51
|
Balikagala B, Mita T, Ikeda M, Sakurai M, Yatsushiro S, Takahashi N, Tachibana SI, Auma M, Ntege EH, Ito D, Takashima E, Palacpac NMQ, Egwang TG, Onen JO, Kataoka M, Kimura E, Horii T, Tsuboi T. Absence of in vivo selection for K13 mutations after artemether-lumefantrine treatment in Uganda. Malar J 2017; 16:23. [PMID: 28068997 PMCID: PMC5223472 DOI: 10.1186/s12936-016-1663-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 12/20/2016] [Indexed: 01/09/2023] Open
Abstract
Background Individual drug treatment may select resistant parasites in the human body, a process termed in vivo selection. Some single nucleotide polymorphisms in Plasmodium falciparum chloroquine-resistance transporter (pfcrt) and multidrug resistance gene 1 (pfmdr1) genes have been reportedly selected after artemether–lumefantrine treatment. However, there is a paucity of data regarding in vivo selection of P. falciparum Kelch propeller domain (pfkelch13) polymorphisms, responsible for artemisinin-resistance in Asia, and six putative background mutations for artemisinin resistance; D193Y in ferredoxin, T484I in multiple resistance protein 2, V127M in apicoplast ribosomal protein S10, I356T in pfcrt, V1157L in protein phosphatase and C1484F in phosphoinositide-binding protein. Methods Artemether–lumefantrine efficacy study with a follow-up period of 28 days was conducted in northern Uganda in 2014. The above-mentioned genotypes were comparatively analysed before drug administration and on days; 3, 7, and 28 days after treatment. Results In 61 individuals with successful follow-up, artemether–lumefantrine treatment regimen was very effective with PCR adjusted efficacy of 95.2%. Among 146 isolates obtained before treatment, wild-type alleles were observed in 98.6% of isolates in pfkelch13 and in all isolates in the six putative background genes except I356T in pfcrt, which had 2.4% of isolates as mixed infections. In vivo selection study revealed that all isolates detected in the follow-up period harboured wild type alleles in pfkelch13 and the six background genes. Conclusion Mutations in pfkelch13 and the six background genes may not play an important role in the in vivo selection after artemether–lumefantrine treatment in Uganda. Different mechanisms might rather be associated with the existence of parasites after treatment. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1663-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Betty Balikagala
- Division of Malaria Research, Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Toshihiro Mita
- Department of Molecular and Cellular Parasitology, School of Medicine, Juntendo University, Tokyo, 113-8421, Japan.
| | - Mie Ikeda
- Department of Molecular and Cellular Parasitology, School of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Miki Sakurai
- Department of International Affairs and Tropical Medicine, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Shouki Yatsushiro
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Japan
| | - Nobuyuki Takahashi
- Department of International Affairs and Tropical Medicine, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Shin-Ichiro Tachibana
- Department of Molecular and Cellular Parasitology, School of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Mary Auma
- St. Mary's Hospital LACOR, Gulu, Uganda
| | - Edward H Ntege
- Division of Malaria Research, Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Daisuke Ito
- Division of Malaria Research, Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Nirianne Marie Q Palacpac
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | | | - Joseph Okello Onen
- Department of Biology, Faculty of Science, Gulu University, Gulu, Uganda
| | - Masatoshi Kataoka
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Japan
| | - Eisaku Kimura
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Toshihiro Horii
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan.
| |
Collapse
|
52
|
Duru V, Witkowski B, Ménard D. Plasmodium falciparum Resistance to Artemisinin Derivatives and Piperaquine: A Major Challenge for Malaria Elimination in Cambodia. Am J Trop Med Hyg 2016; 95:1228-1238. [PMID: 27928074 DOI: 10.4269/ajtmh.16-0234] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 09/12/2016] [Indexed: 12/30/2022] Open
Abstract
Artemisinin-based combination therapies (ACTs) are the cornerstone of current strategies for fighting malaria. Over the last decade, ACTs have played a major role in decreasing malaria burden. However, this progress is being jeopardized by the emergence of artemisinin-resistant Plasmodium falciparum parasites. Artemisinin resistance was first detected in western Cambodia in 2008 and has since been observed in neighboring countries in southeast Asia. The problem of antimalarial drug resistance has recently worsened in Cambodia, with reports of parasites resistant to piperaquine, the latest generation of partner drug used in combination with dihydroartemisinin, leading to worrying rates of clinical treatment failure. The monitoring and the comprehension of both types of resistance are crucial to prevent the spread of multidrug-resistant parasites outside southeast Asia, and particularly to Africa, where the public health consequences would be catastrophic. To this end, new tools are required for studying the biological and molecular mechanisms underlying resistance to antimalarial drugs and for monitoring the geographic distribution of the resistant parasites. In this review, we detail the major advances in our understanding of resistance to artemisinin and piperaquine and define the challenges that the malaria community will have to face in the coming years.
Collapse
Affiliation(s)
- Valentine Duru
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Benoit Witkowski
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Didier Ménard
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia.
| |
Collapse
|
53
|
Edwards RL, Odom John AR. Muddled mechanisms: recent progress towards antimalarial target identification. F1000Res 2016; 5:2514. [PMID: 27803804 PMCID: PMC5070598 DOI: 10.12688/f1000research.9477.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/06/2016] [Indexed: 01/06/2023] Open
Abstract
In the past decade, malaria rates have plummeted as a result of aggressive infection control measures and the adoption of artemisinin-based combination therapies (ACTs). However, a potential crisis looms ahead. Treatment failures to standard antimalarial regimens have been reported in Southeast Asia, and devastating consequences are expected if resistance spreads to the African continent. To prevent a potential public health emergency, the antimalarial arsenal must contain therapeutics with novel mechanisms of action (MOA). An impressive number of high-throughput screening (HTS) campaigns have since been launched, identifying thousands of compounds with activity against one of the causative agents of malaria,
Plasmodium falciparum. Now begins the difficult task of target identification, for which studies are often tedious, labor intensive, and difficult to interpret. In this review, we highlight approaches that have been instrumental in tackling the challenges of target assignment and elucidation of the MOA for hit compounds. Studies that apply these innovative techniques to antimalarial target identification are described, as well as the impact of the data in the field.
Collapse
Affiliation(s)
- Rachel L Edwards
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Audrey R Odom John
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
54
|
Musyoka TM, Kanzi AM, Lobb KA, Bishop ÖT. Analysis of non-peptidic compounds as potential malarial inhibitors against Plasmodial cysteine proteases via integrated virtual screening workflow. J Biomol Struct Dyn 2016; 34:2084-101. [PMID: 26471975 PMCID: PMC5035544 DOI: 10.1080/07391102.2015.1108231] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 10/08/2015] [Indexed: 10/22/2022]
Abstract
Falcipain-2 (FP-2) and falcipain-3 (FP-3), haemoglobin-degrading enzymes in Plasmodium falciparum, are validated drug targets for the development of effective inhibitors against malaria. However, no commercial drug-targeting falcipains has been developed despite their central role in the life cycle of the parasites. In this work, in silico approaches are used to identify key structural elements that control the binding and selectivity of a diverse set of non-peptidic compounds onto FP-2, FP-3 and homologues from other Plasmodium species as well as human cathepsins. Hotspot residues and the underlying non-covalent interactions, important for the binding of ligands, are identified by interaction fingerprint analysis between the proteases and 2-cyanopyridine derivatives (best hits). It is observed that the size and chemical type of substituent groups within 2-cyanopyridine derivatives determine the strength of protein-ligand interactions. This research presents novel results that can further be exploited in the structure-based molecular-guided design of more potent antimalarial drugs.
Collapse
Affiliation(s)
- Thommas M. Musyoka
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Aquillah M. Kanzi
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Kevin A. Lobb
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
- Department of Chemistry, Rhodes University, Grahamstown, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
55
|
Mechanism of artemisinin resistance for malaria PfATP6 L263 mutations and discovering potential antimalarials: An integrated computational approach. Sci Rep 2016; 6:30106. [PMID: 27471101 PMCID: PMC4965867 DOI: 10.1038/srep30106] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/27/2016] [Indexed: 11/08/2022] Open
Abstract
Artemisinin resistance in Plasmodium falciparum threatens global efforts in the elimination or eradication of malaria. Several studies have associated mutations in the PfATP6 gene in conjunction with artemisinin resistance, but the underlying molecular mechanism of the resistance remains unexplored. Associated mutations act as a biomarker to measure the artemisinin efficacy. In the proposed work, we have analyzed the binding affinity and efficacy between PfATP6 and artemisinin in the presence of L263D, L263E and L263K mutations. Furthermore, we performed virtual screening to identify potential compounds to inhibit the PfATP6 mutant proteins. In this study, we observed that artemisinin binding affinity with PfATP6 gets affected by L263D, L263E and L263K mutations. This in silico elucidation of artemisinin resistance enhanced the identification of novel compounds (CID: 10595058 and 10625452) which showed good binding affinity and efficacy with L263D, L263E and L263K mutant proteins in molecular docking and molecular dynamics simulations studies. Owing to the high propensity of the parasite to drug resistance the need for new antimalarial drugs will persist until the malarial parasites are eventually eradicated. The two compounds identified in this study can be tested in in vitro and in vivo experiments as possible candidates for the designing of new potential antimalarial drugs.
Collapse
|
56
|
Dorkenoo AM, Yehadji D, Agbo YM, Layibo Y, Agbeko F, Adjeloh P, Yakpa K, Sossou E, Awokou F, Ringwald P. Therapeutic efficacy trial of artemisinin-based combination therapy for the treatment of uncomplicated malaria and investigation of mutations in k13 propeller domain in Togo, 2012-2013. Malar J 2016; 15:331. [PMID: 27334876 PMCID: PMC4917981 DOI: 10.1186/s12936-016-1381-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 06/10/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Since 2005, the Togo National Malaria Control Programme has recommended two different formulations of artemisinin-based combination therapy (ACT), artesunate-amodiaquine (ASAQ) and artemether-lumefantrine (AL), for the treatment of uncomplicated malaria. Regular efficacy monitoring of these two combinations is conducted every 2 or 3 years. This paper reports the latest efficacy assessment results and the investigation of mutations in the k13 propeller domain. METHODS The study was conducted in 2012-2013 on three sentinel sites of Togo (Lomé, Sokodé and Niamtougou). Children aged 6-59 months, who were symptomatically infected with Plasmodium falciparum, were treated with either AL (Coartem(®), Novartis Pharma, Switzerland) or ASAQ (Co-Arsucam(®), Sanofi Aventis, France). The WHO standard protocol for anti-malarial treatment evaluation was used. The primary end-point was 28-day adequate clinical and parasitological response (ACPR), corrected to exclude reinfection using polymerase-chain reaction (PCR) genotyping. RESULTS A total of 523 children were included in the study. PCR-corrected ACPR was 96.3-100 % for ASAQ and 97-100 % for AL across the three study sites. Adverse events were negligible: 0-4.8 % across all sites, for both artemisinin-based combinations. Upon investigation of mutations in the k13 propeller domain, only 9 (1.8 %) mutations were reported, three in each site. All mutant parasites were cleared before day 3. All day 3 positive patients were infected with k13 wild type parasites. CONCLUSIONS The efficacy of AL and ASAQ remains high in Togo, and both drugs are well tolerated. ASAQ and AL would be recommended for the treatment of uncomplicated malaria in Togo.
