51
|
Williams MR, Kataoka N, Sakurai Y, Powers CM, Eskin SG, McIntire LV. Gene expression of endothelial cells due to interleukin-1 beta stimulation and neutrophil transmigration. ACTA ACUST UNITED AC 2008; 15:73-84. [PMID: 18568947 DOI: 10.1080/10623320802092443] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
During the inflammatory response, endothelial cell (EC) functions and mechanics change dramatically. To understand these responses, the authors analyzed changes in EC gene expression in an in vitro model of inflammation using cDNA microarrays. After interleukin-1 beta (IL1beta) stimulation, over 2500 genes were differentially expressed, of which approximately 2000 had not been previously identified by microarray studies of IL1beta stimulation in human umbilical vein endothelial cells (HUVECs). Functional grouping of these genes according to gene ontologies revealed genes associated with apoptosis, cell cycle, nuclear factor (NF)-kappa B cascade, chemotaxis, and immune response. Interestingly, claudin-1, known to exist in endothelial cell-cell junctions was up-regulated, but claudin-5 and occludin, which also exist in EC junctions, were down-regulated. Pre-b-cell colony enhancing factor (PBEF), a cytokine which may play a role in regulating endothelial permeability, was also up-regulated following IL1beta stimulation. Neutrophil transmigration across IL1beta-stimulated ECs did not induce changes in EC gene expression as strongly as IL1beta stimulation alone. Nineteen genes after 1 h and 22 genes after 3 h of neutrophil application were differentially expressed. These results indicate that, in terms of transcriptional effects on ECs, neutrophil transmigration is a relatively small perturbation in comparison to the background of large scale changes induced in ECs by cytokine stimulation. Supplementary materials are available for this article. Go to the publisher's online edition of Endothelium for the following free supplementary resources: supplementary figures and tables.
Collapse
Affiliation(s)
- Marcie R Williams
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | | | | | | | |
Collapse
|
52
|
Abstract
The transition from rolling to firm adhesion is a key step in the adhesion cascade that permits a neutrophil to exit the bloodstream and make its way to a site of inflammation. In this work, we construct an integrated model of neutrophil activation and arrest that combines a biomechanical model of neutrophil adhesion and adhesive dynamics, with fully stochastic signal transduction modeling, in the form of kinetic Monte Carlo simulation within the microvilli. We employ molecular binding parameters gleaned from the literature and from simulation of cell-free rolling mediated by selectin molecules. We create a simplified model of lymphocyte function-associated antigen-1 activation that links P-selectin glycoprotein ligand-1 ligation to integrin activation. The model utilizes an energy profile of various integrin activation states drawn from literature data and permits manipulation of signal diffusivity within the microvillus. Our integrated model recreates neutrophil arrest within physiological timescales, and we demonstrate that increasing signal diffusivity within a microvillus accelerates arrest. If the energy barrier between free unactivated and free activated lymphocyte function-associated antigen-1 increases, the period of rolling before arrest increases. We further demonstrate that, within our model, modification of endothelial ligand surface densities can control arrest. In addition, the relative concentrations of signaling molecules control the fractional activation of the overall signaling pathway and the rolling time to arrest. This work presents the first, to our knowledge, fully stochastic model of neutrophil activation, which, though simplified, can recapitulate significant physiological details of neutrophil arrest yet retains the capacity to incorporate additional information regarding mechanisms of neutrophil signal transduction as they are elucidated.
Collapse
|
53
|
Saalbach A, Arnhold J, Leßig J, Simon J, Anderegg U. Human Thy-1 induces secretion of matrix metalloproteinase-9 and CXCL8 from human neutrophils. Eur J Immunol 2008; 38:1391-403. [DOI: 10.1002/eji.200737901] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
54
|
Liang S, Slattery MJ, Wagner D, Simon SI, Dong C. Hydrodynamic shear rate regulates melanoma-leukocyte aggregation, melanoma adhesion to the endothelium, and subsequent extravasation. Ann Biomed Eng 2008; 36:661-71. [PMID: 18253835 PMCID: PMC2677444 DOI: 10.1007/s10439-008-9445-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Accepted: 01/22/2008] [Indexed: 11/26/2022]
Abstract
Adhesion to and subsequent extravasation through the endothelial lining of blood vessels is critical for tumor cells to establish metastases. Recent studies have indicated that polymorphonuclear neutrophils (PMNs) may enhance melanoma adhesion to the endothelium (EC) and subsequent extravasation under dynamic flow conditions. However, little is known about hydrodynamics involved in the tumor microenvironment within the microcirculation. In this study, effects of hydrodynamic flow on regulating melanoma cell adhesion to the EC have been investigated. Results indicate that under flow conditions, interactions between melanoma cells and the EC are distinctly different from PMN-EC interactions. Without expressions of surface integrins or sialylated molecules, most melanoma cells that express a high-level of intercellular adhesion molecule (ICAM-1) are not able to effectively adhere to the inflamed EC by themselves. Binding of melanoma cells and PMNs through ICAM-1 on melanoma cells and beta(2) integrins on PMNs has been shown to enhance melanoma cell arrest on the EC. Although PMN tethering on the EC is regulated by both the shear rate and shear stress, melanoma cell adhesion to the EC and subsequent extravasation via tethering PMN on the EC is predominantly regulated by shear rate, which partly is due to the shear-rate-dependent PMN-melanoma aggregation in shear flow. These findings provide a rationale and mechanistic basis for understanding of leukocyte-tumor cell interactions under flow conditions during tumor cell extravasation and metastasis.
Collapse
Affiliation(s)
- Shile Liang
- Department of Bioengineering, The Pennsylvania State University, 233 Hallowell Building, University Park, PA 16802, USA
| | - Margaret J. Slattery
- Department of Bioengineering, The Pennsylvania State University, 233 Hallowell Building, University Park, PA 16802, USA
| | - Desiree Wagner
- Department of Bioengineering, The Pennsylvania State University, 233 Hallowell Building, University Park, PA 16802, USA
| | - Scott I. Simon
- Department of Biomedical Engineering, The University of California, Davis, CA, USA
| | - Cheng Dong
- Department of Bioengineering, The Pennsylvania State University, 233 Hallowell Building, University Park, PA 16802, USA
| |
Collapse
|
55
|
Differential regulation of neutrophil CD18 integrin function by di- and tri-valent cations: manganese vs. gadolinium. Ann Biomed Eng 2008; 36:647-60. [PMID: 18317931 DOI: 10.1007/s10439-008-9446-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Accepted: 01/22/2008] [Indexed: 10/22/2022]
Abstract
Affinity regulation of integrin function plays an important role during both leukocyte-endothelial and leukocyte-leukocyte interactions. We compared the roles of Mn(2+) (Manganese) and Gd(3+) (Gadolinium) in regulating leukocyte CD18-integrin function. We observed that: (i) Both cations prolonged neutrophil homotypic aggregation following chemoattractant IL-8 stimulation, with Gd(3+) being effective at doses two orders of magnitude (10 microM range) lower that Mn(2+). (ii) While both Gd(3+) and Mn(2+) mediate homotypic cell aggregation via L: -selectin and CD18 integrins, their effects on the integrin subunits, LFA-1 (CD11a/CD18) and Mac-1 (CD11b/CD18), was different. Gd(3+) altered both LFA-1 and Mac-1 function, while the dominant effect of Mn(2+) was on Mac-1. This effect of Gd(3+) on LFA-1 function was confirmed in cell-free studies that measured the binding of recombinant ICAM-1 to LFA-1 immobilized on beads. (iii) Both ions augmented the binding of 327C, an antibody that recognizes active CD18 on human neutrophils, both in the presence and absence of exogenous IL-8. The effects of Mn(2+) was more pronounced since it caused 3-4-fold increase in mAb 327C binding to neutrophils compared to Gd(3+) which increased antibody binding by only approximately 80%. 327C binding was partially reduced by Ca(2+). Further, 327C binding induced by Mn(2+) did not correlate tightly with cell adhesion function. (iv) In studies that monitored intracellular Ca(2+) ([Ca(2+)](i)), the addition of Mn(2+) but not Gd(3+) to neutrophils altered [Ca(2+)](i) levels. Overall, while both Gd(3+) and Mn(2+) stabilize high affinity CD18 mediated cell adhesion, Gd(3+) affects integrin conformation while Mn(2+) may also trigger other effects.
Collapse
|
56
|
Liang S, Fu C, Wagner D, Guo H, Zhan D, Dong C, Long M. Two-dimensional kinetics of beta 2-integrin and ICAM-1 bindings between neutrophils and melanoma cells in a shear flow. Am J Physiol Cell Physiol 2008; 294:C743-53. [PMID: 18199704 PMCID: PMC2678683 DOI: 10.1152/ajpcell.00250.2007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cell adhesion, mediated by specific receptor-ligand interactions, plays an important role in biological processes such as tumor metastasis and inflammatory cascade. For example, interactions between beta 2-integrin (lymphocyte function-associated antigen-1 and/or Mac-1) on polymorphonuclear neutrophils (PMNs) and ICAM-1 on melanoma cells initiate the bindings of melanoma cells to PMNs within the tumor microenvironment in blood flow, which in turn activate PMN-melanoma cell aggregation in a near-wall region of the vascular endothelium, therefore enhancing subsequent extravasation of melanoma cells in the microcirculations. Kinetics of integrin-ligand bindings in a shear flow is the determinant of such a process, which has not been well understood. In the present study, interactions of PMNs with WM9 melanoma cells were investigated to quantify the kinetics of beta 2-integrin and ICAM-1 bindings using a cone-plate viscometer that generates a linear shear flow combined with a two-color flow cytometry technique. Aggregation fractions exhibited a transition phase where it first increased before 60 s and then decreased with shear durations. Melanoma-PMN aggregation was also found to be inversely correlated with the shear rate. A previously developed probabilistic model was modified to predict the time dependence of aggregation fractions at different shear rates and medium viscosities. Kinetic parameters of beta 2-integrin and ICAM-1 bindings were obtained by individual or global fittings, which were comparable to respectively published values. These findings provide new quantitative understanding of the biophysical basis of leukocyte-tumor cell interactions mediated by specific receptor-ligand interactions under shear flow conditions.
