51
|
Stem cell delivery to kidney via minimally invasive ultrasound-guided renal artery injection in mice. Sci Rep 2020; 10:7514. [PMID: 32372054 PMCID: PMC7200714 DOI: 10.1038/s41598-020-64417-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/10/2020] [Indexed: 12/22/2022] Open
Abstract
Cell-based therapies are promising treatments for various kidney diseases. However, the major hurdle in initiating therapeutic responses is the inefficiency of injection routes to deliver cells to the kidney parenchyma. Systemic injection, such as intravenous injection only delivers a small proportion of cells to the kidney. Whereas direct delivery, such as renal artery injection requires surgical procedures. A minimally invasive renal artery injection was therefore developed to enhance cell delivery to kidney. In this study, luciferase expressing human adipocyte derived stem cells (ADSC) were labelled with gold nanorods (GNR) and injected into the renal artery using ultrasound guidance. The ADSCs were tracked using bioluminescence and photoacoustic imaging serially over 7 days. Imaging confirmed that the majority of signal was within the kidney, indicative of successful injection and that the cells remained viable for 3 days. Histology showed co-localization of GNRs with ADSC staining throughout the kidney with no indication of injury caused by injection. These findings demonstrate that ultrasound-guided renal artery injection is feasible in mice and can successfully deliver a large proportion of cells which are retained within the kidney for 3 days. Therefore, the techniques developed here will be useful for optimising cell therapy in kidney diseases.
Collapse
|
52
|
Rosales Gerpe MC, van Lieshout LP, Domm JM, van Vloten JP, Datu J, Ingrao JC, Yu DL, de Jong J, Moraes TJ, Krell PJ, Bridle BW, Wootton SK. Optimized Pre-Clinical Grade Production of Two Novel Lentiviral Vector Pseudotypes for Lung Gene Delivery. Hum Gene Ther 2020; 31:459-471. [PMID: 32000531 DOI: 10.1089/hum.2019.211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Lung gene therapy requires efficient transduction of slow-replicating epithelia and stable expression of delivered transgenes in the respiratory tract. Lentiviral (LV) vectors have the ideal coding, expression, and transducing capacity required for gene therapy. A modified envelope glycoprotein from the Jaagsiekte Sheep Retrovirus, termed Jenv, is well suited for LV-mediated lung gene therapy due to its inherent lung tropism. Here, two novel Jenv-pseudotyped LVs that effectively transduce lung tissue and yield titers similar to the gold standard, vesicular stomatitis virus glycoprotein (VSVg)-pseudotyped LVs, were generated. As the concentration efficiency of LVs was found to depend on envelope pseudotype, a large-scale production method tailored for Jenv-pseudotyped LVs was developed and the most appropriate method of concentration was determined. In contrast to VSVg and Ebola virus glycoprotein-pseudotyped LVs, ultracentrifugation through a sucrose cushion drastically reduced the yield of Jenv LVs, whereas polyethylene glycol precipitation and tangential flow filtration (TFF) proved to be more suitable methods for concentrating Jenv LVs. Importantly, pressure during TFF was found to be crucial for increasing LV recovery. Finally, a unique mouse model was developed to test the suitability of these novel Jenv-pseudotyped LVs for use in lung gene therapy applications.
Collapse
Affiliation(s)
- María C Rosales Gerpe
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Laura P van Lieshout
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Jakob M Domm
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Jacob P van Vloten
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Jodre Datu
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Joelle C Ingrao
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Darrick L Yu
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Jondavid de Jong
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Theo J Moraes
- Division of Respiratory Medicine, Department of Pediatrics, Hospital for Sick Children, Toronto, Canada
| | - Peter J Krell
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Byram W Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Sarah K Wootton
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| |
Collapse
|
53
|
Abstract
A widely used third-generation lentiviral packaging system produces virus with enhanced biosafety by eliminating HIV accessory genes and separating packaging elements into three different plasmids. However, for certain vectors such as pLKO.1, third-generation safety features reduce lentiviral titers due to the lack of the accessory gene tat. Here we present a way to improve virus production and target gene knockdown with a modified pLKO.1 CMV pLKO.1C) vector and optimized packaging construct ratios. Replacing the pLKO.1 RSV promoter with the Cytomegalovirus promoter yielded an average of threefold higher titer than standard pLKO.1 packaged using the third-generation system, while optimizing the packaging vector ratios further increased titer and yielded an average of tenfold higher titer than pLKO.1 packaged with the second-generation system. Substituting the Rous Sarcoma Virus promoter of pLKO.1 with the Cytomegalovirus promoter dramatically enhanced virus production with the third-generation packaging system. Higher titers and improved target gene knockdown were achieved by optimizing the ratio of viral packaging constructs. This study suggests an approach to generate and deliver lentiviruses with maximized efficacy while maintaining biosafety.
Collapse
|
54
|
Picanço-Castro V, Moço PD, Mizukami A, Vaz LD, de Souza Fernandes Pereira M, Silvestre RN, de Azevedo JTC, de Sousa Bomfim A, de Abreu Neto MS, Malmegrim KCR, Swiech K, Covas DT. Establishment of a simple and efficient platform for car-t cell generation and expansion: from lentiviral production to in vivo studies. Hematol Transfus Cell Ther 2019; 42:150-158. [PMID: 31676276 PMCID: PMC7248496 DOI: 10.1016/j.htct.2019.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/10/2019] [Indexed: 02/08/2023] Open
Abstract
Introduction Adoptive transfer of T cells expressing a CD19-specific chimeric antigen receptor (CAR) has shown impressive response rates for the treatment of CD19 + B-cell malignancies in numerous clinical trials. The CAR molecule, which recognizes cell-surface tumor-associated antigen independently of human leukocyte antigen (HLA), is composed by one or more signaling molecules to activate genetically modified T cells for killing, proliferation, and cytokine production. Objectives In order to make this treatment available for a larger number of patients, we developed a simple and efficient platform to generate and expand CAR-T cells. Methods Our approach is based on a lentiviral vector composed by a second-generation CAR that signals through a 41BB and CD3-ζ endodomain. Conclusions In this work, we show a high-level production of the lentiviral vector, which was successfully used to generate CAR-T cells. The CAR-T cells produced were highly cytotoxic and specific against CD19+ cells in vitro and in vivo, being able to fully control disease progression in a xenograft B-cell lymphoma mouse model. Our work demonstrates the feasibility of producing CAR-T cells in an academic context and can serve as a paradigm for similar institutions. Nevertheless, the results presented may contribute favoring the translation of the research to the clinical practice.
Collapse
Affiliation(s)
- Virgínia Picanço-Castro
- Universidade de São Paulo (USP), Hemocentro, Centro de Terapia Celular CTC, Ribeirão Preto, SP, Brazil.