Collapse
Affiliation(s)
- Améyo M Dorkenoo
- Faculté des Sciences de la Sante, Université de Lomé, BP 1515, Lomé, Togo. .,Ministere de la Sante et de la Protection Sociale, Angle avenue Sarakawa et avenue du 2 Fevrier, BP 336, Lomé, Togo.
| | - Degninou Yehadji
- Ministere de la Sante et de la Protection Sociale, Angle avenue Sarakawa et avenue du 2 Fevrier, BP 336, Lomé, Togo
| | - Yao M Agbo
- Faculté des Sciences de la Sante, Université de Lomé, BP 1515, Lomé, Togo
| | - Yao Layibo
- Ministere de la Sante et de la Protection Sociale, Angle avenue Sarakawa et avenue du 2 Fevrier, BP 336, Lomé, Togo
| | - Foli Agbeko
- Service de Pediatrie, Centre Hospitalier Regional de Sokode, BP 187, Lomé, Togo
| | - Poukpessi Adjeloh
- Programme National de Lutte contre le Paludisme, Quartier Administratif, BP 518, Lomé, Togo
| | - Kossi Yakpa
- Programme National de Lutte contre le Paludisme, Quartier Administratif, BP 518, Lomé, Togo
| | - Efoe Sossou
- Service des Laboratoires, Centre Hospitalier Universitaire Sylvanus Olympio, 198 rue de l'Hopital, Tokoin Hopital, BP 57, Lomé, Togo
| | - Fantchè Awokou
- Programme National de Lutte contre le Paludisme, Quartier Administratif, BP 518, Lomé, Togo
| | - Pascal Ringwald
- Global Malaria Programme, World Health Organization, 20 Avenue Appia, 1211, Geneva 27, Switzerland
| |
Collapse
|
57
|
Gray KA, Gresty KJ, Chen N, Zhang V, Gutteridge CE, Peatey CL, Chavchich M, Waters NC, Cheng Q. Correlation between Cyclin Dependent Kinases and Artemisinin-Induced Dormancy in Plasmodium falciparum In Vitro. PLoS One 2016; 11:e0157906. [PMID: 27326764 PMCID: PMC4915707 DOI: 10.1371/journal.pone.0157906] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/07/2016] [Indexed: 12/02/2022] Open
Abstract
Background Artemisinin-induced dormancy provides a plausible explanation for recrudescence following artemisinin monotherapy. This phenomenon shares similarities with cell cycle arrest where cyclin dependent kinases (CDKs) and cyclins play an important role. Methods Transcription profiles of Plasmodium falciparum CDKs and cyclins before and after dihydroartemisinin (DHA) treatment in three parasite lines, and the effect of CDK inhibitors on parasite recovery from DHA-induced dormancy were investigated. Results After DHA treatment, parasites enter a dormancy phase followed by a recovery phase. During the dormancy phase parasites up-regulate pfcrk1, pfcrk4, pfcyc2 and pfcyc4, and down-regulate pfmrk, pfpk5, pfpk6, pfcrk3, pfcyc1 and pfcyc3. When entering the recovery phase parasites immediately up-regulate all CDK and cyclin genes. Three CDK inhibitors, olomoucine, WR636638 and roscovitine, produced distinct effects on different phases of DHA-induced dormancy, blocking parasites recovery. Conclusions The up-regulation of PfCRK1 and PfCRK4, and down regulation of other CDKs and cyclins correlate with parasite survival in the dormant state. Changes in CDK expression are likely to negatively regulate parasite progression from G1 to S phase. These findings provide new insights into the mechanism of artemisinin-induced dormancy and cell cycle regulation of P. falciparum, opening new opportunities for preventing recrudescence following artemisinin treatment.
Collapse
Affiliation(s)
- Karen-Ann Gray
- Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane, Australia
- Clinical Tropical Medicine, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Karryn J. Gresty
- Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane, Australia
- Clinical Tropical Medicine, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Nanhua Chen
- Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane, Australia
| | - Veronica Zhang
- Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane, Australia
- School of Biochemistry, University of Queensland, Brisbane, Australia
| | | | - Christopher L. Peatey
- Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane, Australia
- Clinical Tropical Medicine, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Marina Chavchich
- Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane, Australia
| | - Norman C. Waters
- Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- * E-mail: (QC); (NW)
| | - Qin Cheng
- Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane, Australia
- Clinical Tropical Medicine, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- * E-mail: (QC); (NW)
| |
Collapse
|
58
|
Gupta DK, Patra AT, Zhu L, Gupta AP, Bozdech Z. DNA damage regulation and its role in drug-related phenotypes in the malaria parasites. Sci Rep 2016; 6:23603. [PMID: 27033103 PMCID: PMC4817041 DOI: 10.1038/srep23603] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/10/2016] [Indexed: 11/29/2022] Open
Abstract
DNA of malaria parasites, Plasmodium falciparum, is subjected to extraordinary high levels of genotoxic insults during its complex life cycle within both the mosquito and human host. Accordingly, most of the components of DNA repair machinery are conserved in the parasite genome. Here, we investigated the genome-wide responses of P. falciparum to DNA damaging agents and provided transcriptional evidence of the existence of the double strand break and excision repair system. We also showed that acetylation at H3K9, H4K8, and H3K56 play a role in the direct and indirect response to DNA damage induced by an alkylating agent, methyl methanesulphonate (MMS). Artemisinin, the first line antimalarial chemotherapeutics elicits a similar response compared to MMS which suggests its activity as a DNA damaging agent. Moreover, in contrast to the wild-type P. falciparum, two strains (Dd2 and W2) previously shown to exhibit a mutator phenotype, fail to induce their DNA repair upon MMS-induced DNA damage. Genome sequencing of the two mutator strains identified point mutations in 18 DNA repair genes which may contribute to this phenomenon.
Collapse
Affiliation(s)
- Devendra Kumar Gupta
- School of Biological Sciences, Nanyang Technological University, 639798, Singapore
| | - Alok Tanala Patra
- School of Biological Sciences, Nanyang Technological University, 639798, Singapore
| | - Lei Zhu
- School of Biological Sciences, Nanyang Technological University, 639798, Singapore
| | - Archana Patkar Gupta
- School of Biological Sciences, Nanyang Technological University, 639798, Singapore
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, 639798, Singapore
| |
Collapse
|
59
|
Adjalley SH, Scanfeld D, Kozlowski E, Llinás M, Fidock DA. Genome-wide transcriptome profiling reveals functional networks involving the Plasmodium falciparum drug resistance transporters PfCRT and PfMDR1. BMC Genomics 2015; 16:1090. [PMID: 26689807 PMCID: PMC4687325 DOI: 10.1186/s12864-015-2320-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 12/15/2015] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The acquisition of multidrug resistance by Plasmodium falciparum underscores the need to understand the underlying molecular mechanisms so as to counter their impact on malaria control. For the many antimalarials whose mode of action relates to inhibition of heme detoxification inside infected erythrocytes, the digestive vacuole transporters PfCRT and PfMDR1 constitute primary resistance determinants. RESULTS Using gene expression microarrays over the course of the parasite intra-erythrocytic developmental cycle, we compared the transcriptomic profiles between P. falciparum strains displaying mutant or wild-type pfcrt or varying in pfcrt or pfmdr1 expression levels. To account for differences in the time of sampling, we developed a computational method termed Hypergeometric Analysis of Time Series, which combines Fast Fourier Transform with a modified Gene Set Enrichment Analysis. Our analysis revealed coordinated changes in genes involved in protein catabolism, translation initiation and DNA/RNA metabolism. We also observed differential expression of genes with a role in transport or coding for components of the digestive vacuole. Interestingly, a global comparison of all profiled transcriptomes uncovered a tight correlation between the transcript levels of pfcrt and pfmdr1, extending to dozens of other genes, suggesting an intricate regulatory balance in order to maintain optimal physiological processes. CONCLUSIONS This study provides insight into the mechanisms by which P. falciparum adjusts to the acquisition of mutations or gene amplification in key transporter loci that mediate drug resistance. Our results implicate several biological pathways that may be differentially regulated to compensate for impaired transporter function and alterations in parasite vacuole physiology.
Collapse
Affiliation(s)
- Sophie H Adjalley
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA. .,Present addresses: Wellcome Trust Sanger Institute, Hinxton, UK.
| | - Daniel Scanfeld
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA. .,Present addresses: Google Inc., New York, NY, 10011, USA.
| | - Elyse Kozlowski
- Department of Molecular Biology & Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA. .,Present addresses: Pulmonary Center, Boston University School of Medicine, Boston, MA, 02118, USA.
| | - Manuel Llinás
- Department of Molecular Biology & Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA. .,Department of Biochemistry and Molecular Biology, Department of Chemistry, Center for Malaria Research and Center for Infectious Diseases Dynamics, Pennsylvania State University, University Park, PA, 16802, USA.
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA. .,Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
60
|
Siwo GH, Smith RS, Tan A, Button-Simons KA, Checkley LA, Ferdig MT. An integrative analysis of small molecule transcriptional responses in the human malaria parasite Plasmodium falciparum. BMC Genomics 2015; 16:1030. [PMID: 26637195 PMCID: PMC4670519 DOI: 10.1186/s12864-015-2165-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 10/29/2015] [Indexed: 12/05/2022] Open
Abstract
Background Transcriptional responses to small molecules can provide insights into drug mode of action (MOA). The capacity of the human malaria parasite, Plasmodium falciparum, to respond specifically to transcriptional perturbations has been unclear based on past approaches. Here, we present the most extensive profiling to date of the parasite’s transcriptional responsiveness to thirty-one chemically and functionally diverse small molecules. Methods We exposed two laboratory strains of the human malaria parasite P. falciparum to brief treatments of thirty-one chemically and functionally diverse small molecules associated with biological effects across multiple pathways based on various levels of evidence. We investigated the impact of chemical composition and MOA on gene expression similarities that arise between perturbations by various compounds. To determine the target biological pathways for each small molecule, we developed a novel framework for encoding small molecule effects on a spectra of biological processes or GO functions that are enriched in the differentially expressed genes of a given small molecule perturbation. Results We find that small molecules associated with similar transcriptional responses contain similar chemical features, and/ or have a shared MOA. The approach also revealed complex relationships between drugs and biological pathways that are missed by most exisiting approaches. For example, the approach was able to partition small molecule responses into drug-specific effects versus non-specific effects. Conclusions Our work provides a new framework for linking transcriptional responses to drug MOA in P. falciparum and can be generalized for the same purpose in other organisms. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2165-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Geoffrey H Siwo
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.,Current Address: IBM TJ Watson Research Center, Yorktown Heights, NY, 10598, USA.,Current Address: IBM Research-Africa, South Africa Lab, Sandton, Johannesburg, 2196, South Africa
| | - Roger S Smith
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.,Current Address: Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Asako Tan
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.,Epicenter, Madison, WI, 53719, USA
| | - Katrina A Button-Simons
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Lisa A Checkley
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Michael T Ferdig
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
61
|
Mita T, Tachibana SI, Hashimoto M, Hirai M. Plasmodium falciparum kelch 13: a potential molecular marker for tackling artemisinin-resistant malaria parasites. Expert Rev Anti Infect Ther 2015; 14:125-35. [PMID: 26535806 DOI: 10.1586/14787210.2016.1106938] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although artemisinin combination therapies have been deployed as a first-line treatment for uncomplicated malaria in almost all endemic countries, artemisinin-resistant parasites have emerged and have gradually spread across the Greater Mekong subregions. There is growing concern that the resistant parasites may migrate to or emerge indigenously in sub-Saharan Africa, which might provoke a global increase in malaria-associated morbidity and mortality. Therefore, development of molecular markers that enable identification of artemisinin resistance with high sensitivity is urgently required to combat this issue. In 2014, a potential artemisinin-resistance responsible gene, Plasmodium falciparum kelch13, was discovered. Here, we review the genetic features of P. falciparum kelch13 and discuss its related resistant mechanisms and potential as a molecular marker.
Collapse
Affiliation(s)
- Toshihiro Mita
- a Department of Molecular and Cellular Parasitology , Juntendo University School of Medicine , Tokyo , Japan
| | - Shin-Ichiro Tachibana
- a Department of Molecular and Cellular Parasitology , Juntendo University School of Medicine , Tokyo , Japan
| | - Muneaki Hashimoto
- a Department of Molecular and Cellular Parasitology , Juntendo University School of Medicine , Tokyo , Japan
| | - Makoto Hirai
- a Department of Molecular and Cellular Parasitology , Juntendo University School of Medicine , Tokyo , Japan
| |
Collapse
|
62
|
Shaw PJ, Chaotheing S, Kaewprommal P, Piriyapongsa J, Wongsombat C, Suwannakitti N, Koonyosying P, Uthaipibull C, Yuthavong Y, Kamchonwongpaisan S. Plasmodium parasites mount an arrest response to dihydroartemisinin, as revealed by whole transcriptome shotgun sequencing (RNA-seq) and microarray study. BMC Genomics 2015; 16:830. [PMID: 26490244 PMCID: PMC4618149 DOI: 10.1186/s12864-015-2040-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 10/08/2015] [Indexed: 02/02/2023] Open
Abstract
Background Control of malaria is threatened by emerging parasite resistance to artemisinin and derivative drug (ART) therapies. The molecular detail of how Plasmodium malaria parasites respond to ART and how this could contribute to resistance are not well understood. To address this question, we performed a transcriptomic study of dihydroartemisinin (DHA) response in P. falciparum K1 strain and in P. berghei ANKA strain using microarray and RNA-seq technology. Results Microarray data from DHA-treated P. falciparum trophozoite stage parasites revealed a response pattern that is overall less trophozoite-like and more like the other stages of asexual development. A meta-analysis of these data with previously published data from other ART treatments revealed a set of common differentially expressed genes. Notably, ribosomal protein genes are down-regulated in response to ART. A similar pattern of trophozoite transcriptomic change was observed from RNA-seq data. RNA-seq data from DHA-treated P. falciparum rings reveal a more muted response, although there is considerable overlap of differentially expressed genes with DHA-treated trophozoites. No genes are differentially expressed in DHA-treated P. falciparum schizonts. The transcriptional response of P. berghei to DHA treatment in vivo in infected mice is similar to the P. falciparum in vitro culture ring and trophozoite responses, in which ribosomal protein genes are notably down-regulated. Conclusions Ring and trophozoite stage Plasmodium respond to ART by arresting metabolic processes such as protein synthesis and glycolysis. This response can be protective in rings, as shown by the phenomenon of dormancy. In contrast, this response is not as protective in trophozoites owing to their commitment to a highly active and vulnerable metabolic state. The lower metabolic demands of schizonts could explain why they are less sensitive and unresponsive to ART. The ART response pattern is revealed clearly from RNA-seq data, suggesting that this technology is of great utility for studying drug response in Plasmodium. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2040-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Philip J Shaw
- Protein-Ligand Engineering and Molecular Biology Laboratory, Medical Molecular Biology Research Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Thanon Phahonyothin, Tambon Khlong Neung, Amphoe, Khlong Luang, Pathum Thani, 12120, Thailand.