Collapse
Affiliation(s)
- Shile Liang
- Dept. of Bioengineering, The Pennsylvania State University, University Park, PA 16802-6804, USA
| | | | | | | | | | | | | |
Collapse
|
57
|
Bradfield PF, Johnson-Léger CA, Zimmerli C, Imhof BA. LPS differentially regulates adhesion and transendothelial migration of human monocytes under static and flow conditions. Int Immunol 2007; 20:247-57. [PMID: 18156623 DOI: 10.1093/intimm/dxm136] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
One of the key components of the innate immune response is the recognition of microbial products such as LPS by Toll-like receptors on monocytes and neutrophils. We show here that short-term stimulation of primary human monocytes with LPS led to an increase in adhesion of monocytes to endothelial cells and a dramatic decrease in transendothelial migration under static conditions. In contrast, under normal physiological flow, monocyte adhesion and migration across a human umbilical vein endothelial cell monolayer appeared to be unaffected by LPS treatment. LPS stimulation of monocytes activated beta(1) and beta(2) integrins, but did not increase their surface expression levels. During septic shock, reduction in blood flow as a result of vasodilation and vascular permeability leads to adhesion and accumulation of LPS-stimulated circulating monocytes onto the blood vessel walls. The different findings of monocyte migration under static and flow conditions in our study may offer one explanation for this phenomenon. The rapid engagement of LPS-activated monocytes preventing transendothelial migration could represent a novel mechanism of bacterial exclusion from the vasculature. This occurs during the early stages of sepsis, and in turn may modulate the severity of the pathophysiology.
Collapse
Affiliation(s)
- Paul F Bradfield
- Department of Pathology and Immunology, University Medical Centre, 1 Rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | | | | | | |
Collapse
|
58
|
Zirlik A, Maier C, Gerdes N, MacFarlane L, Soosairajah J, Bavendiek U, Ahrens I, Ernst S, Bassler N, Missiou A, Patko Z, Aikawa M, Schönbeck U, Bode C, Libby P, Peter K. CD40 ligand mediates inflammation independently of CD40 by interaction with Mac-1. Circulation 2007; 115:1571-80. [PMID: 17372166 DOI: 10.1161/circulationaha.106.683201] [Citation(s) in RCA: 233] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Strong evidence supports a role for CD40 ligand (CD40L) as marker and mediator of inflammatory diseases such as atherosclerosis. Despite extensive characterization of CD40, the classic receptor of CD40L, its role in immune defense against inflammatory diseases remains uncertain. The present study aimed to characterize the contribution of CD40 signaling to atherogenesis. METHODS AND RESULTS Surprisingly, mice deficient in both CD40 and the low-density lipoprotein receptor did not develop smaller lesions in the aortic arch, root, and thoracoabdominal aorta compared with mice deficient only in the low-density lipoprotein receptor that consumed an atherogenic diet for 8 and 16 weeks. By flow cytometry, radioactive binding assays, and immunoprecipitation, we demonstrate that CD40L interacts with the integrin Mac-1, which results in Mac-1-dependent adhesion and migration of inflammatory cells as well as myeloperoxidase release in vitro. Furthermore, mice deficient in CD40L show significantly reduced thioglycolate-elicited invasion of inflammatory cells into the peritoneal cavity compared with mice deficient in CD40 and wild-type controls. Inhibition of Mac-1 in low-density lipoprotein receptor-deficient mice attenuates lesion development and reduces lesional macrophage accumulation. CONCLUSIONS These observations identify the interaction of CD40L and Mac-1 as an alternative pathway for CD40L-mediated inflammation. This novel mechanism expands understanding of inflammatory signaling during atherogenesis.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/chemistry
- Aorta, Thoracic/pathology
- Aortic Diseases/etiology
- Aortic Diseases/pathology
- Atherosclerosis/etiology
- Atherosclerosis/genetics
- Atherosclerosis/physiopathology
- Atherosclerosis/prevention & control
- CD40 Ligand/deficiency
- CD40 Ligand/physiology
- CHO Cells
- Chemotaxis, Leukocyte/physiology
- Cholesterol, Dietary/toxicity
- Cricetinae
- Cricetulus
- Crosses, Genetic
- Diet, Atherogenic
- Foam Cells/pathology
- Genetic Predisposition to Disease
- Humans
- Inflammation/etiology
- Inflammation/genetics
- Inflammation/physiopathology
- Lipids/analysis
- Macrophage-1 Antigen/physiology
- Macrophages/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Models, Biological
- Monocytes/drug effects
- Monocytes/enzymology
- Peritonitis/chemically induced
- Peritonitis/metabolism
- Peritonitis/pathology
- Peroxidase/metabolism
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Rheology
- Tetradecanoylphorbol Acetate/pharmacology
Collapse
Affiliation(s)
- Andreas Zirlik
- Donald W. Reynolds Center, Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Florey OJ, Johns M, Esho OO, Mason JC, Haskard DO. Antiendothelial cell antibodies mediate enhanced leukocyte adhesion to cytokine-activated endothelial cells through a novel mechanism requiring cooperation between Fc{gamma}RIIa and CXCR1/2. Blood 2007; 109:3881-9. [PMID: 17244681 DOI: 10.1182/blood-2006-08-044669] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Antiendothelial cell antibodies (AECAs) are commonly detectable in diseases associated with vascular injury, including systemic lupus erythematosus (SLE), systemic sclerosis, Takayasu arteritis, Wegener granulomatosis, Behçet syndrome, and transplant arteriosclerosis. Here, we explore the hypothesis that these antibodies might augment polymorphonuclear leukocyte (PMN) adhesion to endothelium in inflammation. Initially, we established that a mouse IgG mAb bound to endothelial cells (ECs) significantly increased PMN adhesion to cytokine-stimulated endothelium in an FcgammaRIIa-dependent manner. Neutralizing antibodies, and adenoviral transduction of resting ECs, demonstrated that the combination of E-selectin, CXCR1/2, and beta(2) integrins is both necessary and sufficient for this process. We observed an identical mechanism using AECA IgG isolated directly from patients with SLE. Assembled immune complexes also enhanced PMN adhesion to endothelium, but, in contrast to adhesion because of AECAs, this process did not require CXCR1/2, was not inhibited by pertussis toxin, and was FcgammaRIIIb rather than FcgammaRIIa dependent. These data are the first to demonstrate separate nonredundant FcgammaRIIa and FcgammaRIIIb-mediated mechanisms by which EC-bound monomeric IgG and assembled immune complexes amplify leukocyte adhesion under dynamic conditions. Furthermore, the observation that FcgammaRIIa and CXCR1/2 cooperate to enhance PMN recruitment in the presence of AECAs suggests a mechanism whereby AECAs may augment tissue injury during inflammatory responses.
Collapse
Affiliation(s)
- Oliver J Florey
- British Heart Foundation, Cardiovascular Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Hospital, Du Cane Road, London, UK
| | | | | | | | | |
Collapse
|
60
|
Panorchan P, Thompson MS, Davis KJ, Tseng Y, Konstantopoulos K, Wirtz D. Single-molecule analysis of cadherin-mediated cell-cell adhesion. J Cell Sci 2006; 119:66-74. [PMID: 16371651 DOI: 10.1242/jcs.02719] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cadherins are ubiquitous cell surface molecules that are expressed in virtually all solid tissues and localize at sites of cell-cell contact. Cadherins form a large and diverse family of adhesion molecules, which play a crucial role in a multitude of cellular processes, including cell-cell adhesion, motility, and cell sorting in maturing organs and tissues, presumably because of their different binding capacity and specificity. Here, we develop a method that probes the biochemical and biophysical properties of the binding interactions between cadherins expressed on the surface of living cells, at the single-molecule level. Single-molecule force spectroscopy reveals that classical cadherins, N-cadherin and E-cadherin, form bonds that display adhesion specificity, and a pronounced difference in adhesion force and reactive compliance, but not in bond lifetime. Moreover, their potentials of interaction, derived from force-spectroscopy measurements, are qualitatively different when comparing the single-barrier energy potential for the dissociation of an N-cadherin-N-cadherin bond with the double-barrier energy potential for an E-cadherin-E-cadherin bond. Together these results suggest that N-cadherin and E-cadherin molecules form homophilic bonds between juxtaposed cells that have significantly different kinetic and micromechanical properties.
Collapse
Affiliation(s)
- Porntula Panorchan
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | | | | | | | | | | |
Collapse
|
61
|
Phillipson M, Heit B, Colarusso P, Liu L, Ballantyne CM, Kubes P. Intraluminal crawling of neutrophils to emigration sites: a molecularly distinct process from adhesion in the recruitment cascade. ACTA ACUST UNITED AC 2006; 203:2569-75. [PMID: 17116736 PMCID: PMC2118150 DOI: 10.1084/jem.20060925] [Citation(s) in RCA: 503] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The prevailing view is that the beta2-integrins Mac-1 (alphaMbeta2, CD11b/CD18) and LFA-1 (alphaLbeta2, CD11a/CD18) serve similar biological functions, namely adhesion, in the leukocyte recruitment cascade. Using real-time and time-lapse intravital video-microscopy and confocal microscopy within inflamed microvessels, we systematically evaluated the function of Mac-1 and LFA-1 in the recruitment paradigm. The chemokine macrophage inflammatory protein-2 induced equivalent amounts of adhesion in wild-type and Mac-1-/- mice but very little adhesion in LFA-1-/- mice. Time-lapse video-microscopy within the postcapillary venules revealed that immediately upon adhesion, there is significant intraluminal crawling of all neutrophils to distant emigration sites in wild-type mice. In dramatic contrast, very few Mac-1-/- neutrophils crawled with a 10-fold decrease in displacement and a 95% reduction in velocity. Therefore, Mac-1-/- neutrophils initiated transmigration closer to the initial site of adhesion, which in turn led to delayed transmigration due to movement through nonoptimal emigration sites. Interestingly, the few LFA-1-/- cells that did adhere crawled similarly to wild-type neutrophils. Intercellular adhesion molecule-1 but not intercellular adhesion molecule-2 mediated the Mac-1-dependent crawling. These in vivo results clearly delineate two fundamentally different molecular mechanisms for LFA-1 and Mac-1 in vivo, i.e., LFA-1-dependent adhesion followed by Mac-1-dependent crawling, and both steps ultimately contribute to efficient emigration out of the vasculature.
Collapse
Affiliation(s)
- Mia Phillipson
- Immunology Research Group, Department of Physiology and Biophysics, University of Calgary, Calgary T2N 4N1, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
62
|
Smith LA, Aranda-Espinoza H, Haun JB, Hammer DA. Interplay between shear stress and adhesion on neutrophil locomotion. Biophys J 2006; 92:632-40. [PMID: 17071667 PMCID: PMC1751380 DOI: 10.1529/biophysj.105.079418] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Leukocyte locomotion over the lumen of inflamed endothelial cells is a critical step, following firm adhesion, in the inflammatory response. Once firmly adherent, the cell will spread and will either undergo diapedesis through individual vascular endothelial cells or will migrate to tight junctions before extravasating to the site of injury or infection. Little is known about the mechanisms of neutrophil spreading or locomotion, or how motility is affected by the physical environment. We performed a systematic study to investigate the effect of the type of adhesive ligand and shear stress on neutrophil motility by employing a parallel-plate flow chamber with reconstituted protein surfaces of E-selectin, E-selectin/PECAM-1, and E-selectin/ICAM-1. We find that the level and type of adhesive ligand and the shear rate are intertwined in affecting several metrics of migration, such as the migration velocity, random motility, index of migration, and the percentage of cells moving in the direction of flow. On surfaces with high levels of PECAM-1, there is a near doubling in random motility at a shear rate of 180 s(-1) compared to the motility in the absence of flow. On surfaces with ICAM-1, neutrophil random motility exhibits a weaker response to shear rate, decreasing slightly when shear rate is increased from static conditions to 180 s(-1), and is only slightly higher at 1000 s(-1) than in the absence of flow. The random motility increases with increasing surface concentrations of E-selectin and PECAM-1 under static and flow conditions. Our findings illustrate that the endothelium may regulate neutrophil migration in postcapillary venules through the presentation of various adhesion ligands at sites of inflammation.
