51
|
Hus I, Puła B, Robak T. PI3K Inhibitors for the Treatment of Chronic Lymphocytic Leukemia: Current Status and Future Perspectives. Cancers (Basel) 2022; 14:1571. [PMID: 35326722 PMCID: PMC8945984 DOI: 10.3390/cancers14061571] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/04/2022] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks) signaling regulates key cellular processes, such as growth, survival and apoptosis. Among the three classes of PI3K, class I is the most important for the development, differentiation and activation of B and T cells. Four isoforms are distinguished within class I (PI3Kα, PI3Kβ, PI3Kδ and PI3Kγ). PI3Kδ expression is limited mainly to the B cells and their precursors, and blocking PI3K has been found to promote apoptosis of chronic lymphocytic leukemia (CLL) cells. Idelalisib, a selective PI3Kδ inhibitor, was the first-in-class PI3Ki introduced into CLL treatment. It showed efficacy in patients with del(17p)/TP53 mutation, unmutated IGHV status and refractory/relapsed disease. However, its side effects, such as autoimmune-mediated pneumonitis and colitis, infections and skin changes, limited its widespread use. The dual PI3Kδ/γ inhibitor duvelisib is approved for use in CLL patients but with similar toxicities to idelalisib. Umbralisib, a highly selective inhibitor of PI3Kδ and casein kinase-1ε (CK1ε), was found to be efficient and safe in monotherapy and in combination regimens in phase 3 trials in patients with CLL. Novel PI3Kis are under evaluation in early phase clinical trials. In this paper we present the mechanism of action, efficacy and toxicities of PI3Ki approved in the treatment of CLL and developed in clinical trials.
Collapse
Affiliation(s)
- Iwona Hus
- Department of Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland; (I.H.); (B.P.)
| | - Bartosz Puła
- Department of Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland; (I.H.); (B.P.)
| | - Tadeusz Robak
- Copernicus Memorial Hospital, 93-510 Lodz, Poland
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland
| |
Collapse
|
52
|
Schweitzer J, Hoffman M, Graf SA. The evidence to date on umbralisib for the treatment of refractory marginal zone lymphoma and follicular lymphoma. Expert Opin Pharmacother 2022; 23:535-541. [PMID: 35209784 DOI: 10.1080/14656566.2022.2043273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Between 2014 and 2018 The United States Food and Drug Administration granted approvals for three small molecule inhibitors of phosphoinositide 3-kinases (PI3Ks) as monotherapy for follicular lymphoma relapsed after at least 2 prior therapies. Idelalisib, copanlisib, and duvelisib each showed similar overall response rate and progression-free survival efficacy along with significant toxicity in separate phase II single-arm studies. Umbralisib, as the 4th iteration in this PI3K-inhibitor class for relapsed/refractory indolent B-cell lymphoma (iB-NHL), appears comparably active but may have improved tolerability. AREAS COVERED We review the use and limitations of PI3K-inhibitors for iB-NHL and discuss the development of and clinical results for umbralisib. Efficacy data are contextualized alongside other PI3K-inihibitors within the limitations of published single-arm studies. We compare and contrast available safety data, covering the off-target inhibition by umbralisib of casein kinase 1ε that is thought to contribute to a more favorable immune-mediated toxicity profile. EXPERT OPINION Though a late-comer to the PI3K-inihibitor party in iB-NHL, umbralisib may carve out an important role in treatment algorithms. Umbralisib's apparently superior safety needs to be confirmed in real-world and, ideally, comparative studies but stands to make it an attractive option in patients who are frail and/or seek treatments more compatible with remote management.
Collapse
Affiliation(s)
- Janelle Schweitzer
- Pharmacy Section, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Meghan Hoffman
- Pharmacy Section, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Solomon A Graf
- Medical Oncology Section, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA.,Division of Oncology, University of Washington School of Medicine, Seattle, WA, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
53
|
Qi J, Wang W, Tang Y, Lou S, Wang J, Yuan T, He Q, Yang B, Zhu H, Cui S. Discovery of Novel Indazoles as Potent and Selective PI3Kδ Inhibitors with High Efficacy for Treatment of Hepatocellular Carcinoma. J Med Chem 2022; 65:3849-3865. [PMID: 35191698 DOI: 10.1021/acs.jmedchem.1c01520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PI3Kδ inhibitors have been developed for treatment of B-cell malignancies and inflammatory and autoimmune diseases. However, their therapeutic role in solid tumors like hepatocellular carcinoma (HCC) is rarely reported. Thus, the development of potent and selective PI3Kδ inhibitors with a new chemotype and therapy is highly desirable. Through the scaffold-hopping strategy, indazole was first described as the core structure of propeller-shaped PI3Kδ inhibitors. A total of 26 indazole derivatives were designed and prepared to identify a novel compound 9x with good isoform selectivity, PK profile, and potency. Compared to Idelalisib and Sorafenib, the pharmacodynamic (PD) studies showed that 9x exhibits superior efficacy in HCC cell lines and xenograft models, and the mechanistic study showed that 9x robustly suppresses the downstream AKT pathway to induce subsequent apoptotic cell death in HCC models. Therefore, this work provides a new structural design of PI3Kδ inhibitors for a novel and efficient therapeutic small molecule toward HCC.
Collapse
Affiliation(s)
- Jifeng Qi
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weihua Wang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yongmei Tang
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shengying Lou
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiaer Wang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tao Yuan
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hong Zhu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
54
|
Druggable Molecular Pathways in Chronic Lymphocytic Leukemia. Life (Basel) 2022; 12:life12020283. [PMID: 35207569 PMCID: PMC8875960 DOI: 10.3390/life12020283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 12/02/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL), the most common type of leukemia in adults, is characterized by a high degree of clinical heterogeneity that is influenced by the disease’s molecular complexity. The genes most frequently affected in CLL cluster into specific biological pathways, including B-cell receptor (BCR) signaling, apoptosis, NF-κB, and NOTCH1 signaling. BCR signaling and the apoptosis pathway have been exploited to design targeted medicines for CLL therapy. Consistently, molecules that selectively inhibit specific BCR components, namely Bruton tyrosine kinase (BTK) and phosphoinositide 3-kinase (PI3K) as well as inhibitors of BCL2, have revolutionized the therapeutic management of CLL patients. Several BTK inhibitors and PI3K inhibitors with different modes of action are currently used or are in development in advanced stage clinical trials. Moreover, the restoration of apoptosis by the BCL2 inhibitor venetoclax offers meaningful clinical activity with a fixed-duration scheme. Inhibitors of the BCR and of BCL2 are able to overcome the chemorefractoriness associated with high-risk genetic features, including TP53 disruption. Other signaling cascades involved in CLL pathogenesis, in particular NOTCH signaling and NF-kB signaling, already provide biomarkers for a precision medicine approach to CLL and may represent potential druggable targets for the future. The aim of the present review is to discuss the druggable pathways of CLL and to provide the biological background of the high efficacy of targeted biological drugs in CLL.
Collapse
|
55
|
Rainone M, Siddiqi T. Management of Relapsed/Refractory Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma in the Era of Targeted Therapies. Curr Hematol Malig Rep 2022; 17:39-45. [PMID: 35028825 DOI: 10.1007/s11899-021-00652-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2021] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW The treatment landscape for relapsed chronic lymphocytic leukemia (CLL) and small lymphocytic lymphoma (SLL) has changed substantially over the past decade and continues to evolve. Despite the emergence of targeted therapies that are well tolerated and prolong survival, the disease remains incurable and relapse is common particularly in individuals with high-risk features. Herein, we review the key literature about the current options for relapsed disease and explore the emerging role of cellular therapies. RECENT FINDINGS Clinical trials have established the role of Bruton tyrosine kinase inhibitors, selective BCL-2 inhibition, and anti-CD20 monoclonal antibodies as treatment options for CLL/SLL. The role of chimeric antigen receptor T cells has shown promise in individuals with CLL/SLL in early phase clinical trials. Novel therapeutic approaches with targeted therapies have redefined the management of CLL/SLL in both the front-line and relapsed/refractory settings. Optimal management in terms of sequencing or combining therapies, especially in individuals with high-risk features, remains a challenge. The emerging role of cellular therapies has the potential to build upon and further improve the current treatment paradigm.
Collapse
Affiliation(s)
- Michael Rainone
- Department of Hematology and Medical Oncology, City of Hope, Duarte, CA, USA
| | - Tanya Siddiqi
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope, 1500 E Duarte Rd., Duarte, CA, 91010, USA.
| |
Collapse
|
56
|
Darwish IA, Almehizia AA, Sayed AY, Khalil NY, Alzoman NZ, Darwish HW. Synthesis, spectroscopic and computational studies on hydrogen bonded charge transfer complex of duvelisib with chloranilic acid: Application to development of novel 96-microwell spectrophotometric assay. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120287. [PMID: 34455386 DOI: 10.1016/j.saa.2021.120287] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/01/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
Duvelisib (DUV) is a is a small-molecule with inhibitory action for phosphoinositide 3-kinase (PI3K). It has been recently approved for the effective treatment of chronic lymphocytic leukemia (CLL) and small lymphocytic lymphoma (SLL). Novel charge transfer complex (CTC) between DUV, as electron donor, with chloranilic acid (CLA), as π electron acceptor has been synthesized and characterized using different spectroscopic and thermogravimetric techniques. UV-visible spectroscopy ascertained the formation of the CTC in different solvents of varying polarity indexes and dielectric constants via formation of new broad absorption band with maximum absorption peak (λmax) in the range of 488-532 nm. The molar absorptivity of the CTC was dependent on the polarity index and dielectric constant of the solvent; the correlation coefficients were 0.9955 and 0.9749, respectively. The stoichiometric ratio of DUV:CLA was 1:1. Electronic spectral analysis was conducted for characterization of the complex in terms of its electronic constants. Computational calculation for atomic charges of energy minimized DUV was conducted and the site of interaction on DUV molecule was assigned. The solid-state CTC of DUV:CLA (1:1) was synthesized, and its structure was characterized by UV-visible, mass, FT-IR, and 1H NMR spectroscopic techniques. Both FT-IR and 1H NMR confirmed that both CT and hydrogen bonding contributed to the molecular composition of the complex. The reaction was adopted as a basis for developing a novel 96-microwell spectrophotometric assay (MW-SPA) for DUV. The assay limits of detection and quantitation were 0.57 and 1.72 µg/well, respectively. The assay was validated and all validation parameters were acceptable. The method was implemented successfully with great precision and accuracy to the analysis of the DUV in its bulk and capsules.
Collapse
Affiliation(s)
- Ibrahim A Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| | - Abdulrahman A Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ahmed Y Sayed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Nasr Y Khalil
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Nourah Z Alzoman
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Hany W Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; Department of Analytical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt.
| |
Collapse
|
57
|
Sonawane D, Sahu AK, Jadav T, Sengupta P. UHPLC-Q-TOF-MS/MS based metabolite profiling of duvelisib and establishment of its metabolism mechanisms. Biomed Chromatogr 2022; 36:e5314. [PMID: 34981541 DOI: 10.1002/bmc.5314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 11/07/2022]
Abstract
Duvelisib is a dual inhibitor of phosphoinositide 3 kinase that received global approval by USFDA in 2018 to treat follicular lymphoma after at least two prior systemic therapies. An extensive literature search revealed that till date, metabolites of duvelisib are not characterized and information on the same is not available in any literature. Moreover, its metabolism pathway is yet to be established. This study aimed to investigate and characterize the metabolites of duvelisib generated in microsomes and S9 fractions. In this study, five duvelisib metabolites have been identified using UHPLC-Q-TOF-MS/MS technique of analysis. The structural characterisation of the metabolites was performed by comparing the fragmentation pattern of duvelisib and its metabolites through an accurate mass measurement technique. Three metabolites were found to be generated through phase I hydroxylation and dechlorination reaction. The other two metabolites were generated through a phase II glucuronidation reaction. The metabolism mechanism established through this study can be useful to improve the safety profile of the drug of its similar category in the future after establishment their toxicity profile of the identified metabolites.
Collapse
Affiliation(s)
- Dipali Sonawane
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), an Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Amit Kumar Sahu
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), an Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Tarang Jadav
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), an Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Pinaki Sengupta
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), an Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| |
Collapse
|
58
|
Zhang X, Duan YT, Wang Y, Zhao XD, Sun YM, Lin DZ, Chen Y, Wang YX, Zhou ZW, Liu YX, Jiang LH, Geng MY, Ding J, Meng LH. SAF-248, a novel PI3Kδ-selective inhibitor, potently suppresses the growth of diffuse large B-cell lymphoma. Acta Pharmacol Sin 2022; 43:209-219. [PMID: 33782541 PMCID: PMC8724319 DOI: 10.1038/s41401-021-00644-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/09/2021] [Indexed: 01/03/2023] Open
Abstract
PI3Kδ is expressed predominately in leukocytes and overexpressed in B-cell-related malignances. PI3Kδ has been validated as a promising target for cancer therapy, and specific PI3Kδ inhibitors were approved for clinical practice. However, the substantial toxicity and relatively low efficacy as a monotherapy in diffuse large B-cell lymphoma (DLBCL) limit their clinical use. In this study, we described a novel PI3Kδ inhibitor SAF-248, which exhibited high selectivity for PI3Kδ (IC50 = 30.6 nM) over other PI3K isoforms at both molecular and cellular levels, while sparing most of the other human protein kinases in the kinome profiling. SAF-248 exhibited superior antiproliferative activity against 27 human lymphoma and leukemia cell lines compared with the approved PI3Kδ inhibitor idelalisib. In particular, SAF-248 potently inhibited the proliferation of a panel of seven DLBCL cell lines (with GI50 values < 1 μM in 5 DLBCL cell lines). We demonstrated that SAF-248 concentration-dependently blocked PI3K signaling followed by inducing G1 phase arrest and apoptosis in DLBCL KARPAS-422, Pfeiffer and TMD8 cells. Its activity against the DLBCL cells was negatively correlated to the protein level of PI3Kα. Oral administration of SAF-248 dose-dependently inhibited the growth of xenografts derived from Pfeiffer and TMD8 cells. Activation of mTORC1, MYC and JAK/STAT signaling was observed upon prolonged treatment and co-targeting these pathways would potentiate the activity of SAF-248. Taken together, SAF-248 is a promising selective PI3Kδ inhibitor for the treatment of DLBCL and rational drug combination would further improve its efficacy.