| | - Pablo Diego Moço
- Universidade de São Paulo (USP), Hemocentro, Centro de Terapia Celular CTC, Ribeirão Preto, SP, Brazil
| | - Amanda Mizukami
- Universidade de São Paulo (USP), Hemocentro, Centro de Terapia Celular CTC, Ribeirão Preto, SP, Brazil
| | - Leticia Delfini Vaz
- Universidade de São Paulo (USP), Hemocentro, Centro de Terapia Celular CTC, Ribeirão Preto, SP, Brazil
| | | | - Renata Nacasaki Silvestre
- Universidade de São Paulo (USP), Hemocentro, Centro de Terapia Celular CTC, Ribeirão Preto, SP, Brazil
| | | | - Aline de Sousa Bomfim
- Universidade de São Paulo (USP), Hemocentro, Centro de Terapia Celular CTC, Ribeirão Preto, SP, Brazil
| | | | - Kelen Cristina Ribeiro Malmegrim
- Universidade de São Paulo (USP), Hemocentro, Centro de Terapia Celular CTC, Ribeirão Preto, SP, Brazil; Universidade de São Paulo, Faculdade de Ciências Farmacêuticas de Ribeirão Preto da Ribeirão Preto (FCFRP), SP, Brazil
| | - Kamilla Swiech
- Universidade de São Paulo (USP), Hemocentro, Centro de Terapia Celular CTC, Ribeirão Preto, SP, Brazil; Universidade de São Paulo, Faculdade de Ciências Farmacêuticas de Ribeirão Preto da Ribeirão Preto (FCFRP), SP, Brazil
| | - Dimas Tadeu Covas
- Universidade de São Paulo (USP), Hemocentro, Centro de Terapia Celular CTC, Ribeirão Preto, SP, Brazil; Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto da Ribeirão Preto (FMRP-USP), SP, Brazil
| |
Collapse
|
55
|
Sano S, Wang Y, Evans MA, Yura Y, Sano M, Ogawa H, Horitani K, Doviak H, Walsh K. Lentiviral CRISPR/Cas9-Mediated Genome Editing for the Study of Hematopoietic Cells in Disease Models. J Vis Exp 2019:10.3791/59977. [PMID: 31633690 PMCID: PMC7249700 DOI: 10.3791/59977] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Manipulating genes in hematopoietic stem cells using conventional transgenesis approaches can be time-consuming, expensive, and challenging. Benefiting from advances in genome editing technology and lentivirus-mediated transgene delivery systems, an efficient and economical method is described here that establishes mice in which genes are manipulated specifically in hematopoietic stem cells. Lentiviruses are used to transduce Cas9-expressing lineage-negative bone marrow cells with a guide RNA (gRNA) targeting specific genes and a red fluorescence reporter gene (RFP), then these cells are transplanted into lethally-irradiated C57BL/6 mice. Mice transplanted with lentivirus expressing non-targeting gRNA are used as controls. Engraftment of transduced hematopoietic stem cells are evaluated by flow cytometric analysis of RFP-positive leukocytes of peripheral blood. Using this method, ~90% transduction of myeloid cells and ~70% of lymphoid cells at 4 weeks after transplantation can be achieved. Genomic DNA is isolated from RFP-positive blood cells, and portions of the targeted site DNA are amplified by PCR to validate the genome editing. This protocol provides a high-throughput evaluation of hematopoiesis-regulatory genes and can be extended to a variety of mouse disease models with hematopoietic cell involvement.
Collapse
Affiliation(s)
- Soichi Sano
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine
| | - Ying Wang
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine
| | - Megan A Evans
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine
| | - Yoshimitsu Yura
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine
| | - Miho Sano
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine
| | - Hayato Ogawa
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine
| | - Keita Horitani
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine
| | - Heather Doviak
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine
| | - Kenneth Walsh
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine;
| |
Collapse
|
56
|
Timmins LM, Patel RS, Teryek MS, Parekkadan B. Real-time transfer of lentiviral particles by producer cells using an engineered coculture system. Cytotechnology 2019; 71:1019-1031. [PMID: 31515650 PMCID: PMC6787137 DOI: 10.1007/s10616-019-00343-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/06/2019] [Indexed: 11/25/2022] Open
Abstract
Lentiviruses are quite effective gene delivery systems for stable production of genetically engineered human cells. However, prior to using lentivirus to deliver genetic materials to cells of interest, the normal course of production of these lentiviruses involves a lengthy collection, purification, preservation, and quantification process. In this report, we demonstrate the ability for producer HEK293T cells to simultaneously produce lentiviral particles and transduce (i.e., infect) target cells through a membrane-based coculture system in a continuous, real-time mode which negates the need for a separate viral collection and quantification process. The coculture system was evaluated for major design features such as variations in HEK293T seeding density, target cell type densities, as well as membrane porosities to identify key relationships between lentiviral particle production rate and infection kinetics for adherent and suspension cell types. As a proof-of-concept for the creation of an engineered cell immunotherapy, we describe the ability to engineer human T cells isolated from PBMCs under the control of this coculture system in under 6 days with a GFP construct. These studies suggest the capability to combine and more closely automate the transfection/transduction process in order to facilitate well-timed and cost-effective transduction of target cell types. These experiments provide novel insight into the forthcoming transition into improved manufacturing systems for viral production and subsequent cell engineering.
Collapse
Affiliation(s)
- Lauren M Timmins
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08902, USA
| | - Riya S Patel
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08902, USA
| | - Matthew S Teryek
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08902, USA
| | - Biju Parekkadan
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08902, USA.
| |
Collapse
|
57
|
Yuan X, Guo Y, Chen D, Luo Y, Chen D, Miao J, Chen Y. Long non-coding RNA MALAT1 functions as miR-1 sponge to regulate Connexin 43-mediated ossification of the posterior longitudinal ligament. Bone 2019; 127:305-314. [PMID: 31280017 DOI: 10.1016/j.bone.2019.06.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 06/03/2019] [Accepted: 06/20/2019] [Indexed: 01/09/2023]
Abstract
Ossification of the posterior longitudinal ligament (OPLL) is the major cause for several deteriorate bone and joint diseases. Its development is a highly organized dynamic process as modulated by various physiological and pathophysiological factors. Both long non-coding RNAs (lncRNAs) and small non-coding RNAs (miRNAs) have been postulated to involve into almost all the biological conditions. Here, we applied high through-put transcriptome screening to unveil lncRNAs highly regulated under OPLL condition. siRNA assay in combination with western blot and quantitative PCR deciphered the lncRNA and miRNA functions in OPLL and their underlying mechanism. Here we identified an lncRNA, named Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT1) engaged into the development of OPLL by indirectly targeting Connexin 43 (Cx43) gene. As previously reported, Cx43 is one of the main proteins contributing to OPLL partially through enhancing inflammatory signaling. On top of that, we provided another regulatory layer that MALAT1 served as the upstream effector governing the transcription of Cx43 gene. Perturbation of MALAT1 significantly inhibited Cx43 expression, inflammation, and osteogenesis. Mechanistically, in silico analysis and experimental validation both confirmed that microRNA-1 (miR-1) was the mediator connecting MALAT1-Cx43 axis: overexpression of miR-1 diminished Cx43 expression and OPLL process; meanwhile, MALAT1 acted as miR-1 sponge to inhibit its suppressive transcription effect on downstream ossification related genes. Knock-down of MALAT1 released sequestered miR-1, which repressed Cx43 expression and associated OPLL. Likewise, induced OPLL caused by overexpression of MALAT1 can be ameliorated by enhanced miR-1 function, knock-down of Cx43 or inhibition of inflammation. More importantly, further validation using patient ligament samples from non-OPLL and OPLL individuals identified MALAT1-miR-1-Cx43 regulatory axis. Collectively, we found a novel mechanism through lncRNA-miRNA interaction that provides more insights into understanding the development of OPLL.
