51
|
Hegde S, Zheng Y, Cancelas JA. Novel blood derived hemostatic agents for bleeding therapy and prophylaxis. Curr Opin Hematol 2022; 29:281-289. [PMID: 35942861 PMCID: PMC9547927 DOI: 10.1097/moh.0000000000000737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Hemorrhage is a major cause of preventable death in trauma and cancer. Trauma induced coagulopathy and cancer-associated endotheliopathy remain major therapeutic challenges. Early, aggressive administration of blood-derived products with hypothesized increased clotting potency has been proposed. A series of early- and late-phase clinical trials testing the safety and/or efficacy of lyophilized plasma and new forms of platelet products in humans have provided light on the future of alternative blood component therapies. This review intends to contextualize and provide a critical review of the information provided by these trials. RECENT FINDINGS The beneficial effect of existing freeze-dried plasma products may not be as high as initially anticipated when tested in randomized, multicenter clinical trials. A next-generation freeze dried plasma product has shown safety in an early phase clinical trial and other freeze-dried plasma and spray-dried plasma with promising preclinical profiles are embarking in first-in-human trials. New platelet additive solutions and forms of cryopreservation or lyophilization of platelets with long-term shelf-life have demonstrated feasibility and logistical advantages. SUMMARY Recent trials have confirmed logistical advantages of modified plasma and platelet products in the treatment or prophylaxis of bleeding. However, their postulated increased potency profile remains unconfirmed.
Collapse
Affiliation(s)
- Shailaja Hegde
- Hoxworth Blood Center, University of Cincinnati Academic Health Center
| | - Yi Zheng
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jose A Cancelas
- Hoxworth Blood Center, University of Cincinnati Academic Health Center
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
52
|
Seo IH, Lee YJ. Usefulness of Complete Blood Count (CBC) to Assess Cardiovascular and Metabolic Diseases in Clinical Settings: A Comprehensive Literature Review. Biomedicines 2022; 10:2697. [PMID: 36359216 PMCID: PMC9687310 DOI: 10.3390/biomedicines10112697] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/07/2022] [Accepted: 10/20/2022] [Indexed: 08/03/2023] Open
Abstract
Complete blood count (CBC) is one of the most common blood tests requested by clinicians and evaluates the total numbers and characteristics of cell components in the blood. Recently, many investigations have suggested that the risk of cancer, cardiovascular disease (CVD), arteriosclerosis, type 2 diabetes (T2DM), and metabolic syndrome can be predicted using CBC components. This review introduces that white blood cell (WBC), neutrophil-to-lymphocyte ratio (NLR), hemoglobin (Hb), mean corpuscular volume (MCV), red cell distribution width (RDW), platelet count, mean platelet volume (MPV), and platelet-to-lymphocyte ratio (PLR) are useful markers to predict CVD and metabolic diseases. Furthermore, we would like to support various uses of CBC by organizing pathophysiology that can explain the relationship between CBC components and diseases.
Collapse
|
53
|
Dai Z, Zhao T, Song N, Pan K, Yang Y, Zhu X, Chen P, Zhang J, Xia C. Platelets and platelet extracellular vesicles in drug delivery therapy: A review of the current status and future prospects. Front Pharmacol 2022; 13:1026386. [PMID: 36330089 PMCID: PMC9623298 DOI: 10.3389/fphar.2022.1026386] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/03/2022] [Indexed: 11/24/2022] Open
Abstract
Platelets are blood cells that are primarily produced by the shedding of megakaryocytes in the bone marrow. Platelets participate in a variety of physiological and pathological processes in vivo, including hemostasis, thrombosis, immune-inflammation, tumor progression, and metastasis. Platelets have been widely used for targeted drug delivery therapies for treating various inflammatory and tumor-related diseases. Compared to other drug-loaded treatments, drug-loaded platelets have better targeting, superior biocompatibility, and lower immunogenicity. Drug-loaded platelet therapies include platelet membrane coating, platelet engineering, and biomimetic platelets. Recent studies have indicated that platelet extracellular vesicles (PEVs) may have more advantages compared with traditional drug-loaded platelets. PEVs are the most abundant vesicles in the blood and exhibit many of the functional characteristics of platelets. Notably, PEVs have excellent biological efficacy, which facilitates the therapeutic benefits of targeted drug delivery. This article provides a summary of platelet and PEVs biology and discusses their relationships with diseases. In addition, we describe the preparation, drug-loaded methods, and specific advantages of platelets and PEVs targeted drug delivery therapies for treating inflammation and tumors. We summarize the hot spots analysis of scientific articles on PEVs and provide a research trend, which aims to give a unique insight into the development of PEVs research focus.
Collapse
Affiliation(s)
- Zhanqiu Dai
- Department of Spine Surgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College People’s Hospital, Hangzhou, Zhejiang, China
- Department of Orthopaedics, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Tingxiao Zhao
- Department of Spine Surgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College People’s Hospital, Hangzhou, Zhejiang, China
| | - Nan Song
- Department of Pathology, Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Kaifeng Pan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Yang Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Xunbin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Pengfei Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
- *Correspondence: Pengfei Chen, ; Jun Zhang, ; Chen Xia,
| | - Jun Zhang
- Department of Spine Surgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College People’s Hospital, Hangzhou, Zhejiang, China
- *Correspondence: Pengfei Chen, ; Jun Zhang, ; Chen Xia,
| | - Chen Xia
- Department of Spine Surgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College People’s Hospital, Hangzhou, Zhejiang, China
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
- *Correspondence: Pengfei Chen, ; Jun Zhang, ; Chen Xia,
| |
Collapse
|
54
|
The effect of short-term refrigeration on platelet responsiveness. Sci Rep 2022; 12:16910. [PMID: 36207457 PMCID: PMC9546855 DOI: 10.1038/s41598-022-21124-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/22/2022] [Indexed: 12/29/2022] Open
Abstract
Storage of platelet concentrates (PC) at cold temperature (CT) is discussed as an alternative to the current standard of storage at room temperature (RT). Recently, we could show that cold-induced attenuation of inhibitory signaling is an important mechanism promoting platelet reactivity. For developing strategies in blood banking, it is required to elucidate the time-dependent onset of facilitated platelet activation. Thus, freshly prepared platelet-rich-plasma (PRP) was stored for 1 and 2 h at CT (2-6 °C) or at RT (20-24 °C), followed by subsequent comparative analysis. Compared to RT, basal and induced vasodilator-stimulated phosphoprotein (VASP) phosphorylation levels were decreased under CT within 1 h by approximately 20%, determined by Western blot analysis and flow cytometry. Concomitantly, ADP- and collagen-induced threshold aggregation values were enhanced by up to 30-40%. Furthermore, platelet-covered areas on collagen-coated slides and aggregate formation under flow conditions were increased after storage at CT, in addition to induced activation markers. In conclusion, a time period of 1-2 h for refrigeration is sufficient to induce an attenuation of inhibitory signaling, accompanied with an enhancement of platelet responsiveness. Short-term refrigeration may be considered as a rational approach to obtain PC with higher functional reactivity for the treatment of hemorrhage.
Collapse
|
55
|
Chen SH, Tsai SC, Lu HC. Platelets as a Gauge of Liver Disease Kinetics? Int J Mol Sci 2022; 23:11460. [PMID: 36232759 PMCID: PMC9569526 DOI: 10.3390/ijms231911460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 11/18/2022] Open
Abstract
A multitude of laboratory and clinical interferences influence the utility of platelet-based diagnostic indices, including immature platelet fraction, in longitudinal monitoring and prognostication of patients with chronic liver disease (CLD). The complex yet highly regulated molecular basis of platelet production and clearance kinetics becomes dysregulated in liver pathogenesis. These underlying molecular mechanisms, including premature platelet clearance and bone marrow suppression in parallel with the progressive (e.g., treatment-naïve) or regressive (e.g., on-treatment and off-treatment) disease courses, involved in CLDs, may further confound the changes in platelet-liver correlations over time. Platelet count and function are commonly and secondarily altered in vivo in CLDs. However, the precise characterization of platelet functions during cirrhosis, including in vitro platelet aggregation, has proven challenging due to interferences such as thrombocytopenia. A flow cytometric approach may help monitor the unstably rebalanced hyper- and hypoaggregable states in patients with cirrhosis at risk of hyperaggregable, prothrombotic, or bleeding events. Studies have attempted to stratify patients with cirrhosis by substages and prognosis through the use of novel indices such as the ratio of in vitro endogenous platelet aggregation to platelet count. This review attempts to highlight clinical and laboratory precautions in the context of platelet-assisted CLD monitoring.
Collapse
Affiliation(s)
- Sheng-Hung Chen
- Department of Medicine, China Medical University, No. 91, Xueshi Road, Taichung 404333, Taiwan
- Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, No. 2, Yude Road, Taichung 404327, Taiwan
| | - Shih-Chang Tsai
- Department of Biological Science and Technology, China Medical University, Taichung 404333, Taiwan
| | - Hsiu-Chen Lu
- Department of Education, China Medical University Hospital, Taichung 404327, Taiwan
| |
Collapse
|
56
|
Englert M, Aurbach K, Becker IC, Gerber A, Heib T, Wackerbarth LM, Kusch C, Mott K, Araujo GHM, Baig AA, Dütting S, Knaus UG, Stigloher C, Schulze H, Nieswandt B, Pleines I, Nagy Z. Impaired microtubule dynamics contribute to microthrombocytopenia in RhoB-deficient mice. Blood Adv 2022; 6:5184-5197. [PMID: 35819450 PMCID: PMC9631634 DOI: 10.1182/bloodadvances.2021006545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 06/30/2022] [Indexed: 11/30/2022] Open
Abstract
Megakaryocytes are large cells in the bone marrow that give rise to blood platelets. Platelet biogenesis involves megakaryocyte maturation, the localization of the mature cells in close proximity to bone marrow sinusoids, and the formation of protrusions, which are elongated and shed within the circulation. Rho GTPases play important roles in platelet biogenesis and function. RhoA-deficient mice display macrothrombocytopenia and a striking mislocalization of megakaryocytes into bone marrow sinusoids and a specific defect in G-protein signaling in platelets. However, the role of the closely related protein RhoB in megakaryocytes or platelets remains unknown. In this study, we show that, in contrast to RhoA deficiency, genetic ablation of RhoB in mice results in microthrombocytopenia (decreased platelet count and size). RhoB-deficient platelets displayed mild functional defects predominantly upon induction of the collagen/glycoprotein VI pathway. Megakaryocyte maturation and localization within the bone marrow, as well as actin dynamics, were not affected in the absence of RhoB. However, in vitro-generated proplatelets revealed pronouncedly impaired microtubule organization. Furthermore, RhoB-deficient platelets and megakaryocytes displayed selective defects in microtubule dynamics/stability, correlating with reduced levels of acetylated α-tubulin. Our findings imply that the reduction of this tubulin posttranslational modification results in impaired microtubule dynamics, which might contribute to microthrombocytopenia in RhoB-deficient mice. Importantly, we demonstrate that RhoA and RhoB are localized differently and have selective, nonredundant functions in the megakaryocyte lineage.
Collapse
Affiliation(s)
- Maximilian Englert
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Katja Aurbach
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Isabelle C. Becker
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Annika Gerber
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Tobias Heib
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Lou M. Wackerbarth
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Charly Kusch
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Kristina Mott
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
| | - Gabriel H. M. Araujo
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Ayesha A. Baig
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Sebastian Dütting
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Ulla G. Knaus
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland; and
| | | | - Harald Schulze
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Irina Pleines
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Zoltan Nagy
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| |
Collapse
|
57
|
Wang S, Liu Q, Cheng L, Wang L, Xu F, Yao C. Targeting biophysical cues to address platelet storage lesions. Acta Biomater 2022; 151:118-133. [PMID: 36028196 DOI: 10.1016/j.actbio.2022.08.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/06/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022]
Abstract
Platelets play vital roles in vascular repair, especially in primary hemostasis, and have been widely used in transfusion to prevent bleeding or manage active bleeding. Recently, platelets have been used in tissue repair (e.g., bone, skin, and dental alveolar tissue) and cell engineering as drug delivery carriers. However, the biomedical applications of platelets have been associated with platelet storage lesions (PSLs), resulting in poor clinical outcomes with reduced recovery, survival, and hemostatic function after transfusion. Accumulating evidence has shown that biophysical cues play important roles in platelet lesions, such as granule secretion caused by shear stress, adhesion affected by substrate stiffness, and apoptosis caused by low temperature. This review summarizes four major biophysical cues (i.e., shear stress, substrate stiffness, hydrostatic pressure, and thermal microenvironment) involved in the platelet preparation and storage processes, and discusses how they may synergistically induce PSLs such as platelet shape change, activation, apoptosis and clearance. We also review emerging methods for studying these biophysical cues in vitro and existing strategies targeting biophysical cues for mitigating PSLs. We conclude with a perspective on the future direction of biophysics-based strategies for inhibiting PSLs. STATEMENT OF SIGNIFICANCE: Platelet storage lesions (PSLs) involve a series of structural and functional changes. It has long been accepted that PSLs are initiated by biochemical cues. Our manuscript is the first to propose four major biophysical cues (shear stress, substrate stiffness, hydrostatic pressure, and thermal microenvironment) that platelets experience in each operation step during platelet preparation and storage processes in vitro, which may synergistically contribute to PSLs. We first clarify these biophysical cues and how they induce PSLs. Strategies targeting each biophysical cue to improve PSLs are also summarized. Our review is designed to draw the attention from a broad range of audience, including clinical doctors, biologists, physical scientists, engineers and materials scientists, and immunologist, who study on platelets physiology and pathology.