Collapse
Affiliation(s)
- Lee A Smith
- Department of Chemical and Biomolecular Engineering, and Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
63
|
Panasiuk A, Zak J, Maciorkowska E, Panasiuk B, Prokopowicz D. Expression of β2-integrin on leukocytes in liver cirrhosis. World J Gastroenterol 2006; 12:6193-7. [PMID: 17036394 PMCID: PMC4088116 DOI: 10.3748/wjg.v12.i38.6193] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To analyze β2-integrin expression on blood leukocytes in liver cirrhosis.
METHODS: In 40 patients with liver cirrhosis and 20 healthy individuals, the evaluation of expression of CD11a (LFA-1α), CD11b (Mac-1α), CD11c (αX) and CD49d (VLA-4α) on peripheral blood leukocytes was performed using flow cytometry. The analysis was carried out in groups of patients divided into B and C according to Child-Pugh’s classification.
RESULTS: An increased CD11a, CD11b, CD11c and CD49d integrin expression was observed on peripheral blood leukocytes in liver cirrhosis. The integrin levels were elevated as the advancement of liver failure progressed. The highest expression of integrins occurred predominantly on monocytes. A slight expression of VLA-4 was found on lymphocytes and granulocytes and it increased together with liver failure. A positive correlation was noted between median intensity of fluorescence (MIF) expression on polymorphonuclear cells of CD11a and CD11c and CD49d (r = 0.42, P < 0.01; r = 053, P < 0.01, respectively) in liver cirrhosis stage C. However, no correlation was observed between integrin expression on leukocytes. The concentrations of sICAM-1, sVCAM-1, and TNFα, were significantly elevated in liver cirrhosis.
CONCLUSION: β2-integrin expression on leukocytes increases in liver cirrhosis decompensated as the stage of liver failure increases, which is a result of permanent activation of leukocytes circulating through the inflamed liver environment. β2-integrin expression on circulating leukocytes can intensify liver cirrhosis.
Collapse
Affiliation(s)
- Anatol Panasiuk
- Department of Infectious Diseases, Medical University of Bialystok, Bialystok 15-540, Zurawia Str. 14, Poland.
| | | | | | | | | |
Collapse
|
64
|
Krasik EF, Yee KL, Hammer DA. Adhesive dynamics simulation of neutrophil arrest with deterministic activation. Biophys J 2006; 91:1145-55. [PMID: 16731552 PMCID: PMC1518623 DOI: 10.1529/biophysj.105.070706] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transition from rolling to firm adhesion is a key element of neutrophil activation and essential to the inflammatory response. Although the molecular mediators of rolling and firm adhesion are known to be selectins and beta2 -integrins, respectively, the precise dynamic mechanism by which these ligands facilitate neutrophil arrest remains unknown. Recently, it has been shown that ligation of E-selectin can stimulate the firm adhesion of neutrophils via a MAP-kinase cascade. To study the possible mechanism by which neutrophil arrest could occur, we created an integrated model by combining two methodologies from computational biology: a mechanics-based modeling of leukocyte adhesion (adhesive dynamics) and signal transduction pathway modeling. Within adhesive dynamics, a computational method our group has shown to accurately recreate rolling dynamics, we include a generic, tunable integrin activation module that links selectin engagement to integrin and activity. This model allows us to relate properties of the activation function to the dynamics of rolling and the time and distance rolled before arrest. This integrated model allows us to understand how intracellular signaling activity can set the timescale of neutrophil activation, adhesion, and diapedesis.
Collapse
Affiliation(s)
- Ellen F Krasik
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
65
|
Basit A, Reutershan J, Morris MA, Solga M, Rose CE, Ley K. ICAM-1 and LFA-1 play critical roles in LPS-induced neutrophil recruitment into the alveolar space. Am J Physiol Lung Cell Mol Physiol 2006; 291:L200-7. [PMID: 16461431 DOI: 10.1152/ajplung.00346.2005] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neutrophil recruitment into lung constitutes a major response to airborne endotoxins. In many tissues endothelial intercellular adhesion molecule-1 (ICAM-1) interacts with lymphocyte function associated antigen-1 (LFA-1) on neutrophils, and this interaction plays a critical role in neutrophil recruitment. There are conflicting reports about the role of ICAM-1 in neutrophil recruitment into lungs. We studied neutrophil recruitment into alveolar space in a murine model of aerosolized LPS-induced lung inflammation. LPS induces at least a 100-fold increase in neutrophil numbers in alveolar space, as determined by flow cytometry of bronchoalveolar lavage fluid. Neutrophil recruitment was reduced by 54% in ICAM-1 null mice and by 45% in LFA-1 null mice. In wild-type mice treated with anti-ICAM-1 and anti-LFA-1 antibodies, there was 51 and 58% reduction in the neutrophil recruitment, respectively. In chimeric mice, generated by the transplantation of mixtures of bone marrows from LFA-1 null and wild-type mice, the normalized recruitment of LFA-1 null neutrophils was reduced by 60% compared with wild-type neutrophils. Neither the treatment of ICAM-1 null mice with a function-blocking antibody to LFA-1 nor the treatment of LFA-1 null mice with anti-ICAM-1 antibody resulted in further reduction in the recruitment compared with untreated ICAM-1 null and LFA-1 null mice. We conclude that ICAM-1 and LFA-1 play critical roles in the recruitment of neutrophils into the alveolar space in aerosolized LPS-induced lung inflammation, and LFA-1 serves as a ligand of ICAM-1 in the lung.
Collapse
Affiliation(s)
- Abdul Basit
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, 22908, USA
| | | | | | | | | | | |
Collapse
|
66
|
Xiao Z, Goldsmith HL, McIntosh FA, Shankaran H, Neelamegham S. Biomechanics of P-selectin PSGL-1 bonds: shear threshold and integrin-independent cell adhesion. Biophys J 2005; 90:2221-34. [PMID: 16387772 PMCID: PMC1386801 DOI: 10.1529/biophysj.105.065789] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Platelet-leukocyte adhesion may contribute to thrombosis and inflammation. We examined the heterotypic interaction between unactivated neutrophils and either thrombin receptor activating peptide (TRAP)-stimulated platelets or P-selectin-bearing beads (Ps-beads) in suspension. Cone-plate viscometers were used to apply controlled shear rates from 14 to 3000/s. Platelet-neutrophil and bead-neutrophil adhesion analysis was performed using both flow cytometry and high-speed videomicroscopy. We observed that although blocking antibodies against either P-selectin or P-selectin glycoprotein ligand-1 (PSGL-1) alone inhibited platelet-neutrophil adhesion by approximately 60% at 140/s, these reagents completely blocked adhesion at 3000/s. Anti-Mac-1 alone did not alter platelet-neutrophil adhesion rates at any shear rate, though in synergy with selectin antagonists it abrogated cell binding. Unstimulated neutrophils avidly bound Ps-beads and activated platelets in an integrin-independent manner, suggesting that purely selectin-dependent cell adhesion is possible. In support of this, antagonists against P-selectin or PSGL-1 caused dissociation of previously formed platelet-neutrophil and Ps-bead neutrophil aggregates under shear in a variety of experimental systems, including in assays performed with whole blood. In studies where medium viscosity and shear rate were varied, a shear threshold for P-selectin PSGL-1 binding was also noted at shear rates <100/s when Ps-beads collided with isolated neutrophils. Results are discussed in light of biophysical computations that characterize the collision between unequal-size particles in linear shear flow. Overall, our studies reveal an integrin-independent regime for cell adhesion and weak shear threshold for P-selectin PSGL-1 interactions that may be physiologically relevant.
Collapse
Affiliation(s)
- Zhihua Xiao
- Department of Chemical and Biological Engineering, State University of New York, Buffalo, New York, 14260, USA
| | | | | | | | | |
Collapse
|
67
|
Green CE, Schaff UY, Sarantos MR, Lum AFH, Staunton DE, Simon SI. Dynamic shifts in LFA-1 affinity regulate neutrophil rolling, arrest, and transmigration on inflamed endothelium. Blood 2005; 107:2101-11. [PMID: 16269618 PMCID: PMC1895714 DOI: 10.1182/blood-2005-06-2303] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polymorphonuclear leukocyte (PMN) recruitment to vascular endothelium during acute inflammation involves cooperation between selectins, G-proteins, and beta2-integrins. LFA-1 (CD11a/CD18) affinity correlates with specific adhesion functions because a shift from low to intermediate affinity supports rolling on ICAM-1, whereas high affinity is associated with shear-resistant leukocyte arrest. We imaged PMN adhesion on cytokine-inflamed endothelium in a parallel-plate flow chamber to define the dynamics of beta2-integrin function during recruitment and transmigration. After arrest on inflamed endothelium, high-affinity LFA-1 aligned along the uropod-pseudopod major axis, which was essential for efficient neutrophil polarization and subsequent transmigration. An allosteric small molecule inhibitor targeted to the I-domain stabilized LFA-1 in an intermediate-affinity conformation, which supported neutrophil rolling but inhibited cell polarization and abrogated transmigration. We conclude that a shift in LFA-1 from intermediate to high affinity during the transition from rolling to arrest provides the contact-mediated signaling and guidance necessary for PMN transmigration on inflamed endothelium.
