapy. Furthermore, it provides insights into the pathogenesis, diagnosis, and treatment strategies of common extranodal lymphomas, including gastric mucosa-associated lymphoid tissue (MALT) lymphoma, mycosis fungoides (MF), natural killer/T-cell lymphoma (nasal type, NKTCL-NT), and primary central nervous system lymphoma (PCNSL). Additionally, as PCNSL is one of the extranodal lymphomas with the worst prognosis, this review specifically summarizes prognostic indicators and discusses the challenges and opportunities related to its clinical applications. The aim of this review is to assist clinical physicians and researchers in understanding the current status of extranodal lymphomas, enabling them to make informed clinical decisions that contribute to improving patient prognosis.
Collapse
Affiliation(s)
- Hua Yang
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan, 528000, China
| | - Yang Xun
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan, 528000, China
| | - Chao Ke
- Department of Neurosurgery and Neuro-Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Kensuke Tateishi
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, 2360004, Japan
| | - Hua You
- Laboratory for Excellence in Systems Biomedicine of Pediatric Oncology, Department of Pediatric Hematology and Oncology, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 401122, China.
| |
Collapse
|
57
|
Lebrun L, Allard-Demoustiez S, Salmon I. Pathology and new insights in central nervous system lymphomas. Curr Opin Oncol 2023; 35:347-356. [PMID: 37439536 PMCID: PMC10408733 DOI: 10.1097/cco.0000000000000978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
PURPOSE OF REVIEW Primary central nervous system lymphoma (PCNSL) is a rare central nervous system (CNS) malignancy, which represents a heterogenous group of tumors. Among PCNSL, diffuse large B-cell lymphoma of the CNS (CNS-DLBCL) represents the most common tumor type. Multiomics studies have recently revealed the complex genomic landscape of these rare diseases. These findings lead to a potential new molecular and epigenetic classification. RECENT FINDINGS Our review is focused on CNS-DLBCL in immunocompetent patients. CNS-DLBCL are derived from self-reactive/polyreactive precursor cells. An early molecular event such as MYD88 mutation leads to escape elimination of precursor cells, which, by a dysregulated GC reaction, acquire auto-/polyreactivity of the B-cell tumoral cells for antigens physiologically expressed in the CNS. Most of CNS-DLBCL tumor cells harbor a non-GCB, ABC-like immunophenotype associated with a late GC (exit) B-cells genotype by gene expression profiling. Various mechanisms of genetic alterations are involved in the pathogenesis of PCNSL, including point mutations [nonsomatic hypermutation (SHM), aberrant SHM (aSHM)], SHM/aSHM, chromosome copy gains or losses, and DNA hypermethylation. Constitutive NFκB activation plays a key role in lymphoma cell proliferation and survival by dysregulation of toll-like receptor (mutations of CARD11 and MYD88 ), BCR ( CD79B ), JAK-STAT, and NFκB signaling pathways. SUMMARY Multiomics approaches have succeeded to substantially improve the understanding of the pathogenesis, as well as the molecular and epigenetic events in PCNSL. Challenges remain due to the obvious heterogeneity of CNS-DLBCL, and improvement is needed for their classification.
Collapse
Affiliation(s)
- Laetitia Lebrun
- Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Erasme University Hospital, Department of Pathology, Brussels
| | - Sacha Allard-Demoustiez
- Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Erasme University Hospital, Department of Pathology, Brussels
| | - Isabelle Salmon
- Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Erasme University Hospital, Department of Pathology, Brussels
- DIAPath, Center for Microscopy and Molecular Imaging (CMMI), ULB, Gosselies, Belgium
| |
Collapse
|
58
|
Calimeri T, Steidl C, Fiore P, Ferreri AJM. New hopes in relapsed refractory primary central nervous system lymphoma. Curr Opin Oncol 2023; 35:364-372. [PMID: 37551946 DOI: 10.1097/cco.0000000000000980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
PURPOSE OF REVIEW Patients with relapsed/refractory primary central nervous system lymphoma (rrPCNSL) have poor prognosis, with a median survival after relapse of 6.8 months. In this review, we discuss the evolving landscape and the possible future directions related to this important unmet clinical need. RECENT FINDINGS The modern two-phase approach for newly diagnosed PCNSL based on an induction using high-dose methotrexate (HD-MTX) combinations and a subsequent consolidation, has significantly improved the outcome in this setting. However, this strategy is able to cure more or less 50% of patients. rrPCNSL patients have a very poor prognosis with a reported 5-year overall survival of 18%. Late relapses (after third year) and use of high-dose chemotherapy and autologous stem cell transplantation (HDT-ASCT) represent important factors associated with a better outcome in this setting. On the basis of the growing acquisition of knowledge on the molecular characteristics of PCNSL, the use of non-chemotherapeutic drugs such as bruton tyrosine kinase inhibitors (BTK-is), immunomodulatory drugs (IMiDs) and immune checkpoint blockers (ICBs) is increasing in the last years along with the introduction of novel approaches (CAR-T cells and blood--brain barrier disruption). However, despite high responses in some cases, durations are often short, translating in outcome results still unsatisfactory. SUMMARY Treatment of rrPCNSL patients is challenging. As no standard of care exist in this setting, it is of paramount importance to acquire new knowledge related to this condition and start multidisciplinary collaboration in order to improve pts outcome.
Collapse
Affiliation(s)
| | | | - Paolo Fiore
- Lymphoma Unit, IRCCS San Raffaele Scientific Institute
- University 'Vita-Salute San Raffaele', Milan, Italy
| | | |
Collapse
|
59
|
Kaulen LD, Denisova E, Hinz F, Hai L, Friedel D, Henegariu O, Hoffmann DC, Ito J, Kourtesakis A, Lehnert P, Doubrovinskaia S, Karschnia P, von Baumgarten L, Kessler T, Baehring JM, Brors B, Sahm F, Wick W. Integrated genetic analyses of immunodeficiency-associated Epstein-Barr virus- (EBV) positive primary CNS lymphomas. Acta Neuropathol 2023; 146:499-514. [PMID: 37495858 PMCID: PMC10412493 DOI: 10.1007/s00401-023-02613-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023]
Abstract
Immunodeficiency-associated primary CNS lymphoma (PCNSL) represents a distinct clinicopathological entity, which is typically Epstein-Barr virus-positive (EBV+) and carries an inferior prognosis. Genetic alterations that characterize EBV-related CNS lymphomagenesis remain unclear precluding molecular classification and targeted therapies. In this study, a comprehensive genetic analysis of 22 EBV+ PCNSL, therefore, integrated clinical and pathological information with exome and RNA sequencing (RNASeq) data. EBV+ PCNSL with germline controls carried a median of 55 protein-coding single nucleotide variants (SNVs; range 24-217) and 2 insertions/deletions (range 0-22). Genetic landscape was largely shaped by aberrant somatic hypermutation with a median of 41.01% (range 31.79-53.49%) of SNVs mapping to its target motifs. Tumors lacked established SNVs (MYD88, CD79B, PIM1) and copy number variants (CDKN2A, HLA loss) driving EBV- PCNSL. Instead, EBV+ PCNSL were characterized by SOCS1 mutations (26%), predicted to disinhibit JAK/STAT signaling, and mutually exclusive gain-of-function NOTCH pathway SNVs (26%). Copy number gains were enriched on 11q23.3, a locus directly targeted for chromosomal aberrations by EBV, that includes SIK3 known to protect from cytotoxic T-cell responses. Losses covered 5q31.2 (STING), critical for sensing viral DNA, and 17q11 (NF1). Unsupervised clustering of RNASeq data revealed two distinct transcriptional groups, that shared strong expression of CD70 and IL1R2, previously linked to tolerogenic tumor microenvironments. Correspondingly, deconvolution of bulk RNASeq data revealed elevated M2-macrophage, T-regulatory cell, mast cell and monocyte fractions in EBV+ PCNSL. In addition to novel insights into the pathobiology of EBV+ PCNSL, the data provide the rationale for the exploration of targeted therapies including JAK-, NOTCH- and CD70-directed approaches.
Collapse
Affiliation(s)
- Leon D Kaulen
- Department of Neurology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany.
- Clinical Cooperation Unit (CCU) Neuro-Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
| | - Evgeniya Denisova
- Division of Applied Bioinformatics, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Felix Hinz
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Neuropathology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Ling Hai
- Clinical Cooperation Unit (CCU) Neuro-Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Dennis Friedel
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Octavian Henegariu
- Department of Neurosurgery, Yale School of Medicine, New Haven, USA
- Department of Genetics, Yale School of Medicine, New Haven, USA
| | - Dirk C Hoffmann
- Department of Neurology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Neuro-Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Jakob Ito
- Clinical Cooperation Unit (CCU) Neuro-Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Alexandros Kourtesakis
- Clinical Cooperation Unit (CCU) Neuro-Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Pascal Lehnert
- Clinical Cooperation Unit (CCU) Neuro-Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Sofia Doubrovinskaia
- Department of Neurology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Philipp Karschnia
- Department of Neurosurgery, Munich University Hospital, Ludwig Maximilians University (LMU) Munich, and German Cancer Consortium (DKTK) Partner Site, Munich, Germany
| | - Louisa von Baumgarten
- Department of Neurosurgery, Munich University Hospital, Ludwig Maximilians University (LMU) Munich, and German Cancer Consortium (DKTK) Partner Site, Munich, Germany
| | - Tobias Kessler
- Department of Neurology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Neuro-Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Joachim M Baehring
- Department of Neurosurgery, Yale School of Medicine, New Haven, USA
- Department of Neurology, Yale School of Medicine, New Haven, USA
| | - Benedikt Brors
- Division of Applied Bioinformatics, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany.
- Clinical Cooperation Unit (CCU) Neuropathology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.
| | - Wolfgang Wick
- Department of Neurology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany.
- Clinical Cooperation Unit (CCU) Neuro-Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
| |
Collapse
|
60
|
Minderman M, Lantermans H, van der Zwaan C, Hoogendijk AJ, van den Biggelaar M, Kersten MJ, Spaargaren M, Pals ST. The oncogenic human B-cell lymphoma MYD88 L265P mutation genocopies activation by phosphorylation at the Toll/interleukin-1 receptor (TIR) domain. Blood Cancer J 2023; 13:125. [PMID: 37591861 PMCID: PMC10435502 DOI: 10.1038/s41408-023-00896-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/23/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023] Open
Abstract
MYD88 is the key signaling adaptor-protein for Toll-like and interleukin-1 receptors. A somatic L265P mutation within the Toll/interleukin-1 receptor (TIR) domain of MYD88 is found in 90% of Waldenström macroglobulinemia cases and in a significant subset of diffuse large B-cell lymphomas. MYD88-L265P strongly promotes NF-κB pathway activation, JAK-STAT signaling and lymphoma cell survival. Previous studies have identified other residues of the TIR-domain crucially involved in NF-κB activation, including serine 257 (S257), indicating a potentially important physiological role in the regulation of MYD88 activation. Here, we demonstrate that MYD88 S257 is phosphorylated in B-cell lymphoma cells and that this phosphorylation is required for optimal TLR-induced NF-κB activation. Furthermore, we demonstrate that a phosphomimetic MYD88-S257D mutant promotes MYD88 aggregation, IRAK1 phosphorylation, NF-κB activation and cell growth to a similar extent as the oncogenic L265P mutant. Lastly, we show that expression of MYD88-S257D can rescue cell growth upon silencing of endogenous MYD88-L265P expression in lymphoma cells addicted to oncogenic MYD88 signaling. Our data suggest that the L265P mutation promotes TIR domain homodimerization and NF-κB activation by copying the effect of MY88 phosphorylation at S257, thus providing novel insights into the molecular mechanism underlying the oncogenic activity of MYD88-L265P in B-cell malignancies.
Collapse
Affiliation(s)
- Marthe Minderman
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam - LYMMCARE, Amsterdam, The Netherlands
| | - Hildo Lantermans
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam - LYMMCARE, Amsterdam, The Netherlands
| | - Carmen van der Zwaan
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | - Arie J Hoogendijk
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | | | - Marie José Kersten
- Lymphoma and Myeloma Center Amsterdam - LYMMCARE, Amsterdam, The Netherlands
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
| | - Marcel Spaargaren
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam - LYMMCARE, Amsterdam, The Netherlands
| | - Steven T Pals
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands.
- Lymphoma and Myeloma Center Amsterdam - LYMMCARE, Amsterdam, The Netherlands.
| |
Collapse
|
61
|
Roemer MG, van de Brug T, Bosch E, Berry D, Hijmering N, Stathi P, Weijers K, Doorduijn J, Bromberg J, van de Wiel M, Ylstra B, de Jong D, Kim Y. Multi-scale spatial modeling of immune cell distributions enables survival prediction in primary central nervous system lymphoma. iScience 2023; 26:107331. [PMID: 37539043 PMCID: PMC10393746 DOI: 10.1016/j.isci.2023.107331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 05/15/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
To understand the clinical significance of the tumor microenvironment (TME), it is essential to study the interactions between malignant and non-malignant cells in clinical specimens. Here, we established a computational framework for a multiplex imaging system to comprehensively characterize spatial contexts of the TME at multiple scales, including close and long-distance spatial interactions between cell type pairs. We applied this framework to a total of 1,393 multiplex imaging data newly generated from 88 primary central nervous system lymphomas with complete follow-up data and identified significant prognostic subgroups mainly shaped by the spatial context. A supervised analysis confirmed a significant contribution of spatial context in predicting patient survival. In particular, we found an opposite prognostic value of macrophage infiltration depending on its proximity to specific cell types. Altogether, we provide a comprehensive framework to analyze spatial cellular interaction that can be broadly applied to other technologies and tumor contexts.