Collapse
Affiliation(s)
- Xi Zhang
- grid.9227.e0000000119573309Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Yu-ting Duan
- grid.9227.e0000000119573309Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yi Wang
- grid.9227.e0000000119573309Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | | | - Yi-ming Sun
- grid.9227.e0000000119573309Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Dong-ze Lin
- grid.9227.e0000000119573309Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Yi Chen
- grid.9227.e0000000119573309Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yu-xiang Wang
- grid.9227.e0000000119573309Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Zu-wen Zhou
- Fochon Pharmaceuticals, Ltd., Chongqing, 404100 China
| | - Yan-xin Liu
- Fochon Pharmaceuticals, Ltd., Chongqing, 404100 China
| | - Li-hua Jiang
- Fochon Pharmaceuticals, Ltd., Chongqing, 404100 China
| | - Mei-yu Geng
- grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China ,grid.9227.e0000000119573309Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Jian Ding
- grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China ,grid.9227.e0000000119573309Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Ling-hua Meng
- grid.9227.e0000000119573309Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
59
|
Abstract
Despite the therapeutic progress, relapse remains a major problem in the treatment of acute lymphoblastic leukemia (ALL). Most leukemia cells that survive chemotherapy are found in the bone marrow (BM), thus resistance to chemotherapy and other treatments may be partially attributed to pro-survival signaling to leukemic cells mediated by leukemia cell-microenvironment interactions. Adhesion of leukemia cells to BM stromal cells may lead to cell adhesion-mediated drug resistance (CAM-DR) mediating intracellular signaling changes that support survival of leukemia cells. In ALL and chronic lymphocytic leukemia (CLL), adhesion-mediated activation of the PI3K/AKT signaling pathway has been shown to be critical in CAM-DR. PI3K targeting inhibitors have been approved for CLL and have been evaluated preclinically in ALL. However, PI3K inhibition has yet to be approved for clinical use in ALL. Here, we review the role of PI3K signaling for normal hematopoietic and leukemia cells and summarize preclinical inhibitors of PI3K in ALL.
Collapse
Affiliation(s)
- Hye Na Kim
- Department of Pediatrics, Division of Hematology and Oncology, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| | - Heather Ogana
- Department of Pediatrics, Division of Hematology and Oncology, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| | - Vanessa Sanchez
- Department of Pediatrics, Division of Hematology and Oncology, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| | - Cydney Nichols
- Department of Pediatrics, Division of Hematology and Oncology, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| | - Yong-Mi Kim
- Department of Pediatrics, Division of Hematology and Oncology, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
60
|
van der Straten L, Hengeveld PJ, Kater AP, Langerak AW, Levin MD. Treatment Approaches to Chronic Lymphocytic Leukemia With High-Risk Molecular Features. Front Oncol 2021; 11:780085. [PMID: 34956898 PMCID: PMC8695615 DOI: 10.3389/fonc.2021.780085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/23/2021] [Indexed: 12/30/2022] Open
Abstract
The clinical course of chronic lymphocytic leukemia (CLL) is highly variable. Over the past decades, several cytogenetic, immunogenetic and molecular features have emerged that identify patients suffering from CLL with high-risk molecular features. These biomarkers can clearly aid prognostication, but may also be capable of predicting the efficacy of various treatment strategies in subgroups of patients. In this narrative review, we discuss treatment approaches to CLL with high-risk molecular features. Specifically, we review and provide a comprehensive overview of clinical trials evaluating the efficacy of chemotherapy, chemoimmunotherapy and novel agent-based treatments in CLL patients with TP53 aberrations, deletion of the long arm of chromosome 11, complex karyotype, unmutated IGHV, B cell receptor stereotypy, and mutations in NOTCH1 or BIRC3. Furthermore, we discuss future pharmaceutical and immunotherapeutic perspectives for CLL with high-risk molecular features, focusing on agents currently under investigation in clinical trials.
Collapse
Affiliation(s)
- Lina van der Straten
- Department of Internal Medicine, Albert Schweitzer Hospital, Dordrecht, Netherlands.,Laboratory Medical Immunology, Department of Immunology, Erasmus MC, Rotterdam, Netherlands.,Department of Research and Development, Netherlands Comprehensive Cancer Organisation (IKNL), Utrecht, Netherlands
| | - Paul J Hengeveld
- Department of Internal Medicine, Albert Schweitzer Hospital, Dordrecht, Netherlands.,Laboratory Medical Immunology, Department of Immunology, Erasmus MC, Rotterdam, Netherlands
| | - Arnon P Kater
- Department of Hematology, Amsterdam University Medical Center, University of Amsterdam, Cancer Center Amsterdam, Lymphoma and Myeloma Center Amsterdam, Amsterdam, Netherlands
| | - Anton W Langerak
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, Rotterdam, Netherlands
| | - Mark-David Levin
- Department of Internal Medicine, Albert Schweitzer Hospital, Dordrecht, Netherlands
| |
Collapse
|
61
|
Elmenier FM, Lasheen DS, Abouzid KAM. Design, synthesis, and biological evaluation of new thieno[2,3- d] pyrimidine derivatives as targeted therapy for PI3K with molecular modelling study. J Enzyme Inhib Med Chem 2021; 37:315-332. [PMID: 34955086 PMCID: PMC8725920 DOI: 10.1080/14756366.2021.2010729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Cancer is one of the most aggressive diseases characterised by abnormal growth and uncontrolled cell division. PI3K is a lipid kinase involved in cancer progression which makes it fruitful target for cancer control. 28 new morpholine based thieno[2,3-d] pyrimidine derivatives were designed and synthesised as anti-PI3K agents maintaining the common pharmacophoric features of several potent PI3K inhibitors. Their antiproliferative activity on NCI 60 cell lines as well as their enzymatic activity against PI3K isoforms were evaluated. Three compounds revealed good cytotoxic activities against breast cancer cell lines, especially T-47D. Compound VIb exhibited the best enzymatic inhibitory activity (72% & 84% on PI3Kβ & PI3Kγ), respectively and good activity on most NCI cell lines especially those with over expressed PI3K. Docking was carried out into PI3K active site which showed comparable binding mode to that of the PI-103 inhibitor. Compound VIb could be optimised to serve as a new chemical entity for discovering new anticancer agents.
Collapse
Affiliation(s)
- Fatma M Elmenier
- Faculty of Pharmacy, Pharmaceutical Chemistry Department, Ain Shams University, Cairo, Egypt
| | - Deena S Lasheen
- Faculty of Pharmacy, Pharmaceutical Chemistry Department, Ain Shams University, Cairo, Egypt
| | - Khaled A M Abouzid
- Faculty of Pharmacy, Pharmaceutical Chemistry Department, Ain Shams University, Cairo, Egypt.,Faculty of Pharmacy, Department of Organic and Medicinal Chemistry, University of Sadat City, Menoufia, Egypt
| |
Collapse
|
62
|
FDA-Approved Drugs for Hematological Malignancies-The Last Decade Review. Cancers (Basel) 2021; 14:cancers14010087. [PMID: 35008250 PMCID: PMC8750348 DOI: 10.3390/cancers14010087] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Hematological malignancies are diseases involving the abnormal production of blood cells. The aim of the study is to collect comprehensive information on new drugs used in the treatment of blood cancers which have introduced into therapy in the last decade. The approved drugs were analyzed for their structures and their biological activity mechanisms. Abstract Hematological malignancies, also referred to as blood cancers, are a group of diseases involving abnormal cell growth and persisting in the blood, lymph nodes, or bone marrow. The development of new targeted therapies including small molecule inhibitors, monoclonal antibodies, bispecific T cell engagers, antibody-drug conjugates, recombinant immunotoxins, and, finally, Chimeric Antigen Receptor T (CAR-T) cells has improved the clinical outcomes for blood cancers. In this review, we summarized 52 drugs that were divided into small molecule and macromolecule agents, approved by the Food and Drug Administration (FDA) in the period between 2011 and 2021 for the treatment of hematological malignancies. Forty of them have also been approved by the European Medicines Agency (EMA). We analyzed the FDA-approved drugs by investigating both their structures and mechanisms of action. It should be emphasized that the number of targeted drugs was significantly higher (46 drugs) than chemotherapy agents (6 drugs). We highlight recent advances in the design of drugs that are used to treat hematological malignancies, which make them more effective and less toxic.
Collapse
|
63
|
Borsari C, Wymann MP. Targeting Phosphoinositide 3-Kinase - Five Decades of Chemical Space Exploration. Chimia (Aarau) 2021; 75:1037-1044. [PMID: 34920774 DOI: 10.2533/chimia.2021.1037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Phosphoinositide 3-kinase (PI3K) plays a key role in a plethora of physiologic processes and controls cell growth, metabolism, immunity, cardiovascular and neurological function, and more. The discovery of wort-mannin as the first potent PI3K inhibitor (PI3Ki) in the 1990s provided rapid identification of PI3K-dependent processes, which drove the discovery of the PI3K/protein kinase B (PKB/Akt)/target of rapamycin (mTOR) pathway. Genetic mouse models and first PI3K isoform-specific inhibitors pinpointed putative therapeutic applications. The recognition of PI3K as target for cancer therapy drove subsequently drug development. Here we provide a brief journey through the emerging roles of PI3K to the development of preclinical and clinical PI3Ki candidates.
Collapse
Affiliation(s)
- Chiara Borsari
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland
| | - Matthias P Wymann
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland;,
| |
Collapse
|
64
|
De Novellis D, Cacace F, Caprioli V, Wierda WG, Mahadeo KM, Tambaro FP. The TKI Era in Chronic Leukemias. Pharmaceutics 2021; 13:2201. [PMID: 34959482 PMCID: PMC8709313 DOI: 10.3390/pharmaceutics13122201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022] Open
Abstract
Tyrosine kinases are proteins involved in physiological cell functions including proliferation, differentiation, and survival. However, the dysregulation of tyrosine kinase pathways occurs in malignancy, including hematological leukemias such as chronic myeloid leukemia (CML) and chronic lymphocytic leukemia (CLL). Particularly, the fusion oncoprotein BCR-ABL1 in CML and the B-cell receptor (BCR) signaling pathway in CLL are critical for leukemogenesis. Therapeutic management of these two hematological conditions was fundamentally changed in recent years, making the role of conventional chemotherapy nearly obsolete. The first, second, and third generation inhibitors (imatinib, dasatinib, nilotinib, bosutinib, and ponatinib) of BCR-ABL1 and the allosteric inhibitor asciminib showed deep genetic and molecular remission rates in CML, leading to the evaluation of treatment discontinuation in prospective trials. The irreversible BTK inhibitors (ibrutinib, acalabrutinib, zanubrutinib, tirabrutinib, and spebrutinib) covalently bind to the C481 amino acid of BTK. The reversible BTK inhibitor pirtobrutinib has a different binding site, overcoming resistance associated with mutations at C481. The PI3K inhibitors (idelalisib and duvelisib) are also effective in CLL but are currently less used because of their toxicity profiles. These tyrosine kinase inhibitors are well-tolerated, do have some associated in-class side effects that are manageable, and have remarkably improved outcomes for patients with hematologic malignancies.
