51
|
Fernández-Nogueira P, Mancino M, Fuster G, López-Plana A, Jauregui P, Almendro V, Enreig E, Menéndez S, Rojo F, Noguera-Castells A, Bill A, Gaither LA, Serrano L, Recalde-Percaz L, Moragas N, Alonso R, Ametller E, Rovira A, Lluch A, Albanell J, Gascon P, Bragado P. Tumor-Associated Fibroblasts Promote HER2-Targeted Therapy Resistance through FGFR2 Activation. Clin Cancer Res 2019; 26:1432-1448. [DOI: 10.1158/1078-0432.ccr-19-0353] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 09/15/2019] [Accepted: 11/04/2019] [Indexed: 11/16/2022]
|
52
|
Huang Z, Wang SL, Chen H, Shen RK, Li XD, Huang QS, Wu CY, Weng DF, Lin JH. Clinicopathological and prognostic values of ErbB receptor family amplification in primary osteosarcoma. Scandinavian Journal of Clinical and Laboratory Investigation 2019; 79:601-612. [PMID: 31663373 DOI: 10.1080/00365513.2019.1683764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Osteosarcoma is a malignant bone tumor with extremely high invasion, metastasis and mortality. The prognosis of patients with osteosarcoma remains poor. The ErbB receptor family was found to be overexpressed in human cancers and associated with poor prognosis. However, the role of ErbB receptor family in osteosarcoma has not been fully understood. The present study aimed to investigate the clinicopathological and prognostic significances of ErbB receptors in primary osteosarcoma. Western blot (WB), reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and fluorescence in situ hybridization (FISH) were used to detect the protein and gene expression of ErbB receptors in 60 primary osteosarcoma specimens and 30 non-neoplastic bone tissues. WB and RT-qPCR analyses showed that the protein and mRNA expression levels of EGFR, ErbB3 and ErbB4 in osteosarcoma specimens were significantly higher than those in non-neoplastic bone tissues. Seventeen (28.33%), 15 (25.00%) and 15 (25.00%) osteosarcoma specimens presented with amplification of EGFR, ErbB3 and ErbB4 gene, respectively, which were significantly higher compared with non-neoplastic bone tissues. The amplification of ErbB3 and ErbB4 in osteosarcoma was associated with advanced surgical stage. The amplification of EGFR, ErbB3, ErbB4 and the co-amplification of EGFR-ErbB3, EGFR-ErbB4, ErbB3-ErbB4 was linked with poor response to chemotherapy and distant metastasis. The amplification of EGFR, ErbB3 and ErbB4, as well as their co-amplification demonstrated independent prognostic values for reduced survival time of osteosarcoma patients and may serve as potential therapeutic targets for osteosarcoma patients in the future.
Collapse
Affiliation(s)
- Zhen Huang
- Department of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Sheng-Lin Wang
- Department of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Hui Chen
- Department of Nephrology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Rong-Kai Shen
- Department of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Xiao-Dong Li
- Department of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Qing-Shan Huang
- Department of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Chao-Yang Wu
- Department of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Dan-Feng Weng
- Department of Pathology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Jian-Hua Lin
- Department of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China.,Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| |
Collapse
|
53
|
ErbB3 Phosphorylation as Central Event in Adaptive Resistance to Targeted Therapy in Metastatic Melanoma: Early Detection in CTCs during Therapy and Insights into Regulation by Autocrine Neuregulin. Cancers (Basel) 2019; 11:cancers11101425. [PMID: 31557826 PMCID: PMC6826737 DOI: 10.3390/cancers11101425] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/20/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022] Open
Abstract
In recent years the introduction of target therapies with BRAF and MEK inhibitors (MAPKi) and of immunotherapy with anti-CTLA-4 and anti-PD-1 monoclonal antibodies have dramatically improved survival of metastatic melanoma patients. Despite these changes drug resistance remains a major hurdle. Several mechanisms are at the basis of drug resistance. Particular attention has been devoted over the last years to unravel mechanisms at the basis of adaptive/non genetic resistance occurring in BRAF mutated melanomas upon treatment with to MAPKi. In this paper we focus on the involvement of activation of ErbB3 receptor following early exposure of melanoma cells to BRAF or MEK inhibitors, and the following induction of PI3K/AKT pathway. Although different mechanisms have been invoked in the past at the basis of this activation we show here with a combination of approaches that autocrine production of neuregulin by melanoma cells is a major factor responsible for ErbB3 phosphorylation and downstream AKT activation. Interestingly the kinetic of neuregulin production and of the ensuing ErbB3 phosphorylation is different in different melanoma cell lines which underscores the high degree of tumor heterogeneity. Moreover, heterogeneity is further highlighted by the evidence that in different cell lines neuregulin upregulation can occur at the transcriptional or at the post-transcritpional level. Finally we complement our study by showing with a liquid biopsy assay that circulating tumor cells (CTCs) from melanoma patients undergo upregulation of ErbB3 phosphorylation in vivo shortly after initiation of therapy.
Collapse
|
54
|
Iterative integrated imputation for missing data and pathway models with applications to breast cancer subtypes. COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS 2019. [DOI: 10.29220/csam.2019.26.4.411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
55
|
Meister KS, Godse NR, Khan NI, Hedberg ML, Kemp C, Kulkarni S, Alvarado D, LaVallee T, Kim S, Grandis JR, Duvvuri U. HER3 targeting potentiates growth suppressive effects of the PI3K inhibitor BYL719 in pre-clinical models of head and neck squamous cell carcinoma. Sci Rep 2019; 9:9130. [PMID: 31235758 PMCID: PMC6591241 DOI: 10.1038/s41598-019-45589-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/06/2019] [Indexed: 12/28/2022] Open
Abstract
BYL719 is a PI3K inhibitor that has demonstrated efficacy in the treatment of head and neck squamous cell carcinoma. BYL719 exerts its therapeutic effect by suppressing AKT and other proliferative signaling mechanisms. Despite PI3K inhibition and AKT suppression, residual activity of protein S6, a core marker of proliferative activation, has been observed. HER3, either via dimerization or activation by its ligand neurgeulin (NRG), is known to activate PI3K. Thus, we hypothesized that co-targeting HER3 and PI3K would lead to greater suppression of the PI3K-AKT signaling pathway and greater tumor suppression than with BYL719 alone. We investigated biochemical expression and activation of the HER3-PI3K-AKT-S6 pathway in HNSCC cell lines and patient-derived xenografts (PDXs). Antitumor effects of HER3 and PI3K inhibitors alone and in combination were evaluated in cell culture and murine models. Treatment of HNSCC cell lines with BYL719 significantly reduced AKT activation and suppressed tumor growth. However, S6 was persistently activated despite suppression of AKT. Combination treatment with KTN3379, a monoclonal antibody targeted against HER3, and BYL719 led to enhanced suppression of in vitro and in vivo cancer growth and durable suppression of AKT and S6. Therefore, inhibition of HER3 with KTN3379 enhanced the effects of PI3K inhibition in pre-clinical HNSCC models. These data support co-targeting HER3 and PI3K for the treatment of HSNCC.
Collapse
Affiliation(s)
- Kara S Meister
- Department of Otolaryngology-Head & Neck Surgery, University of Pittsburgh Medical Center, Eye and Ear Institute, Suite 500, 200 Lothrop St., Pittsburgh, PA, 15213, USA
| | - Neal R Godse
- Department of Otolaryngology-Head & Neck Surgery, University of Pittsburgh Medical Center, Eye and Ear Institute, Suite 500, 200 Lothrop St., Pittsburgh, PA, 15213, USA
| | - Nayel I Khan
- Department of Otolaryngology-Head & Neck Surgery, University of Pittsburgh Medical Center, Eye and Ear Institute, Suite 500, 200 Lothrop St., Pittsburgh, PA, 15213, USA
| | - Matthew L Hedberg
- Department of Otolaryngology-Head & Neck Surgery, University of Pittsburgh Medical Center, Eye and Ear Institute, Suite 500, 200 Lothrop St., Pittsburgh, PA, 15213, USA
| | - Carolyn Kemp
- Department of Otolaryngology-Head & Neck Surgery, University of Pittsburgh Medical Center, Eye and Ear Institute, Suite 500, 200 Lothrop St., Pittsburgh, PA, 15213, USA
| | - Sucheta Kulkarni
- Department of Otolaryngology-Head & Neck Surgery, University of Pittsburgh Medical Center, Eye and Ear Institute, Suite 500, 200 Lothrop St., Pittsburgh, PA, 15213, USA
| | | | | | - Seungwon Kim
- Department of Otolaryngology-Head & Neck Surgery, University of Pittsburgh Medical Center, Eye and Ear Institute, Suite 500, 200 Lothrop St., Pittsburgh, PA, 15213, USA
| | - Jennifer R Grandis
- Department of Otolaryngology-Head & Neck Surgery, University of California-San Francisco, San Francisco, CA, USA
| | - Umamaheswar Duvvuri
- Department of Otolaryngology-Head & Neck Surgery, University of Pittsburgh Medical Center, Eye and Ear Institute, Suite 500, 200 Lothrop St., Pittsburgh, PA, 15213, USA.
| |
Collapse
|
56
|
Kumar R, de Vijver MV, Tortora G, Ciardiello F, Goldkorn T, Miller WH, Norton L. A Tribute to John Mendelsohn: A Pioneer in Targeted Cancer Therapy. Cancer Res 2019; 79:4315-4323. [PMID: 31213466 DOI: 10.1158/0008-5472.can-19-0989] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/01/2019] [Accepted: 05/28/2019] [Indexed: 11/16/2022]
Abstract
Cancer scientists and clinicians are mourning the death of one of the most accomplished members of their community: Dr. John Mendelsohn. He was a pioneer in targeted cancer therapy and was instrumental for the discovery and deployment of the first antagonist epidermal growth factor receptor (EGFR) therapeutic antibodies, broadening the concept of targeted EGFR therapy to encompass other receptor tyrosine kinases, such as HER2, and developing blocking antibody-combination therapy with chemotherapies or radiotherapy. Dr. Mendelsohn, who died on January 7, 2019, always led by the strength of his accomplishments and the humility of his character. Above all, he was a well-revered mentor and clinician, who extended compassion and the gift of his time to patients, colleagues, and mentees alike. In tribute to Dr. Mendelsohn, Cancer Research has invited his former mentees and colleagues who were associated with Dr. Mendelsohn for over three decades to reflect on the broad impact of his work. Here, we discuss Dr. Mendelsohn's illustrious career at three elite academic cancer institutions and hospitals in the United States, his acumen to build, grow, and uplift institutions, and train a generation of medical oncologists, physician scientists, and cancer biologists. His profound legacy on targeted therapy and cancer research and treatment continue to prolong and save the lives of cancer patients globally.
Collapse
Affiliation(s)
- Rakesh Kumar
- Cancer Biology Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India.
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
- Department of Medicine, Division of Hematology-Oncology, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Marc Van de Vijver
- Department of Pathology, Academic Medical Center, Amsterdam, the Netherlands
| | - Giampaolo Tortora
- Medical Oncology, Comprehensive Cancer Center, Fondazione Policlinico Universitario Gemelli, IRCCS, Rome, Italy
- Medical Oncology, Catholic University of the Sacred Heart, Rome, Italy
| | - Fortunato Ciardiello
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania Luigi Vanvitelli, Napoli, Italy
| | - Tzipora Goldkorn
- University of California Davis School of Medicine, Davis, California
| | - Wilson H Miller
- Department of Medicine, Segal Cancer Center and Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Larry Norton
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
57
|
The rBC2LCN-positive subpopulation of PC-3 cells exhibits cancer stem-like properties. Biochem Biophys Res Commun 2019; 515:176-182. [PMID: 31133376 DOI: 10.1016/j.bbrc.2019.05.108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 05/16/2019] [Indexed: 12/27/2022]
Abstract
The recombinant lectin rBC2LCN is a useful marker for discriminating the undifferentiated status of human induced or embryonic stem cells. Recently, rBC2LCN has also been used for detecting some cancers and niche cells. However, the generality of which types of cells are detected by rBC2LCN is unclear. In this study, we demonstrated the potential of rBC2LCN as a probe for detecting and isolating cancer stem-like cells. Interestingly, flow cytometric analysis of various human cell lines indicated that the human prostate cancer cell line PC-3 consisted of rBC2LCN-positive and -negative subpopulations. Compared with the rBC2LCN-negative subpopulation, the rBC2LCN-positive subpopulation possessed representative features of cancer stem cells and malignancy, such as slow proliferation, increased cell motility, anchorage-independent growth, and drug resistance. The comprehensive expression profiles revealed that the rBC2LCN-positive subpopulation expressed higher levels of cancer stem cell markers. These findings indicate that rBC2LCN is useful for detecting not only pluripotent stem cells but also the cancer stem-like subpopulation of PC-3 cells. Pluripotent and cancer cells with rBC2LCN positivity would be important for future stem cell research.
