51
|
Delgado-Diaz DJ, Tyssen D, Hayward JA, Gugasyan R, Hearps AC, Tachedjian G. Distinct Immune Responses Elicited From Cervicovaginal Epithelial Cells by Lactic Acid and Short Chain Fatty Acids Associated With Optimal and Non-optimal Vaginal Microbiota. Front Cell Infect Microbiol 2020; 9:446. [PMID: 31998660 PMCID: PMC6965070 DOI: 10.3389/fcimb.2019.00446] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/11/2019] [Indexed: 12/21/2022] Open
Abstract
Non-optimal vaginal microbiota, as observed in bacterial vaginosis (BV), is typically characterized by a depletion of beneficial lactobacilli and an abundance of numerous anaerobes. These non-optimal conditions are associated with subclinical cervicovaginal inflammation and an increased risk of HIV infection compared to women colonized with optimal vaginal microbiota dominated by lactobacilli. Lactic acid (LA) is a major organic acid metabolite produced by vaginal lactobacilli that elicits anti-inflammatory effects from cervicovaginal epithelial cells and is dramatically depleted during BV. However, it is unclear if LA retains its anti-inflammatory activity in the presence of vaginal microbiota metabolites comprising short chain fatty acids (SCFAs) and succinic acid, which are also produced by an optimal vaginal microbiota. Furthermore, the immunomodulatory effect of SCFAs and succinic acid on cervicovaginal epithelial cells at higher concentrations present during BV is unknown. Here we report that in the presence of physiologically relevant concentrations of SCFAs and succinic acid at pH 3.9 (as found in women with lactobacillus-dominated microbiota) LA induced an anti-inflammatory state in cervicovaginal epithelial cells and inhibited inflammation elicited by the toll-like receptor (TLR) agonists polyinosinic:polycytidylic acid and Pam3CSK4. When cervicovaginal epithelial cells were treated with a vaginal microbiota metabolite mixture representative of BV, containing a lower concentration of LA but higher concentrations of SCFA/succinic acid at pH 7, no anti-inflammatory was observed. Rather, the vaginal microbiota metabolite mixture representative of BV dysregulated the immune response of cervicovaginal epithelial cells during prolonged and sustained treatments. This was evidenced by increased basal and TLR-induced production of pro-inflammatory cytokines including tumor necrosis factor-α, but decreased basal production of chemokines including RANTES and IP-10. Further characterization of individual components of the BV vaginal microbiota mixture suggested that acetic acid is an important vaginal microbiota metabolite capable of eliciting diverse immunomodulatory effects on a range of cervicovaginal epithelial cell targets. These findings indicate that elevated levels of SCFAs are a potential source of cervicovaginal inflammation in women experiencing BV, and support the unique anti-inflammatory properties of LA on cervicovaginal epithelial cells as well as a role for LA or LA-producing lactobacilli to reverse genital inflammation associated with increased HIV risk.
Collapse
Affiliation(s)
- David J Delgado-Diaz
- Disease Elimination Program and Life Sciences Discipline, Burnet Institute, Melbourne, VIC, Australia.,Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - David Tyssen
- Disease Elimination Program and Life Sciences Discipline, Burnet Institute, Melbourne, VIC, Australia
| | - Joshua A Hayward
- Disease Elimination Program and Life Sciences Discipline, Burnet Institute, Melbourne, VIC, Australia.,Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Raffi Gugasyan
- Disease Elimination Program and Life Sciences Discipline, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology, Monash University, Melbourne, VIC, Australia
| | - Anna C Hearps
- Disease Elimination Program and Life Sciences Discipline, Burnet Institute, Melbourne, VIC, Australia.,Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
| | - Gilda Tachedjian
- Disease Elimination Program and Life Sciences Discipline, Burnet Institute, Melbourne, VIC, Australia.,Department of Microbiology, Monash University, Clayton, VIC, Australia.,Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
52
|
Natural polymers for vaginal mucoadhesive delivery of vinegar, using design of experiment methods. VOJNOSANIT PREGL 2020. [DOI: 10.2298/vsp200804121p] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background/Aim. Vinegars are of the main international traditional
nutraceuticals which have been used as vaginal health protectant due to
vagina pH balance maintenance and antimicrobial properties. Since the main
used form of vinegar was liquid, it was difficult for vaginal application
with low residence time; in this study a vaginal mucoadhesive gel of vinegar
was designed. Methods. Xanthan gum (XG) and tragacanth (TG) were utilized as
natural gel forming polymers. The effects of Xanthan gum and tragacanth on
mucoadhesion strength and drug release of the gel formulations were
optimized using a 3 level (32) factorial design. Several physico-chemical
properties of the gel formulations including gel viscosity, spreadability,
scanning electron microscopy (SEM) images of hydrogel chains, and release
kinetic were also investigated. Results. demonstrated that tragacanth
possesses a statistically significant effect on release rate control
(p-value=0.0027) while both tragacanth and xanthan gum have significant
effect (p value= 0.0001 and 0.0017, respectively) on mucoadhesion property.
Conclusion. Design of experiment suggested that formulation F7 with 5%
xanthan gum and 1% tragacanth (mucoadhesion = 0.4632 N and release rate =
88.8% in 6 hours) can be considered as the optimum formulation with some
modifications.
Collapse
|
53
|
Mishra NN, Agarwal A, Moitra T, Polachira SK, Nair R, Gupta SK. Anti-HIV-1 activity and safety profile of a polyherbal gel formulation as a candidate microbicide. J Herb Med 2019. [DOI: 10.1016/j.hermed.2019.100284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
54
|
Das Purkayastha S, Bhattacharya MK, Prasad HK, Upadhyaya H, Lala SD, Pal K, Das M, Sharma GD, Bhattacharjee MJ. Contrasting diversity of vaginal lactobacilli among the females of Northeast India. BMC Microbiol 2019; 19:198. [PMID: 31455211 PMCID: PMC6712660 DOI: 10.1186/s12866-019-1568-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 08/11/2019] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Lactobacilli are gatekeepers of vaginal ecosystem impeding growth of pathogenic microbes and their diversity varies across populations worldwide. The present study investigated diversity of human vaginal microbiota among females of Northeast India, who are distinct in dietary habits, lifestyle, and genomic composition from rest of India. RESULTS Altogether, 154 bacterial isolates were obtained from vaginal swab samples of 40 pregnant and 29 non-pregnant females. The samples were sequenced for 16 s rRNA gene and analysed for identification using a dual approach of homology search and maximum likelihood based clustering. Molecular identification based on 16S rRNA gene sequence confirmed the isolates belonging to 31 species. Lactobacilli constituted 37.7% of the bacterial isolates with 10 species and other Lactic Acid Bacteria (39.61%) represented another 10 species, some of which are opportunistic pathogens. The remaining of the communities are mostly dominated by species of Staphylococcus (14.28%) and rarely by Propionibacterium avidum (3.90%), Bacillus subtilis, Escherchia coli, Janthinobacterium lividum, and Kocuria kristinae (each 0.64%). Interestingly Lactobacillus mucosae and Enterococcus faecalis, which are globally uncommon vaginal microbes is found dominant among women of Northeast India. This tentatively reflects adaptability of particular Lactobacillus species, in distinct population, to better compete for receptors and nutrients in vaginal epithelium than other species. Further, intrageneric 16S rRNA gene exchange was observed among Enterococcus, Staphylococcus, and two species of Lactobacillus, and deep intraspecies divergence among L. mucosae, which pinpointed possibility of emergence of new strains with evolved functionality. Lactobacilli percentage decreased from young pregnant to aged non-pregnant women with maximum colonization in trimester II. CONCLUSION The study highlighted importance of assessment of vaginal microbiota, Lactobacillus in particular, across different population to gain more insight on female health.
Collapse
Affiliation(s)
- Sumi Das Purkayastha
- Karimganj College, Karimganj, Assam, India.,Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | | | | | | | - Suparna Das Lala
- Department of Gynaecology, Hospital of Red Cross Society, Karimganj, Assam, India
| | - Kunal Pal
- Department of Biotechnology and Medical Engineering, NIT Rourkela, Rourkela, Orissa, India
| | | | | | | |
Collapse
|
55
|
The Use of Copper as an Antimicrobial Agent in Health Care, Including Obstetrics and Gynecology. Clin Microbiol Rev 2019; 32:32/4/e00125-18. [PMID: 31413046 DOI: 10.1128/cmr.00125-18] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Health care-associated infections (HAIs) are a global problem associated with significant morbidity and mortality. Controlling the spread of antimicrobial-resistant bacteria is a major public health challenge, and antimicrobial resistance has become one of the most important global problems in current times. The antimicrobial effect of copper has been known for centuries, and ongoing research is being conducted on the use of copper-coated hard and soft surfaces for reduction of microbial contamination and, subsequently, reduction of HAIs. This review provides an overview of the historical and current evidence of the antimicrobial and wound-healing properties of copper and explores its possible utility in obstetrics and gynecology.
Collapse
|
56
|
Adeoshun FG, Ruppitsch W, Allerberger F, Ayeni FA. Prevalence and Antimicrobial Properties of Lactic Acid Bacteria in Nigerian Women During the Menstrual Cycle. Pol J Microbiol 2019; 68:203-209. [PMID: 31250590 PMCID: PMC7256855 DOI: 10.33073/pjm-2019-020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 11/27/2022] Open
Abstract
The composition of vagina lactic acid bacteria (LAB) differs within the different ethnic group. This study is aimed at determining the prevalence of LAB with their antimicrobial properties in Nigerian women’s vagina during different stages of the menstrual cycle. Microorganisms were isolated from vaginal swabs of ten Nigerian women during different stages of the menstrual cycle and identified by partial sequencing of the 16S rRNA gene. The antimicrobial properties of the LAB were tested against the multidrug-resistant uropathogens. The prevalence of LAB was higher during ovulation period while during menstruation period, it declined. Twenty-five LAB isolates were identified as three species, namely: Lactobacillus plantarum (15), Lactobacillus fermentum (9), Lactobacillus brevis (1) and one acetic acid bacteria – Acetobacter pasteurianus. The LAB had antimicrobial activities against the three uropathogens with zones of inhibition from 8 to 22 mm. The presence of LAB inhibits the growth of Staphylococcus sp. GF01 also in the co-culture. High LAB counts were found during ovulation period with L. plantarum as a dominant species while during menstruation, there was a decrease in the LAB counts. The isolated LAB has antimicrobial properties against the urogenital pathogens tested thus exhibiting their potential protective role against uropathogens.
Collapse
Affiliation(s)
- Folashade Grace Adeoshun
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan , Ibadan, Oyo State , Nigeria
| | - Werner Ruppitsch
- Austrian Agency for Health and Food Safety, Institute of Medical Microbiology and Hygiene , Vienna , Austria
| | - Franz Allerberger
- Austrian Agency for Health and Food Safety, Institute of Medical Microbiology and Hygiene , Vienna , Austria
| | - Funmilola Abidemi Ayeni
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan , Ibadan, Oyo State , Nigeria
| |
Collapse
|
57
|
Leyva-Gómez G, Prado-Audelo MLD, Ortega-Peña S, Mendoza-Muñoz N, Urbán-Morlán Z, González-Torres M, González-Del Carmen M, Figueroa-González G, Reyes-Hernández OD, Cortés H. Modifications in Vaginal Microbiota and Their Influence on Drug Release: Challenges and Opportunities. Pharmaceutics 2019; 11:pharmaceutics11050217. [PMID: 31064154 PMCID: PMC6571606 DOI: 10.3390/pharmaceutics11050217] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 12/12/2022] Open
Abstract
Vaginal drug delivery represents an attractive alternative to achieve local and systemic effects due to the high contact surface exposed, the mucoadhesion of the epithelium, and the high innervation that facilitates the absorption of drugs into the bloodstream. However, despite the confinement of the vaginal cavity, it is an organ with a highly variable microenvironment. Mechanical alterations such as coitus, or chemical changes such as pH and viscosity, modify the release of drugs. In addition, changes in vaginal microbiota can influence the entire vaginal microenvironment, thus determining the disposition of drugs in the vaginal cavity and decreasing their therapeutic efficacy. Therefore, the influence of microorganisms on vaginal homeostasis can change the pre-established scenario for the application of drugs. This review aims to provide an explanation of normal vaginal microbiota, the factors that modify it, its involvement in the administration of drugs, and new proposals for the design of novel pharmaceutical dosage forms. Finally, challenges and opportunities directed toward the conception of new effective formulations are discussed.
Collapse
Affiliation(s)
- Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| | - María L Del Prado-Audelo
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
- Laboratorio de Posgrado en Tecnología Farmacéutica, FES-Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54740, Mexico.
| | - Silvestre Ortega-Peña
- Laboratorio de Infectología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico.
| | | | - Zaida Urbán-Morlán
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| | - Maykel González-Torres
- CONACyT-Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico.
- Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Ciudad de México 14380, Mexico.
| | | | - Gabriela Figueroa-González
- CONACyT-Laboratorio de Genómica, Dirección de Investigación, Instituto Nacional de Cancerología. Av. San Fernando 22, Tlalpan, Sección XVI, 14080 Ciudad de México, Mexico.
| | - Octavio D Reyes-Hernández
- Laboratorio de Biología Molecular del Cáncer, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico.
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico.
| |
Collapse
|
58
|
Abdool Karim SS, Baxter C, Passmore JS, McKinnon LR, Williams BL. The genital tract and rectal microbiomes: their role in HIV susceptibility and prevention in women. J Int AIDS Soc 2019; 22:e25300. [PMID: 31144462 PMCID: PMC6541743 DOI: 10.1002/jia2.25300] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 05/09/2019] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Young women in sub-Saharan Africa are disproportionately affected by HIV, accounting for 25% of all new infections in 2017. Several behavioural and biological factors are known to impact a young woman's vulnerability for acquiring HIV. One key, but lesser understood, biological factor impacting vulnerability is the vaginal microbiome. This review describes the vaginal microbiome and examines its alterations, its influence on HIV acquisition as well as the efficacy of HIV prevention technologies, the role of the rectal microbiome in HIV acquisition, advances in technologies to study the microbiome and some future research directions. DISCUSSION Although the composition of each woman's vaginal microbiome is unique, a microbiome dominated by Lactobacillus species is generally associated with a "healthy" vagina. Disturbances in the vaginal microbiota, characterized by a shift from a low-diversity, Lactobacillus-dominant state to a high-diversity non-Lactobacillus-dominant state, have been shown to be associated with a range of adverse reproductive health outcomes, including increasing the risk of genital inflammation and HIV acquisition. Gardnerella vaginalis and Prevotella bivia have been shown to contribute to both HIV risk and genital inflammation. In addition to impacting HIV risk, the composition of the vaginal microbiome affects the vaginal concentrations of some antiretroviral drugs, particularly those administered intravaginally, and thereby their efficacy as pre-exposure prophylaxis (PrEP) for HIV prevention. Although the role of rectal microbiota in HIV acquisition in women is less well understood, the composition of this compartment's microbiome, particularly the presence of species of bacteria from the Prevotellaceae family likely contribute to HIV acquisition. Advances in technologies have facilitated the study of the genital microbiome's structure and function. While next-generation sequencing advanced knowledge of the diversity and complexity of the vaginal microbiome, the emerging field of metaproteomics, which provides important information on vaginal bacterial community structure, diversity and function, is further shedding light on functionality of the vaginal microbiome and its relationship with bacterial vaginosis (BV), as well as antiretroviral PrEP efficacy. CONCLUSIONS A better understanding of the composition, structure and function of the microbiome is needed to identify opportunities to alter the vaginal microbiome and prevent BV and reduce the risk of HIV acquisition.
Collapse
Affiliation(s)
- Salim S Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)University of KwaZulu‐NatalDurbanSouth Africa
- Department of EpidemiologyColumbia UniversityNew YorkNYUSA
| | - Cheryl Baxter
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)University of KwaZulu‐NatalDurbanSouth Africa
| | - Jo‐Ann S Passmore
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)University of KwaZulu‐NatalDurbanSouth Africa
- National Health Laboratory ServiceCape TownSouth Africa
- Institute of Infectious Diseases and Molecular Medicine (IDM)University of Cape TownCape TownSouth Africa
| | - Lyle R McKinnon
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)University of KwaZulu‐NatalDurbanSouth Africa
- Department of Medical Microbiology and Infectious DiseasesUniversity of ManitobaWinnipegManitobaCanada
- Department of Medical MicrobiologyUniversity of NairobiNairobiKenya
| | - Brent L Williams
- Department of EpidemiologyColumbia UniversityNew YorkNYUSA
- Department of Pathology and Cell BiologyColumbia UniversityNew YorkNYUSA
| |
Collapse
|
59
|
van der Veer C, Hertzberger RY, Bruisten SM, Tytgat HLP, Swanenburg J, de Kat Angelino-Bart A, Schuren F, Molenaar D, Reid G, de Vries H, Kort R. Comparative genomics of human Lactobacillus crispatus isolates reveals genes for glycosylation and glycogen degradation: implications for in vivo dominance of the vaginal microbiota. MICROBIOME 2019; 7:49. [PMID: 30925932 PMCID: PMC6441167 DOI: 10.1186/s40168-019-0667-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/15/2019] [Indexed: 05/17/2023]
Abstract
BACKGROUND A vaginal microbiota dominated by lactobacilli (particularly Lactobacillus crispatus) is associated with vaginal health, whereas a vaginal microbiota not dominated by lactobacilli is considered dysbiotic. Here we investigated whether L. crispatus strains isolated from the vaginal tract of women with Lactobacillus-dominated vaginal microbiota (LVM) are pheno- or genotypically distinct from L. crispatus strains isolated from vaginal samples with dysbiotic vaginal microbiota (DVM). RESULTS We studied 33 L. crispatus strains (n = 16 from LVM; n = 17 from DVM). Comparison of these two groups of strains showed that, although strain differences existed, both groups degraded various carbohydrates, produced similar amounts of organic acids, inhibited Neisseria gonorrhoeae growth, and did not produce biofilms. Comparative genomics analyses of 28 strains (n = 12 LVM; n = 16 DVM) revealed a novel, 3-fragmented glycosyltransferase gene that was more prevalent among strains isolated from DVM. Most L. crispatus strains showed growth on glycogen-supplemented growth media. Strains that showed less-efficient (n = 6) or no (n = 1) growth on glycogen all carried N-terminal deletions (respectively, 29 and 37 amino acid deletions) in a putative pullulanase type I protein. DISCUSSION L. crispatus strains isolated from LVM were not phenotypically distinct from L. crispatus strains isolated from DVM; however, the finding that the latter were more likely to carry a 3-fragmented glycosyltransferase gene may indicate a role for cell surface glycoconjugates, which may shape vaginal microbiota-host interactions. Furthermore, the observation that variation in the pullulanase type I gene is associated with growth on glycogen discourages previous claims that L. crispatus cannot directly utilize glycogen.
Collapse
Affiliation(s)
- Charlotte van der Veer
- Department of Infectious Diseases, Public Health Service, GGD, Amsterdam, The Netherlands
| | - Rosanne Y Hertzberger
- Department of Molecular Cell Biology, Faculty of Science, O|2 Lab Building, VU University, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Sylvia M Bruisten
- Department of Infectious Diseases, Public Health Service, GGD, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam UMC, Amsterdam, The Netherlands
| | | | - Jorne Swanenburg
- Department of Molecular Cell Biology, Faculty of Science, O|2 Lab Building, VU University, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
- Netherlands Organization for Applied Scientific Research (TNO), Microbiology and Systems Biology, Zeist, The Netherlands
| | - Alie de Kat Angelino-Bart
- Netherlands Organization for Applied Scientific Research (TNO), Microbiology and Systems Biology, Zeist, The Netherlands
| | - Frank Schuren
- Netherlands Organization for Applied Scientific Research (TNO), Microbiology and Systems Biology, Zeist, The Netherlands
| | - Douwe Molenaar
- Department of Molecular Cell Biology, Faculty of Science, O|2 Lab Building, VU University, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Gregor Reid
- Canadian R&D Centre for Human Microbiome and Probiotics, Lawson Health Research Institute, London, Canada
- Departments of Microbiology and Immunology, and Surgery, Western University, London, Ontario, Canada
| | - Henry de Vries
- Department of Infectious Diseases, Public Health Service, GGD, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam UMC, Amsterdam, The Netherlands
| | - Remco Kort
- Department of Molecular Cell Biology, Faculty of Science, O|2 Lab Building, VU University, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
- Netherlands Organization for Applied Scientific Research (TNO), Microbiology and Systems Biology, Zeist, The Netherlands.
- ARTIS-Micropia, Amsterdam, The Netherlands.
| |
Collapse
|
60
|
Baqui AH, Lee ACC, Koffi AK, Khanam R, Mitra DK, Dasgupta SK, Uddin J, Ahmed P, Rafiqullah I, Rahman M, Quaiyum A, Koumans EH, Christian P, Saha SK, Mullany LC, Labrique A. Prevalence of and risk factors for abnormal vaginal flora and its association with adverse pregnancy outcomes in a rural district in north-east Bangladesh. Acta Obstet Gynecol Scand 2019; 98:309-319. [PMID: 30346023 PMCID: PMC6389396 DOI: 10.1111/aogs.13492] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 10/02/2018] [Indexed: 12/01/2022]
Abstract
INTRODUCTION The role of screening and treatment for abnormal vaginal flora (AVF) on adverse pregnancy outcomes remains unclear. Using data from women who participated in a population-based cluster randomized trial who were screened and treated for AVF, we report risk factors for AVF and association of persistent AVF with adverse perinatal outcomes. MATERIAL AND METHODS Pregnant women (n = 4221) <19 weeks of gestation provided self-administered mid-vaginal swabs; smears were Nugent-scored. AVF was treated with oral clindamycin; if AVF was present 3 weeks after treatment, persistent AVF was re-treated. We examined risk factors for AVF and the association of persistent AVF with adverse pregnancy outcomes. RESULTS The prevalence of AVF was 16.5%: 9.8% of women had bacterial vaginosis and 6.8% had intermediate flora. Lower economic and educational status of women were associated with increased risk of AVF. One-third of women with AVF had persistent abnormal flora; these women had a higher risk of a composite measure of adverse pregnancy outcomes from 20 to <37 weeks (preterm live birth, preterm still birth, late miscarriage) (relative risk [RR] 1.33, 95% confidence interval [CI] 1.07-1.65) and of late miscarriage alone (RR 4.15, 95% CI 2.12-8.12) compared to women without AVF. CONCLUSIONS In this study in Sylhet District, Bangladesh, rates of AVF and persistent AVF were high and persistent AVF was associated with adverse pregnancy outcomes, with an especially high associated risk for late miscarriage. Further characterization of the microbiome and relative bacterial species density associated with persistent AVF is needed.
Collapse
Affiliation(s)
- Abdullah H Baqui
- International Center for Maternal and Newborn Health, Health Systems Program, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, US
| | - Anne C C Lee
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, Massachusetts, US
| | - Alain K Koffi
- International Center for Maternal and Newborn Health, Health Systems Program, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, US
| | - Rasheda Khanam
- International Center for Maternal and Newborn Health, Health Systems Program, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, US
| | | | - Sushil K Dasgupta
- International Center for Diarrheal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Jamal Uddin
- Child Health Research Foundation, Dhaka, Bangladesh
| | - Parvez Ahmed
- International Center for Diarrheal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | | | - Mahmoodur Rahman
- International Center for Diarrheal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Abdul Quaiyum
- International Center for Diarrheal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Emilia H Koumans
- Centers for Disease Control and Prevention, Atlanta, Georgia, US
| | | | - Samir K Saha
- Child Health Research Foundation, Dhaka, Bangladesh
| | - Luke C Mullany
- International Center for Maternal and Newborn Health, Health Systems Program, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, US
| | - Alain Labrique
- International Center for Maternal and Newborn Health, Health Systems Program, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, US
| |
Collapse
|
61
|
Bayigga L, Kateete DP, Anderson DJ, Sekikubo M, Nakanjako D. Diversity of vaginal microbiota in sub-Saharan Africa and its effects on HIV transmission and prevention. Am J Obstet Gynecol 2019; 220:155-166. [PMID: 30321529 PMCID: PMC10715630 DOI: 10.1016/j.ajog.2018.10.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/27/2018] [Accepted: 10/07/2018] [Indexed: 01/23/2023]
Abstract
The vaginal microbial community ("microbiota") is a key component of the reproductive health of women, providing protection against urogenital infections. In sub-Saharan Africa, there is a high prevalence of bacterial vaginosis, a condition defined by bacterial overgrowth and a shift away from a Lactobacillus-dominated profile toward increased percentages of strict anaerobic species. Bacterial vaginosis is associated with an increased risk of HIV acquisition and transmission, as well as an increased risk of acquiring other sexually transmitted infections, preterm births, and pelvic inflammatory disease. Vaginal microbiota, rich in taxa of strict anaerobic species, disrupts the mucosal epithelial barrier through secretion of metabolites and enzymes that mediate inflammation. Advancements in next-generation sequencing technologies such as whole-genome sequencing have led to deeper profiling of the vaginal microbiome and further study of its potential role in HIV pathogenesis and treatment. Until recently data on the composition of the vaginal microbiome in sub-Saharan Africa have been limited; however, a number of studies have been published that highlight the critical role of vaginal microbiota in disease and health in African women. This article reviews these recent findings and identifies gaps in knowledge about variations in female genital commensal bacteria that could provide vital information to improve the effectiveness of interventions to prevent HIV and other sexually transmitted infections. In addition, we review the effects of pregnancy, contraception, and sexual practices on vaginal microbiome and the potential of vaginal microbiota on HIV transmission and prevention. A better understanding of the role of vaginal microbiota in host susceptibility to HIV infection and its prevention among African women could inform the development of novel local and systemic interventions to minimize new HIV infections among high-risk women.