Collapse
Affiliation(s)
- Margaretha G.M. Roemer
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Tim van de Brug
- Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Erik Bosch
- Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Mathematics, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Daniella Berry
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Nathalie Hijmering
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, Amsterdam, The Netherlands
- HOVON Pathology Facility and Biobank (HOP), Department of Pathology, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Phylicia Stathi
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Karin Weijers
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Jeannette Doorduijn
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jacoline Bromberg
- Department of Neuro-Oncology, Erasmus MC Cancer Institute, Brain Tumor Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mark van de Wiel
- Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Bauke Ylstra
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Daphne de Jong
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Yongsoo Kim
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
62
|
Iriyama C, Murate K, Iba S, Okamoto A, Goto N, Yamamoto H, Kato T, Mihara K, Miyama T, Hattori K, Kajiya R, Okamoto M, Mizutani Y, Yamada S, Tsukamoto T, Hirose Y, Mutoh T, Watanabe H, Tomita A. Utility of cerebrospinal fluid liquid biopsy in distinguishing CNS lymphoma from cerebrospinal infectious/demyelinating diseases. Cancer Med 2023; 12:16972-16984. [PMID: 37501501 PMCID: PMC10501233 DOI: 10.1002/cam4.6329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/12/2023] [Accepted: 07/01/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Distinguishing between central nervous system lymphoma (CNSL) and CNS infectious and/or demyelinating diseases, although clinically important, is sometimes difficult even using imaging strategies and conventional cerebrospinal fluid (CSF) analyses. To determine whether detection of genetic mutations enables differentiation between these diseases and the early detection of CNSL, we performed mutational analysis using CSF liquid biopsy technique. METHODS In this study, we extracted cell-free DNA from the CSF (CSF-cfDNA) of CNSL (N = 10), CNS infectious disease (N = 10), and demyelinating disease (N = 10) patients, and performed quantitative mutational analysis by droplet-digital PCR. Conventional analyses were also performed using peripheral blood and CSF to confirm the characteristics of each disease. RESULTS Blood hemoglobin and albumin levels were significantly lower in CNSL than CNS infectious and demyelinating diseases, CSF cell counts were significantly higher in infectious diseases than CNSL and demyelinating diseases, and CSF-cfDNA concentrations were significantly higher in infectious diseases than CNSL and demyelinating diseases. Mutation analysis using CSF-cfDNA detected MYD88L265P and CD79Y196 mutations in 60% of CNSLs each, with either mutation detected in 80% of cases. Mutual existence of both mutations was identified in 40% of cases. These mutations were not detected in either infectious or demyelinating diseases, and the sensitivity and specificity of detecting either MYD88/CD79B mutations in CNSL were 80% and 100%, respectively. In the four cases biopsied, the median time from collecting CSF with the detected mutations to definitive diagnosis by conventional methods was 22.5 days (range, 18-93 days). CONCLUSIONS These results suggest that mutation analysis using CSF-cfDNA might be useful for differentiating CNSL from CNS infectious/demyelinating diseases and for early detection of CNSL, even in cases where brain biopsy is difficult to perform.
Collapse
Affiliation(s)
- Chisako Iriyama
- Department of HematologyFujita Health University School of MedicineToyoakeJapan
| | - Kenichiro Murate
- Department of NeurologyFujita Health University School of MedicineToyoakeJapan
| | - Sachiko Iba
- Department of HematologyFujita Health University School of MedicineToyoakeJapan
| | - Akinao Okamoto
- Department of HematologyFujita Health University School of MedicineToyoakeJapan
| | - Naoe Goto
- Department of HematologyFujita Health University School of MedicineToyoakeJapan
| | - Hideyuki Yamamoto
- Department of HematologyFujita Health University School of MedicineToyoakeJapan
| | - Toshiharu Kato
- Department of HematologyFujita Health University School of MedicineToyoakeJapan
| | - Keichiro Mihara
- International Center for Cell and Gene TherapyFujita Health UniversityToyoakeJapan
| | - Takahiko Miyama
- International Center for Cell and Gene TherapyFujita Health UniversityToyoakeJapan
| | - Keiko Hattori
- Department of HematologyFujita Health University School of MedicineToyoakeJapan
| | - Ryoko Kajiya
- Department of HematologyFujita Health University School of MedicineToyoakeJapan
| | - Masataka Okamoto
- Department of HematologyFujita Health University School of MedicineToyoakeJapan
- Department of Hematology and OncologyFujita Health University Okazaki Medical CenterOkazakiJapan
| | - Yasuaki Mizutani
- Department of NeurologyFujita Health University School of MedicineToyoakeJapan
| | - Seiji Yamada
- Department of PathologyFujita Health University School of MedicineToyoakeJapan
| | - Tetsuya Tsukamoto
- Department of PathologyFujita Health University School of MedicineToyoakeJapan
| | - Yuichi Hirose
- Department of NeurosurgeryFujita Health University School of MedicineToyoakeJapan
| | - Tatsuro Mutoh
- Department of HematologyFujita Health University School of MedicineToyoakeJapan
| | - Hirohisa Watanabe
- Department of NeurologyFujita Health University School of MedicineToyoakeJapan
| | - Akihiro Tomita
- Department of HematologyFujita Health University School of MedicineToyoakeJapan
| |
Collapse
|
63
|
Treiber H, Nilius-Eliliwi V, Seifert N, Vangala D, Wang M, Seidel S, Mika T, Marschner D, Zeremski V, Wurm-Kuczera R, Caillé L, Chapuy CI, Trümper L, Fischer T, Altenbuchinger M, Wulf GG, Illerhaus G, Dietrich S, Schroers R, Chapuy B. Treatment Strategies and Prognostic Factors in Secondary Central Nervous System Lymphoma: A Multicenter Study of 124 Patients. Hemasphere 2023; 7:e926. [PMID: 37492436 PMCID: PMC10365212 DOI: 10.1097/hs9.0000000000000926] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/02/2023] [Indexed: 07/27/2023] Open
Abstract
Secondary central nervous system lymphoma (SCNSL) is a rare and difficult to treat type of Non-Hodgkin lymphoma characterized by systemic and central nervous system (CNS) disease manifestations. In this study, 124 patients with SCNSL intensively treated and with clinical long-term follow-up were included. Initial histopathology, as divided in low-grade, other aggressive, and diffuse large B-cell lymphoma (DLBCL), was of prognostic significance. Overall response to induction treatment was a prognostic factor with early responding DLBCL-SCNSL in comparison to those non-responding experiencing a significantly better progression-free survival (PFS) and overall survival (OS). However, the type of induction regime was not prognostic for survival. Following consolidating high-dose chemotherapy and autologous stem cell transplantation (HDT-ASCT), DLBCL-SCNSL patients had better median PFS and OS. The important role of HDT-ASCT was further highlighted by favorable responses and survival of patients not responding to induction therapy and by excellent results in patients with de novo DLBCL-SCNSL (65% long-term survival). SCNSL identified as a progression of disease within 6 months of initial systemic lymphoma presentation represented a previously not appreciated subgroup with particularly dismal outcome. This temporal stratification model of SCNSL diagnosis revealed CNS progression of disease within 6 months as a promising candidate prognosticator for future studies.
Collapse
Affiliation(s)
- Hannes Treiber
- Department of Hematology and Medical Oncology, Georg-August University Göttingen, Germany
| | | | - Nicole Seifert
- Department of Medical Bioinformatics, University Medical Center Göttingen, Germany
| | - Deepak Vangala
- Department of Hematology and Oncology, Ruhr-University Bochum, Germany
| | - Meng Wang
- Department of Hematology, Oncology, and Cancer Immunology, Charité -University Medical Center Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Sabine Seidel
- Department of Neurology, Ruhr-University Bochum, Germany
| | - Thomas Mika
- Department of Hematology and Oncology, Ruhr-University Bochum, Germany
| | - Dominik Marschner
- Department of Hematology, Oncology, and Palliative Care, Klinikum Stuttgart, Germany
| | - Vanja Zeremski
- Department of Hematology and Oncology, University Hospital Magdeburg, Germany
| | - Rebecca Wurm-Kuczera
- Department of Hematology and Medical Oncology, Georg-August University Göttingen, Germany
- Department of Hematology, Oncology, and Cancer Immunology, Charité -University Medical Center Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Leandra Caillé
- Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Claudia I. Chapuy
- Department of Hematology and Medical Oncology, Georg-August University Göttingen, Germany
| | - Lorenz Trümper
- Department of Hematology and Medical Oncology, Georg-August University Göttingen, Germany
| | - Thomas Fischer
- Department of Hematology and Oncology, University Hospital Magdeburg, Germany
| | | | - Gerald G. Wulf
- Department of Hematology and Medical Oncology, Georg-August University Göttingen, Germany
| | - Gerald Illerhaus
- Department of Hematology, Oncology, and Palliative Care, Klinikum Stuttgart, Germany
| | - Sascha Dietrich
- Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Department of Hematology and Oncology, Heinrich-Heine University Düsseldorf, Germany
| | - Roland Schroers
- Department of Hematology and Oncology, Ruhr-University Bochum, Germany
| | - Björn Chapuy
- Department of Hematology and Medical Oncology, Georg-August University Göttingen, Germany
- Department of Hematology, Oncology, and Cancer Immunology, Charité -University Medical Center Berlin, Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|
64
|
Foerster AK, Lauer EM, Scherer F. Clinical applications of circulating tumor DNA in central nervous system lymphoma. Semin Hematol 2023; 60:150-156. [PMID: 37442670 DOI: 10.1053/j.seminhematol.2023.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
Detection and characterization of circulating tumor DNA (ctDNA) in body fluids have the potential to revolutionize management of patients with lymphoma. Minimal access to malignant DNA through a simple blood draw or lumbar puncture is particularly appealing for CNS lymphomas (CNSL), which cannot be easily or repeatedly sampled without invasive surgeries. Profiling of ctDNA provides a real-time snapshot of the genetic composition in patients with CNSL and enables ultrasensitive quantification of lymphoma burden at any given time point during the course of the disease. Here, we broadly review technical challenges of ctDNA identification in CNSL, recent advances of innovative liquid biopsy technologies, potential clinical applications of ctDNA and how it may improve CNSL risk stratification, outcome prediction, and monitoring of measurable residual disease. Finally, we discuss clinical trials and scenarios in which ctDNA could be implemented to guide risk-adapted and personalized treatment decisions.
Collapse
Affiliation(s)
- Anna Katharina Foerster
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eliza M Lauer
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Florian Scherer
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK) partner site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
65
|
Ferreri AJM, Calimeri T, Cwynarski K, Dietrich J, Grommes C, Hoang-Xuan K, Hu LS, Illerhaus G, Nayak L, Ponzoni M, Batchelor TT. Primary central nervous system lymphoma. Nat Rev Dis Primers 2023; 9:29. [PMID: 37322012 PMCID: PMC10637780 DOI: 10.1038/s41572-023-00439-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/08/2023] [Indexed: 06/17/2023]
Abstract
Primary central nervous system lymphoma (PCNSL) is a diffuse large B cell lymphoma in which the brain, spinal cord, leptomeninges and/or eyes are exclusive sites of disease. Pathophysiology is incompletely understood, although a central role seems to comprise immunoglobulins binding to self-proteins expressed in the central nervous system (CNS) and alterations of genes involved in B cell receptor, Toll-like receptor and NF-κB signalling. Other factors such as T cells, macrophages or microglia, endothelial cells, chemokines, and interleukins, probably also have important roles. Clinical presentation varies depending on the involved regions of the CNS. Standard of care includes methotrexate-based polychemotherapy followed by age-tailored thiotepa-based conditioned autologous stem cell transplantation and, in patients unsuitable for such treatment, consolidation with whole-brain radiotherapy or single-drug maintenance. Personalized treatment, primary radiotherapy and only supportive care should be considered in unfit, frail patients. Despite available treatments, 15-25% of patients do not respond to chemotherapy and 25-50% relapse after initial response. Relapse rates are higher in older patients, although the prognosis of patients experiencing relapse is poor independent of age. Further research is needed to identify diagnostic biomarkers, treatments with higher efficacy and less neurotoxicity, strategies to improve the penetration of drugs into the CNS, and roles of other therapies such as immunotherapies and adoptive cell therapies.
Collapse
Affiliation(s)
| | - Teresa Calimeri
- Lymphoma Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Kate Cwynarski
- Department of Haematology, University College Hospital, London, UK
| | - Jorg Dietrich
- Cancer and Neurotoxicity Clinic and Brain Repair Research Program, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Christian Grommes
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Khê Hoang-Xuan
- APHP, Groupe Hospitalier Salpêtrière, Sorbonne Université, IHU, ICM, Service de Neurologie 2, Paris, France
| | - Leland S Hu
- Department of Radiology, Neuroradiology Division, Mayo Clinic, Phoenix, AZ, USA
| | - Gerald Illerhaus
- Clinic of Hematology, Oncology and Palliative Care, Klinikum Stuttgart, Stuttgart, Germany
| | - Lakshmi Nayak
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maurilio Ponzoni
- Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Ateneo Vita-Salute San Raffaele, Milan, Italy
| | - Tracy T Batchelor
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
66
|
Perdikis-Prati S, Sheikh S, Bouroumeau A, Lang N. Efficacy of Immune Checkpoint Blockade and Biomarkers of Response in Lymphoma: A Narrative Review. Biomedicines 2023; 11:1720. [PMID: 37371815 DOI: 10.3390/biomedicines11061720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Immune checkpoint blockade (ICB) has revolutionized the prognosis of several advanced-stage solid tumors. However, its success has been far more limited in hematological malignancies and is mostly restricted to classical Hodgkin lymphoma (cHL) and primary mediastinal B cell lymphoma (PMBCL). In patients with non-Hodgkin lymphoma (NHL), response to PD-1/PD-L1 ICB monotherapy has been relatively limited, although some subtypes are more sensitive than others. Numerous predictive biomarkers have been investigated in solid malignancies, such as PD-L1 expression, tumor mutational burden (TMB) and microsatellite instability (MSI), among others. This review aims to appraise the current knowledge on PD-1/PD-L1 ICB efficacy in lymphoma when used either as monotherapy or combined with other agents, and describes potential biomarkers of response in this specific setting.