Collapse
Affiliation(s)
- Danilo De Novellis
- Hematology and Transplant Center, University “Hospital San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
| | - Fabiana Cacace
- Unità Operativa di Trapianto di Cellule Staminali Ematopoietiche e Terapie Cellulari, Azienda Ospedaliera di Rilievo Nazionale Santobono-Pausilipon, 80123 Napoli, Italy; (F.C.); (V.C.); (F.P.T.)
| | - Valeria Caprioli
- Unità Operativa di Trapianto di Cellule Staminali Ematopoietiche e Terapie Cellulari, Azienda Ospedaliera di Rilievo Nazionale Santobono-Pausilipon, 80123 Napoli, Italy; (F.C.); (V.C.); (F.P.T.)
| | - William G. Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Kris M. Mahadeo
- Pediatric Stem Cell Transplantation and Cellular Therapy, CARTOX Program, University of Texas at MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Francesco Paolo Tambaro
- Unità Operativa di Trapianto di Cellule Staminali Ematopoietiche e Terapie Cellulari, Azienda Ospedaliera di Rilievo Nazionale Santobono-Pausilipon, 80123 Napoli, Italy; (F.C.); (V.C.); (F.P.T.)
| |
Collapse
|
65
|
Davids MS, O’Connor OA, Jurczak W, Samaniego F, Fenske TS, Zinzani PL, Patel MR, Ghosh N, Cheson BD, Derenzini E, Brander DM, Reeves JA, Knopińska-Posłuszny W, Allan JN, Phillips T, Caimi PF, Lech-Maranda E, Burke JM, Agajanian R, Pettengell R, Leslie LA, Cheah CY, Fonseca G, Essell J, Chavez JC, Pagel JM, Sharman JP, Hsu Y, Miskin HP, Sportelli P, Weiss MS, Flinn IW. Integrated safety analysis of umbralisib, a dual PI3Kδ/CK1ε inhibitor, in relapsed/refractory lymphoid malignancies. Blood Adv 2021; 5:5332-5343. [PMID: 34547767 PMCID: PMC9153017 DOI: 10.1182/bloodadvances.2021005132] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/12/2021] [Indexed: 11/20/2022] Open
Abstract
Phosphoinositide 3-kinase-δ (PI3Kδ) inhibitors are active in lymphoid malignancies, although associated toxicities can limit their use. Umbralisib is a dual inhibitor of PI3Kδ and casein kinase-1ε (CK1ε). This study analyzed integrated comprehensive toxicity data from 4 open-label, phase 1 and 2 studies that included 371 adult patients (median age, 67 years) with relapsed/refractory non-Hodgkin lymphoma (follicular lymphoma [n = 147]; marginal zone lymphoma [n = 82]; diffuse large B-cell lymphoma/mantle cell lymphoma [n = 74]; chronic lymphocytic leukemia [n = 43]; and other tumor types [n = 25]) who were treated with the recommended phase 2 dose of umbralisib 800 mg or higher once daily. At data cutoff, median duration of umbralisib treatment was 5.9 months (range, 0.1-75.1 months), and 107 patients (28.8%) received umbralisib for ≥12 months. Any-grade treatment-emergent adverse events (AEs) occurred in 366 (98.7%) of 371 patients, with the most frequent being diarrhea (52.3%), nausea (41.5%), and fatigue (31.8%). Grade 3 or higher treatment-emergent AEs occurred in 189 (50.9%) of 371 patients and included neutropenia (11.3%), diarrhea (7.3%), and increased aminotransferase levels (5.7%). Treatment-emergent serious AEs occurred in 95 (25.6%) of 371 patients. AEs of special interest were limited and included pneumonia (29 of 371 [7.8%]), noninfectious colitis (9 of 371 [2.4%]), and pneumonitis (4 of 371 [1.1%]). AEs led to discontinuation of umbralisib in 51 patients (13.7%). Four patients (1.1%) died of AEs, none of which was deemed related to umbralisib. No cumulative toxicities were reported. The favorable long-term tolerability profile and low rates of immune-mediated toxicities support the potential use of umbralisib for the benefit of a broad population of patients with lymphoid malignancies.
Collapse
Affiliation(s)
- Matthew S. Davids
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Owen A. O’Connor
- Department of Medicine, University of Virginia Cancer Center, Charlottesville, VA
- TG Therapeutics, Inc, New York, NY
| | - Wojciech Jurczak
- Maria Skłodowska-Curie National Research Institute of Oncology, Kraków, Poland
| | - Felipe Samaniego
- The University of Texas M.D. Anderson Cancer Center, Houston, TX
| | | | - Pier Luigi Zinzani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli,” and Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale Università degli Studi, Bologna, Italy
| | - Manish R. Patel
- Florida Cancer Specialists/Sarah Cannon Research Institute, Sarasota, FL
| | | | | | - Enrico Derenzini
- Onco-Hematology Division, European Institute of Oncology IRCCS, Department of Health Sciences, University of Milan, Milan, Italy
| | | | - James A. Reeves
- Florida Cancer Specialists South/Sarah Cannon Research Institute, Fort Myers, FL
| | | | | | - Tycel Phillips
- University of Michigan Comprehensive Cancer Center, Ann Arbor, MI
| | - Paolo F. Caimi
- University Hospitals Seidman Cancer Center, Cleveland, OH
| | - Ewa Lech-Maranda
- Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - John M. Burke
- Rocky Mountain Cancer Centers/US Oncology Research, Aurora, CO
| | | | | | - Lori A. Leslie
- John Theurer Cancer Center, Hackensack Meridian Health School of Medicine, Hackensack, NJ
| | - Chan Y. Cheah
- Sir Charles Gairdner Hospital and University of Western Australia, Perth, Australia
| | - Gustavo Fonseca
- Florida Cancer Specialists North/Sarah Cannon Research Institute, St. Petersburg, FL
| | | | | | | | - Jeff P. Sharman
- Willamette Valley Cancer Institute/US Oncology Research, Eugene, OR; and
| | | | | | | | | | - Ian W. Flinn
- Sarah Cannon Research Institute and Tennessee Oncology, Nashville, TN
| |
Collapse
|
66
|
Szlendak U, Krzymieniewska B, Mendek-Czajkowska E, Rogatko-Koroś M, Witkowska A, Włodarska J, Drozd-Sokołowska J, Spychalska J, Budziszewska B, Patkowska E, Woźniak J, Krzywdzińska A, Jurek S, Juszczyński P, Jaworska M, Rosłon M, Gruber-Bzura B, Wasilewski R, Baran B, Windyga J, Nowak J. Persistent imbalance, anti-apoptotic, and anti-inflammatory signature of circulating C-C chemokines and cytokines in patients with paroxysmal nocturnal hemoglobinuria. Cytokine 2021; 150:155780. [PMID: 34896730 DOI: 10.1016/j.cyto.2021.155780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Paroxysmal nocturnal hemoglobinuria (PNH) is a clonal non-malignant disease in which hematopoietic cell apoptosis may play an important pathophysiological role. Previous studies of the content of phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) indicated the possibility of remote transmission of anti-apoptotic signals between pathological and normal hematopoietic progenitors. METHODS The study determined the plasma levels of beta chemokines and cytokines in N = 19 patients with PNH and 31 healthy controls. The research material was peripheral blood plasma (EDTA) stored at -80 °C until the test. Beta chemokine and cytokine concentrations were tested in duplicate with Bio-Plex Pro Human Cytokine Assay (Bio-Rad, Hercules, CA, USA) using a Luminex 200 flow cytometer and xPONENT software (Luminex Corporation, Austin, TX, USA). In peripheral blood CD34+ cells we tested the proportions of PI(3,4,5)P3+ and Annexin binding apoptotic phenotype using FC and phosflow. RESULTS Compared to the control group, the PNH group showed a significant increase in the plasma concentration of some beta chemokines and cytokines, including MIP-1alpha/CCL3, eotaxin/CCL11, MCP1/CCL2, IL4 and G-CSF. In the group of PNH patients, a significant decrease in the concentration of some cytokines was also observed: RANTES/CCL5, MIP-1beta/CCL4, PDGF-BB and IL9. At the same time, the plasma concentrations of the chemokine IP-10/CXCL10 and the cytokines IFN-gamma, TNF, IL6 and IL10 showed no significant deviations from the values for the control group. Anti-apoptotic phenotype and phosphatidylinositol (3,4,5)-trisphosphate content in PNH clone of CD34+ cells were associated with the level of CCL3 and negatively associated with CCL5, CCL4, PDGF-BB and IL9. CONCLUSIONS This data suggest the existence of apoptotic and PI(3,4,5)P3 imbalance in PNH CD34+ cells driven by anti-apoptotic cytokine biosignature in PNH. Plasma cytokines and intracellular enzymes that regulate the phosphoinositide pathways may become a therapeutic target in PNH.
Collapse
Affiliation(s)
- Urszula Szlendak
- Department of Immunogenetics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Beata Krzymieniewska
- Laboratory of Immunophenotyping, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Ewa Mendek-Czajkowska
- Specialist Outpatient Clinic, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Marta Rogatko-Koroś
- Department of Immunogenetics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Agnieszka Witkowska
- Department of Immunogenetics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Joanna Włodarska
- Day Treatment Department, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Joanna Drozd-Sokołowska
- Department of Hematology, Transplantology and Internal Medicine, University Clinical Center, Medical University of Warsaw, Warsaw, Poland
| | - Justyna Spychalska
- Department of Hematological and Transfusion Immunology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Bożena Budziszewska
- Department of Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Elżbieta Patkowska
- Department of Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Jolanta Woźniak
- Laboratory of Immunophenotyping, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Agnieszka Krzywdzińska
- Laboratory of Immunophenotyping, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Sławomir Jurek
- Department of Disorders of Hemostasis and Internal Medicine, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Przemysław Juszczyński
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Małgorzata Jaworska
- Department of Biochemistry and Biopharmaceuticals, National Medicines Institute, Warsaw, Poland
| | - Magdalena Rosłon
- Department of Biochemistry and Biopharmaceuticals, National Medicines Institute, Warsaw, Poland
| | - Beata Gruber-Bzura
- Department of Biochemistry and Biopharmaceuticals, National Medicines Institute, Warsaw, Poland
| | - Robert Wasilewski
- Department of Disorders of Hemostasis and Internal Medicine, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Beata Baran
- Department of Hemostasis and Metabolic Diseases, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Jerzy Windyga
- Department of Disorders of Hemostasis and Internal Medicine, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Jacek Nowak
- Department of Immunogenetics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland.
| |
Collapse
|
67
|
Hallek M, Al‐Sawaf O. Chronic lymphocytic leukemia: 2022 update on diagnostic and therapeutic procedures. Am J Hematol 2021; 96:1679-1705. [PMID: 34625994 DOI: 10.1002/ajh.26367] [Citation(s) in RCA: 163] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/26/2022]
Abstract
DISEASE OVERVIEW Chronic lymphocytic leukemia (CLL) is one of the most frequent types of leukemia. It typically occurs in elderly patients and has a highly variable clinical course. Leukemic transformation is initiated by specific genomic alterations that interfere with the regulation of proliferation and of apoptosis in clonal B-cells. DIAGNOSIS The diagnosis is established by blood counts, blood smears, and immunophenotyping of circulating B-lymphocytes, which identify a clonal B-cell population carrying the CD5 antigen as well as typical B-cell markers. PROGNOSIS AND STAGING The clinical staging systems provide prognostic information by using the results of physical examination and blood counts. Various biological and genetic markers provide additional prognostic information. Deletions of the short arm of chromosome 17 (del[17p]) and/or mutations of the TP53 gene predict resistance to chemoimmunotherapy and a shorter time to progression with most targeted therapies. The CLL international prognostic index integrates genetic, biological, and clinical variables to identify distinct risk groups of patients with CLL. THERAPY Only patients with active or symptomatic disease or with advanced Binet or Rai stages require therapy. When treatment is indicated, several therapeutic options exist: a combination of the B-cell lymphoma 2 (BCL2) inhibitor venetoclax with obinutuzumab, monotherapy with inhibitors of Bruton tyrosine kinase (BTK) such as ibrutinib and acalabrutinib, or chemoimmunotherapy. At relapse, the initial treatment may be repeated, if the treatment-free interval exceeds 3 years. If the disease relapses earlier, therapy should be changed using an alternative regimen. Patients with a del(17p) or TP53 mutation are usually resistant to chemotherapy and should, therefore, be treated with targeted agents. FUTURE CHALLENGES Combinations of targeted agents are now being investigated to create efficient, potentially curative therapies of CLL with fixed duration. One of the most relevant questions currently addressed in clinical trials is the comparison of monotherapies with BTK inhibitors with fixed duration combination therapies. Moreover, the optimal sequencing of targeted therapies remains to be determined. Alternative therapies are needed for patients with BTK and BCL2 inhibitor double-refractory disease.
Collapse
Affiliation(s)
- Michael Hallek
- Department I of Internal Medicine, University of Cologne, Center for Integrated Oncology Aachen Bonn Köln Düsseldorf, Center of Excellence on “Cellular Stress Responses in Aging‐Associated Diseases” University of Cologne Köln Germany
| | - Othman Al‐Sawaf
- Department I of Internal Medicine, University of Cologne, Center for Integrated Oncology Aachen Bonn Köln Düsseldorf, Center of Excellence on “Cellular Stress Responses in Aging‐Associated Diseases” University of Cologne Köln Germany
| |
Collapse
|
68
|
Tarantelli C, Argnani L, Zinzani PL, Bertoni F. PI3Kδ Inhibitors as Immunomodulatory Agents for the Treatment of Lymphoma Patients. Cancers (Basel) 2021; 13:5535. [PMID: 34771694 PMCID: PMC8582887 DOI: 10.3390/cancers13215535] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/23/2021] [Accepted: 10/29/2021] [Indexed: 12/20/2022] Open
Abstract
The development of small molecules able to block specific or multiple isoforms of phosphoinositide 3-kinases (PI3K) has already been an active field of research for many years in the cancer field. PI3Kδ inhibitors are among the targeted agents most extensively studied for the treatment of lymphoma patients and PI3Kδ inhibitors are already approved by regulatory agencies. More recently, it became clear that the anti-tumor activity of PI3K inhibitors might not be due only to a direct effect on the cancer cells but it can also be mediated via inhibition of the kinases in non-neoplastic cells present in the tumor microenvironment. T-cells represent an important component of the tumor microenvironment and they comprise different subpopulations that can have both anti- and pro-tumor effects. In this review article, we discuss the effects that PI3Kδ inhibitors exert on the immune system with a particular focus on the T-cell compartment.
Collapse
Affiliation(s)
- Chiara Tarantelli
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland;
| | - Lisa Argnani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (L.A.); (P.L.Z.)
- Istituto di Ematologia “Seràgnoli”, Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università degli Studi di Bologna, 40138 Bologna, Italy
| | - Pier Luigi Zinzani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (L.A.); (P.L.Z.)