Collapse
Affiliation(s)
- Chad E Green
- Department of Biomedical Engineering, Genome and Biomedical Sciences Facility, University of California at Davis, 451 E Health Sciences Dr, Davis, CA 95616-5294, USA
| | | | | | | | | | | |
Collapse
|
68
|
Liang S, Slattery MJ, Dong C. Shear stress and shear rate differentially affect the multi-step process of leukocyte-facilitated melanoma adhesion. Exp Cell Res 2005; 310:282-92. [PMID: 16154563 PMCID: PMC2778855 DOI: 10.1016/j.yexcr.2005.07.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 07/27/2005] [Accepted: 07/27/2005] [Indexed: 10/25/2022]
Abstract
Previous studies have shown that neutrophils (PMNs) facilitate melanoma cell extravasation [M.J. Slattery, C. Dong, Neutrophils influence melanoma adhesion and migration under flow conditions, Intl. J. Cancer 106 (2003) 713-722] Little is known, however, about the specific interactions between PMNs, melanoma and the endothelium (EC) or the molecular mechanism involved under flow conditions. The aim of this study is to investigate a "two-step adhesion" hypothesis that involves initial PMN tethering on the EC and subsequent melanoma cells being captured by tethered PMNs. Different effects of hydrodynamic shear stress and shear rate were analyzed using a parallel-plate flow chamber. Results indicate a novel finding that PMN-facilitated melanoma cell arrest on the EC is modulated by shear rate, which is inversely-proportional to cell-cell contact time, rather than by the shear stress, which is proportional to the force exerted on formed bonds. Beta2 integrins/ICAM-1 adhesion mechanisms were examined and the results indicate LFA-1 and Mac-1 cooperate to mediate the PMN-EC-melanoma interactions under shear conditions. In addition, endogenously produced IL-8 contributes to PMN-facilitated melanoma arrest on the EC through the CXC chemokine receptors 1 and 2 (CXCR1 and CXCR2) on PMN. These results provide new evidence for the complex role of hemodynamic forces, secreted chemokines and PMN-melanoma adhesion in the recruitment of metastatic cancer cells to the EC.
Collapse
Affiliation(s)
- Shile Liang
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802-6804, USA
| | - Margaret J. Slattery
- Department of Bioengineering, The Pennsylvania State University, University Park, PA 16802-6804, USA
| | - Cheng Dong
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802-6804, USA
- Department of Bioengineering, The Pennsylvania State University, University Park, PA 16802-6804, USA
| |
Collapse
|
69
|
Liu Z, Zhao M, Li N, Diaz LA, Mayadas TN. Differential roles for beta2 integrins in experimental autoimmune bullous pemphigoid. Blood 2005; 107:1063-9. [PMID: 16234355 PMCID: PMC1895905 DOI: 10.1182/blood-2005-08-3123] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bullous pemphigoid (BP) is an autoimmune disease associated with autoantibodies directed against the hemidesmosomal antigens anti-BP230 and anti-B180. Neonatal mice injected with rabbit anti-mouse BP180 (mBP10) IgG develop a BP-like disease. Complement, immune complexes, mast cells, and neutrophils play a key role in subepidermal blistering in this animal model. In this study we investigated the role of beta2 integrins in experimental BP. Wild-type (WT) mice pretreated with neutralizing antibody against CD11a (LFA-1), CD11b (Mac-1), CD11a plus CD11b, or CD18 alone failed to develop BP when injected with pathogenic anti-mBP180 IgG. This was associated with a significant reduction in neutrophil accumulation in neutralizing antibody-treated mice. Mac-1-deficient (Mac-1 knockout [KO]) mice were resistant to experimental BP despite normal complement deposition and mast cell and neutrophil degranulation. Neutrophil infiltration in Mac-1 KO mice was severely impaired at 24 hours. However, more neutrophils accumulated in the skin of Mac-1 KO mice compared with WT mice at early time points (2-4 hours), which was associated with an increase in their survival as determined by apoptosis markers. These data suggest that beta2 integrins play differential roles in experimental BP: LFA-1 is required for neutrophil recruitment, while Mac-1 mediates late neutrophil accumulation and apoptosis of infiltrating neutrophils.
Collapse
Affiliation(s)
- Zhi Liu
- Department of Dermatology, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | | | |
Collapse
|
70
|
Abstract
Discovery of new genes and proteins directly supporting leukocyte adhesion is waning, whereas there is heightened interest in the cell mechanics and receptor dynamics that lead from transient tethering via selectins to affinity shifts and adhesion strengthening through integrins. New optical tools enable real-time imaging of leukocyte rolling and arrest in parallel plate flow channels (PPFCs), and detection of single-molecule force spectroscopy provides an inner view of the intercellular adhesive contact region. Leukocyte recruitment during acute inflammation is triggered by ligation of G protein-coupled chemotactic receptors (GPCRs) and clustering of selectins. This, in turn, activates beta(2)-integrin (CD18), which facilitates cell capture and arrest in shear flow. This review provides a conceptual model for the molecular events supporting leukocyte recruitment.
Collapse
Affiliation(s)
- Scott I Simon
- Department of Biomedical Engineering, University of California, Davis, CA 95616-5294, USA.
| | | |
Collapse
|
71
|
Eniola AO, Krasik EF, Smith LA, Song G, Hammer DA. I-domain of lymphocyte function-associated antigen-1 mediates rolling of polystyrene particles on ICAM-1 under flow. Biophys J 2005; 89:3577-88. [PMID: 16100282 PMCID: PMC1366851 DOI: 10.1529/biophysj.104.057729] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In their active state, beta(2)-integrins, such as LFA-1, mediate the firm arrest of leukocytes by binding intercellular adhesion molecules (ICAMs) expressed on endothelium. Although the primary function of LFA-1 is assumed to be the ability to mediate firm adhesion, recent work has shown that LFA-1 can contribute to cell tethering and rolling under hydrodynamic flow, a role previously largely attributed to the selectins. The inserted (I) domain of LFA-1 has recently been crystallized in the wild-type (wt) and locked-open conformations and has been shown to, respectively, support rolling and firm adhesion under flow when expressed in alpha(L)beta(2) heterodimers or as isolated domains on cells. Here, we report results from cell-free adhesion assays where wt I-domain-coated polystyrene particles were allowed to interact with ICAM-1-coated surfaces in shear flow. We show that wt I-domain can independently mediate the capture of particles from flow and support their rolling on ICAM-1 surfaces in a manner similar to how carbohydrate-selectin interactions mediate rolling. Adhesion is specific and blocked by appropriate antibodies. We also show that the rolling velocity of I-domain-coated particles depends on the wall shear stress in flow chamber, I-domain site density on microsphere surfaces, and ICAM-1 site density on substrate surfaces. Furthermore, we show that rolling is less sensitive to wall shear stress and ICAM-1 substrate density at high density of I-domain on the microsphere surface. Computer simulations using adhesive dynamics can recreate bead rolling dynamics and show that the mechanochemical properties of ICAM-1-I-domain interactions are similar to those of carbohydrate-selectin interactions. Understanding the biophysics of adhesion mediated by the I-domain of LFA-1 can elucidate the complex roles this integrin plays in leukocyte adhesion in inflammation.
Collapse
Affiliation(s)
- A Omolola Eniola
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, 3320 Smith Walk, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
72
|
Sarantos MR, Raychaudhuri S, Lum AFH, Staunton DE, Simon SI. Leukocyte function-associated antigen 1-mediated adhesion stability is dynamically regulated through affinity and valency during bond formation with intercellular adhesion molecule-1. J Biol Chem 2005; 280:28290-8. [PMID: 15955822 DOI: 10.1074/jbc.m501662200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neutrophil rolling and transition to arrest on inflamed endothelium are dynamically regulated by the affinity of the beta(2) integrin CD11a/CD18 (leukocyte function associated antigen 1 (LFA-1)) for binding intercellular adhesion molecule (ICAM)-1. Conformational shifts are thought to regulate molecular affinity and adhesion stability. Also critical to adhesion efficiency is membrane redistribution of active LFA-1 into dense submicron clusters where multimeric interactions occur. We examined the influences of affinity and dimerization of LFA-1 on LFA-1/ICAM-1 binding by engineering a cell-free model in which two recombinant LFA-1 heterodimers are bound to respective Fab domains of an antibody attached to latex microspheres. Binding of monomeric and dimeric ICAM-1 to dimeric LFA-1 was measured in real time by fluorescence flow cytometry. ICAM-1 dissociation kinetics were measured while LFA-1 affinity was dynamically shifted by the addition of allosteric small molecules. High affinity LFA-1 dissociated 10-fold faster when bound to monomeric compared with dimeric ICAM-1, corresponding to bond lifetimes of 25 and 330 s, respectively. Downshifting LFA-1 into an intermediate affinity state with the small molecule I domain allosteric inhibitor IC487475 decreased the difference in dissociation rates between monomeric and dimeric ICAM-1 to 4-fold. When LFA-1 was shifted into the low affinity state by lovastatin, both monomeric and dimeric ICAM-1 dissociated in less than 1 s, and the dissociation rates were within 50% of each other. These data reveal the respective importance of LFA-1 affinity and proximity in tuning bond lifetime with ICAM-1 and demonstrate a nonlinear increase in the bond lifetime of the dimer versus the monomer at higher affinity.
Collapse
Affiliation(s)
- Melissa R Sarantos
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA
| | | | | | | | | |
Collapse
|
73
|
King MR, Sumagin R, Green CE, Simon SI. Rolling dynamics of a neutrophil with redistributed L-selectin. Math Biosci 2005; 194:71-9. [PMID: 15836865 DOI: 10.1016/j.mbs.2004.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2004] [Revised: 09/01/2004] [Accepted: 12/09/2004] [Indexed: 11/21/2022]
Abstract
The most common white blood cell is the neutrophil, which slowly rolls along the walls of blood vessels due to the coordinated formation and breakage of chemical selectin-carbohydrate bonds. We show that L-selectin receptors are rapidly redistributed to form a cap at one end of the cell membrane during rolling via selectins or chemotactic stimulation. This topography significantly alters the adhesive dynamics as demonstrated by computer simulations of neutrophils rolling on a carbohydrate selectin-ligand substrate under flow. It was found that neutrophils with a redistributed L-selectin cap roll on sialyl Lewis-x with a quasi-periodic motion, as characterized by relatively low velocity intervals interspersed with regular jumps in the rolling velocity. On average, neutrophils with redistributed L-selectin rolled at a lower velocity when compared with cells having a uniform L-selectin distribution of equal average density. We speculate on the possible biological implications that these differences in adhesion dynamics will have during the inflammatory response.
Collapse
Affiliation(s)
- Michael R King
- Department of Biomedical Engineering, University of Rochester, 601 Elmwood Avenue, Box 639, Rochester, NY 14642, USA.
| | | | | | | |
Collapse
|
74
|
Neelamegham S. Transport features, reaction kinetics and receptor biomechanics controlling selectin and integrin mediated cell adhesion. ACTA ACUST UNITED AC 2005; 11:35-50. [PMID: 15500296 DOI: 10.1080/15419060490471793] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The distinct and overlapping roles of adhesion molecules belonging to the selectin and integrin families control the rate of leukocyte adhesion to stimulated vascular endothelial cells under hydrodynamic shear flow. Crystal structures have appeared for some of these interactions which complement molecular biology experiments, and clarify the molecular mechanism of the receptor-ligand binding interactions. Binding affinity data have also appeared using surface plasmon resonance and single-molecule biophysics experiments. These studies confirm and extend the predictions of previous experiments carried out in parallel-plate flow chambers, and cone and plate viscometers. This review discusses the current state of understanding on how molecular bond formation rates coupled with cellular and hydrodynamic features regulate leukocyte binding to endothelial cells.