Collapse
Affiliation(s)
- Xiaoqiu Yuan
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, China
| | - Yongfei Guo
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, China
| | - Dechun Chen
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, China
| | - Yibin Luo
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, China
| | - Deyu Chen
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, China
| | - Jinhao Miao
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, China
| | - Yu Chen
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, China.
| |
Collapse
|
58
|
Tan Q, Zhang C, Yang W, Liu Y, Heyilimu P, Feng D, Xing L, Ke Y, Lu Z. Isolation of T cell receptor specifically reactive with autologous tumour cells from tumour-infiltrating lymphocytes and construction of T cell receptor engineered T cells for esophageal squamous cell carcinoma. J Immunother Cancer 2019; 7:232. [PMID: 31462302 PMCID: PMC6714102 DOI: 10.1186/s40425-019-0709-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/14/2019] [Indexed: 12/24/2022] Open
Abstract
Background T cell receptor-engineered T cells (TCR-Ts) therapy is a promising cancer treatment strategy. Nowadays, most studies focused on identification of high-avidity T cell receptors (TCRs) directed against neoantigens derived from somatic mutations. However, few neoantigens per patient could induce immune response in epithelial cancer and additionally many tumor-specific antigens could be derived from noncoding region. Autologous tumor cells (ATCs) could be unbiased stimulators in activating and enriching tumor-reactive T cells. However, it’s unknown if T cells engineered to express TCRs isolated from tumor-reactive T cells enriched by ATCs have strong antitumor response. Methods In this study, multiple TIL fragments obtained from a patient with esophageal squamous cell carcinoma (ESCC) were screened for specific recognition of ATCs. Tumor-reactive TILs were enriched by in vitro repeated stimulation of ATCs and isolated based on CD137 upregulation. Subsequently, tumor-reactive TCR was obtained by single-cell RT-PCR analysis and was introduced into peripheral blood lymphocytes to generate TCR-Ts. Results We found that phenotype and effect function of TIL fragments derived from different tumor sites were spatially heterogeneous. Of four TIL fragments, only TIL-F1 could specifically identify ATCs. Subsequently, we isolated CD8+ CD137+ T cells from pre- and post-stimulated TIL-F1 co-cultured with ATCs, and identified their most dominant TCR. This TCR was introduced into PBLs to generate TCR-Ts, which specifically identified and killed ATCs in vivo and in vitro. Conclusion This strategy provides the means to generate tumor-reactive TCR-Ts for ESCC, which is especially important for patients without prior knowledge of specific epitopes and might be applied for other cancers. Electronic supplementary material The online version of this article (10.1186/s40425-019-0709-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qin Tan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Beijing, 100142, China
| | - Chaoting Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Beijing, 100142, China.
| | - Wenjun Yang
- Key Laboratory of Fertility Preservation and Maintenance (Ministry of Education), Cancer Institute of the General Hospital, Ningxia Medical University, Yinchuan, Ningxia, 750004, People's Republic of China
| | - Ying Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Beijing, 100142, China
| | - Palashati Heyilimu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Beijing, 100142, China
| | - Dongdong Feng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Head and Neck Surgery, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Beijing, 100142, China
| | - Liying Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Beijing, 100142, China
| | - Yang Ke
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Beijing, 100142, China.
| | - Zheming Lu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Beijing, 100142, China.
| |
Collapse
|
59
|
Poorebrahim M, Sadeghi S, Fakhr E, Abazari MF, Poortahmasebi V, Kheirollahi A, Askari H, Rajabzadeh A, Rastegarpanah M, Linē A, Cid-Arregui A. Production of CAR T-cells by GMP-grade lentiviral vectors: latest advances and future prospects. Crit Rev Clin Lab Sci 2019; 56:393-419. [PMID: 31314617 DOI: 10.1080/10408363.2019.1633512] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chimeric antigen receptor (CAR) T-cells represent a paradigm shift in cancer immunotherapy and a new milestone in the history of oncology. In 2017, the Food and Drug Administration approved two CD19-targeted CAR T-cell therapies (Kymriah™, Novartis, and Yescarta™, Kite Pharma/Gilead Sciences) that have remarkable efficacy in some B-cell malignancies. The CAR approach is currently being evaluated in multiple pivotal trials designed for the immunotherapy of hematological malignancies as well as solid tumors. To generate CAR T-cells ex vivo, lentiviral vectors (LVs) are particularly appealing due to their ability to stably integrate relatively large DNA inserts, and to efficiently transduce both dividing and nondividing cells. This review discusses the latest advances and challenges in the design and production of CAR T-cells, and the good manufacturing practices (GMP)-grade production process of LVs used as a gene transfer vehicle. New developments in the application of CAR T-cell therapy are also outlined with particular emphasis on next-generation allogeneic CAR T-cells.
Collapse
Affiliation(s)
- Mansour Poorebrahim
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Solmaz Sadeghi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR , Tehran , Iran
| | - Elham Fakhr
- Department of Translational Immunology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT) , Heidelberg , Germany
| | - Mohammad Foad Abazari
- Research Center for Clinical Virology, Tehran University of Medical Sciences , Tehran , Iran
| | - Vahdat Poortahmasebi
- Liver and Gastrointestinal Disease Research Center, Tabriz University of Medical Sciences , Tabriz , Iran.,Infectious and Tropical Disease Research Center, Tabriz University of Medical Sciences , Tabriz , Iran.,Faculty of Medicine, Department of Bacteriology and Virology, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Asma Kheirollahi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran , Tehran , Iran
| | - Hassan Askari
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Alireza Rajabzadeh
- Applied Cell Sciences and Tissue Engineering Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Malihe Rastegarpanah
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Aija Linē
- Latvian Biomedical Research and Study Centre , Riga , Latvia
| | - Angel Cid-Arregui
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR , Tehran , Iran.,Targeted Tumor Vaccines Group, Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ) , Heidelberg , Germany
| |
Collapse
|
60
|
Shi L, Shi G, Li T, Luo Y, Chen D, Miao J, Chen Y. The endoplasmic reticulum stress response participates in connexin 43-mediated ossification of the posterior longitudinal ligament. Am J Transl Res 2019; 11:4113-4125. [PMID: 31396322 PMCID: PMC6684927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/01/2019] [Indexed: 06/10/2023]
Abstract
Ossification of the posterior longitudinal ligament (OPLL) manifests as ectopic bone formation in spinal ligament tissue. As revealed by in vitro studies, fibroblasts from patients with OPLL or healthy ligament fibroblasts undergo mechanical stress (MS). We previously demonstrated that a cell-cell junction protein, connexin 43 (Cx43), is significantly up-regulated in OPLL cells and previous data indicated that some proteins related to the endoplasmic reticulum (ER) stress response are elevated during the development of OPLL. The present study utilized gain- and loss-of-function tools to delineate the contribution of the ER stress response within ligament fibroblasts under OPLL-inducing stimuli and the crosstalk between Cx43 signaling and the ER stress response. The ER stress process was augmented by the induction of Cx43 expression in OPLL cells or cells under MS. Cx43 over-expression also promoted ER stress and ossification in OPLL cells. Moreover, the activation of ER stress was accompanied with increased oxidative stress, which was inhibited by Cx43 gene silencing. Cx43 knockdown also improved ER stress-related ossification in OPLL cells. The blockage of ER stress using a chemical compound or small interfering RNA was sufficient to overcome MS-induced ossification in OPLL cells. These findings were further validated in patients with OPLL, as the mRNA levels of Cx43 and PKR-like endoplasmic reticulum kinase (a single-pass type I ER membrane protein kinase), a major transducer of ER stress, were significantly increased compared with non-OPLL subjects. In conclusion, this study demonstrates that ER stress participates in Cx43-related OPLL.
Collapse
Affiliation(s)
- Lei Shi
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University Shanghai 200003, China
| | - Guodong Shi
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University Shanghai 200003, China
| | - Tiefeng Li
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University Shanghai 200003, China
| | - Yibin Luo
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University Shanghai 200003, China
| | - Deyu Chen
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University Shanghai 200003, China
| | - Jinhao Miao
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University Shanghai 200003, China
| | - Yu Chen
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University Shanghai 200003, China
| |
Collapse
|
61
|
Lupan AM, Preda MB, Burlacu A. A standard procedure for lentiviral-mediated labeling of murine mesenchymal stromal cells in vitro. Biotechnol Appl Biochem 2019; 66:643-653. [PMID: 31087689 DOI: 10.1002/bab.1765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/13/2019] [Indexed: 12/29/2022]
Abstract
Tracking of stem cells after transplantation is effectively performed in vivo with imaging systems, assuming the cells are adequately labeled to facilitate their recognition. This study aimed to optimize a protocol for fluorescent labeling of mesenchymal stromal cells (MSCs) in vitro, by using a third-generation lentiviral system. Basically, 293T cells are seeded in high-glucose Dulbecco's modified Eagle medium with 10% FBS one day before transfection. Transfection is done for 24 h using a mix of transfer, packaging, regulatory, and envelope plasmids, in molar ratio of 4:2:1:1, respectively. After transfection, the cells are further cultured for two days. During this period, the viral medium is harvested two times, at 24-h intervals, with the first round being stored at 4°C until the second round is completed. The pooled viral medium is frozen in single-use aliquots. MSCs are transduced with 25 multiplicity of infection (MOI) and one day later the cells are passaged at standard seeding density and further grown for three days, when the fluorescence reach the maximum level. Our protocol provides particular experimental details for permanent MSC labeling that makes the procedure highly effective for therapeutic purposes, without affecting the functional properties of stem cells.