| | - Sastra Chaotheing
- Protein-Ligand Engineering and Molecular Biology Laboratory, Medical Molecular Biology Research Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Thanon Phahonyothin, Tambon Khlong Neung, Amphoe, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Pavita Kaewprommal
- Biostatistics and Bioinformatics Laboratory, Genome Technology Research Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Thanon Phahonyothin, Tambon Khlong Neung, Amphoe, Khlong Luang, Pathum Thani, 12120, Thailand.
| | - Jittima Piriyapongsa
- Biostatistics and Bioinformatics Laboratory, Genome Technology Research Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Thanon Phahonyothin, Tambon Khlong Neung, Amphoe, Khlong Luang, Pathum Thani, 12120, Thailand.
| | - Chayaphat Wongsombat
- Protein-Ligand Engineering and Molecular Biology Laboratory, Medical Molecular Biology Research Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Thanon Phahonyothin, Tambon Khlong Neung, Amphoe, Khlong Luang, Pathum Thani, 12120, Thailand.
| | - Nattida Suwannakitti
- Protein-Ligand Engineering and Molecular Biology Laboratory, Medical Molecular Biology Research Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Thanon Phahonyothin, Tambon Khlong Neung, Amphoe, Khlong Luang, Pathum Thani, 12120, Thailand.
| | - Pongpisid Koonyosying
- Protein-Ligand Engineering and Molecular Biology Laboratory, Medical Molecular Biology Research Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Thanon Phahonyothin, Tambon Khlong Neung, Amphoe, Khlong Luang, Pathum Thani, 12120, Thailand.
| | - Chairat Uthaipibull
- Protein-Ligand Engineering and Molecular Biology Laboratory, Medical Molecular Biology Research Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Thanon Phahonyothin, Tambon Khlong Neung, Amphoe, Khlong Luang, Pathum Thani, 12120, Thailand.
| | - Yongyuth Yuthavong
- Protein-Ligand Engineering and Molecular Biology Laboratory, Medical Molecular Biology Research Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Thanon Phahonyothin, Tambon Khlong Neung, Amphoe, Khlong Luang, Pathum Thani, 12120, Thailand.
| | - Sumalee Kamchonwongpaisan
- Protein-Ligand Engineering and Molecular Biology Laboratory, Medical Molecular Biology Research Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Thanon Phahonyothin, Tambon Khlong Neung, Amphoe, Khlong Luang, Pathum Thani, 12120, Thailand.
| |
Collapse
|
63
|
Brancucci NMB, Bertschi NL, Zhu L, Niederwieser I, Chin WH, Wampfler R, Freymond C, Rottmann M, Felger I, Bozdech Z, Voss TS. Heterochromatin protein 1 secures survival and transmission of malaria parasites. Cell Host Microbe 2015; 16:165-176. [PMID: 25121746 DOI: 10.1016/j.chom.2014.07.004] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 04/28/2014] [Accepted: 06/06/2014] [Indexed: 12/14/2022]
Abstract
Clonally variant expression of surface antigens allows the malaria parasite Plasmodium falciparum to evade immune recognition during blood stage infection and secure malaria transmission. We demonstrate that heterochromatin protein 1 (HP1), an evolutionary conserved regulator of heritable gene silencing, controls expression of numerous P. falciparum virulence genes as well as differentiation into the sexual forms that transmit to mosquitoes. Conditional depletion of P. falciparum HP1 (PfHP1) prevents mitotic proliferation of blood stage parasites and disrupts mutually exclusive expression and antigenic variation of the major virulence factor PfEMP1. Additionally, PfHP1-dependent regulation of PfAP2-G, a transcription factor required for gametocyte conversion, controls the switch from asexual proliferation to sexual differentiation, providing insight into the epigenetic mechanisms underlying gametocyte commitment. These findings show that PfHP1 is centrally involved in clonally variant gene expression and sexual differentiation in P. falciparum and have major implications for developing antidisease and transmission-blocking interventions against malaria.
Collapse
Affiliation(s)
- Nicolas M B Brancucci
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Socinstrasse 57, Basel 4051, Switzerland; University of Basel, Petersplatz 1, Basel 4003, Switzerland
| | - Nicole L Bertschi
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Socinstrasse 57, Basel 4051, Switzerland; University of Basel, Petersplatz 1, Basel 4003, Switzerland
| | - Lei Zhu
- School of Biological Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Igor Niederwieser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Socinstrasse 57, Basel 4051, Switzerland; University of Basel, Petersplatz 1, Basel 4003, Switzerland
| | - Wai Hoe Chin
- School of Biological Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Rahel Wampfler
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Socinstrasse 57, Basel 4051, Switzerland; University of Basel, Petersplatz 1, Basel 4003, Switzerland
| | - Céline Freymond
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Socinstrasse 57, Basel 4051, Switzerland; University of Basel, Petersplatz 1, Basel 4003, Switzerland
| | - Matthias Rottmann
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Socinstrasse 57, Basel 4051, Switzerland; University of Basel, Petersplatz 1, Basel 4003, Switzerland
| | - Ingrid Felger
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Socinstrasse 57, Basel 4051, Switzerland; University of Basel, Petersplatz 1, Basel 4003, Switzerland
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Till S Voss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Socinstrasse 57, Basel 4051, Switzerland; University of Basel, Petersplatz 1, Basel 4003, Switzerland.
| |
Collapse
|
64
|
Sibley CH. Observing in real time the evolution of artemisinin resistance in Plasmodium falciparum. BMC Med 2015; 13:67. [PMID: 25889405 PMCID: PMC4379603 DOI: 10.1186/s12916-015-0316-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 03/10/2015] [Indexed: 01/25/2023] Open
Abstract
Simple genetic changes that correlate with drug resistance are used routinely to identify resistant pathogens. These "molecular markers" have usually been defined long after the phenotype of resistance was noted. The molecular changes at the "end game" reflect a long and complex evolution of genetic changes, but once a solidly resistant set of changes assembles under drug selection, that genotype is likely to become fixed, and resistant pathogens will spread widely. Artemisinins are currently used worldwide to treat malaria caused by Plasmodium falciparum, but parasite response has diminished rapidly in the Mekong region of Southeast Asia. Should artemisinins lose potency completely and this effect spread worldwide, effective malaria treatment would be almost impossible. The full range of modern methods has been applied to define rapidly the genetic changes responsible. Changes associated with artemisinin resistance are complex and seem to be evolving rapidly, especially in Southeast Asia. This is a rare chance to observe the early stages in evolution of resistance, and to develop strategies to reverse or mitigate the trend and to protect these key medicines.
Collapse
Affiliation(s)
- Carol Hopkins Sibley
- Worldwide Antimalarial Resistance Network, Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
65
|
Lapp SA, Mok S, Zhu L, Wu H, Preiser PR, Bozdech Z, Galinski MR. Plasmodium knowlesi gene expression differs in ex vivo compared to in vitro blood-stage cultures. Malar J 2015; 14:110. [PMID: 25880967 PMCID: PMC4369371 DOI: 10.1186/s12936-015-0612-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/12/2015] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Plasmodium knowlesi is one of five Plasmodium species known to cause malaria in humans and can result in severe illness and death. While a zoonosis in humans, this simian malaria parasite species infects macaque monkeys and serves as an experimental model for in vivo, ex vivo and in vitro studies. It has underpinned malaria discoveries relating to host-pathogen interactions, the immune response and immune evasion strategies. This study investigated differences in P. knowlesi gene expression in samples from ex vivo and in vitro cultures. METHODS Gene expression profiles were generated using microarrays to compare the stage-specific transcripts detected for a clone of P. knowlesi propagated in the blood of a rhesus macaque host and then grown in an ex-vivo culture, and the same clone adapted to long-term in vitro culture. Parasite samples covering one blood-stage cycle were analysed at four-hour intervals. cDNA was generated and hybridized to an oligoarray representing the P. knowlesi genome. Two replicate experiments were developed from in vitro cultures. Expression values were filtered, normalized, and analysed using R and Perl language and applied to a sine wave model to determine changes in equilibrium and amplitude. Differentially expressed genes from ex vivo and in vitro time points were detected using limma R/Bioconductor and gene set enrichment analysis (GSEA). RESULTS Major differences were noted between the ex vivo and in vitro time courses in overall gene expression and the length of the cycle (25.5 hours ex vivo; 33.5 hours in vitro). GSEA of genes up-regulated ex vivo showed an enrichment of various genes including SICAvar, ribosomal- associated and histone acetylation pathway genes. In contrast, certain genes involved in metabolism and cell growth, such as porphobilinogen deaminase and tyrosine phosphatase, and one SICAvar gene, were significantly up-regulated in vitro. CONCLUSIONS This study demonstrates how gene expression in P. knowlesi blood-stage parasites can differ dramatically depending on whether the parasites are grown in vivo, with only one cycle of development ex vivo, or as an adapted isolate in long-term in vitro culture. These data bring emphasis to the importance of studying the parasite, its biology and disease manifestations in the context of the host.
Collapse
Affiliation(s)
- Stacey A Lapp
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.
| | - Sachel Mok
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| | - Lei Zhu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| | - Hao Wu
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| | - Peter R Preiser
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| | - Zybnek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| | - Mary R Galinski
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, GA, USA.
| |
Collapse
|
66
|
Liu H, Yang HL, Tang LH, Li XL, Huang F, Wang JZ, Li CF, Wang HY, Nie RH, Guo XR, Lin YX, Li M, Wang J, Xu JW. In vivo monitoring of dihydroartemisinin-piperaquine sensitivity in Plasmodium falciparum along the China-Myanmar border of Yunnan Province, China from 2007 to 2013. Malar J 2015; 14:47. [PMID: 25652213 PMCID: PMC4333884 DOI: 10.1186/s12936-015-0584-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/25/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Artemisinin-based combination therapy (ACT) is the recommended first-line treatment of falciparum malaria in all endemic countries. Artemisinin resistance in Plasmodium falciparum has been confirmed in the Greater Mekong subregion (GMS). Dihydroartemisinin-piperaquine (DAPQ) is the most commonly used ACT in China. To understand the DAPQ sensitivity of P. falciparum, DAPQ resistance was monitored in vivo along the China-Myanmar border from 2007 to 2013. METHODS Eligible patients with mono-infections of P. falciparum were recruited to this study after obtaining full informed consent. DAPQ tablets for different categories of kg body weight ranges were given once a day for three days. Patients were followed up for 42 days. Polymerase chain reaction (PCR) was conducted to distinguish between re-infection and recrudescence, to confirm the Plasmodium species. The data were entered and analysed by the Kaplan-Meier method. Treatment outcome was assessed according to the WHO recommended standards. RESULTS 243 patients were completed valid follow-up. The fever clearance time (FCT) and asexual parasite clearance times (APCT) were, respectively, 36.5 ± 10.9 and 43.5 ± 11.8 hours, and there was an increasing trend of both FCT (F = 268.41, P < 0.0001) and APCT (F = 88.6, P < 0.0001) from 2007 to 2013. Eight (3.3%, 95% confidence interval, 1.4-6.4%) patients present parasitaemia on day three after medication; however they were spontaneous cure on day four. 241 (99.2%; 95% CI, 97.1-99.9%) of the patients were adequate clinical and parasitological response (ACPR) and the proportions of ACPR had not changed significantly from 2007 to 2013 (X(2) = 2.81, P = 0.7288). CONCLUSION In terms of efficacy, DAPQ is still an effective treatment for falciparum malaria. DAPQ sensitivity in P. falciparum had not significantly changed along the China-Myanmar border of Yunnan Province, China. However more attentions should be given to becoming slower fever and parasite clearance.
