51
|
Bozinovski S, Anthony D, Vlahos R. Targeting pro-resolution pathways to combat chronic inflammation in COPD. J Thorac Dis 2014; 6:1548-56. [PMID: 25478196 DOI: 10.3978/j.issn.2072-1439.2014.08.08] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 07/18/2014] [Indexed: 12/31/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is an inflammatory lung condition that is associated with irreversible airflow obstruction as a consequence of small airways disease, excessive mucus production and emphysema. Paradoxically, excessive inflammation fails to control microbial pathogens that not only colonise COPD airways, but also trigger acute exacerbations, which markedly increase inflammation underlying host tissue damage. Excessive production of leukocyte mobilising cytokines such as CXCL8 (IL-8) and leukotriene B4 (LTB4) in response to environmental stimuli (cigarette smoke and microbial products) are thought to maintain chronic inflammation, in conjunction with inefficient macrophage clearance of microbes and apoptotic neutrophils. In this perspective, we discuss an alternative view on why inflammation persists with a focus on why pro-resolution mediators such as lipoxin A4 (LXA4), D-series resolving and Annexin A1 fail to effectively switch off inflammation in COPD. These pro-resolving mediators converge on the G-protein coupled receptor, ALX/FPR2. This receptor is particularly relevant to COPD as the complex milieu of exogenous and host-derived mediators within the inflamed airways include agonists that potently activate ALX/FPR2, including Serum Amyloid A (SAA) and the cathelicidin, LL-37. There is emerging evidence to suggest that ALX/FPR2 can exist in alternative receptor conformations in an agonist-biased manner, which facilitates alternate functional receptor behaviors. Hence, the development of more stable pro-resolving analogs provides therapeutic opportunities to address ALX/FPR2 conformations to counteract pathogenic signaling and promote non-phlogistic clearance pathways essential for resolution of inflammation.
Collapse
Affiliation(s)
- Steven Bozinovski
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville 3010, Australia
| | - Desiree Anthony
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville 3010, Australia
| | - Ross Vlahos
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
52
|
Roca J, Vargas C, Cano I, Selivanov V, Barreiro E, Maier D, Falciani F, Wagner P, Cascante M, Garcia-Aymerich J, Kalko S, De Mas I, Tegnér J, Escarrabill J, Agustí A, Gomez-Cabrero D. Chronic Obstructive Pulmonary Disease heterogeneity: challenges for health risk assessment, stratification and management. J Transl Med 2014; 12 Suppl 2:S3. [PMID: 25472887 PMCID: PMC4255905 DOI: 10.1186/1479-5876-12-s2-s3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background and hypothesis Heterogeneity in clinical manifestations and disease progression in Chronic Obstructive Pulmonary Disease (COPD) lead to consequences for patient health risk assessment, stratification and management. Implicit with the classical "spill over" hypothesis is that COPD heterogeneity is driven by the pulmonary events of the disease. Alternatively, we hypothesized that COPD heterogeneities result from the interplay of mechanisms governing three conceptually different phenomena: 1) pulmonary disease, 2) systemic effects of COPD and 3) co-morbidity clustering, each of them with their own dynamics. Objective and method To explore the potential of a systems analysis of COPD heterogeneity focused on skeletal muscle dysfunction and on co-morbidity clustering aiming at generating predictive modeling with impact on patient management. To this end, strategies combining deterministic modeling and network medicine analyses of the Biobridge dataset were used to investigate the mechanisms of skeletal muscle dysfunction. An independent data driven analysis of co-morbidity clustering examining associated genes and pathways was performed using a large dataset (ICD9-CM data from Medicare, 13 million people). Finally, a targeted network analysis using the outcomes of the two approaches (skeletal muscle dysfunction and co-morbidity clustering) explored shared pathways between these phenomena. Results (1) Evidence of abnormal regulation of skeletal muscle bioenergetics and skeletal muscle remodeling showing a significant association with nitroso-redox disequilibrium was observed in COPD; (2) COPD patients presented higher risk for co-morbidity clustering than non-COPD patients increasing with ageing; and, (3) the on-going targeted network analyses suggests shared pathways between skeletal muscle dysfunction and co-morbidity clustering. Conclusions The results indicate the high potential of a systems approach to address COPD heterogeneity. Significant knowledge gaps were identified that are relevant to shape strategies aiming at fostering 4P Medicine for patients with COPD.
Collapse
|
53
|
Cano I, Selivanov V, Gomez-Cabrero D, Tegnér J, Roca J, Wagner PD, Cascante M. Oxygen pathway modeling estimates high reactive oxygen species production above the highest permanent human habitation. PLoS One 2014; 9:e111068. [PMID: 25375931 PMCID: PMC4222897 DOI: 10.1371/journal.pone.0111068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/19/2014] [Indexed: 11/19/2022] Open
Abstract
The production of reactive oxygen species (ROS) from the inner mitochondrial membrane is one of many fundamental processes governing the balance between health and disease. It is well known that ROS are necessary signaling molecules in gene expression, yet when expressed at high levels, ROS may cause oxidative stress and cell damage. Both hypoxia and hyperoxia may alter ROS production by changing mitochondrial Po2 (PmO2). Because PmO2 depends on the balance between O2 transport and utilization, we formulated an integrative mathematical model of O2 transport and utilization in skeletal muscle to predict conditions to cause abnormally high ROS generation. Simulations using data from healthy subjects during maximal exercise at sea level reveal little mitochondrial ROS production. However, altitude triggers high mitochondrial ROS production in muscle regions with high metabolic capacity but limited O2 delivery. This altitude roughly coincides with the highest location of permanent human habitation. Above 25,000 ft., more than 90% of exercising muscle is predicted to produce abnormally high levels of ROS, corresponding to the "death zone" in mountaineering.
Collapse
Affiliation(s)
- Isaac Cano
- Center for respiratory diagnoses, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES) and Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Vitaly Selivanov
- Departament de Bioquimica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona and Institute of Biomedicine (IBUB), Barcelona, Catalonia, Spain
| | - David Gomez-Cabrero
- Unit of Computational Medicine of the Center for Molecular Medicine, Karolinska Institutet and Karoliska University Hospital - Department of Medicine, Stockholm, Sweden
| | - Jesper Tegnér
- Unit of Computational Medicine of the Center for Molecular Medicine, Karolinska Institutet and Karoliska University Hospital - Department of Medicine, Stockholm, Sweden
| | - Josep Roca
- Center for respiratory diagnoses, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES) and Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Peter D. Wagner
- Division of Physiology, Pulmonary and Critical Care Medicine, University of California San Diego, San Diego, California, United States of America
| | - Marta Cascante
- Departament de Bioquimica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona and Institute of Biomedicine (IBUB), Barcelona, Catalonia, Spain
- * E-mail:
| |
Collapse
|
54
|
Abstract
Ageing is associated with a progressive degeneration of the tissues, which has a negative impact on the structure and function of vital organs and is among the most important known risk factors for most chronic diseases. Since the proportion of the world's population aged >60 years will double in the next four decades, this will be accompanied by an increased incidence of chronic age-related diseases that will place a huge burden on healthcare resources. There is increasing evidence that many chronic inflammatory diseases represent an acceleration of the ageing process. Chronic pulmonary diseases represents an important component of the increasingly prevalent multiple chronic debilitating diseases, which are a major cause of morbidity and mortality, particularly in the elderly. The lungs age and it has been suggested that chronic obstructive pulmonary disease (COPD) is a condition of accelerated lung ageing and that ageing may provide a mechanistic link between COPD and many of its extrapulmonary effects and comorbidities. In this article we will describe the physiological changes and mechanisms of ageing, with particular focus on the pulmonary effects of ageing and how these may be relevant to the development of COPD and its major extrapulmonary manifestations.
Collapse
Affiliation(s)
- William MacNee
- ELEGI Colt Research Laboratories, MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Roberto A Rabinovich
- ELEGI Colt Research Laboratories, MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Gourab Choudhury
- ELEGI Colt Research Laboratories, MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
55
|
Mizumura K, Cloonan SM, Nakahira K, Bhashyam AR, Cervo M, Kitada T, Glass K, Owen CA, Mahmood A, Washko GR, Hashimoto S, Ryter SW, Choi AM. Mitophagy-dependent necroptosis contributes to the pathogenesis of COPD. J Clin Invest 2014; 124:3987-4003. [PMID: 25083992 PMCID: PMC4151233 DOI: 10.1172/jci74985] [Citation(s) in RCA: 471] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 06/06/2014] [Indexed: 12/15/2022] Open
Abstract
The pathogenesis of chronic obstructive pulmonary disease (COPD) remains unclear, but involves loss of alveolar surface area (emphysema) and airway inflammation (bronchitis) as the consequence of cigarette smoke (CS) exposure. Previously, we demonstrated that autophagy proteins promote lung epithelial cell death, airway dysfunction, and emphysema in response to CS; however, the underlying mechanisms have yet to be elucidated. Here, using cultured pulmonary epithelial cells and murine models, we demonstrated that CS causes mitochondrial dysfunction that is associated with a reduction of mitochondrial membrane potential. CS induced mitophagy, the autophagy-dependent elimination of mitochondria, through stabilization of the mitophagy regulator PINK1. CS caused cell death, which was reduced by administration of necrosis or necroptosis inhibitors. Genetic deficiency of PINK1 and the mitochondrial division/mitophagy inhibitor Mdivi-1 protected against CS-induced cell death and mitochondrial dysfunction in vitro and reduced the phosphorylation of MLKL, a substrate for RIP3 in the necroptosis pathway. Moreover, Pink1(-/-) mice were protected against mitochondrial dysfunction, airspace enlargement, and mucociliary clearance (MCC) disruption during CS exposure. Mdivi-1 treatment also ameliorated CS-induced MCC disruption in CS-exposed mice. In human COPD, lung epithelial cells displayed increased expression of PINK1 and RIP3. These findings implicate mitophagy-dependent necroptosis in lung emphysematous changes in response to CS exposure, suggesting that this pathway is a therapeutic target for COPD.