Collapse
Affiliation(s)
- Lois Bayigga
- Department of Immunology and Molecular Biology, Makerere University College of Health Sciences, Kampala, Uganda
| | - David P Kateete
- Department of Immunology and Molecular Biology, Makerere University College of Health Sciences, Kampala, Uganda
| | - Deborah J Anderson
- Departments of Obstetrics and Gynecology, Microbiology, and Medicine, Boston University School of Medicine, Boston, MA
| | - Musa Sekikubo
- Department of Obstetrics and Gynecology, Makerere University College of Health Sciences, Kampala, Uganda
| | - Damalie Nakanjako
- Department of Internal Medicine, School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda; Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda.
| |
Collapse
|
62
|
O'Hanlon DE, Come RA, Moench TR. Vaginal pH measured in vivo: lactobacilli determine pH and lactic acid concentration. BMC Microbiol 2019; 19:13. [PMID: 30642259 PMCID: PMC6332693 DOI: 10.1186/s12866-019-1388-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 01/04/2019] [Indexed: 12/04/2022] Open
Abstract
Background Lactic acid (protonated lactate) has broad antimicrobial activity. Vaginal lactobacilli produce lactic acid, and are known to confer protection against reproductive tract infections when they are predominant in the vaginal microbiota. Using novel ex vivo methods, we showed that cervicovaginal fluid (CVF) from women with a predominantly lactobacilli-morphotype microbiota contains significantly more lactic acid than previously thought, sufficient to inactivate reproductive tract pathogens. Here, we measured vaginal pH in vivo in 20 women with a predominantly lactobacilli-morphotype (low Nugent score) microbiota. We also investigated the in vitro production of protons (as hydrogen ions) and lactate by vaginal lactobacilli. Results The average vaginal pH in these women was 3.80 ± 0.20, and the average lactate concentration was 0.79% ± 0.22% w/v, with pH and lactate concentration tightly correlated for each sample. In vitro, lactobacilli cultured from these CVF samples reached an average pH of 3.92 ± 0.22, but the average lactate concentration was only 0.14% ± 0.06% w/v, approximately five-fold less than in the corresponding CVF samples. When the pH of the cultures was raised, lactate and hydrogen ion production resumed, indicating that production of lactate and hydrogen ions by vaginal lactobacilli is limited primarily by their sensitivity to hydrogen ion concentration (low pH) not lactate concentration. Conclusions Some vaginal lactobacilli cultures have a lower limiting pH than others, and limiting pHs in vitro showed good correlation with pHs measured in vivo. The limiting pH of the lactobacilli predominant in a woman’s vaginal microbiota seems critical in determining the concentration of antimicrobial lactic acid protecting her.
Collapse
Affiliation(s)
- Deirdre Elizabeth O'Hanlon
- Institute for Genomic Sciences, University of Maryland School of Medicine, 801 West Baltimore Street, Baltimore, MD, USA.
| | - Richard A Come
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | | |
Collapse
|
63
|
Williams B, Boucher C, Bushman F, Carrington-Lawrence S, Collman R, Dandekar S, Dang Q, Malaspina A, Paredes R, Wilson C, Nowak P, Klatt N, Lagenaur L, Landay A. A Summary of the Third Annual HIV Microbiome Workshop. AIDS Res Hum Retroviruses 2018; 34:828-834. [PMID: 30105916 DOI: 10.1089/aid.2018.0103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Our microbial cotravelers have increasingly apparent roles in both maintaining health and causing disease in several organ systems. Investigators gather annually at the National Institutes of Health to present new discoveries regarding the role of the microbiome in human health and a special focus on persons living with HIV. Here, we summarize the discussions from the third annual Virology Education workshop on the microbiome in HIV, which took place in October of 2017.
Collapse
Affiliation(s)
- Brett Williams
- Division of Infectious Diseases, Rush University Medical Center, Chicago, Illinois
| | - Charles Boucher
- Department of Virosciences, Erasmus Medical Center, Erasmus University, Rotterdam, the Netherlands
| | - Frederic Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stacy Carrington-Lawrence
- Office of AIDS Research, Division of Program Coordination, Planning, and Strategic Initiatives, Office of the Director, U.S. National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Ronald Collman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Satya Dandekar
- Department of Medical Microbiology and Immunology, University of California, Davis, California
| | - Que Dang
- Vaccine Research Program, Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | - Angela Malaspina
- Vaccine Research Program, Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | - Roger Paredes
- Institut de Recerca de la SIDA IrsiCaixa i Unitat VIH, Universitat Autònoma de Barcelona, Universitat de Vic, Catalonia, Spain
| | - Cara Wilson
- Department of Medicine, University of Colorado at Denver, Denver, Colorado
| | - Piotr Nowak
- Department of Medicine, Unit of Infectious Diseases, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Nichole Klatt
- Department of Pharmaceutics, Washington National Primate Research Center, University of Washington, Seattle, Washington
| | | | - Alan Landay
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
64
|
A Cell Surface Aggregation-Promoting Factor from Lactobacillus gasseri Contributes to Inhibition of Trichomonas vaginalis Adhesion to Human Vaginal Ectocervical Cells. Infect Immun 2018; 86:IAI.00907-17. [PMID: 29784856 DOI: 10.1128/iai.00907-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 05/12/2018] [Indexed: 01/08/2023] Open
Abstract
Trichomoniasis, a prevalent sexually transmitted infection, is commonly symptomatic in women. The causative agent is Trichomonas vaginalis, an extracellular protozoan parasite. The host-protective mechanisms and molecules of vaginal lactobacilli that counteract this pathogen are largely unknown. This study examines the inhibition promoted by Lactobacillus gasseri against the adhesion of T. vaginalis to host cells, a critical virulence aspect of this pathogen. We observed that the vaginal strain L. gasseri ATCC 9857 is highly inhibitory by various contact-dependent mechanisms and that surface proteins are largely responsible for this inhibitory phenotype. We found that the aggregation-promoting factor APF-2 from these bacteria significantly contributes to inhibition of the adhesion of T. vaginalis to human vaginal ectocervical cells. Understanding the molecules and mechanisms used by lactobacilli to protect the host against T. vaginalis might help in the development of novel and specific therapeutic strategies that take advantage of the natural microbiota.
Collapse
|
65
|
Tyssen D, Wang YY, Hayward JA, Agius PA, DeLong K, Aldunate M, Ravel J, Moench TR, Cone RA, Tachedjian G. Anti-HIV-1 Activity of Lactic Acid in Human Cervicovaginal Fluid. mSphere 2018; 3:e00055-18. [PMID: 29976641 PMCID: PMC6034077 DOI: 10.1128/msphere.00055-18] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/05/2018] [Indexed: 12/14/2022] Open
Abstract
Women of reproductive age with a Lactobacillus-dominated vaginal microbiota have a reduced risk of acquiring and transmitting HIV and a vaginal pH of ~4 due to the presence of ~1% (wt/vol) lactic acid. While lactic acid has potent HIV virucidal activity in vitro, whether lactic acid present in the vaginal lumen inactivates HIV has not been investigated. Here we evaluated the anti-HIV-1 activity of native, minimally diluted cervicovaginal fluid obtained from women of reproductive age (n = 20) with vaginal microbiota dominated by Lactobacillus spp. Inhibition of HIVBa-L was significantly associated with the protonated form of lactic acid in cervicovaginal fluid. The HIVBa-L inhibitory activity observed in the <3-kDa acidic filtrate was similar to that of the corresponding untreated native cervicovaginal fluid as well as that of clarified neat cervicovaginal fluid subjected to protease digestion. These ex vivo studies indicate that protonated lactic acid is a major anti-HIV-1 metabolite present in acidic cervicovaginal fluid, suggesting a potential role in reducing HIV transmission by inactivating virus introduced or shed into the cervicovaginal lumen.IMPORTANCE The Lactobacillus-dominated vaginal microbiota is associated with a reduced risk of acquiring and transmitting HIV and other sexually transmitted infections (STIs). Lactic acid is a major organic acid metabolite produced by lactobacilli that acidifies the vagina and has been reported to have inhibitory activity in vitro against bacterial, protozoan, and viral STIs, including HIV infections. However, the anti-HIV properties of lactic acid in native vaginal lumen fluids of women colonized with Lactobacillus spp. have not yet been established. Our study, using native cervicovaginal fluid from women, found that potent and irreversible anti-HIV-1 activity is significantly associated with the concentration of the protonated (acidic, uncharged) form of lactic acid. This work advances our understanding of the mechanisms by which vaginal microbiota modulate HIV susceptibility and could lead to novel strategies to prevent women from acquiring HIV or transmitting the virus during vaginal intercourse and vaginal birth.
Collapse
Affiliation(s)
- David Tyssen
- Disease Elimination Program, Life Sciences Discipline, Burnet Institute, Melbourne, Victoria, Australia
| | - Ying-Ying Wang
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Joshua A Hayward
- Disease Elimination Program, Life Sciences Discipline, Burnet Institute, Melbourne, Victoria, Australia
| | - Paul A Agius
- Maternal and Child Health Program, Public Health Discipline, Burnet Institute, Melbourne, Victoria, Australia
- Department of Epidemiology and Preventative Medicine, Monash University, Melbourne, Victoria, Australia
| | - Kevin DeLong
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Muriel Aldunate
- Disease Elimination Program, Life Sciences Discipline, Burnet Institute, Melbourne, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Richard A Cone
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Gilda Tachedjian
- Disease Elimination Program, Life Sciences Discipline, Burnet Institute, Melbourne, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
66
|
Transcriptome Analysis of Neisseria gonorrhoeae during Natural Infection Reveals Differential Expression of Antibiotic Resistance Determinants between Men and Women. mSphere 2018; 3:3/3/e00312-18. [PMID: 29950382 PMCID: PMC6021601 DOI: 10.1128/mspheredirect.00312-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/06/2018] [Indexed: 11/20/2022] Open
Abstract
Recent emergence of antimicrobial resistance of Neisseria gonorrhoeae worldwide has resulted in limited therapeutic choices for treatment of infections caused by this organism. We performed global transcriptomic analysis of N. gonorrhoeae in subjects with gonorrhea who attended a Nanjing, China, sexually transmitted infection (STI) clinic, where antimicrobial resistance of N. gonorrhoeae is high and increasing. We found that N. gonorrhoeae transcriptional responses to infection differed in genital specimens taken from men and women, particularly antibiotic resistance gene expression, which was increased in men. These sex-specific findings may provide a new approach to guide therapeutic interventions and preventive measures that are also sex specific while providing additional insight to address antimicrobial resistance of N. gonorrhoeae. Neisseria gonorrhoeae is a bacterial pathogen responsible for the sexually transmitted infection gonorrhea. Emergence of antimicrobial resistance (AMR) of N. gonorrhoeae worldwide has resulted in limited therapeutic choices for this infection. Men who seek treatment often have symptomatic urethritis; in contrast, gonococcal cervicitis in women is usually minimally symptomatic, but may progress to pelvic inflammatory disease. Previously, we reported the first analysis of gonococcal transcriptome expression determined in secretions from women with cervical infection. Here, we defined gonococcal global transcriptional responses in urethral specimens from men with symptomatic urethritis and compared these with transcriptional responses in specimens obtained from women with cervical infections and in vitro-grown N. gonorrhoeae isolates. This is the first comprehensive comparison of gonococcal gene expression in infected men and women. RNA sequencing analysis revealed that 9.4% of gonococcal genes showed increased expression exclusively in men and included genes involved in host immune cell interactions, while 4.3% showed increased expression exclusively in women and included phage-associated genes. Infected men and women displayed comparable antibiotic-resistant genotypes and in vitro phenotypes, but a 4-fold higher expression of the Mtr efflux pump-related genes was observed in men. These results suggest that expression of AMR genes is programed genotypically and also driven by sex-specific environments. Collectively, our results indicate that distinct N. gonorrhoeae gene expression signatures are detected during genital infection in men and women. We propose that therapeutic strategies could target sex-specific differences in expression of antibiotic resistance genes. IMPORTANCE Recent emergence of antimicrobial resistance of Neisseria gonorrhoeae worldwide has resulted in limited therapeutic choices for treatment of infections caused by this organism. We performed global transcriptomic analysis of N. gonorrhoeae in subjects with gonorrhea who attended a Nanjing, China, sexually transmitted infection (STI) clinic, where antimicrobial resistance of N. gonorrhoeae is high and increasing. We found that N. gonorrhoeae transcriptional responses to infection differed in genital specimens taken from men and women, particularly antibiotic resistance gene expression, which was increased in men. These sex-specific findings may provide a new approach to guide therapeutic interventions and preventive measures that are also sex specific while providing additional insight to address antimicrobial resistance of N. gonorrhoeae.