Collapse
|
58
|
James NE, Beffa L, Oliver MT, Borgstadt AD, Emerson JB, Chichester CO, Yano N, Freiman RN, DiSilvestro PA, Ribeiro JR. Inhibition of DUSP6 sensitizes ovarian cancer cells to chemotherapeutic agents via regulation of ERK signaling response genes. Oncotarget 2019; 10:3315-3327. [PMID: 31164954 PMCID: PMC6534361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/14/2019] [Indexed: 11/05/2022] Open
Abstract
Dual specificity phosphatase 6 (DUSP6) is a protein phosphatase that deactivates extracellular-signal-regulated kinase (ERK). Since the ovarian cancer biomarker human epididymis protein 4 (HE4) interacts with the ERK pathway, we sought to determine the relationship between DUSP6 and HE4 and elucidate DUSP6's role in epithelial ovarian cancer (EOC). Viability assays revealed a significant decrease in cell viability with pharmacological inhibition of DUSP6 using (E/Z)-BCI hydrochloride in ovarian cancer cells treated with carboplatin or paclitaxel, compared to treatment with either agent alone. Quantitative PCR was used to evaluate levels of ERK pathway response genes to BCI in combination with recombinant HE4 (rHE4), carboplatin, and paclitaxel. Expression of EGR1, a promoter of apoptosis, was higher in cells co-treated with BCI and paclitaxel or carboplatin than in cells treated with chemotherapeutic agents alone, while expression of the proto-oncogene c-JUN was decreased with co-treatment. The effect of BCI on the expression of these two genes opposed that of rHE4. Pathway focused quantitative PCR also revealed suppression of ERBB3 in cells co-treated with BCI plus carboplatin or paclitaxel. Finally, expression levels of DUSP6 in EOC tissue were evaluated by immunohistochemistry, revealing significantly increased levels of DUSP6 in serous EOC tissue compared to adjacent normal tissue. A positive correlation between HE4 and DUSP6 levels was determined by Spearman Rank correlation. In conclusion, DUSP6 inhibition sensitizes ovarian cancer cells to chemotherapeutic agents and alters gene expression of ERK response genes, suggesting that DUSP6 could plausibly function as a novel therapeutic target to reduce chemoresistance in EOC.
Collapse
Affiliation(s)
- Nicole E. James
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women’s Oncology, Providence, RI, USA
- Department of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Lindsey Beffa
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women’s Oncology, Providence, RI, USA
| | - Matthew T. Oliver
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women’s Oncology, Providence, RI, USA
| | - Ashley D. Borgstadt
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women’s Oncology, Providence, RI, USA
| | - Jenna B. Emerson
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women’s Oncology, Providence, RI, USA
| | | | - Naohiro Yano
- Department of Surgery, Roger Williams Medical Center, Providence, RI, USA
| | - Richard N. Freiman
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Paul A. DiSilvestro
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women’s Oncology, Providence, RI, USA
| | - Jennifer R. Ribeiro
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women’s Oncology, Providence, RI, USA
| |
Collapse
|
59
|
Inhibition of DUSP6 sensitizes ovarian cancer cells to chemotherapeutic agents via regulation of ERK signaling response genes. Oncotarget 2019. [DOI: 10.18632/oncotarget.26915] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
60
|
Improved contrast of affibody-mediated imaging of HER3 expression in mouse xenograft model through co-injection of a trivalent affibody for in vivo blocking of hepatic uptake. Sci Rep 2019; 9:6779. [PMID: 31043683 PMCID: PMC6494909 DOI: 10.1038/s41598-019-43145-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/12/2019] [Indexed: 11/08/2022] Open
Abstract
Human epidermal growth factor receptor type 3 (HER3) plays a crucial role in the progression of many cancer types. In vivo radionuclide imaging could be a reliable method for repetitive detection of HER3-expression in tumors. The main challenge of HER3-imaging is the low expression in tumors together with endogenous receptor expression in normal tissues, particularly the liver. A HER3-targeting affibody molecule labeled with radiocobalt via a NOTA chelator [57Co]Co-NOTA-Z08699 has demonstrated the most favorable biodistribution profile with the lowest unspecific hepatic uptake and high activity uptake in tumors. We hypothesized that specific uptake of labeled affibody monomer might be selectively blocked in the liver but not in tumors by a co-injection of non-labeled corresponding trivalent affibody (Z08699)3. Biodistribution of [57Co]Co-NOTA-Z08699 and [111In]In-DOTA-(Z08699)3 was studied in BxPC-3 xenografted mice. [57Co]Co-NOTA-Z08699 was co-injected with unlabeled trivalent affibody DOTA-(Z08699)3 at different monomer:trimer molar ratios. HER3-expression in xenografts was imaged using [57Co]Co-NOTA-Z08699 and [57Co]Co-NOTA-Z08699: DOTA-(Z08699)3. Hepatic activity uptake of [57Co]Co-NOTA-Z08699: DOTA-(Z08699)3 decreased with increasing monomer:trimer molar ratio. The tumor activity uptake and tumor-to-liver ratios were the highest for the 1:3 ratio. SPECT/CT images confirmed the biodistribution data. Imaging of HER3 expression can be improved by co-injection of a radiolabeled monomeric affibody-based imaging probe together with a trivalent affibody.
Collapse
|
61
|
Sequist LV, Gray JE, Harb WA, Lopez-Chavez A, Doebele RC, Modiano MR, Jackman DM, Baggstrom MQ, Atmaca A, Felip E, Provencio M, Cobo M, Adiwijaya B, Kuesters G, Kamoun WS, Andreas K, Pipas JM, Santillana S, Cho BC, Park K, Shepherd FA. Randomized Phase II Trial of Seribantumab in Combination with Erlotinib in Patients with EGFR Wild-Type Non-Small Cell Lung Cancer. Oncologist 2019; 24:1095-1102. [PMID: 30975923 DOI: 10.1634/theoncologist.2018-0695] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/08/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Seribantumab (MM-121) is a fully human IgG2 monoclonal antibody that binds to human epidermal growth factor receptor 3 (HER3/ErbB3) to block heregulin (HRG/NRG)-mediated ErbB3 signaling and induce receptor downregulation. This open-label, randomized phase 1/2 study evaluated safety and efficacy of seribantumab plus erlotinib in advanced non-small cell lung cancer (NSCLC). Here, we report the activity of seribantumab plus erlotinib, versus erlotinib alone, in patients with EGFR wild-type tumors and describe the potential predictive power of HRG. MATERIALS AND METHODS Patients with EGFR wild-type NSCLC were assigned randomly to receive seribantumab + erlotinib or erlotinib alone. Patients underwent pretreatment core needle biopsy and archived tumor samples were collected to support prespecified biomarker analyses. RESULTS One hundred twenty-nine patients received seribantumab + erlotinib (n = 85) or erlotinib alone (n = 44). Median estimated progression-free survival (PFS) in the unselected intent-to-treat (ITT) population was 8.1 and 7.7 weeks in the experimental and control arm, respectively (hazard ratio [HR], 0.822; 95% confidence interval [CI], 0.37-1.828; p = 0.63), and median estimated overall survival was 27.3 and 40.3 weeks in the experimental and control arm, respectively (HR, 1.395; 95% CI, 0.846 to 2.301; p = .1898) In patients whose tumors had detectable HRG mRNA expression, treatment benefit was observed in the seribantumab + erlotinib combination (HR, 0.35; 95% CI, 0.16-0.76; p = .008). In contrast, in patients whose tumors were HRG negative, the HR was 2.15 (95% CI, 0.97-4.76; p = .059, HRG-by-treatment interaction, p value = .0016). CONCLUSION The addition of seribantumab to erlotinib did not result in improved PFS in unselected patients. However, predefined retrospective exploratory analyses suggest that detectable HRG mRNA levels identified patients who might benefit from seribantumab. An ongoing clinical trial of seribantumab, in combination with docetaxel, is underway in patients with advanced NSCLC and high HRG mRNA expression (NCT02387216). IMPLICATIONS FOR PRACTICE The poor prognosis of patients with non-small cell lung cancer (NSCLC) underscores the need for more effective treatment options, highlighting the unmet medical need in this patient population. The results of this study show that a novel biomarker, heregulin, may help to identify patients with advanced NSCLC who could benefit from treatment with seribantumab. On the basis of the observed safety profile and promising clinical efficacy, a prospective, randomized, open-label, international, multicenter phase II trial (SHERLOC, NCT02387216) is under way to investigate the efficacy and safety of seribantumab in combination with docetaxel in patients with heregulin-positive advanced adenocarcinoma.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/genetics
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/mortality
- Carcinoma, Non-Small-Cell Lung/pathology
- ErbB Receptors/antagonists & inhibitors
- ErbB Receptors/genetics
- Erlotinib Hydrochloride/pharmacology
- Erlotinib Hydrochloride/therapeutic use
- Female
- Follow-Up Studies
- Humans
- Lung/pathology
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/mortality
- Lung Neoplasms/pathology
- Male
- Middle Aged
- Neuregulin-1/analysis
- Neuregulin-1/antagonists & inhibitors
- Patient Selection
- Progression-Free Survival
- Receptor, ErbB-3/analysis
- Receptor, ErbB-3/antagonists & inhibitors
- Retrospective Studies
Collapse
Affiliation(s)
| | | | - Wael A Harb
- Horizon Oncology Center, Lafayette, Indiana, USA
| | - Ariel Lopez-Chavez
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | | | | | | | | | - Akin Atmaca
- Department of Hematology and Oncology, Institute of Clinical Research at Krankenhaus Nordwest, UCT-University Cancer Center, Frankfurt, Germany
| | | | | | - Manuel Cobo
- Hospital Regional Universitario Málaga, Instituto de Investigación Biomédica de Málaga, Málaga, Spain
| | | | | | - Walid S Kamoun
- Merrimack Pharmaceuticals, Inc., Cambridge, Massachusetts, USA
| | - Karen Andreas
- Merrimack Pharmaceuticals, Inc., Cambridge, Massachusetts, USA
| | - J Marc Pipas
- Merrimack Pharmaceuticals, Inc., Cambridge, Massachusetts, USA
| | | | | | - Keunchil Park
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | | |
Collapse
|
62
|
Lee A, Jo S, Lee C, Shin HH, Kim TH, Ahn KJ, Park SK, Cho H, Yoon HK, Kim WG, Park J, Choi Y. Diabetes as a prognostic factor in HER-2 positive breast cancer patients treated with targeted therapy. Breast Cancer 2019; 26:672-680. [PMID: 30927244 DOI: 10.1007/s12282-019-00967-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/25/2019] [Indexed: 01/07/2023]
Abstract
PURPOSE Recent studies revealed that metabolic stress influences the outcomes of breast cancer treatment. We sought to evaluate the prognostic effect of type 2 diabetes and find the molecular mechanism of relapses in postoperative HER-2+ breast cancer patients treated with HER-2 targeted therapy. MATERIALS AND METHODS We evaluated 190 HER-2+ breast cancer patients (pT1-4N0-2M0) who were treated with surgical resection and trastuzumab (HER-2 targeted therapy) between 2006 and 2015. Survival outcomes and failure patterns were compared between such patients with (n = 12) and without (n = 178) type 2 diabetes. RESULTS The median follow-up period was 42.4 months (range 12.0-124.7 months). Twenty-one patients (11.1%) showed relapse (including nine patients with locoregional failure), and three patients (1.6%) died as a result of cancer relapse. One-third of the patients with diabetes experienced relapse (4/12, 33.3%). The 3-year disease-free survival (DFS) and overall survival (OS) rates were 90.7% and 98.6%, respectively. Diabetic patients showed shorter DFS compared with non-diabetic patients (p = 0.006, 74.1% vs. 91.9%). OS was also shorter in diabetic patients compared with non-diabetic patients (p = 0.017, 91.7% vs. 99.1%). Of our interest, the levels of HER-3 and its ligand neuregulin-1 were significantly increased in the tumor specimen in HER-2+ breast cancer patients suffering with type 2 diabetes than that in the euglycemic control group. CONCLUSIONS Type 2 diabetes was associated with detrimental effects on survival in postoperative HER-2+ breast cancer patients who were treated with trastuzumab. The poor prognostic effect of diabetes in HER-2+ breast cancer patients could be associated with the high levels of HER-3 and neuregulin 1, thus it should be considered and evaluated more.