Collapse
Affiliation(s)
- Shichun Wang
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Qi Liu
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Lihan Cheng
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Lu Wang
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Chunyan Yao
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China; State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing 400038, PR China.
| |
Collapse
|
58
|
Cancelas JA, Genthe JR, Stolla M, Rugg N, Bailey SL, Nestheide S, Shaz B, Mack S, Schroeder K, Anani W, Szczepiorkowski ZM, Dumont LJ, Yegneswaran S, Corash L, Mufti N, Benjamin RJ, Erickson AC. Evaluation of amotosalen and UVA pathogen-reduced apheresis platelets after 7-day storage. Transfusion 2022; 62:1619-1629. [PMID: 35808974 PMCID: PMC9546462 DOI: 10.1111/trf.17003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/15/2022] [Accepted: 05/25/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Amotosalen/UVA pathogen-reduced platelet components (PRPCs) with storage up to 7 days are standard of care in France, Switzerland, and Austria. PRPCs provide effective hemostasis with reduced risk of transfusion-transmitted infections and transfusion-associated graft versus host disease, reduced wastage and improved availability compared with 5-day-stored PCs. This study evaluated the potency of 7-day PRPCs by in vitro characterization and in vivo pharmacokinetic analysis of autologous PCs. STUDY DESIGN AND METHODS The in vitro characteristics of 7-day-stored apheresis PRPCs suspended in 100% plasma or 65% platelet additive solution (PAS-3)/35% plasma, thrombin generation, and in vivo radiolabeled post-transfusion recovery and survival of 7-day-stored PRPCs suspended in 100% plasma were compared with either 7-day-stored or fresh autologous conventional platelets. RESULTS PRPCs after 7 days of storage maintained pH, platelet dose, in vitro physiologic characteristics, and thrombin generation when compared to conventional 7-day PCs. In vivo, the mean post-transfusion survival was 151.4 ± 20.1 h for 7-day PRPCs in 100% plasma (Test) versus 209.6 ± 13.9 h for the fresh autologous platelets (Control), (T-ΔC: 72.3 ± 8.8%: 95% confidence interval [CI]: 68.5, 76.1) and mean 24-h post-transfusion recovery 37.6 ± 8.4% for Test versus 56.8 ± 9.2% for Control (T-ΔC: 66.2 ± 11.2%; 95% CI: 61.3, 71.1). DISCUSSION PRPCs collected in both 100% plasma as well as 65% PAS-3/35% plasma and stored for 7 days retained in vitro physiologic characteristics. PRPCs stored in 100% plasma for 7 days retained in vivo survival. Lower in vivo post-radiolabeled autologous platelet recovery is consistent with reported reduced count increments for allogenic transfusion.
Collapse
Affiliation(s)
| | | | - Moritz Stolla
- Bloodworks Northwest, Seattle, Washington, USA.,Division of Hematology, Department of Medicine, University of Washington Medical Center, Seattle, Washington, USA
| | - Neeta Rugg
- Hoxworth Blood Center, Cincinnati, Ohio, USA
| | | | | | - Beth Shaz
- Duke University, Durham, North Carolina, USA
| | | | | | | | - Zbigniew M Szczepiorkowski
- Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA.,Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | | | | | | | - Nina Mufti
- Cerus Corporation, Concord, California, USA
| | | | | |
Collapse
|
59
|
Yong YK, Wong WF, Vignesh R, Chattopadhyay I, Velu V, Tan HY, Zhang Y, Larsson M, Shankar EM. Dengue Infection - Recent Advances in Disease Pathogenesis in the Era of COVID-19. Front Immunol 2022; 13:889196. [PMID: 35874775 PMCID: PMC9299105 DOI: 10.3389/fimmu.2022.889196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022] Open
Abstract
The dynamics of host-virus interactions, and impairment of the host’s immune surveillance by dengue virus (DENV) serotypes largely remain ambiguous. Several experimental and preclinical studies have demonstrated how the virus brings about severe disease by activating immune cells and other key elements of the inflammatory cascade. Plasmablasts are activated during primary and secondary infections, and play a determinative role in severe dengue. The cross-reactivity of DENV immune responses with other flaviviruses can have implications both for cross-protection and severity of disease. The consequences of a cross-reactivity between DENV and anti-SARS-CoV-2 responses are highly relevant in endemic areas. Here, we review the latest progress in the understanding of dengue immunopathogenesis and provide suggestions to the development of target strategies against dengue.
Collapse
Affiliation(s)
- Yean Kong Yong
- Laboratory Centre, Xiamen University Malaysia, Sepang, Malaysia
- *Correspondence: Esaki M. Shankar, ; Yean Kong Yong,
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ramachandran Vignesh
- Preclinical Department, Royal College of Medicine Perak (UniKL RCMP), Universiti Kuala Lumpur, Ipoh, Malaysia
| | - Indranil Chattopadhyay
- Cancer and Microbiome Biology, Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Vijayakumar Velu
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
- Department of Pathology and Laboratory Medicine, Emory National Primate Research Center, Emory University, Atlanta GA, United States
| | - Hong Yien Tan
- School of Traditional Chinese Medicine, Xiamen University Malaysia, Sepang, Malaysia
| | - Ying Zhang
- Chemical Engineering, Xiamen University Malaysia, Sepang, Malaysia
| | - Marie Larsson
- Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Esaki M. Shankar
- Infection Biology, Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
- *Correspondence: Esaki M. Shankar, ; Yean Kong Yong,
| |
Collapse
|
60
|
Cooling L, Hoffmann S, Li SH, Downs T, Davenport R. Platelet refractoriness associated with platelets stored in platelet additive solution. Transfusion 2022; 62:1457-1460. [PMID: 35815725 DOI: 10.1111/trf.16941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/24/2022] [Accepted: 04/15/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Laura Cooling
- Michigan Medicine, University of Michigan Hospitals, Ann Arbor, Michigan, USA
| | - Sandra Hoffmann
- Michigan Medicine, University of Michigan Hospitals, Ann Arbor, Michigan, USA
| | - Shih-Hon Li
- Michigan Medicine, University of Michigan Hospitals, Ann Arbor, Michigan, USA
| | - Theresa Downs
- Michigan Medicine, University of Michigan Hospitals, Ann Arbor, Michigan, USA
| | - Robertson Davenport
- Michigan Medicine, University of Michigan Hospitals, Ann Arbor, Michigan, USA
| |
Collapse
|
61
|
Wang Y, Wang J. Intravital Imaging of Inflammatory Response in Liver Disease. Front Cell Dev Biol 2022; 10:922041. [PMID: 35837329 PMCID: PMC9274191 DOI: 10.3389/fcell.2022.922041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
The healthy liver requires a strictly controlled crosstalk between immune and nonimmune cells to maintain its function and homeostasis. A well-conditioned immune system can effectively recognize and clear noxious stimuli by a self-limited, small-scale inflammatory response. This regulated inflammatory process enables the liver to cope with daily microbial exposure and metabolic stress, which is beneficial for hepatic self-renewal and tissue remodeling. However, the failure to clear noxious stimuli or dysregulation of immune response can lead to uncontrolled liver inflammation, liver dysfunction, and severe liver disease. Numerous highly dynamic circulating immune cells and sessile resident immune and parenchymal cells interact and communicate with each other in an incredibly complex way to regulate the inflammatory response in both healthy and diseased liver. Intravital imaging is a powerful tool to visualize individual cells in vivo and has been widely used for dissecting the behavior and interactions between various cell types in the complex architecture of the liver. Here, we summarize some new findings obtained with the use of intravital imaging, which enhances our understanding of the complexity of immune cell behavior, cell–cell interaction, and spatial organization during the physiological and pathological liver inflammatory response.
Collapse
|
62
|
Abstract
CPT2 K79 acetylation caused by NAD+ exhaustion and Sirt3 dysfunction resulted in LCAC accumulation and platelet damage. Blocking acylcarnitine generation with AMPK or CPT1 inhibitors, Sirt3 agonists, and antioxidants retarded platelet storage lesion.
The short life span of platelets is a major challenge to platelet transfusion services because of the lack of effective intervention. Here, we found that the accumulation of long-chain acylcarnitines (LCACs) is responsible for mitochondrial damage and platelet storage lesion. Further studies showed that the blockade of fatty acid oxidation and the activation of AMP-activated protein kinase (AMPK)/acetyl-CoA carboxylase/carnitine palmitoyltransferase 1 (CPT1) pathways that promote fatty acid metabolism are important reasons for the accumulation of LCACs. The excessive accumulation of LCACs can cause mitochondrial damage and a short life span of stored platelets. The mechanism study elucidated that NAD+ exhaustion and the subsequent decrease in sirtuin 3 (Sirt3) activity caused an increase in the level of CPT2 K79 acetylation, which is the primary cause of the blockade of fatty acid oxidation and the accumulation of LCACs. Blocking LCAC generation with the inhibitors of AMPK or CPT1, the agonists of Sirt3, and antioxidants tremendously retarded platelet storage lesion in vitro and prolonged the survival of stored platelets in vivo posttransfusion with single or combined use. In summary, we discovered that CPT2 acetylation attenuates fatty acid oxidation and exacerbates platelet storage lesion and may serve as a new target for improving platelet storage quality.
Collapse
|
63
|
CIC-39Na reverses the thrombocytopenia that characterizes tubular aggregate myopathy. Blood Adv 2022; 6:4471-4484. [PMID: 35696753 DOI: 10.1182/bloodadvances.2021006378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 06/05/2022] [Indexed: 11/20/2022] Open
Abstract
Store-Operated Ca2+-Entry is a cellular mechanism that governs the replenishment of intracellular stores of Ca2+ upon depletion caused by the opening of intracellular Ca2+-channels. Gain-of-function mutations of the two key proteins of Store-Operated Ca2+-Entry, STIM1 and ORAI1, are associated with several ultra-rare diseases clustered as tubular aggregate myopathies. Our group has previously demonstrated that a mouse model bearing the STIM1 p.I115F mutation recapitulates the main features of the STIM1 gain-of-function disorders: muscle weakness and thrombocytopenia. Similar findings have been found in other mice bearing different mutations on STIM1. At present, no valid treatment is available for these patients. In the present contribution, we report that CIC-39Na, a Store-Operated Ca2+-Entry inhibitor, restores platelet number and counteracts the abnormal bleeding that characterizes these mice. Subtle differences in thrombopoiesis were observed in STIM1 p.I115F mice, but the main difference between wild-type and STIM1 p.I115F mice was in platelet clearance and in the levels of platelet cytosolic basal Ca2+. Both were restored upon treatment of animals with CIC-39Na. This finding paves the way to a pharmacological treatment strategy for thrombocytopenia in tubular aggregate myopathy patients.
Collapse
|
64
|
Chen W, Wilson MS, Wang Y, Bergmeier W, Lanza F, Li R. Fast clearance of platelets in a commonly used mouse model for GPIbα is impeded by an anti-GPIbβ antibody derivative. J Thromb Haemost 2022; 20:1451-1463. [PMID: 35305057 PMCID: PMC9133214 DOI: 10.1111/jth.15702] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/21/2022] [Accepted: 03/14/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Glycoprotein (GP)Ibα plays a critical role in regulating platelet clearance. Recently, we identified the mechanosensory domain (MSD) in GPIbα and reported evidence to suggest that unfolding of the GPIbα MSD induces exposure of the Trigger sequence therein and subsequent GPIb-IX signaling that accelerates platelet clearance. In a commonly used transgenic mouse model, IL4R-IbαTg, where the Trigger sequence is constitutively exposed, constitutive GPIb-IX-mediated cellular signals are present. Clearance of their platelets is also significantly faster than that of wild-type mice. Previously, an anti-GPIbβ antibody RAM.1 was developed. RAM.1 inhibits GPIbα-dependent platelet signaling and activation. Further, RAM.1 also inhibits anti-GPIbα antibody-mediated filopodia formation. OBJECTIVE To investigate whether RAM.1 can ameliorate trigger sequence exposure-mediated platelet clearance. METHODS Spontaneous filopodia were measured by confocal microscopy. Other platelet signaling events were measured by flow cytometry. Endogenous platelet life span was tracked by Alexa 488-labeled anti-mouse GPIX antibody. RESULT Transfected Chinese hamster ovary cells stably expressing the same chimeric IL4R-Ibα protein complex as in IL4R-IbαTg mice also constitutively exhibit filopodia, and that such filopodia could be abolished by treatment of RAM.1. Further, transfusion of a recombinant RAM.1 derivative that is devoid of its Fc portion significantly extends the endogenous life span of IL4R-IbαTg platelets. CONCLUSION These results provide the key evidence supporting the causative link of Trigger sequence exposure to accelerated platelet clearance, and suggest that a RAM.1 derivative may be therapeutically developed to treat GPIb-IX-mediated thrombocytopenia.
Collapse
Affiliation(s)
- Wenchun Chen
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Departments of Pediatrics, Emory University School of Medicine Atlanta, GA
| | - Moriah S. Wilson
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Departments of Pediatrics, Emory University School of Medicine Atlanta, GA
| | - Yingchun Wang
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Departments of Pediatrics, Emory University School of Medicine Atlanta, GA
| | - Wolfgang Bergmeier
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Francois Lanza
- Université de Strasbourg, INSERM, BPPS UMR-S1255, Strasbourg, France
| | - Renhao Li
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Departments of Pediatrics, Emory University School of Medicine Atlanta, GA
| |
Collapse
|
65
|
Overlapping and unique substrate specificities of ST3GAL1 and 2 during hematopoietic and megakaryocytic differentiation. Blood Adv 2022; 6:3945-3955. [PMID: 35507766 PMCID: PMC9278294 DOI: 10.1182/bloodadvances.2022007001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/21/2022] [Indexed: 11/26/2022] Open
Abstract
ST3GAL1 and ST3GAL2 have both overlapping and unique substrate specificities in O-glycan sialylation during megakaryopoiesis. O-glycan sialylation is dispensable for MK production but indispensable for MK proplatelet formation.