Collapse
Affiliation(s)
- Ana-Mihaela Lupan
- Institute of Cellular Biology and Pathology, "Nicolae Simionescu", Bucharest, Romania
| | - Mihai Bogdan Preda
- Institute of Cellular Biology and Pathology, "Nicolae Simionescu", Bucharest, Romania
| | - Alexandrina Burlacu
- Institute of Cellular Biology and Pathology, "Nicolae Simionescu", Bucharest, Romania
| |
Collapse
|
62
|
Chow HM, Cheng A, Song X, Swerdel MR, Hart RP, Herrup K. ATM is activated by ATP depletion and modulates mitochondrial function through NRF1. J Cell Biol 2019; 218:909-928. [PMID: 30642892 PMCID: PMC6400560 DOI: 10.1083/jcb.201806197] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/27/2018] [Accepted: 12/26/2018] [Indexed: 12/19/2022] Open
Abstract
Oxidative stress, resulting from neuronal activity and depleted ATP levels, activates ATM, which phosphorylates NRF1, causing nuclear translocation and up regulation of mitochondrial gene expression. In ATM deficiency, ATP levels recover more slowly, particularly in active neurons with high energy demands. Ataxia-telangiectasia (A-T) is an autosomal recessive disease caused by mutation of the ATM gene and is characterized by loss of cerebellar Purkinje cells, neurons with high physiological activity and dynamic ATP demands. Here, we show that depletion of ATP generates reactive oxygen species that activate ATM. We find that when ATM is activated by oxidative stress, but not by DNA damage, ATM phosphorylates NRF1. This leads to NRF1 dimerization, nuclear translocation, and the up-regulation of nuclear-encoded mitochondrial genes, thus enhancing the capacity of the electron transport chain (ETC) and restoring mitochondrial function. In cells lacking ATM, cells replenish ATP poorly following surges in energy demand, and chronic ATP insufficiency endangers cell survival. We propose that in the absence of ATM, cerebellar Purkinje cells cannot respond adequately to the increase in energy demands of neuronal activity. Our findings identify ATM as a guardian of mitochondrial output, as well as genomic integrity, and suggest that alternative fuel sources may ameliorate A-T disease symptoms.
Collapse
Affiliation(s)
- Hei-Man Chow
- Division of Life Science and The State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong .,Institute for Advanced Study, Hong Kong University of Science and Technology, Hong Kong
| | - Aifang Cheng
- Division of Life Science and The State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong
| | - Xuan Song
- Division of Life Science and The State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong
| | - Mavis R Swerdel
- Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ
| | - Karl Herrup
- Division of Life Science and The State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong
| |
Collapse
|
63
|
Abstract
Genetically encoded calcium indicators (GECIs) have become widely used for Ca2+ imaging in cultured cells as well as in living organisms. Transduction of microglia with viral vectors encoding GECIs provides a convenient means to label microglia for in vivo Ca2+ imaging. We describe a method using microglia-specific microRNA-9-regulated viral vector, to label microglial cells with a ratiometric GECI (Twitch-2B). This method enables longitudinal recording of both transient and sustained elevations of Ca2+ in microglia in live animals.
Collapse
Affiliation(s)
- Yajie Liang
- Department of Neurophysiology, Institute of Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Olga Garaschuk
- Department of Neurophysiology, Institute of Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany.
| |
Collapse
|
64
|
Zhang C, Zhu Y, Liu Y, Zhang X, Yue Q, Li L, Chen Y, Lu S, Teng Z. SEMA3B-AS1-inhibited osteogenic differentiation of human mesenchymal stem cells revealed by quantitative proteomics analysis. J Cell Physiol 2018; 234:2491-2499. [PMID: 30317552 DOI: 10.1002/jcp.26776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 04/27/2018] [Indexed: 01/27/2023]
Abstract
Human mesenchymal stem cells (hMSCs) are fibroblastoid multipotent adult stem cells with capacities of differentiation into osteoblasts and chondrocytes and show great potential in new bone formation and bone repair-related clinical settings, such as osteoporosis. Long noncoding RNAs (lncRNAs) have been demonstrated to play important roles in various biological processes. Here, we report an antisense lncRNA SEMA3B-AS1 regulating hMSCs osteogenesis. SEMA3B-AS1 is proximal to a member of the semaphorin family Sema3b. Overexpression of SEMA3B-AS1 using the lentivirus system markedly inhibits the proliferation of hMSCs and meanwhile reduces osteogenic differentiation. Using a comprehensive proteomic technique named isobaric tag for relative and absolute quantitation, we found that SEMA3B-AS1 significantly alters the process of osteogenesis through downregulating the expression of proteins involved in actin cytoskeleton, focal adhesion, and extracellular matrix-receptor interaction, while increasing the expression of proteins in the spliceosome. Collectively, we find that SEMA3B-AS1 is a target for controlling osteogenesis of hMSCs.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Orthopedic Surgery, The People's Hospital of Yuxi City, The 6th Affiliated Hospital of Kunming Medical University, Yuxi, China
| | - Yun Zhu
- Health Screening Center, The People's Hospital of Yuxi City, The 6th Affiliated Hospital of Kunming Medical University, Yuxi, China
| | - Yugang Liu
- Department of Orthopedics, Affiliated Hospital of Hebei University of Engineering, Handan, China
| | - Xiguang Zhang
- Department of Orthopedic Surgery, The People's Hospital of Yuxi City, The 6th Affiliated Hospital of Kunming Medical University, Yuxi, China
| | - Qiaoning Yue
- Department of Orthopedic Surgery, The People's Hospital of Yuxi City, The 6th Affiliated Hospital of Kunming Medical University, Yuxi, China
| | - Li Li
- Medical Research Center, Wuhan GeneCreate Biological Engineering Co., Ltd., Wuhan, China
| | - Yatang Chen
- Medical Research Center, Wuhan GeneCreate Biological Engineering Co., Ltd., Wuhan, China
| | - Sheng Lu
- Department of Orthopedics, Kunming General Hospital, PLA, Kunming, China
| | - Zhaowei Teng
- Department of Orthopedic Surgery, The People's Hospital of Yuxi City, The 6th Affiliated Hospital of Kunming Medical University, Yuxi, China
| |
Collapse
|
65
|
Yuan W, Chen J, Cao Y, Yang L, Shen L, Bian Q, Bin S, Li P, Cao J, Fang H, Gu H, Li H. Comparative analysis and optimization of protocols for producing recombinant lentivirus carrying the anti-Her2 chimeric antigen receptor gene. J Gene Med 2018; 20:e3027. [PMID: 29851200 DOI: 10.1002/jgm.3027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The production of anti-Her2 chimeric antigen receptor (CAR) T cells needs to be optimized to make it a reliable therapy. METHODS Three types of lentiviral vectors expressing anti-Her2 CAR together with packaging plasmids were co-transfected into 293 T-17 cells. The vector with the best packaging efficiency was selected, and the packaging cell culture system and packaging plasmid system were optimized. Centrifugation speed was optimized for the concentration of lentivirus stock. The various purification methods used included membrane filtration, centrifugation with a sucrose cushion and the novelly-designed instantaneous high-speed centrifugation. The recombinant lentiviruses were transduced into human peripheral T cells with an optimized multiplicity of infection (MOI). CAR expression levels by three vectors and the efficacy of CAR-T cells were compared. RESULTS When co-transfected, packaging cells in suspension were better than the commonly used adherent culture condition, with the packaging system psPAX2/pMD2.G being better than pCMV-dR8.91/pVSV-G. The optimal centrifugation speed for concentration was 20 000 g, rather than the generally used ultra-speed. Importantly, adding instantaneous centrifugation for purification significantly increased human peripheral T cell viability (from 13.25% to 62.80%), which is a technical breakthrough for CAR-T cell preparation. The best MOI value for transducing human peripheral T cells was 40. pLVX-EF1a-CAR-IRES-ZsGreen1 expressed the highest level of CAR in human peripheral T cells and the cytotoxicity of CAR-T cells reached 63.56%. CONCLUSIONS We optimized the preparation of recombinant lentivirus that can express third-generation anti-Her2 CAR in T cells, which should lay the foundation for improving the efficacy of CAR-T cells with respect to killing target cells.