Collapse
Affiliation(s)
- Sriram Neelamegham
- Department of Chemical and Biological Engineering, State University of New York, Buffalo, NY 14260, USA.
| |
Collapse
|
75
|
Slattery MJ, Liang S, Dong C. Distinct role of hydrodynamic shear in leukocyte-facilitated tumor cell extravasation. Am J Physiol Cell Physiol 2004; 288:C831-9. [PMID: 15601752 PMCID: PMC2777621 DOI: 10.1152/ajpcell.00439.2004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Previously, we found polymorphonuclear neutrophils (PMNs) increased melanoma cell extravasation under flow conditions (Intl J Cancer 106: 713-722, 2003). In this study, we characterized the effect of hydrodynamic shear on PMN-facilitated melanoma extravasation using a novel flow-migration assay. The effect of shear stress and shear rate on PMN-facilitated melanoma extravasation was studied by increasing the medium viscosity with dextran to increase shear stress independently of shear rate. Under fixed shear rate conditions, melanoma cell extravasation did not change significantly. In contrast, the extravasation level increased at a fixed shear stress but with a decreasing shear rate. PMN-melanoma aggregation and adhesion to the endothelium via beta(2)-integrin/intracellular adhesion molecule-1 (ICAM-1) interactions were also studied. Lymphocyte function-associated molecule-1 (LFA-1; CD11a/CD18) influenced the capture phase of PMN binding to both melanoma cells and the endothelium, whereas Mac-1 (CD11b/CD18) affected prolonged PMN-melanoma aggregation. Blockage of E-selectin or ICAM-1 on the endothelium or ICAM-1 on the melanoma surface reduced PMN-facilitated melanoma extravasation. We have found PMN-melanoma adhesion is correlated with the inverse of shear rate, whereas the PMN-endothelial adhesion correlated with shear stress. Interleukin-8 (IL-8) also influenced PMN-melanoma cell adhesion. Functional blocking of the PMN IL-8 receptors, CXCR1 and CXCR2, decreased the level of Mac-1 upregulation on PMNs while in contact with melanoma cells and reduced melanoma extravasation. We have found PMN-facilitated melanoma adhesion to be a complex multistep process that is regulated by both microfluid mechanics and biology.
Collapse
Affiliation(s)
- Margaret J Slattery
- Dept. of Bioengineering, The Pennsylvania State Univ., 229 Hallowell Bldg., University Park, PA 16802-6804, USA
| | | | | |
Collapse
|
76
|
Saville LR, Pospisil CH, Mawhinney LA, Bao F, Simedrea FC, Peters AA, O'Connell PJ, Weaver LC, Dekaban GA. A monoclonal antibody to CD11d reduces the inflammatory infiltrate into the injured spinal cord: a potential neuroprotective treatment. J Neuroimmunol 2004; 156:42-57. [PMID: 15465595 DOI: 10.1016/j.jneuroim.2004.07.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Revised: 06/30/2004] [Accepted: 07/02/2004] [Indexed: 11/21/2022]
Abstract
The accumulation of inflammatory cells in the lesion of a spinal cord injury (SCI) enhances secondary damage, resulting in further neurological impairment. High-dose methylprednisolone (MP) treatment is the only accepted treatment for inflammation secondary to human SCI but is minimally effective. Using a rat SCI model, we devised an anti-inflammatory treatment to block the infiltration of neutrophils and hematogenous monocyte/macrophages over the first 2 days postinjury by targeting the CD11dCD18 integrin. Anti-CD11d mAb administration following SCI effectively reduced neutrophil and macrophage infiltrate into lesions by 70% and 36%, respectively, over the first 72 h post-SCI. MP also reduced neutrophil and macrophage infiltrate by 60% and 28%, respectively, but by different mechanisms. The immunosuppression caused by anti-CD11d treatment was not sustained, as inflammatory cell numbers were not different from those observed in untreated SCI control animals at 7 days postinjury. In contrast, in MP-treated animals, the number of macrophages was still suppressed in the lesion while neutrophil numbers were significantly increased. These results suggest that anti-CD11d mAb treatment following SCI will minimize the destructive actions associated with early, uncontrolled leukocyte infiltration into the lesion while permitting the positive wound healing effects of macrophages at later time points.
Collapse
Affiliation(s)
- L R Saville
- Spinal Cord Injury Team, BioTherapeutics Research Group, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Calderwood JW, Williams JM, Morgan MD, Nash GB, Savage COS. ANCA induces β2integrin and CXC chemokine-dependent neutrophil-endothelial cell interactions that mimic those of highly cytokine-activated endothelium. J Leukoc Biol 2004; 77:33-43. [PMID: 15459232 DOI: 10.1189/jlb.0104054] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Antineutrophil cytoplasm antibodies (ANCA) activate neutrophils to undergo a series of coordinated interactions, leading to transendothelial migration, eventually culminating in vascular destruction. The molecular events underlying neutrophil recruitment in ANCA-associated vasculitis need to be defined to enable effective therapeutic manipulation. A flow-based adhesion assay was used to investigate the role of beta2 integrins (CD11a/CD18 and CD11b/CD18) and chemokine receptors [CXC chemokine receptor (CXCR)1 and CXCR2] in neutrophil migration through the endothelium. Two endothelial models were used: a highly activated model stimulated with 100 U/ml tumor necrosis factor alpha (TNF-alpha) and a minimally activated model stimulated with 2 U/ml TNF-alpha and in which ANCA was present as a secondary neutrophil stimulus. CD11a/CD18, CD11b/CD18, and CXCR2 contributed to adhesion and transendothelial migration in both models. However, when the endothelium was minimally activated with TNF-alpha, CD11b/CD18 played an important role in stabilizing adhesion induced by ANCA immunoglobulin G (IgG). Analysis of beta2 integrins and chemokine receptors demonstrated that ANCA IgG had no effect on expression levels at the neutrophil surface but enabled an active conformational change of CD11b/CD18. Similar molecular mechanisms control neutrophil adhesion and migration through highly or minimally TNF-alpha-activated endothelium. However, the direct ANCA-mediated neutrophil stimulation is needed to drive migration through minimally activated endothelium, and CD11b/CD18 is recruited for greater stability of adhesion during this process and can undergo an activatory, conformational change in response to ANCA IgG.
Collapse
Affiliation(s)
- Judith W Calderwood
- Division of Medical Sciences, The School of Medicine, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | | | |
Collapse
|
78
|
Lomakina EB, Waugh RE. Micromechanical tests of adhesion dynamics between neutrophils and immobilized ICAM-1. Biophys J 2004; 86:1223-33. [PMID: 14747356 PMCID: PMC1303914 DOI: 10.1016/s0006-3495(04)74196-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Strong, integrin-mediated adhesion of neutrophils to endothelium during inflammation is a dynamic process, requiring a conformational change in the integrin molecule to increase its affinity for its endothelial counterreceptors. To avoid general activation of the cell, Mg(2+) was used to induce the high-affinity integrin conformation, and micromechanical methods were used to determine adhesion probability to beads coated with the endothelial ligand ICAM-1. Neutrophils in Mg(2+) bind to the beads with much greater frequency and strength than in the presence of Ca(2+). An increase in adhesion strength and frequency was observed with both increasing temperature and contact duration (from 2 s to 1 min, 21 or 37 degrees C). The dependence of adhesion probability on contact time or receptor density yielded estimates of the effective reverse rate constant, k(r), and the equilibrium association constant, K(a), for binding of neutrophils to ICAM-1 coated surfaces in Mg(2+): k(r) approximately 0.7 s(-1) and the product K(a)rho(c) approximately 2.4 x 10(-4), where rho(c) is the density of integrin on the cell surface.
Collapse
Affiliation(s)
- Elena B Lomakina
- Department of Pharmacology and Physiology, University of Rochester, Medical Center, Rochester, New York, USA
| | | |
Collapse
|
79
|
Arumugam TV, Salter JW, Chidlow JH, Ballantyne CM, Kevil CG, Granger DN. Contributions of LFA-1 and Mac-1 to brain injury and microvascular dysfunction induced by transient middle cerebral artery occlusion. Am J Physiol Heart Circ Physiol 2004; 287:H2555-60. [PMID: 15308480 DOI: 10.1152/ajpheart.00588.2004] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although the beta2-integrins have been implicated in the pathogenesis of cerebral ischemia-reperfusion (I/R) injury, the relative contributions of the alpha-subunits to the pathogenesis of ischemic stroke remains unclear. The objective of this study was to determine whether and how genetic deficiency of either lymphocyte function-associated antigen-1 (LFA-1) or macrophage-1 (Mac-1) alters the blood cell-endothelial cell interactions, tissue injury, and organ dysfunction in the mouse brain exposed to focal I/R. Middle cerebral artery occlusion was induced for 1 h (followed by either 4 or 24 h of reperfusion) in wild-type mice and in mice with null mutations for either LFA-1 or Mac-1. Neurological deficit and infarct volume were monitored for 24 h after reperfusion. Platelet- and leukocyte-vessel wall adhesive interactions were monitored in cortical venules by intravital microscopy. Mice with null mutations for LFA-1 or Mac-1 exhibited significant reductions in infarct volume. This was associated with a significant improvement in the I/R-induced neurological deficit. Leukocyte adhesion in cerebral venules did not differ between wild-type and mutant mice at 4 h after reperfusion. However, after 24 h of reperfusion, leukocyte adhesion was reduced in both LFA-1- and Mac-1-deficient mice compared with their wild-type counterparts. Platelet adhesion was also reduced at both 4 and 24 h after reperfusion in the LFA-1- and Mac-1-deficient mice. These findings indicate that both alpha-subunits of the beta2-integrins contribute to the brain injury and blood cell-vessel wall interactions that are associated with transient focal cerebral ischemia.
Collapse
Affiliation(s)
- Thiruma V Arumugam
- Dept. of Molecular and Cellular Physiology, Louisiana State Univ. Health Sciences Center, 1500 Kings Highway, Shreveport, LA 71130, USA
| | | | | | | | | | | |
Collapse
|
80
|
Dunne JL, Collins RG, Beaudet AL, Ballantyne CM, Ley K. Mac-1, but not LFA-1, uses intercellular adhesion molecule-1 to mediate slow leukocyte rolling in TNF-alpha-induced inflammation. THE JOURNAL OF IMMUNOLOGY 2004; 171:6105-11. [PMID: 14634125 DOI: 10.4049/jimmunol.171.11.6105] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have previously shown that Mac-1 and LFA-1 play a cooperative role in slow leukocyte rolling in inflamed vessels, and that, although both have a role in leukocyte adhesion, the contribution from LFA-1 exceeds that of Mac-1. In this study, we used mice deficient in ICAM-1 (ICAM-1(null)) to study the function of ICAM-1 as an endothelial ligand for Mac-1 and LFA-1. The cremaster muscles of these mice were treated with TNF-alpha and prepared for intravital microscopy. We found that the average rolling velocity in venules was not different in ICAM-1(null) mice (4.7 micro m/s) compared with wild-type mice (5.1 micro m/s). Similarly, leukocyte adhesion efficiency in ICAM-1(null) mice (0.11 +/- 0.01 mm) was similar to that in Mac-1(-/-) (0.12 +/- 0.03 mm) mice but significantly increased compared with that in LFA-1(-/-) (0.08 +/- 0.01 mm) mice and significantly reduced from that in wild type (0.26 +/- 0.04 mm). When both LFA-1 and ICAM-1 were blocked, rolling velocity increased, and adhesion efficiency and arrest decreased. However, blocking both Mac-1 and ICAM-1 had no greater effect than either blockade alone. We conclude that endothelial ICAM-1 is the main ligand responsible for slow leukocyte rolling mediated by Mac-1, but not LFA-1.