Although the sialyltransferases ST3GAL1 and ST3GAL2 are known to transfer sialic acid to the galactose residue of type III disaccharides (Galβ1,3GalNAc) in vitro, sialylation of O-linked glycosylated proteins in living cells has been largely attributed to ST3GAL1. To examine the role of ST3GAL2 in O-sialylation, we examined its expression during differentiation of human-induced pluripotent stem cells (iPSCs) into hematopoietic progenitor cells (HPCs) and megakaryocytes (MKs). ST3GAL1 and ST3GAL2 each became highly expressed during the differentiation of iPSCs to HPCs but decreased markedly in their expression upon differentiation into MKs, suggesting coordination of expression during megakaryopoiesis. To further delineate their role in these processes, we generated ST3GAL1-, ST3GAL2-, and doubly deficient human iPSC lines. Binding of the peanut agglutinin lectin, which reports the presence of unsialylated Galβ1,3GalNAc glycan chains, was strongly increased in HPCs and MKs derived from double-knockout iPSCs and remained moderately increased in cells lacking either one of these sialyltransferases, demonstrating that both can serve as functional cellular O-glycan sialyltransferases. Interestingly, the HPC markers CD34 and CD43, as well as MK membrane glycoprotein (GP) GPIbα, were identified as major GP substrates for ST3GAL1 and ST3GAL2. In contrast, O-sialylation of GPIIb relied predominantly on the expression of ST3GAL2. Finally, although disruption of ST3GAL1 and ST3GAL2 had little impact on MK production, their absence resulted in dramatically impaired MK proplatelet formation. Taken together, these data establish heretofore unknown physiological roles for ST3GAL1 and ST3GAL2 in O-linked glycan sialylation in hemato- and megakaryocytopoiesis.
Collapse
|
66
|
Guo Z, Fan D, Liu FY, Ma SQ, An P, Yang D, Wang MY, Yang Z, Tang QZ. NEU1 Regulates Mitochondrial Energy Metabolism and Oxidative Stress Post-myocardial Infarction in Mice via the SIRT1/PGC-1 Alpha Axis. Front Cardiovasc Med 2022; 9:821317. [PMID: 35548408 PMCID: PMC9081506 DOI: 10.3389/fcvm.2022.821317] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/22/2022] [Indexed: 12/11/2022] Open
Abstract
Objective Neuraminidase 1 (NEU1) participates in the response to multiple receptor signals and regulates various cellular metabolic behaviors. Importantly, it is closely related to the occurrence and progression of cardiovascular diseases. Because ischemic heart disease is often accompanied by impaired mitochondrial energy metabolism and oxidative stress. The purpose of this study was to investigate the functions and possible mechanisms of NEU1 in myocardial remodeling and mitochondrial metabolism induced by myocardial infarction (MI). Methods In this study, the MI-induced mouse mode, hypoxia-treated H9C2 cells model, and hypoxia-treated neonatal rat cardiomyocytes (NRCMs) model were constructed. Echocardiography and histological analysis were adopted to evaluate the morphology and function of the heart at the whole heart level. Western blot was adopted to determine the related expression level of signaling pathway proteins and mitochondria. Mitochondrial energy metabolism and oxidative stress were detected by various testing kits. Results Neuraminidase 1 was markedly upregulated in MI cardiac tissue. Cardiomyocyte-specific NEU1 deficiency restored cardiac function, cardiac hypertrophy, and myocardial interstitial fibrosis. What is more, cardiomyocyte-specific NEU1 deficiency inhibited mitochondrial dysfunction and oxidative stress induced by MI. Further experiments found that the sirtuin-1/peroxisome proliferator-activated receptor γ coactivator α (SIRT1/PGC-1α) protein level in MI myocardium was down-regulated, which was closely related to the above-mentioned mitochondrial changes. Cardiomyocyte-specific NEU1 deficiency increased the expression of SIRT1, PGC-1α, and mitochondrial transcription factor A (TFAM); which improved mitochondrial metabolism and oxidative stress. Inhibition of SIRT1 activity or PGC-1α activity eliminated the beneficial effects of cardiomyocyte-specific NEU1 deficiency. PGC-1α knockout mice experiments verified that NEU1 inhibition restored cardiac function induced by MI through SIRT1/PGC-1α signaling pathway. Conclusion Cardiomyocyte-specific NEU1 deficiency can alleviate MI-induced myocardial remodeling, oxidative stress, and mitochondrial energy metabolism disorder. In terms of mechanism, the specific deletion of NEU1 may play a role by enhancing the SIRT1/PGC-1α signaling pathway. Therefore, cardiomyocyte-specific NEU1 may provide an alternative treatment strategy for heart failure post-MI.
Collapse
Affiliation(s)
- Zhen Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Di Fan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Fang-Yuan Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Shu-Qing Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Peng An
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Dan Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Min-Yu Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Zheng Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
- *Correspondence: Qi-Zhu Tang
| |
Collapse
|
67
|
Lee RH, Ghalloussi D, Harousseau GL, Kenny JP, Kramer PA, Proamer F, Nieswandt B, Flick MJ, Gachet C, Casari C, Eckly A, Bergmeier W. Rasa3 deficiency minimally affects thrombopoiesis but promotes severe thrombocytopenia due to integrin-dependent platelet clearance. JCI Insight 2022; 7:e155676. [PMID: 35290242 PMCID: PMC9089782 DOI: 10.1172/jci.insight.155676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/09/2022] [Indexed: 01/26/2023] Open
Abstract
Platelet homeostasis is dependent on a tight regulation of both platelet production and clearance. The small GTPase Rap1 mediates platelet adhesion and hemostatic plug formation. However, Rap1 signaling is also critical for platelet homeostasis as both Rap1 deficiency and uninhibited Rap1 signaling lead to marked thrombocytopenia in mice. Here, we investigated the mechanism by which deficiency in Rasa3, a critical negative regulator of Rap1, causes macrothrombocytopenia in mice. Despite marked morphological and ultrastructural abnormalities, megakaryocytes in hypomorphic Rasa3hlb/hlb (R3hlb/hlb) or Rasa3-/- mice demonstrated robust proplatelet formation in vivo, suggesting that defective thrombopoiesis is not the main cause of thrombocytopenia. Rather, we observed that R3hlb/hlb platelets became trapped in the spleen marginal zone/red pulp interface, with evidence of platelet phagocytosis by macrophages. Clearance of mutant platelets was also observed in the liver, especially in splenectomized mice. Platelet count and platelet life span in Rasa3-mutant mice were restored by genetic or pharmacological approaches to inhibit the Rap1/talin1/αIIbβ3 integrin axis. A similar pattern of splenic clearance was observed in mice injected with anti-αIIbβ3 but not anti-glycoprotein Ibα platelet-depleting antibodies. In summary, we describe a potentially novel, integrin-based mechanism of platelet clearance that could be critical for our understanding of select inherited and acquired thrombocytopenias.
Collapse
Affiliation(s)
- Robert H. Lee
- Department of Biochemistry and Biophysics and
- Blood Research Center, School of Medicine, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Dorsaf Ghalloussi
- Department of Biochemistry and Biophysics and
- Blood Research Center, School of Medicine, University of North Carolina at Chapel Hill, North Carolina, USA
| | | | | | | | - Fabienne Proamer
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, F-67065 Strasbourg, France
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine I, University Hospital Würzburg, Würzburg, Germany
- Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Matthew J. Flick
- Blood Research Center, School of Medicine, University of North Carolina at Chapel Hill, North Carolina, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Christian Gachet
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, F-67065 Strasbourg, France
| | - Caterina Casari
- Department of Biochemistry and Biophysics and
- HITh, UMR_S1176, INSERM, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Anita Eckly
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, F-67065 Strasbourg, France
| | - Wolfgang Bergmeier
- Department of Biochemistry and Biophysics and
- Blood Research Center, School of Medicine, University of North Carolina at Chapel Hill, North Carolina, USA
| |
Collapse
|
68
|
Autophagy Ameliorates Reactive Oxygen Species-Induced Platelet Storage Lesions. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1898844. [PMID: 36046681 PMCID: PMC9423982 DOI: 10.1155/2022/1898844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/23/2022] [Accepted: 03/19/2022] [Indexed: 01/18/2023]
Abstract
Platelet transfusion is a life-saving therapy to prevent bleeding; however, the availability of platelets for transfusion is limited by the markedly short shelf life owing to the development of platelet storage lesions (PSLs). The mechanism of PSLs remains obscure. Dissection of the intracellular biological changes in stored platelets may help to reduce PSLs and improve platelet transfusion efficiency. In the present study, we explore the changes of stored platelets at room temperature under constant agitation. We found that platelets during storage showed an increased reactive oxygen species (ROS) generation accompanied with receptor shedding, apoptosis, and diminished platelet aggregation. ROS scavenger reduced platelet shedding but also impaired platelet aggregation. Autophagy is a conserved catabolic process that sequesters protein aggregates and damaged organelles into lysosomes for degradation and platelets’ own intact autophagic system. We revealed that there exist a stable autophagic flux in platelets at the early stage of storage, and the autophagic flux in platelets perished after long-term storage. Treatment stored platelets with rapamycin, which stimulates autophagy in eukaryotic cells, markedly ameliorated PSLs, and improved platelet aggregation in response to extracellular stimuli.
Collapse
|
69
|
Bendas G, Schlesinger M. The GPIb-IX complex on platelets: insight into its novel physiological functions affecting immune surveillance, hepatic thrombopoietin generation, platelet clearance and its relevance for cancer development and metastasis. Exp Hematol Oncol 2022; 11:19. [PMID: 35366951 PMCID: PMC8976409 DOI: 10.1186/s40164-022-00273-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/19/2022] [Indexed: 12/13/2022] Open
Abstract
The glycoprotein (GP) Ib-IX complex is a platelet receptor that mediates the initial interaction with subendothelial von Willebrand factor (VWF) causing platelet arrest at sites of vascular injury even under conditions of high shear. GPIb-IX dysfunction or deficiency is the reason for the rare but severe Bernard-Soulier syndrome (BSS), a congenital bleeding disorder. Although knowledge on GPIb-IX structure, its basic functions, ligands, and intracellular signaling cascades have been well established, several advances in GPIb-IX biology have been made in the recent years. Thus, two mechanosensitive domains and a trigger sequence in GPIb were characterized and its role as a thrombin receptor was deciphered. Furthermore, it became clear that GPIb-IX is involved in the regulation of platelet production, clearance and thrombopoietin secretion. GPIb is deemed to contribute to liver cancer development and metastasis. This review recapitulates these novel findings highlighting GPIb-IX in its multiple functions as a key for immune regulation, host defense, and liver cancer development.
Collapse
Affiliation(s)
- Gerd Bendas
- Department of Pharmacy, Rheinische Friedrich-Wilhelms-University Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Martin Schlesinger
- Department of Pharmacy, Rheinische Friedrich-Wilhelms-University Bonn, An der Immenburg 4, 53121, Bonn, Germany. .,Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany.
| |
Collapse
|
70
|
Airapetov MI, Eresko SO, Bychkov ER, Lebedev AA, Shabanov PD. [Effect of ethanol on platelet biology]. BIOMEDITSINSKAIA KHIMIIA 2022; 68:81-92. [PMID: 35485482 DOI: 10.18097/pbmc20226802081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In recent years, interest in the study of platelets, significantly increased due to recent discoveries providing convincing evidence that their functions by are not limited to their participation in the blood coagulation mechanism. Many works are devoted to the study of the functional state of platelets under conditions of acute and chronic alcohol exposure. The results of such studies can be useful for the development of new markers of the degree of alcohol intoxication of the body for the subsequent choice of the method drug correction of disorders caused by acute or chronic alcohol effects. The review summarizes results in vivo and in vitro of studies performed during more than 60 years on the effect of ethanol on the biogenesis, number, morphology and biochemistry of platelets.
Collapse
Affiliation(s)
- M I Airapetov
- Department of Neuropharmacology, Institute of Experimental Medicine, Saint Petersburg, Russia; Department of Pharmacology, St. Petersburg State Pediatric Medical University, Saint Petersburg, Russia
| | - S O Eresko
- Department of Neuropharmacology, Institute of Experimental Medicine, Saint Petersburg, Russia; Research and Training Center of Molecular and Cellular Technologies, Saint Petersburg, Russia
| | - E R Bychkov
- Department of Neuropharmacology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - A A Lebedev
- Department of Neuropharmacology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - P D Shabanov
- Department of Neuropharmacology, Institute of Experimental Medicine, Saint Petersburg, Russia; Department of Pharmacology, Kirov Military Medical Academy, Saint Petersburg, Russia
| |
Collapse
|
71
|
Mandel J, Casari M, Stepanyan M, Martyanov A, Deppermann C. Beyond Hemostasis: Platelet Innate Immune Interactions and Thromboinflammation. Int J Mol Sci 2022; 23:ijms23073868. [PMID: 35409226 PMCID: PMC8998935 DOI: 10.3390/ijms23073868] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 02/07/2023] Open
Abstract
There is accumulating evidence that platelets play roles beyond their traditional functions in thrombosis and hemostasis, e.g., in inflammatory processes, infection and cancer, and that they interact, stimulate and regulate cells of the innate immune system such as neutrophils, monocytes and macrophages. In this review, we will focus on platelet activation in hemostatic and inflammatory processes, as well as platelet interactions with neutrophils and monocytes/macrophages. We take a closer look at the contributions of major platelet receptors GPIb, αIIbβ3, TLT-1, CLEC-2 and Toll-like receptors (TLRs) as well as secretions from platelet granules on platelet-neutrophil aggregate and neutrophil extracellular trap (NET) formation in atherosclerosis, transfusion-related acute lung injury (TRALI) and COVID-19. Further, we will address platelet-monocyte and macrophage interactions during cancer metastasis, infection, sepsis and platelet clearance.