Collapse
Affiliation(s)
| | - Semira Sheikh
- Department of Hematology, Universitätsspital Basel, 4031 Basel, Switzerland
| | - Antonin Bouroumeau
- Division of Clinical Pathology, Diagnostic Department, Geneva University Hospital, 1206 Geneva, Switzerland
| | - Noémie Lang
- Department of Oncology, Geneva University Hospital, 1205 Geneva, Switzerland
- Center of Translational Research in Oncohematology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| |
Collapse
|
67
|
Li J, Tang X, Luo X, Liu L, Li D, Yang L. Clinicopathological analysis and specific discriminating markers of interleukin detection in cerebrospinal fluid with primary central nervous system lymphoma: results from a retrospective study. Ann Hematol 2023:10.1007/s00277-023-05301-7. [PMID: 37289220 DOI: 10.1007/s00277-023-05301-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 05/26/2023] [Indexed: 06/09/2023]
Abstract
Primary central nervous system lymphoma (PCNSL) is special extranodal malignant non-Hodgkin lymphomas. This study analyzed clinical features and prognostic factors of PCNSL and evaluated the difference of interleukin (IL) concentrations in cerebrospinal fluid (CSF) between PCNSL and systemic non-Hodgkin lymphoma (sNHL). Patients consecutive newly diagnosed with PCNSL were recruited, the demographic and clinicopathological data were retrospectively analyzed, and the potential prognostic factors for overall survival (OS) were identified with survival analysis. 27 patients with PCNSL and 21 patients with sNHL collected CSF IL-5, IL-6, and IL-10 concentrations at diagnosis. The difference in interleukin (IL) concentrations in two diseases was analyzed to evaluate the value of IL concentrations. A total of 64 patients with PCNSL were enrolled, the median age was 54.50 years (range 16-85 years); male: female ratio was 1.91. Headache was the most common complaint symptom involved in 42.19% (27/64) of patients. Diffuse large B-cell lymphoma (DLBCL) accounted for 89.06% (57/64) of patients; other uncommon types accounted for 3.13% (2/64). In prognostic analysis, multiple lesions and Ki67 ≥ 75% expression exhibited a worse prognosis(P = 0.041), and patients with autologous hematopoietic stem cell transplantation (auto-HSCT) treatment presented superior OS (P < 0.05). In multivariate analysis, BCL2 expression was revealed as an unfavorable prognostic marker, and auto-HSCT was revealed as a favorable prognostic marker. CSF IL-10 concentration in patients with PCNSL was significantly higher than sNHL (P = 0.000) and excluded other histopathology of NHL; IL-10 value was still significantly different between DLBCL of PCNSL and sDLBCL (P = 0.003). In ROC curve analysis, the cutoff value of IL-10 was 0.43 pg/mL for the diagnosis value of PCNSL, sensitivity was 96.3%, specificity was 66.67%, and AUC was 0.84 (0.71-0.96). Although IL-6 concentration did not differ in the two groups, IL-10/IL-6 ratio was meaningful, with a cutoff value of 0.21, sensitivity of 81.48%, specificity of 80.95%, and AUC of 0.83 (0.71-0.95). This study highlights the characteristics of patients with PCNSL, potential prognostic makers also have been explained. CSF interleukin (IL) concentrations revealed IL-10 levels, and IL-10/IL-6 ratio may represent a useful biomarker in the differential diagnosis of PCNSL and sNHL.
Collapse
Affiliation(s)
- Junnan Li
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, No.1, You-Yi Road, District of Yu-Zhong, Chongqing, 400016, China
| | - Xiaoqiong Tang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, No.1, You-Yi Road, District of Yu-Zhong, Chongqing, 400016, China
| | - Xiaohua Luo
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, No.1, You-Yi Road, District of Yu-Zhong, Chongqing, 400016, China
| | - Lin Liu
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, No.1, You-Yi Road, District of Yu-Zhong, Chongqing, 400016, China
| | - Dan Li
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Li Yang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, No.1, You-Yi Road, District of Yu-Zhong, Chongqing, 400016, China.
| |
Collapse
|
68
|
Lee YP, Yoon SE, Cho J, Ko YH, Oh D, Ahn YC, Kim WS, Kim SJ. Real-World Data Analysis of Survival Outcomes and Central Nervous System Relapses in Testicular Diffuse Large B Cell Lymphoma. Cancer Manag Res 2023; 15:463-474. [PMID: 37304895 PMCID: PMC10252944 DOI: 10.2147/cmar.s407837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Background Primary testicular lymphoma is a rare type of non-Hodgkin lymphoma, mostly of the diffuse large B cell lymphoma (DLBCL). Although a consensus on standard treatment has been established, unresolved issues remain, such as recurrence in the central nervous system (CNS). Methods We retrospectively analyzed the clinical characteristics and survival outcomes of 65 testicular DLBCL patients according to clinical settings and treatment modalities. Results The median age of the patients in our study was 65 years, and two-thirds of them had disease limited to one testis. There was no right or left lateralization of testicular involvement. Over a median follow-up of 53.9 months (95% confidence interval 34.0-73.7 months), patients with stage I disease and a low international prognostic index score showed better survival outcomes than those in other categories. Orchiectomy, six cycles of chemotherapy, and radiation therapy (RT) to the contralateral testis demonstrated survival benefits, whereas CNS prophylaxis therapy did not reduce CNS recurrence. During the follow-up period, the survival curves showed continuous decline, mostly due to disease progression. CNS recurrence was observed in 15% of patients, and parenchymal involvement was dominant. However, no factors were associated with CNS recurrence in our analyses. Although our molecular analyses were performed in a small number of patients, MYD88, CD79B, and PIM1 mutations were frequent. Conclusion In our study, treatment with orchiectomy, six cycles of immunochemotherapy, and contralateral RT was effective. However, because CNS prophylaxis is an essential part of testicular DLBCL management, better treatment strategies than intrathecal therapy are required.
Collapse
Affiliation(s)
- Yong-Pyo Lee
- Division of Hematology-Oncology, Department of Internal Medicine, Chungbuk National University Hospital, Cheongju, Korea
| | - Sang Eun Yoon
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Junhun Cho
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young Hyeh Ko
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Dongryul Oh
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yong Chan Ahn
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Seog Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea
| | - Seok Jin Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea
| |
Collapse
|
69
|
Sun X, Lv L, Wu Y, Cui Q, Sun S, Ji N, Liu Y. Challenges in the management of primary central nervous system lymphoma. Crit Rev Oncol Hematol 2023:104042. [PMID: 37277008 DOI: 10.1016/j.critrevonc.2023.104042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 03/24/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023] Open
Abstract
Primary central nervous system lymphoma (PCNSL) is a rare extranodal non-Hodgkin lymphoma. Stereotactic biopsy remains the gold standard for the pathological diagnosis of PCNSL. However, certain new auxiliary diagnostic methods are considered to have good application prospects; these include cytokine and tumor circulating DNA, among others. Although new drugs such as immunomodulators, immune checkpoint inhibitors, chimeric antigen receptor T-cells, and Bruton tyrosine kinase inhibitors have brought hope owing to their improved efficacy, the high recurrence rate and subsequent high mortality remain barriers to long-term survival. Increasing emphasis is therefore being placed on consolidation treatments. Consolidation treatment strategies include whole brain radiotherapy, autologous hematopoietic stem cell transplantation, and non-myeloablative chemotherapy. As studies directly comparing the effectiveness and safety of different consolidation treatment schemes are lacking, the optimal consolidation strategy remains uncertain. This article will review the diagnosis and treatment of PCNSL, focusing on the progress in research pertaining to consolidation therapy.
Collapse
Affiliation(s)
- Xuefei Sun
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Liwei Lv
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuchen Wu
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qu Cui
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shengjun Sun
- Neuroimaging Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Nan Ji
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuanbo Liu
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
70
|
Perrone S, Lopedote P, De Sanctis V, Iamundo De Cumis I, Pulsoni A, Strati P. Novel Drugs and Radiotherapy in Relapsed Lymphomas: Abscopal Response and Beyond. Cancers (Basel) 2023; 15:2751. [PMID: 37345088 DOI: 10.3390/cancers15102751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 06/23/2023] Open
Abstract
Combined modality has represented a mainstay of treatment across many lymphoma histologies, given their sensitivity to both multi-agent chemotherapy and intermediate-dose radiotherapy. More recently, several new agents, including immunotherapies, have reshaped the therapeutic panorama of some lymphomas. In parallel, radiotherapy techniques have witnessed substantial improvement, accompanied by a growing understanding that radiation itself comes with an immune-mediated effect. Six decades after a metastatic lesion regression outside the irradiated field was first described, there is increasing evidence that a combination of radiotherapy and immunotherapy could boost an abscopal effect. This review focuses on the mechanisms underlying this interaction in the setting of lymphomas, and on the results of pivotal prospective studies. Furthermore, the available evidence on the concomitant use of radiotherapy and small molecules (i.e., lenalidomide, venetoclax, and ibrutinib), as well as brentuximab vedotin, and chimeric antigen receptor (CAR) T-cell therapy, is summarized. Currently, combining radiotherapy with new agents in patients who are affected by lymphomas appears feasible, particularly as a bridge to anti-CD19 autologous CAR T-cell infusion. However, more studies are required to assess these combinations, and preliminary data suggest only a synergistic rather than a curative effect.
Collapse
Affiliation(s)
- Salvatore Perrone
- Department of Hematology, S.M. Goretti Hospital, Polo Universitario Pontino, 04100 Latina, Italy
| | - Paolo Lopedote
- Department of Medicine, St Elizabeth's Medical Center, Boston University, Boston, MA 02135, USA
| | - Vitaliana De Sanctis
- Department of Radiation Oncology, Faculty of Medicina e Psicologia, Sant'Andrea Hospital, University of Rome "La Sapienza", 00185 Rome, Italy
| | - Ilenia Iamundo De Cumis
- Department of Radiation Oncology, A. Businco Hospital, ARNAS G. Brotzu, 09121 Cagliari, Italy
| | - Alessandro Pulsoni
- Department of Hematology, S.M. Goretti Hospital, Polo Universitario Pontino, 04100 Latina, Italy
| | - Paolo Strati
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
71
|
Kurz KS, Ott M, Kalmbach S, Steinlein S, Kalla C, Horn H, Ott G, Staiger AM. Large B-Cell Lymphomas in the 5th Edition of the WHO-Classification of Haematolymphoid Neoplasms-Updated Classification and New Concepts. Cancers (Basel) 2023; 15:cancers15082285. [PMID: 37190213 DOI: 10.3390/cancers15082285] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
The family/class of the large B-cell lymphomas (LBCL) in the 5th edition of the World Health Organization (WHO) classification of haematolymphoid tumors (WHO-HAEM5) features only a few major changes as compared to the 4th edition. In most entities, there are only subtle changes, many of them only representing some minor modifications in diagnostic terms. Major changes have been made in the diffuse large B-cell lymphomas (DLBCL)/high-grade B-cell lymphomas (HGBL) associated with MYC and BCL2 and/or BCL6 rearrangements. This category now consists of MYC and BCL2 rearranged cases exclusively, while the MYC/BCL6 double hit lymphomas now constitute genetic subtypes of DLBCL, not otherwise specified (NOS) or of HGBL, NOS. Other major changes are the conceptual merger of lymphomas arising in immune-privileged sites and the description of LBCL arising in the setting of immune dysregulation/deficiency. In addition, novel findings concerning underlying biological mechanisms in the pathogenesis of the different entities are provided.
Collapse
Affiliation(s)
- Katrin S Kurz
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, 70376 Stuttgart, Germany
| | - Michaela Ott
- Department of Pathology, Marienhospital, 70199 Stuttgart, Germany
| | - Sabrina Kalmbach
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, 70376 Stuttgart, Germany
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
| | - Sophia Steinlein
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, 70376 Stuttgart, Germany
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
| | - Claudia Kalla
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, 70376 Stuttgart, Germany
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
| | - Heike Horn
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, 70376 Stuttgart, Germany
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, 70376 Stuttgart, Germany
| | - Annette M Staiger
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, 70376 Stuttgart, Germany
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
| |
Collapse
|
72
|
Rachdi A, Hernandez-Tost H, Herzi D, Morales-Martinez A, Hernández-Verdin I, Houillier C, Alentorn A, Hoang-Xuan K. Recent advances in the diagnosis and the treatment of primary CNS lymphoma. Rev Neurol (Paris) 2023; 179:481-489. [PMID: 37045615 DOI: 10.1016/j.neurol.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/11/2023] [Indexed: 04/14/2023]
Abstract
This review focuses on the recent progress in the management of primary central nervous system lymphoma (PCNSL). Multiomic analyses allowed to better understand the tumorigenesis of PCNSL and to establish a molecular classification with prognostic value that will optimize patient management and guide future targeted approaches. Cooperative clinical trials have demonstrated the feasibility and efficacy, in selected fit patients, of high-dose chemotherapy with autologous stem cell transplantation as post-induction consolidation, that will progressively replace whole brain radiotherapy associated with a much higher risk of delayed neurotoxicity. Several novel treatments have shown efficacy and overall good tolerance in PCNSL patients, such as Bruton's tyrosine kinase (BTK) inhibitors, imids, immune checkpoint inhibitors and chimeric antigen receptor T-cells (CAR-T). This opens promising therapeutic perspectives to improve the current standard treatment, especially for elderly and unfit patients who represent a growing population.