Collapse
Affiliation(s)
- Anbok Lee
- Department of Surgery, Busan Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Sunmi Jo
- Department of Radiation Oncology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Changhu Lee
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institutes of Science and Technology, Ulsan, South Korea
| | - Hyun-Hee Shin
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institutes of Science and Technology, Ulsan, South Korea
| | - Tae Hyun Kim
- Department of Surgery, Busan Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Ki Jung Ahn
- Department of Radiation Oncology, Busan Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Sung-Kwang Park
- Department of Radiation Oncology, Busan Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Heunglae Cho
- Department of Radiation Oncology, Busan Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Hye-Kyoung Yoon
- Department of Pathology, Busan Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Woo Gyeong Kim
- Department of Pathology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Jiyoung Park
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institutes of Science and Technology, Ulsan, South Korea.
| | - Yunseon Choi
- Department of Radiation Oncology, Busan Paik Hospital, Inje University College of Medicine, Busan, South Korea.
| |
Collapse
|
63
|
Liu X, Liu S, Lyu H, Riker AI, Zhang Y, Liu B. Development of Effective Therapeutics Targeting HER3 for Cancer Treatment. Biol Proced Online 2019; 21:5. [PMID: 30930695 PMCID: PMC6425631 DOI: 10.1186/s12575-019-0093-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/05/2019] [Indexed: 02/08/2023] Open
Abstract
HER3 is the third member of the human epidermal growth factor receptor (HER/EGFR) family, and unlike its other family members, is unique due to its minimal intrinsic kinase activity. As a result, HER3 has to interact with another receptor tyrosine kinase (RTK), such as EGFR or HER2, in order to activate the PI-3 K/Akt, MEK/MAPK, Jak/Stat pathways, as well as Src kinase. Over-expression of HER3 in various human cancers promotes tumor progression by increasing metastatic potential and acting as a major cause of treatment failure. Effective inhibition of HER3, and/or the key downstream mediators of HER3 signaling, is thought to be required to overcome resistance and enhance therapeutic efficacy. To date, there is no known HER3-targeted therapy that is approved for breast cancer, with a number of anti-HER3 antibodies current in various stages of development and clinical testing. Recent data suggests that the epigenetic strategy of using a histone deacetylase (HDAC) inhibitor, or functional cooperative miRNAs, may be an effective way to abrogate HER3 signaling. Here, we summarize the latest advances in our understanding of the mechanism of HER3 signaling in tumor progression, with continuing research towards the identification of therapeutic anti-HER3 antibodies. We will also examine the potential to develop novel epigenetic approaches that specifically target the HER3 receptor, along with important key downstream mediators that are involved in cancer treatment.
Collapse
Affiliation(s)
- Xiaolong Liu
- 1Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Shuang Liu
- 2Department of Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA USA
| | - Hui Lyu
- 2Department of Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA USA
| | - Adam I Riker
- 3Department of Surgery, Section of Surgical Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA USA
| | - Yamin Zhang
- 1Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Bolin Liu
- 2Department of Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA USA
| |
Collapse
|
64
|
Molecular Design of HER3-Targeting Affibody Molecules: Influence of Chelator and Presence of HEHEHE-Tag on Biodistribution of 68Ga-Labeled Tracers. Int J Mol Sci 2019; 20:ijms20051080. [PMID: 30832342 PMCID: PMC6429182 DOI: 10.3390/ijms20051080] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/13/2019] [Accepted: 02/26/2019] [Indexed: 12/27/2022] Open
Abstract
Affibody-based imaging of HER3 is a promising approach for patient stratification. We investigated the influence of a hydrophilic HEHEHE-tag ((HE)3-tag) and two different gallium-68/chelator-complexes on the biodistribution of Z08698 with the aim to improve the tracer for PET imaging. Affibody molecules (HE)3-Z08698-X and Z08698-X (X = NOTA, NODAGA) were produced and labeled with gallium-68. Binding specificity and cellular processing were studied in HER3-expressing human cancer cell lines BxPC-3 and DU145. Biodistribution was studied 3 h p.i. in Balb/c nu/nu mice bearing BxPC-3 xenografts. Mice were imaged 3 h p.i. using microPET/CT. Conjugates were stably labeled with gallium-68 and bound specifically to HER3 in vitro and in vivo. Association to cells was rapid but internalization was slow. Uptake in tissues, including tumors, was lower for (HE)3-Z08698-X than for non-tagged variants. The neutral [68Ga]Ga-NODAGA complex reduced the hepatic uptake of Z08698 compared to positively charged [68Ga]Ga-NOTA-conjugated variants. The influence of the chelator was more pronounced in variants without (HE)3-tag. In conclusion, hydrophilic (HE)3-tag and neutral charge of the [68Ga]Ga-NODAGA complex promoted blood clearance and lowered hepatic uptake of Z08698. [68Ga]Ga-(HE)3-Z08698-NODAGA was considered most promising, providing the lowest blood and hepatic uptake and the best imaging contrast among the tested variants.
Collapse
|
65
|
Comparison of Antibodies for Immunohistochemistry-based Detection of HER3 in Breast Cancer. Appl Immunohistochem Mol Morphol 2019; 26:212-219. [PMID: 27389555 DOI: 10.1097/pai.0000000000000406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Growth factor receptor HER3 (ErbB3) lacks standardized immunohistochemistry (IHC)-based methods for formalin-fixed paraffin-embedded (FFPE) tissue samples. We compared 4 different anti-HER3 antibodies to explain the differences found in the staining results reported in the literature. MATERIALS AND METHODS Four commercial HER3 antibodies were tested on FFPE samples including mouse monoclonal antibody clones, DAK-H3-IC and RTJ1, rabbit monoclonal antibody clone SP71, and rabbit polyclonal antibody (SAB4500793). Membranous and cytoplasmic staining patterns were analyzed and scored as 0, 1+, or 2+ according to the intensity of the staining and completeness of membranous and cytoplasmic staining. A large collection of HER2-amplified breast cancers (n=177) was stained with the best performing HER3 antibody. The breast cancer cell line, MDA-453, and human prostate tissue were used as positive controls. IHC results were confirmed by analysis of flow cytometry performed on breast cancer cell lines. Staining results of FFPE samples were compared with samples fixed with an epitope-sensitive fixative (PAXgene). RESULTS Clear circumferential cell membrane staining was found only with the HER3 antibody clone DAK-H3-IC. Other antibodies (RTJ1, SP71, and polyclonal) yielded uncertain and nonreproducible staining results. In addition to cell membrane staining, DAK-H3-IC was also localized to the cytoplasm, but no nuclear staining was observed. In HER2-amplified breast cancers, 80% of samples were classified as 1+ or 2+ according to the HER3 staining on the cell membrane. The results from FFPE cell line samples were comparable to those obtained from unfixed cells in flow cytometry. IHC conducted on FFPE samples and on PAXgene-fixed samples showed equivalent results. CONCLUSIONS We conclude that IHC with the monoclonal antibody, DAK-H3-IC, on FFPE samples is a reliable staining method for use in translational research. Assessment of membranous HER3 expression may be clinically relevant in selecting patients who may most benefit from pertuzumab or other novel anti-HER3 therapies.
Collapse
|
66
|
Wang P, Yang M, Jiang L, Wu YJ. A fungicide miconazole ameliorates tri-o-cresyl phosphate-induced demyelination through inhibition of ErbB/Akt pathway. Neuropharmacology 2018; 148:31-39. [PMID: 30553827 DOI: 10.1016/j.neuropharm.2018.12.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/21/2018] [Accepted: 12/12/2018] [Indexed: 12/21/2022]
Abstract
Organophosphorus compound (OP)-induced delayed neuropathy (OPIDN) is characterized by distal axonal degeneration and demyelination of the central and peripheral axons, which leads to progressive muscle weakness, ataxia and paralysis in several days after OP intoxication. This study aimed to investigate the possible use of an imidazole fungicide miconazole as a novel therapy for OPIDN. Adult hens, the most commonly used animal models in OPIDN studies, were orally given tri-o-cresyl phosphate (TOCP). We showed that miconazole, which was administered daily to hens beginning on the 7th day after TOCP exposure, drastically ameliorated the neurotoxic symptoms and histopathological damages in spinal cord and sciatic nerves. Mechanistically, miconazole inhibited the TOCP-induced activation of ErbB/Akt signaling, and enhanced the myelin basic protein (MBP) expression. In a glial cell model sNF96.2 cells, miconazole restored the TOCP-inhibited MBP expression, and promoted cell differentiation as well as cell migration by inhibiting the activation of ErbB/Akt signaling pathway. In sum, miconazole, a synthetic imidazole fungicide, could ameliorate the symptoms and histopathological changes of OPIDN, probably by promoting glial cell differentiation and migration to enhance myelination via inhibiting the activation of ErbB/Akt. Thus, miconazole is a promising candidate therapy for the clinical treatment of OPIDN.
Collapse
Affiliation(s)
- Pan Wang
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichenxilu Road, Beijing, 100101, China
| | - Min Yang
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichenxilu Road, Beijing, 100101, China
| | - Lu Jiang
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichenxilu Road, Beijing, 100101, China
| | - Yi-Jun Wu
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichenxilu Road, Beijing, 100101, China.
| |
Collapse
|
67
|
Zhou Q, Hou CN, Yang HJ, He Z, Zuo MZ. Distinct expression and prognostic value of members of the epidermal growth factor receptor family in ovarian cancer. Cancer Manag Res 2018; 10:6937-6948. [PMID: 30588099 PMCID: PMC6300368 DOI: 10.2147/cmar.s183769] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Increased aberrant expression or activation of the epidermal growth factor receptor (EGFR) family members has been reported in a wide range of cancers, and the EGFR family of tyrosine kinases has emerged as an important therapeutic target in malignancies. However, the expression patterns and exact roles of each distinct EGFR family member, which contribute to tumorigenesis and progression of ovarian cancer (OC), are yet to be elucidated. Materials and methods In the current study, we report the distinct expression and prognostic value of EGFR family members in patients with OC by analyzing a series of databases including ONCOMINE, Gene Expression Profiling Interactive Analysis, Kaplan-Meier plotter, cBioPortal, and Database for Annotation, Visualization and Integrated Discovery . Results It was found that in patients with OC, mRNA expression levels of ERBB2/3/4 were significantly upregulated, whereas the transcription levels of EGFR were downregulated. Aberrant EGFR expression and ERBB2/3/4 mRNA levels were associated with OC prognosis. Conclusion These results suggest that EGFR and ERBB3/4 are distinct prognostic biomarkers and may be potential targets for OC. These results may be beneficial to better understand the molecular underpinning of OC and may be useful to develop tools for more accurate OC prognosis and for promoting the development of EGFR-targeted inhibitors for OC treatment.
Collapse
Affiliation(s)
- Quan Zhou
- Department of Gynecology and Obstetrics, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, Yichang 443000, China,
| | - Chao-Nan Hou
- Department of Gynecology and Obstetrics, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, Yichang 443000, China,
| | - Huai-Jie Yang
- Department of Gynecology and Obstetrics, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, Yichang 443000, China,
| | - Ze He
- Department of Gynecology and Obstetrics, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, Yichang 443000, China,
| | - Man-Zhen Zuo
- Department of Gynecology and Obstetrics, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, Yichang 443000, China,
| |
Collapse
|
68
|
Influence of Molecular Design on the Targeting Properties of ABD-Fused Mono- and Bi-Valent Anti-HER3 Affibody Therapeutic Constructs. Cells 2018; 7:cells7100164. [PMID: 30314301 PMCID: PMC6210767 DOI: 10.3390/cells7100164] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/23/2018] [Accepted: 10/08/2018] [Indexed: 01/26/2023] Open
Abstract
Overexpression of human epidermal growth factor receptor type 3 (HER3) is associated with tumour cell resistance to HER-targeted therapies. Monoclonal antibodies (mAbs) targeting HER3 are currently being investigated for treatment of various types of cancers. Cumulative evidence suggests that affibody molecules may be appropriate alternatives to mAbs. We previously reported a fusion construct (3A3) containing two HER3-targeting affibody molecules flanking an engineered albumin-binding domain (ABD035) included for the extension of half-life in circulation. The 3A3 fusion protein (19.7 kDa) was shown to delay tumour growth in mice bearing HER3-expressing xenografts and was equipotent to the mAb seribantumab. Here, we have designed and explored a series of novel formats of anti-HER3 affibody molecules fused to the ABD in different orientations. All constructs inhibited heregulin-induced phosphorylation in HER3-expressing BxPC-3 and DU-145 cell lines. Biodistribution studies demonstrated extended the half-life of all ABD-fused constructs, although at different levels. The capacity of our ABD-fused proteins to accumulate in HER3-expressing tumours was demonstrated in nude mice bearing BxPC-3 xenografts. Formats where the ABD was located on the C-terminus of affibody binding domains (3A, 33A, and 3A3) provided the best tumour targeting properties in vivo. Further development of these promising candidates for treatment of HER3-overexpressing tumours is therefore justified.
Collapse
|
69
|
Abstract
Despite major breakthroughs in the field of personalized medicine, gastric cancer (GC) remains a clinically challenging disease, characterized by scarce effective treatment options and the lack of reliable molecular tools for the prediction of patient outcome and response to therapy. The pronounced molecular heterogeneity that dictates the phenotypical aggressiveness of gastric neoplasms severely limits the antitumor efficacy of targeted agents brought to clinical trials, and constitutes a favorable setting for the emergence of refractory tumors exhibiting multidrug resistance. We will review the most recent advances in our understanding of GC biology, which are underlying the development and clinical testing of novel targeted therapeutic agents. We will also emphasize how their efficacy and acquired resistance relate to the aberrant molecular signatures that drive gastric malignancy.