Collapse
Affiliation(s)
- Jessica L Dunne
- Department of Biomedical Engineering and Cardiovascular Research Center, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
81
|
Abstract
We have studied human melanoma cell (C8161) adhesion and migration in response to stimulation by soluble collagen IV (CIV) using a modified Boyden chamber. In this modified chamber, shear flow can be introduced over the cell-substrate interface, affecting tumor cell chemotactic migration through a microporous filter. A relatively high level of intercellular adhesion molecule-1 (ICAM-1) was found on C8161 cells. In contrast, levels of beta(2)-integrins (e.g., LFA-1 and Mac-1), the molecules that would be necessary for C8161 stable adhesion to the endothelium substrate, were found to be very low on these melanoma cells. As a result, C8161 transendothelial migration under a flow condition of 4 dyn/cm(2) decreased by 70% as compared to static migration. When human neutrophils (PMNs) were present in the tumor cell suspension, C8161 migration recovered by 85% over C8161 cells alone under the 4 dyn/cm(2) flow condition. Blocking ICAM-1 on C8161 cells or Mac-1 on PMNs significantly inhibited C8161-PMN adhesion and subsequent C8161 migration through the endothelium under flow conditions. In addition, increased interleukin-8 production and Mac-1 expression by PMNs were detected when they were co-cultured with C8161 melanoma cells. These results suggest that transmigration of C8161 cells under flow conditions can be influenced by PMNs, mediated by Mac-1/ICAM-1 adhesive interactions and enhanced by altered cytokine production.
Collapse
Affiliation(s)
| | - Cheng Dong
- Correspondence to: Department of Bioengineering 229 Hallowell Building, The Pennsylvania State University, University Park, PA 16802. Fax: +001-814-863-0490.
| |
Collapse
|
82
|
Chakraborty A, Hentzen ER, Seo SM, Smith CW. Granulocyte colony-stimulating factor promotes adhesion of neutrophils. Am J Physiol Cell Physiol 2003; 284:C103-10. [PMID: 12388113 DOI: 10.1152/ajpcell.00165.2002] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Granulocyte colony stimulating factor (G-CSF) is well known for its ability to drive the maturation and mobilization of neutrophils. G-CSF also appears to have the potential to activate functions of mature neutrophils, influencing recruitment at sites of inflammation and tissue injury. We investigated the ability of G-CSF to stimulate adhesion of isolated blood neutrophils. G-CSF induced significant adherence to intercellular adhesion molecule (ICAM)-1 that was both macrophage antigen-1 (Mac-1) and leukocyte function-associated antigen-1 dependent. The kinetics of G-CSF-stimulated adhesion to ICAM-1 peaked at 11 min without detectable surface upregulation of Mac-1. This was in marked contrast to chemokines, in which peak activation of adhesion is seen within 1 min of stimulation. In contrast to chemokine-induced adhesion, G-CSF stimulation was not inhibited by pertussis toxin. G-CSF also augmented the attachment of neutrophils to activated human umbilical vein endothelial cells (HUVEC) through specific effects on neutrophils, because HUVEC appear to lack functional G-CSF receptors.
Collapse
Affiliation(s)
- Arup Chakraborty
- Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
83
|
Riaz AA, Wan MX, Schaefer T, Schramm R, Ekberg H, Menger MD, Jeppsson B, Thorlacius H. Fundamental and distinct roles of P-selectin and LFA-1 in ischemia/reperfusion-induced leukocyte-endothelium interactions in the mouse colon. Ann Surg 2002; 236:777-84; discussion 784. [PMID: 12454516 PMCID: PMC1422644 DOI: 10.1097/00000658-200212000-00010] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE To study the adhesive mechanisms underlying ischemia/reperfusion (I/R)-induced leukocyte-endothelium interactions in the colon. SUMMARY BACKGROUND DATA Leukocyte recruitment is a key feature in I/R-induced tissue injury, but the mechanisms regulating leukocyte rolling and adhesion in the colon are not known. The authors recently developed a new model to study the molecular mechanisms of I/R-provoked leukocyte-endothelium interactions in the colon microcirculation using inverted intravital fluorescence microscopy. METHODS The superior mesenteric artery was occluded for 30 minutes and leukocyte responses were analyzed after 120 minutes of reperfusion in colonic venules in mice. The adhesive mechanisms underlying I/R-induced leukocyte rolling and adhesion were investigated using monoclonal antibodies against L-, E- and P-selectin, and CD11a gene-targeted mice were used to examine the role of lymphocyte function antigen-1 (LFA-1, CD11a/CD18). RESULTS Reperfusion provoked a clear-cut increase in leukocyte rolling and adhesion in colonic venules compared to negative controls. Both P- and E-selectin mRNA were expressed in the colon after this I/R insult. Pretreatment with an anti-P-selectin antibody reduced leukocyte rolling and adhesion by 88% and 85%, respectively, whereas antibodies against L- and E-selectin had no effect. Moreover, I/R-induced leukocyte adhesion in LFA-1-deficient mice was reduced by more than 95%. CONCLUSIONS This study provides evidence that leukocyte rolling is exclusively and nonredundantly mediated by P-selectin and that firm adhesion is supported by LFA-1 in I/R-induced leukocyte recruitment in the colon. Taken together, both P-selectin and LFA-1 may be important targets to control pathologic inflammation in I/R-induced tissue injury in the colon.
Collapse
Affiliation(s)
- Amjid Ali Riaz
- Department of Surgery, Malmö University Hospital, Lund University, Malmö, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Jadhav S, Konstantopoulos K. Fluid shear- and time-dependent modulation of molecular interactions between PMNs and colon carcinomas. Am J Physiol Cell Physiol 2002; 283:C1133-43. [PMID: 12225977 DOI: 10.1152/ajpcell.00104.2002] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study compares the effects of fluid shear on the kinetics, adhesion efficiency, stability, and molecular requirements of polymorphonuclear leukocyte (PMN) binding to two colon adenocarcinoma cell-lines, the CD54-negative/sLe(x)-bearing LS174T cells and the CD54-expressing/sLe(x)-low HCT-8 cells. The efficiency of PMN-colon carcinoma heteroaggregation decreases with increasing shear, with PMNs binding HCT-8 more efficiently than LS174T cells at low shear (50-200 s(-1)). In the low shear regime, CD11b is sufficient to mediate PMN binding to LS174T cells. In contrast, both CD11a and CD11b contribute to PMN-HCT-8 heteroaggregation, with CD54 on HCT-8 cells acting as a CD11a ligand at early time points. At high shear, only PMN-LS174T heteroaggregation occurs, which is initiated by PMN L-selectin binding to a sialylated, O-linked, protease-sensitive ligand on LS174T cells. PMN-LS174T heteroaggregation is primarily dependent on the intercellular contact duration (or shear rate), whereas PMN-HCT-8 binding is a function of both the intercellular contact duration and the applied force (or shear stress). Cumulatively, these studies suggest that fluid shear modulates the kinetics and molecular mechanisms of PMN-colon carcinoma cell aggregation.
Collapse
Affiliation(s)
- Sameer Jadhav
- Department of Chemical Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| | | |
Collapse
|
85
|
McCarty OJT, Jadhav S, Burdick MM, Bell WR, Konstantopoulos K. Fluid shear regulates the kinetics and molecular mechanisms of activation-dependent platelet binding to colon carcinoma cells. Biophys J 2002; 83:836-48. [PMID: 12124268 PMCID: PMC1302190 DOI: 10.1016/s0006-3495(02)75212-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This study was undertaken to investigate the kinetics and molecular requirements of platelet binding to tumor cells in bulk suspensions subjected to a uniform linear shear field, using a human colon adenocarcinoma cell line (LS174T) as a model. The effects of shear rate (20-1000 s(-1)), shear exposure time (30-300 s), shear stress (at constant shear rate by adjusting the viscosity of the medium from 1.3-2.6 cP), cell concentration, and platelet activation on platelet-LS174T heteroaggregation were assessed. The results indicate that hydrodynamic shear-induced collisions augment platelet-LS174T binding, which is further potentiated by thrombin/GPRP-NH(2). Peak adhesion efficiency occurs at low shear and decreases with increasing shear. Intercellular contact duration is the predominant factor limiting heteroaggregation at shear rates up to 200 s(-1), whereas these interactions become shear stress-sensitive at > or = 400 s(-1). Heteroaggregation increases with platelet concentration due to an elevation of the intercellular collision frequency, whereas adhesion efficiency remains nearly constant. Moreover, hydrodynamic shear affects the receptor specificity of activation-dependent platelet binding to LS174T cells, as evidenced by the transition from a P-selectin-independent/Arg-Gly-Asp (RGD)-dependent process at 100 s(-1) to a P-selectin/alpha(IIb)beta(3)-dependent interaction at 800 s(-1). This study demonstrates that platelet activation and a fluid-mechanical environment representative of the vasculature affect platelet-tumor cell adhesive interactions pertinent to the process of blood-borne metastasis.
Collapse
Affiliation(s)
- Owen J T McCarty
- Department of Chemical Engineering, Johns Hopkins University, Baltimore, Maryland 21218 USA
| | | | | | | | | |
Collapse
|
86
|
Sklar LA, Edwards BS, Graves SW, Nolan JP, Prossnitz ER. Flow cytometric analysis of ligand-receptor interactions and molecular assemblies. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2002; 31:97-119. [PMID: 11988464 DOI: 10.1146/annurev.biophys.31.082901.134406] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Flow cytometers make homogeneous real-time measurements of ligand-receptor interactions and, simultaneously, the physiological responses of cells. Their multiparameter capabilities are also useful in resolving multicomponent assemblies or in developing multiplexed assays. Recent advances suggest that these approaches can be extended in several important ways. Sample delivery in the millisecond time domain is applicable to the analysis of complex binding kinetics and reaction mechanisms. The homogeneous discrimination of free components and particle-based assemblies can be extended into the micromolar concentration range. Measurements can be made of molecular assemblies among proteins, DNA, RNA, lipids, and carbohydrates on beads. The topography and assembly of components within cells can be evaluated with resonance energy transfer. Temperature dependence can be evaluated with Peltier temperature control. Many assembly endpoints can be assessed through new tools for high-throughput flow cytometry using plate-based assay formats and small volume samples.