Collapse
Affiliation(s)
- Kenji Mizumura
- Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, New York, USA. Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA. Division of Respiratory Medicine, Nihon University School of Medicine, Tokyo, Japan. Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA. Division of Neuroscience, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada. Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, Massachusetts, USA
| | - Suzanne M. Cloonan
- Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, New York, USA. Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA. Division of Respiratory Medicine, Nihon University School of Medicine, Tokyo, Japan. Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA. Division of Neuroscience, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada. Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, Massachusetts, USA
| | - Kiichi Nakahira
- Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, New York, USA. Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA. Division of Respiratory Medicine, Nihon University School of Medicine, Tokyo, Japan. Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA. Division of Neuroscience, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada. Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, Massachusetts, USA
| | - Abhiram R. Bhashyam
- Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, New York, USA. Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA. Division of Respiratory Medicine, Nihon University School of Medicine, Tokyo, Japan. Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA. Division of Neuroscience, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada. Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, Massachusetts, USA
| | - Morgan Cervo
- Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, New York, USA. Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA. Division of Respiratory Medicine, Nihon University School of Medicine, Tokyo, Japan. Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA. Division of Neuroscience, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada. Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, Massachusetts, USA
| | - Tohru Kitada
- Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, New York, USA. Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA. Division of Respiratory Medicine, Nihon University School of Medicine, Tokyo, Japan. Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA. Division of Neuroscience, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada. Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, Massachusetts, USA
| | - Kimberly Glass
- Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, New York, USA. Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA. Division of Respiratory Medicine, Nihon University School of Medicine, Tokyo, Japan. Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA. Division of Neuroscience, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada. Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, Massachusetts, USA
| | - Caroline A. Owen
- Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, New York, USA. Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA. Division of Respiratory Medicine, Nihon University School of Medicine, Tokyo, Japan. Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA. Division of Neuroscience, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada. Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, Massachusetts, USA
| | - Ashfaq Mahmood
- Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, New York, USA. Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA. Division of Respiratory Medicine, Nihon University School of Medicine, Tokyo, Japan. Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA. Division of Neuroscience, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada. Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, Massachusetts, USA
| | - George R. Washko
- Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, New York, USA. Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA. Division of Respiratory Medicine, Nihon University School of Medicine, Tokyo, Japan. Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA. Division of Neuroscience, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada. Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, Massachusetts, USA
| | - Shu Hashimoto
- Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, New York, USA. Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA. Division of Respiratory Medicine, Nihon University School of Medicine, Tokyo, Japan. Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA. Division of Neuroscience, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada. Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, Massachusetts, USA
| | - Stefan W. Ryter
- Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, New York, USA. Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA. Division of Respiratory Medicine, Nihon University School of Medicine, Tokyo, Japan. Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA. Division of Neuroscience, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada. Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, Massachusetts, USA
| | - Augustine M.K. Choi
- Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, New York, USA. Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA. Division of Respiratory Medicine, Nihon University School of Medicine, Tokyo, Japan. Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA. Division of Neuroscience, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada. Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
56
|
Davidsen PK, Herbert JM, Antczak P, Clarke K, Ferrer E, Peinado VI, Gonzalez C, Roca J, Egginton S, Barberá JA, Falciani F. A systems biology approach reveals a link between systemic cytokines and skeletal muscle energy metabolism in a rodent smoking model and human COPD. Genome Med 2014; 6:59. [PMID: 25228925 PMCID: PMC4165371 DOI: 10.1186/s13073-014-0059-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 07/24/2014] [Indexed: 01/03/2023] Open
Abstract
Background A relatively large percentage of patients with chronic obstructive pulmonary disease (COPD) develop systemic co-morbidities that affect prognosis, among which muscle wasting is particularly debilitating. Despite significant research effort, the pathophysiology of this important extrapulmonary manifestation is still unclear. A key question that remains unanswered is to what extent systemic inflammatory mediators might play a role in this pathology. Cigarette smoke (CS) is the main risk factor for developing COPD and therefore animal models chronically exposed to CS have been proposed for mechanistic studies and biomarker discovery. Although mice have been successfully used as a pre-clinical in vivo model to study the pulmonary effects of acute and chronic CS exposure, data suggest that they may be inadequate models for studying the effects of CS on peripheral muscle function. In contrast, recent findings indicate that the guinea pig model (Cavia porcellus) may better mimic muscle wasting. Methods We have used a systems biology approach to compare the transcriptional profile of hindlimb skeletal muscles from a Guinea pig rodent model exposed to CS and/or chronic hypoxia to COPD patients with muscle wasting. Results We show that guinea pigs exposed to long-term CS accurately reflect most of the transcriptional changes observed in dysfunctional limb muscle of severe COPD patients when compared to matched controls. Using network inference, we could then show that the expression profile in whole lung of genes encoding for soluble inflammatory mediators is informative of the molecular state of skeletal muscles in the guinea pig smoking model. Finally, we show that CXCL10 and CXCL9, two of the candidate systemic cytokines identified using this pre-clinical model, are indeed detected at significantly higher levels in serum of COPD patients, and that their serum protein level is inversely correlated with the expression of aerobic energy metabolism genes in skeletal muscle. Conclusions We conclude that CXCL10 and CXCL9 are promising candidate inflammatory signals linked to the regulation of central metabolism genes in skeletal muscles. On a methodological level, our work also shows that a system level analysis of animal models of diseases can be very effective to generate clinically relevant hypothesis. Electronic supplementary material The online version of this article (doi:10.1186/s13073-014-0059-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peter K Davidsen
- Centre for Computational Biology and Modelling, Institute for Integrative Biology, University of Liverpool, Crown Street, L69 7ZB Liverpool, UK ; School of Immunity and Infection, University of Birmingham, Birmingham, UK
| | - John M Herbert
- Centre for Computational Biology and Modelling, Institute for Integrative Biology, University of Liverpool, Crown Street, L69 7ZB Liverpool, UK
| | - Philipp Antczak
- Centre for Computational Biology and Modelling, Institute for Integrative Biology, University of Liverpool, Crown Street, L69 7ZB Liverpool, UK
| | - Kim Clarke
- Centre for Computational Biology and Modelling, Institute for Integrative Biology, University of Liverpool, Crown Street, L69 7ZB Liverpool, UK
| | - Elisabet Ferrer
- Department of Pulmonary Medicine, Hospital Clinic, University of Barcelona, Barcelona, Spain ; Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Victor I Peinado
- Department of Pulmonary Medicine, Hospital Clinic, University of Barcelona, Barcelona, Spain ; Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain ; Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Barcelona, Spain
| | - Constancio Gonzalez
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Barcelona, Spain ; Department of Biochemistry and Molecular Biology and Physiology, University of Valladolid, Valladolid, Spain
| | - Josep Roca
- Department of Pulmonary Medicine, Hospital Clinic, University of Barcelona, Barcelona, Spain ; Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain ; Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Barcelona, Spain
| | - Stuart Egginton
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Joan A Barberá
- Department of Pulmonary Medicine, Hospital Clinic, University of Barcelona, Barcelona, Spain ; Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain ; Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Barcelona, Spain
| | - Francesco Falciani
- Centre for Computational Biology and Modelling, Institute for Integrative Biology, University of Liverpool, Crown Street, L69 7ZB Liverpool, UK
| |
Collapse
|
57
|
Maltais F, Decramer M, Casaburi R, Barreiro E, Burelle Y, Debigaré R, Dekhuijzen PNR, Franssen F, Gayan-Ramirez G, Gea J, Gosker HR, Gosselink R, Hayot M, Hussain SNA, Janssens W, Polkey MI, Roca J, Saey D, Schols AMWJ, Spruit MA, Steiner M, Taivassalo T, Troosters T, Vogiatzis I, Wagner PD. An official American Thoracic Society/European Respiratory Society statement: update on limb muscle dysfunction in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2014; 189:e15-62. [PMID: 24787074 DOI: 10.1164/rccm.201402-0373st] [Citation(s) in RCA: 732] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Limb muscle dysfunction is prevalent in chronic obstructive pulmonary disease (COPD) and it has important clinical implications, such as reduced exercise tolerance, quality of life, and even survival. Since the previous American Thoracic Society/European Respiratory Society (ATS/ERS) statement on limb muscle dysfunction, important progress has been made on the characterization of this problem and on our understanding of its pathophysiology and clinical implications. PURPOSE The purpose of this document is to update the 1999 ATS/ERS statement on limb muscle dysfunction in COPD. METHODS An interdisciplinary committee of experts from the ATS and ERS Pulmonary Rehabilitation and Clinical Problems assemblies determined that the scope of this document should be limited to limb muscles. Committee members conducted focused reviews of the literature on several topics. A librarian also performed a literature search. An ATS methodologist provided advice to the committee, ensuring that the methodological approach was consistent with ATS standards. RESULTS We identified important advances in our understanding of the extent and nature of the structural alterations in limb muscles in patients with COPD. Since the last update, landmark studies were published on the mechanisms of development of limb muscle dysfunction in COPD and on the treatment of this condition. We now have a better understanding of the clinical implications of limb muscle dysfunction. Although exercise training is the most potent intervention to address this condition, other therapies, such as neuromuscular electrical stimulation, are emerging. Assessment of limb muscle function can identify patients who are at increased risk of poor clinical outcomes, such as exercise intolerance and premature mortality. CONCLUSIONS Limb muscle dysfunction is a key systemic consequence of COPD. However, there are still important gaps in our knowledge about the mechanisms of development of this problem. Strategies for early detection and specific treatments for this condition are also needed.
Collapse
|
58
|
Gupta SS, Gothi D, Narula G, Sircar J. Correlation of BMI and oxygen saturation in stable COPD in Northern India. Lung India 2014; 31:29-34. [PMID: 24669078 PMCID: PMC3960805 DOI: 10.4103/0970-2113.125891] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: Chronic obstructive pulmonary disease (COPD) is associated with clinically relevant extra pulmonary manifestations; one of them is weight loss. However, there are very few studies from North India available in relation to body mass index (BMI) and Oxygen saturation (SpO2) with COPD. Aims: To study the prevalence of undernutrition among stable COPD patients and correlation of COPD severity with SpO2 and BMI. Settings and Design: A prospective study was carried out at a tertiary care hospital. Subjects and Methods: COPD patients were diagnosed and staged as per global initiative for chronic obstructive lung disease (GOLD) guidelines. SpO2 was measured using pulse oxymeter and BMI categorization was done as per new classification for Asian Indians (2009). Statistical analysis was done using Statistical Package for Social Sciences Version 15.0. Results: Out of 147 COPD patients, 85 (57.8%) were undernourished. The prevalence of undernourished BMI was 25%, 50.8%, 61.7%, and 80% in stage I, II, III and IV respectively; statistically significant (P < 0.050). The mean SpO2 was 95.50 ± 1.41, 95.05 ± 2.42, 94.37 ± 2.28 and 93.05 ± 1.39 in stage I, II, III and IV respectively; statistically significant (F = 4.723; P = 0.004). Conclusions: The overall prevalence of under nutrition among COPD patients was 57.8%. With increasing COPD stage the BMI and median SpO2 value decreased in progressive manner. Association of SpO2 and COPD stages could be explored further in order to suggest an additional marker of disease severity that would add a new dimension in the management of COPD.