Collapse
Affiliation(s)
- Jonathan Mandel
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (J.M.); (M.C.); (M.S.)
| | - Martina Casari
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (J.M.); (M.C.); (M.S.)
| | - Maria Stepanyan
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (J.M.); (M.C.); (M.S.)
- Center For Theoretical Problems of Physico-Chemical Pharmacology, 109029 Moscow, Russia;
- Physics Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
- Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology Immunology Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia
| | - Alexey Martyanov
- Center For Theoretical Problems of Physico-Chemical Pharmacology, 109029 Moscow, Russia;
- Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology Immunology Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia
- N.M. Emanuel Institute of Biochemical Physics RAS (IBCP RAS), 119334 Moscow, Russia
| | - Carsten Deppermann
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (J.M.); (M.C.); (M.S.)
- Correspondence:
| |
Collapse
|
72
|
CRACking the Molecular Regulatory Mechanism of SOCE during Platelet Activation in Thrombo-Occlusive Diseases. Cells 2022; 11:cells11040619. [PMID: 35203269 PMCID: PMC8870035 DOI: 10.3390/cells11040619] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/31/2022] [Accepted: 02/09/2022] [Indexed: 11/16/2022] Open
Abstract
Thrombo-occlusive diseases such as myocardial infarction, ischemic stroke and deep vein thrombosis with subsequent pulmonary embolism still represent a major health burden worldwide. Besides the cells of the vasculature or other hematopoietic cells, platelets are primarily responsible for the development and progression of an occluding thrombus. The activation and function of platelets crucially depend on free cytosolic calcium (Ca2+) as second messenger, which modulates platelet secretion, aggregation and thrombus formation. Ca2+ is elevated upon platelet activation by release of Ca2+ from intracellular stores thus triggering of the subsequent store-operated Ca2+ entry (SOCE), which is facilitated by Ca2+ release-activated channels (CRACs). In general, CRACs are assembled by the pore-forming unit Orai in the plasma membrane and the Ca2+-sensing stromal interaction molecule (STIM) in the endoplasmic reticulum after the depletion of internal Ca2+ stores. In the last few years, there is a growing body of the literature demonstrating the importance of STIM and Orai-mediated mechanism in thrombo-occlusive disorders. Thus, this review provides an overview of the recent understanding of STIM and Orai signaling in platelet function and its implication in the development and progression of ischemic thrombo-occlusive disorders. Moreover, potential pharmacological implications of STIM and Orai signaling in platelets are anticipated and discussed in the end.
Collapse
|
73
|
Baghdadi V, Ranjbaran R, Yari F, Rafiee MH. Trehalose An Additive Solution for Platelet Concentrate to Protect Platelets from Apoptosis and Clearance during Their Storage at 4°C. CELL JOURNAL 2022; 24:69-75. [PMID: 35279962 PMCID: PMC8918273 DOI: 10.22074/cellj.2022.7886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/11/2021] [Indexed: 11/04/2022]
Abstract
Objective Although cold storage of platelets (PLTs) could decrease the risk of bacterial growth, it could affect on the PLTs viability and hemostatic function. At cold temperatures, trehalose can be used to substitute water, inhibit the solid-liquid transition phase of the PLT membrane, and stop Glycoprotein Ibα (GPIbα) polymerization. In this study, we evaluated the potential of trehalose for reducing the negative effects of cold storage on the apoptosis and the clearance rates of PLTs after long-term storage at cold. Materials and Methods In this experimental study, PLT concentrates (PCs) were maintained for five days in the different circumstances. PLTs were subsequently counted by using an automated hematology analyzer. Also water-soluble tetrazolium salt (WST-1) assay was performed to estimate the viability of PLTs. The activity of lactate dehydrogenase enzyme (LDH) was determined by a biochemical analyzer. And human active caspase-3 levels were measured by using enzyme-linked immunosorbent assay (ELISA) method. Also, we applied flow cytometry technique. Results PLTs count and viability were higher, while LDH amount was lower in trehalose-treated PLTs when compared with two other groups (P=0.03). The highest increase in the amount of caspase-3 levels in the PLTs was observed at 4°C. However, trehalose-treated and 4°C PLTs had a lower amount of active caspase-3 in comparison with 4°C PLTs. The level of PS expression on PLTs was lower in the trehalose-treated PLTs in compared with the two other groups (P=0.03). PLTs ingestion by HepG2 cells was enhanced in the 4°C-stored PLTs. However, the ingestion rate was significantly reduced in the trehalose-treated PLTs on day 5 of storage (P=0.03). Conclusion Trehalose can moderate the effects of cold temperature on the apoptosis, viability, and the survival rate of PLTs. It also decreases the ingestion rate of refrigerated PLTs in vitro.
Collapse
Affiliation(s)
- Vahid Baghdadi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Reza Ranjbaran
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of
Medical Sciences, Shiraz, Iran
| | - Fatemeh Yari
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran,P.O.Box: 14665-1157Blood Transfusion Research CenterHigh Institute for Research and Education in Transfusion
MedicineTehranIran
| | - Mohammad Hessam Rafiee
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
74
|
Luc NF, Rohner N, Girish A, Sekhon UDS, Neal MD, Gupta AS. Bioinspired artificial platelets: past, present and future. Platelets 2022; 33:35-47. [PMID: 34455908 PMCID: PMC8795470 DOI: 10.1080/09537104.2021.1967916] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Platelets are anucleate blood cells produced from megakaryocytes predominantly in the bone marrow and released into blood circulation at a healthy count of 150,000-400,00 per μL and circulation lifespan of 7-9 days. Platelets are the first responders at the site of vascular injury and bleeding, and participate in clot formation via injury site-specific primary mechanisms of adhesion, activation and aggregation to form a platelet plug, as well as secondary mechanisms of augmenting coagulation via thrombin amplification and fibrin generation. Platelets also secrete various granule contents that enhance these mechanisms for clot growth and stability. The resultant clot seals the injury site to stanch bleeding, a process termed as hemostasis. Due to this critical role, a reduction in platelet count or dysregulation in platelet function is associated with bleeding risks and hemorrhagic complications. These scenarios are often treated by prophylactic or emergency transfusion of platelets. However, platelet transfusions face significant challenges due to limited donor availability, difficult portability and storage, high bacterial contamination risks, and very short shelf life (~5-7 days). These are currently being addressed by a robust volume of research involving reduced temperature storage and pathogen reduction processes on donor platelets to improve shelf-life and reduce contamination, as well as bioreactor-based approaches to generate donor-independent platelets from stem cells in vitro. In parallel, a complementary research field has emerged that involves the design of artificial platelets utilizing biosynthetic particle constructs that functionally emulate various hemostatic mechanisms of platelets. Here, we provide a comprehensive review of the history and the current state-of-the-art artificial platelet approaches, along with discussing the translational opportunities and challenges.
Collapse
Affiliation(s)
- Norman F. Luc
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, OH 44106, USA
| | - Nathan Rohner
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, OH 44106, USA
| | - Aditya Girish
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, OH 44106, USA
| | | | - Matthew D. Neal
- University of Pittsburgh, Pittsburgh Trauma Research Center, Department of Surgery, Pittsburgh, PA 15123, USA
| | - Anirban Sen Gupta
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, OH 44106, USA
| |
Collapse
|
75
|
Elahi S. Hematopoietic responses to SARS-CoV-2 infection. Cell Mol Life Sci 2022; 79:187. [PMID: 35284964 PMCID: PMC8918078 DOI: 10.1007/s00018-022-04220-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/03/2022] [Accepted: 02/22/2022] [Indexed: 01/09/2023]
Abstract
Under physiological conditions, hematopoietic stem and progenitor cells (HSPCs) in the bone marrow niches are responsible for the highly regulated and interconnected hematopoiesis process. At the same time, they must recognize potential threats and respond promptly to protect the host. A wide spectrum of microbial agents/products and the consequences of infection-induced mediators (e.g. cytokines, chemokines, and growth factors) can have prominent impact on HSPCs. While COVID-19 starts as a respiratory tract infection, it is considered a systemic disease which profoundly alters the hematopoietic system. Lymphopenia, neutrophilia, thrombocytopenia, and stress erythropoiesis are the hallmark of SARS-CoV-2 infection. Moreover, thrombocytopenia and blood hypercoagulability are common among COVID-19 patients with severe disease. Notably, the invasion of erythroid precursors and progenitors by SARS-CoV-2 is a cardinal feature of COVID-19 disease which may in part explain the mechanism underlying hypoxia. These pieces of evidence support the notion of skewed steady-state hematopoiesis to stress hematopoiesis following SARS-CoV-2 infection. The functional consequences of these alterations depend on the magnitude of the effect, which launches a unique hematopoietic response that is associated with increased myeloid at the expense of decreased lymphoid cells. This article reviews some of the key pathways including the infectious and inflammatory processes that control hematopoiesis, followed by a comprehensive review that summarizes the latest evidence and discusses how SARS-CoV-2 infection impacts hematopoiesis.
Collapse
Affiliation(s)
- Shokrollah Elahi
- Faculty of Medicine and Dentistry, School of Dentistry, Division of Foundational Sciences, Department of Oncology, and Li Ka Shing Institute of Virology, University of Alberta, 7020 Katz Group Centre, 11361-87th Ave NW, Edmonton, AB T6G 2E1 Canada
| |
Collapse
|
76
|
Sake CL, Metcalf AJ, Meagher M, Paola JD, Neeves KB, Boyle NR. Isotopically nonstationary 13C metabolic flux analysis in resting and activated human platelets. Metab Eng 2022; 69:313-322. [PMID: 34954086 PMCID: PMC8905147 DOI: 10.1016/j.ymben.2021.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 01/03/2023]
Abstract
Platelet metabolism is linked to platelet hyper- and hypoactivity in numerous human diseases. Developing a detailed understanding of the link between metabolic shifts and platelet activation state is integral to improving human health. Here, we show the first application of isotopically nonstationary 13C metabolic flux analysis to quantitatively measure carbon fluxes in both resting and thrombin activated platelets. Metabolic flux analysis results show that resting platelets primarily metabolize glucose to lactate via glycolysis, while acetate is oxidized to fuel the tricarboxylic acid cycle. Upon activation with thrombin, a potent platelet agonist, platelets increase their uptake of glucose 3-fold. This results in an absolute increase in flux throughout central metabolism, but when compared to resting platelets they redistribute carbon dramatically. Activated platelets decrease relative flux to the oxidative pentose phosphate pathway and TCA cycle from glucose and increase relative flux to lactate. These results provide the first report of reaction-level carbon fluxes in platelets and allow us to distinguish metabolic fluxes with much higher resolution than previous studies.
Collapse
Affiliation(s)
- Cara L. Sake
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, 80401 USA
| | - Alexander J. Metcalf
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, 80401 USA
| | - Michelle Meagher
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jorge Di Paola
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Keith B. Neeves
- Department of Bioengineering, University of Colorado, Aurora, CO, 80045 USA,Hemophilia and Thrombosis Center, University of Colorado, Aurora, CO, 80045 USA,Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant University of Colorado, Aurora, CO, 80045 USA
| | - Nanette R. Boyle
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, 80401 USA,Correspondence: , 423 Alderson Hall; 1613 Illinois St.; Golden, CO 80401
| |
Collapse
|
77
|
Biomimetic platelet membrane-coated Nanoparticles for targeted therapy. Eur J Pharm Biopharm 2022; 172:1-15. [DOI: 10.1016/j.ejpb.2022.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/18/2021] [Accepted: 01/17/2022] [Indexed: 02/08/2023]
|
78
|
Smolag KI, Fager Ferrari M, Zetterberg E, Leinoe E, Ek T, Blom AM, Rossing M, Martin M. Severe Congenital Thrombocytopenia Characterized by Decreased Platelet Sialylation and Moderate Complement Activation Caused by Novel Compound Heterozygous Variants in GNE. Front Immunol 2021; 12:777402. [PMID: 34858435 PMCID: PMC8630651 DOI: 10.3389/fimmu.2021.777402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/22/2021] [Indexed: 11/22/2022] Open
Abstract
Background Hereditary thrombocytopenias constitute a genetically heterogeneous cause of increased bleeding. We report a case of a 17-year-old boy suffering from severe macrothrombocytopenia throughout his life. Whole genome sequencing revealed the presence of two compound heterozygous variants in GNE encoding the enzyme UDP-N-acetyl-glucosamine-2-epimerase/N-acetylmannosamine kinase, crucial for sialic acid biosynthesis. Sialic acid is required for normal platelet life span, and biallelic variants in GNE have previously been associated with isolated macrothrombocytopenia. Furthermore, sialic acid constitutes a key ligand for complement factor H (FH), an important inhibitor of the complement system, protecting host cells from indiscriminate attack. Methods Sialic acid expression and FH binding to platelets and leukocytes was evaluated by flow cytometry. The binding of FH to erythrocytes was assessed indirectly by measuring the rate of complement mediated hemolysis. Complement activation was determined by measuring levels of C3bBbP (alternative pathway), C4d (classical/lectin pathway) and soluble terminal complement complex assays. Results The proband exhibited markedly decreased expression of sialic acid on platelets and leukocytes. Consequently, the binding of FH was strongly reduced and moderate activation of the alternative and classical/lectin complement pathways was observed, together with an increased rate of erythrocyte lysis. Conclusion We report two previously undescribed variants in GNE causing severe congenital macrothrombocytopenia in a compound heterozygous state, as a consequence of decreased platelet sialylation. The decreased sialylation of platelets, leukocytes and erythrocytes affects the binding of FH, leading to moderate complement activation and increased hemolysis.