- Istituto di Ematologia “Seràgnoli”, Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università degli Studi di Bologna, 40138 Bologna, Italy
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland;
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
| |
Collapse
|
69
|
Manni S, Fregnani A, Quotti Tubi L, Spinello Z, Carraro M, Scapinello G, Visentin A, Barilà G, Pizzi M, Dei Tos AP, Vianello F, Zambello R, Gurrieri C, Semenzato G, Trentin L, Piazza F. Protein Kinase CK1α Sustains B-Cell Receptor Signaling in Mantle Cell Lymphoma. Front Oncol 2021; 11:733848. [PMID: 34722279 PMCID: PMC8551451 DOI: 10.3389/fonc.2021.733848] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/06/2021] [Indexed: 12/25/2022] Open
Abstract
Mantle Cell Lymphoma (MCL) is still an incurable B-cell malignancy characterized by poor prognosis and frequent relapses. B Cell Receptor (BCR) signaling inhibitors, in particular of the kinases BTK and PI3Kγ/δ, have demonstrated clinically meaningful anti-proliferative effects in B cell tumors. However, refractoriness to these drugs may develop, portending a dismal prognosis. Protein kinase CK1α is an emerging pro-growth enzyme in B cell malignancies. In multiple myeloma, this kinase sustains β-catenin and AKT-dependent survival and is involved in the activation of NF-κB in B cells. In this study, we analyzed the role of CK1α on MCL cell survival and proliferation, on the regulation of BCR-related BTK, NF-κB, PI3K/AKT signaling cascades and the effects of CK1α chemical inhibition or gene silencing in association with the BTK inhibitor Ibrutinib or the PI3Kγ/δ inhibitor Duvelisib. CK1α was found highly expressed in MCL cells as compared to normal B cells. The inactivation/loss of CK1α caused MCL cell apoptosis and proliferation arrest. CK1α sustained BCR signaling, in particular the NF-κB, AKT and BTK pathways by modulating the phosphorylation of Ser 652 on CARD11, Ser 536 p65 on NF-κB, Ser 473 on AKT, Tyr 223 on BTK, as well as the protein levels. We also provided evidence that CK1α-mediated regulation of CARD11 and BTK likely implicates a physical interaction. The combination of CK1α inhibition with Ibrutinib or Duvelisib synergistically increased cytotoxicity, leading to a further decrease of the activation of BCR signaling pathways. Therefore, CK1α sustains MCL growth through the regulation of BCR-linked survival signaling cascades and protects from Ibrutinib/Duvelisib-induced apoptosis. Thus, CK1α could be considered as a rational molecular target for the treatment of MCL, in association with novel agents.
Collapse
Affiliation(s)
- Sabrina Manni
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Anna Fregnani
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Laura Quotti Tubi
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Zaira Spinello
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Marco Carraro
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Greta Scapinello
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Andrea Visentin
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Gregorio Barilà
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Marco Pizzi
- Department of Medicine-DIMED, Surgical Pathology and Cytopathology Unit, University of Padova, Padova, Italy
| | - Angelo Paolo Dei Tos
- Department of Medicine-DIMED, Surgical Pathology and Cytopathology Unit, University of Padova, Padova, Italy
| | - Fabrizio Vianello
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy
| | - Renato Zambello
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Carmela Gurrieri
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Gianpietro Semenzato
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Livio Trentin
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Francesco Piazza
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine, Padova, Italy
| |
Collapse
|
70
|
Tammam SN, El Safy S, Ramadan S, Arjune S, Krakor E, Mathur S. Repurpose but also (nano)-reformulate! The potential role of nanomedicine in the battle against SARS-CoV2. J Control Release 2021; 337:258-284. [PMID: 34293319 PMCID: PMC8289726 DOI: 10.1016/j.jconrel.2021.07.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023]
Abstract
The coronavirus disease-19 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) has taken the world by surprise. To date, a worldwide approved treatment remains lacking and hence in the context of rapid viral spread and the growing need for rapid action, drug repurposing has emerged as one of the frontline strategies in the battle against SARS-CoV2. Repurposed drugs currently being evaluated against COVID-19 either tackle the replication and spread of SARS-CoV2 or they aim at controlling hyper-inflammation and the rampaged immune response in severe disease. In both cases, the target for such drugs resides in the lungs, at least during the period where treatment could still provide substantial clinical benefit to the patient. Yet, most of these drugs are administered systemically, questioning the percentage of administered drug that actually reaches the lung and as a consequence, the distribution of the remainder of the dose to off target sites. Inhalation therapy should allow higher concentrations of the drug in the lungs and lower concentrations systemically, hence providing a stronger, more localized action, with reduced adverse effects. Therefore, the nano-reformulation of the repurposed drugs for inhalation is a promising approach for targeted drug delivery to lungs. In this review, we critically analyze, what nanomedicine could and ought to do in the battle against SARS-CoV2. We start by a brief description of SARS-CoV2 structure and pathogenicity and move on to discuss the current limitations of repurposed antiviral and immune-modulating drugs that are being clinically investigated against COVID-19. This account focuses on how nanomedicine could address limitations of current therapeutics, enhancing the efficacy, specificity and safety of such drugs. With the appearance of new variants of SARS-CoV2 and the potential implication on the efficacy of vaccines and diagnostics, the presence of an effective therapeutic solution is inevitable and could be potentially achieved via nano-reformulation. The presence of an inhaled nano-platform capable of delivering antiviral or immunomodulatory drugs should be available as part of the repertoire in the fight against current and future outbreaks.
Collapse
Affiliation(s)
- Salma N Tammam
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, The German University in Cairo (GUC), 11835 Cairo, Egypt.
| | - Sara El Safy
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, The German University in Cairo (GUC), 11835 Cairo, Egypt
| | - Shahenda Ramadan
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, The German University in Cairo (GUC), 11835 Cairo, Egypt
| | - Sita Arjune
- Institute of Biochemistry, Department of Chemistry, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Eva Krakor
- Institute of Inorganic Chemistry, Department of Chemistry, , University of Cologne, Greinstraße 6, 50939 Cologne, Germany
| | - Sanjay Mathur
- Institute of Inorganic Chemistry, Department of Chemistry, , University of Cologne, Greinstraße 6, 50939 Cologne, Germany
| |
Collapse
|
71
|
Teo MYM, Fong JY, Lim WM, In LLA. Current Advances and Trends in KRAS Targeted Therapies for Colorectal Cancer. Mol Cancer Res 2021; 20:30-44. [PMID: 34462329 DOI: 10.1158/1541-7786.mcr-21-0248] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/25/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022]
Abstract
Kirsten Rat Sarcoma (KRAS) gene somatic point mutations is one of the most prominently mutated proto-oncogenes known to date, and accounts for approximately 60% of all colorectal cancer cases. One of the most exciting drug development areas against colorectal cancer is the targeting of undruggable kinases and kinase-substrate molecules, although whether and how they can be integrated with other therapies remains a question. Current clinical trial data have provided supporting evidence on the use of combination treatment involving MEK inhibitors and either one of the PI3K inhibitors for patients with metastatic colorectal cancer to avoid the development of resistance and provide effective therapeutic outcome rather than using a single agent alone. Many clinical trials are also ongoing to evaluate different combinations of these pathway inhibitors in combination with immunotherapy for patients with colorectal cancer whose current palliative treatment options are limited. Nevertheless, continued assessment of these targeted cancer therapies will eventually allow patients with colorectal cancer to be treated using a personalized medicine approach. In this review, the most recent scientific approaches and clinical trials targeting KRAS mutations directly or indirectly for the management of colorectal cancer are discussed.
Collapse
Affiliation(s)
- Michelle Yee Mun Teo
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Jung Yin Fong
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Wan Ming Lim
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Lionel Lian Aun In
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia.
| |
Collapse
|
72
|
Jiang B, Qi J, Song Y, Li Z, Tu M, Ping L, Liu Z, Bao H, Xu Z, Qiu L. Phase 1 clinical trial of the PI3Kδ inhibitor YY-20394 in patients with B-cell hematological malignancies. J Hematol Oncol 2021; 14:130. [PMID: 34425850 PMCID: PMC8381505 DOI: 10.1186/s13045-021-01140-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/12/2021] [Indexed: 11/20/2022] Open
Abstract
YY-20394, an oral phosphatidylinositol 3-kinase delta (PI3Kδ) inhibitor, was investigated in a first-in-human study of patients with relapsed or refractory B-cell malignancies. During dose escalation, 25 patients received 20–200 mg of YY-20394 daily. The primary outcome measures were tolerability and dose-limiting toxicity (DLT). The secondary outcomes were pharmacokinetic parameters, progression-free survival (PFS) and the objective response rate (ORR). Since no patients experienced DLT, the maximum tolerated dose (MTD) was not reached. The majority (≥ 5%) of drug-related adverse events were ≥ grade III, being neutropenia (44.0%), pneumonia (16.0%), hyperuricemia (12.0%), lymphocythemia (8.0%), leukopenia (8.0%) and pneumonitis (8.0%). The overall ORR was 64.0% (95% confidence interval (CI): 45.2, 82.8%) including 5 patients with complete remission (CR), 11 with partial remission (PR), 2 with stable disease (SD) and 7 with progressive disease (PD), while the disease control rate (DCR) was 72.0% (95% CI: 54.4, 89.6%). The ORR of 10 patients with follicular lymphoma was 90%. The median PFS time was 255 days. One PR patient with chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) who received 40 mg q.d. had a durable response of around 36 months. The median PFS time of 10 patients with follicular lymphoma was 300 days. A recommended phase 2 dose of 80 mg q.d. was established. Considering that YY-20394 was well-tolerated with promising preliminary efficacy, further development is warranted. Trial registration clinicaltrials.gov, NCT03757000, retrospectively registered, November 28, 2018, https://clinicaltrials.gov/ct2/show/NCT03757000?term=NCT03757000&draw=2&rank=1.
Collapse
Affiliation(s)
- Bo Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 288 Nanjing Road, Heping District, Tianjin, 3000241, China
| | - Junyuan Qi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 288 Nanjing Road, Heping District, Tianjin, 3000241, China.
| | - Yuqin Song
- Key Laboratory of Carcinogenesis and Translational Research, Department of Lymphoma, Peking University School of Oncology, Beijing Cancer Hospital and Institute, Beijing, China
| | - Zengjun Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 288 Nanjing Road, Heping District, Tianjin, 3000241, China
| | - Meifeng Tu
- Key Laboratory of Carcinogenesis and Translational Research, Department of Lymphoma, Peking University School of Oncology, Beijing Cancer Hospital and Institute, Beijing, China
| | - Lingyan Ping
- Key Laboratory of Carcinogenesis and Translational Research, Department of Lymphoma, Peking University School of Oncology, Beijing Cancer Hospital and Institute, Beijing, China
| | - Zongliang Liu
- Shanghai Yingli Pharmaceutical Co., Ltd, Shanghai, China
| | - Hanying Bao
- Shanghai Yingli Pharmaceutical Co., Ltd, Shanghai, China
| | - Zusheng Xu
- Shanghai Yingli Pharmaceutical Co., Ltd, Shanghai, China
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 288 Nanjing Road, Heping District, Tianjin, 3000241, China.
| |
Collapse
|
73
|
Landsburg DJ, Barta SK, Ramchandren R, Batlevi C, Iyer S, Kelly K, Micallef IN, Smith SM, Stevens DA, Alvarez M, Califano A, Shen Y, Bosker G, Parker J, Soikes R, Martinez E, von Roemeling R, Martell RE, Oki Y. Fimepinostat (CUDC-907) in patients with relapsed/refractory diffuse large B cell and high-grade B-cell lymphoma: report of a phase 2 trial and exploratory biomarker analyses. Br J Haematol 2021; 195:201-209. [PMID: 34341990 DOI: 10.1111/bjh.17730] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/13/2021] [Indexed: 12/28/2022]
Abstract
Fimepinostat (CUDC-907), a first-in-class oral small-molecule inhibitor of histone deacetylase and phosphatidylinositol 3-kinase, demonstrated efficacy in a phase 1 study of patients with relapsed/refractory (R/R) diffuse large and high-grade B-cell lymphomas (DLBCL/HGBL), particularly those with increased MYC protein expression and/or MYC gene rearrangement/copy number gain (MYC-altered disease). Therefore, a phase 2 study of fimepinostat was conducted in this patient population with 66 eligible patients treated. The primary end-point of overall response (OR) rate for patients with MYC-IHC ≥40% (n = 46) was 15%. Subsequently, exploratory pooled analyses were performed including patients treated on both the phase 1 and 2 studies based upon the presence of MYC-altered disease as well as a biomarker identified by Virtual Inference of Protein activity by Enriched Regulon analysis (VIPER). For these patients with MYC-altered disease (n = 63), the overall response (OR) rate was 22% with seven responding patients remaining on treatment for approximately two years or longer, and VIPER yielded a three-protein biomarker classification with positive and negative predictive values of ≥85%. Prolonged durations of response were achieved by patients with MYC-altered R/R DLBCL/HGBL treated with single-agent fimepinostat. Combination therapies and/or biomarker-based patient selection strategies may lead to higher response rates in future clinical trials.
Collapse
Affiliation(s)
| | - Stefan K Barta
- University of Pennsylvania, Philadelphia, PA, USA.,Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | - Connie Batlevi
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Swaminathan Iyer
- MD Anderson Cancer Center, Houston, TX, USA.,Houston Methodist Hospital, Houston, TX, USA
| | - Kevin Kelly
- University of Southern California, Los Angeles, CA, USA
| | | | | | | | | | | | - Yao Shen
- DarwinHealth, Inc, New York, NY, USA
| | | | | | | | | | | | | | - Yasuhiro Oki
- MD Anderson Cancer Center, Houston, TX, USA.,Genentech, San Francisco, CA, USA
| |
Collapse
|
74
|
Targeting B-cell receptor and PI3K signaling in diffuse large B-cell lymphoma. Blood 2021; 138:1110-1119. [PMID: 34320160 DOI: 10.1182/blood.2020006784] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/09/2021] [Indexed: 11/20/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous diagnostic category comprising distinct molecular subtypes characterized by diverse genetic aberrations that dictate patient outcome. As roughly one-third of DLBCL patients are not cured by current standard chemo-immunotherapy a better understanding of the molecular pathogenesis is warranted to improve outcome. B-cell receptor (BCR) signaling is crucial for the development, growth and survival of both normal and a substantial fraction of malignant B-cells. Various analyses revealed genetic alterations of central components of the BCR or its downstream signaling effectors in some subtypes of DLBCL. Thus, BCR signaling and the downstream NF-κB and PI3K cascades have been proposed as potential targets for the treatment of DLBCL patients. As one of the main effectors of BCR activation, PI3K mediated signals play a crucial role in the pathogenesis and survival of DLBCL. In this review, we summarize our current understanding of BCR signaling with a special focus on the PI3K pathway in DLBCL and how to utilize this knowledge therapeutically.