Collapse
Affiliation(s)
- Hui Liu
- Yunnan Institute of Parasitic Diseases, Yunnan Provincial Center of Malaria Research, Yunnan Provincial Collaborative Innovation Center for Public Health and Disease Prevention and Control, Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Puer, 665000, China.
| | - Heng-lin Yang
- Yunnan Institute of Parasitic Diseases, Yunnan Provincial Center of Malaria Research, Yunnan Provincial Collaborative Innovation Center for Public Health and Disease Prevention and Control, Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Puer, 665000, China.
| | - Lin-hua Tang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, PR China.
| | - Xing-liang Li
- Yunnan Institute of Parasitic Diseases, Yunnan Provincial Center of Malaria Research, Yunnan Provincial Collaborative Innovation Center for Public Health and Disease Prevention and Control, Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Puer, 665000, China.
| | - Fang Huang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, PR China.
| | - Jia-zhi Wang
- Tengchong County Center for Disease Control and Prevention, Tengchong, 679100, China.
| | - Chun-fu Li
- Yunnan Institute of Parasitic Diseases, Yunnan Provincial Center of Malaria Research, Yunnan Provincial Collaborative Innovation Center for Public Health and Disease Prevention and Control, Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Puer, 665000, China.
| | - Heng-ye Wang
- Yunnan Institute of Parasitic Diseases, Yunnan Provincial Center of Malaria Research, Yunnan Provincial Collaborative Innovation Center for Public Health and Disease Prevention and Control, Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Puer, 665000, China.
| | - Ren-hua Nie
- Yunnan Institute of Parasitic Diseases, Yunnan Provincial Center of Malaria Research, Yunnan Provincial Collaborative Innovation Center for Public Health and Disease Prevention and Control, Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Puer, 665000, China.
| | - Xiang-rui Guo
- Yangjiang County Center for Disease Control and Prevention, Yingjiang, 679300, China.
| | - Ying-xue Lin
- Yangjiang County Center for Disease Control and Prevention, Yingjiang, 679300, China.
| | - Mei Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, PR China.
| | - Jian Wang
- Yunnan Institute of Parasitic Diseases, Yunnan Provincial Center of Malaria Research, Yunnan Provincial Collaborative Innovation Center for Public Health and Disease Prevention and Control, Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Puer, 665000, China.
| | - Jian-wei Xu
- Yunnan Institute of Parasitic Diseases, Yunnan Provincial Center of Malaria Research, Yunnan Provincial Collaborative Innovation Center for Public Health and Disease Prevention and Control, Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Puer, 665000, China.
| |
Collapse
|
67
|
Mok S, Ashley EA, Ferreira PE, Zhu L, Lin Z, Yeo T, Chotivanich K, Imwong M, Pukrittayakamee S, Dhorda M, Nguon C, Lim P, Amaratunga C, Suon S, Hien TT, Htut Y, Faiz MA, Onyamboko MA, Mayxay M, Newton PN, Tripura R, Woodrow CJ, Miotto O, Kwiatkowski DP, Nosten F, Day NPJ, Preiser PR, White NJ, Dondorp AM, Fairhurst RM, Bozdech Z. Drug resistance. Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance. Science 2015; 347:431-435. [PMID: 25502316 PMCID: PMC5642863 DOI: 10.1126/science.1260403] [Citation(s) in RCA: 311] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Artemisinin resistance in Plasmodium falciparum threatens global efforts to control and eliminate malaria. Polymorphisms in the kelch domain-carrying protein K13 are associated with artemisinin resistance, but the underlying molecular mechanisms are unknown. We analyzed the in vivo transcriptomes of 1043 P. falciparum isolates from patients with acute malaria and found that artemisinin resistance is associated with increased expression of unfolded protein response (UPR) pathways involving the major PROSC and TRiC chaperone complexes. Artemisinin-resistant parasites also exhibit decelerated progression through the first part of the asexual intraerythrocytic development cycle. These findings suggest that artemisinin-resistant parasites remain in a state of decelerated development at the young ring stage, whereas their up-regulated UPR pathways mitigate protein damage caused by artemisinin. The expression profiles of UPR-related genes also associate with the geographical origin of parasite isolates, further suggesting their role in emerging artemisinin resistance in the Greater Mekong Subregion.
Collapse
Affiliation(s)
- Sachel Mok
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Elizabeth A Ashley
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Pedro E Ferreira
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Lei Zhu
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Zhaoting Lin
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Tomas Yeo
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Kesinee Chotivanich
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sasithon Pukrittayakamee
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Mehul Dhorda
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK. WorldWide Antimalarial Resistance Network (WWARN), Asia Regional Centre, Mahidol University, Bangkok, Thailand. WorldWide Antimalarial Resistance Network, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Chea Nguon
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Pharath Lim
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia. Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Chanaki Amaratunga
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Seila Suon
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Tran Tinh Hien
- Oxford University Clinical Research Unit (OUCRU), Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Ye Htut
- Department of Medical Research, Lower Myanmar, Yangon, Myanmar
| | - M Abul Faiz
- Malaria Research Group & Dev Care Foundation, Dhaka, Bangladesh
| | - Marie A Onyamboko
- Kinshasa School of Public Health, Kinshasa, Democratic Republic of the Congo
| | - Mayfong Mayxay
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao PDR. Faculty of Postgraduate Studies, University of Health Sciences, Vientiane, Lao PDR
| | - Paul N Newton
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK. Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao PDR
| | - Rupam Tripura
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Charles J Woodrow
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Olivo Miotto
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. Medical Research Council (MRC) Centre for Genomics and Global Health, University of Oxford, Oxford, UK. Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Dominic P Kwiatkowski
- Medical Research Council (MRC) Centre for Genomics and Global Health, University of Oxford, Oxford, UK. Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - François Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK. Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Nicholas P J Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Peter R Preiser
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Rick M Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
68
|
Van Tyne D, Tan Y, Daily JP, Kamiza S, Seydel K, Taylor T, Mesirov JP, Wirth DF, Milner DA. Plasmodium falciparum gene expression measured directly from tissue during human infection. Genome Med 2014; 6:110. [PMID: 25520756 PMCID: PMC4269068 DOI: 10.1186/s13073-014-0110-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 11/14/2014] [Indexed: 02/08/2023] Open
Abstract
Background During the latter half of the natural 48-h intraerythrocytic life cycle of human Plasmodium falciparum infection, parasites sequester deep in endothelium of tissues, away from the spleen and inaccessible to peripheral blood. These late-stage parasites may cause tissue damage and likely contribute to clinical disease, and a more complete understanding of their biology is needed. Because these life cycle stages are not easily sampled due to deep tissue sequestration, measuring in vivo gene expression of parasites in the trophozoite and schizont stages has been a challenge. Methods We developed a custom nCounter® gene expression platform and used this platform to measure malaria parasite gene expression profiles in vitro and in vivo. We also used imputation to generate global transcriptional profiles and assessed differential gene expression between parasites growing in vitro and those recovered from malaria-infected patient tissues collected at autopsy. Results We demonstrate, for the first time, global transcriptional expression profiles from in vivo malaria parasites sequestered in human tissues. We found that parasite physiology can be correlated with in vitro data from an existing life cycle data set, and that parasites in sequestered tissues show an expected schizont-like transcriptional profile, which is conserved across tissues from the same patient. Imputation based on 60 landmark genes generated global transcriptional profiles that were highly correlated with genome-wide expression patterns from the same samples measured by microarray. Finally, differential expression revealed a limited set of in vivo upregulated transcripts, which may indicate unique parasite genes involved in human clinical infections. Conclusions Our study highlights the utility of a custom nCounter® P. falciparum probe set, validation of imputation within Plasmodium species, and documentation of in vivo schizont-stage expression patterns from human tissues. Electronic supplementary material The online version of this article (doi:10.1186/s13073-014-0110-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daria Van Tyne
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA USA
| | - Yan Tan
- Broad Institute, Cambridge, MA USA ; Graduate Program in Bioinformatics, Boston University, Boston, MA USA
| | | | - Steve Kamiza
- University of Malawi College of Medicine, Blantyre, Malawi
| | - Karl Seydel
- Michigan State University, College of Osteopathic Medicine, East Lansing, MI USA ; The Blantyre Malaria Project, Blantyre, Malawi
| | - Terrie Taylor
- Michigan State University, College of Osteopathic Medicine, East Lansing, MI USA ; The Blantyre Malaria Project, Blantyre, Malawi
| | | | - Dyann F Wirth
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA USA ; Broad Institute, Cambridge, MA USA
| | - Danny A Milner
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA USA ; Broad Institute, Cambridge, MA USA ; University of Malawi College of Medicine, Blantyre, Malawi ; The Blantyre Malaria Project, Blantyre, Malawi ; Brigham and Women's Hospital, Boston, MA USA
| |
Collapse
|
69
|
Abstract
Across the globe, over 200 million annual malaria infections result in up to 660,000 deaths, 77% of which occur in children under the age of five years. Although prevention is important, malaria deaths are typically prevented by using antimalarial drugs that eliminate symptoms and clear parasites from the blood. Artemisinins are one of the few remaining compound classes that can be used to cure multidrug-resistant Plasmodium falciparum infections. Unfortunately, clinical trials from Southeast Asia are showing that artemisinin-based treatments are beginning to lose their effectiveness, adding renewed urgency to the search for the genetic determinants of parasite resistance to this important drug class. We review the genetic and genomic approaches that have led to an improved understanding of artemisinin resistance, including the identification of resistance-conferring mutations in the P. falciparum kelch13 gene.
Collapse
|
70
|
Evaluation of antimalarial resistance marker polymorphism in returned migrant workers in China. Antimicrob Agents Chemother 2014; 59:326-30. [PMID: 25348538 DOI: 10.1128/aac.04144-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Imported malaria has been a great challenge for public health in China due to decreased locally transmitted cases and frequent exchange worldwide. Plasmodium falciparum has been mainly responsible for the increasing impact. Currently, artesunate plus amodiaquine, one of the artemisinin combination therapies recommended by the World Health Organization, has been mainly used against uncomplicated P. falciparum malaria in China. However, drug resistance marker polymorphism in returning migrant workers has not been demonstrated. Here, we have evaluated the prevalence of pfmdr1 and pfcrt polymorphisms, as well as the K13 propeller gene, a molecular marker of artemisinin resistance, in migrant workers returned from Ghana to Shanglin County, Guangxi Province, China, in 2013. A total of 118 blood samples were randomly selected and used for the assay. Mutations of the pfmdr1 gene that covered codons 86, 184, 1034, and 1246 were found in 11 isolates. Mutations at codon N86Y (9.7%) were more frequent than at others, and Y(86)Y(184)S(1034)D(1246) was the most prevalent (63.6%) of the four haplotypes. Mutations of the pfcrt gene that covered codons 74, 75, and 76 were observed in 17 isolates, and M(74)N(75)T(76) was common (70.6%) in three haplotypes. Eight different genotypes of the K13 propeller were first observed in 10 samples in China, 2 synonymous mutations (V487V and A627A) and 6 nonsynonymous mutations. C580Y was the most prevalent (2.7%) in all the samples. The data presented might be helpful for enrichment of molecular surveillance of antimalarial resistance and will be useful for developing and updating antimalarial guidance in China.
Collapse
|
71
|
Characterization of the commercially-available fluorescent chloroquine-BODIPY conjugate, LynxTag-CQGREEN, as a marker for chloroquine resistance and uptake in a 96-well plate assay. PLoS One 2014; 9:e110800. [PMID: 25343249 PMCID: PMC4208776 DOI: 10.1371/journal.pone.0110800] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/18/2014] [Indexed: 11/24/2022] Open
Abstract
Chloroquine was a cheap, extremely effective drug against Plasmodium falciparum until resistance arose. One approach to reversing resistance is the inhibition of chloroquine efflux from its site of action, the parasite digestive vacuole. Chloroquine accumulation studies have traditionally relied on radiolabelled chloroquine, which poses several challenges. There is a need for development of a safe and biologically relevant substitute. We report here a commercially-available green fluorescent chloroquine-BODIPY conjugate, LynxTag-CQGREEN, as a proxy for chloroquine accumulation. This compound localized to the digestive vacuole of the parasite as observed under confocal microscopy, and inhibited growth of chloroquine-sensitive strain 3D7 more extensively than in the resistant strains 7G8 and K1. Microplate reader measurements indicated suppression of LynxTag-CQGREEN efflux after pretreatment of parasites with known reversal agents. Microsomes carrying either sensitive- or resistant-type PfCRT were assayed for uptake; resistant-type PfCRT exhibited increased accumulation of LynxTag-CQGREEN, which was suppressed by pretreatment with known chemosensitizers. Eight laboratory strains and twelve clinical isolates were sequenced for PfCRT and Pgh1 haplotypes previously reported to contribute to drug resistance, and pfmdr1 copy number and chloroquine IC50s were determined. These data were compared with LynxTag-CQGREEN uptake/fluorescence by multiple linear regression to identify genetic correlates of uptake. Uptake of the compound correlated with the logIC50 of chloroquine and, more weakly, a mutation in Pgh1, F1226Y.