Collapse
Affiliation(s)
- Shiv Sagar Gupta
- Department of Pulmonary Medicine, Era's Lucknow Medical College, Lucknow, India
| | - Dipti Gothi
- Department of Pulmonary Medicine, ESI Hospital, New Delhi, India
| | - Gurpreet Narula
- Department of Pulmonary Medicine, Era's Lucknow Medical College, Lucknow, India
| | - Joydeep Sircar
- Department of Pulmonary Medicine, Era's Lucknow Medical College, Lucknow, India
| |
Collapse
|
59
|
Choudhury G, Rabinovich R, MacNee W. Comorbidities and Systemic Effects of Chronic Obstructive Pulmonary Disease. Clin Chest Med 2014; 35:101-30. [DOI: 10.1016/j.ccm.2013.10.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
60
|
Abstract
Oxidants play an important role in homeostatic function, but excessive oxidant generation has an adverse effect on health. The manipulation of Reactive Oxygen Species (ROS) can have a beneficial effect on various lung pathologies. However indiscriminate uses of anti-oxidant strategies have not demonstrated any consistent benefit and may be harmful. Here we propose that nuanced strategies are needed to modulate the oxidant system to obtain a beneficial result in the lung diseases such as Acute Lung Injury (ALI) and Chronic Obstructive Pulmonary Disease (COPD). We identify novel areas of lung oxidant responses that may yield fruitful therapies in the future.
Collapse
Affiliation(s)
- Praveen Mannam
- Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Anup Srivastava
- Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| | | | - Patty J Lee
- Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Maor Sauler
- Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
61
|
Vogiatzis I, Zakynthinos S. Factors limiting exercise tolerance in chronic lung diseases. Compr Physiol 2013; 2:1779-817. [PMID: 23723024 DOI: 10.1002/cphy.c110015] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The major limitation to exercise performance in patients with chronic lung diseases is an issue of great importance since identifying the factors that prevent these patients from carrying out activities of daily living provides an important perspective for the choice of the appropriate therapeutic strategy. The factors that limit exercise capacity may be different in patients with different disease entities (i.e., chronic obstructive, restrictive or pulmonary vascular lung disease) or disease severity and ultimately depend on the degree of malfunction or miss coordination between the different physiological systems (i.e., respiratory, cardiovascular and peripheral muscles). This review focuses on patients with chronic obstructive pulmonary disease (COPD), interstitial lung disease (ILD) and pulmonary vascular disease (PVD). ILD and PVD are included because there is sufficient experimental evidence for the factors that limit exercise capacity and because these disorders are representative of restrictive and pulmonary vascular disorders, respectively. A great deal of emphasis is given, however, to causes of exercise intolerance in COPD mainly because of the plethora of research findings that have been published in this area and also because exercise intolerance in COPD has been used as a model for understanding the interactions of different pathophysiologic mechanisms in exercise limitation. As exercise intolerance in COPD is recognized as being multifactorial, the impacts of the following factors on patients' exercise capacity are explored from an integrative physiological perspective: (i) imbalance between the ventilatory capacity and requirement; (ii) imbalance between energy demands and supplies to working respiratory and peripheral muscles; and (iii) peripheral muscle intrinsic dysfunction/weakness.
Collapse
Affiliation(s)
- Ioannis Vogiatzis
- Department of Physical Education and Sport Sciences, National and Kapodistrian University of Athens, Greece.
| | | |
Collapse
|
62
|
Hoffmann RF, Zarrintan S, Brandenburg SM, Kol A, de Bruin HG, Jafari S, Dijk F, Kalicharan D, Kelders M, Gosker HR, Ten Hacken NH, van der Want JJ, van Oosterhout AJ, Heijink IH. Prolonged cigarette smoke exposure alters mitochondrial structure and function in airway epithelial cells. Respir Res 2013; 14:97. [PMID: 24088173 PMCID: PMC3852998 DOI: 10.1186/1465-9921-14-97] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/26/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cigarette smoking is the major risk factor for COPD, leading to chronic airway inflammation. We hypothesized that cigarette smoke induces structural and functional changes of airway epithelial mitochondria, with important implications for lung inflammation and COPD pathogenesis. METHODS We studied changes in mitochondrial morphology and in expression of markers for mitochondrial capacity, damage/biogenesis and fission/fusion in the human bronchial epithelial cell line BEAS-2B upon 6-months from ex-smoking COPD GOLD stage IV patients to age-matched smoking and never-smoking controls. RESULTS We observed that long-term CSE exposure induces robust changes in mitochondrial structure, including fragmentation, branching and quantity of cristae. The majority of these changes were persistent upon CSE depletion. Furthermore, long-term CSE exposure significantly increased the expression of specific fission/fusion markers (Fis1, Mfn1, Mfn2, Drp1 and Opa1), oxidative phosphorylation (OXPHOS) proteins (Complex II, III and V), and oxidative stress (Mn-SOD) markers. These changes were accompanied by increased levels of the pro-inflammatory mediators IL-6, IL-8, and IL-1β. Importantly, COPD primary bronchial epithelial cells (PBECs) displayed similar changes in mitochondrial morphology as observed in long-term CSE-exposure BEAS-2B cells. Moreover, expression of specific OXPHOS proteins was higher in PBECs from COPD patients than control smokers, as was the expression of mitochondrial stress marker PINK1. CONCLUSION The observed mitochondrial changes in COPD epithelium are potentially the consequence of long-term exposure to cigarette smoke, leading to impaired mitochondrial function and may play a role in the pathogenesis of COPD.
Collapse
Affiliation(s)
- Roland F Hoffmann
- Department of Pathology and Medical Biology, Laboratory of Allergology and Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Linoleic acid metabolite drives severe asthma by causing airway epithelial injury. Sci Rep 2013; 3:1349. [PMID: 23443229 PMCID: PMC3583002 DOI: 10.1038/srep01349] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 02/04/2013] [Indexed: 12/22/2022] Open
Abstract
Airway epithelial injury is the hallmark of various respiratory diseases, but its mechanisms remain poorly understood. While 13-S-hydroxyoctadecadienoic acid (13-S-HODE) is produced in high concentration during mitochondrial degradation in reticulocytes little is known about its role in asthma pathogenesis. Here, we show that extracellular 13-S-HODE induces mitochondrial dysfunction and airway epithelial apoptosis. This is associated with features of severe airway obstruction, lung remodeling, increase in epithelial stress related proinflammatory cytokines and drastic airway neutrophilia in mouse. Further, 13-S-HODE induced features are attenuated by inhibiting Transient Receptor Potential Cation Channel, Vanilloid-type 1 (TRPV1) both in mouse model and human bronchial epithelial cells. These findings are relevant to human asthma, as 13-S-HODE levels are increased in human asthmatic airways. Blocking of 13-S-HODE activity or disruption of TRPV1 activity attenuated airway injury and asthma mimicking features in murine allergic airway inflammation. These findings indicate that 13-S-HODE induces mitochondrial dysfunction and airway epithelial injury.
Collapse
|
64
|
Bozinovski S, Anthony D, Anderson GP, Irving LB, Levy BD, Vlahos R. Treating neutrophilic inflammation in COPD by targeting ALX/FPR2 resolution pathways. Pharmacol Ther 2013; 140:280-9. [PMID: 23880288 DOI: 10.1016/j.pharmthera.2013.07.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 07/09/2013] [Indexed: 12/19/2022]
Abstract
Neutrophilic inflammation persists in COPD despite best current therapies and it is particularly resistant to inhaled glucocorticosteroids. Persistent neutrophil activation not only contributes to matrix breakdown, but can maintain inflammation through the release of endogenous damage associated molecule patterns (DAMPs). Inhibiting excessive neutrophilic inflammation is challenging as many pathogen recognition receptors can initiate migration and the targeting of downstream signaling molecules may compromise essential host defense mechanisms. Here, we discuss new strategies to combat this inflammation in COPD by focusing on the anti-inflammatory role of ALX/FPR2 receptors. ALX/FPR2 is a promiscuous G-protein coupled receptor (GPCR) responding to lipid and peptide agonists that can either switch on acute inflammation or promote resolution of inflammation. We highlight this receptor as an emerging target in the pathogenesis of COPD because known ALX/FPR2 endogenous agonists are enriched in COPD. Serum Amyloid A (SAA) has recently been discovered to be abundantly expressed in COPD and is a potent ALX/FPR2 agonist that unlike almost all other inflammatory chemoattractants, is induced by glucocorticosteroids. SAA not only initiates lung inflammation via ALX/FPR2 but can allosterically modify this receptor so that it no longer transduces pro-resolving signals from endogenous lipoxins that would otherwise promote tissue healing. We propose that there is an imbalance in endogenous and microbial ALX/FPR2 receptor agonists in the inflamed COPD lung environment that oppose protective anti-inflammatory and pro-resolution pathways. These insights open the possibility of targeting ALX/FPR2 receptors using synthetic agonists to resolve persistent neutrophilic inflammation without compromising essential host defense mechanisms.