Collapse
Affiliation(s)
- Karolina I Smolag
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Marcus Fager Ferrari
- Clinical Coagulation Research Unit, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Eva Zetterberg
- Clinical Coagulation Research Unit, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Eva Leinoe
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Torben Ek
- Children's Cancer Center, Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Anna M Blom
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Maria Rossing
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Myriam Martin
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
79
|
Neupane AS, Kubes P. Imaging reveals novel innate immune responses in lung, liver, and beyond. Immunol Rev 2021; 306:244-257. [PMID: 34816440 DOI: 10.1111/imr.13040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022]
Abstract
Highly dynamic immune responses are generated toward pathogens or injuries, in vivo. Multiple immune cell types participate in various facets of the response which leads to a concerted effort in the removal and clearance of pathogens or injured tissue and a return to homeostasis. Intravital microscopy (IVM) has been extensively utilized to unravel the dynamics of immune responses, visualizing immune cell behavior in intact living tissues, within a living organism. For instance, the phenomenon of leukocyte recruitment cascade. Importantly, IVM has led to a deep appreciation that immune cell behavior and responses in individual organs are distinct, but also can influence one another. In this review, we discuss how IVM as a tool has been used to study the innate immune responses in various tissues during homeostasis, injury, and infection.
Collapse
Affiliation(s)
- Arpan Sharma Neupane
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.,Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, California, USA
| | - Paul Kubes
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.,Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
80
|
Poole LG, Fournier AK, Cline-Fedewa HM, Kopec AK, Luyendyk JP, Groeneveld DJ. Von Willebrand factor exerts hepatoprotective effects in acute but not chronic cholestatic liver injury in mice. Toxicology 2021; 463:152968. [PMID: 34619301 PMCID: PMC8585719 DOI: 10.1016/j.tox.2021.152968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/17/2021] [Accepted: 09/29/2021] [Indexed: 02/06/2023]
Abstract
Acute and chronic liver disease are associated with substantial alterations in the hemostatic system, including elevated levels of the platelet-adhesive protein von Willebrand factor (VWF). Carbon tetrachloride-induced liver fibrosis is reduced in VWF-deficient mice, but it is unclear if VWF plays a pathologic role in all settings of liver fibrosis. Indeed, several studies suggest an anti-fibrotic role for components of the hemostatic system, including platelets, in experimental settings of bile duct fibrosis. However, the role of VWF in this specific pathology has not been examined. We tested the hypothesis that VWF exerts hepatoprotective effects in experimental bile duct injury. Wild-type and VWF-deficient (VWF-/-) mice were challenged with the bile duct toxicant alpha-naphthylisothiocyanate (ANIT) and the impact of VWF deficiency on acute cholestatic liver injury and chronic liver fibrosis was determined. Acute ANIT (60 mg/kg, po)-induced cholestatic liver injury was associated with increased VWF plasma antigen and activity levels. VWF deficiency enhanced ANIT-induced hepatocellular injury, evidenced by increased plasma ALT activity and area of hepatocellular necrosis. Surprisingly, platelet accumulation within necrotic areas was increased in ANIT-challenged VWF-/- mice compared to wild-type mice. Compared to acute ANIT challenge, hepatic platelet accumulation was modest and appeared to be VWF-dependent in mice exposed to ANIT diet (0.05 %) for 6 weeks. However, contrasting the role of VWF after acute ANIT challenge, VWF deficiency did not impact biliary fibrosis induced by chronic ANIT exposure. The results suggest that VWF plays dichotomous roles in experimental acute and chronic ANIT-induced cholestatic liver injury.
Collapse
Affiliation(s)
- Lauren G. Poole
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI, USA.,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Anna-Katherine Fournier
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Holly M. Cline-Fedewa
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Anna K. Kopec
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI, USA.,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - James P. Luyendyk
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI, USA.,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA.,Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, USA
| | - Dafna J. Groeneveld
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
81
|
Wu B, Ye Y, Xie S, Li Y, Sun X, Lv M, Yang L, Cui N, Chen Q, Jensen LD, Cui D, Huang G, Zuo J, Zhang S, Liu W, Yang Y. Megakaryocytes Mediate Hyperglycemia-Induced Tumor Metastasis. Cancer Res 2021; 81:5506-5522. [PMID: 34535458 DOI: 10.1158/0008-5472.can-21-1180] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/19/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022]
Abstract
High blood glucose has long been established as a risk factor for tumor metastasis, yet the molecular mechanisms underlying this association have not been elucidated. Here we describe that hyperglycemia promotes tumor metastasis via increased platelet activity. Administration of glucose, but not fructose, reprogrammed the metabolism of megakaryocytes to indirectly prime platelets into a prometastatic phenotype with increased adherence to tumor cells. In megakaryocytes, a glucose metabolism-related gene array identified the mitochondrial molecular chaperone glucose-regulated protein 75 (GRP75) as a trigger for platelet activation and aggregation by stimulating the Ca2+-PKCα pathway. Genetic depletion of Glut1 in megakaryocytes blocked MYC-induced GRP75 expression. Pharmacologic blockade of platelet GRP75 compromised tumor-induced platelet activation and reduced metastasis. Moreover, in a pilot clinical study, drinking a 5% glucose solution elevated platelet GRP75 expression and activated platelets in healthy volunteers. Platelets from these volunteers promoted tumor metastasis in a platelet-adoptive transfer mouse model. Together, under hyperglycemic conditions, MYC-induced upregulation of GRP75 in megakaryocytes increases platelet activation via the Ca2+-PKCα pathway to promote cancer metastasis, providing a potential new therapeutic target for preventing metastasis. SIGNIFICANCE: This study provides mechanistic insights into a glucose-megakaryocyte-platelet axis that promotes metastasis and proposes an antimetastatic therapeutic approach by targeting the mitochondrial protein GRP75.
Collapse
Affiliation(s)
- Biying Wu
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ying Ye
- Department of Oral Implantology, School and Hospital of Stomatology, Tongji University; Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Sisi Xie
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yintao Li
- Phase I Clinical Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
| | - Xiaoting Sun
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengyuan Lv
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ling Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Nan Cui
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qiying Chen
- Department of Cardiology, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Lasse D Jensen
- Department of Medicine, Health and Caring Science, Division of Diagnostics and Specialist Medicine, Unit of Cardiovascular Medicine, Linköping University, Linköping, Sweden
| | - Dongmei Cui
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Affiliated Shenzhen Eye Hospital of Jinan University, Shenzhen, China
| | - Guichun Huang
- Medical Oncology Department of Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ji Zuo
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shaochong Zhang
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Affiliated Shenzhen Eye Hospital of Jinan University, Shenzhen, China
| | - Wen Liu
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
82
|
Shen C, Liu M, Mackeigan DT, Chen ZY, Chen P, Karakas D, Li J, Norris PAA, Li J, Deng Y, Long C, Lai R, Ni H. Viper venoms drive the macrophages and hepatocytes to sequester and clear platelets: novel mechanism and therapeutic strategy for venom-induced thrombocytopenia. Arch Toxicol 2021; 95:3589-3599. [PMID: 34519865 DOI: 10.1007/s00204-021-03154-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/02/2021] [Indexed: 11/25/2022]
Abstract
Venomous snakebites cause clinical manifestations that range from local to systemic and are considered a significant global health challenge. Persistent or refractory thrombocytopenia has been frequently reported in snakebite patients, especially in cases caused by viperidae snakes. Viper envenomation-induced thrombocytopenia may persist in the absence of significant consumption coagulopathy even after the antivenom treatment, yet the mechanism remains largely unknown. Our study aims to investigate the mechanism and discover novel therapeutic targets for coagulopathy-independent thrombocytopenia caused by viper envenomation. Here we found that patients bitten by Protobothrops mucrosquamatus and Trimeresurus stejnegeri, rather than Naja. atra may develop antivenom-resistant and coagulopathy-independent thrombocytopenia. Crude venoms and the derived C-type lectin-like proteins from these vipers significantly increased platelet surface expression of neuraminidase and platelet desialylation, therefore led to platelet ingestion by both macrophages and hepatocytes in vitro, and drastically decreased peripheral platelet counts in vivo. Our study is the first to demonstrate that desialylation-mediated platelet clearance is a novel mechanism of viper envenomation-induced refractory thrombocytopenia and C-type lectin-like proteins derived from the viper venoms contribute to snake venom-induced thrombocytopenia. The results of this study suggest the inhibition of platelet desialylation as a novel therapeutic strategy against viper venom-induced refractory thrombocytopenia.
Collapse
Affiliation(s)
- Chuanbin Shen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, M5B 1W8, Canada
| | - Ming Liu
- Department of Molecular and Cell Biology, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Daniel Thomas Mackeigan
- Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, M5B 1W8, Canada
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - Zi Yan Chen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, M5B 1W8, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, M5G 2M1, Canada
| | - Pingguo Chen
- Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, M5B 1W8, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, M5G 2M1, Canada
| | - Danielle Karakas
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, M5B 1W8, Canada
| | - June Li
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, M5B 1W8, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, M5G 2M1, Canada
| | - Peter A A Norris
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, M5B 1W8, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, M5G 2M1, Canada
| | - Jiayao Li
- Hospital of Traditional Chinese Medicine of Wuzhou City, Wuzhou, 543002, Guangxi, China
| | - Yanling Deng
- Hospital of Traditional Chinese Medicine of Wuzhou City, Wuzhou, 543002, Guangxi, China
| | - Chengbo Long
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, 650223, Yunnan, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Ren Lai
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, 650223, Yunnan, China.
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
| | - Heyu Ni
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A1, Canada.
- Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, M5B 1W8, Canada.
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A1, Canada.
- Canadian Blood Services Centre for Innovation, Toronto, ON, M5G 2M1, Canada.
- Department of Medicine, University of Toronto, Toronto, ON, M5S 1A1, Canada.
- Department of Laboratory Medicine and Pathobiology, Department of Medicine and Department of Physiology, University of TorontoCanadian Blood Services Centre for Innovation, St. Michael's Hospital, Room 421, LKSKI - Keenan Research Centre, 209 Victoria Street, Toronto, ON, M5B 1W8, Canada.
| |
Collapse
|
83
|
A novel mechanism of thrombocytopenia by PS exposure through TMEM16F in sphingomyelin synthase 1 deficiency. Blood Adv 2021; 5:4265-4277. [PMID: 34478523 PMCID: PMC8945624 DOI: 10.1182/bloodadvances.2020002922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 05/27/2021] [Indexed: 01/04/2023] Open
Abstract
Membrane SM reduction by SMS1deficiency enhances PS exposure and thrombocytopenia. Depression of membrane SM potentiates Ca2+ influx and PS externalization through TMEM16F.
Sphingomyelin synthase 1 (SMS1) contributes to the generation of membrane sphingomyelin (SM) and affects SM-mediated physiological functions. Here, we describe the hematologic phenotypes, such as reduced circulating platelets and dysfunctional hemostasis, in SMS1-deficient (SMS1-KO) mice. SMS1-KO mice display pathologic manifestations related to idiopathic thrombocytopenia (ITP), including relatively high amounts of peripheral blood reticulated platelets, enhanced megakaryopoiesis in the bone marrow and spleen, and splenomegaly. Deficiency of SMS1, but not SMS2, prevented SM production and enhanced phosphatidylserine (PS) externalization on the plasma membranes of platelets and megakaryocytes. Consequently, SMS1-KO platelets were excessively cleared by macrophages in the spleen. Multimer formation in the plasma membrane of TMEM16F, a known calcium (Ca2+)-activated nonselective ion channel and Ca2+-dependent PS scramblase, was enhanced; the result was PS externalization to outer leaflets through increased Ca2+ influx in immortalized mouse embryonic fibroblasts established from SMS1-KO mice (SMS1-KO tMEFs), as seen with SMS1-KO platelets. Thus, SMS1 deficiency changed the TMEM16F distribution on the membrane microdomain, regulating Ca2+ influx-dependent PS exposure. SMS1-KO tMEFs in which TMEM16F was knocked out by using the CRISPR/Cas9 system lacked both the Ca2+ influx and excess PS exposure seen in SMS1-KO tMEFs. Therefore, SM depletion on platelet membrane microdomains due to SMS1 deficiency enhanced PS externalization via a Ca2+ influx through TMEM16F activation, leading to elevated platelet clearance and causing hemostasis dysfunction through thrombocytopenia. Our current findings show that the SM-rich microdomain generated by SMS1 is a potent regulator of thrombocytopenia through TMEM16F, suggesting that its dysfunction may be a novel additional mechanism of ITP.