Collapse
Affiliation(s)
- Weihua Yuan
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jie Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ying Cao
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lingcong Yang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Luxi Shen
- Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qi Bian
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shufang Bin
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Panyuan Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiawei Cao
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hezhi Fang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haihua Gu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongzhi Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
66
|
Omelchenko DO, Glazkova DV, Bogoslovskaya EV, Urusov FA, Zhogina YA, Tsyganova GM, Shipulin GA. Protection of Lymphocytes Against HIV using Lentivirus Vector Carrying a Combination of TRIM5α-HRH Genes and microRNA Against CCR5. Mol Biol 2018. [DOI: 10.1134/s0026893318020085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
67
|
Heffernan C, Maurel P. Lentiviral Transduction of Rat Schwann Cells and Dorsal Root Ganglia Neurons for In Vitro Myelination Studies. Methods Mol Biol 2018; 1739:177-193. [PMID: 29546708 DOI: 10.1007/978-1-4939-7649-2_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Lentiviral transduction is a gene delivery method that provides numerous advantages over direct transfection and traditional retroviral or adenoviral delivery methods. It facilitates for the transduction of primary cells inherently difficult to transfect, delivers constructs of interest to nondividing as well as dividing cells, and permits the long-term expression of sizable DNA inserts (e.g., <7 kb). The study of peripheral nerve myelination at the molecular level has long benefited from the Schwann cells/dorsal root ganglia (DRG) neurons myelinating co-culture system. As this culture system takes about a month to develop and perform experiments with, lentiviral-delivered constructs can be used to manipulate gene expression in Schwann cells and DRG neurons, primary cells that are otherwise resilient to direct transfection. Here we present our protocol for lentiviral production and purification and subsequent infection of large numbers of Schwann cells and/or DRG neurons for the molecular study of peripheral nerve myelination in vitro.
Collapse
Affiliation(s)
- Corey Heffernan
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | - Patrice Maurel
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA.
| |
Collapse
|
68
|
Wierzbinski KR, Szymanski T, Rozwadowska N, Rybka JD, Zimna A, Zalewski T, Nowicka-Bauer K, Malcher A, Nowaczyk M, Krupinski M, Fiedorowicz M, Bogorodzki P, Grieb P, Giersig M, Kurpisz MK. Potential use of superparamagnetic iron oxide nanoparticles for in vitro and in vivo bioimaging of human myoblasts. Sci Rep 2018; 8:3682. [PMID: 29487326 PMCID: PMC5829264 DOI: 10.1038/s41598-018-22018-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/12/2018] [Indexed: 02/07/2023] Open
Abstract
Myocardial infarction (MI) is one of the most frequent causes of death in industrialized countries. Stem cells therapy seems to be very promising for regenerative medicine. Skeletal myoblasts transplantation into postinfarction scar has been shown to be effective in the failing heart but shows limitations such, e.g. cell retention and survival. We synthesized and investigated superparamagnetic iron oxide nanoparticles (SPIONs) as an agent for direct cell labeling, which can be used for stem cells imaging. High quality, monodisperse and biocompatible DMSA-coated SPIONs were obtained with thermal decomposition and subsequent ligand exchange reaction. SPIONs' presence within myoblasts was confirmed by Prussian Blue staining and inductively coupled plasma mass spectrometry (ICP-MS). SPIONs' influence on tested cells was studied by their proliferation, ageing, differentiation potential and ROS production. Cytotoxicity of obtained nanoparticles and myoblast associated apoptosis were also tested, as well as iron-related and coating-related genes expression. We examined SPIONs' impact on overexpression of two pro-angiogenic factors introduced via myoblast electroporation method. Proposed SPION-labeling was sufficient to visualize firefly luciferase-modified and SPION-labeled cells with magnetic resonance imaging (MRI) combined with bioluminescence imaging (BLI) in vivo. The obtained results demonstrated a limited SPIONs' influence on treated skeletal myoblasts, not interfering with basic cell functions.
Collapse
Affiliation(s)
| | - Tomasz Szymanski
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland.,Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland.,Wielkopolska Centre of Advanced Technologies, Adam Mickiewicz University, Poznan, Poland
| | | | - Jakub D Rybka
- Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland.,Wielkopolska Centre of Advanced Technologies, Adam Mickiewicz University, Poznan, Poland
| | - Agnieszka Zimna
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Tomasz Zalewski
- NanoBioMedical Centre, Adam Mickiewicz University, Poznan, Poland
| | | | - Agnieszka Malcher
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | - Michal Krupinski
- The Henryk Niewodniczanski Institute, Institute of Nuclear Physics Polish Academy of Sciences, Cracow, Poland
| | - Michal Fiedorowicz
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Bogorodzki
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Pawel Grieb
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Michal Giersig
- Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland.,Wielkopolska Centre of Advanced Technologies, Adam Mickiewicz University, Poznan, Poland.,Institute of Experimental Physics, Freie Universität Berlin, Berlin, Germany
| | - Maciej K Kurpisz
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland.
| |
Collapse
|
69
|
Ruiz-Babot G, Balyura M, Hadjidemetriou I, Ajodha SJ, Taylor DR, Ghataore L, Taylor NF, Schubert U, Ziegler CG, Storr HL, Druce MR, Gevers EF, Drake WM, Srirangalingam U, Conway GS, King PJ, Metherell LA, Bornstein SR, Guasti L. Modeling Congenital Adrenal Hyperplasia and Testing Interventions for Adrenal Insufficiency Using Donor-Specific Reprogrammed Cells. Cell Rep 2018; 22:1236-1249. [PMID: 29386111 PMCID: PMC5809617 DOI: 10.1016/j.celrep.2018.01.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/28/2017] [Accepted: 12/29/2017] [Indexed: 01/30/2023] Open
Abstract
Adrenal insufficiency is managed by hormone replacement therapy, which is far from optimal; the ability to generate functional steroidogenic cells would offer a unique opportunity for a curative approach to restoring the complex feedback regulation of the hypothalamic-pituitary-adrenal axis. Here, we generated human induced steroidogenic cells (hiSCs) from fibroblasts, blood-, and urine-derived cells through forced expression of steroidogenic factor-1 and activation of the PKA and LHRH pathways. hiSCs had ultrastructural features resembling steroid-secreting cells, expressed steroidogenic enzymes, and secreted steroid hormones in response to stimuli. hiSCs were viable when transplanted into the mouse kidney capsule and intra-adrenal. Importantly, the hypocortisolism of hiSCs derived from patients with adrenal insufficiency due to congenital adrenal hyperplasia was rescued by expressing the wild-type version of the defective disease-causing enzymes. Our study provides an effective tool with many potential applications for studying adrenal pathobiology in a personalized manner and opens venues for the development of precision therapies.