Collapse
Affiliation(s)
- Steven Bozinovski
- Department of Pharmacology and Therapeutics, The University of Melbourne, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
65
|
Rocker GM, Young J, Simpson AC. Advanced chronic obstructive pulmonary disease: more than a lung disease. PROGRESS IN PALLIATIVE CARE 2013. [DOI: 10.1179/096992609x392303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
66
|
Marinari S, Manigrasso MR, De Benedetto F. Effects of nutraceutical diet integration, with coenzyme Q10 (Q-Ter multicomposite) and creatine, on dyspnea, exercise tolerance, and quality of life in COPD patients with chronic respiratory failure. Multidiscip Respir Med 2013; 8:40. [PMID: 23800154 PMCID: PMC3707735 DOI: 10.1186/2049-6958-8-40] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 06/06/2013] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The protein-calorie malnutrition, resulting in muscle mass loss, frequently occurs in severe COPD patients with chronic respiratory failure (CRF), causing dyspnea, reduced exercise tolerance and impaired quality of life.The cause of this occurrence is an intake-output energy imbalance. A documented deficit of phosphocreatine and reduced mithocondrial energy production can contribute to this imbalance.Aim of this study is to verify whether a dietary supplementation with creatine and coenzyme Q10, important mitochondrial function factors, is able to influence this mechanism leading to a dyspnea reduction and improving exercise tolerance and quality of life. METHODS 55 COPD patients with chronic respiratory failure (in long term O2 therapy), in stable phase of the disease and without severe comorbidities were assigned (double-blind, randomized) to: group A (30 patients) with daily dietary supplementation with Creatine 340 mg + 320 mg Coenzyme Q-Ter (Eufortyn®, Scharper Therapeutics Srl) for 2 months whereas Group B (25 patients) received placebo.All patients continued the same diet, rehabilitation and therapy during the study. At recruitment (T0) and after 2 months (T1), patients were submitted to medical history, anthropometry (BMI), bioelectrical impedance, arterial blood gas analysis, evaluation of dyspnea (VAS, Borg, BDI, MRC) and functional independence (ADL), 6-minute walk test (6MWT) and quality of life questionnaire (SGRQ). At 6 months and 1 year, a telephone follow up was conducted on exacerbations number. RESULTS No significant difference was detected at baseline (T0) in the 2 groups. After 2 months of therapy (T1) the FFMI increased in the daily dietary supplementation group (+ 3.7 %) and decreased in the placebo group (- 0.6 %), resulting in a statistically significant (p < 0.001) treatment difference. Statistically significant treatment differences, favouring daily dietary supplementation group, were also seen for the 6MWT comparison. Group A patients also showed significant: 1) improvement in the degree of dyspnea (VAS: p < 0.05; Borg: p < 0.05; MRC: p < 0.001; BDI1: p < 0.05; BDI3: p < 0.03), and independence level in activities of daily living (p < 0.03); 2) improvement in quality of life in activity section (- 6.63 pt) and in total score (- 5.43 pt); 3) exacerbation number decrease (p < 0.02). No significant differences were found (end of study vs baseline) in group B. CONCLUSIONS The nutraceutical diet integration with Q-Ter and creatine, in COPD patients with CRF in O2TLT induced an increasing lean body mass and exercise tolerance, reducing dyspnea, quality of life and exacerbations. These results provide a first demonstration that acting on protein synthesis and muscular efficiency can significantly modify the systemic consequences of the disease.
Collapse
|
67
|
Nesuashvili L, Hadley SH, Bahia PK, Taylor-Clark TE. Sensory nerve terminal mitochondrial dysfunction activates airway sensory nerves via transient receptor potential (TRP) channels. Mol Pharmacol 2013; 83:1007-19. [PMID: 23444014 PMCID: PMC3629826 DOI: 10.1124/mol.112.084319] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 02/25/2013] [Indexed: 01/26/2023] Open
Abstract
Mitochondrial dysfunction and subsequent oxidative stress has been reported for a variety of cell types in inflammatory diseases. Given the abundance of mitochondria at the peripheral terminals of sensory nerves and the sensitivity of transient receptor potential (TRP) ankyrin 1 (A1) and TRP vanilloid 1 (V1) to reactive oxygen species (ROS) and their downstream products of lipid peroxidation, we investigated the effect of nerve terminal mitochondrial dysfunction on airway sensory nerve excitability. Here we show that mitochondrial dysfunction evoked by acute treatment with antimycin A (mitochondrial complex III Qi site inhibitor) preferentially activated TRPA1-expressing "nociceptor-like" mouse bronchopulmonary C-fibers. Action potential discharge was reduced by the TRPA1 antagonist HC-030031. Inhibition of TRPV1 further reduced C-fiber activation. In mouse dissociated vagal neurons, antimycin A induced Ca(2+) influx that was significantly reduced by pharmacological inhibition or genetic knockout of either TRPA1 or TRPV1. Inhibition of both TRPA1 and TRPV1 was required to abolish antimycin A-induced Ca(2+) influx in vagal neurons. Using an HEK293 cell expression system, antimycin A induced concentration-dependent activation of both hTRPA1 and hTRPV1 but failed to activate nontransfected cells. Myxothiazol (complex III Qo site inhibitor) inhibited antimycin A-induced TRPA1 activation, as did the reducing agent dithiothreitol. Scavenging of both superoxide and hydrogen peroxide inhibited TRPA1 activation following mitochondrial modulation. In conclusion, we present evidence that acute mitochondrial dysfunction activates airway sensory nerves preferentially via TRPA1 through the actions of mitochondrially-derived ROS. This represents a novel mechanism by which inflammation may be transduced into nociceptive electrical signaling.
Collapse
Affiliation(s)
- Lika Nesuashvili
- Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida, Tampa, Florida 33612, USA
| | | | | | | |
Collapse
|
68
|
Remels AHV, Gosker HR, Langen RCJ, Schols AMWJ. The mechanisms of cachexia underlying muscle dysfunction in COPD. J Appl Physiol (1985) 2013; 114:1253-62. [DOI: 10.1152/japplphysiol.00790.2012] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pulmonary cachexia is a prevalent, debilitating, and well-recognized feature of COPD associated with increased mortality and loss of peripheral and respiratory muscle function. The exact cause and underlying mechanisms of cachexia in COPD are still poorly understood. Increasing evidence, however, shows that pathological changes in intracellular mechanisms of muscle mass maintenance (i.e., protein turnover and myonuclear turnover) are likely involved. Potential factors triggering alterations in these mechanisms in COPD include oxidative stress, myostatin, and inflammation. In addition to muscle wasting, peripheral muscle in COPD is characterized by a fiber-type shift toward a more type II, glycolytic phenotype and an impaired oxidative capacity (collectively referred to as an impaired oxidative phenotype). Atrophied diaphragm muscle in COPD, however, displays an enhanced oxidative phenotype. Interestingly, intrinsic abnormalities in (lower limb) peripheral muscle seem more pronounced in either cachectic patients or weight loss-susceptible emphysema patients, suggesting that muscle wasting and intrinsic changes in peripheral muscle's oxidative phenotype are somehow intertwined. In this manuscript, we will review alterations in mechanisms of muscle mass maintenance in COPD and discuss the involvement of oxidative stress, inflammation, and myostatin as potential triggers of cachexia. Moreover, we postulate that an impaired muscle oxidative phenotype in COPD can accelerate the process of cachexia, as it renders muscle in COPD less energy efficient, thereby contributing to an energy deficit and weight loss when not dietary compensated. Furthermore, loss of peripheral muscle oxidative phenotype may increase the muscle's susceptibility to inflammation- and oxidative stress-induced muscle damage and wasting.
Collapse
Affiliation(s)
- A. H. V. Remels
- NUTRIM School for Nutrition, Toxicology and Metabolism, Department of Respiratory Medicine, Maastricht University Medical Centre +, Maastricht, the Netherlands
| | - H. R. Gosker
- NUTRIM School for Nutrition, Toxicology and Metabolism, Department of Respiratory Medicine, Maastricht University Medical Centre +, Maastricht, the Netherlands
| | - R. C. J. Langen
- NUTRIM School for Nutrition, Toxicology and Metabolism, Department of Respiratory Medicine, Maastricht University Medical Centre +, Maastricht, the Netherlands
| | - A. M. W. J. Schols
- NUTRIM School for Nutrition, Toxicology and Metabolism, Department of Respiratory Medicine, Maastricht University Medical Centre +, Maastricht, the Netherlands
| |
Collapse
|
69
|
Gayan-Ramirez G, Decramer M. Mechanisms of striated muscle dysfunction during acute exacerbations of COPD. J Appl Physiol (1985) 2013; 114:1291-9. [DOI: 10.1152/japplphysiol.00847.2012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During acute exacerbations of chronic obstructive pulmonary disease (COPD), limb and respiratory muscle dysfunction develops rapidly and functional recovery is partial and slow. The mechanisms leading to this muscle dysfunction are not yet fully established. However, recent evidence has shown that several pathways involved in muscle catabolism, apoptosis, and oxidative stress are activated in the vastus lateralis muscle of patients during acute exacerbations of COPD, while those implicated in mitochondrial function are downregulated. These pathways may be targeted in different ways by factors related to exacerbations. These factors include enhanced systemic inflammation, oxidative stress, impaired energy balance, hypoxia, hypercapnia and acidosis, corticosteroid treatment, and physical inactivity. Data on the respiratory muscles are limited, but these muscles are undoubtedly overloaded during exacerbations. While they are also subjected to the same systemic elements as the limb muscles (except for inactivity), they also face a specific mechanical disadvantage caused by changes in lung volume during exacerbation. The latter will affect the ability to generate force by the foreshortening of the muscle (especially for the diaphragm), but also by altering rib orientation and motion (especially for the parasternal intercostals and the external intercostals). Because acute exacerbations of COPD are associated with an increase in both prevalence and severity of generalized muscle dysfunction, and both remain present even during recovery, early interventions to minimize muscle dysfunction during exacerbation are warranted. Although rehabilitation may be promising, other therapeutic strategies such as counterbalancing the adverse effects of exacerbations on skeletal muscle pathways may also be used.