Collapse
|
84
|
Xiao W, Zhou K, Yang M, Sun C, Dai L, Gu J, Yan R, Dai K. Carbamazepine Induces Platelet Apoptosis and Thrombocytopenia Through Protein Kinase A. Front Pharmacol 2021; 12:749930. [PMID: 34658890 PMCID: PMC8513130 DOI: 10.3389/fphar.2021.749930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
Carbamazepine is extensively used worldwide to treat a wide range of disorders such as epilepsy, peripheral neuralgia and bipolar disorder. Thrombocytopenia and hemorrhage have been identified in multiple carbamazepine-treated patients. However, the underlying mechanism remains poorly understood. Here, we show that platelets undergo apoptosis after carbamazepine treatment. The apoptotic platelets induced by carbamazepine are rapidly removed in vivo, which accounts for thrombocytopenia. We found that carbamazepine treatment attenuates the phosphorylation level of bcl-xl/bcl-2-associated death promoter (BAD), vasodilator-associated stimulated phosphoprotein (VASP) and GPIbβ in platelets, indicating an inhibition effect on protein kinase A (PKA). We further demonstrated that carbamazepine reduced PKA activity through PI3K/Akt/PDE3A signaling pathway. Pharmacological activation of PKA or inhibition of PI3K/Akt/PDE3A protects platelets from apoptosis induced by carbamazepine. Importantly, PDE3A inhibitors or PKA activator ameliorates carbamazepine-mediated thrombocytopenia in vivo. These findings shed light on a possible mechanism of carbamazepine-induced thrombocytopenia, designating PDE3A/PKA as a potential therapeutic target in the treatment of carbamazepine-induced thrombocytopenia.
Collapse
Affiliation(s)
- Weiling Xiao
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China.,Department of Immunology, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Kangxi Zhou
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Mengnan Yang
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Chenglin Sun
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Lan Dai
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Jian Gu
- Department of Hematology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Rong Yan
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Kesheng Dai
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| |
Collapse
|
85
|
Jimenez-Marco T, Castrillo A, Hierro-Riu F, Vicente V, Rivera J. Frozen and cold-stored platelets: reconsidered platelet products. Platelets 2021; 33:27-34. [PMID: 34423718 DOI: 10.1080/09537104.2021.1967917] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Platelet transfusion, both prophylactic and therapeutic, is a key element in modern medicine. Currently, the standard platelet product for clinical use is platelet concentrates at room temperature (20-24°C) under gentle agitation. As this temperature favors bacterial growth, storage is limited to 5-7 days, which result in high wastage rate, and complicates inventory and product availability at remote areas. Frozen and/or cold storage would ameliorate those disadvantages by reducing the risk of bacterial contamination and by extending the product shelf-life to weeks or even years. Consequently, the usefulness in transfusion medicine of platelet cryopreservation and refrigeration, two old and scarcely used platelet storage approaches, is reemerging. Indeed, there have been substantial recent research efforts to characterize both cold and cryopreserved platelets. Most recent studies indicate that cryopreserved and cold platelets display a pro-coagulant profile that may produce the rapid hemostatic response which is needed in bleeding patients. Thus, it seems appropriate that blood banks and blood transfusion centers explore the possibility of split platelet inventories consisting of platelets stored at room temperature and cryopreserved and cold-stored platelets.
Collapse
Affiliation(s)
- Teresa Jimenez-Marco
- Fundació Banc De Sang I Teixits De Les Illes Balears, Majorca, Spain.,Institut d'Investigació Sanitària Illes Balears (Idisba), Majorca, Spain
| | - Azucena Castrillo
- Axencia Galega De Sangue, Órganos E Tecidos. Santiago De Compostela, A Coruña, Spain
| | | | - Vicente Vicente
- Servicio De Hematología Y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional De Hemodonación, Universidad De Murcia, IMIB-Arrixaca, Murcia, Spain
| | - José Rivera
- Servicio De Hematología Y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional De Hemodonación, Universidad De Murcia, IMIB-Arrixaca, Murcia, Spain
| |
Collapse
|
86
|
Brissot E, Troadec M, Loréal O, Brissot P. Iron and platelets: A subtle, under-recognized relationship. Am J Hematol 2021; 96:1008-1016. [PMID: 33844865 DOI: 10.1002/ajh.26189] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/16/2021] [Accepted: 04/08/2021] [Indexed: 12/16/2022]
Abstract
The role of iron in the formation and functioning of erythrocytes, and to a lesser degree of white blood cells, is well established, but the relationship between iron and platelets is less documented. Physiologically, iron plays an important role in hematopoiesis, including thrombopoiesis; iron levels direct, together with genetic factors, the lineage commitment of megakaryocytic/erythroid progenitors toward either megakaryocyte or erythroid progenitors. Megakaryocytic iron contributes to cellular machinery, especially energy production in platelet mitochondria. Thrombocytosis, possibly favoring vascular thrombosis, is a classical feature observed with abnormally low total body iron stores (mainly due to blood losses or decreased duodenal iron intake), but thrombocytopenia can also occur in severe iron deficiency anemia. Iron sequestration, as seen in inflammatory conditions, can be associated with early thrombocytopenia due to platelet consumption and followed by reactive replenishment of the platelet pool with possibility of thrombocytosis. Iron overload of genetic origin (hemochromatosis), despite expected mitochondrial damage related to ferroptosis, has not been reported to cause thrombocytopenia (except in case of high degree of hepatic fibrosis), and iron-related alteration of platelet function is still a matter of debate. In acquired iron overload (of transfusional and/or dyserythropoiesis origin), quantitative or qualitative platelet changes are difficult to attribute to iron alone due to the interference of the underlying hematological conditions; likewise, hematological improvement, including increased blood platelet counts, observed under iron oral chelation is likely to reflect mechanisms other than the sole beneficial impact of iron depletion.
Collapse
Affiliation(s)
- Eolia Brissot
- Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine APHP Paris France
- Sorbonne Universités, UPMC Univ. Paris 06, Centre de recherche Saint‐Antoine, UMR‐S938 Paris France
| | - Marie‐Bérengère Troadec
- Univ Brest, Inserm, EFS, UMR 1078, GGB Brest France
- Service de génétique, laboratoire de génétique chromosomique CHRU Brest Brest France
| | - Olivier Loréal
- Inserm, University of Rennes1, UMR 1241, Inrae, NuMeCan Institute Rennes France
| | - Pierre Brissot
- Inserm, University of Rennes1, UMR 1241, Inrae, NuMeCan Institute Rennes France
| |
Collapse
|
87
|
Kanikarla Marie P, Fowlkes NW, Afshar-Kharghan V, Martch SL, Sorokin A, Shen JP, Morris VK, Dasari A, You N, Sood AK, Overman MJ, Kopetz S, Menter DG. The Provocative Roles of Platelets in Liver Disease and Cancer. Front Oncol 2021; 11:643815. [PMID: 34367949 PMCID: PMC8335590 DOI: 10.3389/fonc.2021.643815] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Both platelets and the liver play important roles in the processes of coagulation and innate immunity. Platelet responses at the site of an injury are rapid; their immediate activation and structural changes minimize the loss of blood. The majority of coagulation proteins are produced by the liver—a multifunctional organ that also plays a critical role in many processes: removal of toxins and metabolism of fats, proteins, carbohydrates, and drugs. Chronic inflammation, trauma, or other causes of irreversible damage to the liver can dysregulate these pathways leading to organ and systemic abnormalities. In some cases, platelet-to-lymphocyte ratios can also be a predictor of disease outcome. An example is cirrhosis, which increases the risk of bleeding and prothrombotic events followed by activation of platelets. Along with a triggered coagulation cascade, the platelets increase the risk of pro-thrombotic events and contribute to cancer progression and metastasis. This progression and the resulting tissue destruction is physiologically comparable to a persistent, chronic wound. Various cancers, including colorectal cancer, have been associated with increased thrombocytosis, platelet activation, platelet-storage granule release, and thrombosis; anti-platelet agents can reduce cancer risk and progression. However, in cancer patients with pre-existing liver disease who are undergoing chemotherapy, the risk of thrombotic events becomes challenging to manage due to their inherent risk for bleeding. Chemotherapy, also known to induce damage to the liver, further increases the frequency of thrombotic events. Depending on individual patient risks, these factors acting together can disrupt the fragile balance between pro- and anti-coagulant processes, heightening liver thrombogenesis, and possibly providing a niche for circulating tumor cells to adhere to—thus promoting both liver metastasis and cancer-cell survival following treatment (that is, with minimal residual disease in the liver).
Collapse
Affiliation(s)
- Preeti Kanikarla Marie
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Natalie W Fowlkes
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Vahid Afshar-Kharghan
- Division of Internal Medicine, Benign Hematology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Stephanie L Martch
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Alexey Sorokin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - John Paul Shen
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Van K Morris
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Arvind Dasari
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nancy You
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Michael J Overman
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - David George Menter
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
88
|
Wu X, Li Y, Tong H. Research Advances in the Subtype of Sepsis-Associated Thrombocytopenia. Clin Appl Thromb Hemost 2021; 26:1076029620959467. [PMID: 33054353 PMCID: PMC7573720 DOI: 10.1177/1076029620959467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The incidence and mortality of sepsis in the intensive care unit (ICU) are extremely high. Thrombocytopenia, one of the most common laboratory abnormalities, is correlated with prognosis in sepsis. The pathophysiology of sepsis-associated thrombocytopenia (SAT) remains unclear and may be associated with several factors such as platelet activation due to vascular injury and pathogen, suppression of bone marrow, platelet-targeted antibodies and desialylation. This review summarized all these possible mechanisms in the 3 subtypes of SAT: increased platelet consumption, reduced platelet production and increased platelet destruction. Based on the clinically available platelet parameters, the evidence for identifying SAT subtypes and the recent progress in treatments according to these subtypes are proposed to provide new prospects for the management of SAT.
Collapse
Affiliation(s)
- Xinghui Wu
- The First School of Clinical Medicine, 70570Southern Medical University, Guangzhou, People's Republic of China
| | - Yue Li
- Department of Intensive Care Unit, 26470PLA General Hospital of Southern Theatre Command, Key Laboratory of Tropical Zone Trauma Care and Tissue Repair of PLA, Guangzhou, People's Republic of China
| | - Huasheng Tong
- Department of Intensive Care Unit, 26470PLA General Hospital of Southern Theatre Command, Key Laboratory of Tropical Zone Trauma Care and Tissue Repair of PLA, Guangzhou, People's Republic of China
| |
Collapse
|
89
|
Huang J, Swieringa F, Solari FA, Provenzale I, Grassi L, De Simone I, Baaten CCFMJ, Cavill R, Sickmann A, Frontini M, Heemskerk JWM. Assessment of a complete and classified platelet proteome from genome-wide transcripts of human platelets and megakaryocytes covering platelet functions. Sci Rep 2021; 11:12358. [PMID: 34117303 PMCID: PMC8196183 DOI: 10.1038/s41598-021-91661-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Novel platelet and megakaryocyte transcriptome analysis allows prediction of the full or theoretical proteome of a representative human platelet. Here, we integrated the established platelet proteomes from six cohorts of healthy subjects, encompassing 5.2 k proteins, with two novel genome-wide transcriptomes (57.8 k mRNAs). For 14.8 k protein-coding transcripts, we assigned the proteins to 21 UniProt-based classes, based on their preferential intracellular localization and presumed function. This classified transcriptome-proteome profile of platelets revealed: (i) Absence of 37.2 k genome-wide transcripts. (ii) High quantitative similarity of platelet and megakaryocyte transcriptomes (R = 0.75) for 14.8 k protein-coding genes, but not for 3.8 k RNA genes or 1.9 k pseudogenes (R = 0.43-0.54), suggesting redistribution of mRNAs upon platelet shedding from megakaryocytes. (iii) Copy numbers of 3.5 k proteins that were restricted in size by the corresponding transcript levels (iv) Near complete coverage of identified proteins in the relevant transcriptome (log2fpkm > 0.20) except for plasma-derived secretory proteins, pointing to adhesion and uptake of such proteins. (v) Underrepresentation in the identified proteome of nuclear-related, membrane and signaling proteins, as well proteins with low-level transcripts. We then constructed a prediction model, based on protein function, transcript level and (peri)nuclear localization, and calculated the achievable proteome at ~ 10 k proteins. Model validation identified 1.0 k additional proteins in the predicted classes. Network and database analysis revealed the presence of 2.4 k proteins with a possible role in thrombosis and hemostasis, and 138 proteins linked to platelet-related disorders. This genome-wide platelet transcriptome and (non)identified proteome database thus provides a scaffold for discovering the roles of unknown platelet proteins in health and disease.