Collapse
Affiliation(s)
- A Rachdi
- Service de neurologie 2, CHU Pitié-Salpêtrière, AP-HP, Sorbonne université, 47, boulevard de l'hôpital, 75013 Paris, France; Institut Mongi Ben Hamida de neurologie de Tunis, Tunis, Tunisia
| | - H Hernandez-Tost
- Service de neurologie 2, CHU Pitié-Salpêtrière, AP-HP, Sorbonne université, 47, boulevard de l'hôpital, 75013 Paris, France
| | - D Herzi
- Service de neurologie 2, CHU Pitié-Salpêtrière, AP-HP, Sorbonne université, 47, boulevard de l'hôpital, 75013 Paris, France
| | - A Morales-Martinez
- Service de neurologie 2, CHU Pitié-Salpêtrière, AP-HP, Sorbonne université, 47, boulevard de l'hôpital, 75013 Paris, France
| | | | - C Houillier
- Service de neurologie 2, CHU Pitié-Salpêtrière, AP-HP, Sorbonne université, 47, boulevard de l'hôpital, 75013 Paris, France; LOC network, France
| | - A Alentorn
- Service de neurologie 2, CHU Pitié-Salpêtrière, AP-HP, Sorbonne université, 47, boulevard de l'hôpital, 75013 Paris, France; Brain Institute-ICM, Inserm, Sorbonne université, CNRS, Paris, France; LOC network, France
| | - K Hoang-Xuan
- Service de neurologie 2, CHU Pitié-Salpêtrière, AP-HP, Sorbonne université, 47, boulevard de l'hôpital, 75013 Paris, France; Brain Institute-ICM, Inserm, Sorbonne université, CNRS, Paris, France; LOC network, France.
| |
Collapse
|
73
|
Alimonti P, Gonzalez Castro LN. The Current Landscape of Immune Checkpoint Inhibitor Immunotherapy for Primary and Metastatic Brain Tumors. Antibodies (Basel) 2023; 12:antib12020027. [PMID: 37092448 PMCID: PMC10123751 DOI: 10.3390/antib12020027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/14/2023] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
Antibodies against immune checkpoint inhibitors (ICIs) have revolutionized the treatment of multiple aggressive malignancies, including melanoma and non-small cell lung cancer. ICIs for the treatment of primary and metastatic brain tumors have been used with varying degrees of success. Here, we discuss the available evidence for the use of ICIs in the treatment of primary and metastatic brain tumors, highlighting challenges and opportunities for furthering this type of cancer immunotherapy in neuro-oncology.
Collapse
Affiliation(s)
- Paolo Alimonti
- Department of Medicine, Vita-Salute San Raffaele University, Via Olgettina, 58, 20132 Milano, Italy
| | - L Nicolas Gonzalez Castro
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| |
Collapse
|
74
|
Kirkegaard MK, Minderman M, Sjö LD, Pals ST, Eriksen PRG, Heegaard S. Prevalence and prognostic value of MYD88 and CD79B mutations in ocular adnexal large B-cell lymphoma: a reclassification of ocular adnexal large B-cell lymphoma. Br J Ophthalmol 2023; 107:576-581. [PMID: 34706861 DOI: 10.1136/bjophthalmol-2021-319580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 10/10/2021] [Indexed: 11/04/2022]
Abstract
AIMS To (1) reclassify ocular adnexal large B-cell lymphomas (OA-LBCLs) per 2016 WHO lymphoma classification and (2) determine the prevalence of MYD88 and CD79B mutations and their association with clinical parameters among OA-LBCLs. METHODS This study is a retrospective analysis of all OA-LBCLs diagnosed in Denmark between 1980 and 2018. Medical records and tissue samples were retrieved. Thirty-four OA-LBCLs were included. Fluorescence in situ hybridisation and Epstein-Barr-encoded RNA in situ hybridisation were used for the reclassification. Mutational status was established by allele-specific PCR and confirmed by Sanger sequencing. Primary endpoints were overall survival, disease-specific survival (DSS) and progression-free survival (PFS). RESULTS Two LBCL subtypes were identified: diffuse large B-cell lymphoma (DLBCL) (27 of 32; 84%) and high-grade B-cell lymphoma (HGBL) with MYC and BCL2 and/or BCL6 rearrangements (5 of 32; 16%). cMYC/BCL2 double-expressor DLBCLs had a poorer DSS than non-double-expressor DLBCLs (5-year DSS, 25% vs 78%) (HR 0.23; 95% CI 0.06 to 0.85; p=0.014). MYD88 mutations were present in 10 (29%) of 34 lymphomas and carried a poorer PFS than wild-type cases (5-year PFS, 0% vs 43%) (HR 0.78; 95% CI 0.61 to 0.98; p=0.039). CD79B mutations were present in 3 (9%) of 34 cases. CONCLUSION OA-LBCL consists mainly of two subtypes: DLBCL and HGBL with MYC and BCL2 and/or BCL6 rearrangements. MYD88 mutations are important drivers of OA-LBCL. MYD88 mutations, as well as cMYC/BCL2 double-expressor DLBCL, appear to be associated with a poor prognosis. Implementing MYD88 mutational analysis in routine diagnostics may improve OA-LBCL prognostication.
Collapse
Affiliation(s)
| | - Marthe Minderman
- Department of Pathology, Amsterdam University Medical Centers loc. AMC, Amsterdam, The Netherlands
| | - Lene Dissing Sjö
- Department of Pathology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Steven T Pals
- Department of Pathology, Amsterdam University Medical Centers loc. AMC, Amsterdam, The Netherlands
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam-LYMMCARE, Amsterdam, The Netherlands
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Patrick R G Eriksen
- Department of Otorhinolaryngology, Head and Neck Surgery & Audiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Steffen Heegaard
- Department of Pathology, Eye Section, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
75
|
Dufour J, Choquet S, Hoang-Xuan K, Schmitt A, Ahle G, Houot R, Taillandier L, Gressin R, Casasnovas O, Marolleau JP, Tamburini J, Serrier C, Perez E, Paillassa J, Gyan E, Chauchet A, Ursu R, Kas A, Soussain C, Houillier C. Systemic relapses of primary CNS lymphomas (PCNSL): a LOC network study. Ann Hematol 2023; 102:1159-1169. [PMID: 36991231 DOI: 10.1007/s00277-023-05108-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/19/2023] [Indexed: 03/31/2023]
Abstract
Primary central nervous system lymphomas (PCNSLs) classically remain confined within the CNS throughout their evolution for unknown reasons. Our objective was to analyse the rare extracerebral relapses of PCNSL in a nationwide population-based study. We retrospectively selected PCNSL patients who experienced extracerebral relapse during their follow-up from the French LOC database. Of the 1968 PCNSL included in the database from 2011, 30 (1.5%, median age 71 years, median KPS 70) presented an extracerebral relapse, either pure (n = 20) or mixed (both extracerebral and in the CNS) (n = 10), with a histological confirmation in 20 cases. The median delay between initial diagnosis and systemic relapse was 15.5 months [2-121 months]. We found visceral (n = 23, 77%), including testis in 5 (28%) men and breast in 3 (27%) women, lymph node (n = 12, 40%), and peripheral nervous system (PNS) (n = 7, 23%) involvement. Twenty-seven patients were treated with chemotherapy, either with only systemic targets (n = 7) or mixed systemic and CNS targets (n = 20), 4 were consolidated by HCT-ASCT. After systemic relapse, the median progression-free survival and overall survival (OS) were 7 and 12 months, respectively. KPS > 70 and pure systemic relapses were significantly associated with higher OS. Extracerebral PCNSL relapses are rare, mainly extranodal, and frequently involve the testis, breast, and PNS. The prognosis was worse in mixed relapses. Early relapses raise the question of misdiagnosed occult extracerebral lymphoma at diagnostic workup that should systematically include a PET-CT. Paired tumour analysis at diagnosis/relapse would provide a better understanding of the underlying molecular mechanisms.
Collapse
Affiliation(s)
- J Dufour
- Hôpital Pitié-Salpêtrière, Service de Neurologie 2-Mazarin, APHP, Sorbonne Université, IHU, ICM, Paris, France
| | - S Choquet
- Hôpital Pitié-Salpêtrière, Service d'Hématologie clinique, Paris, France
| | - K Hoang-Xuan
- Hôpital Pitié-Salpêtrière, Service de Neurologie 2-Mazarin, APHP, Sorbonne Université, IHU, ICM, Paris, France
| | - A Schmitt
- Institut de Bergonie, Service d'Hématologie, Bordeaux, France
| | - G Ahle
- Hôpitaux civils de Colmar, Service de Neurologie, Colmar, France
| | - R Houot
- Hôpital Universitaire de Rennes, Service d'Hématologie, Rennes, France
| | - L Taillandier
- Hôpital Universitaire de Nancy, Service de Neurologie, Nancy, France
| | - R Gressin
- Hôpital Universitaire de Grenoble, Service d'Hématologie, Grenoble, France
| | - O Casasnovas
- Hôpital Universitaire de Dijon, Service d'hematologie clinique, Dijon, France
| | - J P Marolleau
- Hôpital Universitaire d'Amiens, Service d'Hematologie clinique, Amiens, France
| | - J Tamburini
- Hôpital Cochin, Service d'Hématologie, Paris, France
| | - C Serrier
- Centre Hospitalier de Perpignan, Service d'Hématologie, Perpignan, France
| | - E Perez
- Hôpital Universitaire de la Réunion, Service d'oncologie-hématologie, Paris, La Réunion, France
| | - J Paillassa
- Hôpital Universitaire d'Angers, Service d'Hématologie, Angers, France
| | - E Gyan
- Hôpital Universitaire de Tours, Service d'Hématologie, Tours, France
| | - A Chauchet
- Hôpital Universitaire de Besançon, Service d'Hématologie, Besançon, France
| | - R Ursu
- Hôpital Saint-Louis, Service de Neurologie à orientation oncologique, Paris, France
| | - A Kas
- Hôpital Pitié-Salpêtrière, Service de Médecine Nucléaire, Paris, France
| | - C Soussain
- Institut Curie, Service d'Hématologie, Saint-Cloud, France and INSERM U932, Institut Curie, PSL Research University, Paris, France
| | - C Houillier
- Hôpital Pitié-Salpêtrière, Service de Neurologie 2-Mazarin, APHP, Sorbonne Université, IHU, ICM, Paris, France.
| |
Collapse
|
76
|
Mutter JA, Alig SK, Esfahani MS, Lauer EM, Mitschke J, Kurtz DM, Kühn J, Bleul S, Olsen M, Liu CL, Jin MC, Macaulay CW, Neidert N, Volk T, Eisenblaetter M, Rauer S, Heiland DH, Finke J, Duyster J, Wehrle J, Prinz M, Illerhaus G, Reinacher PC, Schorb E, Diehn M, Alizadeh AA, Scherer F. Circulating Tumor DNA Profiling for Detection, Risk Stratification, and Classification of Brain Lymphomas. J Clin Oncol 2023; 41:1684-1694. [PMID: 36542815 PMCID: PMC10419411 DOI: 10.1200/jco.22.00826] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/26/2022] [Accepted: 11/08/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Clinical outcomes of patients with CNS lymphomas (CNSLs) are remarkably heterogeneous, yet identification of patients at high risk for treatment failure is challenging. Furthermore, CNSL diagnosis often remains unconfirmed because of contraindications for invasive stereotactic biopsies. Therefore, improved biomarkers are needed to better stratify patients into risk groups, predict treatment response, and noninvasively identify CNSL. PATIENTS AND METHODS We explored the value of circulating tumor DNA (ctDNA) for early outcome prediction, measurable residual disease monitoring, and surgery-free CNSL identification by applying ultrasensitive targeted next-generation sequencing to a total of 306 tumor, plasma, and CSF specimens from 136 patients with brain cancers, including 92 patients with CNSL. RESULTS Before therapy, ctDNA was detectable in 78% of plasma and 100% of CSF samples. Patients with positive ctDNA in pretreatment plasma had significantly shorter progression-free survival (PFS, P < .0001, log-rank test) and overall survival (OS, P = .0001, log-rank test). In multivariate analyses including established clinical and radiographic risk factors, pretreatment plasma ctDNA concentrations were independently prognostic of clinical outcomes (PFS HR, 1.4; 95% CI, 1.0 to 1.9; P = .03; OS HR, 1.6; 95% CI, 1.1 to 2.2; P = .006). Moreover, measurable residual disease detection by plasma ctDNA monitoring during treatment identified patients with particularly poor prognosis following curative-intent immunochemotherapy (PFS, P = .0002; OS, P = .004, log-rank test). Finally, we developed a proof-of-principle machine learning approach for biopsy-free CNSL identification from ctDNA, showing sensitivities of 59% (CSF) and 25% (plasma) with high positive predictive value. CONCLUSION We demonstrate robust and ultrasensitive detection of ctDNA at various disease milestones in CNSL. Our findings highlight the role of ctDNA as a noninvasive biomarker and its potential value for personalized risk stratification and treatment guidance in patients with CNSL. [Media: see text].
Collapse
Affiliation(s)
- Jurik A. Mutter
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- University of Freiburg, Faculty of Biology, Freiburg, Germany
| | - Stefan K. Alig
- Divisions of Oncology and Hematology, Department of Medicine, Stanford University, Stanford, CA
| | - Mohammad S. Esfahani
- Divisions of Oncology and Hematology, Department of Medicine, Stanford University, Stanford, CA
| | - Eliza M. Lauer
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jan Mitschke
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - David M. Kurtz
- Divisions of Oncology and Hematology, Department of Medicine, Stanford University, Stanford, CA
| | - Julia Kühn
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sabine Bleul
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mari Olsen
- Divisions of Oncology and Hematology, Department of Medicine, Stanford University, Stanford, CA
| | - Chih Long Liu
- Divisions of Oncology and Hematology, Department of Medicine, Stanford University, Stanford, CA
| | - Michael C. Jin
- Divisions of Oncology and Hematology, Department of Medicine, Stanford University, Stanford, CA
| | - Charles W. Macaulay
- Divisions of Oncology and Hematology, Department of Medicine, Stanford University, Stanford, CA
| | - Nicolas Neidert
- Department of Neurosurgery, Medical Center—University of Freiburg, Freiburg, Germany
- Berta-Ottenstein-Programme for Clinician Scientists Medical Center, University of Freiburg, Freiburg, Germany
| | - Timo Volk
- Department of Neurology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michel Eisenblaetter
- Department of Radiology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sebastian Rauer
- Department of Neurology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dieter H. Heiland
- Department of Neurosurgery, Medical Center—University of Freiburg, Freiburg, Germany
| | - Jürgen Finke
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Justus Duyster
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julius Wehrle
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Gerald Illerhaus
- Department of Hematology/Oncology and Palliative Care, Klinikum Stuttgart, Stuttgart, Germany
| | - Peter C. Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Fraunhofer Institute for Laser Technology (ILT), Aachen, Germany
| | - Elisabeth Schorb
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilian Diehn
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA
| | - Ash A. Alizadeh
- Divisions of Oncology and Hematology, Department of Medicine, Stanford University, Stanford, CA
| | - Florian Scherer
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) partner site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
77
|
Shimkus G, Nonaka T. Molecular classification and therapeutics in diffuse large B-cell lymphoma. Front Mol Biosci 2023; 10:1124360. [PMID: 36818048 PMCID: PMC9936827 DOI: 10.3389/fmolb.2023.1124360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) encompasses a wide variety of disease states that have to date been subgrouped and characterized based on immunohistochemical methods, which provide limited prognostic value to clinicians and no alteration in treatment regimen. The addition of rituximab to CHOP therapy was the last leap forward in terms of treatment, but regimens currently follow a standardized course when disease becomes refractory with no individualization based on genotype. Research groups are tentatively proposing new strategies for categorizing DLBCL based on genetic abnormalities that are frequently found together to better predict disease course following dysregulation of specific pathways and to deliver targeted treatment. Novel algorithms in combination with next-generation sequencing techniques have identified between 4 and 7 subgroups of DLBCL, depending on the research team, with potentially significant and actionable genetic alterations. Various drugs aimed at pathways including BCR signaling, NF-κB dysfunction, and epigenetic regulation have shown promise in their respective groups and may show initial utility as second or third line therapies to patients with recurrent DLBCL. Implementation of subgroups will allow collection of necessary data to determine which groups are significant, which treatments may be indicated, and will provide better insight to clinicians and patients on specific disease course.
