51
|
Sulaiman GM, Tawfeeq AT, Jaaffer MD. Biogenic synthesis of copper oxide nanoparticles using olea europaea leaf extract and evaluation of their toxicity activities: An in vivo and in vitro study. Biotechnol Prog 2017; 34:218-230. [PMID: 28960911 DOI: 10.1002/btpr.2568] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 09/11/2017] [Indexed: 11/11/2022]
Abstract
Copper oxide nanoparticles (CUNPs) were synthesized using Olea europaea leaf extract as reducing and protecting agent. The formation of nanoparticles was observed through a color change from yellowish to brownish black. The CUNPs were confirmed with UV-Vis spectrophotometer, which revealed a peak absorbance at 289 nm. The synthesized CUNPs were characterized by XRD, FTIR, SEM, and TEM. The XRD pattern revealed that CUNPs were crystalline in nature with a diameter around 20 nm. FTIR spectral analysis showed that CUNPs were capped with plant constituents. From SEM and TEM analyses, the CUNPs were generally found to be spherical in shape, and the size range was 20-50 nm. Free radical scavenging potential of CUNPs against DPPH was confirmed by its stable antioxidant effects. In addition, the toxicity of CUNPs in mice was also assessed by body weight and weights of liver, kidneys, spleen, and thymus. The immune response in mice was signaled through an obvious change in spleen and thymus index, with a decrease of ADA enzyme activity in serum, spleen, and thymus after CUNPs treatment. The CUNPs were found to exert cell growth arrest against AMJ-13 and SKOV-3 cancer cells in a dose-dependent manner and induce cell death by apoptosis. Less significant cytotoxic effect was observed in normal dermal fibroblast cells. These findings suggest that CUNPs may have the potential to be anticancer agents. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:218-230, 2018.
Collapse
Affiliation(s)
- Ghassan M Sulaiman
- Biotechnology Division, Applied Science Department, University of Technology, Baghdad, Iraq
| | - Amer T Tawfeeq
- Molecular Biology Department, Iraqi Center of Cancer and Medical Genetics, University of Al-Mustansiriyah, Baghdad, Iraq
| | - Marwa D Jaaffer
- Biotechnology Division, Applied Science Department, University of Technology, Baghdad, Iraq
| |
Collapse
|
52
|
Zhu M, Ge L, Lyu Y, Zi Y, Li X, Li D, Mu C. Preparation, characterization and antibacterial activity of oxidized κ-carrageenan. Carbohydr Polym 2017; 174:1051-1058. [DOI: 10.1016/j.carbpol.2017.07.029] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/29/2017] [Accepted: 07/10/2017] [Indexed: 01/05/2023]
|
53
|
Angelé-Martínez C, Nguyen KVT, Ameer FS, Anker JN, Brumaghim JL. Reactive oxygen species generation by copper(II) oxide nanoparticles determined by DNA damage assays and EPR spectroscopy. Nanotoxicology 2017; 11:278-288. [PMID: 28248593 DOI: 10.1080/17435390.2017.1293750] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Copper(II) oxide nanoparticles (NPCuO) have many industrial applications, but are highly cytotoxic because they generate reactive oxygen species (ROS). It is unknown whether the damaging ROS are generated primarily from copper leached from the nanoparticles, or whether the nanoparticle surface plays a significant role. To address this question, we separated nanoparticles from the supernatant containing dissolved copper, and measured their ability to damage plasmid DNA with addition of hydrogen peroxide, ascorbate, or both. While DNA damage from the supernatant (measured using an electrophoresis assay) can be explained solely by dissolved copper ions, damage by the nanoparticles in the presence of ascorbate is an order of magnitude higher than can be explained by dissolved copper and must, therefore, depend primarily upon the nanoparticle surface. DNA damage is time-dependent, with shorter incubation times resulting in higher EC50 values. Hydroxyl radical (•OH) is the main ROS generated by NPCuO/hydrogen peroxide as determined by EPR measurements; NPCuO/hydrogen peroxide/ascorbate conditions generate ascorbyl, hydroxyl, and superoxide radicals. Thus, NPCuO generate ROS through several mechanisms, likely including Fenton-like and Haber-Weiss reactions from the surface or dissolved copper ions. The same radical species were observed when NPCuO suspensions were replaced with the supernatant containing leached copper, washed NPCuO, or dissolved copper solutions. Overall, NPCuO generate significantly more ROS and DNA damage in the presence of ascorbate than can be explained simply from dissolved copper, and the NPCuO surface must play a large role.