Collapse
Affiliation(s)
- Ghislaine Gayan-Ramirez
- Respiratory Muscle Research Unit, Laboratory of Pneumology and Respiratory Division, Department of Clinical and Experimental Medicine, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Marc Decramer
- Respiratory Muscle Research Unit, Laboratory of Pneumology and Respiratory Division, Department of Clinical and Experimental Medicine, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
70
|
Rehn TA, Munkvik M, Lunde PK, Sjaastad I, Sejersted OM. Intrinsic skeletal muscle alterations in chronic heart failure patients: a disease-specific myopathy or a result of deconditioning? Heart Fail Rev 2013; 17:421-36. [PMID: 21996779 DOI: 10.1007/s10741-011-9289-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chronic heart failure (CHF) patients frequently experience impaired exercise tolerance due to skeletal muscle fatigue. Studies suggest that this in part is due to intrinsic alterations in skeletal muscle of CHF patients, often interpreted as a disease-specific myopathy. Knowledge about the mechanisms underlying these skeletal muscle alterations is of importance for the pathophysiological understanding of CHF, therapeutic approach and rehabilitation strategies. We here critically review the evidence for skeletal muscle alterations in CHF, the underlying mechanisms of such alterations and how skeletal muscle responds to training in this patient group. Skeletal muscle characteristics in CHF patients are very similar to what is reported in response to chronic obstructive pulmonary disease (COPD), detraining and deconditioning. Furthermore, skeletal muscle alterations observed in CHF patients are reversible by training, and skeletal muscle of CHF patients seems to be at least as trainable as that of matched controls. We argue that deconditioning is a major contributor to the skeletal muscle dysfunction in CHF patients and that further research is needed to determine whether, and to what extent, the intrinsic skeletal muscle alterations in CHF represent an integral part of the pathophysiology in this disease.
Collapse
Affiliation(s)
- T A Rehn
- Institute for Experimental Medical Research, Oslo University Hospital, Ullevaal, Oslo, Norway.
| | | | | | | | | |
Collapse
|
71
|
Meyer A, Zoll J, Charles AL, Charloux A, de Blay F, Diemunsch P, Sibilia J, Piquard F, Geny B. Skeletal muscle mitochondrial dysfunction during chronic obstructive pulmonary disease: central actor and therapeutic target. Exp Physiol 2013; 98:1063-78. [DOI: 10.1113/expphysiol.2012.069468] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
72
|
Ribeiro F, Thériault ME, Debigaré R, Maltais F. Should all patients with COPD be exercise trained? J Appl Physiol (1985) 2013; 114:1300-8. [PMID: 23412902 DOI: 10.1152/japplphysiol.01124.2012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exercise training is one of the most powerful interventions to provide symptomatic relief in patients with chronic obstructive pulmonary disease (COPD). The purpose of this minireview is to discuss how exercise training can improve limb muscle dysfunction in this disease. Various exercise training strategies will be outlined, along with their beneficial effects and potential limitations. Strategies to optimize the gains achievable with exercise training will be presented. Whether exercise training may exert deleterious effects in some patients will also be discussed.
Collapse
Affiliation(s)
- Fernanda Ribeiro
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | | | | | | |
Collapse
|
73
|
Puente-Maestu L, Lázaro A, Humanes B. Metabolic derangements in COPD muscle dysfunction. J Appl Physiol (1985) 2013; 114:1282-90. [PMID: 23288549 DOI: 10.1152/japplphysiol.00815.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mitochondrial muscle alterations are common in patients with chronic obstructive pulmonary disease (COPD) and manifest mainly as decreased oxidative capacity and excessive production of reactive oxygen species (ROS). The significant loss of oxidative capacity observed in the quadriceps of COPD patients is mainly due to reduced mitochondrial content in the fibers, a finding consistent with the characteristic loss of type I fibers observed in that muscle. Decreased oxidative capacity does not directly limit maximum performance; however, it is associated with increased lactate production at lower exercise intensity and reduced endurance. Since type I fiber atrophy does not occur in respiratory muscles, the loss of such fibers in the quadriceps could be to the result of disuse. In contrast, excessive production of ROS and oxidative stress are observed in both the respiratory muscles and the quadriceps of COPD patients. The causes of increased ROS production are not clear, and a number of different mechanisms can play a role. Several mitochondrial alterations in the quadriceps of COPD patients are similar to those observed in diabetic patients, thus suggesting a role for muscle alterations in this comorbidity. Amino acid metabolism is also altered. Expression of peroxisome proliferator-activated receptor-γ coactivator-1α mRNA is low in the quadriceps of COPD patients, which could also be a consequence of type I fiber loss; nevertheless, its response to exercise is not altered. Patterns of muscle cytochrome oxidase gene activation after training differ between COPD patients and healthy subjects, and the profile is consistent with hypoxic stress, even in nonhypoxic patients.
Collapse
Affiliation(s)
- Luis Puente-Maestu
- Servicio de Neumología, Hospital General Gregorio Marañón, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.
| | | | | |
Collapse
|
74
|
Sullo N, Roviezzo F, Matteis M, Spaziano G, Del Gaudio S, Lombardi A, Lucattelli M, Polverino F, Lungarella G, Cirino G, Rossi F, D'Agostino B. Skeletal muscle oxidative metabolism in an animal model of pulmonary emphysema: formoterol and skeletal muscle dysfunction. Am J Respir Cell Mol Biol 2012; 48:198-203. [PMID: 23144332 DOI: 10.1165/rcmb.2012-0167oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Skeletal muscle dysfunction is a significant contributor to exercise limitation in pulmonary emphysema. This study investigated skeletal muscle oxidative metabolism before and after aerosol exposure to a long-acting β-agonist (LABA), such as formoterol, in the pallid mouse (B6.Cg-Pldnpa/J), which has a deficiency in serum α(1)-antitrypsin (α(1)-PI) and develops spontaneous pulmonary emphysema. C57 BL/6J and its congener pallid mice of 8-12 and 16 months of age were treated with vehicle or formoterol aerosol challenge for 120 seconds. Morphological and morphometric studies and evaluations of mitochondrial adenosine diphosphate-stimulated respiration and of cytochrome oxidase activity on skeletal muscle were performed. Moreover, the mtDNA content in skeletal muscle and the mediators linked to muscle mitochondrial function and biogenesis, as well as TNF-α and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), were also evaluated. The lungs of pallid mice at 12 and 16 months of age showed patchy areas of airspace enlargements, with the destruction of alveolar septa. No significant differences were observed in basal values of mitochondrial skeletal muscle oxidative processes between C57 BL/6J and pallid mice. Exposure to LABA significantly improved mitochondrial skeletal muscle oxidative processes in emphysematous mice, where the mtDNA content was significantly higher with respect to 8-month-old pallid mice. This effect was compared with a significant increase of PGC-1α in skeletal muscles of 16-month-old pallid mice, with no significant changes in TNF-α concentrations. In conclusion, in emphysematous mice that showed an increased mtDNA content, exposure to inhaled LABA can improve mitochondrial skeletal muscle oxidative processes. PGC-1α may serve as a possible mediator of this effect.
Collapse
Affiliation(s)
- Nikol Sullo
- Section of Pharmacology, Department of Experimental Medicine, Faculty of Medicine and Surgery, Second University of Naples, Via Costantinopoli 16, 80136 Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Tran HN, Siu S, Iribarren C, Udaltsova N, Klatsky AL. Ethnicity and risk of hospitalization for asthma and chronic obstructive pulmonary disease. Ann Epidemiol 2011; 21:615-22. [PMID: 21414801 DOI: 10.1016/j.annepidem.2010.10.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 10/28/2010] [Accepted: 10/28/2010] [Indexed: 11/17/2022]
Abstract
PURPOSE To identify ethnic differences for risk of hospitalization for asthma and chronic obstructive pulmonary disease (COPD). METHODS We undertook a cohort study with 126,019 participants: 55% whites, 27% blacks, 11% Asians, and 4% Hispanics. To estimate asthma and COPD risk, we used Cox proportional hazards models adjusted for age, sex, body mass index, education, smoking, and alcohol intake. End points were hospitalizations for asthma or COPD. RESULTS Compared with whites, relative risks (RR) with 95% confidence intervals (95% CI) for asthma among other groups were: blacks, 1.7 (1.4-2.0); Hispanics, 0.9 (0.6-1.4); and Asians, 1.6 (1.2-2.1). Among Asians, increased risk was concentrated in Filipino men and women and South Asian men. For COPD, whites were at highest risk; RR of blacks was 0.9 (0.7-1.0); Hispanics, 0.6 (0.3- 0.9); and Asians, 0.4 (0.3-0.6). COPD risk among Asians was lowest in Chinese with RR of 0.3 (0.1-0.5). CONCLUSIONS Ethnic disparities in risk of asthma and COPD as well as between both diseases exist, especially for Asian Americans, who have high asthma risk and low COPD risk. While residual confounding for smoking or other environmental factors could be partially responsible, genetic factors in Asians may be involved in decreased COPD risk.
Collapse
Affiliation(s)
- H Nicole Tran
- Department of Medicine, Kaiser Permanente Medical Care Program, Oakland, California 94611, USA.
| | | | | | | | | |
Collapse
|
76
|
Franssen FME, Sauerwein HP, Ackermans MT, Rutten EPA, Wouters EFM, Schols AMWJ. Increased postabsorptive and exercise-induced whole-body glucose production in patients with chronic obstructive pulmonary disease. Metabolism 2011; 60:957-64. [PMID: 21056887 DOI: 10.1016/j.metabol.2010.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 09/09/2010] [Accepted: 09/11/2010] [Indexed: 01/04/2023]
Abstract
Skeletal muscle biopsy studies have consistently shown a decreased oxidative phenotype in patients with moderate to severe chronic obstructive pulmonary disease (COPD). Limited information is available regarding potential adaptations or abnormalities in anaerobic metabolism and glucose homeostasis. Whole-body glucose production was assessed at rest and during exercise in COPD patients with moderate disease severity (forced expiratory volume in 1 second, 52% ± 3%), prestratified into normal-weight (n = 7; body mass index [BMI], 27.5 ± 0.9 kg·m(-2)) and underweight subjects (n = 6; BMI, 20.6 ± 0.7 kg·m(-2)), and in 8 healthy controls matched for age and BMI with the normal-weight COPD group. Glucose tolerance was normal in all subjects. Rate of appearance (R(a)) of glucose at rest and during submaximal cycling exercise was measured in postabsorptive state by infusion of stable isotope tracer [6,6-(2)H(2)]glucose. Resting glucose R(a) was significantly enhanced in underweight COPD patients compared with controls (16.7 ± 0.3 vs 15.1 ± 0.4 μmol·kg fat-free mass(-1)·min(-1), P < .05) and was inversely related to fat-free mass (r = -0.75, P < .01). Furthermore, the exercise-induced increase in glucose R(a) was enhanced in COPD patients (81.9% ± 3.4% vs 72.1% ± 2.0%, P = .05), resulting in elevated end-of-exercise glucose output. Differences were most pronounced in underweight patients, who were also characterized by enhanced plasma catecholamine levels and decreased insulin concentrations (all, P < .05). In normal-weight patients, there was evidence for decreased insulin sensitivity assessed by homeostatic modeling technique. Whole-body glucose production is increased in underweight COPD patients with normal glucose tolerance. It is hypothesized that lowered body weight in COPD has unique effects on glucose uptake despite reduced skeletal muscle oxidative capacity, relative hypoxemia, and sympathetic activation.