Collapse
|
67
|
Witkin SS. Lactic acid alleviates stress: good for female genital tract homeostasis, bad for protection against malignancy. Cell Stress Chaperones 2018; 23:297-302. [PMID: 29063375 PMCID: PMC5904085 DOI: 10.1007/s12192-017-0852-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/09/2017] [Accepted: 10/09/2017] [Indexed: 01/12/2023] Open
Abstract
Women are unique from all other mammals in that lactic acid is present at high levels in the vagina during their reproductive years. This dominance may have evolved in response to the unique human lifestyle and a need to optimally protect pregnant women and their fetuses from endogenous and exogenous insults. Lactic acid in the female genital tract inactivates potentially pathogenic bacteria and viruses, maximizes survival of vaginal epithelial cells, and inhibits inflammation that may be damaging to the developing fetus and maintenance of the pregnancy. In an analogous manner, lactic acid production facilitates survival of malignantly transformed cells, inhibits activation of immune cells, and prevents the release of pro-inflammatory mediators in response to tumor-specific antigens. Thus, the same stress-reducing properties of lactic acid that promote lower genital tract health facilitate malignant transformation and progression.
Collapse
Affiliation(s)
- Steven S Witkin
- Division of Immunology and Infectious Diseases, Department of Obstetrics and Gynecology, Weill Cornell Medicine, 1300 York Avenue, Box 35, New York, NY, 10065, USA.
| |
Collapse
|
68
|
Tachedjian G, O’Hanlon DE, Ravel J. The implausible "in vivo" role of hydrogen peroxide as an antimicrobial factor produced by vaginal microbiota. MICROBIOME 2018; 6:29. [PMID: 29409534 PMCID: PMC5801833 DOI: 10.1186/s40168-018-0418-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 01/30/2018] [Indexed: 05/29/2023]
Abstract
In the cervicovaginal environment, the production of hydrogen peroxide (H2O2) by vaginal Lactobacillus spp. is often mentioned as a critical factor to the in vivo vaginal microbiota antimicrobial properties. We present several lines of evidence that support the implausibility of H2O2 as an "in vivo" contributor to the cervicovaginal milieu antimicrobial properties. An alternative explanation is proposed, supported by previous reports ascribing protective and antimicrobial properties to other factors produced by Lactobacillus spp. capable of generating H2O2. Under this proposal, lactic acid rather than H2O2 plays an important role in the antimicrobial properties of protective vaginal Lactobacillus spp. We hope this commentary will help future research focus on more plausible mechanisms by which vaginal Lactobacillus spp. exert their antimicrobial and beneficial properties, and which have in vivo and translational relevance.
Collapse
Affiliation(s)
- Gilda Tachedjian
- Disease Elimination Program, Life Sciences Discipline, Burnet Institute, 85 Commercial Rd, Melbourne, Victoria 3004 Australia
- Department of Microbiology, Monash University, Clayton, VIC 3168 Australia
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3010 Australia
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria 3000 Australia
| | - Deirdre E. O’Hanlon
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 West Baltimore Street, Baltimore, MD 21201 USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 West Baltimore Street, Baltimore, MD 21201 USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| |
Collapse
|
69
|
Foschi C, Salvo M, Cevenini R, Parolin C, Vitali B, Marangoni A. Vaginal Lactobacilli Reduce Neisseria gonorrhoeae Viability through Multiple Strategies: An in Vitro Study. Front Cell Infect Microbiol 2017; 7:502. [PMID: 29270390 PMCID: PMC5723648 DOI: 10.3389/fcimb.2017.00502] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/22/2017] [Indexed: 11/22/2022] Open
Abstract
The emergence and spread of antimicrobial resistance in Neisseria gonorrhoeae (GC) underline the need of “antibiotic-free” strategies for the control of gonorrhea. The aim of this study was to assess the anti-gonococcal activity of 14 vaginal Lactobacillus strains, belonging to different species (L. crispatus, L. gasseri, L. vaginalis), isolated from healthy pre-menopausal women. In particular, we performed “inhibition” experiments, evaluating the ability of both lactobacilli cells and culture supernatants in reducing GC viability, at two different contact times (7 and 60 min). First, we found that the acidic environment, associated to lactobacilli metabolism, is extremely effective in counteracting GC growth, in a pH- and time-dependent manner. Indeed, a complete abolishment of GC viability by lactobacilli supernatants was observed only for pH values < 4.0, even at short contact times. On the contrary, for higher pH values, no 100%-reduction of GC growth was reached at any contact time. Experiments with organic/inorganic acid solutions confirmed the strict correlation between the pH levels and the anti-gonococcal effect. In this context, the presence of lactate seemed to be crucial for the anti-gonococcal activity, especially for pH values in the range 4.4–5.3, indicating that the presence of H+ ions is necessary but not sufficient to kill gonococci. Moreover, experiments with buffered supernatants led to exclude a direct role in the GC killing by other bioactive molecules produced by lactobacilli. Second, we noticed that lactobacilli cells are able to reduce GC viability and to co-aggregate with gonococci. In this context, we demonstrated that released-surface components with biosurfactant properties, isolated from “highly-aggregating” lactobacilli, could affect GC viability. The antimicrobial potential of biosurfactants isolated from lactobacilli against pathogens has been largely investigated, but this is the first report about a possible use of these molecules in order to counteract GC infectivity. In conclusion, we identified specific Lactobacillus strains, mainly belonging to L. crispatus species, able to counteract GC viability through multiple mechanisms. These L. crispatus strains could represent a new potential probiotic strategy for the prevention of GC infections in women.
Collapse
Affiliation(s)
- Claudio Foschi
- Microbiology, Experimental, Diagnostic and Specialty Medicine - DIMES, University of Bologna, Bologna, Italy
| | - Melissa Salvo
- Microbiology, Experimental, Diagnostic and Specialty Medicine - DIMES, University of Bologna, Bologna, Italy
| | - Roberto Cevenini
- Microbiology, Experimental, Diagnostic and Specialty Medicine - DIMES, University of Bologna, Bologna, Italy
| | - Carola Parolin
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Beatrice Vitali
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Antonella Marangoni
- Microbiology, Experimental, Diagnostic and Specialty Medicine - DIMES, University of Bologna, Bologna, Italy
| |
Collapse
|
70
|
Younes JA, Lievens E, Hummelen R, van der Westen R, Reid G, Petrova MI. Women and Their Microbes: The Unexpected Friendship. Trends Microbiol 2017; 26:16-32. [PMID: 28844447 DOI: 10.1016/j.tim.2017.07.008] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/17/2017] [Accepted: 07/31/2017] [Indexed: 12/14/2022]
Abstract
Communities of microbiota have been associated with numerous health outcomes, and while much emphasis has been placed on the gastrointestinal niche, there is growing interest in the microbiome specific for female reproductive health and the health of their offspring. The vaginal microbiome plays an essential role not only in health and dysbiosis, but also potentially in successful fertilization and healthy pregnancies. In addition, microbial communities have been isolated from formerly forbidden sterile niches such as the placenta, breast, uterus, and Fallopian tubes, strongly suggesting an additional microbial role in women's health. A combination of maternally linked prenatal, birth, and postnatal factors, together with environmental and medical interventions, influence early and later life through the microbiome. Here, we review the role of microbes in female health focusing on the vaginal tract and discuss how male and female reproductive microbiomes are intertwined with conception and how mother-child microbial transfer is a key determinant in infant health, and thus the next generation.
Collapse
Affiliation(s)
- Jessica A Younes
- Winclove Probiotics, 11 Hulstweg, 1032 LB Amsterdam, The Netherlands.
| | - Elke Lievens
- KU Leuven, Centre of Microbial and Plant Genetics, Kasteelpark Arenberg 20, 3001 Leuven, Belgium; University of Antwerp, Department of Bioscience Engineering, Antwerp, Belgium
| | - Ruben Hummelen
- McMaster University, Department of Family Medicine, 100 Main Street West Hamilton, ON L8P 1H6, Canada
| | - Rebecca van der Westen
- University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Gregor Reid
- Human Microbiology and Probiotics, Lawson Health Research Institute, 268 Grosvenor Street, London, Ontario, N6A 4V2, Canada; Departments of Microbiology & Immunology, and Surgery, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Mariya I Petrova
- KU Leuven, Centre of Microbial and Plant Genetics, Kasteelpark Arenberg 20, 3001 Leuven, Belgium; University of Antwerp, Department of Bioscience Engineering, Antwerp, Belgium.
| |
Collapse
|
71
|
Makovcova J, Babak V, Kulich P, Masek J, Slany M, Cincarova L. Dynamics of mono- and dual-species biofilm formation and interactions between Staphylococcus aureus and Gram-negative bacteria. Microb Biotechnol 2017; 10:819-832. [PMID: 28401747 PMCID: PMC5481519 DOI: 10.1111/1751-7915.12705] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 01/20/2023] Open
Abstract
Microorganisms are not commonly found in the planktonic state but predominantly form dual- and multispecies biofilms in almost all natural environments. Bacteria in multispecies biofilms cooperate, compete or have neutral interactions according to the involved species. Here, the development of mono- and dual-species biofilms formed by Staphylococcus aureus and other foodborne pathogens such as Salmonella enterica subsp. enterica serovar Enteritidis, potentially pathogenic Raoultella planticola and non-pathogenic Escherichia coli over the course of 24, 48 and 72 h was studied. Biofilm formation was evaluated by the crystal violet assay (CV), enumeration of colony-forming units (CFU cm-2 ) and visualization using confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). In general, Gram-negative bacterial species and S. aureus interacted in a competitive manner. The tested Gram-negative bacteria grew better in mixed dual-species biofilms than in their mono-species biofilms as determined using the CV assay, CFU ml-2 enumeration, and CLSM and SEM visualization. In contrast, the growth of S. aureus biofilms was reduced when cultured in dual-species biofilms. CLSM images revealed grape-like clusters of S. aureus and monolayers of Gram-negative bacteria in both mono- and dual-species biofilms. S. aureus clusters in dual-species biofilms were significantly smaller than clusters in S. aureus mono-species biofilms.
Collapse
Affiliation(s)
- Jitka Makovcova
- Department of Food and Feed Safety, Veterinary Research Institute, Brno, Czech Republic
| | - Vladimir Babak
- Department of Food and Feed Safety, Veterinary Research Institute, Brno, Czech Republic
| | - Pavel Kulich
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Josef Masek
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, Brno, Czech Republic
| | - Michal Slany
- Department of Food and Feed Safety, Veterinary Research Institute, Brno, Czech Republic
| | - Lenka Cincarova
- Department of Food and Feed Safety, Veterinary Research Institute, Brno, Czech Republic
| |
Collapse
|
72
|
Kamińska D, Gajecka M. Is the role of human female reproductive tract microbiota underestimated? Benef Microbes 2017; 8:327-343. [PMID: 28504576 DOI: 10.3920/bm2015.0174] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An issue that is currently undergoing extensive study is the influence of human vaginal microbiota (VMB) on the health status of women and their neonates. Healthy women are mainly colonised with lactobacilli such as Lactobacillus crispatus, Lactobacillus jensenii, and Lactobacillus iners; however, other bacteria may be elements of the VMB, particularly in women with bacterial vaginosis. The implementation of culture-independent molecular methods in VMB characterisation, especially next-generation sequencing, have provided new information regarding bacterial diversity in the vagina, revealing a large number of novel, fastidious, and/or uncultivated bacterial species. These molecular studies have contributed new insights regarding the role of bacterial community composition. In this study, we discuss recent findings regarding the reproductive tract microbiome. Not only bacteria but also viruses and fungi constitute important components of the reproductive tract microbiome. We focus on aspects related to the impact of the maternal microbiome on foetal development, as well as the establishment of the neonatal microbiomes, including the placenta microbiome, and the haematogenous source of intrauterine infection. We also discuss whether the role of the vaginal microbiome is currently understood and appreciated.