Collapse
Affiliation(s)
- Jingnan Huang
- Department of Biochemistry, CARIM, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
- Leibniz-Institut Für Analytische Wissenschaften-ISAS-E.V, Dortmund, Germany.
| | - Frauke Swieringa
- Department of Biochemistry, CARIM, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Leibniz-Institut Für Analytische Wissenschaften-ISAS-E.V, Dortmund, Germany
| | - Fiorella A Solari
- Leibniz-Institut Für Analytische Wissenschaften-ISAS-E.V, Dortmund, Germany
| | - Isabella Provenzale
- Department of Biochemistry, CARIM, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Luigi Grassi
- Department of Haematology, University of Cambridge, National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, Cambridge, UK
| | - Ilaria De Simone
- Department of Biochemistry, CARIM, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Constance C F M J Baaten
- Department of Biochemistry, CARIM, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH, Aachen, Germany
| | - Rachel Cavill
- Department of Data Science and Knowledge Engineering, FSE, Maastricht University, Maastricht, The Netherlands
| | - Albert Sickmann
- Leibniz-Institut Für Analytische Wissenschaften-ISAS-E.V, Dortmund, Germany
- Medizinische Fakultät, Medizinische Proteom-Center, Ruhr-Universität Bochum, Germany
- Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, UK
| | - Mattia Frontini
- Department of Haematology, University of Cambridge, National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, Cambridge, UK
- Institute of Biomedical & Clinical Science, College of Medicine and Health, University of Exeter Medical School, Exeter, UK
| | - Johan W M Heemskerk
- Department of Biochemistry, CARIM, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| |
Collapse
|
90
|
Thibault G, Paintaud G, Sung HC, Lajoie L, Louis E, Desvignes C, Watier H, Gouilleux-Gruart V, Ternant D. Association of IgG1 Antibody Clearance with FcγRIIA Polymorphism and Platelet Count in Infliximab-Treated Patients. Int J Mol Sci 2021; 22:ijms22116051. [PMID: 34205175 PMCID: PMC8199937 DOI: 10.3390/ijms22116051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
Abstract
The FcγRIIA/CD32A is mainly expressed on platelets, myeloid and several endothelial cells. Its affinity is considered insufficient for allowing significant binding of monomeric IgG, while its H131R polymorphism (histidine > arginine at position 131) influences affinity for multimeric IgG2. Platelet FcγRIIA has been reported to contribute to IgG-containing immune-complexe clearance. Given our finding that platelet FcγRIIA actually binds monomeric IgG, we investigated the role of platelets and FcγRIIA in IgG antibody elimination. We used pharmacokinetics analysis of infliximab (IgG1) in individuals with controlled Crohn’s disease. The influence of platelet count and FcγRIIA polymorphism was quantified by multivariate linear modelling. The infliximab half-life increased with R allele number (13.2, 14.4 and 15.6 days for HH, HR and RR patients, respectively). It decreased with increasing platelet count in R carriers: from ≈20 days (RR) and ≈17 days (HR) at 150 × 109/L, respectively, to ≈13 days (both HR and RR) at 350 × 109/L. Moreover, a flow cytometry assay showed that infliximab and monomeric IgG1 bound efficiently to platelet FcγRIIA H and R allotypes, whereas panitumumab and IgG2 bound poorly to the latter. We propose that infliximab (and presumably any IgG1 antibody) elimination is partly due to an unappreciated mechanism dependent on binding to platelet FcγRIIA, which is probably tuned by its affinity for IgG2.
Collapse
Affiliation(s)
- Gilles Thibault
- EA 7501 GICC, Université de Tours, 37032 Tours, France; (G.P.); (H.C.S.); (L.L.); (C.D.); (H.W.); (V.G.-G.); (D.T.)
- Laboratoire d’Immunologie, CHRU de Tours, 37032 Tours, France
- Correspondence: ; Tel.: +332-3437-9699
| | - Gilles Paintaud
- EA 7501 GICC, Université de Tours, 37032 Tours, France; (G.P.); (H.C.S.); (L.L.); (C.D.); (H.W.); (V.G.-G.); (D.T.)
- Laboratoire de Pharmacologie-Toxicologie, CHRU de Tours, 37044 Tours, France
| | - Hsueh Cheng Sung
- EA 7501 GICC, Université de Tours, 37032 Tours, France; (G.P.); (H.C.S.); (L.L.); (C.D.); (H.W.); (V.G.-G.); (D.T.)
| | - Laurie Lajoie
- EA 7501 GICC, Université de Tours, 37032 Tours, France; (G.P.); (H.C.S.); (L.L.); (C.D.); (H.W.); (V.G.-G.); (D.T.)
| | - Edouard Louis
- Department of Gastroenterology, University Hospital, CHU of Liège, 4000 Liège, Belgium;
| | | | - Celine Desvignes
- EA 7501 GICC, Université de Tours, 37032 Tours, France; (G.P.); (H.C.S.); (L.L.); (C.D.); (H.W.); (V.G.-G.); (D.T.)
- Laboratoire de Pharmacologie-Toxicologie, CHRU de Tours, 37044 Tours, France
| | - Hervé Watier
- EA 7501 GICC, Université de Tours, 37032 Tours, France; (G.P.); (H.C.S.); (L.L.); (C.D.); (H.W.); (V.G.-G.); (D.T.)
- Laboratoire d’Immunologie, CHRU de Tours, 37032 Tours, France
| | - Valérie Gouilleux-Gruart
- EA 7501 GICC, Université de Tours, 37032 Tours, France; (G.P.); (H.C.S.); (L.L.); (C.D.); (H.W.); (V.G.-G.); (D.T.)
- Laboratoire d’Immunologie, CHRU de Tours, 37032 Tours, France
| | - David Ternant
- EA 7501 GICC, Université de Tours, 37032 Tours, France; (G.P.); (H.C.S.); (L.L.); (C.D.); (H.W.); (V.G.-G.); (D.T.)
- Laboratoire de Pharmacologie-Toxicologie, CHRU de Tours, 37044 Tours, France
| |
Collapse
|
91
|
Bussel JB, Soff G, Balduzzi A, Cooper N, Lawrence T, Semple JW. A Review of Romiplostim Mechanism of Action and Clinical Applicability. Drug Des Devel Ther 2021; 15:2243-2268. [PMID: 34079225 PMCID: PMC8165097 DOI: 10.2147/dddt.s299591] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/06/2021] [Indexed: 12/17/2022] Open
Abstract
Thrombocytopenia results from a variety of conditions, including radiation, chemotherapy, autoimmune disease, bone marrow disorders, pathologic conditions associated with surgical procedures, hematopoietic stem cell transplant (HSCT), and hematologic disorders associated with severe aplastic anemia. Immune thrombocytopenia (ITP) is caused by immune reactions that accelerate destruction and reduce production of platelets. Thrombopoietin (TPO) is a critical component of platelet production pathways, and TPO receptor agonists (TPO-RAs) are important for the management of ITP by increasing platelet production and reducing the need for other treatments. Romiplostim is a TPO-RA approved for use in patients with ITP in the United States, European Union, Australia, and several countries in Africa and Asia, as well as for use in patients with refractory aplastic anemia in Japan and Korea. Romiplostim binds to and activates the TPO receptor on megakaryocyte precursors, thus promoting cell proliferation and viability, resulting in increased platelet production. Through this mechanism, romiplostim reduces the need for other treatments and decreases bleeding events in patients with thrombocytopenia. In addition to its efficacy in ITP, studies have shown that romiplostim is effective in improving platelet counts in various settings, thereby highlighting the versatility of romiplostim. The efficacy of romiplostim in such disorders is currently under investigation. Here, we review the structure, mechanism, pharmacokinetics, and pharmacodynamics of romiplostim. We also summarize the clinical evidence supporting its use in ITP and other disorders that involve thrombocytopenia, including chemotherapy-induced thrombocytopenia, aplastic anemia, acute radiation syndrome, perisurgical thrombocytopenia, post-HSCT thrombocytopenia, and liver disease.
Collapse
Affiliation(s)
- James B Bussel
- Department of Pediatrics, Division of Hematology, Weill Cornell Medicine, New York, NY, USA
| | - Gerald Soff
- Department of Medicine, Hematology Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Adriana Balduzzi
- Clinica Pediatrica Università degli Studi di Milano Bicocca, Ospedale San Gerardo, Monza, Italy
| | | | | | - John W Semple
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
92
|
Zhou K, Xia Y, Yang M, Xiao W, Zhao L, Hu R, Shoaib KM, Yan R, Dai K. Actin polymerization regulates glycoprotein Ibα shedding. Platelets 2021; 33:381-389. [PMID: 33979555 DOI: 10.1080/09537104.2021.1922882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Glycoprotein (GP) Ibα shedding mediated by ADAM17 (a disintegrin and metalloproteinase 17) plays an important role in negatively regulating platelet function and thrombus formation. However, the mechanism of GPIbα shedding remains elusive. Here, we show that jasplakinolide (an actin-polymerizing peptide)-induced actin polymerization results in GPIbα shedding and impairs platelet function. Thrombin and A23187-induced GPIbα shedding is increased by jasplakinolide; in contrast, GPIbα shedding is reduced by a depolymerization regent (cytochalasin B). We find that actin polymerization activates calpain leading to filamin A hydrolyzation. We further demonstrate that the interaction of filamin A with the cytoplasmic domain of GPIbα plays a critical role in regulating actin polymerization-induced GPIbα shedding. Taken together, these data demonstrate that actin polymerization regulates ADAM17-mediated GPIbα shedding, suggesting a novel strategy to negatively regulate platelet function.
Collapse
Affiliation(s)
- Kangxi Zhou
- Medical College, Jiangsu Institute of Hematology, the First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, Jiangsu, China
| | - Yue Xia
- Medical College, Jiangsu Institute of Hematology, the First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, Jiangsu, China
| | - Mengnan Yang
- Medical College, Jiangsu Institute of Hematology, the First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, Jiangsu, China
| | - Weiling Xiao
- Medical College, Jiangsu Institute of Hematology, the First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, Jiangsu, China
| | - Lili Zhao
- Medical College, Jiangsu Institute of Hematology, the First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, Jiangsu, China
| | - Renping Hu
- Medical College, Jiangsu Institute of Hematology, the First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, Jiangsu, China
| | - Khan Muhammad Shoaib
- Medical College, Jiangsu Institute of Hematology, the First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, Jiangsu, China
| | - Rong Yan
- Medical College, Jiangsu Institute of Hematology, the First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, Jiangsu, China
| | - Kesheng Dai
- Medical College, Jiangsu Institute of Hematology, the First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, Jiangsu, China
| |
Collapse
|
93
|
Skripchenko A, Gelderman MP, Vostal JG. P38 mitogen activated protein kinase inhibitor improves platelet in vitro parameters and in vivo survival in a SCID mouse model of transfusion for platelets stored at cold or temperature cycled conditions for 14 days. PLoS One 2021; 16:e0250120. [PMID: 33974660 PMCID: PMC8112650 DOI: 10.1371/journal.pone.0250120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/30/2021] [Indexed: 11/26/2022] Open
Abstract
Platelets for transfusion are stored at room temperature (20-24°C) up to 7 days but decline in biochemical and morphological parameters during storage and can support bacterial proliferation. This decline is reduced with p38MAPK inhibitor, VX-702. Storage of platelets in the cold (4-6°C) can reduce bacterial proliferation but platelets get activated and have reduced circulation when transfused. Thermocycling (cold storage with brief periodic warm ups) reduces some of the effects of cold storage. We evaluated in vitro properties and in vivo circulation in SCID mouse model of human platelet transfusion of platelets stored in cold or thermocycled for 14 days with and without VX-702. Apheresis platelet units (N = 15) were each aliquoted into five storage bags and stored under different conditions: room temperature; cold temperature; thermocycled temperature; cold temperature with VX-702; thermocycled temperature with VX-702. Platelet in vitro parameters were evaluated at 1, 7 and 14 days. On day 14, platelets were infused into SCID mice to assess their retention in circulation by flow cytometry. VX-702 reduced negative platelet parameters associated with cold and thermocycled storage such as an increase in expression of activation markers CD62, CD63 and of phosphatidylserine (marker of apoptosis measured by Annexin binding) and lowered the rise in lactate (marker of increase in anaerobic metabolism). However, VX-702 did not inhibit agonist-induced platelet aggregation indicating that it does not interfere with platelet hemostatic function. In vivo, VX-702 improved initial recovery and area under the curve in circulation of human platelets infused into a mouse model that has been previously validated against a human platelet infusion clinical trial. In conclusion, inhibition of p38MAPK during 14-days platelet storage in cold or thermocycling conditions improved in vitro platelet parameters and platelet circulation in the mouse model indicating that VX-702 may improve cell physiology and clinical performance of human platelets stored in cold conditions.
Collapse
Affiliation(s)
- Andrey Skripchenko
- Division of Blood Components and Devices, Laboratory of Cellular Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Monique P. Gelderman
- Division of Blood Components and Devices, Laboratory of Cellular Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Jaroslav G. Vostal
- Division of Blood Components and Devices, Laboratory of Cellular Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| |
Collapse
|
94
|
The molecular basis of immune-based platelet disorders. Clin Sci (Lond) 2021; 134:2807-2822. [PMID: 33140828 DOI: 10.1042/cs20191101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/12/2020] [Accepted: 10/23/2020] [Indexed: 12/17/2022]
Abstract
Platelets have a predominant role in haemostasis, the maintenance of blood volume and emerging roles as innate immune cells, in wound healing and in inflammatory responses. Platelets express receptors that are important for platelet adhesion, aggregation, participation in inflammatory responses, and for triggering degranulation and enhancing thrombin generation. They carry a cargo of granules bearing enzymes, adhesion molecules, growth factors and cytokines, and have the ability to generate reactive oxygen species. The platelet is at the frontline of a host of cellular responses to invading pathogens, injury, and infection. Perhaps because of this intrinsic responsibility of a platelet to rapidly respond to thrombotic, pathological and immunological factors as part of their infantry role; platelets are susceptible to targeted attack by the adaptive immune system. Such attacks are often transitory but result in aberrant platelet activation as well as significant loss of platelet numbers and platelet function, paradoxically leading to elevated risks of both thrombosis and bleeding. Here, we discuss the main molecular events underlying immune-based platelet disorders with specific focus on events occurring at the platelet surface leading to activation and clearance.