Collapse
Affiliation(s)
- Gerard Ruiz-Babot
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, UK
| | - Mariya Balyura
- University Hospital Carl Gustav Carus, Department of Medicine III, Technische Universität Dresden, 01307 Dresden, Germany
| | - Irene Hadjidemetriou
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, UK
| | - Sharon J Ajodha
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, UK
| | - David R Taylor
- Department of Clinical Biochemistry, King's College Hospital NHS Foundation Trust, Denmark Hill, SE5 9RS London, UK
| | - Lea Ghataore
- Department of Clinical Biochemistry, King's College Hospital NHS Foundation Trust, Denmark Hill, SE5 9RS London, UK
| | - Norman F Taylor
- Department of Clinical Biochemistry, King's College Hospital NHS Foundation Trust, Denmark Hill, SE5 9RS London, UK
| | - Undine Schubert
- University Hospital Carl Gustav Carus, Department of Medicine III, Technische Universität Dresden, 01307 Dresden, Germany
| | - Christian G Ziegler
- University Hospital Carl Gustav Carus, Department of Medicine III, Technische Universität Dresden, 01307 Dresden, Germany
| | - Helen L Storr
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, UK
| | - Maralyn R Druce
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, UK
| | - Evelien F Gevers
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, UK
| | - William M Drake
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, UK
| | | | - Gerard S Conway
- Department of Endocrinology, University College London Hospitals, NW1 2PG London, UK
| | - Peter J King
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, UK
| | - Louise A Metherell
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, UK
| | - Stefan R Bornstein
- University Hospital Carl Gustav Carus, Department of Medicine III, Technische Universität Dresden, 01307 Dresden, Germany; Paul Langerhans Institute Dresden of Helmholtz Centre Munich at University Clinic Carl Gustav Carus of TU Dresden Faculty of Medicine, Technische Universität Dresden, DZD-German Centre for Diabetes Research, 01307 Dresden, Germany; Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany; Diabetes and Nutritional Sciences Division, King's College London, WC2R 2LS London, UK
| | - Leonardo Guasti
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, UK.
| |
Collapse
|
70
|
Amarachintha S, Harmel-Laws E, Steinbrecher KA. Guanylate cyclase C reduces invasion of intestinal epithelial cells by bacterial pathogens. Sci Rep 2018; 8:1521. [PMID: 29367634 PMCID: PMC5784150 DOI: 10.1038/s41598-018-19868-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/20/2017] [Indexed: 12/24/2022] Open
Abstract
The guanylate cyclase C (GC-C) receptor regulates electrolyte and water secretion into the gut following activation by the E. coli enterotoxin STa, or by weaker endogenous agonists guanylin and uroguanylin. Our previous work has demonstrated that GC-C plays an important role in controlling initial infection as well as carrying load of non-invasive bacterial pathogens in the gut. Here, we use Salmonella enterica serovar Typhimurium to determine whether GC-C signaling is important in host defense against pathogens that actively invade enterocytes. In vitro studies indicated that GC-C signaling significantly reduces Salmonella invasion into Caco2-BBE monolayers. Relative to controls, GC-C knockout mice develop severe systemic illness following oral Salmonella infection, characterized by disrupted intestinal mucus layer, elevated cytokines and organ CFUs, and reduced animal survival. In Salmonella-infected wildtype mice, oral gavage of GC-C agonist peptide reduced host/pathogen physical interaction and diminished bacterial translocation to mesenteric lymph nodes. These studies suggest that early life susceptibility to STa-secreting enterotoxigenic E. coli may be counter-balanced by a critical role of GC-C in protecting the mucosa from non-STa producing, invasive bacterial pathogens.
Collapse
Affiliation(s)
- Surya Amarachintha
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| | - Eleana Harmel-Laws
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| | - Kris A Steinbrecher
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45229, USA.
| |
Collapse
|
71
|
The Superiority of Sucrose Cushion Centrifugation to Ultrafiltration and PEGylation in Generating High-Titer Lentivirus Particles and Transducing Stem Cells with Enhanced Efficiency. Mol Biotechnol 2018; 60:185-193. [DOI: 10.1007/s12033-017-0044-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
72
|
Kennedy A, Cribbs AP. Production and Concentration of Lentivirus for Transduction of Primary Human T Cells. Methods Mol Biol 2018; 1448:85-93. [PMID: 27317175 DOI: 10.1007/978-1-4939-3753-0_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Lentiviral vectors have emerged as efficient tools for investigating T cell biology through their ability to efficiently deliver transgene expression into both dividing and nondividing cells. Such lentiviral vectors have the potential to infect a wide variety of cell types. However, despite this advantage, the ability to transduce primary human T cells remains challenging and methods to achieve efficient gene transfer are often time consuming and expensive. We describe a method for generating lentivirus that is simple to perform and does not require the purchase of non-standard equipment to transduce primary human T cells. Therefore, we provide an optimized protocol that is easy to implement and allow transduction with high efficiency and reproducibility.
Collapse
Affiliation(s)
- Alan Kennedy
- Institute of Immunity and Transplantation, University College London Division of Infection and Immunity, London, NW3 2PF, UK
| | - Adam P Cribbs
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FY, UK. .,Botnar Research Centre, Nuffield Orthopaedic Centre, Windmill Road, Oxford, OX3 7LD, UK. .,Department of Physiology, Anatomy and Genetics, MRC Functional Genomics Unit, Computational Genomics and Training Centre (CGAT), Parks Road, Oxford, OX1 3PR, UK.
| |
Collapse
|
73
|
Abstract
T-lymphocytes genetically engineered with the chimeric antigen receptor (CAR-T) have shown great therapeutic potential in cancer treatment. A variety of preclinical researches and clinical trials of CAR-T therapy have been carried out to lay the foundation for future clinical application. In these researches, several gene-transfer methods were used to deliver CARs or other genes into T-lymphocytes, equipping CAR-modified T cells with a property of recognizing and attacking antigen-expressing tumor cells in a major histocompatibility complex-independent manner. Here, we summarize the gene-transfer vectors commonly used in the generation of CAR-T cell, including retrovirus vectors, lentivirus vectors, the transposon/transposase system, the plasmid-based system, and the messenger RNA electroporation system. The following aspects were compared in parallel: efficiency of gene transfer, the integration methods in the modified T cells, foreground of scale-up production, and application and development in clinical trials. These aspects should be taken into account to generate the optimal CAR-gene vector that may be suitable for future clinical application.
Collapse
|
74
|
Hit-and-run programming of therapeutic cytoreagents using mRNA nanocarriers. Nat Commun 2017; 8:389. [PMID: 28855514 PMCID: PMC5577173 DOI: 10.1038/s41467-017-00505-8] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/30/2017] [Indexed: 12/17/2022] Open
Abstract
Therapies based on immune cells have been applied for diseases ranging from cancer to diabetes. However, the viral and electroporation methods used to create cytoreagents are complex and expensive. Consequently, we develop targeted mRNA nanocarriers that are simply mixed with cells to reprogram them via transient expression. Here, we describe three examples to establish that the approach is simple and generalizable. First, we demonstrate that nanocarriers delivering mRNA encoding a genome-editing agent can efficiently knock-out selected genes in anti-cancer T-cells. Second, we imprint a long-lived phenotype exhibiting improved antitumor activities into T-cells by transfecting them with mRNAs that encode a key transcription factor of memory formation. Third, we show how mRNA nanocarriers can program hematopoietic stem cells with improved self-renewal properties. The simplicity of the approach contrasts with the complex protocols currently used to program therapeutic cells, so our methods will likely facilitate manufacturing of cytoreagents.Current widely used viral and electroporation methods for creating therapeutic cell-based products are complex and expensive. Here, the authors develop targeted mRNA nanocarriers that can transiently program gene expression by simply mixing them with cells, to improve their therapeutic potential.