Collapse
|
75
|
Gurung AB, Ali MA, Lee J, Farah MA, Al-Anazi KM. Molecular docking and dynamics simulation study of bioactive compounds from Ficus carica L. with important anticancer drug targets. PLoS One 2021; 16:e0254035. [PMID: 34260631 PMCID: PMC8279321 DOI: 10.1371/journal.pone.0254035] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/17/2021] [Indexed: 01/08/2023] Open
Abstract
Ficus carica L., commonly known as fig, has been used in traditional medicine for metabolic disorders, cardiovascular diseases, respiratory diseases and cancer. Various bioactive compounds have been previously isolated from the leaves, fruit, and bark, which have different pharmacological properties, but the anticancer mechanisms of this plant are not known. In the current study we focused on understanding the probable mechanisms underlying the anticancer activity of F. carica plant extracts by molecular docking and dynamic simulation approaches. We evaluated the drug-likeness of the active constituents of the plant and explored its binding affinity with selected anticancer drug target receptors such as cyclin-dependent kinase 2 (CDK-2), cyclin-dependent kinase 6 (CDK-6), topoisomerase-I (Topo I), topoisomerase-II (Topo II), B-cell lymphoma 2 (Bcl-2), and vascular endothelial growth factor receptor 2 (VEGFR-2). In silico toxicity studies revealed that thirteen molecules out of sixty-eight major active compounds in the plant extract have acceptable drug-like properties. Compound 37 (β-bourbonene) has a good binding affinity with the majority of drug targets, as revealed by molecular docking studies. The complexes of the lead molecules with the drug receptors were stable in terms of molecular dynamics simulation derived parameters such as root mean square deviation and radius of gyration. The top ten residues contributing significantly to the binding free energies were deciphered through analysis of molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) and molecular mechanics generalized Born surface area (MM-GBSA). Thus, the results of our studies unravel the potential of F. carica bioactive compounds as anticancer candidate molecules against selected macromolecular receptors.
Collapse
Affiliation(s)
- Arun Bahadur Gurung
- Department of Basic Sciences and Social Sciences, North-Eastern Hill University, Shillong, Meghalaya, India
| | - Mohammad Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Joongku Lee
- Department of Environment and Forest Resources, Chungnam National University, Yuseong-gu, Daejeon, Republic of Korea
| | - Mohammad Abul Farah
- Genetics Laboratory, Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Khalid Mashay Al-Anazi
- Genetics Laboratory, Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
76
|
Huang Y, Wang Y, Tang J, Qin S, Shen X, He S, Ju S. CAM-DR: Mechanisms, Roles and Clinical Application in Tumors. Front Cell Dev Biol 2021; 9:698047. [PMID: 34295898 PMCID: PMC8290360 DOI: 10.3389/fcell.2021.698047] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022] Open
Abstract
Despite the continuous improvement of various therapeutic techniques, the overall prognosis of tumors has been significantly improved, but malignant tumors in the middle and advanced stages still cannot be completely cured. It is now evident that cell adhesion-mediated resistance (CAM-DR) limits the success of cancer therapies and is a great obstacle to overcome in the clinic. The interactions between tumor cells and extracellular matrix (ECM) molecules or adjacent cells may play a significant role in initiating the intracellular signaling pathways that are associated with cell proliferation, survival upon binding to their ligands. Recent studies illustrate that these adhesion-related factors may contribute to the survival of cancer cells after chemotherapeutic therapy, advantageous to resistant cells to proliferate and develop multiple mechanisms of drug resistance. In this review, we focus on the molecular basis of these interactions and the main signal transduction pathways that are involved in the enhancement of the cancer cells’ survival. Furthermore, therapies targeting interactions between cancer cells and their environment to enhance drug response or prevent the emergence of drug resistance will also be discussed.
Collapse
Affiliation(s)
- Yuejiao Huang
- Medical School, Nantong University, Nantong, China.,Department of Medical Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Yuchan Wang
- Department of Pathogenic Biology, School of Medicine, Nantong University, Nantong, China
| | - Jie Tang
- Department of Pathogenic Biology, School of Medicine, Nantong University, Nantong, China
| | - Shiyi Qin
- Medical School, Nantong University, Nantong, China.,Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Xianjuan Shen
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Song He
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Shaoqing Ju
- Medical School, Nantong University, Nantong, China.,Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
77
|
Mining the Microenvironment for Therapeutic Targets in Chronic Lymphocytic Leukemia. ACTA ACUST UNITED AC 2021; 27:306-313. [PMID: 34398557 DOI: 10.1097/ppo.0000000000000536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
ABSTRACT The leukemia cells of patients with chronic lymphocytic leukemia (CLL) are highly fastidious, requiring stimulation by soluble factors and interactions with accessory cells within the supportive niches of lymphoid tissue that comprise the leukemia microenvironment. The advent of therapies that can disrupt some of the stimulatory signaling afforded by the microenvironment has ushered in a new era of targeted therapy, which has dramatically improved clinical outcome and patient survival. Future advances are required for patients who develop intolerance or resistance to current targeted therapies. These may be found by investigating novel drugs that can inhibit identified targets, such as the pathways involved in B-cell receptor signaling, or by developing agents that inhibit additional targets of the leukemia microenvironment. This review describes some of the molecules involved in promoting the growth and/or survival of CLL cells and discusses targeting strategies that may become tomorrow's therapy for patients with CLL.
Collapse
|
78
|
Time-limited, Combined Regimen in Chronic Lymphocytic Leukemia: A Promising Strategy to Achieve a Drug Holiday. Curr Med Sci 2021; 41:431-442. [PMID: 34181208 DOI: 10.1007/s11596-021-2385-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
Chemoimmunotherapy (CIT) is defined as standard first line treatment for chronic lymphocytic leukemia (CLL) patients while patients with unfavorable biological characteristics such as unmutated immunoglobulin heavy chain (UM-IGHV) and TP53 aberration failed to benefit from it. The emergency of the small molecular targeted agents including Bruton's tyrosine kinase (BTK) inhibitor (BTKi) leads to a brand-new era, from a CIT to a chemo-free era in CLL. However, the treatment of target agents is not enough to attain a deep remission and high rate of complete remission (CR), especially in patients with high risks. The long duration brought about problems, such as cost, drug resistance and toxicity. To benefit CLL in progression free survival (PFS) and long-term remission, exploration of time-limited therapies, mainly with BTKi plus CIT and BCL2i based combination therapy has become a mainstream in clinical trials. The time-limited combination therapy shed light on the promising potentiality to attain sustainable deep remission and partly overcame the risk factors, although long term follow-up is required to consolidate the conclusion. In this review, we intend to introduce key results of clinical trials with combination therapy, discuss the achievements and limitations and put forward future direction for clinical trial design in this field.
Collapse
|
79
|
Miari KE, Guzman ML, Wheadon H, Williams MTS. Macrophages in Acute Myeloid Leukaemia: Significant Players in Therapy Resistance and Patient Outcomes. Front Cell Dev Biol 2021; 9:692800. [PMID: 34249942 PMCID: PMC8264427 DOI: 10.3389/fcell.2021.692800] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/04/2021] [Indexed: 12/19/2022] Open
Abstract
Acute Myeloid Leukaemia (AML) is a commonly occurring severe haematological malignancy, with most patients exhibiting sub-optimal clinical outcomes. Therapy resistance significantly contributes towards failure of traditional and targeted treatments, disease relapse and mortality in AML patients. The mechanisms driving therapy resistance in AML are not fully understood, and approaches to overcome therapy resistance are important for curative therapies. To date, most studies have focused on therapy resistant mechanisms inherent to leukaemic cells (e.g., TP53 mutations), overlooking to some extent, acquired mechanisms of resistance through extrinsic processes. In the bone marrow microenvironment (BMME), leukaemic cells interact with the surrounding bone resident cells, driving acquired therapy resistance in AML. Growing evidence suggests that macrophages, highly plastic immune cells present in the BMME, play a role in the pathophysiology of AML. Leukaemia-supporting macrophage subsets (CD163+CD206+) are elevated in preclinical in vivo models of AML and AML patients. However, the relationship between macrophages and therapy resistance in AML warrants further investigation. In this review, we correlate the potential links between macrophages, the development of therapy resistance, and patient outcomes in AML. We specifically focus on macrophage reprogramming by AML cells, macrophage-driven activation of anti-cell death pathways in AML cells, and the association between macrophage phenotypes and clinical outcomes in AML, including their potential prognostic value. Lastly, we discuss therapeutic targeting of macrophages, as a strategy to circumvent therapy resistance in AML, and discuss how emerging genomic and proteomic-based approaches can be utilised to address existing challenges in this research field.
Collapse
Affiliation(s)
- Katerina E. Miari
- Charles Oakley Laboratories, Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Monica L. Guzman
- Department of Hematology & Medical Oncology, Graduate School of Medical Sciences, Cornell University, New York, NY, United States
| | - Helen Wheadon
- Paul O’Gorman Leukaemia Research Centre, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mark T. S. Williams
- Charles Oakley Laboratories, Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| |
Collapse
|
80
|
Rogers BB. B-Cell Malignancies: The Use of Small Molecule Agents for Treatment and Management. Clin J Oncol Nurs 2021; 24:199-204. [PMID: 32196006 DOI: 10.1188/20.cjon.199-204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hematologic B-cell malignancies, which have varying behavior patterns, disease processes, and treatment responses, include non-Hodgkin lymphoma, leukemias, and myeloma. Although monoclonal antibodies and other agents have led to dramatic advances in the treatment of B-cell malignancies, the development of small molecules have enhanced the ability to treat and manage these malignancies and their adverse events (AEs). Oncology nurses need to be educated on the unique side effects for each class of these agents so that they can administer interventions to prevent and manage AEs in patients.
Collapse
|
81
|
Julia E, Salles G. EZH2 inhibition by tazemetostat: mechanisms of action, safety and efficacy in relapsed/refractory follicular lymphoma. Future Oncol 2021; 17:2127-2140. [PMID: 33709777 PMCID: PMC9892962 DOI: 10.2217/fon-2020-1244] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Epigenetic alterations are major drivers of follicular lymphomagenesis, and these alterations are frequently caused by mutations in or upregulation of EZH2, a histone methyltransferase responsible for PRC2-mediated gene repression. EZH2 hyperactivation increases proliferation of B cells and prevents them from exiting the germinal center, favoring lymphomagenesis. The first FDA-approved EZH2 inhibitor is tazemetostat, which is orally available and targets both mutant and wild-type forms of the protein to induce cell cycle arrest and apoptosis of lymphoma cells in preclinical models. Phase II trials have shown objective response rates of 69% for patients with lymphoma-carrying EZH2 mutations and 35% for those with wild-type EZH2 without major toxicity, leading to tazemetostat approval for this cancer by the US FDA in June 2020.
Collapse
Affiliation(s)
- Edith Julia
- Department of Hematology, Hospices Civils de Lyon, Hôpital Lyon-Sud, Pierre-Bénite, 69310, France,Faculté de Médecine Lyon-Sud, Université de Lyon, Université Claude Bernard, 165, Chemin du Grand Revoyet, Cedex, Oullins, 69495, France
| | - Gilles Salles
- Faculté de Médecine Lyon-Sud, Université de Lyon, Université Claude Bernard, 165, Chemin du Grand Revoyet, Cedex, Oullins, 69495, France,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA,Author for correspondence:
| |
Collapse
|
82
|
Hishida S, Kawakami K, Fujita Y, Kato T, Takai M, Iinuma K, Nakane K, Tsuchiya T, Koie T, Miura Y, Ito M, Mizutani K. Proteomic analysis of extracellular vesicles identified PI3K pathway as a potential therapeutic target for cabazitaxel-resistant prostate cancer. Prostate 2021; 81:592-602. [PMID: 33905554 DOI: 10.1002/pros.24138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/07/2021] [Accepted: 04/11/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND Cabazitaxel (CBZ) is now widely used for prostate cancer (PC) patients resistant to docetaxel (DOC), however, most patients eventually acquire resistance. It will, therefore, be of great benefit to discover novel therapeutic target for the resistance. We aimed to identify candidate therapeutic targets for CBZ-resistance by proteomic analysis of extracellular vesicles (EVs) isolated from serum of DOC-resistant PC patients who later developed CBZ-resistance as well as those harvested from culture medium of DOC- and CBZ-resistant PC cell lines. METHODS Using T-cell immunoglobulin domain and mucin domain-containing protein 4 (Tim4) conjugated to magnetic beads, EVs were purified from serum of PC patients with DOC-resistance that was collected before and after acquiring CBZ-resistance and conditioned medium of DOC-resistant (22Rv1DR) and CBZ-resistant (22Rv1CR) PC cell lines. Protein analysis of EVs was performed by nanoLC-MS/MS, followed by a comparative analysis of protein expression and network analysis. The cytotoxic effect of a phosphatidylinositol-3-kinase (PI3K) inhibitor, ZSTK474, was evaluated by WST-1 assay. The expression and phosphorylation of PI3K and PTEN were examined by western blot analysis. RESULTS Among differentially regulated proteins, 77 and 61 proteins were significantly increased in EVs from CBZ-resistant PC cell line and patients, respectively. A comparison between the two datasets revealed that six proteins, fructose-bisphosphate aldolase, cytosolic nonspecific dipeptidase, CD63, CD151, myosin light chain 9, and peroxiredoxin-6 were elevated in EVs from both cell line and patients. Network analysis of the increased EV proteins identified pathways associated with CBZ-resistance including PI3K signaling pathway. ZSTK474 significantly inhibited growth of 22Rv1CR cells and improved their sensitivity to CBZ. In 22Rv1CR cells, PI3K was activated and PTEN that inhibits PI3K was deactivated. CONCLUSIONS Proteomic analysis of serum EVs was successfully accomplished by using Tim-4 as a tool to isolate highly purified EVs. Our results suggest that the combination use of CBZ and PI3K inhibitor could be a promising treatment option for CBZ-resistant PC patients.