Collapse
Affiliation(s)
- Gaelen Shimkus
- School of Medicine, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Taichiro Nonaka
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, United States,Feist-Weiller Cancer Center, Louisiana State University Health Shreveport, Shreveport, LA, United States,*Correspondence: Taichiro Nonaka,
| |
Collapse
|
78
|
Jin Q, Jiang H, Han Y, Li C, Zhang L, Zhang Y, Chai Y, Zeng P, Yue L, Wu C. Frequent Gene Mutations and Their Possible Roles in the Pathogenesis, Treatment and Prognosis of Primary Central Nervous System Lymphoma. World Neurosurg 2023; 170:99-106. [PMID: 36396049 DOI: 10.1016/j.wneu.2022.11.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022]
Abstract
Primary central nervous system lymphoma (PCNSL) is a rare extranodal non-Hodgkin lymphoma with poor prognosis. In recent years, the emergence of genetic subtypes of systematic diffuse large B-cell lymphoma has highlighted the importance of molecular genetics, but large-scale research on the molecular genetics of PCNSL is lacking. Herein, we summarize the frequent gene mutations and discuss the possible pathogenesis of PCNSL. Myeloid differentiation primary response gene 88 (MYD88) and CD79B mutations, which cause abnormal activation of noncanonical nuclear factor-κB, are prominent genetic abnormalities in PCNSL. They are considered to play a major role in the pathogenesis of PCNSL. Other genes, such as caspase recruitment domain family member 11 (CARD11), tumor necrosis factor alpha induced protein 3 (TNFAIP3), transducin (β)-like 1 X-linked receptor 1, cyclin dependent kinase inhibitor 2A, PR domain zinc finger protein 1, and proviral insertion in murine malignancies 1, are also frequently mutated. Notably, the pathogenesis of immune insufficiency-associated PCNSL is related to Epstein-Barr virus infection, and its progression may be affected by different signaling pathways. The different mutational patterns in different studies highlight the heterogeneity of PCNSL. However, existing research on the molecular genetics of PCNSL is still limited, and further research into PCNSL is required to clarify the genetic characteristics of PCNSL.
Collapse
Affiliation(s)
- Qiqi Jin
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Haoyun Jiang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Ye Han
- Department of Hematology, Xi'an Central Hospital, Xi'an, China
| | - Cuicui Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Litian Zhang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Yurong Zhang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Ye Chai
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Pengyun Zeng
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Lingling Yue
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Chongyang Wu
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
79
|
Zhang Y, LeWitt TM, Louissaint A, Guitart J, Zhou XA, Choi J. Disease-Defining Molecular Features of Primary Cutaneous B-Cell Lymphomas: Implications for Classification and Treatment. J Invest Dermatol 2023; 143:189-196. [PMID: 36163302 PMCID: PMC10260375 DOI: 10.1016/j.jid.2022.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/25/2022] [Accepted: 07/11/2022] [Indexed: 01/25/2023]
Abstract
Primary cutaneous B-cell lymphoma-primary cutaneous follicle center lymphoma; primary cutaneous marginal zone lymphoma; and primary cutaneous diffuse large B-cell, leg type-is a heterogeneous group with a variety of clinical and histological presentations. Until recently, the molecular bases of these disease subtypes have been unclear. We and others have identified the specific genetic characteristics that distinguish these subtypes from their respective systemic counterparts. These molecular features can improve diagnoses, determine the likelihood of concurrent or future systemic disease, and enable the rational design of novel clinical trials.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Ilinois, USA; Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Ilinois, USA
| | - Tessa M LeWitt
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Ilinois, USA
| | - Abner Louissaint
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Joan Guitart
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Ilinois, USA
| | - Xiaolong Alan Zhou
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Ilinois, USA
| | - Jaehyuk Choi
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Ilinois, USA; Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Ilinois, USA.
| |
Collapse
|
80
|
Takahara T, Nakamura S, Tsuzuki T, Satou A. The Immunology of DLBCL. Cancers (Basel) 2023; 15:835. [PMID: 36765793 PMCID: PMC9913124 DOI: 10.3390/cancers15030835] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is an aggressive malignancy and is the most common type of malignant lymphoid neoplasm. While some DLBCLs exhibit strong cell-autonomous survival and proliferation activity, others depend on interactions with non-malignant cells for their survival and proliferation. Recent next-generation sequencing studies have linked these interactions with the molecular classification of DLBCL. For example, germinal center B-cell-like DLBCL tends to show strong associations with follicular T cells and epigenetic regulation of immune recognition molecules, whereas activated B-cell-like DLBCL shows frequent genetic aberrations affecting the class I major histocompatibility complex. Single-cell technologies have also provided detailed information about cell-cell interactions and the cell composition of the microenvironment of DLBCL. Aging-related immunological deterioration, i.e., immunosenescence, also plays an important role in DLBCL pathogenesis, especially in Epstein-Barr virus-positive DLBCL. Moreover, DLBCL in "immune-privileged sites"-where multiple immune-modulating mechanisms exist-shows unique biological features, including frequent down-regulation of immune recognition molecules and an immune-tolerogenic tumor microenvironment. These advances in understanding the immunology of DLBCL may contribute to the development of novel therapies targeting immune systems.
Collapse
Affiliation(s)
- Taishi Takahara
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute 480-1195, Japan
| | - Shigeo Nakamura
- Department of Pathology and Laboratory Medicine, Nagoya University Hospital, Nagoya 466-8550, Japan
| | - Toyonori Tsuzuki
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute 480-1195, Japan
| | - Akira Satou
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute 480-1195, Japan
| |
Collapse
|
81
|
Davis J, Kimbrough EO, Alhaj Moustafa M, Jiang L, Gupta V, Parent E, Tun HW. Successful CNS-Centric Therapeutic Management and Genomic Profiling of Primary Cranial Vault Diffuse Large B-Cell Lymphoma. J Blood Med 2023; 14:49-55. [PMID: 36712581 PMCID: PMC9879025 DOI: 10.2147/jbm.s391094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/06/2023] [Indexed: 01/23/2023] Open
Abstract
Primary cranial vault lymphoma (PCVL) is a rare lymphoma involving the skull with or without extra- and intracranial extension. Most cases of PCVL are diffuse large B-cell lymphoma (DLBCL). We report a case of primary cranial vault diffuse large B-cell lymphoma (PCV-DLBCL) that was successfully treated with anthracycline-based chemoimmunotherapy (CIT) alternating with central nervous system (CNS)-directed CIT with high-dose methotrexate and high-dose cytarabine. CNS-centric therapy was given for suspected cerebral cortical involvement and presumed elevated risk of CNS recurrence. The patient has remained in complete remission for 4.25 years following treatment. We suggest that PCV-DLBCL is potentially curable with CNS-directed therapy. Additionally, we provide genomic profiling results indicating an indeterminate cell of origin and multiple genetic mutations which are not frequently seen in DLBCL.
Collapse
Affiliation(s)
- Jordan Davis
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Liuyan Jiang
- Department of Pathology, Mayo Clinic, Jacksonville, FL, USA
| | - Vivek Gupta
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Ephraim Parent
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Han W Tun
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, USA,Correspondence: Han W Tun, Division of Hematology and Oncology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA, Tel +1 904 953 7290, Fax +1 904 953 2315, Email
| |
Collapse
|
82
|
Severson EA, Haberberger J, Hemmerich A, Huang RSP, Edgerly C, Schiavone K, Najafian A, Hiemenz M, Lechpammer M, Vergilio JA, Lesser G, Strowd R, Elvin J, Ross JS, Hegde P, Alexander B, Singer S, Ramkissoon S. Genomic Profiling Reveals Differences in Primary Central Nervous System Lymphoma and Large B-Cell Lymphoma, With Subtyping Suggesting Sensitivity to BTK Inhibition. Oncologist 2023; 28:e26-e35. [PMID: 36342081 PMCID: PMC9847534 DOI: 10.1093/oncolo/oyac190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 07/19/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND B-cell primary central nervous system (CNS) lymphoma (PCL) is diffuse large B-cell lymphoma (DLBCL) confined to the CNS. Less than 50% of patients with PCL achieve complete remission with current therapies. We describe the findings from comprehensive genomic profiling (CGP) of a cohort of 69 patients with PCL, 36 cases of secondary CNS lymphoma (SCL), and 969 cases of DLBCL to highlight their differences and characterize the PCL cohort. In addition, we highlight the differences in frequency of germinal center B-cell like (GCB) and non-GCB subtypes and molecular subtypes, particularly MCD and EZH subtypes, between PCL and DLBCL. MATERIALS AND METHODS Sixty-nine cases of B-cell PCL, 36 cases of secondary CNS lymphoma (SCL), and 969 cases of DLBCL were evaluated by CGP of 405 genes via DNAseq and 265 genes via RNAseq for fusions (FoundationOne Heme). Tumor mutational burden (TMB) was calculated from 1.23 Mb of sequenced DNA. RESULTS Genomic alterations with significant differences between PCL and DLBCL included MYD88, ETV6, PIM1, PRDM1, CXCR4, TP53, and CREBBP, while only MYD88 was significantly different between SCL and DLBCL. PCL cases were significantly enriched for the MCD molecular subtypes, which have an excellent response to BTKi. We report a patient with a durable complete response to BTKi consistent with their genomic profile. EBV status, CD274 amplification, and TMB status suggest that 38% of PCL patients may benefit from ICPI; however further study is warranted. CONCLUSION CGP of PCLs reveals biomarkers, genomic alterations, and molecular classifications predictive of BTKi efficacy and potential ICPI efficacy. Given the limitations of standard of care for PCL, CGP is critical to identify potential therapeutic approaches for patients in this rare form of lymphoma.