Collapse
|
75
|
Lentiviral vectors can be used for full-length dystrophin gene therapy. Sci Rep 2017; 7:44775. [PMID: 28303972 PMCID: PMC5356018 DOI: 10.1038/srep44775] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 02/13/2017] [Indexed: 12/13/2022] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is caused by a lack of dystrophin expression in patient muscle fibres. Current DMD gene therapy strategies rely on the expression of internally deleted forms of dystrophin, missing important functional domains. Viral gene transfer of full-length dystrophin could restore wild-type functionality, although this approach is restricted by the limited capacity of recombinant viral vectors. Lentiviral vectors can package larger transgenes than adeno-associated viruses, yet lentiviral vectors remain largely unexplored for full-length dystrophin delivery. In our work, we have demonstrated that lentiviral vectors can package and deliver inserts of a similar size to dystrophin. We report a novel approach for delivering large transgenes in lentiviruses, in which we demonstrate proof-of-concept for a ‘template-switching’ lentiviral vector that harnesses recombination events during reverse-transcription. During this work, we discovered that a standard, unmodified lentiviral vector was efficient in delivering full-length dystrophin to target cells, within a total genomic load of more than 15,000 base pairs. We have demonstrated gene therapy with this vector by restoring dystrophin expression in DMD myoblasts, where dystrophin was expressed at the sarcolemma of myotubes after myogenic differentiation. Ultimately, our work demonstrates proof-of-concept that lentiviruses can be used for permanent full-length dystrophin gene therapy, which presents a significant advancement in developing an effective treatment for DMD.
Collapse
|
76
|
Counsell JR, Asgarian Z, Meng J, Ferrer V, Vink CA, Howe SJ, Waddington SN, Thrasher AJ, Muntoni F, Morgan JE, Danos O. Lentiviral vectors can be used for full-length dystrophin gene therapy. Sci Rep 2017; 7:79. [PMID: 28250438 PMCID: PMC5427806 DOI: 10.1038/s41598-017-00152-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 02/13/2017] [Indexed: 01/08/2023] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is caused by a lack of dystrophin expression in patient muscle fibres. Current DMD gene therapy strategies rely on the expression of internally deleted forms of dystrophin, missing important functional domains. Viral gene transfer of full-length dystrophin could restore wild-type functionality, although this approach is restricted by the limited capacity of recombinant viral vectors. Lentiviral vectors can package larger transgenes than adeno-associated viruses, yet lentiviral vectors remain largely unexplored for full-length dystrophin delivery. In our work, we have demonstrated that lentiviral vectors can package and deliver inserts of a similar size to dystrophin. We report a novel approach for delivering large transgenes in lentiviruses, in which we demonstrate proof-of-concept for a 'template-switching' lentiviral vector that harnesses recombination events during reverse-transcription. During this work, we discovered that a standard, unmodified lentiviral vector was efficient in delivering full-length dystrophin to target cells, within a total genomic load of more than 15,000 base pairs. We have demonstrated gene therapy with this vector by restoring dystrophin expression in DMD myoblasts, where dystrophin was expressed at the sarcolemma of myotubes after myogenic differentiation. Ultimately, our work demonstrates proof-of-concept that lentiviruses can be used for permanent full-length dystrophin gene therapy, which presents a significant advancement in developing an effective treatment for DMD.
Collapse
Affiliation(s)
- John R Counsell
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK.
- UCL Cancer Institute, Paul O 'Gorman Building, University College London, 72 Huntley Street, London, WC1E 6BT, UK.
- Molecular and Cellular Immunology, Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK.
- Gene Transfer Technology Group, Institute for Womens Health, University College London, 86-96, Chenies Mews, London, UK.
| | - Zeinab Asgarian
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Jinhong Meng
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Veronica Ferrer
- UCL Cancer Institute, Paul O 'Gorman Building, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Conrad A Vink
- Molecular and Cellular Immunology, Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Steven J Howe
- Molecular and Cellular Immunology, Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Simon N Waddington
- Gene Transfer Technology Group, Institute for Womens Health, University College London, 86-96, Chenies Mews, London, UK
- MRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg, South Africa
| | - Adrian J Thrasher
- Molecular and Cellular Immunology, Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Jennifer E Morgan
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Olivier Danos
- UCL Cancer Institute, Paul O 'Gorman Building, University College London, 72 Huntley Street, London, WC1E 6BT, UK
- Biogen, 14 Cambridge Center, Cambridge, MA, 02142, USA
| |
Collapse
|
77
|
Chronic Kappa opioid receptor activation modulates NR2B: Implication in treatment resistant depression. Sci Rep 2016; 6:33401. [PMID: 27634008 PMCID: PMC5025743 DOI: 10.1038/srep33401] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/25/2016] [Indexed: 12/15/2022] Open
Abstract
Psychotomimetic and prodepressive effect by kappa opioid receptor (KOR) activation in rodents and human is widely known. Significantly, recent clinical investigations demonstrated the salutary effects of KOR antagonists in patients with treatment resistant depression, indicating essential role of KOR signaling in refractory depression. This study was undertaken to reveal the molecular determinant of KOR mediated depression and antidepressant response of KOR antagonist. We observed that chronic KOR activation by U50488, a selective KOR agonist, significantly increased depression like symptoms (behavioral despair, anhedonia and sociability) in C57BL/6J mice, which were blocked by KOR antagonist norBNI and antidepressant imipramine, but not by fluoxetine or citalopram. Further, chronic KOR activation increased phosphorylation of NR2B subunit of NMDA at tyrosine 1472 (pNR2B NMDA) in the hippocampus, but not in the cortex. Similar to behavioral effects norBNI and imipramine, but not SSRIs, blocked NR2B phosphorylation. Moreover, KOR induced depression like behaviors were reversed by NR2B selective inhibitor Ro 25-6981. Mechanistic studies in primary cultured neurons and brain tissues using genetic and pharmacological approaches revealed that stimulation of KOR modulates several molecular correlates of depression. Thus, these findings elucidate molecular mechanism of KOR signaling in treatment resistant depression like behaviors in mice.
Collapse
|
78
|
Wiedmann MM, Aibara S, Spring DR, Stewart M, Brenton JD. Structural and calorimetric studies demonstrate that the hepatocyte nuclear factor 1β (HNF1β) transcription factor is imported into the nucleus via a monopartite NLS sequence. J Struct Biol 2016; 195:273-281. [PMID: 27346421 PMCID: PMC4991853 DOI: 10.1016/j.jsb.2016.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 02/03/2023]
Abstract
The transcription factor hepatocyte nuclear factor 1β (HNF1β) is ubiquitously overexpressed in ovarian clear cell carcinoma (CCC) and is a potential therapeutic target. To explore potential approaches that block HNF1β transcription we have identified and characterised extensively the nuclear localisation signal (NLS) for HNF1β and its interactions with the nuclear protein import receptor, Importin-α. Pull-down assays demonstrated that the DNA binding domain of HNF1β interacted with a spectrum of Importin-α isoforms and deletion constructs tagged with eGFP confirmed that the HNF1β (229)KKMRRNR(235) sequence was essential for nuclear localisation. We further characterised the interaction between the NLS and Importin-α using complementary biophysical techniques and have determined the 2.4Å resolution crystal structure of the HNF1β NLS peptide bound to Importin-α. The functional, biochemical, and structural characterisation of the nuclear localisation signal present on HNF1β and its interaction with the nuclear import protein Importin-α provide the basis for the development of compounds targeting transcription factor HNF1β via its nuclear import pathway.