Collapse
Affiliation(s)
- Seiji Hishida
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kyojiro Kawakami
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Yasunori Fujita
- Research Team for Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Taku Kato
- Department of Urology, Asahi University Hospital, Gifu, Japan
| | - Manabu Takai
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Koji Iinuma
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Keita Nakane
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tomohiro Tsuchiya
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takuya Koie
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yuri Miura
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Masafumi Ito
- Research Team for Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Kosuke Mizutani
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
83
|
Lampson BL, Brown JR. The Evolving Use of Phosphatidylinositol 3-Kinase Inhibitors for the Treatment of Chronic Lymphocytic Leukemia. Hematol Oncol Clin North Am 2021; 35:807-826. [PMID: 34174987 DOI: 10.1016/j.hoc.2021.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
B cells express 4 phosphatidylinositol 3-kinase (PI3K) isoforms and have a dependence on p110δ for survival. The design of isoform-selective inhibitors is possible, and pharmacologic inhibition of p110δ is toxic to neoplastic chronic lymphocytic leukemia (CLL) cells for both cell-intrinsic and cell-extrinsic reasons. Idelalisib is a first-in-class p110δ inhibitor that exhibits efficacy for the treatment of relapsed CLL irrespective of adverse prognostic features. Duvelisib is a p110γ/δ inhibitor with a similar efficacy and safety profile to idelalisib. Recent data indicate that umbralisib, a p110δ/CK-1ε dual inhibitor, is safe and effective when administered to patients with CLL.
Collapse
Affiliation(s)
- Benjamin L Lampson
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Jennifer R Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, CLL Center, 450 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
84
|
Bewarder M, Stilgenbauer S, Thurner L, Kaddu-Mulindwa D. Current Treatment Options in CLL. Cancers (Basel) 2021; 13:2468. [PMID: 34069354 PMCID: PMC8158749 DOI: 10.3390/cancers13102468] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023] Open
Abstract
After impressive developments in recent years with the rise of new targeted agents, chemoimmunotherapy (CIT) only plays a minor role in the treatment of patients with chronic lymphocytic leukemia (CLL). Inhibitors of the Bruton tyrosine kinase (BTK), such as ibrutinib or more recently acalabrutinib, are highly effective, even in poor-risk or chemo-refractory patients. Venetoclax, an inhibitor of the anti-apoptotic BCL2 protein and, to a lesser extent, phosphoinositide-3 kinase (PI3K) delta inhibitors, add to the armamentarium of targeted agents for the treatment of CLL. Furthermore, anti-CD20 monoclonal antibodies are used very successfully either alone or in combination with BTK, BCL2 or PI3K inhibitors. Despite these advances, there is still an ongoing pursuit for new therapeutic approaches in the treatment of CLL. An even bigger challenge poses the determination of the optimal combination and sequence of those drugs. Here, we give an overview of current treatment options in CLL, weighing the advantages and disadvantages of each approach in the light of different clinical settings.
Collapse
Affiliation(s)
| | | | | | - Dominic Kaddu-Mulindwa
- Department of Hematology, Oncology, Clinical Immunology, Rheumatology, Medical School, University of Saarland, 66424 Homburg, Germany; (M.B.); (S.S.); (L.T.)
| |
Collapse
|
85
|
Smith SD, Gopal AK. Umbralisib: Walking the Tightrope of PI3K Inhibition in Indolent NHL. J Clin Oncol 2021; 39:1671-1673. [PMID: 33861621 DOI: 10.1200/jco.21.00284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Stephen D Smith
- Division of Medical Oncology, Department of Internal Medicine, University of Washington, Seattle, WA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA.,Seattle Cancer Care Alliance, Seattle, WA
| | - Ajay K Gopal
- Division of Medical Oncology, Department of Internal Medicine, University of Washington, Seattle, WA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA.,Seattle Cancer Care Alliance, Seattle, WA
| |
Collapse
|
86
|
Fradera X, Deng Q, Achab A, Garcia Y, Kattar SD, McGowan MA, Methot JL, Wilson K, Zhou H, Shaffer L, Goldenblatt P, Tong V, Augustin MA, Altman MD, Lesburg CA, Shah S, Katz JD. Discovery of a new series of PI3K-δ inhibitors from Virtual Screening. Bioorg Med Chem Lett 2021; 42:128046. [PMID: 33865969 DOI: 10.1016/j.bmcl.2021.128046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/08/2021] [Accepted: 04/10/2021] [Indexed: 11/18/2022]
Abstract
PI3K-δ mediates key immune cell signaling pathways and is a target of interest for treatment of oncological and immunological disorders. Here we describe the discovery and optimization of a novel series of PI3K-δ selective inhibitors. We first identified hits containing an isoindolinone scaffold using a combined ligand- and receptor-based virtual screening workflow, and then improved potency and selectivity guided by structural data and modeling. Careful optimization of molecular properties led to compounds with improved permeability and pharmacokinetic profile, and high potency in a whole blood assay.
Collapse
Affiliation(s)
- Xavier Fradera
- Computational and Structural Chemistry, Merck & Co., Inc., Boston, MA, USA.
| | - Qiaolin Deng
- Computational and Structural Chemistry, Merck & Co., Inc., Kenilworth, NJ, USA
| | | | - Yudith Garcia
- Discovery Chemistry, Merck & Co., Inc., Boston, MA, USA
| | | | | | - Joey L Methot
- Discovery Chemistry, Merck & Co., Inc., Boston, MA, USA
| | - Kevin Wilson
- Discovery Chemistry, Merck & Co., Inc., Boston, MA, USA
| | - Hua Zhou
- Discovery Chemistry, Merck & Co., Inc., Boston, MA, USA
| | - Lynsey Shaffer
- Quantitative Biosciences, Merck & Co., Inc., Boston, MA, USA
| | | | | | | | - Michael D Altman
- Computational and Structural Chemistry, Merck & Co., Inc., Boston, MA, USA
| | - Charles A Lesburg
- Computational and Structural Chemistry, Merck & Co., Inc., Boston, MA, USA
| | - Sanjiv Shah
- Quantitative Biosciences, Merck & Co., Inc., Boston, MA, USA
| | - Jason D Katz
- Discovery Chemistry, Merck & Co., Inc., Boston, MA, USA
| |
Collapse
|
87
|
Luo C, Ampomah-Wireko M, Wang H, Wu C, Wang Q, Zhang H, Cao Y. Isoquinolines: Important Cores in Many Marketed and Clinical Drugs. Anticancer Agents Med Chem 2021; 21:811-824. [PMID: 32329698 DOI: 10.2174/1871520620666200424132248] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/07/2020] [Accepted: 02/19/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Isoquinoline analogs are an important, structurally diverse class of compounds that are extensively used as pharmaceuticals. Derivatives containing the isoquinoline scaffold have become a focus of therapeutic research because of their wide range of biological characteristics. Examples of these drugs, many of which are in clinical application or at the pre-clinical stage, are used to treat a broad swathe of ailments, such as tumors, respiratory diseases, infections, nervous system diseases, cardiovascular and cerebrovascular diseases, endocrine and metabolic diseases. METHODS Data were collected from PubMed, Web of Science, and SciFinder, through searches of drug names. RESULTS At least 38 isoquinoline-based therapeutic drugs are in clinical application or clinical trials, and their chemical structure and pharmacokinetics are described in detail. CONCLUSION The isoquinoline ring is a privileged scaffold which is often preferred as a structural basis for drug design, and plays an important role in drug discovery. This review provides a guide for pharmacologists to find effective preclinical/clinical drugs and examines recent progress in the application of the isoquinoline scaffold.
Collapse
Affiliation(s)
- Chunying Luo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | | | - Huanhuan Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Chunli Wu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qing Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Hui Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yaquan Cao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
88
|
Mueller-Schoell A, Groenland SL, Scherf-Clavel O, van Dyk M, Huisinga W, Michelet R, Jaehde U, Steeghs N, Huitema ADR, Kloft C. Therapeutic drug monitoring of oral targeted antineoplastic drugs. Eur J Clin Pharmacol 2021; 77:441-464. [PMID: 33165648 PMCID: PMC7935845 DOI: 10.1007/s00228-020-03014-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE This review provides an overview of the current challenges in oral targeted antineoplastic drug (OAD) dosing and outlines the unexploited value of therapeutic drug monitoring (TDM). Factors influencing the pharmacokinetic exposure in OAD therapy are depicted together with an overview of different TDM approaches. Finally, current evidence for TDM for all approved OADs is reviewed. METHODS A comprehensive literature search (covering literature published until April 2020), including primary and secondary scientific literature on pharmacokinetics and dose individualisation strategies for OADs, together with US FDA Clinical Pharmacology and Biopharmaceutics Reviews and the Committee for Medicinal Products for Human Use European Public Assessment Reports was conducted. RESULTS OADs are highly potent drugs, which have substantially changed treatment options for cancer patients. Nevertheless, high pharmacokinetic variability and low treatment adherence are risk factors for treatment failure. TDM is a powerful tool to individualise drug dosing, ensure drug concentrations within the therapeutic window and increase treatment success rates. After reviewing the literature for 71 approved OADs, we show that exposure-response and/or exposure-toxicity relationships have been established for the majority. Moreover, TDM has been proven to be feasible for individualised dosing of abiraterone, everolimus, imatinib, pazopanib, sunitinib and tamoxifen in prospective studies. There is a lack of experience in how to best implement TDM as part of clinical routine in OAD cancer therapy. CONCLUSION Sub-therapeutic concentrations and severe adverse events are current challenges in OAD treatment, which can both be addressed by the application of TDM-guided dosing, ensuring concentrations within the therapeutic window.
Collapse
Affiliation(s)
- Anna Mueller-Schoell
- Dept. of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
- Graduate Research Training Program, PharMetrX, Berlin/Potsdam, Germany
| | - Stefanie L Groenland
- Department of Clinical Pharmacology, Division of Medical Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Oliver Scherf-Clavel
- Institute of Pharmacy and Food Chemistry, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Madelé van Dyk
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Wilhelm Huisinga
- Institute of Mathematics, University of Potsdam, Potsdam, Germany
| | - Robin Michelet
- Dept. of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
| | - Ulrich Jaehde
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | - Neeltje Steeghs
- Department of Clinical Pharmacology, Division of Medical Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands
- Department of Clinical Pharmacy, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Charlotte Kloft
- Dept. of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany.
| |
Collapse
|
89
|
Shah A, Barrientos JC. Oral PI3K-δ,γ Inhibitor for the Management of People with Chronic Lymphocytic Leukemia and Small Lymphocytic Lymphoma: A Narrative Review on Duvelisib. Onco Targets Ther 2021; 14:2109-2119. [PMID: 33790574 PMCID: PMC8006759 DOI: 10.2147/ott.s189032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 03/05/2021] [Indexed: 11/23/2022] Open
Abstract
The development of highly effective targeted therapies has led to a new treatment paradigm in patients with chronic lymphocytic leukemia or small lymphocytic lymphoma (CLL/SLL). Despite these advances, many patients will eventually require alternative treatment strategies due to the emergence of tolerability issues or resistance to these novel agents. Duvelisib is a first-in-class, potent oral agent with dual inhibitor activity against the δ and γ isoforms of phosphoinositide 3-kinase (PI3Kδ and PI3Kγ), which are specific to the hematopoietic system. Dysregulation of the PI3K/PTEN/AKT/mTOR pathway has been implicated in cancer cell growth, survival and metabolism and has been the subject of cancer drug development in recent years. Duvelisib demonstrated activity in CLL/SLL in early trials, leading to further evaluation in the Phase 3 DUO trial that compared duvelisib against ofatumumab in patients with relapsed/refractory CLL/SLL. This trial led to the Food and Drug Administration (FDA) approval for the treatment of adult patients with CLL/SLL after at least two prior lines of therapy. The major reason for therapy discontinuation is the development of serious adverse events, which include severe infections and diarrhea/colitis, precluding its widespread use. Ongoing clinical trials are evaluating duvelisib in combination strategies and with alternate dosing schedules in patients with CLL/SLL. With close monitoring, duvelisib can be a promising drug for the treatment of patients with relapsed or refractory CLL/SLL. This review summarizes the relevant clinical data from recent clinical advances in CLL and aims to interpret the duvelisib trials while exploring strategies to improve its use and adverse event management in the era of novel targeted agents.