Collapse
Affiliation(s)
- Eric A Severson
- Corresponding author: Eric Severson, MD, PhD, 7010 Kit Creek Road, Morrisville, NC 27560, USA. Tel: +1 919 748 5886; E-mail:
| | | | | | | | | | | | | | | | | | | | - Glenn Lesser
- Wake Forest Baptist Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Roy Strowd
- Wake Forest Baptist Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | | | | | | | - Samuel Singer
- Hackensack University Medical Center, Hackensack, NJ, USA
| | - Shakti Ramkissoon
- Foundation Medicine, Morrisville, NC, USA,Wake Forest Baptist Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
83
|
Venturutti L, Rivas MA, Pelzer BW, Flümann R, Hansen J, Karagiannidis I, Xia M, McNally DR, Isshiki Y, Lytle A, Teater M, Chin CR, Meydan C, Knittel G, Ricker E, Mason CE, Ye X, Pan-Hammarström Q, Steidl C, Scott DW, Reinhardt HC, Pernis AB, Béguelin W, Melnick AM. An Aged/Autoimmune B-cell Program Defines the Early Transformation of Extranodal Lymphomas. Cancer Discov 2023; 13:216-243. [PMID: 36264161 PMCID: PMC9839622 DOI: 10.1158/2159-8290.cd-22-0561] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/26/2022] [Accepted: 10/17/2022] [Indexed: 01/17/2023]
Abstract
A third of patients with diffuse large B-cell lymphoma (DLBCL) present with extranodal dissemination, which is associated with inferior clinical outcomes. MYD88L265P is a hallmark extranodal DLBCL mutation that supports lymphoma proliferation. Yet extranodal lymphomagenesis and the role of MYD88L265P in transformation remain mostly unknown. Here, we show that B cells expressing Myd88L252P (MYD88L265P murine equivalent) activate, proliferate, and differentiate with minimal T-cell costimulation. Additionally, Myd88L252P skewed B cells toward memory fate. Unexpectedly, the transcriptional and phenotypic profiles of B cells expressing Myd88L252P, or other extranodal lymphoma founder mutations, resembled those of CD11c+T-BET+ aged/autoimmune memory B cells (AiBC). AiBC-like cells progressively accumulated in animals prone to develop lymphomas, and ablation of T-BET, the AiBC master regulator, stripped mouse and human mutant B cells of their competitive fitness. By identifying a phenotypically defined prospective lymphoma precursor population and its dependencies, our findings pave the way for the early detection of premalignant states and targeted prophylactic interventions in high-risk patients. SIGNIFICANCE Extranodal lymphomas feature a very poor prognosis. The identification of phenotypically distinguishable prospective precursor cells represents a milestone in the pursuit of earlier diagnosis, patient stratification, and prophylactic interventions. Conceptually, we found that extranodal lymphomas and autoimmune disorders harness overlapping pathogenic trajectories, suggesting these B-cell disorders develop and evolve within a spectrum. See related commentary by Leveille et al. (Blood Cancer Discov 2023;4:8-11). This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Leandro Venturutti
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC V5Z1L3, Canada., Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z1L3, Canada., Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z7, Canada.,Corresponding authors: Leandro Venturutti, PhD. Centre for Lymphoid Cancer and Terry Fox Laboratory, BC Cancer Research Institute, 675 W 10th Ave, Vancouver, BC, V5Z 1L3, Canada. Phone: 604-675-8000; Fax: 604-877-0712; , Ari M. Melnick, MD. Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, 413 E 69th St, New York, NY, 10021, USA. Phone: 646-962-6725; Fax: 646-962-0576;
| | - Martin A. Rivas
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Benedikt W. Pelzer
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA., Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf (MSSO ABCD), Faculty of Medicine and University Hospital of Cologne, Cologne D-50937, Germany
| | - Ruth Flümann
- Department I of Internal Medicine, University Hospital Cologne, Cologne 50931, Germany., Max-Planck-Institute for Biology of Aging, Cologne 50931, Germany
| | - Julia Hansen
- Department I of Internal Medicine, University Hospital Cologne, Cologne 50931, Germany., Max-Planck-Institute for Biology of Aging, Cologne 50931, Germany
| | - Ioannis Karagiannidis
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Min Xia
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Dylan R. McNally
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Yusuke Isshiki
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Andrew Lytle
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC V5Z1L3, Canada
| | - Matt Teater
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Christopher R. Chin
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA., Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA., The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine and the WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA., The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine and the WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Gero Knittel
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center, University Hospital of Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Edd Ricker
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Christopher E. Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA., The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine and the WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Xiaofei Ye
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Stockholm, Sweden
| | - Qiang Pan-Hammarström
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Stockholm, Sweden
| | - Christian Steidl
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC V5Z1L3, Canada., Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z7, Canada
| | - David W. Scott
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC V5Z1L3, Canada., Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z7, Canada., Department of Medicine, University of British Columbia, Vancouver, BC V6T1Z7, Canada
| | - Hans Christian Reinhardt
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center, University Hospital of Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Alessandra B. Pernis
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Wendy Béguelin
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ari M. Melnick
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA.,Corresponding authors: Leandro Venturutti, PhD. Centre for Lymphoid Cancer and Terry Fox Laboratory, BC Cancer Research Institute, 675 W 10th Ave, Vancouver, BC, V5Z 1L3, Canada. Phone: 604-675-8000; Fax: 604-877-0712; , Ari M. Melnick, MD. Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, 413 E 69th St, New York, NY, 10021, USA. Phone: 646-962-6725; Fax: 646-962-0576;
| |
Collapse
|
84
|
Miyao K, Yokota H, Sakemura RL. Is CD19-directed chimeric antigen receptor T cell therapy a smart strategy to combat central nervous system lymphoma? Front Oncol 2023; 12:1082235. [PMID: 36686821 PMCID: PMC9850100 DOI: 10.3389/fonc.2022.1082235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/02/2022] [Indexed: 01/07/2023] Open
Abstract
Primary central nervous system lymphoma (PCNSL) is a rare form and aggressive type of diffuse large B-cell lymphoma (DLBCL) that occurs in both immunocompetent and immunocompromised adults. While adding rituximab to chemotherapeutic regimens resulted in dramatic improvement in both progression-free survival and overall survival in patients with non-central nervous system (CNS) DLBCL, the outcomes of PCNSL are generally poor due to the immune-privileged tumor microenvironment or suboptimal delivery of systemic agents into tumor tissues. Therefore, more effective therapy for PCNSL generally requires systemic therapy with sufficient CNS penetration, including high-dose intravenous methotrexate with rituximab or high-dose chemotherapy followed by autologous stem cell transplantation. However, overall survival is usually inferior in comparison to non-CNS lymphomas, and treatment options are limited for elderly patients or patients with relapsed/refractory disease. Chimeric antigen receptor T (CAR-T) cell therapy has emerged as a cutting-edge cancer therapy, which led to recent FDA approvals for patients with B-cell malignancies and multiple myeloma. Although CAR-T cell therapy in patients with PCNSL demonstrated promising results without significant toxicities in some small cohorts, most cases of PCNSL are excluded from the pivotal CAR-T cell trials due to the concerns of neurotoxicity after CAR-T cell infusion. In this review, we will provide an overview of PCNSL and highlight current approaches, resistance mechanisms, and future perspectives of CAR-T cell therapy in patients with PCNSL.
Collapse
Affiliation(s)
- Kotaro Miyao
- Department of Hematology and Oncology, Anjo Kosei Hospital, Anjo, Japan
| | - Hirofumi Yokota
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - R. Leo Sakemura
- T Cell Engineering, Mayo Clinic, Rochester, MN, United States,Division of Hematology, Mayo Clinic, Rochester, MN, United States,*Correspondence: R. Leo Sakemura,
| |
Collapse
|
85
|
Li S, Wang C, Chen J, Lan Y, Zhang W, Kang Z, Zheng Y, Zhang R, Yu J, Li W. Signaling pathways in brain tumors and therapeutic interventions. Signal Transduct Target Ther 2023; 8:8. [PMID: 36596785 PMCID: PMC9810702 DOI: 10.1038/s41392-022-01260-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 01/05/2023] Open
Abstract
Brain tumors, although rare, contribute to distinct mortality and morbidity at all ages. Although there are few therapeutic options for brain tumors, enhanced biological understanding and unexampled innovations in targeted therapies and immunotherapies have considerably improved patients' prognoses. Nonetheless, the reduced response rates and unavoidable drug resistance of currently available treatment approaches have become a barrier to further improvement in brain tumor (glioma, meningioma, CNS germ cell tumors, and CNS lymphoma) treatment. Previous literature data revealed that several different signaling pathways are dysregulated in brain tumor. Importantly, a better understanding of targeting signaling pathways that influences malignant behavior of brain tumor cells might open the way for the development of novel targeted therapies. Thus, there is an urgent need for a more comprehensive understanding of the pathogenesis of these brain tumors, which might result in greater progress in therapeutic approaches. This paper began with a brief description of the epidemiology, incidence, risk factors, as well as survival of brain tumors. Next, the major signaling pathways underlying these brain tumors' pathogenesis and current progress in therapies, including clinical trials, targeted therapies, immunotherapies, and system therapies, have been systemically reviewed and discussed. Finally, future perspective and challenges of development of novel therapeutic strategies in brain tumor were emphasized.
Collapse
Affiliation(s)
- Shenglan Li
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Can Wang
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jinyi Chen
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yanjie Lan
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Weichunbai Zhang
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhuang Kang
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yi Zheng
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Rong Zhang
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianyu Yu
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenbin Li
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
86
|
Mo SS, Cleveland J, Rubenstein JL. Primary CNS lymphoma: update on molecular pathogenesis and therapy. Leuk Lymphoma 2023; 64:57-65. [PMID: 36286546 DOI: 10.1080/10428194.2022.2133541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Primary central nervous system lymphoma (PCNSL) is a rare and aggressive form of extra-nodal non-Hodgkin lymphoma that as a brain tumor poses a unique set of challenges in diagnosis and management. With the advent of next-generation sequencing, we review updates in the understanding of its molecular and genomic pathogenesis. We also highlight key issues in management, with a focus on emerging technologies and new biological therapies including monoclonal antibodies, IMiDs, BTK inhibitors, PD-1 inhibitors, and CAR-T therapy. Integration of these approaches will likely enhance induction and consolidation strategies to suppress NF-κB activation and the anti-tumor immune response, while minimizing the often noxious effects of genotoxic approaches.
Collapse
Affiliation(s)
- Shirley S Mo
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Joseph Cleveland
- Department of Medicine, University of California, San Francisco, CA, USA
| | - James L Rubenstein
- Department of Medicine, University of California, San Francisco, CA, USA.,Hematology/Oncology, University of California, San Francisco, CA, USA.,Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| |
Collapse
|
87
|
Song JY, Dirnhofer S, Piris MA, Quintanilla-Martínez L, Pileri S, Campo E. Diffuse large B-cell lymphomas, not otherwise specified, and emerging entities. Virchows Arch 2023; 482:179-192. [PMID: 36459219 DOI: 10.1007/s00428-022-03466-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is an aggressive and heterogenous group of diseases and the most common subtype of non-Hodgkin lymphoma. In the past decade, there has been an explosion in molecular profiling that has helped to identify subgroups and shared oncogenic driving mechanisms. Since the 2017 World Health Organization (WHO) classification, additional studies investigating these genomic abnormalities and phenotypic findings have been reported. Here we review these findings in DLBCL and address the proposed changes by the 2022 International Consensus Classification.
Collapse
Affiliation(s)
- Joo Y Song
- Department of Pathology, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA, 91010, USA.
| | - Stefan Dirnhofer
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Miguel A Piris
- Servicio de Anatomia Patologica, Fundacion Jimenez Diaz, CIBERONC, Madrid, Spain
| | - Leticia Quintanilla-Martínez
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT, Image-Guided and Functionally Instructed Tumor Therapy, Tübingen, Germany
| | - Stefano Pileri
- Division of Hematopathology, European Institute of Oncology IRCCS, Milan, Italy
| | - Elias Campo
- Hematopathology Unit, Hospital Clinic of Barcelona, Institute for Biomedical Research August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| |
Collapse
|
88
|
Yokogami K, Azuma M, Takeshima H, Hirai T. Lymphomas of Central Nervous System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1405:527-543. [PMID: 37452952 DOI: 10.1007/978-3-031-23705-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Central nervous system (CNS) lymphoma consists of primary central nervous system lymphoma (PCNSL) and secondary CNS involvement by systemic lymphoma. This chapter focuses on the former. PCNSL is a relative rare disease, accounting for approximately 2.4-4.9% of all primary CNS tumors. It is an extra-nodal variant of non-Hodgkin's lymphoma (NHL), confined to the brain, leptomeninges, spinal cord, and eyes, with no systemic involvement. Recently, elderly patients (≥ 60 years) are increasing. Histologically, B cell blasts, which originate from late germinal center exit B cell, are growing and homing in CNS. Immunohistochemically, these cells are positive for PAX5, CD19, CD20, CD22, and CD79a. PCNSL shows relatively characteristic appearances on CT, MR imaging, and PET. Treatment first line of PCNSL is HD-MTX-based chemotherapy with or without rituximab and irradiation. Severe side-effect of this treatment is delayed onset neurotoxicity, which cause of cognitive impairment. Therefore, combined chemotherapy alone or chemotherapy with reduced-dose irradiation is more recommended for elderly patients. There is no established standard care for relapse of the PCNSLs. Temsirolimus, lenalidomide, temozolomide, and Bruton's tyrosine kinase (BTK) inhibitor ibrutinib are candidates for refractory patients. The prognosis of PCNSL has significantly improved over the last decades (median OS: 26 months, 5-year survival: 31%). Younger than 60 age and WHO performance status less than < or = 1 are associated with a significantly better overall survival.
Collapse
Affiliation(s)
- Kiyotaka Yokogami
- Departments of Neurosurgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.
| | - Minako Azuma
- Departments of Radiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hideo Takeshima
- Departments of Neurosurgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Toshinori Hirai
- Departments of Radiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
89
|
Hoskins EL, Samorodnitsky E, Wing MR, Reeser JW, Hopkins JF, Murugesan K, Kuang Z, Vella R, Stein L, Risch Z, Yu L, Adebola S, Paruchuri A, Carpten J, Chahoud J, Edge S, Kolesar J, McCarter M, Nepple KG, Reilley M, Scaife C, Tripathi A, Single N, Huang RS, Albacker LA, Roychowdhury S. Pan-cancer Landscape of Programmed Death Ligand-1 and Programmed Death Ligand-2 Structural Variations. JCO Precis Oncol 2023; 7:e2200300. [PMID: 36623238 PMCID: PMC9928630 DOI: 10.1200/po.22.00300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/04/2022] [Accepted: 11/02/2022] [Indexed: 01/11/2023] Open
Abstract
PURPOSE Programmed cell death protein-1 (PD-1) receptor and ligand interactions are the target of immunotherapies for more than 20 cancer types. Biomarkers that predict response to immunotherapy are microsatellite instability, tumor mutational burden, and programmed death ligand-1 (PD-L1) immunohistochemistry. Structural variations (SVs) in PD-L1 (CD274) and PD-L2 (PDCD1LG2) have been observed in cancer, but the comprehensive landscape is unknown. Here, we describe the genomic landscape of PD-L1 and PD-L2 SVs, their potential impact on the tumor microenvironment, and evidence that patients with these alterations can benefit from immunotherapy. METHODS We analyzed sequencing data from cancer cases with PD-L1 and PD-L2 SVs across 22 publications and four data sets, including Foundation Medicine Inc, The Cancer Genome Atlas, International Cancer Genome Consortium, and the Oncology Research Information Exchange Network. We leveraged RNA sequencing to evaluate immune signatures. We curated literature reporting clinical outcomes of patients harboring PD-L1 or PD-L2 SVs. RESULTS Using data sets encompassing 300,000 tumors, we curated 486 cases with SVs in PD-L1 and PD-L2 and observed consistent breakpoint patterns, or hotspots. Leveraging The Cancer Genome Atlas, we observed significant upregulation in PD-L1 expression and signatures for interferon signaling, macrophages, T cells, and immune cell proliferation in samples harboring PD-L1 or PD-L2 SVs. Retrospective review of 12 studies that identified patients with SVs in PD-L1 or PD-L2 revealed > 50% (52/71) response rate to PD-1 immunotherapy with durable responses. CONCLUSION Our findings show that the 3'-UTR is frequently affected, and that SVs are associated with increased expression of ligands and immune signatures. Retrospective evidence from curated studies suggests this genomic alteration could help identify candidates for PD-1/PD-L1 immunotherapy. We expect these findings will better define PD-L1 and PD-L2 SVs in cancer and lend support for prospective clinical trials to target these alterations.