Collapse
Affiliation(s)
- D Kamińska
- 1 Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Swiecickiego 4, 60-781 Poznan, Poland
| | - M Gajecka
- 1 Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Swiecickiego 4, 60-781 Poznan, Poland.,2 Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland
| |
Collapse
|
73
|
The role of lactic acid production by probiotic Lactobacillus species in vaginal health. Res Microbiol 2017; 168:782-792. [PMID: 28435139 DOI: 10.1016/j.resmic.2017.04.001] [Citation(s) in RCA: 287] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 04/03/2017] [Accepted: 04/03/2017] [Indexed: 12/12/2022]
Abstract
Vaginal eubiosis is characterised by beneficial lactobacillus-dominated microbiota. In contrast, vaginal dysbiosis (e.g. bacterial vaginosis, BV), characterised by an overgrowth of multiple anaerobes, is associated with an increased risk of adverse urogenital and reproductive health outcomes. A major distinguishing feature between the vaginal environment in states of eubiosis and dysbiosis is a high concentration of lactic acid, produced by lactobacilli, that acidifies the vagina in eubiosis versus a sharp drop in lactic acid and an increase in pH in dysbiosis. Here we review the antimicrobial, antiviral and immunomodulatory properties of lactic acid and the use of lactic acid and lactobacilli probiotics in preventing or treating BV.
Collapse
|
74
|
Miller EA, Beasley DE, Dunn RR, Archie EA. Lactobacilli Dominance and Vaginal pH: Why Is the Human Vaginal Microbiome Unique? Front Microbiol 2016; 7:1936. [PMID: 28008325 PMCID: PMC5143676 DOI: 10.3389/fmicb.2016.01936] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/17/2016] [Indexed: 01/09/2023] Open
Abstract
The human vaginal microbiome is dominated by bacteria from the genus Lactobacillus, which create an acidic environment thought to protect women against sexually transmitted pathogens and opportunistic infections. Strikingly, lactobacilli dominance appears to be unique to humans; while the relative abundance of lactobacilli in the human vagina is typically >70%, in other mammals lactobacilli rarely comprise more than 1% of vaginal microbiota. Several hypotheses have been proposed to explain humans' unique vaginal microbiota, including humans' distinct reproductive physiology, high risk of STDs, and high risk of microbial complications linked to pregnancy and birth. Here, we test these hypotheses using comparative data on vaginal pH and the relative abundance of lactobacilli in 26 mammalian species and 50 studies (N = 21 mammals for pH and 14 mammals for lactobacilli relative abundance). We found that non-human mammals, like humans, exhibit the lowest vaginal pH during the period of highest estrogen. However, the vaginal pH of non-human mammals is never as low as is typical for humans (median vaginal pH in humans = 4.5; range of pH across all 21 non-human mammals = 5.4-7.8). Contrary to disease and obstetric risk hypotheses, we found no significant relationship between vaginal pH or lactobacilli relative abundance and multiple metrics of STD or birth injury risk (P-values ranged from 0.13 to 0.99). Given the lack of evidence for these hypotheses, we discuss two alternative explanations: the common function hypothesis and a novel hypothesis related to the diet of agricultural humans. Specifically, with regard to diet we propose that high levels of starch in human diets have led to increased levels of glycogen in the vaginal tract, which, in turn, promotes the proliferation of lactobacilli. If true, human diet may have paved the way for a novel, protective microbiome in human vaginal tracts. Overall, our results highlight the need for continuing research on non-human vaginal microbial communities and the importance of investigating both the physiological mechanisms and the broad evolutionary processes underlying human lactobacilli dominance.
Collapse
Affiliation(s)
- Elizabeth A Miller
- Department of Biological Sciences, University of Notre Dame Notre Dame, IN, USA
| | - DeAnna E Beasley
- Department of Biology, Geology and Environmental Science, University of Tennessee at Chattanooga Chattanooga, TN, USA
| | - Robert R Dunn
- Department of Applied Ecology, North Carolina State UniversityRaleigh, NC, USA; Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of CopenhagenCopenhagen, Denmark
| | - Elizabeth A Archie
- Department of Biological Sciences, University of Notre DameNotre Dame, IN, USA; Institute of Primate Research, National Museums of KenyaNairobi, Kenya
| |
Collapse
|
75
|
Mitra A, MacIntyre DA, Marchesi JR, Lee YS, Bennett PR, Kyrgiou M. The vaginal microbiota, human papillomavirus infection and cervical intraepithelial neoplasia: what do we know and where are we going next? MICROBIOME 2016; 4:58. [PMID: 27802830 PMCID: PMC5088670 DOI: 10.1186/s40168-016-0203-0] [Citation(s) in RCA: 255] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/12/2016] [Indexed: 05/02/2023]
Abstract
The vaginal microbiota plays a significant role in health and disease of the female reproductive tract. Next-generation sequencing techniques based upon the analysis of bacterial 16S rRNA genes permit in-depth study of vaginal microbial community structure to a level of detail not possible with standard culture-based microbiological techniques. The human papillomavirus (HPV) causes both cervical intraepithelial neoplasia (CIN) and cervical cancer. Although the virus is highly prevalent, only a small number of women have a persistent HPV infection and subsequently develop clinically significant disease. There is emerging evidence which leads us to conclude that increased diversity of vaginal microbiota combined with reduced relative abundance of Lactobacillus spp. is involved in HPV acquisition and persistence and the development of cervical precancer and cancer. In this review, we summarise the current literature and discuss potential mechanisms for the involvement of vaginal microbiota in the evolution of CIN and cervical cancer. The concept of manipulation of vaginal bacterial communities using pre- and probiotics is also discussed as an exciting prospect for the field of cervical pathology.
Collapse
Affiliation(s)
- Anita Mitra
- Institute of Reproductive and Developmental Biology, Hammersmith Hospital Campus, Department of Surgery and Cancer, Imperial College London, Du Cane Road, W120NN, London, UK
- Department of Obstetrics and Gynaecology, Queen Charlotte's and Chelsea-Hammersmith Hospital, Imperial Healthcare NHS Trust, London, UK
| | - David A MacIntyre
- Institute of Reproductive and Developmental Biology, Hammersmith Hospital Campus, Department of Surgery and Cancer, Imperial College London, Du Cane Road, W120NN, London, UK.
| | - Julian R Marchesi
- School of Biosciences, Cardiff University, Cardiff, UK
- Division of Digestive Diseases, St. Mary's Hospital, Imperial College London, South Wharf Road, London, UK
- Centre for Digestive and Gut Health, Imperial College London, London, UK
| | - Yun S Lee
- Institute of Reproductive and Developmental Biology, Hammersmith Hospital Campus, Department of Surgery and Cancer, Imperial College London, Du Cane Road, W120NN, London, UK
| | - Phillip R Bennett
- Institute of Reproductive and Developmental Biology, Hammersmith Hospital Campus, Department of Surgery and Cancer, Imperial College London, Du Cane Road, W120NN, London, UK
- Department of Obstetrics and Gynaecology, Queen Charlotte's and Chelsea-Hammersmith Hospital, Imperial Healthcare NHS Trust, London, UK
| | - Maria Kyrgiou
- Institute of Reproductive and Developmental Biology, Hammersmith Hospital Campus, Department of Surgery and Cancer, Imperial College London, Du Cane Road, W120NN, London, UK.
- Department of Obstetrics and Gynaecology, Queen Charlotte's and Chelsea-Hammersmith Hospital, Imperial Healthcare NHS Trust, London, UK.
| |
Collapse
|
76
|
Characterization of the Neisseria gonorrhoeae Iron and Fur Regulatory Network. J Bacteriol 2016; 198:2180-91. [PMID: 27246574 DOI: 10.1128/jb.00166-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 05/24/2016] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED The Neisseria gonorrhoeae ferric uptake regulator (Fur) protein controls expression of iron homeostasis genes in response to intracellular iron levels. In this study, using transcriptome sequencing (RNA-seq) analysis of an N. gonorrhoeae fur strain, we defined the gonococcal Fur and iron regulons and characterized Fur-controlled expression of an ArsR-like DNA binding protein. We observed that 158 genes (8% of the genome) showed differential expression in response to iron in an N. gonorrhoeae wild-type or fur strain, while 54 genes exhibited differential expression in response to Fur. The Fur regulon was extended to additional regulators, including NrrF and 13 other small RNAs (sRNAs), and two transcriptional factors. One transcriptional factor, coding for an ArsR-like regulator (ArsR), exhibited increased expression under iron-replete conditions in the wild-type strain but showed decreased expression across iron conditions in the fur strain, an effect that was reversed in a fur-complemented strain. Fur was shown to bind to the promoter region of the arsR gene downstream of a predicted σ(70) promoter region. Electrophoretic mobility shift assay (EMSA) analysis confirmed binding of the ArsR protein to the norB promoter region, and sequence analysis identified two additional putative targets, NGO1411 and NGO1646. A gonococcal arsR strain demonstrated decreased survival in human endocervical epithelial cells compared to that of the wild-type and arsR-complemented strains, suggesting that the ArsR regulon includes genes required for survival in host cells. Collectively, these results demonstrate that the N. gonorrhoeae Fur functions as a global regulatory protein to repress or activate expression of a large repertoire of genes, including additional transcriptional regulatory proteins. IMPORTANCE Gene regulation in bacteria in response to environmental stimuli, including iron, is of paramount importance to both bacterial replication and, in the case of pathogenic bacteria, successful infection. Bacterial DNA binding proteins are a common mechanism utilized by pathogens to control gene expression under various environmental conditions. Here, we show that the DNA binding protein Fur, expressed by the human pathogen Neisseria gonorrhoeae, controls the expression of a large repertoire of genes and extends this regulon by controlling expression of additional DNA binding proteins. One of these proteins, an ArsR-like regulator, was required for N. gonorrhoeae survival within host cells. These results show that the Fur regulon extends to additional regulatory proteins, which together contribute to gonococcal mechanisms of pathogenesis.
Collapse
|
77
|
Affiliation(s)
- Adam Wahida
- Division of Virology, Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Klaus Ritter
- Division of Virology, Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Hans-Peter Horz
- Division of Virology, Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
78
|
Abstract
Bacterial biofilms are dense and often mixed-species surface-attached communities in which bacteria coexist and compete for limited space and nutrients. Here we present the different antagonistic interactions described in biofilm environments and their underlying molecular mechanisms, along with ecological and evolutionary insights as to how competitive interactions arise and are maintained within biofilms.
Collapse
|
79
|
Breshears LM, Edwards VL, Ravel J, Peterson ML. Lactobacillus crispatus inhibits growth of Gardnerella vaginalis and Neisseria gonorrhoeae on a porcine vaginal mucosa model. BMC Microbiol 2015; 15:276. [PMID: 26652855 PMCID: PMC4675025 DOI: 10.1186/s12866-015-0608-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/30/2015] [Indexed: 02/07/2023] Open
Abstract
Background The vaginal microbiota can impact the susceptibility of women to bacterial vaginosis (BV) and sexually transmitted infections (STIs). BV is characterized by depletion of Lactobacillus spp., an overgrowth of anaerobes (often dominated by Gardnerella vaginalis) and a pH > 4.5. BV is associated with an increased risk of acquiring STIs such as chlamydia and gonorrhea. While these associations have been identified, the molecular mechanism(s) driving the risk of infections are unknown. An ex vivo porcine vaginal mucosal model (PVM) was developed to explore the mechanistic role of Lactobacillus spp. in affecting colonization by G. vaginalis and Neisseria gonorrhoeae. Results The data presented here demonstrate that all organisms tested can colonize and grow on PVM to clinically relevant densities. Additionally, G. vaginalis and N. gonorrhoeae form biofilms on PVM. It was observed that lactic acid, acetic acid, and hydrochloric acid inhibit the growth of G. vaginalis on PVM in a pH-dependent manner. N. gonorrhoeae grows best in the presence of lactic acid at pH 5.5, but did not grow well at this pH in the presence of acetic acid. Finally, a clinical Lactobacillus crispatus isolate (24-9-7) produces lactic acid and inhibits growth of both G. vaginalis and N. gonorrhoeae on PVM. Conclusions These data reveal differences in the effects of pH, various acids and L. crispatus on the growth of G. vaginalis and N. gonorrhoeae on a live vaginal mucosal surface. The PVM is a useful model for studying the interactions of commensal vaginal microbes with pathogens and the mechanisms of biofilm formation on the vaginal mucosa.
Collapse
Affiliation(s)
- Laura M Breshears
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, 4-442 McGuire Translational Research Facility, 2001 6th St. SE, Minneapolis, MN, 55455, USA.
| | - Vonetta L Edwards
- Institute for Genome Sciences, University of Maryland, School of Medicine, Bio Park II, 6th Floor, 801 West Baltimore St., Baltimore, MD, 21201, USA.