Collapse
Affiliation(s)
- Henrique O Duarte
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Joana Gomes
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - José C Machado
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Celso A Reis
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal.,Faculty of Medicine of the University of Porto, Porto, Portugal
| |
Collapse
|
70
|
Yang HL, Lin RW, Rajendran P, Mathew DC, Thigarajan V, Lee CC, Hsu CJ, Hseu YC. Antrodia salmonea-induced oxidative stress abrogates HER-2 signaling cascade and enhanced apoptosis in ovarian carcinoma cells. J Cell Physiol 2018; 234:3029-3042. [PMID: 30146791 DOI: 10.1002/jcp.27123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/05/2018] [Indexed: 12/20/2022]
Abstract
Antrodia salmonea is well known in Taiwan as a traditional Chinese medicinal fungus and has demonstrated antioxidant, anti-inflammatory, and anticancer effects. However, the anticancer activity of A. salmonea against human ovarian cancer is still elusive. Therefore, we investigated the antiovarian tumor activity of a fermented culture broth of A. salmonea and exhibits its underlying molecular mechanism. A. salmonea shows a significant effect on cell viability in human ovarian carcinoma (SKOV-3 or A2780) cell lines with an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Increased terminal deoxynucleotidyl transferase dUTP nick-end labeling-positive cells and annexin V-propidium iodide stained cells indicate that A. salmonea induces late apoptosis in SKOV-3 cells. Notably, treatment with A. salmonea induced the following events: Apoptosis; caspase-3, -8, -9 and poly(ADP-ribose) polymerase activation; first apoptosis signal (Fas) and Fas ligand activation; Bid cleavage; and Bax2-B-cell lymphoma 2 dysregulation. The results show that A. salmonea-induced apoptosis was mediated by both mitochondrial and death receptor pathways. An increase in intracellular reactive oxygen species (ROS) was also observed in A. salmonea-treated cells, whereas the antioxidant N-acetylcysteine (NAC) prevented A. salmonea-induced cell death and DNA fragmentation, indicating that A. salmonea-induced apoptosis was mediated by ROS generation. Interestingly, A. salmonea-induced apoptosis is associated with the suppression of human epidermal growth factor receptor-2 (HER-2/neu) and phosphoinositide 3-kinase (PI3K)-protein kinase B (AKT) expression in HER-2/neu overexpressing SKOV-3 cells. NAC significantly prevented A. salmonea-induced HER-2/neu depletion and PI3K/AKT inactivation, indicating that A. salmonea-triggered apoptosis is mediated by ROS-inhibited HER-2/neu signaling cascades. To our knowledge, this is the first report describing the anticancer activity of this potentially beneficial mushroom against human ovarian carcinoma.
Collapse
Affiliation(s)
- Hsin-Ling Yang
- Department of Nutrition, Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Ruei-Wan Lin
- Department of Nutrition, Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Peramaiyan Rajendran
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Dony Chacko Mathew
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Varadharajan Thigarajan
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Chuan-Chen Lee
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Chih-Jung Hsu
- Department of Dermatology, China Medical University, Taichung, Taiwan
| | - You-Cheng Hseu
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.,Research Center of Chinese Herbal Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
71
|
Lyu H, Huang J, He Z, Liu B. Targeting of HER3 with Functional Cooperative miRNAs Enhances Therapeutic Activity in HER2-Overexpressing Breast Cancer Cells. Biol Proced Online 2018; 20:16. [PMID: 30093840 PMCID: PMC6081814 DOI: 10.1186/s12575-018-0081-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 07/23/2018] [Indexed: 02/05/2023] Open
Abstract
Background The HER3 receptor functions as a major cause of drug resistance in cancer treatment. It is believed that therapeutic targeting of HER3 is required to improve patient outcomes. It is not clear whether a novel strategy with two functional cooperative miRNAs would effectively inhibit erbB3 expression and potentiate the anti-proliferative/anti-survival effects of a HER2-targeted therapy (trastuzumab) and chemotherapy (paclitaxel) on HER2-overexpressing breast cancer cells. Results Combination of miR-125a and miR-205, as compared to either miRNA alone, potently inhibited expression of HER3 in HER2-overexpressing breast cancer BT474 cells. Co-expression of the two miRNAs not only reduced the levels of phosphorylated erbB3 (P-erbB3), Akt (P-Akt), and Src (P-Src), it also inhibited cell proliferation and increased cells at G1 phase. A multi-miRNA lentiviral vector - the cluster of miR-125a and miR-205 - was constructed to simultaneously express the two miRNAs in HER2-overexpressing breast cancer cells. Concurrent expression of miR-125a and miR-205 via the miRNA cluster transfection significantly enhanced trastuzumab-mediated growth inhibition and cell cycle G1 arrest in BT474 cells and markedly increased paclitaxel-induced apoptosis in another HER2-overexpressing breast cancer cell line HCC1954. Conclusions Here, we showed that functional cooperative miRNAs effectively suppressed erbB3 expression. This novel approach targeting of HER3 was able to enhance the therapeutic efficacy of trastuzumab and paclitaxel against HER2-overexpressing breast cancer.
Collapse
Affiliation(s)
- Hui Lyu
- 1Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, MS-8104, 12801 E. 17th Ave, Aurora, CO 80045 USA
| | - Jingcao Huang
- 2Department of Hematology, Hematologic Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Zhimin He
- 3Cancer Research Institute and Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong China
| | - Bolin Liu
- 1Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, MS-8104, 12801 E. 17th Ave, Aurora, CO 80045 USA
| |
Collapse
|
72
|
Nguyen DQ, Hoang DH, Nguyen Vo TT, Huynh V, Ghoda L, Marcucci G, Nguyen LXT. The role of ErbB3 binding protein 1 in cancer: Friend or foe? J Cell Physiol 2018; 233:9110-9120. [PMID: 30076717 DOI: 10.1002/jcp.26951] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 06/12/2018] [Indexed: 12/20/2022]
Abstract
ErbB3, a member of the epidermal growth factor receptor family, reportedly plays an essential role in the regulation of cancer progression and therapeutic resistance. Numerous studies have indicated that ErbB3 binding protein 1 (Ebp1), a binding partner for ErbB3, plays an important regulatory role in the expression and function of ErbB3, but there is no agreement as to whether Ebp1 also has an ErbB3-independent function in cancer and how it might contribute to tumorigenesis. In this review, we will discuss the different functions of the two Ebp1 isoforms, p48 and p42, that may be responsible for the potentially dual role of Ebp1 in cancer growth.
Collapse
Affiliation(s)
- Dang Quan Nguyen
- Department of Medical Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Dinh Hoa Hoang
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, California
| | - Thanh Thao Nguyen Vo
- Department of Medical Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Vu Huynh
- Department of Medical Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Lucy Ghoda
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, California
| | - Guido Marcucci
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, California
| | - Le Xuan Truong Nguyen
- Department of Medical Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam.,Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, California
| |
Collapse
|
73
|
Curea FG, Hebbar M, Ilie SM, Bacinschi XE, Trifanescu OG, Botnariuc I, Anghel RM. Current Targeted Therapies in HER2-Positive Gastric Adenocarcinoma. Cancer Biother Radiopharm 2018; 32:351-363. [PMID: 29265917 DOI: 10.1089/cbr.2017.2249] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer is one of the most common types of cancer in the world, usually diagnosed at an advanced stage. Despite the advances in specific anticancer agents' development, the survival rates remain modest, even in early stages. In 15%-20% of cases, the human epidermal growth factor receptor 2 (HER2) overexpression was identified. We conducted a general review to summarize the progress that has been made in the targeted treatment of HER2-positive esogastric junction or gastric adenocarcinoma. According to our findings, trastuzumab is the only validated anti-HER2 agent in locally advanced or metastatic disease and its adjuvant effectiveness is assessed in a RTOG phase III study. In a previously treated advanced disease, the maytansine derivate TDM 1 failed to be approved as a second-line regimen, and the tyrosine kinase inhibitor, lapatinib, shows modest results. The antiangiogenics have not been analyzed in specific populations and targeting the mesenchymal-epithelial transition factor (MET) receptor, overexpressed in up to 46% of the advanced disease, seems encouraging. Regarding the checkpoint inhibitors, based on KEYNOTE 059 multilevel ongoing trial, stratified according to the HER2 and programmed death-ligand (PD-L) 1 status, pembrolizumab was approved for third-line treatment of gastric or gastroesophageal junction adenocarcinoma.
Collapse
Affiliation(s)
- Fabiana G Curea
- 1 Department of Oncology-Radiotherapy, Institute of Oncology "Prof. Dr. Alexandru Trestioreanu," Bucharest, Romania
| | - Mohamed Hebbar
- 2 Department of Medical Oncology, University Hospital , Lille, France
| | - Silvia M Ilie
- 1 Department of Oncology-Radiotherapy, Institute of Oncology "Prof. Dr. Alexandru Trestioreanu," Bucharest, Romania .,3 University of Medicine and Pharmacy "Carol Davila," Bucharest, Romania
| | - Xenia E Bacinschi
- 1 Department of Oncology-Radiotherapy, Institute of Oncology "Prof. Dr. Alexandru Trestioreanu," Bucharest, Romania .,3 University of Medicine and Pharmacy "Carol Davila," Bucharest, Romania
| | - Oana G Trifanescu
- 1 Department of Oncology-Radiotherapy, Institute of Oncology "Prof. Dr. Alexandru Trestioreanu," Bucharest, Romania .,3 University of Medicine and Pharmacy "Carol Davila," Bucharest, Romania
| | - Inga Botnariuc
- 1 Department of Oncology-Radiotherapy, Institute of Oncology "Prof. Dr. Alexandru Trestioreanu," Bucharest, Romania
| | - Rodica M Anghel
- 1 Department of Oncology-Radiotherapy, Institute of Oncology "Prof. Dr. Alexandru Trestioreanu," Bucharest, Romania .,3 University of Medicine and Pharmacy "Carol Davila," Bucharest, Romania
| |
Collapse
|
74
|
Orlova A, Bass TZ, Rinne SS, Leitao CD, Rosestedt M, Atterby C, Gudmundsdotter L, Frejd FY, Löfblom J, Tolmachev V, Ståhl S. Evaluation of the Therapeutic Potential of a HER3-Binding Affibody Construct TAM-HER3 in Comparison with a Monoclonal Antibody, Seribantumab. Mol Pharm 2018; 15:3394-3403. [PMID: 29995421 DOI: 10.1021/acs.molpharmaceut.8b00393] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human epidermal growth factor receptor type 3 (HER3) is recognized to be involved in resistance to HER-targeting therapies. A number of HER3-targeting monoclonal antibodies are under clinical investigation as potential cancer therapeutics. Smaller high-affinity scaffold proteins are attractive non-Fc containing alternatives to antibodies. A previous study indicated that anti-HER3 affibody molecules could delay the growth of xenografted HER3-positive tumors. Here, we designed a second-generation HER3-targeting construct (TAM-HER3), containing two HER3-specific affibody molecules bridged by an albumin-binding domain (ABD) for extension of blood circulation. Receptor blocking activity was demonstrated in vitro. In mice bearing BxPC-3 xenografts, the therapeutic efficacy of TAM-HER3 was compared to the HER3-specific monoclonal antibody seribantumab (MM-121). TAM-HER3 inhibited heregulin-induced phosphorylation in a panel of HER3-expressing cancer cells and was found to be equally as potent as seribantumab in terms of therapeutic efficacy in vivo and with a similar safety profile. Median survival times were 60 days for TAM-HER3, 54 days for seribantumab, and 41 days for the control group. No pathological changes were observed in cytopathological examination. The multimeric HER3-binding affibody molecule in fusion to ABD seems promising for further evaluation as candidate therapeutics for treatment of HER3-overexpressing tumors.
Collapse
Affiliation(s)
- Anna Orlova
- Department of Medicinal Chemistry , Uppsala University , Uppsala , Sweden.,Science for Life Laboratory , Uppsala University , Uppsala , Sweden
| | - Tarek Z Bass
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology , Stockholm , Sweden
| | - Sara S Rinne
- Department of Medicinal Chemistry , Uppsala University , Uppsala , Sweden
| | - Charles Dahlsson Leitao
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology , Stockholm , Sweden
| | - Maria Rosestedt
- Department of Medicinal Chemistry , Uppsala University , Uppsala , Sweden
| | - Christina Atterby
- Department of Immunology, Genetics and Pathology , Uppsala University , Uppsala , Sweden
| | | | - Fredrik Y Frejd
- Department of Immunology, Genetics and Pathology , Uppsala University , Uppsala , Sweden.,Affibody AB , Solna , Sweden
| | - John Löfblom
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology , Stockholm , Sweden
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology , Uppsala University , Uppsala , Sweden
| | - Stefan Ståhl
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology , Stockholm , Sweden
| |
Collapse
|
75
|
Kim M, Baek M, Kim DJ. Protein Tyrosine Signaling and its Potential Therapeutic Implications in Carcinogenesis. Curr Pharm Des 2018. [PMID: 28625132 DOI: 10.2174/1381612823666170616082125] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein tyrosine phosphorylation is a crucial signaling mechanism that plays a role in epithelial carcinogenesis. Protein tyrosine kinases (PTKs) control various cellular processes including growth, differentiation, metabolism, and motility by activating major signaling pathways including STAT3, AKT, and MAPK. Genetic mutation of PTKs and/or prolonged activation of PTKs and their downstream pathways can lead to the development of epithelial cancer. Therefore, PTKs became an attractive target for cancer prevention. PTK inhibitors are continuously being developed, and they are currently used for the treatment of cancers that show a high expression of PTKs. Protein tyrosine phosphatases (PTPs), the homeostatic counterpart of PTKs, negatively regulate the rate and duration of phosphotyrosine signaling. PTPs initially were considered to be only housekeeping enzymes with low specificity. However, recent studies have demonstrated that PTPs can function as either tumor suppressors or tumor promoters, depending on their target substrates. Together, both PTK and PTP signal transduction pathways are potential therapeutic targets for cancer prevention and treatment.