Collapse
Affiliation(s)
- Emily L. Hoskins
- Comprehensive Cancer Center and James Cancer Hospital, The Ohio State University, Columbus, OH
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH
| | - Eric Samorodnitsky
- Comprehensive Cancer Center and James Cancer Hospital, The Ohio State University, Columbus, OH
| | - Michele R. Wing
- Comprehensive Cancer Center and James Cancer Hospital, The Ohio State University, Columbus, OH
| | - Julie W. Reeser
- Comprehensive Cancer Center and James Cancer Hospital, The Ohio State University, Columbus, OH
| | | | | | | | - Raven Vella
- Comprehensive Cancer Center and James Cancer Hospital, The Ohio State University, Columbus, OH
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH
| | - Leah Stein
- Comprehensive Cancer Center and James Cancer Hospital, The Ohio State University, Columbus, OH
| | - Zachary Risch
- Comprehensive Cancer Center and James Cancer Hospital, The Ohio State University, Columbus, OH
| | - Lianbo Yu
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH
| | - Serifat Adebola
- Comprehensive Cancer Center and James Cancer Hospital, The Ohio State University, Columbus, OH
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH
| | - Anoosha Paruchuri
- Comprehensive Cancer Center and James Cancer Hospital, The Ohio State University, Columbus, OH
| | - John Carpten
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Jad Chahoud
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Stephen Edge
- Roswell Park Cancer Institute, University at Buffalo, Buffalo, NY
| | - Jill Kolesar
- University of Kentucky College of Pharmacy, Lexington, KY
| | - Martin McCarter
- Division of Surgical Oncology, Department of Surgery, University of Colorado School of Medicine, Aurora, CO
| | - Kenneth G. Nepple
- Department of Urology, University of Iowa Hospitals and Clinics, Iowa City, IA
| | - Matthew Reilley
- Emily Couric Clinical Cancer Center, University of Virginia, Charlottesville, VA
| | - Courtney Scaife
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT
| | | | - Nancy Single
- Comprehensive Cancer Center and James Cancer Hospital, The Ohio State University, Columbus, OH
| | | | | | - Sameek Roychowdhury
- Comprehensive Cancer Center and James Cancer Hospital, The Ohio State University, Columbus, OH
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| |
Collapse
|
90
|
Cutmore NH, Krupka JA, Hodson DJ. Genetic Profiling in Diffuse Large B-Cell Lymphoma: The Promise and the Challenge. Mod Pathol 2023; 36:100007. [PMID: 36788062 PMCID: PMC7614242 DOI: 10.1016/j.modpat.2022.100007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/08/2022] [Accepted: 09/19/2022] [Indexed: 01/19/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma. Over the previous 2 decades, tremendous progress has been made in our understanding of the molecular pathogenesis of DLBCL. However, this biological understanding has not yet been translated into improved first-line therapy. A major barrier to the introduction of molecularly targeted therapy in DLBCL is the considerable molecular heterogeneity of this disease. Recent studies have tried to rationalize this heterogeneity by proposing new genetic subtypes of DLBCL. Although remarkable consensus exists over the broad nature of these genetic subtypes, important questions remain over precisely how, or even why, genetic subtyping might be incorporated into diagnostic laboratories. In this review, we compare the findings of the major genetic subtyping studies and discuss the implications this may have for diagnostic pathology services and the management of DLBCL.
Collapse
Affiliation(s)
- Natasha H Cutmore
- Wellcome-MRC Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Joanna A Krupka
- Wellcome-MRC Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Daniel J Hodson
- Wellcome-MRC Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
91
|
Menguy S, Prochazkova-Carlotti M, Azzi-Martin L, Ferté T, Bresson-Bepoldin L, Rey C, Vergier B, Merlio JP, Beylot-Barry M, Pham-Ledard A. Proliferative Tumor-Infiltrating Lymphocytes' Abundance within the Microenvironment Impacts Clinical Outcome in Cutaneous B-Cell Lymphomas. J Invest Dermatol 2023; 143:124-133.e3. [PMID: 35970476 DOI: 10.1016/j.jid.2022.06.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 05/29/2022] [Accepted: 06/15/2022] [Indexed: 10/15/2022]
Abstract
Primary cutaneous large B-cell lymphoma, leg-type (PCLBCL-LT) is the most aggressive primary cutaneous B-cell lymphoma (PCBCL). Tumor microenvironment has a crucial role in tumor development, and tumor-infiltrating lymphocytes (TILs) can be targeted by immunotherapies. We characterized TILs in 20 PCBCLs to identify the tumor microenvironment features associated with clinical outcomes. We developed a seven‒multiplex immunofluorescence panel using Opal staining and image analysis using HALO software. In PCLBCL-LT, TILs were sparsely intermingled within tumor infiltrate in contrast to those in indolent PCBCL where TILs were scattered around tumor nodule edges with variable tumor infiltration. In PCLBCL-LT, TILs were composed of CD8 and CD4, whereas CD4 was predominant in indolent PCBCL. Proliferative TILs (CD3+Ki-67+ cells) were more abundant in PCLBCL-LT (P = 0.0036) than in indolent PCBCL. In PCLBCL-LT, proliferative TILs' abundance tended to be associated with better progression-free survival. These data were confirmed in a second independent cohort of 23 cases showing that proliferative TILs were more abundant in PCLBCL-LT (P = 0.0205) and that in PCLBCL-LT, high CD3+Ki-67+ cell density was associated with better progression-free survival (P = 0.002). These distinct TILs composition and distribution among PCBCL suggest that proliferative T lymphocytes represent a good prognostic factor in PCLBCL-LT and that stimulating their functions may represent a therapeutic approach.
Collapse
Affiliation(s)
- Sarah Menguy
- INSERM U1312, Bordeaux Institute of Oncology, Translational Research on Oncodermatology and Rare Skin Diseases, Bordeaux University, Bordeaux, France; Pathology Department, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Martina Prochazkova-Carlotti
- INSERM U1312, Bordeaux Institute of Oncology, Translational Research on Oncodermatology and Rare Skin Diseases, Bordeaux University, Bordeaux, France
| | - Lamia Azzi-Martin
- INSERM U1312, Bordeaux Institute of Oncology, Translational Research on Oncodermatology and Rare Skin Diseases, Bordeaux University, Bordeaux, France
| | - Thomas Ferté
- Department of Public Health, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Laurence Bresson-Bepoldin
- INSERM U1312, Bordeaux Institute of Oncology, Translational Research on Oncodermatology and Rare Skin Diseases, Bordeaux University, Bordeaux, France
| | | | - Béatrice Vergier
- INSERM U1312, Bordeaux Institute of Oncology, Translational Research on Oncodermatology and Rare Skin Diseases, Bordeaux University, Bordeaux, France; Pathology Department, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Jean-Philippe Merlio
- INSERM U1312, Bordeaux Institute of Oncology, Translational Research on Oncodermatology and Rare Skin Diseases, Bordeaux University, Bordeaux, France; Tumor Biology and Tumor Bank Department, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Marie Beylot-Barry
- INSERM U1312, Bordeaux Institute of Oncology, Translational Research on Oncodermatology and Rare Skin Diseases, Bordeaux University, Bordeaux, France; Dermatology Department, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Anne Pham-Ledard
- INSERM U1312, Bordeaux Institute of Oncology, Translational Research on Oncodermatology and Rare Skin Diseases, Bordeaux University, Bordeaux, France; Dermatology Department, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France.
| |
Collapse
|
92
|
Ng WL, Ansell SM, Mondello P. Insights into the tumor microenvironment of B cell lymphoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:362. [PMID: 36578079 PMCID: PMC9798587 DOI: 10.1186/s13046-022-02579-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/20/2022] [Indexed: 12/30/2022]
Abstract
The standard therapies in lymphoma have predominantly focused on targeting tumor cells with less of a focus on the tumor microenvironment (TME), which plays a critical role in favoring tumor growth and survival. Such an approach may result in increasingly refractory disease with progressively reduced responses to subsequent treatments. To overcome this hurdle, targeting the TME has emerged as a new therapeutic strategy. The TME consists of T and B lymphocytes, tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), cancer-associated fibroblasts (CAFs), and other components. Understanding the TME can lead to a comprehensive approach to managing lymphoma, resulting in therapeutic strategies that target not only cancer cells, but also the supportive environment and thereby ultimately improve survival of lymphoma patients. Here, we review the normal function of different components of the TME, the impact of their aberrant behavior in B cell lymphoma and the current TME-direct therapeutic avenues.
Collapse
Affiliation(s)
- Wern Lynn Ng
- grid.66875.3a0000 0004 0459 167XDivision of Hematology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905 USA
| | - Stephen M. Ansell
- grid.66875.3a0000 0004 0459 167XDivision of Hematology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905 USA
| | - Patrizia Mondello
- grid.66875.3a0000 0004 0459 167XDivision of Hematology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905 USA
| |
Collapse
|
93
|
Fokina ES, Dyakonov DA, Dokshina IA, Rosin VA. Intravascular large B-cell lymphoma with isolated bone marrow involvement. RUSSIAN JOURNAL OF HEMATOLOGY AND TRANSFUSIOLOGY 2022. [DOI: 10.35754/0234-5730-2022-67-4-579-585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Introduction. Intravascular large B-cell lymphoma is a rare variant of large B-cell, highly invasive extranodal tumors of the lymphatic system. The pathogenesis of the disease lies in the ability of tumor cells to penetrate into small vessels and capillaries of various organs. The clinical presentation is atypical for diffuse large B-cell lymphoma. In the relevant literature, information on the diagnosis and treatment of this pathology is extremely rare, therefore each publication makes a significant contribution to expanding the horizons of hematologists and morphologists.Aim – to present a case of diagnosing intravascular B-cell lymphoma.Main findings. A clinical case of a 78-year-old patient who fell ill acutely is presented. At the onset of the disease, febrile fever was noted. In the general blood test: hemoglobin – 104 g/L; erythrocytes – 3.0 × 1012/L; ESR – 24 mm/h; platelets – 112 × 109/L, leukocytes – 4.9 × 109/L, 4 % of cells with lymphoblast morphology were found in the leukocyte formula. Blood serum tests revealed: an increase in uric acid concentrations – up to 639 μmol/L, LDH – up to 1885 U/L, beta-2-microglobulin – up to 8.9 mmol/L, C-reactive protein – up to 0.6 g/L, a decrease in the concentration of total protein – up to 45 g/L, an increase in the concentration of aspartate aminotransferase – up to 48 units/L at normal concentrations of bilirubin and alanine aminotransferase.The histological and immunohistochemical picture, according to the study of bone biopsy, most corresponded to bone marrow damage by intravascular large B-cell lymphoma. Immunophenotyping was carried out – 15.7 % of blast cells with immunophenotype CD19+HLA/DR+CD24+CD37+CD20+CD10+IgM+ were detected. Cytogenetic studies revealed no karyotype abnormalities. The result of fluorescence in situ hybridization of the IGH locus (14q32) was normal. Based on the data obtained, the final clinical diagnosis was established: diffuse large B-cell lymphoma, stage IVB, intravascular variant with bone marrow involvement, aggressive course. The patient was prescribed the first line of therapy according to the R-CHOP scheme (rituximab, cyclophosphamide, vincristine, prednisolone). In the control study of the bone marrow, after the first course of therapy, the number of lymphoid elements was 3.6 %, laboratory parameters returned to normal.
Collapse
Affiliation(s)
- E. S. Fokina
- Kirov Research Institute of Hematology and Blood Transfusion under the Federal Medical Biological Agency
| | - D. A. Dyakonov
- Kirov Research Institute of Hematology and Blood Transfusion under the Federal Medical Biological Agency
| | - I. A. Dokshina
- Kirov Research Institute of Hematology and Blood Transfusion under the Federal Medical Biological Agency
| | - V. A. Rosin
- Kirov Research Institute of Hematology and Blood Transfusion under the Federal Medical Biological Agency
| |
Collapse
|
94
|
Cheng C, Yao C, Huang P, Yu C, Fang W, Chuang W, Wu S, Lin Y, Hung Y, Tsai C, Yu S, Chou W, Tien H. Cerebrospinal fluid soluble programmed death‐ligand 1 is a useful prognostic biomarker in primary central nervous system lymphoma. Br J Haematol 2022; 201:75-85. [PMID: 36480431 DOI: 10.1111/bjh.18598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/13/2022] [Accepted: 11/27/2022] [Indexed: 12/13/2022]
Abstract
The increased expression of programmed death-ligands 1 and 2 (PD-L1 and PD-L2, respectively) on tumour cells contributes to immune evasion, suggesting that these proteins are attractive therapeutic targets. This study aimed to evaluate the validity of cerebrospinal fluid (CSF) soluble PD-L1 (sPD-L1) and soluble PD-L2 (sPD-L2) as biomarkers for primary central nervous system lymphoma (PCNSL). We determined the CSF concentrations of sPD-L1 and sPD-L2 in 46 patients with PCNSL using enzyme-linked immunosorbent assays (ELISAs). A control group comprised 153 patients with other brain tumours, inflammatory/infectious status, or neurodegenerative diseases. Only CSF sPD-L1 levels were significantly higher in patients with PCNSL relative to the controls. CSF sPD-L1 also exhibited superior overall discrimination performance compared to CSF sPD-L2 in diagnosing PCNSL. Compared with patients with PCNSL with low CSF sPD-L1 levels, more patients with high levels had high serum lactate dehydrogenase levels, leptomeningeal involvement, and deep-brain involvement. Furthermore, CSF sPD-L1 could predict poor survival in PCNSL but CSF sPD-L2 could not. Intriguingly, CSF sPD-L1 levels were correlated with disease status and their dynamic changes post treatment could predict time to relapse. In conclusion, this study identified CSF sPD-L1 as a promising prognostic biomarker, indicating a therapeutic potential of PD-L1 blockade in PCNSL.