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland, School of Medicine, Bio Park II, 6th Floor, 801 West Baltimore St., Baltimore, MD, 21201, USA.
| | - Marnie L Peterson
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, 4-442 McGuire Translational Research Facility, 2001 6th St. SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
80
|
Augimeri RV, Varley AJ, Strap JL. Establishing a Role for Bacterial Cellulose in Environmental Interactions: Lessons Learned from Diverse Biofilm-Producing Proteobacteria. Front Microbiol 2015; 6:1282. [PMID: 26635751 PMCID: PMC4646962 DOI: 10.3389/fmicb.2015.01282] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/31/2015] [Indexed: 01/21/2023] Open
Abstract
Bacterial cellulose (BC) serves as a molecular glue to facilitate intra- and inter-domain interactions in nature. Biosynthesis of BC-containing biofilms occurs in a variety of Proteobacteria that inhabit diverse ecological niches. The enzymatic and regulatory systems responsible for the polymerization, exportation, and regulation of BC are equally as diverse. Though the magnitude and environmental consequences of BC production are species-specific, the common role of BC-containing biofilms is to establish close contact with a preferred host to facilitate efficient host-bacteria interactions. Universally, BC aids in attachment, adherence, and subsequent colonization of a substrate. Bi-directional interactions influence host physiology, bacterial physiology, and regulation of BC biosynthesis, primarily through modulation of intracellular bis-(3'→5')-cyclic diguanylate (c-di-GMP) levels. Depending on the circumstance, BC producers exhibit a pathogenic or symbiotic relationship with plant, animal, or fungal hosts. Rhizobiaceae species colonize plant roots, Pseudomonadaceae inhabit the phyllosphere, Acetobacteriaceae associate with sugar-loving insects and inhabit the carposphere, Enterobacteriaceae use fresh produce as vehicles to infect animal hosts, and Vibrionaceae, particularly Aliivibrio fischeri, colonize the light organ of squid. This review will highlight the diversity of the biosynthesis and regulation of BC in nature by discussing various examples of Proteobacteria that use BC-containing biofilms to facilitate host-bacteria interactions. Through discussion of current data we will establish new directions for the elucidation of BC biosynthesis, its regulation and its ecophysiological roles.
Collapse
Affiliation(s)
| | | | - Janice L. Strap
- Molecular Microbial Biochemistry Laboratory, Faculty of Science, University of Ontario Institute of TechnologyOshawa, ON, Canada
| |
Collapse
|
81
|
Nelson TM, Borgogna JLC, Brotman RM, Ravel J, Walk ST, Yeoman CJ. Vaginal biogenic amines: biomarkers of bacterial vaginosis or precursors to vaginal dysbiosis? Front Physiol 2015; 6:253. [PMID: 26483694 PMCID: PMC4586437 DOI: 10.3389/fphys.2015.00253] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/28/2015] [Indexed: 12/12/2022] Open
Abstract
Bacterial vaginosis (BV) is the most common vaginal disorder among reproductive age women. One clinical indicator of BV is a “fishy” odor. This odor has been associated with increases in several biogenic amines (BAs) that may serve as important biomarkers. Within the vagina, BA production has been linked to various vaginal taxa, yet their genetic capability to synthesize BAs is unknown. Using a bioinformatics approach, we show that relatively few vaginal taxa are predicted to be capable of producing BAs. Many of these taxa (Dialister, Prevotella, Parvimonas, Megasphaera, Peptostreptococcus, and Veillonella spp.) are more abundant in the vaginal microbial community state type (CST) IV, which is depleted in lactobacilli. Several of the major Lactobacillus species (L. crispatus, L. jensenii, and L. gasseri) were identified as possessing gene sequences for proteins predicted to be capable of putrescine production. Finally, we show in a small cross sectional study of 37 women that the BAs putrescine, cadaverine and tyramine are significantly higher in CST IV over CSTs I and III. These data support the hypothesis that BA production is conducted by few vaginal taxa and may be important to the outgrowth of BV-associated (vaginal dysbiosis) vaginal bacteria.
Collapse
Affiliation(s)
- Tiffanie M Nelson
- Department of Animal and Range Sciences, Montana State University Bozeman, MT, USA ; Department of Microbiology and Immunology, Montana State University Bozeman, MT, USA
| | | | - Rebecca M Brotman
- Institute for Genome Sciences, University of Maryland School of Medicine Baltimore, MD, USA ; Department of Epidemiology and Public Health, University of Maryland School of Medicine Baltimore, MD, USA
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine Baltimore, MD, USA
| | - Seth T Walk
- Department of Microbiology and Immunology, Montana State University Bozeman, MT, USA
| | - Carl J Yeoman
- Department of Animal and Range Sciences, Montana State University Bozeman, MT, USA ; Department of Microbiology and Immunology, Montana State University Bozeman, MT, USA
| |
Collapse
|
82
|
Nader-Macías MEF, Juárez Tomás MS. Profiles and technological requirements of urogenital probiotics. Adv Drug Deliv Rev 2015; 92:84-104. [PMID: 25858665 DOI: 10.1016/j.addr.2015.03.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 02/20/2015] [Accepted: 03/27/2015] [Indexed: 12/14/2022]
Abstract
Probiotics, defined as live microorganisms that, when administered in adequate amounts, confer a health benefit on the host, are considered a valid and novel alternative for the prevention and treatment of female urogenital tract infections. Lactobacilli, the predominant microorganisms of the healthy human vaginal microbiome, can be included as active pharmaceutical ingredients in probiotics products. Several requirements must be considered or criteria fulfilled during the development of a probiotic product or formula for the female urogenital tract. This review deals with the main selection criteria for urogenital probiotic microorganisms: host specificity, potential beneficial properties, functional specifications, technological characteristics and clinical trials used to test their effect on certain physiological and pathological conditions. Further studies are required to complement the current knowledge and support the clinical applications of probiotics in the urogenital tract. This therapy will allow the restoration of the ecological equilibrium of the urogenital tract microbiome as well as the recovery of the sexual and reproductive health of women.
Collapse
|
83
|
Francis SC, Looker C, Vandepitte J, Bukenya J, Mayanja Y, Nakubulwa S, Hughes P, Hayes RJ, Weiss HA, Grosskurth H. Bacterial vaginosis among women at high risk for HIV in Uganda: high rate of recurrent diagnosis despite treatment. Sex Transm Infect 2015; 92:142-8. [PMID: 26253744 PMCID: PMC4783330 DOI: 10.1136/sextrans-2015-052160] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 07/12/2015] [Indexed: 01/24/2023] Open
Abstract
Objectives Bacterial vaginosis (BV) is associated with increased risk for sexually transmitted infections (STIs) and HIV acquisition. This study describes the epidemiology of BV in a cohort of women at high risk for STI/HIV in Uganda over 2 years of follow-up between 2008–2011. Methods 1027 sex workers or bar workers were enrolled and asked to attend 3-monthly follow-up visits. Factors associated with prevalent BV were analysed using multivariate random-effects logistic regression. The effect of treatment on subsequent episodes of BV was evaluated with survival analysis. Results Prevalences of BV and HIV at enrolment were 56% (573/1027) and 37% (382/1027), respectively. Overall, 905 (88%) women tested positive for BV at least once in the study, over a median of four visits. Younger age, a higher number of previous sexual partners and current alcohol use were independently associated with prevalent BV. BV was associated with STIs, including HIV. Hormonal contraception and condom use were protective against BV. Among 853 treated BV cases, 72% tested positive again within 3 months. There was no difference in time to subsequent BV diagnosis between treated and untreated women. Conclusions BV was highly prevalent and persistent in this cohort despite treatment. More effective treatment strategies are urgently needed.
Collapse
Affiliation(s)
- Suzanna C Francis
- MRC Tropical Epidemiology Group, London School of Hygiene and Tropical Medicine, London, UK
| | - Clare Looker
- MRC Tropical Epidemiology Group, London School of Hygiene and Tropical Medicine, London, UK
| | | | | | - Yunia Mayanja
- MRC/UVRI Uganda Research Unit on AIDS, Entebbe, Uganda
| | | | - Peter Hughes
- MRC/UVRI Uganda Research Unit on AIDS, Entebbe, Uganda
| | - Richard J Hayes
- MRC Tropical Epidemiology Group, London School of Hygiene and Tropical Medicine, London, UK
| | - Helen A Weiss
- MRC Tropical Epidemiology Group, London School of Hygiene and Tropical Medicine, London, UK
| | - Heiner Grosskurth
- MRC Tropical Epidemiology Group, London School of Hygiene and Tropical Medicine, London, UK MRC/UVRI Uganda Research Unit on AIDS, Entebbe, Uganda
| |
Collapse
|
84
|
The Gonococcal Transcriptome during Infection of the Lower Genital Tract in Women. PLoS One 2015; 10:e0133982. [PMID: 26244506 PMCID: PMC4526530 DOI: 10.1371/journal.pone.0133982] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 07/04/2015] [Indexed: 11/24/2022] Open
Abstract
Gonorrhea is a highly prevalent disease resulting in significant morbidity worldwide, with an estimated 106 cases reported annually. Neisseria gonorrhoeae, the causative agent of gonorrhea, colonizes and infects the human genital tract and often evades host immune mechanisms until successful antibiotic treatment is used. The alarming increase in antibiotic-resistant strains of N. gonorrhoeae, the often asymptomatic nature of this disease in women and the lack of a vaccine directed at crucial virulence determinants have prompted us to perform transcriptome analysis to understand gonococcal gene expression patterns during natural infection. We sequenced RNA extracted from cervico-vaginal lavage samples collected from women recently exposed to infected male partners and determined the complete N. gonorrhoeae transcriptome during infection of the lower genital tract in women. On average, 3.19% of total RNA isolated from female samples aligned to the N. gonorrhoeae NCCP11945 genome and 1750 gonococcal ORFs (65% of all protein-coding genes) were transcribed. High expression in vivo was observed in genes encoding antimicrobial efflux pumps, iron response, phage production, pilin structure, outer membrane structures and hypothetical proteins. A parallel analysis was performed using the same strains grown in vitro in a chemically defined media (CDM). A total of 140 genes were increased in expression during natural infection compared to growth in CDM, and 165 genes were decreased in expression. Large differences were found in gene expression profiles under each condition, particularly with genes involved in DNA and RNA processing, iron, transposase, pilin and lipoproteins. We specifically interrogated genes encoding DNA binding regulators and iron-scavenging proteins, and identified increased expression of several iron-regulated genes, including tbpAB and fbpAB, during infection in women as compared to growth in vitro, suggesting that during infection of the genital tract in women, the gonococcus is exposed to an iron deplete environment. Collectively, we demonstrate that a large portion of the gonococcal genome is expressed and regulated during mucosal infection including genes involved in regulatory functions and iron scavenging.
Collapse
|
85
|
Aldunate M, Srbinovski D, Hearps AC, Latham CF, Ramsland PA, Gugasyan R, Cone RA, Tachedjian G. Antimicrobial and immune modulatory effects of lactic acid and short chain fatty acids produced by vaginal microbiota associated with eubiosis and bacterial vaginosis. Front Physiol 2015; 6:164. [PMID: 26082720 PMCID: PMC4451362 DOI: 10.3389/fphys.2015.00164] [Citation(s) in RCA: 212] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/12/2015] [Indexed: 12/14/2022] Open
Abstract
Lactic acid and short chain fatty acids (SCFAs) produced by vaginal microbiota have reported antimicrobial and immune modulatory activities indicating their potential as biomarkers of disease and/or disease susceptibility. In asymptomatic women of reproductive-age the vaginal microbiota is comprised of lactic acid-producing bacteria that are primarily responsible for the production of lactic acid present at ~110 mM and acidifying the vaginal milieu to pH ~3.5. In contrast, bacterial vaginosis (BV), a dysbiosis of the vaginal microbiota, is characterized by decreased lactic acid-producing microbiota and increased diverse anaerobic bacteria accompanied by an elevated pH>4.5. BV is also characterized by a dramatic loss of lactic acid and greater concentrations of mixed SCFAs including acetate, propionate, butyrate, and succinate. Notably women with lactic acid-producing microbiota have more favorable reproductive and sexual health outcomes compared to women with BV. Regarding the latter, BV is associated with increased susceptibility to sexually transmitted infections (STIs) including HIV. In vitro studies demonstrate that lactic acid produced by vaginal microbiota has microbicidal and virucidal activities that may protect against STIs and endogenous opportunistic bacteria as well as immune modulatory properties that require further characterization with regard to their effects on the vaginal mucosa. In contrast, BV-associated SCFAs have far less antimicrobial activity with the potential to contribute to a pro-inflammatory vaginal environment. Here we review the composition of lactic acid and SCFAs in respective states of eubiosis (non-BV) or dysbiosis (BV), their effects on susceptibility to bacterial/viral STIs and whether they have inherent microbicidal/virucidal and immune modulatory properties. We also explore their potential as biomarkers for the presence and/or increased susceptibility to STIs.