Collapse
Affiliation(s)
- Mihwa Kim
- Department of Biomedical Sciences, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Minwoo Baek
- Department of Biomedical Sciences, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Dae Joon Kim
- Department of Biomedical Sciences, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| |
Collapse
|
76
|
Du J, Zhou S, Wang L, Yu M, Mei L. Downregulation of ERBB3 decreases the proliferation, migration and invasion of cervical cancer cells though the interaction with MTK-1. Oncol Lett 2018; 16:3453-3458. [PMID: 30127948 PMCID: PMC6096111 DOI: 10.3892/ol.2018.9088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 03/28/2018] [Indexed: 12/22/2022] Open
Abstract
Cervical cancer is a common malignancy in females. Diagnosis and treatment of cervical cancer remains a challenge due to difficulties in the presence of tumor metastasis. Increased expression level of Erb-b2 receptor tyrosine kinase 3 (ERBB3) has previously been demonstrated to be associated with the occurrence of cervical cancer; however, the functionality of ERBB3 in the development of cervical cancer remains incompletely understood. In the present study, the expression level of ERBB3 in patients with cervical squamous cell carcinoma and cervical adenocarcinoma was detected by reverse transcription quantitative polymerase chain reaction. The effects of ERBB3 small interfering RNA silencing on cell proliferation, migration and invasion were explored, and the interaction between ERBB3 and mitogen-activated protein kinase kinase kinase 4 (MTK-1) was also investigated. It was identified that the downregulation of ERBB3 significantly decreased the proliferative, migratory and invasive abilities of cervical cancer cells. In addition, the expression level of MTK-1 was also significantly decreased following MTK-1 siRNA silencing. Therefore, we hypothesize that the downregulation of ERBB3 may decrease the proliferative, migratory and invasive abilities of cervical cancer cells by inhibiting the expression of MTK-1.
Collapse
Affiliation(s)
- Jingyun Du
- Department of Gynaecology and Obstetrics, Luodian Hospital, Shanghai 201908, P.R. China
| | - Shihua Zhou
- Department of Gynaecology and Obstetrics, Luodian Hospital, Shanghai 201908, P.R. China
| | - Li Wang
- Department of Gynaecology and Obstetrics, Luodian Hospital, Shanghai 201908, P.R. China
| | - Mulan Yu
- Department of Gynaecology and Obstetrics, Luodian Hospital, Shanghai 201908, P.R. China
| | - Liyan Mei
- Department of Gynaecology and Obstetrics, Luodian Hospital, Shanghai 201908, P.R. China
| |
Collapse
|
77
|
Understanding the biology of HER3 receptor as a therapeutic target in human cancer. Acta Pharm Sin B 2018; 8:503-510. [PMID: 30109175 PMCID: PMC6090011 DOI: 10.1016/j.apsb.2018.05.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/24/2018] [Accepted: 05/28/2018] [Indexed: 02/07/2023] Open
Abstract
HER3 belongs to the human epidermal growth factor receptor (HER) family which also includes HER1/EGFR/erbB1, HER2/erbB2, and HER4/erbB4. As a unique member of the HER family, HER3 lacks or has little intrinsic tyrosine kinase activity. It frequently co-expresses and forms heterodimers with other receptor tyrosine kinases (RTKs) in cancer cells to activate oncogenic signaling, especially the PI-3K/Akt pathway and Src kinase. Elevated expression of HER3 has been observed in a wide variety of human cancers and associates with a worse survival in cancer patients with solid tumors. Studies on the underlying mechanism implicate HER3 expression as a major cause of treatment failure in cancer therapy. Activation of HER3 signaling has also been shown to promote cancer metastasis. These data strongly support the notion that therapeutic inactivation of HER3 and/or its downstream signaling is required to overcome treatment resistance and improve the outcomes of cancer patients.
Collapse
Key Words
- ADCC, antibody-dependent cell-mediated cytotoxicity
- Ab, antibody
- Cell signaling
- Dimerization
- EGFR, epidermal growth factor receptor
- EMT, epithelial-mesenchymal transition
- FDA, Food and Drug Administration
- HER, Human epidermal growth factor receptor
- HER3
- HRG, heregulin
- IGF-1R, insulin-like growth factor-I receptor
- MAPK, mitogen-activated protein kinase
- MEK, MAPK kinase
- NSCLC, non-small cell lung cancer
- OS, overall survival
- PI-3K, phosphoinositide 3-kinase
- RTK, receptor tyrosine kinase
- TKI, tyrosine kinase inhibitor
- Targeted therapy
- Therapeutic resistance
- Tumor metastasis
- lncRNA, long ncRNA
- miRNA, microRNA
- ncRNA, noncoding RNA
Collapse
|
78
|
Jacob W, James I, Hasmann M, Weisser M. Clinical development of HER3-targeting monoclonal antibodies: Perils and progress. Cancer Treat Rev 2018; 68:111-123. [PMID: 29944978 DOI: 10.1016/j.ctrv.2018.06.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/16/2022]
Abstract
The human epidermal growth factor receptor (HER) family consists of four transmembrane receptor tyrosine kinases: epidermal growth factor receptor (EGFR), HER2, HER3, and HER4. They are part of a complex signalling network and stimulate intracellular pathways regulating cell growth and differentiation. So far, monoclonal antibodies (mAbs) and small molecule tyrosine kinase inhibitors targeting EGFR and HER2 have been developed and approved. Recently, focus has turned to HER3 as it may play an important role in resistance to EGFR- and HER2-targeting therapies. HER3-targeting agents have been undergoing clinical evaluation for the last 10 years and currently thirteen mAbs are in phase 1 or 2 clinical studies. Single agent activity has proven to be limited, however, the tolerability was favourable. Thus, combinations of HER3-binding mAbs with other HER-targeting therapies or chemotherapies have been pursued in various solid tumor entities. Data indicate that the HER3-binding ligand heregulin may serve as a response prediction marker for HER3-targeting therapy. Within this review the current status of clinical development of HER3-targeting compounds is described.
Collapse
Affiliation(s)
- Wolfgang Jacob
- Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany.
| | - Ian James
- A4P Consulting Ltd, Discovery Park, Sandwich, UK
| | - Max Hasmann
- Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Martin Weisser
- Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
79
|
McKnight BN, Kuda-Wedagedara ANW, Sevak KK, Abdel-Atti D, Wiesend WN, Ku A, Selvakumar D, Carlin SD, Lewis JS, Viola-Villegas NT. Imaging EGFR and HER3 through 89Zr-labeled MEHD7945A (Duligotuzumab). Sci Rep 2018; 8:9043. [PMID: 29899472 PMCID: PMC5998059 DOI: 10.1038/s41598-018-27454-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/04/2018] [Indexed: 02/07/2023] Open
Abstract
Tumor resistance to treatment paved the way toward the development of single agent drugs that target multiple molecular signatures amplified within the malignancy. The discovered crosstalk between EGFR and HER3 as well as the role of HER3 in mediating EGFR resistance made these two receptor tyrosine kinases attractive targets. MEHD7945A or duligotuzumab is a single immunotherapy agent that dually targets both molecular signatures. In this study, a positron emission tomography (PET) companion diagnostic to MEHD7945A is reported and evaluated in pancreatic cancer. Tumor accretion and whole body pharmacokinetics of 89Zr-MEHD7945A were established. Specificity of the probe for EGFR and/or HER3 was further examined.
Collapse
Affiliation(s)
- Brooke N McKnight
- Department of Oncology, Karmanos Cancer Institute, 4100 John R. Street, Detroit, MI, 48201, USA
| | | | - Kuntal K Sevak
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Dalya Abdel-Atti
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Wendy N Wiesend
- Department of Anatomic Pathology, Beaumont Hospital, 3601 West 13 Mile Road, Royal Oak, MI, 48073, USA
| | - Anson Ku
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | | | - Sean D Carlin
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
- Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
- Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Nerissa T Viola-Villegas
- Department of Oncology, Karmanos Cancer Institute, 4100 John R. Street, Detroit, MI, 48201, USA.
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
80
|
Wang SL, Zhong GX, Wang XW, Yu FQ, Weng DF, Wang XX, Lin JH. Prognostic significance of the expression of HER family members in primary osteosarcoma. Oncol Lett 2018; 16:2185-2194. [PMID: 30008917 PMCID: PMC6036504 DOI: 10.3892/ol.2018.8931] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/25/2018] [Indexed: 12/13/2022] Open
Abstract
The prognosis of patients with metastatic osteosarcoma is poor and has shown no significant improvement in nearly 20 years. The human epidermal growth factor (EGF) receptor (HER) family is frequently overexpressed in the majority of human carcinomas, and is involved in promoting the proliferation and survival of cancer cells. However, the role of EGFR and HER-2 expression in osteosarcoma survival remains controversial and no previous study has simultaneously investigated the association of the expression of all the four HER family members with the prognostic significance of osteosarcoma. Therefore, the present study investigated the expression levels of the complete members of the HER family in osteosarcoma specimens, as well as their associations with the clinicopathological parameters, progression-free survival (PFS) and overall survival (OS) time of patients with osteosarcoma. The expression of HER family members was detected in osteosarcoma tumor specimens from 60 patients using immunohistochemistry. The association of the expression of HER receptors in osteosarcoma with clinicopathological parameters was analyzed using χ2 test and Fishers exact test. Survival analyses were evaluated by Kaplan-Meier method and Cox proportional hazards regression model. Overall, 18 (30%), 13 (22%), 23 (38%) and 19 (32%) patients presented with high expression of EGFR, HER-2, HER-3 and HER-4, respectively, and the co-expression of 2, 3 and all 4 members of the HER family was observed. High expression of EGFR and HER-4 was associated with distant metastasis. High HER-3 expression was significantly associated with an advanced Enneking stage and distant metastasis. Multivariate analysis demonstrated that the expression of EGFR, HER-3, HER-4, EGFR/HER-3, EGFR/HER-4 and HER-3/HER-4 was an independent predictor of poor PFS and OS time in osteosarcoma patients with stage I–IIB disease. In patients with stage IIB osteosarcoma, the expression of HER-4 and EGFR/HER-4 demonstrated a more significant effect on PFS and OS time. In conclusion, therapies targeting EGFR, HER-3 and HER-4 may provide promising strategies for primary osteosarcoma.
Collapse
Affiliation(s)
- Sheng-Lin Wang
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Guang-Xian Zhong
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Xin-Wen Wang
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Feng-Qiang Yu
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Dan-Feng Weng
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Xin-Xing Wang
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Jian-Hua Lin
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Central Laboratory, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| |
Collapse
|
81
|
Capone E, Lamolinara A, D'Agostino D, Rossi C, De Laurenzi V, Iezzi M, Iacobelli S, Sala G. EV20-mediated delivery of cytotoxic auristatin MMAF exhibits potent therapeutic efficacy in cutaneous melanoma. J Control Release 2018; 277:48-56. [PMID: 29550398 DOI: 10.1016/j.jconrel.2018.03.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/07/2018] [Accepted: 03/13/2018] [Indexed: 12/30/2022]
Abstract
Cutaneous melanoma is one of the cancers with the fastest rising incidence and in its advanced metastatic form is a highly lethal disease. Despite the recent approval of several new drugs, the 5-year overall survival rate for advanced cutaneous melanoma is still below 20% and therefore, the development of novel treatments remains a primary need. Antibody-Drug Conjugates are an emerging novel class of anticancer agents, whose preclinical and clinical development has recently seen a remarkable increase in different tumors, including melanoma. Here, we have coupled the anti-HER-3 internalizing antibody EV20 to the cytotoxic drug monomethyl auristatin F (MMAF) to form a novel antibody-drug conjugate (EV20/MMAF). In a panel of human melanoma cell lines, this novel ADC shows a powerful, specific and target-dependent cell killing activity, independently of BRAF status. Efficacy studies demonstrated that a single administration of EV20/MMAF leads to a long-lasting tumor growth inhibition. Remarkably, the effect of this novel ADC was superior to the BRAF inhibitor vemurafenib in preventing kidney, liver and lung melanoma metastases. Overall, these results highlight EV20/MMAF as a novel ADC with promising therapeutic efficacy, warranting extensive pre-clinical evaluation in melanoma with high levels of HER-3 expression.
Collapse
Affiliation(s)
- Emily Capone
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Alessia Lamolinara
- Department of Medicine and Aging Science, CeSi-Met, University of Chieti-Pescara, Chieti, Italy
| | - Daniela D'Agostino
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Cosmo Rossi
- Aging Research Center and Translational Medicine (CeSI-Met), Italy
| | - Vincenzo De Laurenzi
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Manuela Iezzi
- Department of Medicine and Aging Science, CeSi-Met, University of Chieti-Pescara, Chieti, Italy
| | | | - Gianluca Sala
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy; MediaPharma s.r.l., Via della Colonnetta 50/A, Chieti, Italy.
| |
Collapse
|
82
|
Moradi-Kalbolandi S, Hosseinzade A, Salehi M, Merikhian P, Farahmand L. Monoclonal antibody-based therapeutics, targeting the epidermal growth factor receptor family: from herceptin to Pan HER. J Pharm Pharmacol 2018; 70:841-854. [DOI: 10.1111/jphp.12911] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/25/2018] [Indexed: 12/30/2022]
Abstract
Abstract
Objectives
Monoclonal antibody-based of cancer therapy has been considered as one of the most successful therapeutic strategies for both haematologic malignancies and solid tumours in the last two decades. Epidermal growth factor receptor (EGFR) family signalling pathways play a key role in the regulation of cell proliferation, survival and differentiation. Hence, anti-EGFR family mAbs is one of the most promising approaches in cancer therapy.