Collapse
|
72
|
Assessment of the induction of dormant ring stages in Plasmodium falciparum parasites by artemisone and artemisone entrapped in Pheroid vesicles in vitro. Antimicrob Agents Chemother 2014; 58:7579-82. [PMID: 25288088 DOI: 10.1128/aac.02707-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The in vitro antimalarial activities of artemisone and artemisone entrapped in Pheroid vesicles were compared, as was their ability to induce dormancy in Plasmodium falciparum. There was no increase in the activity of artemisone entrapped in Pheroid vesicles against multidrug-resistant P. falciparum lines. Artemisone induced the formation of dormant ring stages similar to dihydroartemisinin. Thus, the Pheroid delivery system neither improved the activity of artemisone nor prevented the induction of dormant rings.
Collapse
|
73
|
Abdul-Ghani R, Al-Maktari MT, Al-Shibani LA, Allam AF. A better resolution for integrating methods for monitoring Plasmodium falciparum resistance to antimalarial drugs. Acta Trop 2014; 137:44-57. [PMID: 24801884 DOI: 10.1016/j.actatropica.2014.04.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/25/2014] [Accepted: 04/27/2014] [Indexed: 12/16/2022]
Abstract
Effective chemotherapy is the mainstay of malaria control. However, resistance of falciparum malaria to antimalarial drugs compromised the efforts to eliminate the disease and led to the resurgence of malaria epidemics. Three main approaches are used to monitor antimalarial drug efficacy and drug resistance; namely, in vivo trials, in vitro/ex vivo assays and molecular markers of drug resistance. Each approach has its implications of use as well as its advantages and drawbacks. Therefore, there is a need to use an integrated approach that would give the utmost effect to detect resistance as early as its emergence and to track it once spread. Such integration becomes increasingly needed in the era of artemisinin-based combination therapy as a forward action to deter resistance. The existence of regional and global networks for the standardization of methodology, provision of high quality reagents for the assessment of antimalarial drug resistance and dissemination of open-access data would help in approaching an integrated resistance surveillance system on a global scale.
Collapse
|
74
|
Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, Sreng S, Anderson JM, Mao S, Sam B, Sopha C, Chuor CM, Nguon C, Sovannaroth S, Pukrittayakamee S, Jittamala P, Chotivanich K, Chutasmit K, Suchatsoonthorn C, Runcharoen R, Hien TT, Thuy-Nhien NT, Thanh NV, Phu NH, Htut Y, Han KT, Aye KH, Mokuolu OA, Olaosebikan RR, Folaranmi OO, Mayxay M, Khanthavong M, Hongvanthong B, Newton PN, Onyamboko MA, Fanello CI, Tshefu AK, Mishra N, Valecha N, Phyo AP, Nosten F, Yi P, Tripura R, Borrmann S, Bashraheil M, Peshu J, Faiz MA, Ghose A, Hossain MA, Samad R, Rahman MR, Hasan MM, Islam A, Miotto O, Amato R, MacInnis B, Stalker J, Kwiatkowski DP, Bozdech Z, Jeeyapant A, Cheah PY, Sakulthaew T, Chalk J, Intharabut B, Silamut K, Lee SJ, Vihokhern B, Kunasol C, Imwong M, Tarning J, Taylor WJ, Yeung S, Woodrow CJ, Flegg JA, Das D, Smith J, Venkatesan M, Plowe CV, Stepniewska K, Guerin PJ, Dondorp AM, Day NP, White NJ. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 2014; 371:411-23. [PMID: 25075834 PMCID: PMC4143591 DOI: 10.1056/nejmoa1314981] [Citation(s) in RCA: 1600] [Impact Index Per Article: 145.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Artemisinin resistance in Plasmodium falciparum has emerged in Southeast Asia and now poses a threat to the control and elimination of malaria. Mapping the geographic extent of resistance is essential for planning containment and elimination strategies. METHODS Between May 2011 and April 2013, we enrolled 1241 adults and children with acute, uncomplicated falciparum malaria in an open-label trial at 15 sites in 10 countries (7 in Asia and 3 in Africa). Patients received artesunate, administered orally at a daily dose of either 2 mg per kilogram of body weight per day or 4 mg per kilogram, for 3 days, followed by a standard 3-day course of artemisinin-based combination therapy. Parasite counts in peripheral-blood samples were measured every 6 hours, and the parasite clearance half-lives were determined. RESULTS The median parasite clearance half-lives ranged from 1.9 hours in the Democratic Republic of Congo to 7.0 hours at the Thailand-Cambodia border. Slowly clearing infections (parasite clearance half-life >5 hours), strongly associated with single point mutations in the "propeller" region of the P. falciparum kelch protein gene on chromosome 13 (kelch13), were detected throughout mainland Southeast Asia from southern Vietnam to central Myanmar. The incidence of pretreatment and post-treatment gametocytemia was higher among patients with slow parasite clearance, suggesting greater potential for transmission. In western Cambodia, where artemisinin-based combination therapies are failing, the 6-day course of antimalarial therapy was associated with a cure rate of 97.7% (95% confidence interval, 90.9 to 99.4) at 42 days. CONCLUSIONS Artemisinin resistance to P. falciparum, which is now prevalent across mainland Southeast Asia, is associated with mutations in kelch13. Prolonged courses of artemisinin-based combination therapies are currently efficacious in areas where standard 3-day treatments are failing. (Funded by the U.K. Department of International Development and others; ClinicalTrials.gov number, NCT01350856.).
Collapse
|
75
|
Bakshi RP, Nenortas E, Tripathi AK, Sullivan DJ, Shapiro TA. Model system to define pharmacokinetic requirements for antimalarial drug efficacy. Sci Transl Med 2014; 5:205ra135. [PMID: 24089407 DOI: 10.1126/scitranslmed.3006684] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Malaria presents a tremendous public health burden, and new therapies are needed. Massive compound libraries screened against Plasmodium falciparum have yielded thousands of lead compounds, resulting in an acute need for rational criteria to select the best candidates for development. We reasoned that, akin to antibacterials, antimalarials might have an essential pharmacokinetic requirement for efficacy: action governed either by total exposure or peak concentration (AUC/CMAX), or by duration above a defined minimum concentration [time above minimum inhibitory concentration (TMIC)]. We devised an in vitro system for P. falciparum, capable of mimicking the dynamic fluctuations of a drug in vivo. Using this apparatus, we find that chloroquine is TMIC-dependent, whereas the efficacy of artemisinin is driven by CMAX. The latter was confirmed in a mouse model of malaria. These characteristics can explain the clinical success of two antimalarial drugs with widely different kinetics in humans. Chloroquine, which persists for weeks, is ideally suited for its TMIC mechanism, whereas great efficacy despite short exposure (t1/2 in blood 3 hours or less) is attained by CMAX-driven artemisinins. This validated preclinical model system can be used to select those antimalarial lead compounds whose CMAX or TMIC requirement for efficacy matches pharmacokinetics obtained in vivo. The apparatus can also be used to explore the kinetic dependence of other pharmacodynamic endpoints in parasites.
Collapse
Affiliation(s)
- Rahul P Bakshi
- Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins University, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
76
|
Hansen FK, Sumanadasa SDM, Stenzel K, Duffy S, Meister S, Marek L, Schmetter R, Kuna K, Hamacher A, Mordmüller B, Kassack MU, Winzeler EA, Avery VM, Andrews KT, Kurz T. Discovery of HDAC inhibitors with potent activity against multiple malaria parasite life cycle stages. Eur J Med Chem 2014; 82:204-13. [PMID: 24904967 DOI: 10.1016/j.ejmech.2014.05.050] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 05/12/2014] [Accepted: 05/21/2014] [Indexed: 10/25/2022]
Abstract
In this work we investigated the antiplasmodial activity of a series of HDAC inhibitors containing an alkoxyamide connecting-unit linker region. HDAC inhibitor 1a (LMK235), previously shown to be a novel and specific inhibitor of human HDAC4 and 5, was used as a starting point to rapidly construct a mini-library of HDAC inhibitors using a straightforward solid-phase supported synthesis. Several of these novel HDAC inhibitors were found to have potent in vitro activity against asexual stage Plasmodium falciparum malaria parasites. Representative compounds were shown to hyperacetylate P. falciparum histones and to inhibit deacetylase activity of recombinant PfHDAC1 and P. falciparum nuclear extracts. All compounds were also screened in vitro for activity against Plasmodium berghei exo-erythrocytic stages and selected compounds were further tested against late stage (IV and V) P. falciparum gametocytes. Of note, some compounds showed nanomolar activity against all three life cycle stages tested (asexual, exo-erythrocytic and gametocyte stages) and several compounds displayed significantly increased parasite selectivity compared to the reference HDAC inhibitor suberoylanilide hydroxamic acid (SAHA). These data suggest that it may be possible to develop HDAC inhibitors that target multiple malaria parasite life cycle stages.
Collapse
Affiliation(s)
- Finn K Hansen
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich Heine Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Subathdrage D M Sumanadasa
- Eskitis Institute for Drug Discovery, Don Young Road, Nathan Campus, Griffith University, QLD 4111, Australia
| | - Katharina Stenzel
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich Heine Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Sandra Duffy
- Eskitis Institute for Drug Discovery, Don Young Road, Nathan Campus, Griffith University, QLD 4111, Australia
| | - Stephan Meister
- Department of Pediatrics, University of California, San Diego, School of Medicine, 9500 Gilman Drive 0741, La Jolla, CA 92093, USA
| | - Linda Marek
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich Heine Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Rebekka Schmetter
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich Heine Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Krystina Kuna
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich Heine Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Alexandra Hamacher
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich Heine Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Benjamin Mordmüller
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, Wilhelmstr. 27, 72074 Tübingen, Germany; Medical Research Laboratory, Albert Schweitzer Hospital, Lambaréné, Gabon
| | - Matthias U Kassack
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich Heine Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Elizabeth A Winzeler
- Department of Pediatrics, University of California, San Diego, School of Medicine, 9500 Gilman Drive 0741, La Jolla, CA 92093, USA
| | - Vicky M Avery
- Eskitis Institute for Drug Discovery, Don Young Road, Nathan Campus, Griffith University, QLD 4111, Australia
| | - Katherine T Andrews
- Eskitis Institute for Drug Discovery, Don Young Road, Nathan Campus, Griffith University, QLD 4111, Australia.
| | - Thomas Kurz
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich Heine Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
77
|
Cheemadan S, Ramadoss R, Bozdech Z. Role of calcium signaling in the transcriptional regulation of the apicoplast genome of Plasmodium falciparum. BIOMED RESEARCH INTERNATIONAL 2014; 2014:869401. [PMID: 24877144 PMCID: PMC4022301 DOI: 10.1155/2014/869401] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/17/2014] [Accepted: 02/17/2014] [Indexed: 12/19/2022]
Abstract
Calcium is a universal second messenger that plays an important role in regulatory processes in eukaryotic cells. To understand calcium-dependent signaling in malaria parasites, we analyzed transcriptional responses of Plasmodium falciparum to two calcium ionophores (A23187 and ionomycin) that cause redistribution of intracellular calcium within the cytoplasm. While ionomycin induced a specific transcriptional response defined by up- or downregulation of a narrow set of genes, A23187 caused a developmental arrest in the schizont stage. In addition, we observed a dramatic decrease of mRNA levels of the transcripts encoded by the apicoplast genome during the exposure of P. falciparum to both calcium ionophores. Neither of the ionophores caused any disruptions to the DNA replication or the overall apicoplast morphology. This suggests that the mRNA downregulation reflects direct inhibition of the apicoplast gene transcription. Next, we identify a nuclear encoded protein with a calcium binding domain (EF-hand) that is localized to the apicoplast. Overexpression of this protein (termed PfACBP1) in P. falciparum cells mediates an increased resistance to the ionophores which suggests its role in calcium-dependent signaling within the apicoplast. Our data indicate that the P. falciparum apicoplast requires calcium-dependent signaling that involves a novel protein PfACBP1.