Collapse
Affiliation(s)
- Frits M E Franssen
- Department of Respiratory Medicine, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, PO Box 5800, 6202 AZ Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
77
|
Higashimoto Y, Yamagata T, Honda N, Satoh R, Sano H, Iwanaga T, Miyhara T, Muraki M, Tomita K, Tohda Y, Fukuda K. Clinical and inflammatory factors associated with body mass index in elderly patients with chronic obstructive pulmonary disease. Geriatr Gerontol Int 2011; 11:32-8. [PMID: 20609004 DOI: 10.1111/j.1447-0594.2010.00629.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM Body mass index (BMI) is closely associated with mortality in chronic obstructive pulmonary disease (COPD). Systemic inflammation has been suggested as one of the mechanisms of malnutrition in COPD. This study investigated the relationships of clinical variables and inflammatory biomarkers with BMI in COPD in an aging population. METHODS Baseline levels of serum biomarkers were determined for 69 patients with stable male COPD. Multivariate logistic regression was used to evaluate associations between clinical variables, including emphysema scores, and biomarkers with BMI. RESULTS Twenty eight patients were categorized as low BMI (<20 kg/m2). BMI was inversely correlated with serum α1-antitrypsin (α1-AT) concentration and emphysema scores, and was positively correlated with forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1). Multivariate logistic regression analysis showed that α1-AT was independently associated with BMI. CONCLUSION Low BMI was associated with the severity of emphysema and systemic inflammation reflected by elevated α1-AT level.
Collapse
Affiliation(s)
- Yuji Higashimoto
- Department of Rehabilitation Medicine, Kinki University School of Medicine, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Pastukh VM, Zhang L, Ruchko MV, Gorodnya O, Bardwell GC, Tuder RM, Gillespie MN. Oxidative DNA damage in lung tissue from patients with COPD is clustered in functionally significant sequences. Int J Chron Obstruct Pulmon Dis 2011; 6:209-17. [PMID: 21660298 PMCID: PMC3107697 DOI: 10.2147/copd.s15922] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Indexed: 01/11/2023] Open
Abstract
Lung tissue from COPD patients displays oxidative DNA damage. The present study determined whether oxidative DNA damage was randomly distributed or whether it was localized in specific sequences in either the nuclear or mitochondrial genomes. The DNA damage-specific histone, gamma-H2AX, was detected immunohistochemically in alveolar wall cells in lung tissue from COPD patients but not control subjects. A PCR-based method was used to search for oxidized purine base products in selected 200 bp sequences in promoters and coding regions of the VEGF, TGF-β1, HO-1, Egr1, and β-actin genes while quantitative Southern blot analysis was used to detect oxidative damage to the mitochondrial genome in lung tissue from control subjects and COPD patients. Among the nuclear genes examined, oxidative damage was detected in only 1 sequence in lung tissue from COPD patients: the hypoxic response element (HRE) of the VEGF promoter. The content of VEGF mRNA also was reduced in COPD lung tissue. Mitochondrial DNA content was unaltered in COPD lung tissue, but there was a substantial increase in mitochondrial DNA strand breaks and/or abasic sites. These findings show that oxidative DNA damage in COPD lungs is prominent in the HRE of the VEGF promoter and in the mitochondrial genome and raise the intriguing possibility that genome and sequence-specific oxidative DNA damage could contribute to transcriptional dysregulation and cell fate decisions in COPD.
Collapse
Affiliation(s)
- Viktor M Pastukh
- Department of Pharmacology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL 36688, USA
| | | | | | | | | | | | | |
Collapse
|
79
|
Remels AHV, Gosker HR, Schrauwen P, Hommelberg PPH, Sliwinski P, Polkey M, Galdiz J, Wouters EFM, Langen RCJ, Schols AMWJ. TNF‐α impairs regulation of muscle oxidative phenotype: implications for cachexia? FASEB J 2010. [DOI: 10.1096/fj.09.150714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- A. H. V. Remels
- Department of Respiratory MedicineNUTRIM School for NutritionMaastricht University Medical Centre Maastricht The Netherlands
| | - H. R. Gosker
- Department of Respiratory MedicineNUTRIM School for NutritionMaastricht University Medical Centre Maastricht The Netherlands
| | - P. Schrauwen
- Department of Human BiologyNUTRIM School for ToxicologyMaastricht University Medical Centre Maastricht The Netherlands
| | - P. P. H. Hommelberg
- Department of Human BiologyNUTRIM School for ToxicologyMaastricht University Medical Centre Maastricht The Netherlands
| | - P. Sliwinski
- Department of MetabolismMaastricht University Medical Centre Maastricht The Netherlands
| | - M. Polkey
- Department of Respiratory MedicineInstitute of Tuberculosis and Lung Diseases Warsaw Poland
| | - J. Galdiz
- Respiratory Medicine DepartmentRoyal Brompton Hospital, Imperial College London UK
- Center for Integrated Rehabilitation of Organ Failure (CIRO) Horn The Netherlands
| | - E. F. M. Wouters
- Department of Respiratory MedicineNUTRIM School for NutritionMaastricht University Medical Centre Maastricht The Netherlands
- Pneumology Department and Research UnitCruces Hospital, Basque Country University Barakaldo Spain
- Center for Integrated Rehabilitation of Organ Failure (CIRO) Horn The Netherlands
| | - R. C. J. Langen
- Department of Respiratory MedicineNUTRIM School for NutritionMaastricht University Medical Centre Maastricht The Netherlands
| | - A. M. W. J. Schols
- Department of Respiratory MedicineNUTRIM School for NutritionMaastricht University Medical Centre Maastricht The Netherlands
| |
Collapse
|
80
|
Remels AHV, Gosker HR, Schrauwen P, Hommelberg PPH, Sliwinski P, Polkey M, Galdiz J, Wouters EFM, Langen RCJ, Schols AMWJ. TNF-α impairs regulation of muscle oxidative phenotype: implications for cachexia? FASEB J 2010; 24:5052-62. [DOI: 10.1096/fj.09-150714] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | | | - P. Schrauwen
- Department of Human Biology, NUTRIM School for Nutrition, Toxicology, and Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - P. P. H. Hommelberg
- Department of Human Biology, NUTRIM School for Nutrition, Toxicology, and Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - P. Sliwinski
- Department of Respiratory Medicine, Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - M. Polkey
- Respiratory Medicine Department, Royal Brompton Hospital, Imperial College, London, UK
| | - J. Galdiz
- Pneumology Department and Research Unit, Cruces Hospital, Basque Country University, Barakaldo, Spain; and
| | - E. F. M. Wouters
- Department of Respiratory Medicine and
- Center for Integrated Rehabilitation of Organ Failure (CIRO), Horn, The Netherlands
| | | | | |
Collapse
|
81
|
Naimi AI, Bourbeau J, Perrault H, Baril J, Wright-Paradis C, Rossi A, Taivassalo T, Sheel AW, Rabøl R, Dela F, Boushel R. Altered mitochondrial regulation in quadriceps muscles of patients with COPD. Clin Physiol Funct Imaging 2010; 31:124-31. [PMID: 21091605 DOI: 10.1111/j.1475-097x.2010.00988.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Evidence exists for locomotor muscle impairment in patients with chronic obstructive pulmonary disease (COPD), including fiber type alterations and reduced mitochondrial oxidative capacity. In this study high-resolution respirometry was used to quantify oxygen flux in permeabilized fibres from biopsies of the vastus lateralis muscle in patients with COPD and compared to healthy control subjects. The main findings of this study were that (i) routine state 2 respiration was higher in COPD; (ii) state 3 respiration in the presence of ADP was similar in both groups with substrate supply of electrons to complex I (COPD 38·28 ± 3·58 versus control 42·85 ± 3·10 pmol s(-1) mg tissue(-1) ), but O(2) flux with addition of succinate was lower in COPD patients (COPD 63·72 ± 6·33 versus control 95·73 ± 6·53 pmol s(-1) mg tissue(-1) ); (iii) excess capacity of cytochrome c oxidase in COPD patients was only ~50% that of control subjects. These results indicate that quadriceps muscle mitochondrial function is altered in patients with COPD. The regulatory mechanisms underlying these functional abnormalities remain to be uncovered.
Collapse
Affiliation(s)
- Ashley I Naimi
- Centre for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Zhan X, Desiderio DM. The use of variations in proteomes to predict, prevent, and personalize treatment for clinically nonfunctional pituitary adenomas. EPMA J 2010. [PMID: 23199087 PMCID: PMC3405333 DOI: 10.1007/s13167-010-0028-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pituitary adenomas account for ∼10% of intracranial tumors, and they cause the compression of nearby structures and the inappropriate expression of pituitary hormones. Unlike functional pituitary adenomas, nonfunctional (NF) pituitary adenomas account for ∼30% of pituitary tumors, and are large enough to cause blindness; because they do not cause any clinical hormone hypersecretion, they are difficult to detect at an early stage; and hypopituitarism results. No effective molecular biomarkers or chemical therapy have been approved for the clinical setting. Because an NF pituitary adenoma is highly heterogeneous, differences in the proteins (the proteome) can distinguish among those heterogeneity structures. The components of a proteome dynamically change as an NF adenoma progresses. Changes in protein expression and protein modifications, individually or in combination, might be biomarkers to predict the disease, monitor the tumor progression, and develop an accurate molecular classification for personalized patient treatment. The modalities of proteomic variation might also be useful in the interventional prevention and personalized treatment of patients to halt the occurrence and progression of NF pituitary adenomas.