Collapse
Affiliation(s)
- Ankit Shah
- Division of Hematology-Oncology, Department of Medicine at Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Jacqueline C Barrientos
- CLL Research and Treatment Center, Division of Hematology-Oncology, Department of Medicine at Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| |
Collapse
|
90
|
Sakata-Yanagimoto M, Fukumoto K, Karube K, Chiba S. Molecular understanding of peripheral T-cell lymphomas, not otherwise specified (PTCL, NOS): A complex disease category. J Clin Exp Hematop 2021; 61:61-70. [PMID: 33716242 PMCID: PMC8265491 DOI: 10.3960/jslrt.20059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Peripheral T-cell lymphoma, not otherwise specified (PTCL, NOS) includes various
diseases. Attempts have been made to identify distinct properties of disease within the
PTCL, NOS classification and evaluate their significance to prognosis. Comprehensive gene
expression analysis and evaluation of genomic abnormalities have successfully identified
specific diseases from heterogeneous PTCL, NOS cases. For example, cases with properties
of T follicular helper cells have been identified and classified as an entity resembling
angioimmunoblastic T-cell lymphoma (AITL), based on both immunohistochemistry and genomic
features. Here, we focus on the molecular pathology of PTCL, NOS and discuss recent
changes relevant to its classification.
Collapse
Affiliation(s)
- Mamiko Sakata-Yanagimoto
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Department of Hematology, University of Tsukuba Hospital, Tsukuba, Japan.,Department of Hematology, Comprehensive Human Biosciences, University of Tsukuba, Tsukuba, Japan
| | - Kota Fukumoto
- Department of Hematology, University of Tsukuba Hospital, Tsukuba, Japan.,Department of Hematology, Comprehensive Human Biosciences, University of Tsukuba, Tsukuba, Japan
| | - Kennosuke Karube
- Department of Pathology and Cell Biology, Graduate School of Medicine and Faculty of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Shigeru Chiba
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Department of Hematology, University of Tsukuba Hospital, Tsukuba, Japan.,Department of Hematology, Comprehensive Human Biosciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
91
|
Guarente V, Sportoletti P. Lessons, Challenges and Future Therapeutic Opportunities for PI3K Inhibition in CLL. Cancers (Basel) 2021; 13:cancers13061280. [PMID: 33805745 PMCID: PMC7999552 DOI: 10.3390/cancers13061280] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 01/04/2023] Open
Abstract
Simple Summary The phosphoinositide 3-kinase (PI3K) is a family of kinases that play a key role in the biology of chronic lymphocytic leukemia (CLL). Inhibitors of PI3K demonstrated efficacy in the treatment of CLL, associated with significant adverse events that limited the clinical use of this drugs. In this review, we underlined the relevance of PI3K inhibitors in CLL, we collected recent data about the use of these molecules in clinical practice and in clinical trial discussing strategies for the management of adverse events, which could help to improve the use of these therapies in the treatment of CLL. Abstract Chronic lymphocytic leukemia (CLL) shows constitutive phosphatidylinositol 3-kinase (PI3K) activation resulting from aberrant regulation of the B-cell receptor (BCR) signaling. PI3K inhibitors have been evaluated in CLL therapy, bringing a new treatment opportunity for patients with this disease. Despite the proven therapeutic efficacy, the use of approved PI3K inhibitors is limited by severe immune-mediated toxicities and given the availability of other more tolerable agents. This article reviews the relevance of PI3K signaling and pharmacologic inhibition in CLL. Data on efficacy and toxicity of PI3K inhibitors are also presented, as well as strategies for overcoming barriers for their clinical use in CLL treatment.
Collapse
|
92
|
Siddesh A, Sriram D, Zakkula A, Kumar R, Dittakavi S, Zainuddin M, Trivedi RK, Mullangi R. Validated HPLC-UV method for simultaneous quantification of phosphatidylinositol 3-kinase inhibitors, copanlisib, duvelisib and idelalisib, in rat plasma: Application to a pharmacokinetic study in rats. Biomed Chromatogr 2021; 35:e5015. [PMID: 33125719 DOI: 10.1002/bmc.5015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/16/2020] [Accepted: 10/22/2020] [Indexed: 11/07/2022]
Abstract
Phosphatidylinositol 3-kinase (PI3K) inhibitors are a novel class of anticancer drugs that are approved to treat various malignancies. We report the development and validation of a HPLC method for the simultaneous quantitation of three PI3K inhibitors, namely copanlisib, duvelisib and idelalisib, in rat plasma as per the regulatory guidelines of the United States Food and Drug Administration. The method involves extraction of copanlisib, duvelisib and idelalisib along with an internal standard (IS; filgotinib) from rat plasma (100 μL) using a liquid-liquid extraction process. The chromatographic separation of the analytes was achieved using step-wise gradient elution on a Hypersil Gold C18 column. The UV detection wavelength was set at λmax = 280 nm. Copanlisib, duvelisib, idelalisib and the IS eluted at 7.16, 12.6, 11.9 and 9.86 min, respectively, with a total run time of 15 min. The calibration curve ranged from 50 to 5000 ng/mL for all the analytes. Inter- and intra-day precision and accuracy, stability studies, dilution integrity and incurred sample reanalysis were investigated for all three analytes, and the results met the acceptance criteria. The validated HPLC method was successfully applied to a pharmacokinetic study in rats.
Collapse
Affiliation(s)
- Anup Siddesh
- Drug Metabolism and Pharmacokinetics, Jubilant Biosys Ltd, Bangalore, India
| | - Dhurvu Sriram
- Drug Metabolism and Pharmacokinetics, Jubilant Biosys Ltd, Bangalore, India
| | - Ashok Zakkula
- Drug Metabolism and Pharmacokinetics, Jubilant Biosys Ltd, Bangalore, India
| | - Rajnish Kumar
- Drug Metabolism and Pharmacokinetics, Jubilant Biosys Ltd, Bangalore, India
| | | | - Mohd Zainuddin
- Drug Metabolism and Pharmacokinetics, Jubilant Biosys Ltd, Bangalore, India
| | - Ravi Kumar Trivedi
- Drug Metabolism and Pharmacokinetics, Jubilant Biosys Ltd, Bangalore, India
| | - Ramesh Mullangi
- Drug Metabolism and Pharmacokinetics, Jubilant Biosys Ltd, Bangalore, India
| |
Collapse
|
93
|
Nikolaenko L, Liu T, Danilov AV. Duvelisib (Copiktra) in relapsed or refractory chronic lymphocytic leukemia: safety and efficacy. Expert Rev Anticancer Ther 2021; 21:481-488. [PMID: 33499685 DOI: 10.1080/14737140.2021.1882857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: The treatment landscape of chronic lymphocytic leukemia (CLL) has changed dramatically with the introduction of novel targeted therapies. Phosphoinotiside-3 kinase (PI3K) is a B-cell receptor-associated kinase that is essential for growth, survival and migration of neoplastic B cells and is implicated in disease progression and drug resistance.Area covered: PI3K inhibitors idelalisib and duvelisib are approved in therapy of relapsed/refractory (R/R) CLL. In this drug profile review, we focus on duvelisib, an oral inhibitor of PI3Kδ and PI3Kγ isoforms, in treatment of patients with R/R CLL.Expert opinion: Duvelisib, a selective dual PI3Kδ/γ inhibitor, achieves meaningful efficacy in CLL, including in patients with high-risk features. Duvelisib therapy may be particularly appropriate for patients who are suboptimal candidates for Bruton tyrosine kinase inhibitors (BTK), such as those with cardiac conditions, poorly controlled hypertension, or requiring full-dose anticoagulation. Tumor lysis monitoring is not necessary with duvelisib, rendering advantage over the BCL2 inhibitor venetoclax. Patients who progress on both BTK inhibitors and venetoclax may be particularly good candidates for duvelisib therapy. With close monitoring and management of adverse events, duvelisib will continue to have a role in therapy of R/R CLL.
Collapse
Affiliation(s)
- Liana Nikolaenko
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Tingting Liu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Alexey V Danilov
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
94
|
Follicular Lymphoma Microenvironment: An Intricate Network Ready for Therapeutic Intervention. Cancers (Basel) 2021; 13:cancers13040641. [PMID: 33562694 PMCID: PMC7915642 DOI: 10.3390/cancers13040641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023] Open
Abstract
Follicular Lymphoma (FL), the most common indolent non-Hodgkin's B cell lymphoma, is a paradigm of the immune microenvironment's contribution to disease onset, progression, and heterogeneity. Over the last few years, state-of-the-art technologies, including whole-exome sequencing, single-cell RNA sequencing, and mass cytometry, have precisely dissected the specific cellular phenotypes present in the FL microenvironment network and their role in the disease. In this already complex picture, the presence of recurring mutations, including KMT2D, CREBBP, EZH2, and TNFRSF14, have a prominent contributory role, with some of them finely tuning this exquisite dependence of FL on its microenvironment. This precise characterization of the enemy (FL) and its allies (microenvironment) has paved the way for the development of novel therapies aimed at dismantling this contact network, weakening tumor cell support, and reactivating the host's immune response against the tumor. In this review, we will describe the main microenvironment actors, together with the current and future therapeutic approaches targeting them.
Collapse
|
95
|
Walker JS, Hing ZA, Harrington B, Baumhardt J, Ozer HG, Lehman A, Giacopelli B, Beaver L, Williams K, Skinner JN, Cempre CB, Sun Q, Shacham S, Stromberg BR, Summers MK, Abruzzo LV, Rassenti L, Kipps TJ, Parikh S, Kay NE, Rogers KA, Woyach JA, Coppola V, Chook YM, Oakes C, Byrd JC, Lapalombella R. Recurrent XPO1 mutations alter pathogenesis of chronic lymphocytic leukemia. J Hematol Oncol 2021; 14:17. [PMID: 33451349 PMCID: PMC7809770 DOI: 10.1186/s13045-021-01032-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 01/01/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Exportin 1 (XPO1/CRM1) is a key mediator of nuclear export with relevance to multiple cancers, including chronic lymphocytic leukemia (CLL). Whole exome sequencing has identified hot-spot somatic XPO1 point mutations which we found to disrupt highly conserved biophysical interactions in the NES-binding groove, conferring novel cargo-binding abilities and forcing cellular mis-localization of critical regulators. However, the pathogenic role played by change-in-function XPO1 mutations in CLL is not fully understood. METHODS We performed a large, multi-center retrospective analysis of CLL cases (N = 1286) to correlate nonsynonymous mutations in XPO1 (predominantly E571K or E571G; n = 72) with genetic and epigenetic features contributing to the overall outcomes in these patients. We then established a mouse model with over-expression of wildtype (wt) or mutant (E571K or E571G) XPO1 restricted to the B cell compartment (Eµ-XPO1). Eµ-XPO1 mice were then crossed with the Eµ-TCL1 CLL mouse model. Lastly, we determined crystal structures of XPO1 (wt or E571K) bound to several selective inhibitors of nuclear export (SINE) molecules (KPT-185, KPT-330/Selinexor, and KPT-8602/Eltanexor). RESULTS We report that nonsynonymous mutations in XPO1 associate with high risk genetic and epigenetic features and accelerated CLL progression. Using the newly-generated Eµ-XPO1 mouse model, we found that constitutive B-cell over-expression of wt or mutant XPO1 could affect development of a CLL-like disease in aged mice. Furthermore, concurrent B-cell expression of XPO1 with E571K or E571G mutations and TCL1 accelerated the rate of leukemogenesis relative to that of Eµ-TCL1 mice. Lastly, crystal structures of E571 or E571K-XPO1 bound to SINEs, including Selinexor, are highly similar, suggesting that the activity of this class of compounds will not be affected by XPO1 mutations at E571 in patients with CLL. CONCLUSIONS These findings indicate that mutations in XPO1 at E571 can drive leukemogenesis by priming the pre-neoplastic lymphocytes for acquisition of additional genetic and epigenetic abnormalities that collectively result in neoplastic transformation.