Collapse
Affiliation(s)
- Sabna Cheemadan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Ramya Ramadoss
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| |
Collapse
|
78
|
Tomescu OA, Mattanovich D, Thallinger GG. Integrative omics analysis. A study based on Plasmodium falciparum mRNA and protein data. BMC SYSTEMS BIOLOGY 2014; 8 Suppl 2:S4. [PMID: 25033389 PMCID: PMC4101701 DOI: 10.1186/1752-0509-8-s2-s4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Background Technological improvements have shifted the focus from data generation to data analysis. The availability of large amounts of data from transcriptomics, protemics and metabolomics experiments raise new questions concerning suitable integrative analysis methods. We compare three integrative analysis techniques (co-inertia analysis, generalized singular value decomposition and integrative biclustering) by applying them to gene and protein abundance data from the six life cycle stages of Plasmodium falciparum. Co-inertia analysis is an analysis method used to visualize and explore gene and protein data. The generalized singular value decomposition has shown its potential in the analysis of two transcriptome data sets. Integrative Biclustering applies biclustering to gene and protein data. Results Using CIA, we visualize the six life cycle stages of Plasmodium falciparum, as well as GO terms in a 2D plane and interpret the spatial configuration. With GSVD, we decompose the transcriptomic and proteomic data sets into matrices with biologically meaningful interpretations and explore the processes captured by the data sets. IBC identifies groups of genes, proteins, GO Terms and life cycle stages of Plasmodium falciparum. We show method-specific results as well as a network view of the life cycle stages based on the results common to all three methods. Additionally, by combining the results of the three methods, we create a three-fold validated network of life cycle stage specific GO terms: Sporozoites are associated with transcription and transport; merozoites with entry into host cell as well as biosynthetic and metabolic processes; rings with oxidation-reduction processes; trophozoites with glycolysis and energy production; schizonts with antigenic variation and immune response; gametocyctes with DNA packaging and mitochondrial transport. Furthermore, the network connectivity underlines the separation of the intraerythrocytic cycle from the gametocyte and sporozoite stages. Conclusion Using integrative analysis techniques, we can integrate knowledge from different levels and obtain a wider view of the system under study. The overlap between method-specific and common results is considerable, even if the basic mathematical assumptions are very different. The three-fold validated network of life cycle stage characteristics of Plasmodium falciparum could identify a large amount of the known associations from literature in only one study.
Collapse
|
79
|
Mok S, Liong KY, Lim EH, Huang X, Zhu L, Preiser PR, Bozdech Z. Structural polymorphism in the promoter of pfmrp2 confers Plasmodium falciparum tolerance to quinoline drugs. Mol Microbiol 2014; 91:918-934. [PMID: 24372851 PMCID: PMC4286016 DOI: 10.1111/mmi.12505] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2013] [Indexed: 12/17/2022]
Abstract
Drug resistance in Plasmodium falciparum remains a challenge for the malaria eradication programmes around the world. With the emergence of artemisinin resistance, the efficacy of the partner drugs in the artemisinin combination therapies (ACT) that include quinoline-based drugs is becoming critical. So far only few resistance markers have been identified from which only two transmembrane transporters namely PfMDR1 (an ATP-binding cassette transporter) and PfCRT (a drug-metabolite transporter) have been experimentally verified. Another P. falciparum transporter, the ATP-binding cassette containing multidrug resistance-associated protein (PfMRP2) represents an additional possible factor of drug resistance in P. falciparum. In this study, we identified a parasite clone that is derived from the 3D7 P. falciparum strain and shows increased resistance to chloroquine, mefloquine and quinine through the trophozoite and schizont stages. We demonstrate that the resistance phenotype is caused by a 4.1 kb deletion in the 5' upstream region of the pfmrp2 gene that leads to an alteration in the pfmrp2 transcription and thus increased level of PfMRP2 protein. These results also suggest the importance of putative promoter elements in regulation of gene expression during the P. falciparum intra-erythrocytic developmental cycle and the potential of genetic polymorphisms within these regions to underlie drug resistance.
Collapse
Affiliation(s)
- Sachel Mok
- School of Biological Sciences, Nanyang Technological UniversitySingapore
| | - Kek-Yee Liong
- School of Biological Sciences, Nanyang Technological UniversitySingapore
| | - Eng-How Lim
- School of Biological Sciences, Nanyang Technological UniversitySingapore
| | - Ximei Huang
- School of Biological Sciences, Nanyang Technological UniversitySingapore
| | - Lei Zhu
- School of Biological Sciences, Nanyang Technological UniversitySingapore
| | | | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological UniversitySingapore
| |
Collapse
|
80
|
Genome-wide screen identifies new candidate genes associated with artemisinin susceptibility in Plasmodium falciparum in Kenya. Sci Rep 2013; 3:3318. [PMID: 24270944 PMCID: PMC3839035 DOI: 10.1038/srep03318] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 10/21/2013] [Indexed: 11/12/2022] Open
Abstract
Early identification of causal genetic variants underlying antimalarial drug resistance could provide robust epidemiological tools for timely public health interventions. Using a novel natural genetics strategy for mapping novel candidate genes we analyzed >75,000 high quality single nucleotide polymorphisms selected from high-resolution whole-genome sequencing data in 27 isolates of Plasmodium falciparum. We identified genetic variants associated with susceptibility to dihydroartemisinin that implicate one region on chromosome 13, a candidate gene on chromosome 1 (PFA0220w, a UBP1 ortholog) and others (PFB0560w, PFB0630c, PFF0445w) with putative roles in protein homeostasis and stress response. There was a strong signal for positive selection on PFA0220w, but not the other candidate loci. Our results demonstrate the power of full-genome sequencing-based association studies for uncovering candidate genes that determine parasite sensitivity to artemisinins. Our study provides a unique reference for the interpretation of results from resistant infections.
Collapse
|
81
|
Abstract
Malaria elimination has recently been reinstated as a global health priority but current therapies seem to be insufficient for the task. Elimination efforts require new drug classes that alleviate symptoms, prevent transmission and provide a radical cure. To develop these next-generation medicines, public-private partnerships are funding innovative approaches to identify compounds that target multiple parasite species at multiple stages of the parasite life cycle. In this Review, we discuss the cell-, chemistry- and target-based approaches used to discover new drug candidates that are currently in clinical trials or undergoing preclinical testing.
Collapse
|
82
|
Na-Bangchang K, Karbwang J. Emerging artemisinin resistance in the border areas of Thailand. Expert Rev Clin Pharmacol 2013; 6:307-22. [PMID: 23656342 DOI: 10.1586/ecp.13.17] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Emergence of artemisinin resistance has been confirmed in Cambodia and the border areas of Thailand, the well-known hotspots of multidrug resistance Plasmodium falciparum. It appears to be spreading to the western border of Thailand along the Thai-Myanmar border, and will probably spread to other endemic areas of the world in the near future. This raises a serious concern on the long-term efficacy of artemisinin-based combination therapies, as these combination therapies currently constitute the last effective and most tolerable treatment for multidrug-resistant Plasmodium falciparum. Attempts have been made by a diverse array of stakeholders to prevent the emergence of new foci of artemisinin resistance, as well as to limit the spread of resistance to the original foci. The success in achieving this goal depends on effective integration of containment and surveillance programs with other malaria control measures, with support from both basic and operational research.
Collapse
|
83
|
Abstract
Owing to the absence of antiparasitic vaccines and the constant threat of drug resistance, the development of novel antiparasitic chemotherapies remains of major importance for disease control. A better understanding of drug transport (uptake and efflux), drug metabolism and the identification of drug targets, and mechanisms of drug resistance would facilitate the development of more effective therapies. Here, we focus on malaria and African trypanosomiasis. We review existing drugs and drug development, emphasizing high-throughput genomic and genetic approaches, which hold great promise for elucidating antiparasitic mechanisms. We describe the approaches and technologies that have been influential for each parasite and develop new ideas for future research directions, including mode-of-action studies for drug target deconvolution.
Collapse
Affiliation(s)
- David Horn
- Biological Chemistry & Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Manoj T. Duraisingh
- Harvard School of Public Health, 665 Huntington Avenue, Building 1, Room 715, Boston, Massachusetts 02115, USA
| |
Collapse
|
84
|
Witkowski B, Amaratunga C, Khim N, Sreng S, Chim P, Kim S, Lim P, Mao S, Sopha C, Sam B, Anderson JM, Duong S, Chuor CM, Taylor WRJ, Suon S, Mercereau-Puijalon O, Fairhurst RM, Menard D. Novel phenotypic assays for the detection of artemisinin-resistant Plasmodium falciparum malaria in Cambodia: in-vitro and ex-vivo drug-response studies. THE LANCET. INFECTIOUS DISEASES 2013; 13:1043-9. [PMID: 24035558 DOI: 10.1016/s1473-3099(13)70252-4] [Citation(s) in RCA: 460] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Artemisinin resistance in Plasmodium falciparum lengthens parasite clearance half-life during artemisinin monotherapy or artemisinin-based combination therapy. Absence of in-vitro and ex-vivo correlates of artemisinin resistance hinders study of this phenotype. We aimed to assess whether an in-vitro ring-stage survival assay (RSA) can identify culture-adapted P falciparum isolates from patients with slow-clearing or fast-clearing infections, to investigate the stage-dependent susceptibility of parasites to dihydroartemisinin in the in-vitro RSA, and to assess whether an ex-vivo RSA can identify artemisinin-resistant P falciparum infections. METHODS We culture-adapted parasites from patients with long and short parasite clearance half-lives from a study done in Pursat, Cambodia, in 2010 (registered with ClinicalTrials.gov, number NCT00341003) and used novel in-vitro survival assays to explore the stage-dependent susceptibility of slow-clearing and fast-clearing parasites to dihydroartemisinin. In 2012, we implemented the RSA in prospective parasite clearance studies in Pursat, Preah Vihear, and Ratanakiri, Cambodia (NCT01736319), to measure the ex-vivo responses of parasites from patients with malaria. Continuous variables were compared with the Mann-Whitney U test. Correlations were analysed with the Spearman correlation test. FINDINGS In-vitro survival rates of culture-adapted parasites from 13 slow-clearing and 13 fast-clearing infections differed significantly when assays were done on 0-3 h ring-stage parasites (10·88% vs 0·23%; p=0·007). Ex-vivo survival rates significantly correlated with in-vivo parasite clearance half-lives (n=30, r=0·74, 95% CI 0·50-0·87; p<0·0001). INTERPRETATION The in-vitro RSA of 0-3 h ring-stage parasites provides a platform for the molecular characterisation of artemisinin resistance. The ex-vivo RSA can be easily implemented where surveillance for artemisinin resistance is needed. FUNDING Institut Pasteur du Cambodge and the Intramural Research Program, NIAID, NIH.
Collapse
Affiliation(s)
- Benoit Witkowski
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Artemisinin resistance in Plasmodium falciparum: what is it really? Trends Parasitol 2013; 29:318-20. [DOI: 10.1016/j.pt.2013.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/06/2013] [Accepted: 05/06/2013] [Indexed: 01/15/2023]
|
86
|
The open access malaria box: a drug discovery catalyst for neglected diseases. PLoS One 2013; 8:e62906. [PMID: 23798988 PMCID: PMC3684613 DOI: 10.1371/journal.pone.0062906] [Citation(s) in RCA: 267] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 03/21/2013] [Indexed: 01/29/2023] Open
Abstract
Historically, one of the key problems in neglected disease drug discovery has been identifying new and interesting chemotypes. Phenotypic screening of the malaria parasite, Plasmodium falciparum has yielded almost 30,000 submicromolar hits in recent years. To make this collection more accessible, a collection of 400 chemotypes has been assembled, termed the Malaria Box. Half of these compounds were selected based on their drug-like properties and the others as molecular probes. These can now be requested as a pharmacological test set by malaria biologists, but importantly by groups working on related parasites, as part of a program to make both data and compounds readily available. In this paper, the analysis and selection methodology and characteristics of the compounds are described.
Collapse
|
87
|
Insight into structural and biochemical determinants of substrate specificity of PFI1625c: Correlation analysis of protein-peptide molecular models. J Mol Graph Model 2013; 43:21-30. [DOI: 10.1016/j.jmgm.2013.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 03/18/2013] [Accepted: 03/28/2013] [Indexed: 11/21/2022]
|
88
|
Altered temporal response of malaria parasites determines differential sensitivity to artemisinin. Proc Natl Acad Sci U S A 2013; 110:5157-62. [PMID: 23431146 DOI: 10.1073/pnas.1217452110] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Reports of emerging resistance to first-line artemisinin antimalarials make it critical to define resistance mechanisms and identify in vitro correlates of resistance. Here we combine unique in vitro experimental and analytical approaches to mimic in vivo drug exposure in an effort to provide insight into mechanisms of drug resistance. Tightly synchronized parasites exposed to short drug pulses exhibit large stage-dependent differences in their drug response that correlate with hemoglobin digestion throughout most of the asexual cycle. As a result, ring-stage parasites can exhibit >100-fold lower sensitivity to short drug pulses than trophozoites, although we identify a subpopulation of rings (2-4 h postinvasion) that exhibits hypersensitivity. We find that laboratory strains that show little differences in drug sensitivity in standard in vitro assays exhibit substantial (>95-fold) difference in sensitivity when exposed to short drug pulses. These stage- and strain-dependent differences in drug sensitivity reflect differential response lag times with rings exhibiting lag times of up to 4 h. A simple model that assumes that the parasite experiences a saturable effective drug dose describes the complex dependence of parasite viability on both drug concentration and exposure time and is used to demonstrate that small changes in the parasite's drug response profile can dramatically alter the sensitivity to artemisinins. This work demonstrates that effective resistance can arise from the interplay between the short in vivo half-life of the drug and the stage-specific lag time and provides the framework for understanding the mechanisms of drug action and parasite resistance.