Key findings
Here, recent advances in anti-EGFR mAb including approved or successfully tested in preclinical and clinical studies have been reviewed. Although we focus on monoclonal antibodies against the EGF receptor, but the mechanisms underlying the effects of EGFR-specific mAb in cancer therapy, to some extend the resistance to existing anti-EGFR therapies and some therapeutic strategies to overcome resistance such as combination of mAbs on different pathways are briefly discussed as well.
Summary
The EGFR family receptors, is considered as an attractive target for mAb development to inhibit their consecutive activities in tumour growth and resistance. However, due to resistance mechanisms, the combination therapies may become a good candidate for targeting EGFR family receptors.
Collapse
Affiliation(s)
- Shima Moradi-Kalbolandi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Aysooda Hosseinzade
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Malihe Salehi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Parnaz Merikhian
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
83
|
Ligand-Based Pharmacophore Screening Strategy: a Pragmatic Approach for Targeting HER Proteins. Appl Biochem Biotechnol 2018; 186:85-108. [PMID: 29508211 DOI: 10.1007/s12010-018-2724-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/19/2018] [Indexed: 02/07/2023]
Abstract
Targeting ErbB family of receptors is an important therapeutic option, because of its essential role in the broad spectrum of human cancers, including non-small cell lung cancer (NSCLC). Therefore, in the present work, considerable effort has been made to develop an inhibitor against HER family proteins, by combining the use of pharmacophore modelling, docking scoring functions, and ADME property analysis. Initially, a five-point pharmacophore model was developed using known HER family inhibitors. The generated model was then used as a query to screen a total of 468,880 compounds of three databases namely ZINC, ASINEX, and DrugBank. Subsequently, docking analysis was carried out to obtain hit molecules that could inhibit the HER receptors. Further, analysis of GLIDE scores and ADME properties resulted in one hit namely BAS01025917 with higher glide scores, increased CNS involvement, and good pharmaceutically relevant properties than reference ligand, afatinib. Furthermore, the inhibitory activity of the lead compounds was validated by performing molecular dynamic simulations. Of note, BAS01025917 was found to possess scaffolds with a broad spectrum of antitumor activity. We believe that this novel hit molecule can be further exploited for the development of a pan-HER inhibitor with low toxicity and greater potential.
Collapse
|
84
|
Human epidermal receptor family inhibitors in patients with ERBB3 mutated cancers: Entering the back door. Eur J Cancer 2018; 92:1-10. [DOI: 10.1016/j.ejca.2017.12.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 11/17/2022]
|
85
|
Alver TN, Lavelle TJ, Longva AS, Øy GF, Hovig E, Bøe SL. MITF depletion elevates expression levels of ERBB3 receptor and its cognate ligand NRG1-beta in melanoma. Oncotarget 2018; 7:55128-55140. [PMID: 27391157 PMCID: PMC5342406 DOI: 10.18632/oncotarget.10422] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/27/2016] [Indexed: 11/25/2022] Open
Abstract
The phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) pathway is frequently hyper-activated upon vemurafenib treatment of melanoma. We have here investigated the relationship between SRY-box 10 (SOX10), forkhead box 3 (FOXD3) and microphthalmia-associated transcription factor (MITF) in the regulation of the receptor tyrosine-protein kinase ERBB3, and its cognate ligand neuregulin 1-beta (NRG1-beta). We found that both NRG1-beta and ERBB3 mRNA levels were elevated as a consequence of MITF depletion, induced by either vemurafenib or MITF small interfering RNA (siRNA) treatment. Elevation of ERBB3 receptor expression after MITF depletion caused increased activation of the PI3K pathway in the presence of NRG1-beta ligand. Together, our results suggest that MITF may play a role in the development of acquired drug resistance through hyper-activation of the PI3K pathway.
Collapse
Affiliation(s)
- Tine N Alver
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Timothy J Lavelle
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Ane S Longva
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Geir F Øy
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Eivind Hovig
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Department of Informatics, University of Oslo, Oslo, Norway
| | - Sigurd L Bøe
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
86
|
Barrio-Real L, Wertheimer E, Garg R, Abba MC, Kazanietz MG. Characterization of a P-Rex1 gene signature in breast cancer cells. Oncotarget 2018; 7:51335-51348. [PMID: 27351228 PMCID: PMC5239479 DOI: 10.18632/oncotarget.10285] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/12/2016] [Indexed: 01/29/2023] Open
Abstract
The Rac nucleotide Exchange Factor (Rac-GEF) P-Rex1 is highly expressed in breast cancer, specifically in the luminal subtype, and is an essential mediator of actin cytoskeleton reorganization and cell migratory responses induced by stimulation of ErbB and other tyrosine-kinase receptors. Heregulin (HRG), a growth factor highly expressed in mammary tumors, causes the activation of P-Rex1 and Rac1 in breast cancer cells via ErbB3, leading to a motile response. Since there is limited information about P-Rex1 downstream effectors, we carried out a microarray analysis to identify genes regulated by this Rac-GEF after stimulation of ErbB3 with HRG. In T-47D breast cancer cells, HRG treatment caused major changes in gene expression, including genes associated with motility, adhesion, invasiveness and metastasis. Silencing P-Rex1 expression from T-47D cells using RNAi altered the induction and repression of a subset of HRG-regulated genes, among them genes associated with extracellular matrix organization, migration, and chemotaxis. HRG induction of MMP10 (matrix metalloproteinase 10) was found to be highly sensitive both to P-Rex1 depletion and inhibition of Rac1 function by the GTPase Activating Protein (GAP) β2-chimaerin, suggesting the dependence of the P-Rex1/Rac1 pathway for the induction of genes critical for breast cancer invasiveness. Notably, there is a significant association in the expression of P-Rex1 and MMP10 in human luminal breast cancer, and their co-expression is indicative of poor prognosis.
Collapse
Affiliation(s)
- Laura Barrio-Real
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Eva Wertheimer
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rachana Garg
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Martin C Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
87
|
Redlich N, Robinson AM, Nickel KP, Stein AP, Wheeler DL, Adkins DR, Uppaluri R, Kimple RJ, Van Tine BA, Michel LS. Anti-Trop2 blockade enhances the therapeutic efficacy of ErbB3 inhibition in head and neck squamous cell carcinoma. Cell Death Dis 2018; 9:5. [PMID: 29305574 PMCID: PMC5849045 DOI: 10.1038/s41419-017-0029-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 08/02/2017] [Accepted: 09/20/2017] [Indexed: 12/22/2022]
Abstract
ErbB3 has been widely implicated in treatment resistance, but its role as a primary treatment target is less clear. Canonically ErbB3 requires EGFR or ErbB2 for activation, whereas these two established treatment targets are thought to signal independently of ErbB3. In this study, we show that ErbB3 is essential for tumor growth of treatment-naive HNSCC patient-derived xenografts. This ErbB3 dependency occurs via ErbB3-mediated control of EGFR activation and HIF1α stabilization, which require ErbB3 and its ligand neuregulin-1. Here, we show that ErbB3 antibody treatment selects for a population of ErbB3-persister cells that express high levels of the transmembrane protein Trop2 that we previously identified as an inhibitor of ErbB3. Co-treatment with anti-ErbB3 and anti-Trop2 antibodies is synergistic and produces a greater anti-tumor response than either antibody alone. Collectively, these data both compel a revision of ErbB-family signaling and delineate a strategy for its effective inhibition in HNSCC.
Collapse
Affiliation(s)
| | - Anthony M Robinson
- Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Kwangok P Nickel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, and University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Andrew P Stein
- School of Medicine, Department of Otolaryngology, Case Western Reserve University, Cleveland, OH, USA
| | - Deric L Wheeler
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, and University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Douglas R Adkins
- Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | | | - Randall J Kimple
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, and University of Wisconsin Carbone Cancer Center, Madison, WI, USA.
| | - Brian A Van Tine
- Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
| | - Loren S Michel
- Memorial Sloan-Kettering Cancer Center, Monmouth, NJ, USA
| |
Collapse
|
88
|
Mokhtari E, Mokhtari H, Moslemi E. HER-3 Knocking Down Induces G2/M Arrest in Gastric Cancer Cells. Avicenna J Med Biotechnol 2018; 10:227-232. [PMID: 30555655 PMCID: PMC6252031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
BACKGROUND The Human Epidermal growth factor Receptor-3 (HER-3) is a member of ErbB receptor family and has deficient kinase activity. HER-3 should heterodimerize with other members of ErbB receptor family, especially with HER-2, to transduce downstream signaling pathways. HER-3 co-expresses with other ErbB receptors in different cancers and overexpresses while the oncogenic signaling pathways such as Jak/Stat, MAPK, and PI3K/Akt are activated and promoted. Here, the expression level of HER-3 was evaluated in Iranian gastric adenocarcinoma's patients and the effects of HER-3 knocking down was investigated on cell cycle and cell viability of human gastric adenocarcinoma cell line of MKN45. METHODS In this study, 38 paraffin-embedded surgical adenocarcinoma specimens and their marginal non-tumor tissue samples were collected. Total RNAs were extracted and cDNAs were synthesized. Finally, the expression level of HER-3 was evaluated by real time PCR approach. Moreover, the human adenocarcinoma cell line of MKN45 was transfected with siRNA against HER-3 and the effects of its down-regulation were evaluated using MTT assay and cell-cycle analysis. RESULTS The data obtained from this study revealed HER-3 is significantly overexpressed in gastric tumors rather than non-tumor marginal tissues. Also, it was found that the expression level of HER-3 is elevated with tumor depth of invasion. Moreover, HER-3 knocking down promotes cell accumulation in G2/M phase of cell cycle and decreases cell viability in MKN45 cells which suggests a potential role for HER-3 in gastric adenocarcinoma tumorigenesis. CONCLUSION Taken together, these results emphasize the importance of HER-3 receptor in diagnosis and prognosis of gastric adenocarcinoma.
Collapse
Affiliation(s)
- Ehsan Mokhtari
- Department of Biology, Faculty of Biological Sciences, Islamic Azad University, East Tehran Branch, Tehran, Iran
| | - Hesamodin Mokhtari
- International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Elham Moslemi
- Department of Biology, Faculty of Biological Sciences, Islamic Azad University, East Tehran Branch, Tehran, Iran,Corresponding author: Elham Moslemi, Ph.D., Department of Biology, Faculty of Biological Sciences, Islamic Azad University, East Tehran Branch, Tehran, Iran, Tel/Fax: +98 9123355872, +98 21 88194061, E-mail:
| |
Collapse
|
89
|
Cheng CC, Chou KF, Wu CW, Su NW, Peng CL, Su YW, Chang J, Ho AS, Lin HC, Chen CGS, Yang BL, Chang YC, Chiang YW, Lim KH, Chang YF. EGFR-mediated interleukin enhancer-binding factor 3 contributes to formation and survival of cancer stem-like tumorspheres as a therapeutic target against EGFR-positive non-small cell lung cancer. Lung Cancer 2017; 116:80-89. [PMID: 29413056 DOI: 10.1016/j.lungcan.2017.12.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/26/2017] [Accepted: 12/28/2017] [Indexed: 12/19/2022]
Abstract
OBJECTIVES YM155, an inhibitor of interleukin enhancer-binding factor 3 (ILF3), significantly suppresses cancer stemness property, implying that ILF3 contributes to cell survival of cancer stem cells. However, the molecular function of ILF3 inhibiting cancer stemness remains unclear. This study aimed to uncover the potential function of ILF3 involving in cell survival of epidermal growth factor receptor (EGFR)-positive lung stem-like cancer, and to investigate the potential role to improve the efficacy of anti-EGFR therapeutics. MATERIALS AND METHODS The association of EGFR and ILF3 in expression and regulations was first investigated in this study. Lung cancer A549 cells with deprivation of ILF3 were created by the gene-knockdown method and then RNAseq was applied to identify the putative genes regulated by ILF3. Meanwhile, HCC827- and A549-derived cancer stem-like cells were used to investigate the role of ILF3 in the formation of cancer stem-like tumorspheres. RESULTS We found that EGFR induced ILF3 expression, and YM155 reduced EGFR expression. The knockdown of ILF3 reduced not only EGFR expression in mRNA and protein levels, but also cell proliferation in vitro and in vivo, demonstrating that ILF3 may play an important role in contributing to cancer cell survival. Moreover, the knockdown and inhibition of ILF3 by shRNA and YM155, respectively, reduced the formation and survival of HCC827- and A549-derived tumorspheres through inhibiting ErbB3 (HER3) expression, and synergized the therapeutic efficacy of afatinib, a tyrosine kinase inhibitor, against EGFR-positive A549 lung cells. CONCLUSION This study demonstrated that ILF3 plays an oncogenic like role in maintaining the EGFR-mediated cellular pathway, and can be a therapeutic target to improve the therapeutic efficacy of afatinib. Our results suggested that YM155, an ILF3 inhibitor, has the potential for utilization in cancer therapy against EGFR-positive lung cancers.