Collapse
Affiliation(s)
- Xianquan Zhan
- Charles B. Stout Neuroscience Mass Spectrometry Laboratory, The University of Tennessee Health Science Center, 847 Monroe Avenue, Room 117, Memphis, TN 38163 USA
| | | |
Collapse
|
83
|
Zhan X, Desiderio DM. Signaling pathway networks mined from human pituitary adenoma proteomics data. BMC Med Genomics 2010; 3:13. [PMID: 20426862 PMCID: PMC2884164 DOI: 10.1186/1755-8794-3-13] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 04/28/2010] [Indexed: 12/25/2022] Open
Abstract
Background We obtained a series of pituitary adenoma proteomic expression data, including protein-mapping data (111 proteins), comparative proteomic data (56 differentially expressed proteins), and nitroproteomic data (17 nitroproteins). There is a pressing need to clarify the significant signaling pathway networks that derive from those proteins in order to clarify and to better understand the molecular basis of pituitary adenoma pathogenesis and to discover biomarkers. Here, we describe the significant signaling pathway networks that were mined from human pituitary adenoma proteomic data with the Ingenuity pathway analysis system. Methods The Ingenuity pathway analysis system was used to analyze signal pathway networks and canonical pathways from protein-mapping data, comparative proteomic data, adenoma nitroproteomic data, and control nitroproteomic data. A Fisher's exact test was used to test the statistical significance with a significance level of 0.05. Statistical significant results were rationalized within the pituitary adenoma biological system with literature-based bioinformatics analyses. Results For the protein-mapping data, the top pathway networks were related to cancer, cell death, and lipid metabolism; the top canonical toxicity pathways included acute-phase response, oxidative-stress response, oxidative stress, and cell-cycle G2/M transition regulation. For the comparative proteomic data, top pathway networks were related to cancer, endocrine system development and function, and lipid metabolism; the top canonical toxicity pathways included mitochondrial dysfunction, oxidative phosphorylation, oxidative-stress response, and ERK/MAPK signaling. The nitroproteomic data from a pituitary adenoma were related to cancer, cell death, lipid metabolism, and reproductive system disease, and the top canonical toxicity pathways mainly related to p38 MAPK signaling and cell-cycle G2/M transition regulation. Nitroproteins from a pituitary control related to gene expression and cellular development, and no canonical toxicity pathways were identified. Conclusions This pathway network analysis demonstrated that mitochondrial dysfunction, oxidative stress, cell-cycle dysregulation, and the MAPK-signaling abnormality are significantly associated with a pituitary adenoma. These pathway-network data provide new insights into the molecular mechanisms of human pituitary adenoma pathogenesis, and new clues for an in-depth investigation of pituitary adenoma and biomarker discovery.
Collapse
Affiliation(s)
- Xianquan Zhan
- University of Tennessee Health Science Center, Memphis, USA.
| | | |
Collapse
|
84
|
Rabinovich RA, Vilaró J. Structural and functional changes of peripheral muscles in chronic obstructive pulmonary disease patients. Curr Opin Pulm Med 2010; 16:123-33. [PMID: 20071991 PMCID: PMC2920417 DOI: 10.1097/mcp.0b013e328336438d] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to identify new advances in our understanding of skeletal muscle dysfunction in patients with chronic obstructive pulmonary disease (COPD). RECENT FINDINGS Recent studies have confirmed the relevance of muscle dysfunction as an independent prognosis factor in COPD. Animal studies have shed light on the molecular mechanisms governing skeletal muscle hypertrophy/atrophy. Recent evidence in patients with COPD highlighted the contribution of protein breakdown and mitochondrial dysfunction as pathogenic mechanisms leading to muscle dysfunction in these patients. SUMMARY COPD is a debilitating disease impacting negatively on health status and the functional capacity of patients. COPD goes beyond the lungs and incurs significant systemic effects among which muscle dysfunction/wasting is one of the most important. Muscle dysfunction is a prominent contributor to exercise limitation, healthcare utilization and an independent predictor of morbidity and mortality. Gaining more insight into the molecular mechanisms leading to muscle dysfunction/wasting is key for the development of new and tailored therapeutic strategies to tackle skeletal muscle dysfunction/wasting in COPD patients.
Collapse
Affiliation(s)
- Roberto A Rabinovich
- ELEGI Laboratory, Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK.
| | | |
Collapse
|
85
|
The pathophysiology of cachexia in chronic obstructive pulmonary disease. Curr Opin Support Palliat Care 2009; 3:282-7. [DOI: 10.1097/spc.0b013e328331e91c] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
86
|
Abstract
PURPOSE OF REVIEW To describe the varying views on the pathophysiology of malnutrition in different populations and the definitions that result from these views. To propose an umbrella definition for different malnutrition syndromes and principles of assessment of nutritional state. RECENT FINDINGS At present, tacitly or openly inflammatory activity is considered to contribute to the malnourished state. The malnourished state, therefore, arises from a combination of inflammation and a disturbed nutrient balance (undernutrition or overnutrition). The undernourished category of malnutrition leads to loss of body cell mass, which, together with inflammation diminish host response and quality of life. On the basis of these findings, malnutrition may be assessed by estimating nutrient balance but, subsequently, to measure body composition (muscle mass), inflammatory activity (plasma albumin and C-reactive protein) and muscle endurance and force. Changes in muscle function in patients with chronic obstructive pulmonary disease are associated with changes in fiber composition. Few data exist in other malnourished states. SUMMARY There is an increasing acknowledgement of the fact that malnutrition is caused by disturbances in nutrient balance and inflammatory activity. This leads to changes in body composition and diminished function. An umbrella definition has been proposed including the pathogenetic factors, underlying the different malnutrition syndromes and dictating the methods to assess malnutrition.
Collapse
Affiliation(s)
- Peter B Soeters
- NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands.
| | | |
Collapse
|
87
|
van der Toorn M, Rezayat D, Kauffman HF, Bakker SJL, Gans ROB, Koëter GH, Choi AMK, van Oosterhout AJM, Slebos DJ. Lipid-soluble components in cigarette smoke induce mitochondrial production of reactive oxygen species in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 2009; 297:L109-14. [PMID: 19411310 PMCID: PMC2711811 DOI: 10.1152/ajplung.90461.2008] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 04/27/2009] [Indexed: 11/22/2022] Open
Abstract
Reactive oxygen species (ROS) present in cigarette smoke (CS) are thought to contribute to the development of COPD. Although CS-ROS can hardly enter airway epithelial cells, and certainly not the circulation, systemic levels of ROS have been found to be elevated in COPD patients. We hypothesize that lipophilic components present in CS can enter airway epithelial cells and increase intracellular ROS production by disturbing mitochondrial function. Different airway epithelial cells were exposed to CS extract (CSE), hexane-treated CSE (CSE without lipophilic components), gaseous-phase CS, and water-filtered CS (gaseous-phase CS without ROS). Mitochondrial membrane potential (Deltapsi(m)) and ATP levels were assessed using the bronchial epithelial cell line Beas-2b. ROS generation measured directly by DCF fluorescence and indirectly by measuring free thiol groups (-SH) upon exposure to CS was assessed using lung alveolar epithelial cells devoid of functional mitochondria (A549-rho0), with normal A549 cells serving as controls. In Beas-2b cells, CSE (4 h) caused a dose-dependent decrease in Deltapsi(m) and ATP levels, whereas hexane-treated CSE did not. DCF fluorescence in A549 cells increased in response to CSE, whereas this was not the case in A549-rho0 cells. Exposure of A549 cells to CS resulted in a rapid decrease in free -SH, whereas exposure to ROS-depleted CS only resulted in a delayed decrease. This delayed decrease was less pronounced in A549-rho0 cells. Lipophilic components in CS disturb mitochondrial function, which contributes to increased intracellular generation of ROS. Our results are of importance in understanding the systemic effects of smoking observed in patients with COPD.
Collapse
Affiliation(s)
- Marco van der Toorn
- Department of Pathology and Medical Biology, Laboratory of Allergology and Pulmonary Diseases, University Medical Center Groningen, University of Groningen, The
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Vogiatzis I, Athanasopoulos D, Stratakos G, Garagouni C, Koutsoukou A, Boushel R, Roussos C, Zakynthinos S. Exercise-induced skeletal muscle deoxygenation in O-supplemented COPD patients. Scand J Med Sci Sports 2009; 19:364-72. [PMID: 18492053 DOI: 10.1111/j.1600-0838.2008.00808.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study was designed to assess quadriceps oxygenation during symptom-limited and constant-load exercise in patients with chronic obstructive pulmonary disease (COPD) and healthy age-matched controls. Thirteen male COPD patients [FEV(1): 43 +/- 5% predicted (mean +/- SEM)] and seven healthy male controls performed an incremental exercise test at peak work rate (WR) and a constant-load test at 75% peak WR on a cycle ergometer. Quadriceps hemoglobin saturation (StO2) was measured by continuous-wave near-infrared spectrophotometry throughout both exercise tests. StO2 is the ratio of oxygenated hemoglobin to total hemoglobin and reflects the relative contributions of tissue O2 delivery and tissue O2 utilization. Oxygen was supplemented to all patients in order to maintain arterial O2 saturation normal (> 95%). The StO2 decreased during symptom-limited exercise, reaching the nadir at peak WR. The decrease in StO2 was greater (P < 0.05) in healthy subjects (from 74 +/- 2% to 38 +/- 6%) compared with that in COPD patients (from 61 +/- 5% to 45 +/- 4%). However, when StO2 was normalized relative to the WR, the slope of change in StO2 during exercise was nearly identical between COPD patients and healthy subjects (0.47 +/- 0.10%/W and 0.51 +/- 0.04%/W, respectively). During constant-load exercise, the kinetic time constant of StO2 desaturation after the onset of exercise (i.e., equivalent to time to reach approximately 63% of StO2 decrease) was not different between COPD patients and healthy subjects (19.0 +/- 5.2 and 15.6 +/- 2.5 s, respectively). In O2-supplemented COPD patients, peripheral muscle oxygenation for a given work load is similar to that in healthy subjects, thus suggesting that skeletal muscle O2 consumption becomes normal for a given O2 delivery in COPD patients
Collapse
Affiliation(s)
- I Vogiatzis
- "G. P. Livanos and M. Simou Laboratories", Evangelismos Hospital, Department of Critical Care Medicine and Pulmonary Services, National and Kapodistrian University of Athens, Athens, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Torres-Ramos YD, García-Guillen ML, Olivares-Corichi IM, Hicks JJ. Correlation of Plasma Protein Carbonyls and C-Reactive Protein with GOLD Stage Progression in COPD Patients. Open Respir Med J 2009; 3:61-6. [PMID: 19461898 PMCID: PMC2684712 DOI: 10.2174/1874306400903010061] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 01/14/2009] [Accepted: 02/04/2009] [Indexed: 12/26/2022] Open
Abstract
Oxidative stress plays an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD). To investigate the correlation between the progression of COPD and plasma biomarkers of chronic inflammation and oxidative injury, blood samples were obtained from healthy volunteers (HV, n = 14) and stabilized COPD patients. The patients were divided into three groups according to their GOLD stage (II, n = 34; III, n = 18; IV, n = 20). C-reactive protein (CRP), protein carbonyls (PC), malondialdehyde (MDA), susceptible lipoperoxidation of plasma substrates (SLPS), and myeloperoxidase activity (MPO) were measured. The plasma concentration of SLPS was measured as the amount of MDA generated by a metal ion-catalyzed reaction in vitro. PC, SLPS, and CPR were increased significantly (p < 0.001) in COPD patients when compared to HV. MDA concentrations and MPO activities were not significantly different from those of the HV group. In conclusion, increased oxidation of lipids and proteins resulting in a progressive increase in the amount of total plasma carbonyls and oxidative stress the presence of oxidative stress during COPD progression, concomitant with an increased oxidation of lipids and proteins resulting in a progressive and significant increase in the amount of total carbonyls formed from lipid-derived aldehydes and direct amino acid side chain oxidation in plasma, may serve as a biomarker and independent monitor of COPD progression and oxidative stress injury.