Collapse
Affiliation(s)
- Larry A Sklar
- Cancer Center and Departments of Pathology and Cell Biology and Physiology, University of New Mexico, Albuquerque, NM 87131, USA.
| | | | | | | | | |
Collapse
|
87
|
Lum AFH, Green CE, Lee GR, Staunton DE, Simon SI. Dynamic regulation of LFA-1 activation and neutrophil arrest on intercellular adhesion molecule 1 (ICAM-1) in shear flow. J Biol Chem 2002; 277:20660-70. [PMID: 11929876 DOI: 10.1074/jbc.m202223200] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neutrophil recruitment during acute inflammation is triggered by G-protein-linked chemotactic receptors that in turn activate beta(2) integrin (CD18), deemed a critical step in facilitating cell capture and arrest under the shear force of blood flow. A conformational switch in the I domain allosteric site (IDAS) and in CD18 regulates LFA-1 affinity for endothelial ligands including intercellular adhesion molecule 1 (ICAM-1). We examined the dynamics of CD18 activation in terms of the efficiency of neutrophil capture of ICAM-1, and we correlated this with the membrane topography of 327C, an antibody that recognizes the active conformation of CD18 I-like domain. Adhesion increased in direct proportion to chemotactic stimulus rising 7-fold over a log range of interleukin-8 (IL-8). A threshold dose of approximately 75 pm IL-8, corresponding to ligation of only approximately 10-100 receptors, was sufficient to activate approximately 20,000 CD18 and a rapid boost in the capture efficiency on ICAM-1. This was accompanied by a rapid redistribution of active LFA-1, but not Mac-1, into membrane patches, a necessary component for optimum adhesion efficiency. Shear-resistant arrest on a monolayer of ICAM-1 was reversed within minutes of chemotactic stimulation correlating with a shift from high to low affinity CD18 and dispersal of patches of active CD18. Mobility of active CD18 into high avidity patches was dependent on phosphatidylinositol 3-kinase activity and not F-actin polymerization. The data reveal that the number of chemotactic receptors bound and the topography and lifetime of high affinity LFA-1 tightly regulate the efficiency of neutrophil capture on ICAM-1.
Collapse
Affiliation(s)
- Aaron F H Lum
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA
| | | | | | | | | |
Collapse
|
88
|
Neildez-Nguyen TMA, Wajcman H, Marden MC, Bensidhoum M, Moncollin V, Giarratana MC, Kobari L, Thierry D, Douay L. Human erythroid cells produced ex vivo at large scale differentiate into red blood cells in vivo. Nat Biotechnol 2002; 20:467-72. [PMID: 11981559 DOI: 10.1038/nbt0502-467] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
New sources of red blood cells (RBCs) would improve the transfusion capacity of blood centers. Our objective was to generate cells for transfusion by inducing a massive proliferation of hematopoietic stem and progenitor cells, followed by terminal erythroid differentiation. We describe here a procedure for amplifying hematopoietic stem cells (HSCs) from human cord blood (CB) by the sequential application of specific combinations of growth factors in a serum-free culture medium. The procedure allowed the ex vivo expansion of CD34+ progenitor and stem cells into a pure erythroid precursor population. When injected into nonobese diabetic, severe combined immunodeficient (NOD/SCID) mice, the erythroid cells were capable of proliferation and terminal differentiation into mature enucleated RBCs. The approach may eventually be useful in clinical transfusion applications.
Collapse
Affiliation(s)
- Thi My Anh Neildez-Nguyen
- Institut National de la Santé et de la Recherche Médicale U417, Hôpital Saint-Antoine, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Mariscalco MM, Vergara W, Mei J, Smith EO, Smith CW. Mechanisms of decreased leukocyte localization in the developing host. Am J Physiol Heart Circ Physiol 2002; 282:H636-44. [PMID: 11788413 DOI: 10.1152/ajpheart.00090.2001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Delays in leukocyte localization likely contribute to diminished host defense in neonates. Understanding the processes that may be affected has been hampered by the lack of suitable developmental models. Using intravital microscopy, we directly examine leukocyte recruitment in a rabbit pup model. In response to intraperitoneal interleukin (IL)-1beta, there were one-third as many leukocytes that arrested in pup mesenteric vessels and emigrated compared with adult vessels, although leukocyte flux was not different. Leukocyte rolling velocity in pups was one-half that in adults. In response to surgical trauma alone, the number of arrested pup cells was 15% that of adult cells, although again leukocyte flux was not different. An anti-L-selectin antibody inhibited rolling significantly by 60 min for both pups and adults. The effect on arrest and emigration occurred at significantly earlier times, although the effect was less in rabbit pups. A primary defect in leukocyte emigration in the rabbit pup appears to be a failure of the cell to transition efficiently from rolling to arrest. L-selectin-dependent adhesion and emigration are decreased, rolling is not, suggesting that at least part of the defect is due to events downstream of the initial tether.
Collapse
Affiliation(s)
- M Michele Mariscalco
- Department of Pediatrics, Sections of Leukocyte Biology and Critical Care Medicine, Baylor College of Medicine, Houston, Texas 77030-2600, USA.
| | | | | | | | | |
Collapse
|
90
|
Dunne JL, Ballantyne CM, Beaudet AL, Ley K. Control of leukocyte rolling velocity in TNF-alpha-induced inflammation by LFA-1 and Mac-1. Blood 2002; 99:336-41. [PMID: 11756189 DOI: 10.1182/blood.v99.1.336] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Previously it was shown that beta(2)-integrins are necessary for slow leukocyte rolling in inflamed venules. In this study, mice that are deficient for either one of the beta(2)-integrins, alpha(L)beta(2) (LFA-1) or alpha(M)beta(2) (Mac-1), were used to determine which of the beta(2)-integrins are responsible for slowing rolling leukocytes. The cremaster muscles of these mice were treated with tumor necrosis factor-alpha and prepared for intravital microscopy. The average rolling velocities in venules were elevated in LFA-1(-/-) mice (11.0 +/- 0.7 microm/s) and Mac-1(-/-) mice (10.1 +/- 1.1 microm/s) compared to wild-type mice (4.8 +/- 0.3 microm/s; P <.05), but were lower than in CD18(-/-) mice (28.5 +/- 2.1 microm/s). When both LFA-1 and Mac-1 were absent or blocked, rolling velocity became dependent on shear rate and approached that of CD18(-/-) mice. In addition, leukocyte adhesion efficiency was decreased in LFA-1(-/-) mice to near CD18(-/-) levels, but decreased only slightly in Mac-1(-/-) mice. Thus, both LFA-1 and Mac-1 contribute to slowing down rolling leukocytes, although LFA-1 is more important than Mac-1 in efficiently inducing firm adhesion.
Collapse
Affiliation(s)
- Jessica L Dunne
- Department of Biomedical Engineering and Cardiovascular Research Center, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
91
|
Jadhav S, Bochner BS, Konstantopoulos K. Hydrodynamic shear regulates the kinetics and receptor specificity of polymorphonuclear leukocyte-colon carcinoma cell adhesive interactions. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:5986-93. [PMID: 11698478 DOI: 10.4049/jimmunol.167.10.5986] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ability of tumor cells to metastasize hematogenously is regulated by their interactions with polymorphonuclear leukocytes (PMNs). However, the mechanisms mediating PMN binding to tumor cells under physiological shear forces remain largely unknown. This study was designed to characterize the molecular interactions between PMNs and tumor cells as a function of the dynamic shear environment, using two human colon adenocarcinoma cell lines (LS174T and HCT-8) as models. PMN and colon carcinoma cell suspensions, labeled with distinct fluorophores, were sheared in a cone-and-plate rheometer in the presence of the PMN activator fMLP. The size distribution and cellular composition of formed aggregates were determined by flow cytometry. PMN binding to LS174T cells was maximal at 100 s(-1) and decreased with increasing shear. At low shear (100 s(-1)) PMN CD11b alone mediates PMN-LS174T heteroaggregation. However, L-selectin, CD11a, and CD11b are all required for PMN binding to sialyl Lewis(x)-bearing LS174T cells at high shear (800 s(-1)). In contrast, sialyl Lewis(x)-low HCT-8 cells fail to aggregate with PMNs at high shear conditions, despite extensive adhesive interactions at low shear. Taken together, our data suggest that PMN L-selectin initiates LS174T cell tethering at high shear by binding to sialylated moieties on the carcinoma cell surface, whereas the subsequent involvement of CD11a and CD11b converts these transient tethers into stable adhesion. This study demonstrates that the shear environment of the vasculature modulates the dynamics and molecular constituents mediating PMN-tumor cell adhesion.
Collapse
Affiliation(s)
- S Jadhav
- Department of Chemical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | |
Collapse
|
92
|
Seo SM, McIntire LV, Smith CW. Effects of IL-8, Gro-alpha, and LTB(4) on the adhesive kinetics of LFA-1 and Mac-1 on human neutrophils. Am J Physiol Cell Physiol 2001; 281:C1568-78. [PMID: 11600420 DOI: 10.1152/ajpcell.2001.281.5.c1568] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Firm adhesion of rolling neutrophils on inflamed endothelium is dependent on beta(2) (CD18)-integrins and activating stimuli. LFA-1 (CD11a/CD18) appears to be more important than Mac-1 (CD11b/CD18) in neutrophil emigration at inflammatory sites, but little is known of the relative binding characteristics of these two integrins under conditions thought to regulate firm adhesion. The present study examined the effect of chemoattractants on the kinetics of LFA-1 and Mac-1 adhesion in human neutrophils. We found that subnanomolar concentrations of interleukin-8, Gro-alpha, and leukotriene B(4) (LTB(4)) induced rapid and optimal rates of LFA-1-dependent adhesion of neutrophils to intercellular adhesion molecule (ICAM)-1-coated beads. These optimal rates of LFA-1 adhesion were transient and decayed within 1 min after chemoattractant stimulation. Mac-1 adhesion was equally rapid initially but continued to rise for >/=6 min after stimulation. A fourfold higher density of ICAM-1 on beads markedly increased the rate of binding to LFA-1 but did not change the early and narrow time window for the optimal rate of adhesion. Using well-characterized monoclonal antibodies, we showed that activation of LFA-1 and Mac-1 by Gro-alpha was completely blocked by anti-CXC chemokine receptor R2, but activation of these integrins by interleukin-8 was most effectively blocked by anti-CXC chemokine receptor R1. The topographical distribution of beads also reflected significant differences between LFA-1 and Mac-1. Beads bound to Mac-1 translocated to the cell uropod within 4 min, but beads bound to LFA-1 remained bound to the lamellipodial regions at the same time. These kinetic and topographical differences may indicate distinct functional contributions of LFA-1 and Mac-1 on neutrophils.