Collapse
Affiliation(s)
- Janek S Walker
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 460 OSUCCC, 410 West 12th Avenue, Columbus, OH, 43210, USA
| | - Zachary A Hing
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 460 OSUCCC, 410 West 12th Avenue, Columbus, OH, 43210, USA
| | - Bonnie Harrington
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 460 OSUCCC, 410 West 12th Avenue, Columbus, OH, 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Jordan Baumhardt
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hatice Gulcin Ozer
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Amy Lehman
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Brian Giacopelli
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 460 OSUCCC, 410 West 12th Avenue, Columbus, OH, 43210, USA
| | - Larry Beaver
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 460 OSUCCC, 410 West 12th Avenue, Columbus, OH, 43210, USA
| | - Katie Williams
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 460 OSUCCC, 410 West 12th Avenue, Columbus, OH, 43210, USA
| | - Jordan N Skinner
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 460 OSUCCC, 410 West 12th Avenue, Columbus, OH, 43210, USA
| | - Casey B Cempre
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 460 OSUCCC, 410 West 12th Avenue, Columbus, OH, 43210, USA
| | - Qingxiang Sun
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | | | - Benjamin R Stromberg
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, OH, USA
| | - Matthew K Summers
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, OH, USA
| | - Lynne V Abruzzo
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Laura Rassenti
- Department of Medicine, Division of Hematology, University of California-San Diego School of Medicine, San Diego, CA, USA
| | - Thomas J Kipps
- Department of Medicine, Division of Hematology, University of California-San Diego School of Medicine, San Diego, CA, USA
| | - Sameer Parikh
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Neil E Kay
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Kerry A Rogers
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 460 OSUCCC, 410 West 12th Avenue, Columbus, OH, 43210, USA
| | - Jennifer A Woyach
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 460 OSUCCC, 410 West 12th Avenue, Columbus, OH, 43210, USA
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH, USA
- Genetically Engineered Mouse Modeling Core, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, USA
| | - Yuh Min Chook
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christopher Oakes
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 460 OSUCCC, 410 West 12th Avenue, Columbus, OH, 43210, USA
| | - John C Byrd
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 460 OSUCCC, 410 West 12th Avenue, Columbus, OH, 43210, USA
- Division of Medicinal Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Rosa Lapalombella
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 460 OSUCCC, 410 West 12th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
96
|
Abramson JS, Ghosh N, Smith SM. ADCs, BiTEs, CARs, and Small Molecules: A New Era of Targeted Therapy in Non-Hodgkin Lymphoma. Am Soc Clin Oncol Educ Book 2021; 40:302-313. [PMID: 32421455 DOI: 10.1200/edbk_279043] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Novel immunotherapies and small molecular inhibitors are transforming our approach to previously treated and newly diagnosed patients across the spectrum of non-Hodgkin lymphomas (NHLs). Anti-CD19 CAR T cells are now indicated for the treatment of relapsed/refractory aggressive B-cell lymphomas after at least two previous lines of therapy in which durable remissions are achieved in approximately 40% of previously incurable patients. Second-line chemoimmunotherapy remains the standard of care at first relapse, but poor outcomes with conventional treatment in this setting creates an appealing rationale for earlier use of CAR T cells, which is currently under investigation, along with even earlier use in selected high-risk patients in the frontline setting. Other emerging immunotherapies include antibody-drug conjugates (ADCs), such as polatuzumab vedotin for multiple-relapsed diffuse large B-cell lymphoma (DLBCL) in combination with bendamustine-rituximab. Multiple bispecific antibodies that bring malignant B cells in contact with effector T cells appear promising in early clinical trials and will likely emerge as off-the-shelf immunotherapy options. Chemotherapy-free small molecule-based regimens are increasingly available for mantle cell (MCLs) and follicular lymphomas (FLs). Bruton tyrosine kinase inhibitors (BTKi) now represent standard second-line therapy for MCL and are being investigated in combination and as initial therapy. Lenalidomide-rituximab is an active regimen in both FL and MCL and may be used in either relapsed/refractory or previously untreated disease. Three PI3K inhibitors are approved for multiple-relapsed FL and can induce durable remissions in patients with chemotherapy- and rituximab-refractory disease. Additional emerging targeted therapies include BCL2 inhibition in MCL and EZH2 inhibition in FL.
Collapse
|
97
|
Pathania AS, Prathipati P, Abdul BAA, Chava S, Katta SS, Gupta SC, Gangula PR, Pandey MK, Durden DL, Byrareddy SN, Challagundla KB. COVID-19 and Cancer Comorbidity: Therapeutic Opportunities and Challenges. Theranostics 2021; 11:731-753. [PMID: 33391502 PMCID: PMC7738845 DOI: 10.7150/thno.51471] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/12/2020] [Indexed: 01/07/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) is a viral disease caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that affects the respiratory system of infected individuals. COVID-19 spreads between humans through respiratory droplets produced when an infected person coughs or sneezes. The COVID-19 outbreak originated in Wuhan, China at the end of 2019. As of 29 Sept 2020, over 235 countries, areas or territories across the globe reported a total of 33,441,919 confirmed cases, and 1,003,497 confirmed deaths due to COVID-19. Individuals of all ages are at risk for infection, but in most cases disease severity is associated with age and pre-existing diseases that compromise immunity, like cancer. Numerous reports suggest that people with cancer can be at higher risk of severe illness and related deaths from COVID-19. Therefore, managing cancer care under this pandemic is challenging and requires a collaborative multidisciplinary approach for optimal care of cancer patients in hospital settings. In this comprehensive review, we discuss the impact of the COVID-19 pandemic on cancer patients, their care, and treatment. Further, this review covers the SARS-CoV-2 pandemic, genome characterization, COVID-19 pathophysiology, and associated signaling pathways in cancer, and the choice of anticancer agents as repurposed drugs for treating COVID-19.
Collapse
Affiliation(s)
- Anup S. Pathania
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center; University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Philip Prathipati
- Laboratory of Bioinformatics, National Institutes of Biomedical Innovation, Health and Nutrition, Saito-Asagi Ibaraki City, Osaka 567-0085, Japan
| | - Bakrudeen AA. Abdul
- Department of Biochemistry, Center for Research & Development, PRIST Deemed University, Vallam, Tamil Nadu 613403, India
| | - Srinivas Chava
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center; University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Santharam S. Katta
- Department of Biotechnology, School of Applied Sciences, REVA University, Rukmini Knowledge Park Kattigenahalli, Yelahanka, Bangalore, Karnataka 560064, India
| | - Subash C. Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Pandu R. Gangula
- Department of Oral Diagnostic Sciences and Research, School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA
| | - Manoj K. Pandey
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Donald L. Durden
- Levine Cancer Institute, Atrium Health, Charlotte, NC 28202, USA
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92093, USA
- SignalRx Pharmaceuticals, Omaha, NE 68124, USA
| | - Siddappa N. Byrareddy
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center; University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kishore B. Challagundla
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center; University of Nebraska Medical Center, Omaha, NE 68198, USA
- The Children's Health Research Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
98
|
Iżykowska K, Rassek K, Korsak D, Przybylski GK. Novel targeted therapies of T cell lymphomas. J Hematol Oncol 2020; 13:176. [PMID: 33384022 PMCID: PMC7775630 DOI: 10.1186/s13045-020-01006-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/22/2020] [Indexed: 02/06/2023] Open
Abstract
T cell lymphomas (TCL) comprise a heterogeneous group of non-Hodgkin lymphomas (NHL) that often present at an advanced stage at the time of diagnosis and that most commonly have an aggressive clinical course. Treatment in the front-line setting is most often cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) or CHOP-like regimens, which are effective in B cell lymphomas, but in TCL are associated with a high failure rate and frequent relapses. Furthermore, in contrast to B cell NHL, in which substantial clinical progress has been made with the introduction of monoclonal antibodies, no comparable advances have been seen in TCL. To change this situation and improve the prognosis in TCL, new gene-targeted therapies must be developed. This is now possible due to enormous progress that has been made in the last years in the understanding of the biology and molecular pathogenesis of TCL, which enables the implementation of the research findings in clinical practice. In this review, we present new therapies and current clinical and preclinical trials on targeted treatments for TCL using histone deacetylase inhibitors (HDACi), antibodies, chimeric antigen receptor T cells (CARTs), phosphatidylinositol 3-kinase inhibitors (PI3Ki), anaplastic lymphoma kinase inhibitors (ALKi), and antibiotics, used alone or in combinations. The recent clinical success of ALKi and conjugated anti-CD30 antibody (brentuximab-vedotin) suggests that novel therapies for TCL can significantly improve outcomes when properly targeted.
Collapse
Affiliation(s)
- Katarzyna Iżykowska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479, Poznań, Poland
| | - Karolina Rassek
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479, Poznań, Poland
| | - Dorota Korsak
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479, Poznań, Poland
| | - Grzegorz K Przybylski
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479, Poznań, Poland.
| |
Collapse
|
99
|
Abstract
PURPOSE OF REVIEW Recent advances the genomic profiling of patients with Waldenström macroglobulinemia (WM) have led to the identification of novel therapeutic targets in these patients. In this review, we cover the current standard of care and the recently evaluated novel approaches with high potential to be incorporated in the therapeutic armamentarium against WM. RECENT FINDINGS The MYD88L265P mutation is the most common genomic abnormality in WM, and is encountered in 80-95% of patients, making it an important target for drug development. The success of the first-generation Bruton tyrosine kinase (BTK) inhibitor, ibrutinib, has generated tremendous interest in the study of more selective and potent BTK inhibitors. Additionally, the identification of CXCR4WHIM mutations in up to approximately 40% of patients with WM has fueled research regarding their implication on systemic therapy in WM. In a rapidly advancing field of targeted therapies, the treatment options for patients with WM are expanding as researchers continue to uncover and harness the survival pathways active in this hematologic malignancy.
Collapse
|
100
|
Shukla MR, Patra S, Verma M, Sadasivam G, Jana N, Mahangare SJ, Vidhate P, Lagad D, Tarage A, Cheemala M, Kulkarni C, Bhagwat S, Chaudhari VD, Sayyed M, Pachpute V, Phadtare R, Gole G, Phukan S, Sunkara B, Samant C, Shingare M, Naik A, Trivedi S, Marisetti AK, Reddy M, Gholve M, Mahajan N, Sabde S, Patil V, Modi D, Mehta M, Nigade P, Tamane K, Tota S, Goyal H, Volam H, Pawar S, Ahirrao P, Dinchhana L, Mallurwar S, Akarte A, Bokare A, Kanhere R, Reddy N, Koul S, Dandekar M, Singh M, Bernstein PR, Narasimham L, Bhonde M, Gundu J, Goel R, Kulkarni S, Sharma S, Kamboj RK, Palle VP. Discovery of a Potent and Selective PI3Kδ Inhibitor ( S)-2,4-Diamino-6-((1-(7-fluoro-1-(4-fluorophenyl)-4-oxo-3-phenyl-4 H-quinolizin-2-yl)ethyl)amino)pyrimidine-5-carbonitrile with Improved Pharmacokinetic Profile and Superior Efficacy in Hematological Cancer Models. J Med Chem 2020; 63:14700-14723. [PMID: 33297683 DOI: 10.1021/acs.jmedchem.0c01264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PI3Kδ inhibitors have been approved for B-cell malignancies like CLL, small lymphocytic lymphoma, and so forth. However, currently available PI3Kδ inhibitors are nonoptimal, showing weakness against at least one of the several important properties: potency, isoform selectivity, and/or pharmacokinetic profile. To come up with a PI3Kδ inhibitor that overcomes all these deficiencies, a pharmacophoric expansion strategy was employed. Herein, we describe a systematic transformation of a "three-blade propeller" shaped lead, 2,3-disubstituted quinolizinone 11, through a 1,2-disubstituted quinolizinone 20 to a novel "four-blade propeller" shaped 1,2,3-trisubstituted quinolizinone 34. Compound 34 has excellent potency, isoform selectivity, metabolic stability across species, and exhibited a favorable pharmacokinetic profile. Compound 34 also demonstrated a differentiated efficacy profile in human germinal center B and activated B cell-DLBCL cell lines and xenograft models. Compound 34 qualifies for further evaluation as a candidate for monotherapy or in combination with other targeted agents in DLBCLs and other forms of iNHL.
Collapse
Affiliation(s)
- Manojkumar R Shukla
- Novel Drug Discovery and Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Sukanya Patra
- Novel Drug Discovery and Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Mahip Verma
- Novel Drug Discovery and Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Gayathri Sadasivam
- Novel Drug Discovery and Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Nirmal Jana
- Novel Drug Discovery and Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Sachin J Mahangare
- Novel Drug Discovery and Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Prashant Vidhate
- Novel Drug Discovery and Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Dipak Lagad
- Novel Drug Discovery and Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Anand Tarage
- Novel Drug Discovery and Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Murthy Cheemala
- Novel Drug Discovery and Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Chaitanya Kulkarni
- Novel Drug Discovery and Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Shankar Bhagwat
- Novel Drug Discovery and Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Vinod D Chaudhari
- Novel Drug Discovery and Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Majid Sayyed
- Novel Drug Discovery and Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Vipul Pachpute
- Novel Drug Discovery and Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Ramesh Phadtare
- Novel Drug Discovery and Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Gopal Gole
- Novel Drug Discovery and Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Samiron Phukan
- Novel Drug Discovery and Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Brahmam Sunkara
- Novel Drug Discovery and Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Charudatt Samant
- Novel Drug Discovery and Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Manisha Shingare
- Novel Drug Discovery and Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Aditya Naik
- Novel Drug Discovery and Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Sneha Trivedi
- Novel Drug Discovery and Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Ajit Kumar Marisetti
- Novel Drug Discovery and Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Madhusudhan Reddy
- Novel Drug Discovery and Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Milind Gholve
- Novel Drug Discovery and Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Nilesh Mahajan
- Novel Drug Discovery and Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Sudeep Sabde
- Novel Drug Discovery and Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Vinod Patil
- Novel Drug Discovery and Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Dipak Modi
- Novel Drug Discovery and Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Maneesh Mehta
- Novel Drug Discovery and Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Prashant Nigade
- Novel Drug Discovery and Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Kaustubh Tamane
- Novel Drug Discovery and Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Swati Tota
- Novel Drug Discovery and Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Hemant Goyal
- Novel Drug Discovery and Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Harish Volam
- Novel Drug Discovery and Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Shashikant Pawar
- Novel Drug Discovery and Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Prajakta Ahirrao
- Novel Drug Discovery and Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Lal Dinchhana
- Novel Drug Discovery and Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Sadanand Mallurwar
- Novel Drug Discovery and Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Atul Akarte
- Novel Drug Discovery and Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Anand Bokare
- Novel Drug Discovery and Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Rupesh Kanhere
- Novel Drug Discovery and Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Neetinkumar Reddy
- Novel Drug Discovery and Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Sarita Koul
- Novel Drug Discovery and Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Manoj Dandekar
- Novel Drug Discovery and Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Minakshi Singh
- Novel Drug Discovery and Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Peter R Bernstein
- Novel Drug Discovery and Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Lakshmi Narasimham
- Novel Drug Discovery and Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Mandar Bhonde
- Novel Drug Discovery and Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Jayasagar Gundu
- Novel Drug Discovery and Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Rajan Goel
- Novel Drug Discovery and Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Sanjeev Kulkarni
- Novel Drug Discovery and Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Sharad Sharma
- Novel Drug Discovery and Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Rajender Kumar Kamboj
- Novel Drug Discovery and Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Venkata P Palle
- Novel Drug Discovery and Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47A, Village Nande, Taluka Mulshi, Pune 412115, India
| |
Collapse
|