Collapse
Affiliation(s)
- Chieh‐Lung Cheng
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, College of Medicine National Taiwan University Taipei Taiwan
| | - Chi‐Yuan Yao
- Department of Laboratory Medicine, National Taiwan University Hospital, College of Medicine National Taiwan University Taipei Taiwan
| | - Po‐Hao Huang
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, College of Medicine National Taiwan University Taipei Taiwan
| | - Chih‐Wei Yu
- Department of Radiology and Medical Imaging, National Taiwan University Hospital, College of Medicine National Taiwan University Taipei Taiwan
| | - Wei‐Quan Fang
- Division of New Drug Center for Drug Evaluation Taipei Taiwan
| | - Wen‐Hui Chuang
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, College of Medicine National Taiwan University Taipei Taiwan
| | - Shang‐Ju Wu
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, College of Medicine National Taiwan University Taipei Taiwan
| | - Yu‐Jen Lin
- Department of Hematological Oncology National Taiwan University Cancer Center Taipei Taiwan
| | - Yu‐Chin Hung
- Division of Hematology and Oncology, Department of Internal Medicine National Taiwan University Hospital Yunlin Taiwan
| | - Cheng‐Hong Tsai
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, College of Medicine National Taiwan University Taipei Taiwan
| | - Shan‐Chi Yu
- Department of Pathology, National Taiwan University Hospital, College of Medicine National Taiwan University Taipei Taiwan
| | - Wen‐Chien Chou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, College of Medicine National Taiwan University Taipei Taiwan
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, College of Medicine National Taiwan University Taipei Taiwan
| | - Hwei‐Fang Tien
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, College of Medicine National Taiwan University Taipei Taiwan
| |
Collapse
|
95
|
Hernández-Verdin I, Morales-Martínez A, Hoang-Xuan K, Alentorn A. Primary central nervous system lymphoma: advances in its pathogenesis, molecular markers and targeted therapies. Curr Opin Neurol 2022; 35:779-786. [PMID: 36367044 DOI: 10.1097/wco.0000000000001115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE OF REVIEW Primary central nervous system lymphoma (PCNSL) is a rare subtype of diffuse large B-cell lymphoma (DLBCL) located in the CNS with a less favorable prognosis. Recent information addressing the disease molecular heterogeneity is paving the way for tailored treatment strategies. This article reviews current work on the pathogenesis of the disease, potential biomarkers, and treatments. RECENT FINDINGS Previous molecular classifications of PCNSL, built on DLBCL heterogeneity, did not properly address its intrinsic variability. Recent evidence has shown the existence of four different molecular PCNSL subtypes with associated multiomic characteristics, including prognostic relevance. Several studies have identified the tumor microenvironment (TME) as a driving prognostic factor in PCNSL. Therapy efforts continue mainly into targeting either the NF-κβ (nuclear factor kappa-light-chain enhancer of activated B cells) pathway or modulating the TME through immunomodulatory drugs (lenalidomide) or immunotherapy (antiprogrammed cell death 1/programmed cell death 1 ligand 1). SUMMARY Despite the increasing understanding of PCNSL pathogenesis with recent studies, future efforts are still needed to yield diagnostic biomarkers to detect either PCNSL or its molecular subtypes and hence ease routine clinical use.
Collapse
Affiliation(s)
| | - Andrea Morales-Martínez
- Department of Neurology-2, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, Paris, France
| | - Khê Hoang-Xuan
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS
- Department of Neurology-2, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, Paris, France
| | - Agustí Alentorn
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS
- Department of Neurology-2, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, Paris, France
| |
Collapse
|
96
|
Ohno H, Maekawa F, Nakagawa M, Chagi Y, Nakagawa M, Kishimori C, Fukutsuka K, Hayashida M, Takeoka K, Maruyama W, Ukyo N, Sumiyoshi S. Two cases of primary diffuse large B-cell lymphoma of the CNS associated with t(8;14)(q24;q32) or t(3;14)(q27;q32) identified by G-banding and fluorescence in situ hybridization applied to metaphase spreads. J Clin Exp Hematop 2022; 62:242-248. [PMID: 36436932 PMCID: PMC9898718 DOI: 10.3960/jslrt.22019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We describe two patients with primary diffuse large B-cell lymphoma of the central nervous system (PCNS-DLBCL). The first patient (case 1) was a woman in her late 70s who presented with a tumor in the left frontal lobe, whereas the second patient (case 2) was a man in his early 70s who presented with a left frontal lobe tumor associated with intratumoral hemorrhage. The histopathology of the tumor specimen disclosed the proliferation of large cells with centroblastic (case 1) or immunoblastic/plasmablastic (case 2) cytomorphology and an accumulation of the tumor cells within the perivascular space. The cells in both cases were positive for CD20, CD79a, BCL6, IRF4/MUM1, MYC, and BCL2 and negative for CD5 and CD10. G-banding revealed t(8;14)(q24;q32) in case 1, and the tetraploid-range karyotype including two or three copies of der(3)t(3;14)(q27;q32) and der(14)t(3;14)(q27;q32) in case 2. Fluorescence in situ hybridization applied to metaphase spreads confirmed colocalization of MYC and IGH (case 1) and BCL6 and IGH (case 2) hybridization signals on the relevant derivative chromosomes. Case 1 carried the MYD88L265P mutation. This case report provides clear evidence for the occurrence of t(8;14)(q24;q32) and t(3;14)(q27;q32) in PCNS-DLBCL using metaphase-based cytogenetic analysis.
Collapse
Affiliation(s)
- Hitoshi Ohno
- Tenri Institute of Medical Research, Tenri Hospital, Tenri, Nara, Japan
| | - Fumiyo Maekawa
- Tenri Institute of Medical Research, Tenri Hospital, Tenri, Nara, Japan
| | - Misumi Nakagawa
- Tenri Institute of Medical Research, Tenri Hospital, Tenri, Nara, Japan
| | - Yoshinari Chagi
- Tenri Institute of Medical Research, Tenri Hospital, Tenri, Nara, Japan
| | - Miho Nakagawa
- Tenri Institute of Medical Research, Tenri Hospital, Tenri, Nara, Japan
| | - Chiyuki Kishimori
- Tenri Institute of Medical Research, Tenri Hospital, Tenri, Nara, Japan
| | | | | | - Kayo Takeoka
- Tenri Institute of Medical Research, Tenri Hospital, Tenri, Nara, Japan
| | - Wataru Maruyama
- Department of Hematology, Tenri Hospital, Tenri, Nara, Japan
| | - Naoya Ukyo
- Department of Hematology, Tenri Hospital, Tenri, Nara, Japan
| | - Shinji Sumiyoshi
- Department of Diagnostic Pathology, Tenri Hospital, Tenri, Nara, Japan
| |
Collapse
|
97
|
Shen J, Liu J. Bruton's tyrosine kinase inhibitors in the treatment of primary central nervous system lymphoma: A mini-review. Front Oncol 2022; 12:1034668. [PMID: 36465385 PMCID: PMC9713408 DOI: 10.3389/fonc.2022.1034668] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/31/2022] [Indexed: 09/19/2023] Open
Abstract
Primary central nervous system lymphoma (PCNSL) is a highly aggressive brain tumor with poor prognosis if no treatment. The activation of the NF-κB (nuclear factor kappa-B) is the oncogenic hallmark of PCNSL, and it was driven by B cell receptor (BCR) and Toll-like receptor (TLR) signaling pathways. The emergence of Bruton's tyrosine kinase inhibitors (BTKis) has brought the dawn of life to patients with PCNSL. This review summarizes the management of PCNSL with BTKis and potential molecular mechanisms of BTKi in the treatment of PCNSL. And the review will focus on the clinical applications of BTKi in the treatment of PCNSL including the efficacy and adverse events, the clinical trials currently being carried out, the underlying mechanisms of resistance to BTKi and possible solutions to drug resistance.
Collapse
Affiliation(s)
- Jing Shen
- Department of Hematology, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Jinghua Liu
- Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Hematology, Northern Theater General Hospital, Shenyang, China
| |
Collapse
|
98
|
Treatment Options for Recurrent Primary CNS Lymphoma. Curr Treat Options Oncol 2022; 23:1548-1565. [PMID: 36205806 DOI: 10.1007/s11864-022-01016-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2022] [Indexed: 01/30/2023]
Abstract
OPINION STATEMENT Primary CNS lymphoma (PCNSL) constitutes a rare extranodal variant of non-Hodgkin lymphoma (NHL) with an annual incidence of 0.45/100,000. Given the paucity of large prospective clinical trials, there is no consensus treatment for refractory or relapsed (r/r) PCNSL, and available strategies are largely based on retrospective analyses. Patient age, performance status, previously administered treatment, duration of response, and molecular characteristics guide selection of salvage therapy. Patients with a good performance status (KPS >70), particularly ≤65 years, and adequate organ function should be considered for salvage polychemotherapy. Based on its high overall response rate even in the relapsed setting, we choose high-dose (≥ 3.5g/m2) methotrexate (HD-MTX) based regimens, e.g., R-MPV (rituximab, HD-MTX, procarbazine, and vincristine), for remission re-induction as long as patients were sensitive to first line HD-MTX-based regimens, especially when duration of previous response was ≥ 1 year. Following successful remission induction, we choose myeloablative chemotherapy (e.g., thiotepa, busulfan, cyclophosphamide) and subsequent autologous stem cell transplant in curative intent whenever feasible. Alternatively, conventional chemotherapy regimens (for example, monthly HD-MTX) or low-dose whole-brain radiation therapy (WBRT) are selected for consolidation in non-transplant candidates in complete remission. In cases of HD-MTX refractory disease or contraindications, we use pemetrexed; temozolomide/rituximab; high-dose cytarabine; or whole brain radiation for remission induction. Clinical trial participation is considered as well. Emerging therapies for upfront or salvage therapy under ongoing investigation include bruton tyrosine kinase inhibition (e.g., ibrutinib), immunomodulatory drugs (e.g., lenalidomide), immune checkpoint inhibitors (ICI, e.g., nivolumab), and chimeric antigen receptor T (CAR-T) cell therapy.
Collapse
|
99
|
Koch K, Oschlies I, Klapper W. [Lymphomas and other hematological neoplasms in the testicles]. PATHOLOGIE (HEIDELBERG, GERMANY) 2022; 43:441-448. [PMID: 36149452 DOI: 10.1007/s00292-022-01121-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/28/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The testis may be infiltrated by hematological neoplasias. However, only few entities present as primary testicular diseases. OBJECTIVES To present hematological neoplasias in the testis, especially primary testicular hematological diseases. MATERIALS AND METHODS Selective literature research ( http://www.ncbi.nlm.nih.gov ) was combined with the clinico-pathological experience of the authors. RESULTS We present the experience of the lymph node registry Kiel with hematological neoplasias of the testis and develop a staining recommendation. According to our data, the testis is mainly involved by diffuse large B‑cell lymphomas (~70% of cases) followed by precursor cell neoplasias (~20%). Most precursor cell neoplasias are disseminated diseases involving the testis. Primary testicular lymphomas are nearly exclusively diffuse large B‑cell lymphomas that show specific clinical, pathological, and molecular features discriminating them from nodal/disseminated lymphomas. Primary testicular follicular lymphomas, which have been described in the literature, seem to be extremely rare. CONCLUSION Primary testicular lymphomas are predominantly diffuse large B‑cell lymphomas. The diagnosis is possible with few immunohistochemical stainings. However, histology cannot replace clinical staging to discriminate primary testicular lymphoma from secondary infiltration by a nodal/disseminated disease.
Collapse
Affiliation(s)
- Karoline Koch
- Institut für Pathologie, Sektion Hämatopathologie, Universitätsklinikum Schleswig-Holstein (UKSH), Campus Kiel, Arnold-Heller-Straße 3, Haus U33, 24105, Kiel, Deutschland.
| | - Ilske Oschlies
- Institut für Pathologie, Sektion Hämatopathologie, Universitätsklinikum Schleswig-Holstein (UKSH), Campus Kiel, Arnold-Heller-Straße 3, Haus U33, 24105, Kiel, Deutschland
| | - Wolfram Klapper
- Institut für Pathologie, Sektion Hämatopathologie, Universitätsklinikum Schleswig-Holstein (UKSH), Campus Kiel, Arnold-Heller-Straße 3, Haus U33, 24105, Kiel, Deutschland
| |
Collapse
|
100
|
Morales-Martinez A, Nichelli L, Hernandez-Verdin I, Houillier C, Alentorn A, Hoang-Xuan K. Prognostic factors in primary central nervous system lymphoma. Curr Opin Oncol 2022; 34:676-684. [PMID: 36093869 DOI: 10.1097/cco.0000000000000896] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Primary central nervous system lymphoma (PCNSL) is a rare and aggressive extranodal diffuse large B cell lymphoma. Despite its apparent immunopathological homogeneity, PCNSL displays a wide variability in outcome. Identifying prognostic factors is of importance for patient stratification and clinical decision-making. The purpose of this review is to focus on the clinical, neuroradiological and biological variables correlated with the prognosis at the time of diagnosis in immunocompetent patients. RECENT FINDINGS Age and performance status remain the most consistent clinical prognostic factors. The current literature suggests that neurocognitive dysfunction is an independent predictor of poor outcome. Cumulating data support the prognostic value of increased interleukin-10 level in the cerebrospinal fluid (CSF), in addition to its interest as a diagnostic biomarker. Advances in neuroimaging and in omics have identified several semi-quantitative radiological features (apparent diffusion restriction measures, dynamic contrast-enhanced perfusion MRI (pMRI) pattern and 18F-fluorodeoxyglucose metabolism) and molecular genetic alterations with prognostic impact in PCNSL. SUMMARY Validation of new biologic and neuroimaging markers in prospective studies is required before integrating future prognostic scoring systems. In the era of radiomic, large clinicoradiological and molecular databases are needed to develop multimodal artificial intelligence algorithms for the prediction of accurate outcome.
Collapse
Affiliation(s)
| | - Lucia Nichelli
- APHP, Sorbonne Université, IHU, ICM, Service de Neuroradiologie, Groupe Hospitalier Salpêtrière
| | - Isaias Hernandez-Verdin
- Laboratoire de Génétique et developpement des tumeurs cérébrales, Inserm, CNRS, UMR S 1127, ICM Institut du cerveau, Paris, France
| | | | - Agustí Alentorn
- APHP, Sorbonne Université, IHU, Service de Neurologie 2-Mazarin
- Laboratoire de Génétique et developpement des tumeurs cérébrales, Inserm, CNRS, UMR S 1127, ICM Institut du cerveau, Paris, France
| | - Khê Hoang-Xuan
- APHP, Sorbonne Université, IHU, Service de Neurologie 2-Mazarin
- Laboratoire de Génétique et developpement des tumeurs cérébrales, Inserm, CNRS, UMR S 1127, ICM Institut du cerveau, Paris, France
| |
Collapse
|