Collapse
|
89
|
Miller LH, Ackerman HC, Su XZ, Wellems TE. Malaria biology and disease pathogenesis: insights for new treatments. Nat Med 2013; 19:156-67. [PMID: 23389616 DOI: 10.1038/nm.3073] [Citation(s) in RCA: 396] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 12/17/2012] [Indexed: 12/12/2022]
Abstract
Plasmodium falciparum malaria, an infectious disease caused by a parasitic protozoan, claims the lives of nearly a million children each year in Africa alone and is a top public health concern. Evidence is accumulating that resistance to artemisinin derivatives, the frontline therapy for the asexual blood stage of the infection, is developing in southeast Asia. Renewed initiatives to eliminate malaria will benefit from an expanded repertoire of antimalarials, including new drugs that kill circulating P. falciparum gametocytes, thereby preventing transmission. Our current understanding of the biology of asexual blood-stage parasites and gametocytes and the ability to culture them in vitro lends optimism that high-throughput screenings of large chemical libraries will produce a new generation of antimalarial drugs. There is also a need for new therapies to reduce the high mortality of severe malaria. An understanding of the pathophysiology of severe disease may identify rational targets for drugs that improve survival.
Collapse
Affiliation(s)
- Louis H Miller
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, USA.
| | | | | | | |
Collapse
|
90
|
Gupta AP, Chin WH, Zhu L, Mok S, Luah YH, Lim EH, Bozdech Z. Dynamic epigenetic regulation of gene expression during the life cycle of malaria parasite Plasmodium falciparum. PLoS Pathog 2013; 9:e1003170. [PMID: 23468622 PMCID: PMC3585154 DOI: 10.1371/journal.ppat.1003170] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 12/17/2012] [Indexed: 12/19/2022] Open
Abstract
Epigenetic mechanisms are emerging as one of the major factors of the dynamics of gene expression in the human malaria parasite, Plasmodium falciparum. To elucidate the role of chromatin remodeling in transcriptional regulation associated with the progression of the P. falciparum intraerythrocytic development cycle (IDC), we mapped the temporal pattern of chromosomal association with histone H3 and H4 modifications using ChIP-on-chip. Here, we have generated a broad integrative epigenomic map of twelve histone modifications during the P. falciparum IDC including H4K5ac, H4K8ac, H4K12ac, H4K16ac, H3K9ac, H3K14ac, H3K56ac, H4K20me1, H4K20me3, H3K4me3, H3K79me3 and H4R3me2. While some modifications were found to be associated with the vast majority of the genome and their occupancy was constant, others showed more specific and highly dynamic distribution. Importantly, eight modifications displaying tight correlations with transcript levels showed differential affinity to distinct genomic regions with H4K8ac occupying predominantly promoter regions while others occurred at the 5' ends of coding sequences. The promoter occupancy of H4K8ac remained unchanged when ectopically inserted at a different locus, indicating the presence of specific DNA elements that recruit histone modifying enzymes regardless of their broad chromatin environment. In addition, we showed the presence of multivalent domains on the genome carrying more than one histone mark, highlighting the importance of combinatorial effects on transcription. Overall, our work portrays a substantial association between chromosomal locations of various epigenetic markers, transcriptional activity and global stage-specific transitions in the epigenome.
Collapse
Affiliation(s)
- Archna P. Gupta
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Wai Hoe Chin
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Lei Zhu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Sachel Mok
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yen-Hoon Luah
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Eng-How Lim
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
91
|
Takala-Harrison S, Clark TG, Jacob CG, Cummings MP, Miotto O, Dondorp AM, Fukuda MM, Nosten F, Noedl H, Imwong M, Bethell D, Se Y, Lon C, Tyner SD, Saunders DL, Socheat D, Ariey F, Phyo AP, Starzengruber P, Fuehrer HP, Swoboda P, Stepniewska K, Flegg J, Arze C, Cerqueira GC, Silva JC, Ricklefs SM, Porcella SF, Stephens RM, Adams M, Kenefic LJ, Campino S, Auburn S, MacInnis B, Kwiatkowski DP, Su XZ, White NJ, Ringwald P, Plowe CV. Genetic loci associated with delayed clearance of Plasmodium falciparum following artemisinin treatment in Southeast Asia. Proc Natl Acad Sci U S A 2013; 110:240-5. [PMID: 23248304 PMCID: PMC3538248 DOI: 10.1073/pnas.1211205110] [Citation(s) in RCA: 221] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The recent emergence of artemisinin-resistant Plasmodium falciparum malaria in western Cambodia could threaten prospects for malaria elimination. Identification of the genetic basis of resistance would provide tools for molecular surveillance, aiding efforts to contain resistance. Clinical trials of artesunate efficacy were conducted in Bangladesh, in northwestern Thailand near the Myanmar border, and at two sites in western Cambodia. Parasites collected from trial participants were genotyped at 8,079 single nucleotide polymorphisms (SNPs) using a P. falciparum-specific SNP array. Parasite genotypes were examined for signatures of recent positive selection and association with parasite clearance phenotypes to identify regions of the genome associated with artemisinin resistance. Four SNPs on chromosomes 10 (one), 13 (two), and 14 (one) were significantly associated with delayed parasite clearance. The two SNPs on chromosome 13 are in a region of the genome that appears to be under strong recent positive selection in Cambodia. The SNPs on chromosomes 10 and 13 lie in or near genes involved in postreplication repair, a DNA damage-tolerance pathway. Replication and validation studies are needed to refine the location of loci responsible for artemisinin resistance and to understand the mechanism behind it; however, two SNPs on chromosomes 10 and 13 may be useful markers of delayed parasite clearance in surveillance for artemisinin resistance in Southeast Asia.
Collapse
Affiliation(s)
- Shannon Takala-Harrison
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Taane G. Clark
- Department of Pathogen Molecular Biology, London School of Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Christopher G. Jacob
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Michael P. Cummings
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742
| | - Olivo Miotto
- Medical Research Council Centre for Genomics and Global Health, University of Oxford, Oxford OX3 7BN, United Kingdom
- Mahidol-Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | - Arjen M. Dondorp
- Mahidol-Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | - Mark M. Fukuda
- Armed Forces Research Institute of Medical Sciences, Bangkok, 10400 Thailand
| | - Francois Nosten
- Mahidol-Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
- Shoklo Malaria Research Unit, Mae Sod, Tak 63110, Thailand
| | - Harald Noedl
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, A-1090 Vienna, Austria
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Delia Bethell
- Armed Forces Research Institute of Medical Sciences, Bangkok, 10400 Thailand
| | - Youry Se
- Armed Forces Research Institute of Medical Sciences, Phnom Penh 12252, Cambodia
| | - Chanthap Lon
- Armed Forces Research Institute of Medical Sciences, Phnom Penh 12252, Cambodia
| | - Stuart D. Tyner
- Armed Forces Research Institute of Medical Sciences, Bangkok, 10400 Thailand
| | - David L. Saunders
- Armed Forces Research Institute of Medical Sciences, Bangkok, 10400 Thailand
| | - Duong Socheat
- University of Health Science, Phnom Penh 12201, Cambodia
| | - Frederic Ariey
- Institut Pasteur Unité d’Immunologie Moléculaire des Parasites, F-75015 Paris, France
| | - Aung Pyae Phyo
- Mahidol-Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
- Shoklo Malaria Research Unit, Mae Sod, Tak 63110, Thailand
| | - Peter Starzengruber
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, A-1090 Vienna, Austria
| | - Hans-Peter Fuehrer
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, A-1090 Vienna, Austria
| | - Paul Swoboda
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, A-1090 Vienna, Austria
| | - Kasia Stepniewska
- WorldWide Antimalarial Resistance Network, Oxford University, Oxford OX3 7LJ, United Kingdom
| | - Jennifer Flegg
- WorldWide Antimalarial Resistance Network, Oxford University, Oxford OX3 7LJ, United Kingdom
| | - Cesar Arze
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Gustavo C. Cerqueira
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Joana C. Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Stacy M. Ricklefs
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Stephen F. Porcella
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | | | - Matthew Adams
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Leo J. Kenefic
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Susana Campino
- Medical Research Council Centre for Genomics and Global Health, University of Oxford, Oxford OX3 7BN, United Kingdom
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, United Kingdom
| | - Sarah Auburn
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, United Kingdom
| | - Bronwyn MacInnis
- Medical Research Council Centre for Genomics and Global Health, University of Oxford, Oxford OX3 7BN, United Kingdom
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, United Kingdom
| | - Dominic P. Kwiatkowski
- Medical Research Council Centre for Genomics and Global Health, University of Oxford, Oxford OX3 7BN, United Kingdom
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, United Kingdom
| | - Xin-zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Nicholas J. White
- Mahidol-Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | - Pascal Ringwald
- Drug Resistance and Containment Unit, Global Malaria Programme, World Health Organization, 1211 Geneva 27, Switzerland
| | - Christopher V. Plowe
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
92
|
Abstract
DNA microarray is presently one of the most powerful and fastest growing technologies for genomic research of infectious diseases. Accordingly, DNA microarray-based global analyses of Plasmodium parasites provided many insights into the general biology of malaria infection. From the parasite perspective, it was shown that the complex Plasmodium life cycle is characterized by a high level of coordination in gene expression but at the same time parasites have a considerable capacity to alter their transcriptional profile as a response to external stimuli and/or adaptation to varying growth conditions in their host. In addition to transcriptional profiling, DNA microarrays were shown to be useful for quantitative analyses of Plasmodium genomic DNA including characterizations of sequence polymorphisms and copy number variants (CNV) as well as genomic loci associated with different chromatin factors (e.g., immunoprecipitated material (ChIP-on-chip)). Here, we present protocols for transcriptional profiling, comparative genomic hybridization (CGH), and ChIP-on-chip analyses that have been developed for the use of low-density long oligonucleotide DNA microarrays of Plasmodium species. Many of the presented procedures including RNA purification, DNA amplification, and chromatin immunoprecipitation are likely to be transferable to other genomic platforms such as other microarray technologies and new generation sequencing.
Collapse
Affiliation(s)
- Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| | | | | |
Collapse
|
93
|
Calderón F, Wilson DM, Gamo FJ. Antimalarial drug discovery: recent progress and future directions. PROGRESS IN MEDICINAL CHEMISTRY 2013; 52:97-151. [PMID: 23384667 DOI: 10.1016/b978-0-444-62652-3.00003-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Affiliation(s)
- Félix Calderón
- Tres Cantos Medicines Development Campus, Diseases of the Developing World, GlaxoSmithKline, Tres Cantos, Spain
| | | | | |
Collapse
|
94
|
Carrara VI, Lwin KM, Phyo AP, Ashley E, Wiladphaingern J, Sriprawat K, Rijken M, Boel M, McGready R, Proux S, Chu C, Singhasivanon P, White N, Nosten F. Malaria burden and artemisinin resistance in the mobile and migrant population on the Thai-Myanmar border, 1999-2011: an observational study. PLoS Med 2013; 10:e1001398. [PMID: 23472056 PMCID: PMC3589269 DOI: 10.1371/journal.pmed.1001398] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 01/24/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The Shoklo Malaria Research Unit has been working on the Thai-Myanmar border for 25 y providing early diagnosis and treatment (EDT) of malaria. Transmission of Plasmodium falciparum has declined, but resistance to artesunate has emerged. We expanded malaria activities through EDT and evaluated the impact over a 12-y period. METHODS AND FINDINGS Between 1 October 1999 and 30 September 2011, the Shoklo Malaria Research Unit increased the number of cross-border (Myanmar side) health facilities from two to 11 and recorded the number of malaria consultations. Changes in malaria incidence were estimated from a cohort of pregnant women, and prevalence from cross-sectional surveys. In vivo and in vitro antimalarial drug efficacy were monitored. Over this period, the number of malaria cases detected increased initially, but then declined rapidly. In children under 5 y, the percentage of consultations due to malaria declined from 78% (95% CI 76-80) (1,048/1,344 consultations) to 7% (95% CI 6.2-7.1) (767/11,542 consultations), p<0.001. The ratio of P. falciparum/P. vivax declined from 1.4 (95% CI 1.3-1.4) to 0.7 (95% CI 0.7-0.8). The case fatality rate was low (39/75,126; 0.05% [95% CI 0.04-0.07]). The incidence of malaria declined from 1.1 to 0.1 episodes per pregnant women-year. The cumulative proportion of P. falciparum decreased significantly from 24.3% (95% CI 21.0-28.0) (143/588 pregnant women) to 3.4% (95% CI 2.8-4.3) (76/2,207 pregnant women), p<0.001. The in vivo efficacy of mefloquine-artesunate declined steadily, with a sharp drop in 2011 (day-42 PCR-adjusted cure rate 42% [95% CI 20-62]). The proportion of patients still slide positive for malaria at day 3 rose from 0% in 2000 to reach 28% (95% CI 13-45) (8/29 patients) in 2011. CONCLUSIONS Despite the emergence of resistance to artesunate in P. falciparum, the strategy of EDT with artemisinin-based combination treatments has been associated with a reduction in malaria in the migrant population living on the Thai-Myanmar border. Although limited by its observational nature, this study provides useful data on malaria burden in a strategically crucial geographical area. Alternative fixed combination treatments are needed urgently to replace the failing first-line regimen of mefloquine and artesunate. Please see later in the article for the Editors' Summary.