Collapse
Affiliation(s)
- Muriel Aldunate
- Centre for Biomedical Research, Burnet Institute Melbourne, VIC, Australia ; Department of Microbiology, Nursing and Health, Faculty of Medicine, Monash University Clayton, VIC, Australia
| | - Daniela Srbinovski
- Centre for Biomedical Research, Burnet Institute Melbourne, VIC, Australia ; Department of Microbiology, Nursing and Health, Faculty of Medicine, Monash University Clayton, VIC, Australia
| | - Anna C Hearps
- Centre for Biomedical Research, Burnet Institute Melbourne, VIC, Australia ; Department of Infectious Disease, Monash University Melbourne, VIC, Australia
| | - Catherine F Latham
- Centre for Biomedical Research, Burnet Institute Melbourne, VIC, Australia
| | - Paul A Ramsland
- Centre for Biomedical Research, Burnet Institute Melbourne, VIC, Australia ; Department of Immunology, Monash University Melbourne, VIC, Australia ; Department of Surgery Austin Health, The University of Melbourne Heidelberg, VIC, Australia ; School of Biomedical Sciences, CHIRI Biosciences, Curtin University Perth, WA, Australia
| | - Raffi Gugasyan
- Centre for Biomedical Research, Burnet Institute Melbourne, VIC, Australia ; Department of Immunology, Monash University Melbourne, VIC, Australia
| | - Richard A Cone
- Department of Biophysics, Johns Hopkins University Baltimore, MD, USA
| | - Gilda Tachedjian
- Centre for Biomedical Research, Burnet Institute Melbourne, VIC, Australia ; Department of Microbiology, Nursing and Health, Faculty of Medicine, Monash University Clayton, VIC, Australia ; Department of Infectious Disease, Monash University Melbourne, VIC, Australia ; Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity Parkville, VIC, Australia
| |
Collapse
|
86
|
Petrova MI, Lievens E, Malik S, Imholz N, Lebeer S. Lactobacillus species as biomarkers and agents that can promote various aspects of vaginal health. Front Physiol 2015; 6:81. [PMID: 25859220 PMCID: PMC4373506 DOI: 10.3389/fphys.2015.00081] [Citation(s) in RCA: 289] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/02/2015] [Indexed: 12/21/2022] Open
Abstract
The human body is colonized by a vast number of microorganisms collectively referred to as the human microbiota. One of the main microbiota body sites is the female genital tract, commonly dominated by Lactobacillus spp., in approximately 70% of women. Each individual species can constitute approximately 99% of the ribotypes observed in any individual woman. The most frequently isolated species are Lactobacillus crispatus, Lactobacillus gasseri, Lactobacillus jensenii and Lactobacillus iners. Residing at the port of entry of bacterial and viral pathogens, the vaginal Lactobacillus species can create a barrier against pathogen invasion since mainly products of their metabolism secreted in the cervicovaginal fluid can play an important role in the inhibition of bacterial and viral infections. Therefore, a Lactobacillus-dominated microbiota appears to be a good biomarker for a healthy vaginal ecosystem. This balance can be rapidly altered during processes such as menstruation, sexual activity, pregnancy and various infections. An abnormal vaginal microbiota is characterized by an increased diversity of microbial species, leading to a condition known as bacterial vaginosis. Information on the vaginal microbiota can be gathered from the analysis of cervicovaginal fluid, by using the Nugent scoring or the Amsel's criteria, or at the molecular level by investigating the number and type of Lactobacillus species. However, when translating this to the clinical setting, it should be noted that the absence of a Lactobacillus-dominated microbiota does not appear to directly imply a diseased condition or dysbiosis. Nevertheless, the widely documented beneficial role of vaginal Lactobacillus species demonstrates the potential of data on the composition and activity of lactobacilli as biomarkers for vaginal health. The substantiation and further validation of such biomarkers will allow the design of better targeted probiotic strategies.
Collapse
Affiliation(s)
- Mariya I Petrova
- Department of Bioscience Engineering, University of Antwerp Antwerp, Belgium ; Centre of Microbial and Plant Genetics, KU Leuven Leuven, Belgium
| | - Elke Lievens
- Department of Bioscience Engineering, University of Antwerp Antwerp, Belgium ; Centre of Microbial and Plant Genetics, KU Leuven Leuven, Belgium
| | - Shweta Malik
- Department of Bioscience Engineering, University of Antwerp Antwerp, Belgium ; Centre of Microbial and Plant Genetics, KU Leuven Leuven, Belgium
| | - Nicole Imholz
- Department of Bioscience Engineering, University of Antwerp Antwerp, Belgium ; Centre of Microbial and Plant Genetics, KU Leuven Leuven, Belgium
| | - Sarah Lebeer
- Department of Bioscience Engineering, University of Antwerp Antwerp, Belgium ; Centre of Microbial and Plant Genetics, KU Leuven Leuven, Belgium
| |
Collapse
|
87
|
Cardenas PA, Cookson WO. The Microbiome at Other Mucosal Sites. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
88
|
Borgdorff H, Tsivtsivadze E, Verhelst R, Marzorati M, Jurriaans S, Ndayisaba GF, Schuren FH, van de Wijgert JHHM. Lactobacillus-dominated cervicovaginal microbiota associated with reduced HIV/STI prevalence and genital HIV viral load in African women. ISME JOURNAL 2014; 8:1781-93. [PMID: 24599071 DOI: 10.1038/ismej.2014.26] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 12/04/2013] [Accepted: 01/20/2014] [Indexed: 01/28/2023]
Abstract
Cervicovaginal microbiota not dominated by lactobacilli may facilitate transmission of HIV and other sexually transmitted infections (STIs), as well as miscarriages, preterm births and sepsis in pregnant women. However, little is known about the exact nature of the microbiological changes that cause these adverse outcomes. In this study, cervical samples of 174 Rwandan female sex workers were analyzed cross-sectionally using a phylogenetic microarray. Furthermore, HIV-1 RNA concentrations were measured in cervicovaginal lavages of 58 HIV-positive women among them. We identified six microbiome clusters, representing a gradient from low semi-quantitative abundance and diversity dominated by Lactobacillus crispatus (cluster R-I, with R denoting 'Rwanda') and L. iners (R-II) to intermediate (R-V) and high abundance and diversity (R-III, R-IV and R-VI) dominated by a mixture of anaerobes, including Gardnerella, Atopobium and Prevotella species. Women in cluster R-I were less likely to have HIV (P=0.03), herpes simplex virus type 2 (HSV-2; P<0.01), and high-risk human papillomavirus (HPV; P<0.01) and had no bacterial STIs (P=0.15). Statistically significant trends in prevalence of viral STIs were found from low prevalence in cluster R-I, to higher prevalence in clusters R-II and R-V, and highest prevalence in clusters R-III/R-IV/R-VI. Furthermore, only 10% of HIV-positive women in clusters R-I/R-II, compared with 40% in cluster R-V, and 42% in clusters R-III/R-IV/R-VI had detectable cervicovaginal HIV-1 RNA (Ptrend=0.03). We conclude that L. crispatus-dominated, and to a lesser extent L. iners-dominated, cervicovaginal microbiota are associated with a lower prevalence of HIV/STIs and a lower likelihood of genital HIV-1 RNA shedding.
Collapse
Affiliation(s)
- Hanneke Borgdorff
- Amsterdam Institute for Global Health and Development (AIGHD) and Department of Global Health, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Rita Verhelst
- International Center for Reproductive Health (ICRH), Ghent University, Ghent, Belgium
| | - Massimo Marzorati
- Laboratory of Microbial Ecology and Technology (LabMET), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Suzanne Jurriaans
- Laboratory of Clinical Virology, Department of Medical Microbiology, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Frank H Schuren
- TNO Microbiology and Systems Biology, Zeist, The Netherlands
| | - Janneke H H M van de Wijgert
- 1] Amsterdam Institute for Global Health and Development (AIGHD) and Department of Global Health, Academic Medical Center, Amsterdam, The Netherlands [2] Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
89
|
Haya J, García A, López-Manzanara C, Balawi M, Haya L. Importance of Lactic Acid in Maintaining Vaginal Health: A Review of Vaginitis and Vaginosis Etiopathogenic Bases and a Proposal for a New Treatment. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ojog.2014.413109] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
90
|
O’Hanlon DE, Moench TR, Cone RA. Vaginal pH and microbicidal lactic acid when lactobacilli dominate the microbiota. PLoS One 2013; 8:e80074. [PMID: 24223212 PMCID: PMC3819307 DOI: 10.1371/journal.pone.0080074] [Citation(s) in RCA: 298] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/08/2013] [Indexed: 12/27/2022] Open
Abstract
Lactic acid at sufficiently acidic pH is a potent microbicide, and lactic acid produced by vaginal lactobacilli may help protect against reproductive tract infections. However, previous observations likely underestimated healthy vaginal acidity and total lactate concentration since they failed to exclude women without a lactobacillus-dominated vaginal microbiota, and also did not account for the high carbon dioxide, low oxygen environment of the vagina. Fifty-six women with low (0-3) Nugent scores (indicating a lactobacillus-dominated vaginal microbiota) and no symptoms of reproductive tract disease or infection, provided a total of 64 cervicovaginal fluid samples using a collection method that avoided the need for sample dilution and rigorously minimized aerobic exposure. The pH of samples was measured by microelectrode immediately after collection and under a physiological vaginal concentration of CO2. Commercial enzymatic assays of total lactate and total acetate concentrations were validated for use in CVF, and compared to the more usual HPLC method. The average pH of the CVF samples was 3.5 ± 0.3 (mean ± SD), range 2.8-4.2, and the average total lactate was 1.0% ± 0.2% w/v; this is a five-fold higher average hydrogen ion concentration (lower pH) and a fivefold higher total lactate concentration than in the prior literature. The microbicidal form of lactic acid (protonated lactic acid) was therefore eleven-fold more concentrated, and a markedly more potent microbicide, than indicated by prior research. This suggests that when lactobacilli dominate the vaginal microbiota, women have significantly more lactic acid-mediated protection against infections than currently believed. Our results invite further evaluations of the prophylactic and therapeutic actions of vaginal lactic acid, whether provided in situ by endogenous lactobacilli, by probiotic lactobacilli, or by products that reinforce vaginal lactic acid.
Collapse
Affiliation(s)
- Deirdre E. O’Hanlon
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, United States of America
| | | | - Richard A. Cone
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, United States of America
- ReProtect Inc., Baltimore, Maryland, United States of America
| |
Collapse
|
91
|
Ling Z, Liu X, Luo Y, Wu X, Yuan L, Tong X, Li L, Xiang C. Associations between vaginal pathogenic community and bacterial vaginosis in Chinese reproductive-age women. PLoS One 2013; 8:e76589. [PMID: 24124575 PMCID: PMC3790675 DOI: 10.1371/journal.pone.0076589] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 09/02/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Bacterial vaginosis (BV) is one of the most common urogenital infections among women of reproductive age that represents shifts in microbiota from Lactobacillus spp. to diverse anaerobes. The aim of our study was to evalute the diagnostic values of Gardnerella, Atopobium, Eggerthella, Megasphaera typeI, Leptotrichia/Sneathia and Prevotella, defined as a vaginal pathogenic community for BV and their associations with vaginal pH and Nugent scores. METHODS AND FINDINGS We investigated the vaginal pathogenic bacteria and Lactobacillus spp. with species-specific real-time quantitative PCR (qPCR) in 50 BV-positive and 50 BV-negative Chinese women of reproductive age. Relative to BV-negative subjects, a siginificant decline in Lactobacillus and an obvious increase in bacteria in the vaginal pathogenic community were observed in BV-postive subjects (P<0.05). With the exception of Megasphaera typeI, other vaginal pathogenic bacteria were highly predictable for BV with a better sensitivity and specificity. The vaginal pathogenic community was positively associated with vaginal pH and Nugent scores, while Lactobacillus spp., such as L. iners and L. crispatus was negatively associated with them (P<0.05). CONCLUSIONS Our data implied that the prevalance of vaginal pathogenic bacteria as well as the depletion of Lactobacillus was highly accurate for BV diagnosis. Vaginal microbiota shifts, especially the overgrowth of the vaginal pathogenic community, showed well diagnostic values in predicting BV. Postive correlations between those vaginal pathogenic bacteria and vaginal pH, Nugent score indicated the vaginal pathogenic community rather than a single vaginal microorganism, was participated in the onset of BV directly.