Collapse
|
95
|
Chen Y, Hu J, Chen Y. Platelet desialylation and TFH cells-the novel pathway of immune thrombocytopenia. Exp Hematol Oncol 2021; 10:21. [PMID: 33722280 PMCID: PMC7958461 DOI: 10.1186/s40164-021-00214-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/07/2021] [Indexed: 12/15/2022] Open
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease characterized by immune-mediated destruction of one's own platelets. The progression of thrombocytopenia involves an imbalance of platelet production and clearance. B cells can induce autoantibodies, and T cells contribute to the pathological progression as well. Some patients with ITP have a poor response to common first-line therapies. Recent studies have shown that a novel Fc-independent platelet clearance pathway is associated with poor prognosis in these patients. By this pathway, desialylated platelets can be cleared by Ashwell-Morell receptor (AMR) on hepatocytes. Research has demonstrated that patients with refractory ITP usually have a high level of desialylation, indicating the important role of sialylation on platelet membrane glycoprotein (GP) in patients with primary immune thrombocytopenia, and neuraminidase 1(NEU1) translocation might be involved in this process. Patients with ITP who are positive for anti-GPIbα antibodies have a poor prognosis, which indicates that anti-GPIbα antibodies are associated with this Fc-independent platelet clearance pathway. Experiments have proven that these antibodies could lead to the desialylation of GPs on platelets. The T follicular helper (TFH) cell level is related to the expression of the anti-GPIbα antibody, which indicates its role in the progression of desialylation. This review will discuss platelet clearance and production, especially the role of the anti-GPIbα antibody and desialylation in the pathophysiology of ITP and therapy for this disease.
Collapse
Affiliation(s)
- Yuwen Chen
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, No.29 Xinquan Road, 350001, Fuzhou, Fujian, China
| | - Jianda Hu
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, No.29 Xinquan Road, 350001, Fuzhou, Fujian, China
| | - Yingyu Chen
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, No.29 Xinquan Road, 350001, Fuzhou, Fujian, China.
| |
Collapse
|
96
|
Aliotta A, Bertaggia Calderara D, Zermatten MG, Marchetti M, Alberio L. Thrombocytopathies: Not Just Aggregation Defects-The Clinical Relevance of Procoagulant Platelets. J Clin Med 2021; 10:jcm10050894. [PMID: 33668091 PMCID: PMC7956450 DOI: 10.3390/jcm10050894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/31/2021] [Accepted: 02/12/2021] [Indexed: 01/08/2023] Open
Abstract
Platelets are active key players in haemostasis. Qualitative platelet dysfunctions result in thrombocytopathies variously characterized by defects of their adhesive and procoagulant activation endpoints. In this review, we summarize the traditional platelet defects in adhesion, secretion, and aggregation. In addition, we review the current knowledge about procoagulant platelets, focusing on their role in bleeding or thrombotic pathologies and their pharmaceutical modulation. Procoagulant activity is an important feature of platelet activation, which should be specifically evaluated during the investigation of a suspected thrombocytopathy.
Collapse
Affiliation(s)
- Alessandro Aliotta
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), CH-1010 Lausanne, Switzerland; (A.A.); (D.B.C.); (M.G.Z.); (M.M.)
| | - Debora Bertaggia Calderara
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), CH-1010 Lausanne, Switzerland; (A.A.); (D.B.C.); (M.G.Z.); (M.M.)
| | - Maxime G. Zermatten
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), CH-1010 Lausanne, Switzerland; (A.A.); (D.B.C.); (M.G.Z.); (M.M.)
| | - Matteo Marchetti
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), CH-1010 Lausanne, Switzerland; (A.A.); (D.B.C.); (M.G.Z.); (M.M.)
- Service de Médecine Interne, Hôpital de Nyon, CH-1260 Nyon, Switzerland
| | - Lorenzo Alberio
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), CH-1010 Lausanne, Switzerland; (A.A.); (D.B.C.); (M.G.Z.); (M.M.)
- Correspondence:
| |
Collapse
|
97
|
Mechanisms of anti-GPIbα antibody-induced thrombocytopenia in mice. Blood 2021; 135:2292-2301. [PMID: 32157300 DOI: 10.1182/blood.2019003770] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/18/2020] [Indexed: 12/11/2022] Open
Abstract
Immune thrombocytopenia (ITP) is an acquired bleeding disorder characterized by antibody-mediated platelet destruction. Different mechanisms have been suggested to explain accelerated platelet clearance and impaired thrombopoiesis, but the pathophysiology of ITP has yet to be fully delineated. In this study, we tested 2 mouse models of immune-mediated thrombocytopenia using the rat anti-mouse GPIbα monoclonal antibody 5A7, generated in our laboratory. After a single IV administration of high-dose (2 mg/kg) 5A7, opsonized platelets were rapidly cleared from the circulation into the spleen and liver; this was associated with rapid upregulation of thrombopoietin (TPO) messenger RNA. In contrast, subcutaneous administration of low-dose 5A7 (0.08-0.16 mg/kg) every 3 days gradually lowered the platelet count; in this case, opsonized platelets were observed only in the spleen, and TPO levels remained unaltered. Interestingly, in both models, the 5A7 antibody was found on the surface of, as well as internalized to, bone marrow megakaryocytes. Consequently, platelets generated in the chronic phase of repeated subcutaneous 5A7 administration model showed reduced GPIbα membrane expression on their surface. Our findings indicate that evaluation of platelet surface GPIbα relative to platelet size may be a useful marker to support the diagnosis of anti-GPIbα antibody-induced ITP.
Collapse
|
98
|
Ravanat C, Pongérard A, Freund M, Heim V, Rudwill F, Ziessel C, Eckly A, Proamer F, Isola H, Gachet C. Human platelets labeled at two discrete biotin densities are functional in vitro and are detected in vivo in the murine circulation: A promising approach to monitor platelet survival in vivo in clinical research. Transfusion 2021; 61:1642-1653. [PMID: 33580977 DOI: 10.1111/trf.16312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/17/2021] [Accepted: 01/17/2021] [Indexed: 01/15/2023]
Abstract
BACKGROUND The production of platelet concentrates (PCs) is evolving, and their survival capacity needs in vivo evaluation. This requires that the transfused platelets (PLTs) be distinguished from those of the recipient. Labeling at various biotin (Bio) densities allows one to concurrently trace multiple PLT populations, as reported for red blood cells. STUDY DESIGN AND METHODS A method is described to label human PLTs at two densities of Bio for future clinical trials. Injectable-grade PLTs were prepared in a sterile environment, using injectable-grade buffers and good manufacturing practices (GMP)-grade Sulfo-NHS-Biotin. Sulfo-NHS-Biotin concentrations were chosen to maintain PLT integrity and avoid potential alloimmunization while enabling the detection of circulating BioPLTs. The impact of biotinylation on human PLT recirculation was evaluated in vivo in a severe immunodeficient mouse model using ex vivo flow cytometry. RESULTS BioPLTs labeled with 1.2 or 10 μg/ml Sulfo-NHS-Biotin displayed normal ultrastructure and retained aggregation and secretion capacity and normal expression of the main surface glycoproteins. The procedure avoided detrimental PLT activation or apoptosis signals. Transfused human BioPLT populations could be distinguished from one another and from unlabeled circulating mouse PLTs, and their survival was comparable to that of unlabeled human PLTs in the mouse model. CONCLUSIONS Provided low Sulfo-NHS-Biotin concentrations (<10 μg/ml) are used, injectable-grade BioPLTs comply with safety regulations, conserve PLT integrity, and permit accurate in vivo detection. This alternative to radioisotopes, which allows one to follow different PLT populations in the same recipient, should be valuable when assessing new PC preparations and monitoring PLT survival in clinical research.
Collapse
Affiliation(s)
- Catherine Ravanat
- Université de Strasbourg, INSERM, Etablissement Français du Sang (EFS) Grand-Est, BPPS UMR_S 1255, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Anaïs Pongérard
- Université de Strasbourg, INSERM, Etablissement Français du Sang (EFS) Grand-Est, BPPS UMR_S 1255, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Monique Freund
- Université de Strasbourg, INSERM, Etablissement Français du Sang (EFS) Grand-Est, BPPS UMR_S 1255, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Véronique Heim
- Université de Strasbourg, INSERM, Etablissement Français du Sang (EFS) Grand-Est, BPPS UMR_S 1255, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Floriane Rudwill
- Université de Strasbourg, INSERM, Etablissement Français du Sang (EFS) Grand-Est, BPPS UMR_S 1255, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Catherine Ziessel
- Université de Strasbourg, INSERM, Etablissement Français du Sang (EFS) Grand-Est, BPPS UMR_S 1255, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Anita Eckly
- Université de Strasbourg, INSERM, Etablissement Français du Sang (EFS) Grand-Est, BPPS UMR_S 1255, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Fabienne Proamer
- Université de Strasbourg, INSERM, Etablissement Français du Sang (EFS) Grand-Est, BPPS UMR_S 1255, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Hervé Isola
- Université de Strasbourg, INSERM, Etablissement Français du Sang (EFS) Grand-Est, BPPS UMR_S 1255, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Christian Gachet
- Université de Strasbourg, INSERM, Etablissement Français du Sang (EFS) Grand-Est, BPPS UMR_S 1255, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| |
Collapse
|
99
|
Jorch SK, Deppermann C. Intravital Imaging Allows Organ-Specific Insights Into Immune Functions. Front Cell Dev Biol 2021; 9:623906. [PMID: 33644061 PMCID: PMC7905207 DOI: 10.3389/fcell.2021.623906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/12/2021] [Indexed: 12/24/2022] Open
Abstract
Leukocytes are among the most mobile and versatile cells that have many essential functions in homeostasis and survival. Especially cells from the innate immune system, i.e., neutrophils and macrophages, play an important role as rapid first responders against invading microorganisms. With the advent of novel imaging techniques, new ways of visualizing innate immune cells have become available in recent years, thereby enabling more and more detailed discoveries about their nature, function and interaction partners. Besides intravital spinning-disc and 2-photon microscopy, clearing and 3D-imaging techniques provide new insights into the mechanism of innate immune cell behavior in their natural environment. This mini review focuses on the contributions of novel-imaging techniques to provide insight into the functions of neutrophils and macrophages under homeostasis and in infections. Imaging setups for different organs like the liver, kidney, heart, lung, and the peritoneal cavity are discussed as well as the current limitations of these imaging techniques.
Collapse
Affiliation(s)
- Selina K Jorch
- Institute of Experimental Immunology, University Hospital of Bonn, Rheinische Friedrich-Wilhelms Universität, Bonn, Germany
| | - Carsten Deppermann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
100
|
Isola H, Ravanat C, Rudwill F, Pongerard A, Haas D, Eckly A, Gachet C, Hechler B. Removal of citrate from PAS-III additive solution improves functional and biochemical characteristics of buffy-coat platelet concentrates stored for 7 days, with or without INTERCEPT pathogen reduction. Transfusion 2021; 61:919-930. [PMID: 33527430 DOI: 10.1111/trf.16280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/17/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Deterioration in quality of platelet concentrates (PCs) during storage results from the appearance of storage lesions affecting the hemostatic functions and posttransfusion survival of platelets. These lesions depend on the preparation and pathogen inactivation methods used, duration of storage, and platelet additive solutions (PASs) present in storage bags. METHODS We investigated the effects of citrate contained in third-generation PAS (PAS-III) on storage lesions in buffy-coat PCs with or without photochemical (amotosalen-ultraviolet A) treatment over 7 days. RESULTS Platelet counts were conserved in all groups during storage, as was platelet swirling without appearance of macroscopic aggregates. Glycoprotein (GP) IIbIIIa and GPVI expression remained stable, whereas GPIbα declined similarly in all groups during storage. Removal of citrate from PAS-III, resulting in global reduction of citrate from 11 to 5 mM, led to a significant decrease in glucose consumption, which largely countered a modest deleterious effect of photochemical treatment. Citrate reduction also resulted in decreased lactate generation and better maintenance of pH during storage, while photochemical treatment had no impact on these parameters. Moreover, citrate-free storage significantly reduced exposure of P-selectin and the apoptosis signal phosphatidylserine, thereby abolishing the activating effect of photochemical treatment on both parameters. Citrate reduction benefited platelet aggregation to various agonists up to Day 7, whereas PCT had no impact on these responses. CONCLUSION Removal of citrate from PAS-III has a beneficial impact on platelet metabolism, spontaneous activation, and apoptosis, and improves platelet aggregation, irrespective of photochemical treatment, which should allow transfusion of platelets with better and longer-lasting functional properties.
Collapse
Affiliation(s)
- Hervé Isola
- INSERM, Etablissement Français du Sang (EFS) Grand Est, BPPS UMR_S 1255, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Catherine Ravanat
- INSERM, Etablissement Français du Sang (EFS) Grand Est, BPPS UMR_S 1255, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Floriane Rudwill
- INSERM, Etablissement Français du Sang (EFS) Grand Est, BPPS UMR_S 1255, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Anais Pongerard
- INSERM, Etablissement Français du Sang (EFS) Grand Est, BPPS UMR_S 1255, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Delphine Haas
- INSERM, Etablissement Français du Sang (EFS) Grand Est, BPPS UMR_S 1255, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Anita Eckly
- INSERM, Etablissement Français du Sang (EFS) Grand Est, BPPS UMR_S 1255, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Christian Gachet
- INSERM, Etablissement Français du Sang (EFS) Grand Est, BPPS UMR_S 1255, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Béatrice Hechler
- INSERM, Etablissement Français du Sang (EFS) Grand Est, BPPS UMR_S 1255, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| |
Collapse
|