Collapse
Affiliation(s)
- Verena I. Carrara
- Shoklo Malaria Research Unit, Mae Sot, Thailand
- Mahidol Oxford University Research Unit, Bangkok, Thailand
| | - Khin Maung Lwin
- Shoklo Malaria Research Unit, Mae Sot, Thailand
- Mahidol Oxford University Research Unit, Bangkok, Thailand
| | - Aung Pyae Phyo
- Shoklo Malaria Research Unit, Mae Sot, Thailand
- Mahidol Oxford University Research Unit, Bangkok, Thailand
| | - Elizabeth Ashley
- Shoklo Malaria Research Unit, Mae Sot, Thailand
- Mahidol Oxford University Research Unit, Bangkok, Thailand
- Centre for Tropical Medicine, University of Oxford, Oxford, United Kingdom
| | | | | | - Marcus Rijken
- Shoklo Malaria Research Unit, Mae Sot, Thailand
- Department of Obstetrics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Machteld Boel
- Shoklo Malaria Research Unit, Mae Sot, Thailand
- Academic Medical Center, Amsterdam, The Netherlands
| | - Rose McGready
- Shoklo Malaria Research Unit, Mae Sot, Thailand
- Mahidol Oxford University Research Unit, Bangkok, Thailand
- Centre for Tropical Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Cindy Chu
- Shoklo Malaria Research Unit, Mae Sot, Thailand
- Mahidol Oxford University Research Unit, Bangkok, Thailand
- Centre for Tropical Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Nicholas White
- Mahidol Oxford University Research Unit, Bangkok, Thailand
- Centre for Tropical Medicine, University of Oxford, Oxford, United Kingdom
| | - François Nosten
- Shoklo Malaria Research Unit, Mae Sot, Thailand
- Mahidol Oxford University Research Unit, Bangkok, Thailand
- Centre for Tropical Medicine, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
95
|
Fairhurst RM, Nayyar GML, Breman JG, Hallett R, Vennerstrom JL, Duong S, Ringwald P, Wellems TE, Plowe CV, Dondorp AM. Artemisinin-resistant malaria: research challenges, opportunities, and public health implications. Am J Trop Med Hyg 2012; 87:231-241. [PMID: 22855752 PMCID: PMC3414557 DOI: 10.4269/ajtmh.2012.12-0025] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Artemisinin-based combination therapies are the most effective drugs to treat Plasmodium falciparum malaria. Reduced sensitivity to artemisinin monotherapy, coupled with the emergence of parasite resistance to all partner drugs, threaten to place millions of patients at risk of inadequate treatment of malaria. Recognizing the significance and immediacy of this possibility, the Fogarty International Center and the National Institute of Allergy and Infectious Diseases of the U.S. National Institutes of Health convened a conference in November 2010 to bring together the diverse array of stakeholders responding to the growing threat of artemisinin resistance, including scientists from malarious countries in peril. This conference encouraged and enabled experts to share their recent unpublished data from studies that may improve our understanding of artemisinin resistance. Conference sessions addressed research priorities to forestall artemisinin resistance and fostered collaborations between field- and laboratory-based researchers and international programs, with the aim of translating new scientific evidence into public health solutions. Inspired by this conference, this review summarizes novel findings and perspectives on artemisinin resistance, approaches for translating research data into relevant public health information, and opportunities for interdisciplinary collaboration to combat artemisinin resistance.
Collapse
Affiliation(s)
- Rick M. Fairhurst
- *Address correspondence to Rick M. Fairhurst, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Room 3E-10A, Rockville, MD 20852. E-mail:
| | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Cui L, Wang Z, Miao J, Miao M, Chandra R, Jiang H, Su XZ, Cui L. Mechanisms of in vitro resistance to dihydroartemisinin in Plasmodium falciparum. Mol Microbiol 2012; 86:111-28. [PMID: 22812578 DOI: 10.1111/j.1365-2958.2012.08180.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The recent reports of artemisinin (ART) resistance in the Thai-Cambodian border area raise a serious concern on the long-term efficacy of ARTs. To elucidate the resistance mechanisms, we performed in vitro selection with dihydroartemisinin (DHA) and obtained two parasite clones from Dd2 with more than 25-fold decrease in susceptibility to DHA. The DHA-resistant clones were more tolerant of stressful growth conditions and more resistant to several commonly used antimalarial drugs than Dd2. The result is worrisome as many of the drugs are currently used as ART partners in malaria control. This study showed that the DHA resistance is not limited to ring stage, but also occurred in trophozoites and schizonts. Microarray and biochemical analyses revealed pfmdr1 amplification, elevation of the antioxidant defence network, and increased expression of many chaperones in the DHA-resistant parasites. Without drug pressure, the DHA-resistant parasites reverted to sensitivity in approximately 8 weeks, accompanied by de-amplification of pfmdr1 and reduced antioxidant activities. The parallel decrease and increase in pfmdr1 copy number and antioxidant activity and the up and down of DHA sensitivity strongly suggest that pfmdr1 and antioxidant defence play a role in in vitro resistance to DHA, providing potential molecular markers for ART resistance.
Collapse
Affiliation(s)
- Long Cui
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Kafsack BFC, Painter HJ, Llinás M. New Agilent platform DNA microarrays for transcriptome analysis of Plasmodium falciparum and Plasmodium berghei for the malaria research community. Malar J 2012; 11:187. [PMID: 22681930 PMCID: PMC3411454 DOI: 10.1186/1475-2875-11-187] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 06/08/2012] [Indexed: 12/02/2022] Open
Abstract
Background DNA microarrays have been a valuable tool in malaria research for over a decade but remain in limited use in part due their relatively high cost, poor availability, and technical difficulty. With the aim of alleviating some of these factors next-generation DNA microarrays for genome-wide transcriptome analysis for both Plasmodium falciparum and Plasmodium berghei using the Agilent 8x15K platform were designed. Methods Probe design was adapted from previously published methods and based on the most current transcript predictions available at the time for P. falciparum or P. berghei. Array performance and transcriptome analysis was determined using dye-coupled, aminoallyl-labelled cDNA and streamlined methods for hybridization, washing, and array analysis were developed. Results The new array design marks a notable improvement in the number of transcripts covered and average number of probes per transcript. Array performance was excellent across a wide range of transcript abundance, with low inter-array and inter-probe variability for relative abundance measurements and it recapitulated previously observed transcriptional patterns. Additionally, improvements in sensitivity permitted a 20-fold reduction in necessary starting RNA amounts, further reducing experimental costs and widening the range of application. Conclusions DNA microarrays utilizing the Agilent 8x15K platform for genome-wide transcript analysis in P. falciparum and P. berghei mark an improvement in coverage and sensitivity, increased availability to the research community, and simplification of the experimental methods.
Collapse
Affiliation(s)
- Björn F C Kafsack
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
98
|
Gonzalez DJ, Xu Y, Yang YL, Esquenazi E, Liu WT, Edlund A, Duong T, Du L, Molnár I, Gerwick WH, Jensen PR, Fischbach M, Liaw CC, Straight P, Nizet V, Dorrestein PC. Observing the invisible through imaging mass spectrometry, a window into the metabolic exchange patterns of microbes. J Proteomics 2012; 75:5069-5076. [PMID: 22641157 DOI: 10.1016/j.jprot.2012.05.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 05/17/2012] [Accepted: 05/19/2012] [Indexed: 01/20/2023]
Abstract
Many microbes can be cultured as single-species communities. Often, these colonies are controlled and maintained via the secretion of metabolites. Such metabolites have been an invaluable resource for the discovery of therapeutics (e.g. penicillin, taxol, rapamycin, epothilone). In this article, written for a special issue on imaging mass spectrometry, we show that MALDI-imaging mass spectrometry can be adapted to observe, in a spatial manner, the metabolic exchange patterns of a diverse array of microbes, including thermophilic and mesophilic fungi, cyanobacteria, marine and terrestrial actinobacteria, and pathogenic bacteria. Dependent on media conditions, on average and based on manual analysis, we observed 11.3 molecules associated with each microbial IMS experiment, which was split nearly 50:50 between secreted and colony-associated molecules. The spatial distributions of these metabolic exchange factors are related to the biological and ecological functions of the organisms. This work establishes that MALDI-based IMS can be used as a general tool to study a diverse array of microbes. Furthermore the article forwards the notion of the IMS platform as a window to discover previously unreported molecules by monitoring the metabolic exchange patterns of organisms when grown on agar substrates.
Collapse
Affiliation(s)
- David J Gonzalez
- Department of Pediatrics, University of California, San Diego, United States
| | - Yuquan Xu
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, United States
| | - Yu-Liang Yang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, United States
| | - Eduardo Esquenazi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, United States; Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, United States
| | - Wei-Ting Liu
- Department of Chemistry and Biochemistry, University of California, San Diego, United States
| | - Anna Edlund
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, United States
| | - Tram Duong
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, United States
| | - Liangcheng Du
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, United States
| | - István Molnár
- Natural Products Center, School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, United States
| | - William H Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, United States
| | - Paul R Jensen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, United States
| | - Michael Fischbach
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, United States
| | - Chih-Chuang Liaw
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Paul Straight
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
| | - Victor Nizet
- Department of Pediatrics, University of California, San Diego, United States
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, United States; Department of Chemistry and Biochemistry, University of California, San Diego, United States; Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, United States.
| |
Collapse
|
99
|
Guiguemde WA, Shelat AA, Garcia-Bustos JF, Diagana TT, Gamo FJ, Guy RK. Global phenotypic screening for antimalarials. ACTA ACUST UNITED AC 2012; 19:116-29. [PMID: 22284359 DOI: 10.1016/j.chembiol.2012.01.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 01/10/2012] [Accepted: 01/10/2012] [Indexed: 12/20/2022]
Abstract
Malaria, a devastating infectious disease caused by Plasmodium spp., leads to roughly 655,000 deaths per year, mostly of African children. To compound the problem, drug resistance has emerged to all classical antimalarials and may be emerging for artemisinin-based combination therapies. To address the need for new antimalarials with novel mechanisms, several groups carried out phenotypic screening campaigns to identify compounds inhibiting growth of the blood stages of Plasmodium falciparum. In this review, we describe the characterization of these compounds, explore currently ongoing strategies to develop lead molecules, and endorse the concept of a "malaria box" of publicly accessible active compounds.
Collapse
Affiliation(s)
- W Armand Guiguemde
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | | | | | | | | | | |
Collapse
|
100
|
Sibley CH, Price RN. Monitoring antimalarial drug resistance: Applying lessons learned from the past in a fast-moving present. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2012; 2:126-33. [PMID: 24533274 DOI: 10.1016/j.ijpddr.2012.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 03/25/2012] [Accepted: 03/28/2012] [Indexed: 11/19/2022]
Abstract
The need for robust surveillance of antimalarial drugs is more urgent than it has ever been. In the western region of Cambodia, artemisinin resistance has emerged in Plasmodium falciparum and threatens to undermine the efficacy of highly effective artemisinin combination therapies. Although some manfestations of artemisinin tolerance are unique to this class of drug, many of its properties mirror previous experience in understanding and tracking resistance to other antimalarials. In this review we outline the spectrum of approaches that were developed to understand the evolution and spread of antifolate resistance, highlighting the importance of integrating information from different methodologies towards a better understanding of the underlying biologic processes. We consider how to apply our experience in investigating and attempting to contain antifolate resistance to inform our prospective assessment of novel antimalarial resistance patterns and their subsequent spread.
Collapse
Affiliation(s)
- Carol Hopkins Sibley
- WorldWide Antimalarial Resistance Network, Box 355065, University of Washington, Seattle, WA 98195 5065, USA
| | - Ric N Price
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia ; Center for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
| |
Collapse
|