Collapse
Affiliation(s)
- Zongxin Ling
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China
| | - Xia Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yueqiu Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China
| | - Xiaoxing Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China
| | - Li Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China
| | - Xiaojuan Tong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China
- * E-mail: (CX); (LL)
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China
- J. Craig Venter Institute, Rockville, Maryland, United States of America
- * E-mail: (CX); (LL)
| |
Collapse
|
92
|
Aldunate M, Tyssen D, Johnson A, Zakir T, Sonza S, Moench T, Cone R, Tachedjian G. Vaginal concentrations of lactic acid potently inactivate HIV. J Antimicrob Chemother 2013; 68:2015-25. [PMID: 23657804 PMCID: PMC3743514 DOI: 10.1093/jac/dkt156] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES When Lactobacillus spp. dominate the vaginal microbiota of women of reproductive age they acidify the vagina to pH <4.0 by producing ∼1% lactic acid in a nearly racemic mixture of d- and l-isomers. We determined the HIV virucidal activity of racemic lactic acid, and its d- and l-isomers, compared with acetic acid and acidity alone (by the addition of HCl). METHODS HIV-1 and HIV-2 were transiently treated with acids in the absence or presence of human genital secretions at 37°C for different time intervals, then immediately neutralized and residual infectivity determined in the TZM-bl reporter cell line. RESULTS l-lactic acid at 0.3% (w/w) was 17-fold more potent than d-lactic acid in inactivating HIVBa-L. Complete inactivation of different HIV-1 subtypes and HIV-2 was achieved with ≥0.4% (w/w) l-lactic acid. At a typical vaginal pH of 3.8, l-lactic acid at 1% (w/w) more potently and rapidly inactivated HIVBa-L and HIV-1 transmitter/founder strains compared with 1% (w/w) acetic acid and with acidity alone, all adjusted to pH 3.8. A final concentration of 1% (w/w) l-lactic acid maximally inactivated HIVBa-L in the presence of cervicovaginal secretions and seminal plasma. The anti-HIV activity of l-lactic acid was pH dependent, being abrogated at neutral pH, indicating that its virucidal activity is mediated by protonated lactic acid and not the lactate anion. CONCLUSIONS l-lactic acid at physiological concentrations demonstrates potent HIV virucidal activity distinct from acidity alone and greater than acetic acid, suggesting a protective role in the sexual transmission of HIV.
Collapse
Affiliation(s)
- Muriel Aldunate
- Centre for Virology, Burnet Institute, Melbourne, Victoria 3004, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Fashemi B, Delaney ML, Onderdonk AB, Fichorova RN. Effects of feminine hygiene products on the vaginal mucosal biome. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2013; 24:19703. [PMID: 24009546 PMCID: PMC3758931 DOI: 10.3402/mehd.v24i0.19703] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 01/21/2013] [Indexed: 11/17/2022]
Abstract
Background Over-the-counter (OTC) feminine hygiene products come with little warning about possible side effects. This study evaluates in-vitro their effects on Lactobacillus crispatus, which is dominant in the normal vaginal microbiota and helps maintain a healthy mucosal barrier essential for normal reproductive function and prevention of sexually transmitted infections and gynecologic cancer. Methods A feminine moisturizer (Vagisil), personal lubricant, and douche were purchased OTC. A topical spermicide (nonoxynol-9) known to alter the vaginal immune barrier was used as a control. L. crispatus was incubated with each product for 2 and 24h and then seeded on agar for colony forming units (CFU). Human vaginal epithelial cells were exposed to products in the presence or absence of L. crispatus for 24h, followed by epithelium-associated CFU enumeration. Interleukin-8 was immunoassayed and ANOVA was used for statistical evaluation. Results Nonoxynol-9 and Vagisil suppressed Lactobacillus growth at 2h and killed all bacteria at 24h. The lubricant decreased bacterial growth insignificantly at 2h but killed all at 24h. The douche did not have a significant effect. At full strength, all products suppressed epithelial viability and all, except the douche, suppressed epithelial-associated CFU. When applied at non-toxic dose in the absence of bacteria, the douche and moisturizer induced an increase of IL-8, suggesting a potential to initiate inflammatory reaction. In the presence of L. crispatus, the proinflammatory effects of the douche and moisturizer were countered, and IL-8 production was inhibited in the presence of the other products. Conclusion Some OTC vaginal products may be harmful to L. crispatus and alter the vaginal immune environment. Illustrated through these results, L. crispatus is essential in the preservation of the function of vaginal epithelial cells in the presence of some feminine hygiene products. More research should be invested toward these products before they are placed on the market.
Collapse
Affiliation(s)
- Bisiayo Fashemi
- Union College Class of 2016, Boston Latin Academy Class of 2012, Brigham and Women's Hospital Student Success Jobs Program Intern at the Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA ; Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Boston, MA, USA
| | | | | | | |
Collapse
|
94
|
Jiang W, Ghosh SK, Flyckt R, Kalinowska M, Starks D, Jurevic R, Weinberg A, Lederman MM, Rodriguez B. Bacterial colonization and beta defensins in the female genital tract in HIV infection. Curr HIV Res 2012; 10:504-12. [PMID: 22716110 DOI: 10.2174/157016212802429848] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 05/15/2012] [Accepted: 06/11/2012] [Indexed: 11/22/2022]
Abstract
Beta defensins are antimicrobial peptides that serve to protect the host from microbial invasion at skin and mucosal surfaces. Here we explore the relationships among beta defensin levels, total bacterial colonization, and colonization by bacterial vaginosis (BV)-related bacteria and lactobacilli in the female genital tract in HIV infected women and healthy controls. Cervicovaginal lavage (CVL) samples were obtained from 30 HIV-infected women and 36 uninfected controls. Quantitative PCR assays were used to measure DNA levels of bacterial 16S ribosomal DNA (reflective of total bacterial load), and levels of three BV-related bacteria, three Lactobacillus species (L. crispatus, L. iners and L. jensenii), and total Lactobacillus levels in CVL. Levels of human beta defensins (hBD-2 and hBD-3) were quantified by ELISA. In viremic HIV+ donors, we found that CVL levels of bacterial 16S rDNA were significantly increased, and inversely correlated with peripheral CD4+ T cell counts in HIV+ women, and inversely correlated with age in both HIV+ women and controls. Although CVL DNA levels of BV-associated bacteria tended to be increased, and CVL levels of Lactobacillus DNAs tended to be decreased in HIV+ donors, none of these differences was significant. CVL levels of hBD-2 and hBD-3 were correlated and were not different in HIV+ women and controls. However, significant positive correlations between hBD-3 levels and total bacterial DNA levels in controls were not demonstrable in HIV+ women; the significant positive correlations of hBD2 or hBD-3 and three Lactobacillus species in controls were also not demonstrable in HIV+ women. These results suggest that HIV infection is associated with impaired regulation of innate defenses at mucosal sites.
Collapse
Affiliation(s)
- Wei Jiang
- Division of Infectious Diseases, Department of Medicine, Center for AIDS Research, Case Western Reserve University and University Hospitals/Case Medical Center, 2109 Adelbert Rd, CWRU BRB1048B, 4984, Cleveland, OH 44106, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Ball C, Krogstad E, Chaowanachan T, Woodrow KA. Drug-eluting fibers for HIV-1 inhibition and contraception. PLoS One 2012; 7:e49792. [PMID: 23209601 PMCID: PMC3509119 DOI: 10.1371/journal.pone.0049792] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/12/2012] [Indexed: 01/06/2023] Open
Abstract
Multipurpose prevention technologies (MPTs) that simultaneously prevent sexually transmitted infections (STIs) and unintended pregnancy are a global health priority. Combining chemical and physical barriers offers the greatest potential to design effective MPTs, but integrating both functional modalities into a single device has been challenging. Here we show that drug-eluting fiber meshes designed for topical drug delivery can function as a combination chemical and physical barrier MPT. Using FDA-approved polymers, we fabricated nanofiber meshes with tunable fiber size and controlled degradation kinetics that facilitate simultaneous release of multiple agents against HIV-1, HSV-2, and sperm. We observed that drug-loaded meshes inhibited HIV-1 infection in vitro and physically obstructed sperm penetration. Furthermore, we report on a previously unknown activity of glycerol monolaurate (GML) to potently inhibit sperm motility and viability. The application of drug-eluting nanofibers for HIV-1 prevention and sperm inhibition may serve as an innovative platform technology for drug delivery to the lower female reproductive tract.
Collapse
Affiliation(s)
- Cameron Ball
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Emily Krogstad
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Thanyanan Chaowanachan
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Kim A. Woodrow
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
96
|
Madan RP, Carpenter C, Fiedler T, Kalyoussef S, McAndrew TC, Viswanathan S, Kim M, Keller MJ, Fredricks DN, Herold BC. Altered biomarkers of mucosal immunity and reduced vaginal Lactobacillus concentrations in sexually active female adolescents. PLoS One 2012; 7:e40415. [PMID: 22808157 PMCID: PMC3393710 DOI: 10.1371/journal.pone.0040415] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 06/07/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Genital secretions collected from adult women exhibit in vitro activity against herpes simplex virus (HSV) and Escherichia coli (E. coli), but prior studies have not investigated this endogenous antimicrobial activity or its mediators in adolescent females. METHODOLOGY/PRINCIPAL FINDINGS Anti-HSV and anti-E.coli activity were quantified from cervicovaginal lavage (CVL) specimens collected from 20 sexually active adolescent females (15-18 years). Soluble immune mediators that may influence this activity were measured in CVL, and concentrations of Lactobacillus jensenii and crispatus were quantified by PCR from vaginal swabs. Results for adolescents were compared to those obtained from 54 healthy, premenopausal adult women. Relative to specimens collected from adults, CVL collected from adolescent subjects had significantly reduced activity against E. coli and diminished concentrations of protein, IgG, and IgA but significantly increased anti-HSV activity and concentrations of interleukin (IL)-1α, IL-6 and IL-1 receptor antagonist. Vaginal swabs collected from adolescent subjects had comparable concentrations of L. crispatus but significantly reduced concentrations of L. jensenii, relative to adult swabs. CONCLUSIONS/SIGNIFICANCE Biomarkers of genital mucosal innate immunity may differ substantially between sexually active adolescents and adult women. These findings warrant further study and may have significant implications for prevention of sexually transmitted infections in adolescent females.
Collapse
Affiliation(s)
- Rebecca Pellett Madan
- Department of Pediatrics, Albert Einstein College of Medicine, New York, New York, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Abstract
Vaginal microbiota form a mutually beneficial relationship with their host and have a major impact on health and disease. In recent years our understanding of vaginal bacterial community composition and structure has significantly broadened as a result of investigators using cultivation-independent methods based on the analysis of 16S ribosomal RNA (rRNA) gene sequences. In asymptomatic, otherwise healthy women, several kinds of vaginal microbiota exist, the majority often dominated by species of Lactobacillus, while others are composed of a diverse array of anaerobic microorganisms. Bacterial vaginosis is the most common vaginal condition and is vaguely characterized as the disruption of the equilibrium of the normal vaginal microbiota. A better understanding of normal and healthy vaginal ecosystems that is based on their true function and not simply on their composition would help better define health and further improve disease diagnostics as well as the development of more personalized regimens to promote health and treat diseases.
Collapse
Affiliation(s)
- Bing Ma
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, 21201, USA.
| | | | | |
Collapse
|
98
|
Fettweis JM, Serrano MG, Girerd PH, Jefferson KK, Buck GA. A new era of the vaginal microbiome: advances using next-generation sequencing. Chem Biodivers 2012; 9:965-76. [PMID: 22589096 PMCID: PMC3517151 DOI: 10.1002/cbdv.201100359] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Until recently, bacterial species that inhabit the human vagina have been primarily studied using organism-centric approaches. Understanding how these bacterial species interact with each other and the host vaginal epithelium is essential for a more complete understanding of vaginal health. Molecular approaches have already led to the identification of uncultivated bacterial taxa associated with bacterial vaginosis. Here, we review recent studies of the vaginal microbiome and discuss how culture-independent approaches, such as applications of next-generation sequencing, are advancing the field and shifting our understanding of how vaginal health is defined. This work may lead to improved diagnostic tools and treatments for women who suffer from, or are at risk for, vaginal imbalances, pregnancy complications, and sexually acquired infections. These approaches may also transform our understanding of how host genetic factors, physiological conditions (e.g., menopause), and environmental exposures (e.g., smoking, antibiotic usage) influence the vaginal microbiome.
Collapse
Affiliation(s)
- Jennifer M Fettweis
- Department of Microbiology and Immunology, Medical College of Virginia Campus of Virginia Commonwealth University, 1101 E. Marshall Street, P.O. Box 980678, Richmond, VA 23298, USA
| | | | | | | | | |
Collapse
|