Collapse
Affiliation(s)
- S M Seo
- Institute of Biosciences and Bioengineering, Rice University, Houston 77005, USA
| | | | | |
Collapse
|
93
|
Goldsmith HL, Quinn TA, Drury G, Spanos C, McIntosh FA, Simon SI. Dynamics of neutrophil aggregation in couette flow revealed by videomicroscopy: effect of shear rate on two-body collision efficiency and doublet lifetime. Biophys J 2001; 81:2020-34. [PMID: 11566775 PMCID: PMC1301676 DOI: 10.1016/s0006-3495(01)75852-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
During inflammation, neutrophil capture by vascular endothelial cells is dependent on L-selectin and beta(2)-integrin adhesion receptors. One of us (S.I.S.) previously demonstrated that homotypic neutrophil aggregation is analogous to this process in that it is also mediated by these receptors, thus providing a model for studying the dynamics of neutrophil adhesion. In the present work, we set out to confirm the hypothesis that cell-cell adhesion via selectins serves to increase the lifetimes of neutrophil doublets formed through shear-induced two-body collisions. In turn, this would facilitate the engagement of more stable beta(2)-integrin bonds and thus increase the two-body collision efficiency (fraction of collisions resulting in the formation of nonseparating doublets). To this end, suspensions of unstimulated neutrophils were subjected to a uniform shear field in a transparent counter-rotating cone and plate rheoscope, and the formation of doublets and growth of aggregates recorded using high-speed videomicroscopy. The dependence of neutrophil doublet lifetime and two-body collision-capture efficiency on shear rate, G, from 14 to 220 s(-1) was investigated. Bond formation during a two-body collision was indicated by doublets rotating well past the orientation predicted for break-up of doublets of inert spheres. A striking dependence of doublet lifetime on shear rate was observed. At low shear (G = 14 s(-1)), no collision capture occurred, and doublet lifetimes were no different from those of neutrophils pretreated with a blocking antibody to L-selectin, or in Ca(++)-depleted EDTA buffers. At G > or = 66 s(-1), doublet lifetimes increased, with increasing G reaching values twice those for the L-selectin-blocked controls. This correlated with capture efficiencies in excess of 20%, and, at G > or = 110 s(-1), led to the rapid formation of large aggregates, and this in the absence of exogenous chemotactic stimuli. Moreover, the aggregates almost completely broke up when the shear rate was reduced below 66 s(-1). Partial inhibition of aggregate formation was achieved by blocking beta(2)-integrin receptors with antibody. By direct observation of the shear-induced interactions between neutrophils, these data reveal that steady application of a threshold level of shear rate is sufficient to support homotypic neutrophil aggregation.
Collapse
Affiliation(s)
- H L Goldsmith
- McGill University Medical Clinic, Montreal General Hospital Research Institute, Montreal, Quebec H3G 1A4, Canada.
| | | | | | | | | | | |
Collapse
|
94
|
Shankaran H, Neelamegham S. Nonlinear flow affects hydrodynamic forces and neutrophil adhesion rates in cone-plate viscometers. Biophys J 2001; 80:2631-48. [PMID: 11371440 PMCID: PMC1301451 DOI: 10.1016/s0006-3495(01)76233-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We present a theoretical and experimental analysis of the effects of nonlinear flow in a cone-plate viscometer. The analysis predicts that flow in the viscometer is a function of two parameters, the Reynolds number and the cone angle. Nonlinear flow occurs at high shear rates and causes spatial variations in wall shear stress, collision frequency, interparticle forces and attachment times within the viscometer. We examined the effect of these features on cellular adhesion kinetics. Based on recent data (Taylor, A. D., S. Neelamegham, J. D. Hellums, et al. 1996. Biophys. J. 71:3488-3500), we modeled neutrophil homotypic aggregation as a process that is integrin-limited at low shear and selectin-limited at high shear. Our calculations suggest that selectin and integrin on-rates lie in the order of 10(-2)-10(-4)/s. They also indicate that secondary flow causes positional variations in adhesion efficiency in the viscometer, and that the overall efficiency is dependent not only on the shear rate, but also the sample volume and the cone angle. Experiments performed with isolated neutrophils confirmed these predictions. In these experiments, enhancing secondary flow by increasing the sample volume from 100 to 1000 microl at 1500/s for a 2 degrees cone caused up to an approximately 45% drop in adhesion efficiency. Our results suggest that secondary flow may significantly influence cellular aggregation, platelet activation, and endothelial cell mechanotransduction measurements made in the viscometer over the range of conditions applied in typical biological studies.
Collapse
Affiliation(s)
- H Shankaran
- Bioengineering Laboratory, Department of Chemical Engineering, State University of New York at Buffalo, Buffalo, New York 14260, USA
| | | |
Collapse
|
95
|
Henderson RB, Lim LH, Tessier PA, Gavins FN, Mathies M, Perretti M, Hogg N. The use of lymphocyte function-associated antigen (LFA)-1-deficient mice to determine the role of LFA-1, Mac-1, and alpha4 integrin in the inflammatory response of neutrophils. J Exp Med 2001; 194:219-26. [PMID: 11457896 PMCID: PMC2193453 DOI: 10.1084/jem.194.2.219] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
After injury or infection, neutrophils rapidly migrate from the circulation into tissues by means of an orderly progression of adhesion receptor engagements. Neutrophils have been previously considered to use selectins exclusively to roll on vessels before an adhesion step mediated by the beta2 integrins, lymphocyte function-associated antigen (LFA)-1, and Mac-1. Here we use LFA-1(-/-) mice, function blocking monoclonal antibodies, and intravital microscopy to investigate the roles of LFA-1, Mac-1, and alpha4 integrins in neutrophil recruitment in vivo. For the first time, we show that LFA-1 makes a contribution to neutrophil rolling by stabilizing the transient attachment or tethering phase of rolling. In contrast, Mac-1 does not appear to be important for either rolling or firm adhesion, but instead contributes to emigration from the vessel. Blocking Mac-1 in the presence of LFA-1 significantly reduces emigration, suggesting cooperation between these two integrins. Low levels of alpha4beta1 integrin can be detected on neutrophils from LFA-1(+/+) and (-/-) mice. These cells make use of alpha4beta1 during the rolling phase, particularly in the absence of LFA-1. Thus LFA-1 and alpha4beta1, together with the selectins, are involved in the rolling phase of neutrophil recruitment, and, in turn, affect the later stages of the transmigration event.
Collapse
Affiliation(s)
- Robert B. Henderson
- Leukocyte Adhesion Laboratory, Imperial Cancer Research Fund, Lincoln's Inn Fields, London WC2A 3PX, UK
| | - Lina H.K. Lim
- Department of Biochemical Pharmacology, William Harvey Research Institute, London EC1M 6BQ, UK
| | - Philippe A. Tessier
- Leukocyte Adhesion Laboratory, Imperial Cancer Research Fund, Lincoln's Inn Fields, London WC2A 3PX, UK
| | - Felicity N.E. Gavins
- Department of Biochemical Pharmacology, William Harvey Research Institute, London EC1M 6BQ, UK
| | - Meg Mathies
- Leukocyte Adhesion Laboratory, Imperial Cancer Research Fund, Lincoln's Inn Fields, London WC2A 3PX, UK
| | - Mauro Perretti
- Department of Biochemical Pharmacology, William Harvey Research Institute, London EC1M 6BQ, UK
| | - Nancy Hogg
- Leukocyte Adhesion Laboratory, Imperial Cancer Research Fund, Lincoln's Inn Fields, London WC2A 3PX, UK
| |
Collapse
|
96
|
Burdick MM, McCarty OJ, Jadhav S, Konstantopoulos K. Cell-cell interactions in inflammation and cancer metastasis. IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE : THE QUARTERLY MAGAZINE OF THE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY 2001; 20:86-91. [PMID: 11446216 DOI: 10.1109/51.932731] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- M M Burdick
- Department of Chemical Engineering, Johns Hopkins University, USA
| | | | | | | |
Collapse
|
97
|
SMITH CWAYNE. Possible Steps Involved in the Transition to Stationary Adhesion of Rolling Neutrophils: A Brief Review. Microcirculation 2000. [DOI: 10.1111/j.1549-8719.2000.tb00136.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
98
|
Kupatt C, Wichels R, Becker BF, Boekstegers P. Inhibition of post-ischaemic inflammation as a therapeutic approach to myocardial ischaemia reperfusion injury. Expert Opin Ther Pat 2000. [DOI: 10.1517/13543776.10.9.1395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
99
|
Neelamegham S, Taylor AD, Shankaran H, Smith CW, Simon SI. Shear and time-dependent changes in Mac-1, LFA-1, and ICAM-3 binding regulate neutrophil homotypic adhesion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:3798-805. [PMID: 10725740 DOI: 10.4049/jimmunol.164.7.3798] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We examined the relative contributions of LFA-1, Mac-1, and ICAM-3 to homotypic neutrophil adhesion over the time course of formyl peptide stimulation at shear rates ranging from 100 to 800 s-1. Isolated human neutrophils were sheared in a cone-plate viscometer and the kinetics of aggregate formation was measured by flow cytometry. The efficiency of cell adhesion was computed by fitting the aggregate formation rates with a model based on two-body collision theory. Neutrophil homotypic adhesion kinetics varied with shear rate and was most efficient at 800 s-1, where approximately 40% of the collisions resulted in adhesion. A panel of blocking Abs to LFA-1, Mac-1, and ICAM-3 was added to assess the relative contributions of these molecules. We report that 1) LFA-1 binds ICAM-3 as its primary ligand supporting homotypic adhesion, although the possibility of other ligands was also detected. 2) Mac-1 binding to an unidentified ligand supports homotypic adhesion with an efficiency comparable to LFA-1 at low shear rates of approximately 100 s-1. Above 300 s-1, however, Mac-1 and not LFA-1 were the predominant molecules supporting cell adhesion. This is in contrast to neutrophil adhesion to ICAM-1-transfected cells, where LFA-1 binds with a higher avidity than Mac-1 to ICAM-1. 3) Following stimulation, the capacity of LFA-1 to support aggregate formation decreases with time at a rate approximately 3-fold faster than that of Mac-1. The results suggest that the relative contributions of beta2 integrins and ICAM-3 to neutrophil adhesion is regulated by the magnitude of fluid shear and time of stimulus over a range of blood flow conditions typical of the venular microcirculation.
Collapse
Affiliation(s)
- S Neelamegham
- Department of Chemical Engineering, State University of New York, Buffalo, NY 14260, USA
| | | | | | | | | |
Collapse
|