Collapse
Affiliation(s)
- Chun-Chia Cheng
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan; Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
| | - Kuei-Fang Chou
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan; Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
| | - Cheng-Wen Wu
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Nai-Wen Su
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan; Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
| | - Cheng-Liang Peng
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan
| | - Ying-Wen Su
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan; Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Jungshan Chang
- Graduate Institute of Medical Sciences, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ai-Sheng Ho
- Division of Gastroenterology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Huan-Chau Lin
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan; Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
| | - Caleb Gon-Shen Chen
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan; Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Bi-Ling Yang
- Division of Gastroenterology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Yu-Cheng Chang
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan; Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Ya-Wen Chiang
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan; Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
| | - Ken-Hong Lim
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan; Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.
| | - Yi-Fang Chang
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan; Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.
| |
Collapse
|
90
|
Ciardiello C, Roca MS, Noto A, Bruzzese F, Moccia T, Vitagliano C, Di Gennaro E, Ciliberto G, Roscilli G, Aurisicchio L, Marra E, Mancini R, Budillon A, Leone A. Synergistic antitumor activity of histone deacetylase inhibitors and anti-ErbB3 antibody in NSCLC primary cultures via modulation of ErbB receptors expression. Oncotarget 2017; 7:19559-74. [PMID: 26862736 PMCID: PMC4991401 DOI: 10.18632/oncotarget.7195] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/23/2016] [Indexed: 01/13/2023] Open
Abstract
ErbB3, a member of the ErbB family receptors, has a key role in the development and progression of several cancers, including non-small cell lung cancer (NSCLC), and in the establishment of resistance to therapies, leading to the development of anti-ErbB3 therapies. In this study we demonstrated, in a set of malignant pleural effusion-derived cultures of NSCLC, the synergistic antitumor effect of a histone deacetylase inhibitor (HDACi), such as vorinostat or valproic acid (VPA), in combination with the anti-ErbB3 monoclonal antibody (MoAb) A3. Synergistic interaction was observed in 2D and in 3D cultures conditions, both in fully epithelial cells expressing all ErbB receptors, and in cells that had undergone epithelial to mesenchymal transition and expressed low levels of ErbB3. We provided evidences suggesting that differential modulation of ErbB receptors by vorinostat or VPA, also at low doses corresponding to plasma levels easily reached in treated patients, is responsible for the observed synergism. In details, we showed in epithelial cells that both vorinostat and VPA induced time- and dose-dependent down-regulation of all three ErbB receptors and of downstream signaling. On the contrary, in A3-resistant mesenchymal cells, we observed time- and dose-dependent increase of mRNA and protein levels as well as surface expression of ErbB3, paralleled by down-regulation of EGFR and ErbB2. Our results suggest that the combination of a HDACi plus an anti-ErbB3 MoAb represents a viable strategy that warrants further evaluation for the treatment of NSCLC patients.
Collapse
Affiliation(s)
- Chiara Ciardiello
- Experimental Pharmacology Unit, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, 80131 Naples, Italy
| | - Maria Serena Roca
- Experimental Pharmacology Unit, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, 80131 Naples, Italy
| | - Alessia Noto
- Experimental Pharmacology Unit, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, 80131 Naples, Italy
| | - Francesca Bruzzese
- Experimental Pharmacology Unit, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, 80131 Naples, Italy
| | - Tania Moccia
- Experimental Pharmacology Unit, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, 80131 Naples, Italy
| | - Carlo Vitagliano
- Experimental Pharmacology Unit, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, 80131 Naples, Italy
| | - Elena Di Gennaro
- Experimental Pharmacology Unit, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, 80131 Naples, Italy
| | - Gennaro Ciliberto
- Scientific Direction, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, 80131 Naples, Italy
| | | | | | | | - Rita Mancini
- Department of Surgery "P.Valdoni" and Department of Clinical and Molecular Medicine, "La Sapienza" University, 00161 Rome, Italy
| | - Alfredo Budillon
- Experimental Pharmacology Unit, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, 80131 Naples, Italy
| | - Alessandra Leone
- Experimental Pharmacology Unit, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, 80131 Naples, Italy
| |
Collapse
|
91
|
Gell AL, Groysbeck N, Becker CFW, Conibear AC. A comparative study of synthetic and semisynthetic approaches for ligating the epidermal growth factor to a bivalent scaffold. J Pept Sci 2017; 23:871-879. [DOI: 10.1002/psc.3051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/03/2017] [Accepted: 10/04/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Anna Lena Gell
- Faculty of Chemistry, Institute of Biological Chemistry; University of Vienna; Währinger Straße 38 1090 Vienna Austria
| | - Nadja Groysbeck
- Faculty of Chemistry, Institute of Biological Chemistry; University of Vienna; Währinger Straße 38 1090 Vienna Austria
| | - Christian F. W. Becker
- Faculty of Chemistry, Institute of Biological Chemistry; University of Vienna; Währinger Straße 38 1090 Vienna Austria
| | - Anne C. Conibear
- Faculty of Chemistry, Institute of Biological Chemistry; University of Vienna; Währinger Straße 38 1090 Vienna Austria
| |
Collapse
|
92
|
Maruthachalam BV, El-Sayed A, Liu J, Sutherland AR, Hill W, Alam MK, Pastushok L, Fonge H, Barreto K, Geyer CR. A Single-Framework Synthetic Antibody Library Containing a Combination of Canonical and Variable Complementarity-Determining Regions. Chembiochem 2017; 18:2247-2259. [DOI: 10.1002/cbic.201700279] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Indexed: 12/21/2022]
Affiliation(s)
| | - Ayman El-Sayed
- Department of Pathology; University of Saskatchewan; Saskatoon SK S7N 5E5 Canada
| | - Jianghai Liu
- Department of Pathology; University of Saskatchewan; Saskatoon SK S7N 5E5 Canada
| | - Ashley R. Sutherland
- Department of Biochemistry; University of Saskatchewan; Saskatoon SK S7N 5E5 Canada
| | - Wayne Hill
- Department of Pathology; University of Saskatchewan; Saskatoon SK S7N 5E5 Canada
| | - Md Kausar Alam
- Department of Pathology; University of Saskatchewan; Saskatoon SK S7N 5E5 Canada
| | - Landon Pastushok
- Department of Pathology; University of Saskatchewan; Saskatoon SK S7N 5E5 Canada
| | - Humphrey Fonge
- Department of Medical Imaging; University of Saskatchewan; Saskatoon SK S7N 0W8 Canada
| | - Kris Barreto
- Department of Pathology; University of Saskatchewan; Saskatoon SK S7N 5E5 Canada
| | - C. Ronald Geyer
- Department of Pathology; University of Saskatchewan; Saskatoon SK S7N 5E5 Canada
| |
Collapse
|
93
|
Rosestedt M, Andersson KG, Mitran B, Rinne SS, Tolmachev V, Löfblom J, Orlova A, Ståhl S. Evaluation of a radiocobalt-labelled affibody molecule for imaging of human epidermal growth factor receptor 3 expression. Int J Oncol 2017; 51:1765-1774. [PMID: 29039474 DOI: 10.3892/ijo.2017.4152] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/25/2017] [Indexed: 11/06/2022] Open
Abstract
The human epidermal growth factor receptor 3 (HER3) is involved in the development of cancer resistance towards tyrosine kinase-targeted therapies. Several HER3‑targeting therapeutics are currently under clinical evaluation. Non-invasive imaging of HER3 expression could improve patient management. Affibody molecules are small engineered scaffold proteins demonstrating superior properties as targeting probes for molecular imaging compared with monoclonal antibodies. Feasibility of in vivo HER3 imaging using affibody molecules has been previously demonstrated. Preclinical studies have shown that the contrast when imaging using anti-HER3 affibody molecules can be improved over time. We aim to develop an agent for PET imaging of HER3 expression using the long-lived positron-emitting radionuclide cobalt-55 (55Co) (T1/2=17.5 h). A long-lived cobalt isotope 57Co was used as a surrogate for 55Co in this study. The anti-HER3 affibody molecule HEHEHE-ZHER3-NOTA was labelled with radiocobalt with high yield, purity and stability. Biodistribution of 57Co-HEHEHE-ZHER3-NOTA was measured in mice bearing DU145 (prostate carcinoma) and LS174T (colorectal carcinoma) xenografts at 3 and 24 h post injection (p.i.). Tumour-to-blood ratios significantly increased between 3 and 24 h p.i. (p<0.05). At 24 h p.i., tumour-to-blood ratios were 6 for DU145 and 8 for LS174T xenografts, respectively. HER3‑expressing xenografts were clearly visualized in a preclinical imaging setting already 3 h p.i., and contrast further improved at 24 h p.i. In conclusion, the radiocobalt-labelled anti-HER3 affibody molecule, HEHEHE-ZHER3-NOTA, is a promising tracer for imaging of HER3 expression in tumours.
Collapse
Affiliation(s)
- Maria Rosestedt
- Division of Molecular Imaging, Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden
| | - Ken G Andersson
- Division of Protein Technology, KTH - Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Bogdan Mitran
- Division of Molecular Imaging, Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden
| | - Sara S Rinne
- Division of Molecular Imaging, Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 83 Uppsala, Sweden
| | - John Löfblom
- Division of Protein Technology, KTH - Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Anna Orlova
- Division of Molecular Imaging, Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden
| | - Stefan Ståhl
- Division of Protein Technology, KTH - Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| |
Collapse
|
94
|
Capone E, Giansanti F, Ponziani S, Lamolinara A, Iezzi M, Cimini A, Angelucci F, Sorda RL, Laurenzi VD, Natali PG, Ippoliti R, Iacobelli S, Sala G. EV20-Sap, a novel anti-HER-3 antibody-drug conjugate, displays promising antitumor activity in melanoma. Oncotarget 2017; 8:95412-95424. [PMID: 29221137 PMCID: PMC5707031 DOI: 10.18632/oncotarget.20728] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/08/2017] [Indexed: 02/07/2023] Open
Abstract
Melanoma is the most biologically aggressive skin cancer of well established constitutive and induced resistance to pharmacological treatment. Despite the recent progresses in immunotherapies, many advanced metastatic melanoma patients still face a significant mortality risk. The aggressive nature of this disease sustains an urgent need for more successful, effective drugs. HER-3 - one of the four member of the tyrosin kinase epidermal growth factor receptors (EGFRs) family- is frequently overexpressed in solid tumors, including melanoma. Moreover, up-regulation of HER-3 and its ligand NRGβ-1 are associated with poor prognosis, thus suggesting this receptor as a suitable target for cancer therapy. Several monoclonal antibodies targeting HER-3 are currently available, but preliminary results from clinical testing of these agents reveal a modest efficacy. Thus, a substantial improvement over this immunotherapeutic approach could be offered by an anti-HER-3 based Antibody-Drug Conjugate (ADC). In the present paper, we describe the generation of an ADC obtained by coupling the HER-3 targeting antibody EV20 linked to the plant toxin Saporin (Sap). In vitro, this ADC displays a powerful, specific and target-dependent cytotoxic activity which correlates with the degree of expression and internalization of HER-3 on tumor cells. Furthermore, in a murine melanoma model, EV20-Sap treatment leads to a significant reduction of the number of pulmonary metastasis.
Collapse
Affiliation(s)
- Emily Capone
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Francesco Giansanti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito (AQ) Italy
| | - Sara Ponziani
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito (AQ) Italy.,MediaPharma s.r.l., Via della Colonnetta, Chieti, Italy
| | - Alessia Lamolinara
- Department of Medicine and Aging Science, Center of Excellence on Aging and Translational Medicine (CeSi-Met), G. D'Annunzio University, Chieti-Pescara, Italy
| | - Manuela Iezzi
- Department of Medicine and Aging Science, Center of Excellence on Aging and Translational Medicine (CeSi-Met), G. D'Annunzio University, Chieti-Pescara, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito (AQ) Italy.,Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology Temple University, Philadelphia, USA.,National Institute for Nuclear Physics (INFN), Gran Sasso National Laboratory (LNGS), Assergi, Italy
| | - Francesco Angelucci
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito (AQ) Italy
| | | | - Vincenzo De Laurenzi
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | | | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito (AQ) Italy
| | - Stefano Iacobelli
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy.,MediaPharma s.r.l., Via della Colonnetta, Chieti, Italy
| | - Gianluca Sala
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy.,MediaPharma s.r.l., Via della Colonnetta, Chieti, Italy
| |
Collapse
|
95
|
Pool M, Kol A, de Jong S, de Vries EGE, Lub-de Hooge MN, Terwisscha van Scheltinga AGT. 89Zr-mAb3481 PET for HER3 tumor status assessment during lapatinib treatment. MAbs 2017; 9:1370-1378. [PMID: 28873009 PMCID: PMC5680796 DOI: 10.1080/19420862.2017.1371382] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Treatment of human epidermal growth factor receptor 2 (HER2)-driven breast cancer with tyrosine kinase inhibitor lapatinib can induce a compensatory HER3 increase, which may attenuate antitumor efficacy. Therefore, we explored in vivo HER3 tumor status assessment after lapatinib treatment with zirconium-89 (89Zr)-labeled anti-HER3 antibody mAb3481 positron emission tomography (PET). Lapatinib effects on HER3 cell surface expression and mAb3481 internalization were evaluated in human breast (BT474, SKBR3) and gastric (N87) cancer cell lines using flow cytometry. Next, in vivo effects of daily lapatinib treatment on89Zr-mAb3481 BT474 and N87 xenograft tumor uptake were studied. PET-scans (BT474 only) were made after daily lapatinib treatment for 9 days, starting 3 days prior to 89Zr-mAb3481 administration. Subsequently, ex vivo 89Zr-mAb3481 organ distribution analysis was performed and HER3 tumor levels were measured with Western blot and immunohistochemistry. In vitro, lapatinib increased membranous HER3 in BT474, SKBR3 and N87 cells, and consequently mAb3481 internalization 1.7-fold (BT474), 1.4-fold (SKBR3) and 1.4-fold (N87). 89Zr-mAb3481 BT474 tumor uptake was remarkably high at SUVmean 5.6±0.6 (51.8±7.7%ID/g) using a 10 μg 89Zr-mAb3481 protein dose in vehicle-treated mice. However, compared to vehicle, lapatinib did not affect 89Zr-mAb3481 ex vivo uptake in BT474 and N87 tumors, while HER3 tumor expression remained unchanged. In conclusion, lapatinib increased in vitro HER3 tumor cell expression, but not when these cells were xenografted. 89Zr-mAb3481 PET accurately reflected HER3 tumor status. 89Zr-mAb3481 PET showed high, HER3-specific tumor uptake, and such an approach might sensitively assess HER3 tumor heterogeneity and treatment response in patients.