Collapse
Affiliation(s)
- Mareike M Wiedmann
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Shintaro Aibara
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - David R Spring
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Murray Stewart
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.
| | - James D Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| |
Collapse
|
79
|
Cross talk between miR-214 and PTEN attenuates glomerular hypertrophy under diabetic conditions. Sci Rep 2016; 6:31506. [PMID: 27549568 PMCID: PMC4994004 DOI: 10.1038/srep31506] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 07/21/2016] [Indexed: 01/25/2023] Open
Abstract
Glomerular mesangial cells (MCs) hypertrophy is one of the earliest pathological abnormalities in diabetic nephropathy (DN), which correlates with eventual glomerulosclerosis. This study aimed to investigate the therapeutic role of miRNA in diabetic glomerular MCs hypertrophy and synthesis of extracellular matrix (ECM). Microarray analysis revealed a significant up-regulation of miR-214 in the renal cortex of diabetic db/db mice, which was confirmed by real-time PCR of isolated glomeruli and primary cultured human MCs. In vitro studies showed that inhibition of miR-214 significantly reduced expression of α-SMA, SM22 and collagen IV, and partially restored phosphatase and tensin homolog (PTEN) protein level in high glucose-stimulated human MCs. Furthermore, we identified PTEN as the target of miR-214 by a luciferase assay in HEK293 cells. Moreover, overexpression of PTEN ameliorated miR-214-mediated diabetic MC hypertrophy while knockdown of PTEN mimicked the MC hypertrophy. In vivo study further confirmed that inhibition of miR-214 significantly decreased the expression of SM22, α-SMA and collagen IV, partially restored PTEN level, and attenuated albuminuria and mesangial expansion in db/db mice. In conclusion, cross talk between miR-214 and PTEN attenuated glomerular hypertrophy under diabetic conditions in vivo and in vitro. Therefore, miR-214 may represent a novel therapeutic target for DN.
Collapse
|
80
|
Preparation and Biochemical Analysis of Classical Histone Deacetylases. Methods Enzymol 2016. [PMID: 27372753 DOI: 10.1016/bs.mie.2016.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Histone deacetylase assays were first developed in the 1970s, and subsequently refined in the 1990s with the cloning of HDAC enzymes. Most of these early assays, relying on traditional in vitro chemical methodologies, are still applicable today. More recently, however, cell-based HDAC assays that measure HDAC activities in physiological conditions are emerging. Also, there is a continuing development of assays that can measure an isolated HDAC in the absence of other HDAC activities. This chapter reviews some of the older established methods for assaying HDAC activities, as well as introduces more recently developed nontraditional assays.
Collapse
|
81
|
Boudreau JE, Mulrooney TJ, Le Luduec JB, Barker E, Hsu KC. KIR3DL1 and HLA-B Density and Binding Calibrate NK Education and Response to HIV. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:3398-410. [PMID: 26962229 PMCID: PMC4868784 DOI: 10.4049/jimmunol.1502469] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/08/2016] [Indexed: 12/11/2022]
Abstract
NK cells recognize self-HLA via killer Ig-like receptors (KIR). Homeostatic HLA expression signals for inhibition via KIR, and downregulation of HLA, a common consequence of viral infection, allows NK activation. Like HLA, KIR are highly polymorphic, and allele combinations of the most diverse receptor-ligand pair, KIR3DL1 and HLA-B, correspond to hierarchical HIV control. We used primary cells from healthy human donors to demonstrate how subtype combinations of KIR3DL1 and HLA-B calibrate NK education and their consequent capacity to eliminate HIV-infected cells. High-density KIR3DL1 and Bw4-80I partnerships endow NK cells with the greatest reactivity against HLA-negative targets; NK cells exhibiting the remaining KIR3DL1/HLA-Bw4 combinations demonstrate intermediate responsiveness; and Bw4-negative KIR3DL1(+) NK cells are poorly responsive. Cytotoxicity against HIV-infected autologous CD4(+) T cells strikingly correlated with reactivity to HLA-negative targets. These findings suggest that the programming of NK effector function results from defined features of receptor and ligand subtypes. KIR3DL1 and HLA-B subtypes exhibit an array of binding strengths. Like KIR3DL1, subtypes of HLA-Bw4 are expressed at distinct, predictable membrane densities. Combinatorial permutations of common receptor and ligand subtypes reveal binding strength, receptor density, and ligand density to be functionally important. These findings have immediate implications for prognosis in patients with HIV infection. Furthermore, they demonstrate how features of KIR and HLA modified by allelic variation calibrate NK cell reactive potential.
Collapse
Affiliation(s)
- Jeanette E Boudreau
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Tiernan J Mulrooney
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Jean-Benoît Le Luduec
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Edward Barker
- Department of Immunology and Microbiology, Rush University Medical Center, Chicago, IL 60612
| | - Katharine C Hsu
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065; and Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
82
|
TIGIT negatively regulates inflammation by altering macrophage phenotype. Immunobiology 2016; 221:48-55. [DOI: 10.1016/j.imbio.2015.08.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/22/2015] [Accepted: 08/11/2015] [Indexed: 11/17/2022]
|
83
|
Cribbs AP, Kennedy A, Penn H, Amjadi P, Green P, Read JE, Brennan F, Gregory B, Williams RO. Methotrexate Restores Regulatory T Cell Function Through Demethylation of the FoxP3 Upstream Enhancer in Patients With Rheumatoid Arthritis. Arthritis Rheumatol 2015; 67:1182-92. [PMID: 25604080 DOI: 10.1002/art.39031] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 01/08/2015] [Indexed: 12/18/2022]
Abstract
OBJECTIVE We have previously shown, in a cohort of untreated rheumatoid arthritis (RA) patients, that the suppressive function of Treg cells is defective. However, other studies in cohorts of patients with established RA have shown that Treg cell function is normal. We hypothesized that treatment may restore Treg cell function and lead to reduced disease activity. The aim of this study was to investigate whether treatment with methotrexate (MTX) can result in epigenetic changes that lead to restoration of the Treg cell suppressive function in RA. METHODS Peripheral blood samples from RA patients were assessed using (3) H-thymidine incorporation to measure Treg cell suppression of T cell proliferation, and by enzyme-linked immunosorbent assay to determine Treg cell suppression of interferon-γ production. CTLA-4 and FoxP3 expression was measured by flow cytometry and quantitative polymerase chain reaction (qPCR) in Treg cells from healthy individuals and RA patients. CD4+ T cells isolated from healthy individuals were cultured with interleukin-2 (IL-2), IL-6, and tumor necrosis factor α in the presence or absence of MTX, and FoxP3 expression was determined using qPCR and flow cytometry. Methylation of the FOXP3 upstream enhancer was analyzed by bisulfite sequencing PCR. RESULTS Defective Treg cell function was observed only in RA patients who had not been treated with MTX, whereas Treg cells from MTX-exposed RA patients had restored suppressive function. This restored suppression was associated with increased expression of FoxP3 and CTLA-4 in Treg cells. Bisulfite sequencing PCR of Treg cells cultured in MTX revealed a significant reduction in methylation of the FOXP3 upstream enhancer. CONCLUSION This study identifies a novel mechanism of action of MTX, in which treatment of RA patients with MTX restores defective Treg cell function through demethylation of the FOXP3 locus, leading to a subsequent increase in FoxP3 and CTLA-4 expression.
Collapse
Affiliation(s)
- Adam P Cribbs
- Kennedy Institute of Rheumatology and University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Albrecht C, Hosiner S, Tichy B, Aldrian S, Hajdu S, Nürnberger S. Comparison of Lentiviral Packaging Mixes and Producer Cell Lines for RNAi Applications. Mol Biotechnol 2015; 57:499-505. [DOI: 10.1007/s12033-015-9843-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|