Collapse
Affiliation(s)
- Yessica D Torres-Ramos
- Departamento de Investigación Bioquímica y Medicina Ambiental, Instituto Nacional de Enfermedades Respiratorias (INER) "Ismael Cosio Villegas", México
| | | | | | | |
Collapse
|
90
|
Roig M, Reid WD. Electrical stimulation and peripheral muscle function in COPD: A systematic review. Respir Med 2009; 103:485-95. [DOI: 10.1016/j.rmed.2008.11.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 11/10/2008] [Accepted: 11/12/2008] [Indexed: 11/17/2022]
|
91
|
Clinical Assessment of Peripheral Muscle Function in Patients with Chronic Obstructive Pulmonary Disease. Am J Phys Med Rehabil 2009; 88:39-46. [DOI: 10.1097/phm.0b013e31818dff86] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
92
|
Decramer M, Rennard S, Troosters T, Mapel DW, Giardino N, Mannino D, Wouters E, Sethi S, Cooper CB. COPD as a lung disease with systemic consequences--clinical impact, mechanisms, and potential for early intervention. COPD 2008; 5:235-56. [PMID: 18671149 DOI: 10.1080/15412550802237531] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The natural course of chronic obstructive pulmonary disease (COPD) is complicated by the development of systemic consequences and co-morbidities. These may be major features in the clinical presentation of COPD, prompting increasing interest. Systemic consequences may be defined as non-pulmonary manifestations of COPD with an immediate cause-and-effect relationship, whereas co-morbidities are diseases associated with COPD. The major systemic consequences/co-morbidities now recognized are: deconditioning, exercise intolerance, skeletal muscle dysfunction, osteoporosis, metabolic impact, anxiety and depression, cardiovascular disease, and mortality. The mechanisms by which these develop are unclear. Probably many factors are involved. Two appear of paramount importance: systemic inflammation, which presents in some patients with stable disease and virtually all patients during exacerbations, and inactivity, which may be a key link to most COPD-related co-morbidities. Further studies are required to determine the role of inflammatory cells/mediators involved in systemic inflammatory processes in causing co-morbidities; the link between activity and co-morbidities; and how COPD therapy may affect activity. Both key mechanisms appear to be influenced significantly by COPD exacerbations. Importantly, although the prevalence of systemic consequences increases with increasing severity of airflow obstruction, both systemic consequences and co-morbidities are already present in the Global Initiative for Chronic Obstructive Lung Disease Stage II. This supports the concept of early intervention in chronic obstructive pulmonary disease. Although at present early intervention studies in COPD are lacking, circumstantial evidence suggests that current treatments may influence events leading to the systemic consequences and co-morbidities, and thus may affect the clinical manifestations of the disease.
Collapse
Affiliation(s)
- Marc Decramer
- Respiratory Division and Department of Rehabilitation Science, University Hospital, Katholieke Universiteit, Leuven, Belgium. (
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Picard M, Godin R, Sinnreich M, Baril J, Bourbeau J, Perrault H, Taivassalo T, Burelle Y. The mitochondrial phenotype of peripheral muscle in chronic obstructive pulmonary disease: disuse or dysfunction? Am J Respir Crit Care Med 2008; 178:1040-7. [PMID: 18755922 DOI: 10.1164/rccm.200807-1005oc] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Peripheral muscle alterations have been recognized to contribute to disability in chronic obstructive pulmonary disease (COPD). OBJECTIVES To describe the mitochondrial phenotype in a moderate to severe COPD population and age-matched controls. METHODS Three primary aspects of mitochondrial function were assessed in permeabilized locomotor muscle fibers. MEASUREMENTS AND MAIN RESULTS Respiration rates per milligram of fiber weight were significantly lower in COPD muscle compared with healthy age-matched control muscle under various respiratory states. However, when variations in mitochondrial volume were taken into account by normalizing respiration per unit of citrate synthase activity, differences between the two groups were abolished, suggesting the absence of specific mitochondrial respiratory impairment in COPD. H(2)O(2) production per mitochondrion was higher both under basal and ADP-stimulated states, suggesting that mitochondria from COPD muscle have properties that potentiate H(2)O(2) release. Direct assessment of mitochondrial sensitivity to Ca(2+)-induced opening of the permeability transition pore (PTP) indicated that mitochondria from patients with COPD were more resistant to PTP opening than their counterparts in control subjects. CONCLUSIONS Comparison of these results with those of studies comparing healthy glycolytic with oxidative muscle suggests that these differences may be attributable to greater type II fiber expression in COPD muscle, as mitochondria within this fiber type have respiratory function similar to that of mitochondria from type I fibers, and yet are intrinsically prone to greater release of H(2)O(2) and more resistant to PTP opening. These results thus argue against the presence of pathological mitochondrial alterations in this category of patients with COPD.
Collapse
Affiliation(s)
- Martin Picard
- Department of Kinesiology and Physical Education, McGill University, Montreal, PQ, Canada
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Affiliation(s)
- William MacNee
- ELEGI Colt Research Labs, University of Edinburgh/MRC Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh, United Kingdom.
| |
Collapse
|
95
|
Friedlander AL, Lynch D, Dyar LA, Bowler RP. Phenotypes of chronic obstructive pulmonary disease. COPD 2007; 4:355-84. [PMID: 18027163 DOI: 10.1080/15412550701629663] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The current clinical classification of smoking-related lung disease fails to take into account the heterogeneity of chronic obstructive pulmonary disease (COPD). With an increased understanding of pathophysiologic variation, COPD now clearly represents a spectrum of overlapping diseases with important extrapulmonary consequences. A "phenotype" describes the outward physical manifestations of a particular disease, and compromises anything that is part of the observable structure, function or behavior of an individual. Such phenotypic distinctions in COPD include: frequent exacerbator, pulmonary cachectic, rapid decliner, airways hyperresponsiveness, impaired exercise tolerance, and emphysema versus airways disease. These variable manifestations, each with unique prognostic, clinical and physiologic ramifications, represent distinct phenotypes within COPD. While all of these phenotypes have smoking as a common risk factor, the other risk factors that determine these phenotypes remain poorly understood. An individual smoker has variable expression of each phenotype and there is mounting evidence that COPD phenotypes have different clinical outcomes. These phenotypes can be broadly classified into one of three groups: clinical, physiologic and radiographic. This review presents the evidence for the spectrum of COPD phenotypes with a focused discussion on the pathophysiologic, epidemiologic and clinical significance of each subtype.
Collapse
Affiliation(s)
- Adam L Friedlander
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado at Denver and Health Sciences Center, Denver, CO 80206, USA.
| | | | | | | |
Collapse
|
96
|
Selivanov VA, de Atauri P, Centelles JJ, Cadefau J, Parra J, Cussó R, Carreras J, Cascante M. The changes in the energy metabolism of human muscle induced by training. J Theor Biol 2007; 252:402-10. [PMID: 17996255 DOI: 10.1016/j.jtbi.2007.09.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 09/21/2007] [Accepted: 09/26/2007] [Indexed: 11/26/2022]
Abstract
The biochemical effects of training programmes have been studied with a kinetic model of central metabolism, using enzyme activities and metabolite concentrations measured at rest and after 30 s maximum-intensity exercise, collected before and after long and short periods of training, which differed only by the duration of the rest intervals. After short periods of training the glycolytic flux at rest was three times higher than it had been before training, whereas during exercise the flux and energy consumption remained the same as before training. Long periods of training had less effect on the glycolytic flux at rest, but increased it in response to exercise, increasing the contribution of oxidative phosphorylation.
Collapse
Affiliation(s)
- V A Selivanov
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Associated Unit to CSIC, Institute of Biomedicine of University of Barcelona and CeRQT at Barcelona Scientific Park, Diagonal 645, 08028 Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Remels AH, Gosker HR, van der Velden J, Langen RC, Schols AM. Systemic Inflammation and Skeletal Muscle Dysfunction in Chronic Obstructive Pulmonary Disease: State of the Art and Novel Insights in Regulation of Muscle Plasticity. Clin Chest Med 2007; 28:537-52, vi. [PMID: 17720042 DOI: 10.1016/j.ccm.2007.06.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Systemic inflammation is a recognized hallmark of chronic obstructive pulmonary disease pathogenesis. Although the origin and mechanisms responsible for the persistent chronic inflammatory process remain to be elucidated, it is recognized that it plays an important role in skeletal muscle pathology as observed in chronic obstructive pulmonary disease and several other chronic inflammatory disorders. This article describes state-of-the-art knowledge and novel insights in the role of inflammatory processes on several aspects of inflammation-related skeletal muscle pathology and offers new insights in therapeutic perspectives.
Collapse
Affiliation(s)
- Alexander H Remels
- Department of Respiratory Medicine, Nutrition and Toxicology Research Institute, University of Maastricht, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| | | | | | | | | |
Collapse
|