Collapse
Affiliation(s)
- Martin Pool
- a Departments of Medical Oncology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Arjan Kol
- a Departments of Medical Oncology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Steven de Jong
- a Departments of Medical Oncology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Elisabeth G E de Vries
- a Departments of Medical Oncology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Marjolijn N Lub-de Hooge
- b Departments of Clinical Pharmacy and Pharmacology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands.,c Departments of Nuclear Medicine and Molecular Imaging , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Anton G T Terwisscha van Scheltinga
- b Departments of Clinical Pharmacy and Pharmacology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| |
Collapse
|
96
|
Cheng L, Jin Y, Liu M, Ruan M, Chen L. HER inhibitor promotes BRAF/MEK inhibitor-induced redifferentiation in papillary thyroid cancer harboring BRAFV600E. Oncotarget 2017; 8:19843-19854. [PMID: 28423638 PMCID: PMC5386727 DOI: 10.18632/oncotarget.15773] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/24/2017] [Indexed: 01/07/2023] Open
Abstract
Redifferentiation therapy with BRAF/MEK inhibitors to facilitate treatment with radioiodine represents a good choice for radioiodine-refractory differentiated thyroid carcinoma, but recent initial clinical outcomes were modest. MAPK rebound caused by BRAF/MEK inhibitors-induced activation of HER2/HER3 is a resistance mechanism, and combination with HER inhibitor to prevent MAPK rebound may sensitize BRAFV600E-mutant thyroid cancer cells to redifferentiation therapy. To evaluate if inhibiting both BRAF/MEK and HER can produce stronger redifferetiation effect, we tested the effects of BRAF/MEK inhibitor dabrafenib/selumetinib alone or in combination with HER inhibitor lapatinib on the expression and function of iodine- and glucose-handling genes in BRAFV600E-positive BCPAP and K1 cells, using BHP 2-7 cells harboring RET/PTC1 rearrangement as control. Herein, we showed that lapatinib prevented MAPK rebound and sensitized BRAFV600E-positive papillary thyroid cancer cells to BRAF/MEK inhibitors. Dabrafenib/selumetinib alone increased iodine-uptake and toxicity and suppressed glucose-metablism in BRAFV600E-positive papillary thyroid cancer cells. When lapatinib was added, more significant effects on iodine- and glucose-handling gene expression, cell membrane location of sodium/iodine symporter as well as radioiodine uptake and toxicity were observed. Thus, combined therapy using HER inhibitor and BRAF/MEK inhibitor presented more significant redifferentiation effect on papillary thyroid cancer cells harboring BRAFV600E than BRAF/MEK inhibitor alone. In vivo and clinical studies assessing such combined targeted redifferentiation strategy were warranted.
Collapse
Affiliation(s)
- Lingxiao Cheng
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yuchen Jin
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Min Liu
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Maomei Ruan
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Libo Chen
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
97
|
The ErbB family and androgen receptor signaling are targets of Celecoxib in prostate cancer. Cancer Lett 2017; 400:9-17. [PMID: 28450158 DOI: 10.1016/j.canlet.2017.04.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/06/2017] [Accepted: 04/14/2017] [Indexed: 01/23/2023]
|
98
|
Alvarado D, Ligon GF, Lillquist JS, Seibel SB, Wallweber G, Neumeister VM, Rimm DL, McMahon G, LaVallee TM. ErbB activation signatures as potential biomarkers for anti-ErbB3 treatment in HNSCC. PLoS One 2017; 12:e0181356. [PMID: 28723928 PMCID: PMC5517012 DOI: 10.1371/journal.pone.0181356] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 06/29/2017] [Indexed: 12/22/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) accounts for 3–5% of all tumor types and remains an unmet medical need with only two targeted therapies approved to date. ErbB3 (HER3), the kinase-impaired member of the EGFR/ErbB family, has been implicated as a disease driver in a number of solid tumors, including a subset of HNSCC. Here we show that the molecular components required for ErbB3 activation, including its ligand neuregulin-1 (NRG1), are highly prevalent in HNSCC and that HER2, but not EGFR, is the major activating ErbB3 kinase partner. We demonstrate that cetuximab treatment primarily inhibits the ERK signaling pathway and KTN3379, an anti-ErbB3 monoclonal antibody, inhibits the AKT signaling pathway, and that dual ErbB receptor inhibition results in enhanced anti-tumor activity in HNSCC models. Surprisingly, we found that while NRG1 is required for ErbB3 activation, it was not sufficient to fully predict for KTN3379 activity. An evaluation of HNSCC patient samples demonstrated that NRG1 expression was significantly associated with expression of the EGFR ligands amphiregulin (AREG) and transforming growth factor α (TGFα). Furthermore, NRG1-positive HNSCC cell lines that secreted high levels of AREG and TGFα or contained high levels of EGFR homodimers (H11D) demonstrated a better response to KTN3379. Although ErbB3 and EGFR activation are uncoupled at the receptor level, their respective signaling pathways are linked through co-expression of their respective ligands. We propose that NRG1 expression and EGFR activation signatures may enrich for improved efficacy of anti-ErbB3 therapeutic mAb approaches when combined with EGFR-targeting therapies in HNSCC.
Collapse
Affiliation(s)
- Diego Alvarado
- Kolltan Pharmaceuticals., New Haven, Connecticut, United States of America
- * E-mail:
| | - Gwenda F. Ligon
- Kolltan Pharmaceuticals., New Haven, Connecticut, United States of America
| | - Jay S. Lillquist
- Kolltan Pharmaceuticals., New Haven, Connecticut, United States of America
| | - Scott B. Seibel
- Kolltan Pharmaceuticals., New Haven, Connecticut, United States of America
| | - Gerald Wallweber
- Monogram Biosciences, Laboratory Corporation of America® Holdings, South San Francisco, California, United States of America
| | - Veronique M. Neumeister
- Yale Pathology Tissue Services, Yale University, New Haven, Connecticut, United States of America
| | - David L. Rimm
- Yale Pathology Tissue Services, Yale University, New Haven, Connecticut, United States of America
| | - Gerald McMahon
- Kolltan Pharmaceuticals., New Haven, Connecticut, United States of America
| | | |
Collapse
|
99
|
Corno C, Gatti L, Arrighetti N, Carenini N, Zaffaroni N, Lanzi C, Perego P. Axl molecular targeting counteracts aggressiveness but not platinum-resistance of ovarian carcinoma cells. Biochem Pharmacol 2017; 136:40-50. [PMID: 28404378 DOI: 10.1016/j.bcp.2017.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/03/2017] [Indexed: 12/14/2022]
Abstract
Ovarian carcinoma, the most common gynaecological cancer, is characterized by high lethality mainly due to late diagnosis and treatment failure. The efficacy of platinum drug-based therapy in the disease is limited by the occurrence of drug resistance, a phenomenon often associated with increased metastatic potential. Because the Tyr-kinase receptor Axl can be deregulated in ovarian carcinoma and plays a pro-metastatic/anti-apoptotic role, the aim of this study was to examine if Axl inhibition modulates drug resistance and aggressive features of ovarian carcinoma cells, using various pairs of cisplatin-sensitive and -resistant cell lines. We found that mRNA and protein levels of Axl were increased in the platinum-resistant IGROV-1/Pt1 and IGROV-1/OHP cell lines compared to the parental IGROV-1 cells. IGROV-1/Pt1 cells displayed increased migratory and invasive capabilities. When Axl was silenced, these cells exhibited reduced growth and invasive/migratory capabilities compared to control siRNA-transfected cells, associated with decreased p38 and STAT3 phosphorylation. In keeping with this evidence, pharmacological inhibition of p38 and STAT3 decreased IGROV-1/Pt1 invasive capability. Molecular inhibition of Axl did not sensitize IGROV-1/Pt1 cells to cisplatin, but enhanced ErbB3 activation in IGROV-1/Pt1 cells and suppressed the clonogenic capability of various ovarian carcinoma cell lines. The combination of cisplatin and AZD8931, a small molecule which inhibits ErbB3, produced a synergistic effect in IGROV-1/Pt1 cells. Thus, Axl targeting per se reduces invasive capability of drug-resistant cells, but sensitization to cisplatin requires the concomitant inhibition of additional survival pathways.
Collapse
Affiliation(s)
- Cristina Corno
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale per lo Studio e la Cura dei Tumori, Milan, via Venezian1/via Amadeo 42, 20133 Milan, Italy
| | - Laura Gatti
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale per lo Studio e la Cura dei Tumori, Milan, via Venezian1/via Amadeo 42, 20133 Milan, Italy
| | - Noemi Arrighetti
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale per lo Studio e la Cura dei Tumori, Milan, via Venezian1/via Amadeo 42, 20133 Milan, Italy
| | - Nives Carenini
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale per lo Studio e la Cura dei Tumori, Milan, via Venezian1/via Amadeo 42, 20133 Milan, Italy
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale per lo Studio e la Cura dei Tumori, Milan, via Venezian1/via Amadeo 42, 20133 Milan, Italy
| | - Cinzia Lanzi
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale per lo Studio e la Cura dei Tumori, Milan, via Venezian1/via Amadeo 42, 20133 Milan, Italy
| | - Paola Perego
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale per lo Studio e la Cura dei Tumori, Milan, via Venezian1/via Amadeo 42, 20133 Milan, Italy.
| |
Collapse
|
100
|
Alawin OA, Ahmed RA, Dronamraju V, Briski KP, Sylvester PW. γ-Tocotrienol-induced disruption of lipid rafts in human breast cancer cells is associated with a reduction in exosome heregulin content. J Nutr Biochem 2017; 48:83-93. [PMID: 28797930 DOI: 10.1016/j.jnutbio.2017.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 05/09/2017] [Accepted: 06/22/2017] [Indexed: 12/27/2022]
Abstract
Overexpression of heregulin, a potent ligand that activates HER3 and HER4 receptors, plays a significant role in the development of chemotherapy resistance in breast cancer patients. Exosomes released from cancer cells are small vesicles originating from the outward budding of lipid rafts that carry various mitogenic proteins that then act locally in an autocrine/paracrine manner to stimulate cancer cell growth. Since the anticancer activity of γ-tocotrienol has been shown to be mediated in part through the disruption of lipid rafts, studies were conducted to determine the effect of γ-tocotrienol on exosomes mitogenic biopotency. Exosomes isolated from the media of cultured T47D breast cancer cells were found to stimulate T47D cell growth in a dose-dependent manner. These growth stimulating effects were due to the high levels of heregulin contained in the exosomes that act to stimulate HER3 and HER4 activation, heterodimerization and mitogenic signaling. Exposure to 5 μM γ-tocotrienol resulted in the selective accumulation and disruption in the integrity of the lipid raft microdomain and a corresponding decrease in exosome heregulin content and mitogenic biopotency. These findings provide strong evidence indicating that the anticancer effects of γ-tocotrienol are mediated, at least in part, by directly disrupting HER dimerization and signaling within the lipid rafts and indirectly by reducing exosome heregulin content and subsequent autocrine/paracrine mitogenic stimulation.
Collapse
Affiliation(s)
- Osama A Alawin
- School of Pharmacy, University of Louisiana at Monroe, 700 University Avenue, Monroe, LA 71209, USA
| | - Rayan A Ahmed
- School of Pharmacy, University of Louisiana at Monroe, 700 University Avenue, Monroe, LA 71209, USA
| | | | - Karen P Briski
- School of Pharmacy, University of Louisiana at Monroe, 700 University Avenue, Monroe, LA 71209, USA
| | - Paul W Sylvester
- School of Pharmacy, University of Louisiana at Monroe, 700 University Avenue, Monroe, LA 71209, USA.
| |
Collapse
|