Collapse
Affiliation(s)
| | - Khanh Van T Nguyen
- b School of Biotechnology, International University - Vietnam National University, Ho Chi Minh City , Vietnam
| | - Fathima S Ameer
- a Department of Chemistry , Clemson University , Clemson , SC , USA
| | - Jeffrey N Anker
- a Department of Chemistry , Clemson University , Clemson , SC , USA
| | | |
Collapse
|
54
|
Chakraborty R, Basu T. Metallic copper nanoparticles induce apoptosis in a human skin melanoma A-375 cell line. NANOTECHNOLOGY 2017; 28:105101. [PMID: 28067213 DOI: 10.1088/1361-6528/aa57b0] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In two earlier communications (Chatterjee et al 2012 Nanotechnology 23 085103, Chatterjee et al 2014 Nanotechnology 25 135101), we reported the development of a simple and unique method of synthesizing highly stable metallic copper nanoparticles (Cu NPs) with high antibacterial activity. Here we report on the cytotoxic potency of the NPs against cancer cells. The value of the IC50 dose of the Cu NPs against human skin cancer cell A-375 was found to be 1.71 μg ml-1 only, which was much less than values reported so far, and this concentration had no cytotoxic effect on normal white blood cells. The NPs caused (i) lowering of cell membrane rigidity, (ii) DNA degradation, (iii) chromosomal condensation, (iv) cell cycle arrest in the G2/M phase, (v) depolarization of the mitochondrial membrane and (vi) apoptosis of cells. Cellular apoptosis occurred in the caspase-9-mediated intrinsic pathway. This study revealed that our Cu NPs had high anticancer properties by killing tumor cells through the apoptotic pathway. Since this particle has high antibacterial activity, our Cu NPs might be developed in future as a dual action drug-anticancer as well as antibacterial.
Collapse
Affiliation(s)
- Ruchira Chakraborty
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani-741235, West Bengal, India
| | | |
Collapse
|
55
|
Bharathiraja S, Seo H, Manivasagan P, Santha Moorthy M, Park S, Oh J. In Vitro Photodynamic Effect of Phycocyanin against Breast Cancer Cells. Molecules 2016; 21:molecules21111470. [PMID: 27827890 PMCID: PMC6273603 DOI: 10.3390/molecules21111470] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 10/01/2016] [Indexed: 01/27/2023] Open
Abstract
C-phycocyanin, a natural blue-colored pigment-protein complex was explored as a novel photosensitizer for use in low-level laser therapy under 625-nm laser illumination. C-phycocyanin produced singlet oxygen radicals and the level of reactive oxygen species (ROS) were raised in extended time of treatment. It did not exhibit any visible toxic effect in the absence of light. Under 625-nm laser irradiation, c-phycocyanin generated cytotoxic stress through ROS induction, which killed MDA-MB-231 breast cancer cells depending on concentrations. Different fluorescent staining of laser-treated cells explored apoptotic cell death characteristics like the shrinking of cells, cytoplasmic condensation, nuclei cleavage, and the formation of apoptotic bodies. In conclusion, phycocyanin is a non-toxic fluorescent pigment that can be used in low-level light therapy.
Collapse
Affiliation(s)
| | - Hansu Seo
- Department of Biomedical Engineering and Center for Marine-Integrated Biotechnology (BK21 Plus), Pukyong National University, Busan 608-737, Korea.
| | | | | | - Suhyun Park
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA.
| | - Jungwan Oh
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 608-737, Korea.
- Department of Biomedical Engineering and Center for Marine-Integrated Biotechnology (BK21 Plus), Pukyong National University, Busan 608-737, Korea.
| |
Collapse
|
56
|
Nadhman A, Sirajuddin M, Nazir S, Yasinzai M. Photo-induced Leishmania DNA degradation by silver-doped zinc oxide nanoparticle: an in-vitro approach. IET Nanobiotechnol 2016; 10:129-133. [PMID: 27256892 PMCID: PMC8676311 DOI: 10.1049/iet-nbt.2015.0015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 08/17/2015] [Accepted: 09/06/2015] [Indexed: 12/25/2023] Open
Abstract
Recently, the authors reported newly synthesised polyethylene glycol (PEG)ylated silver (9%)-doped zinc oxide nanoparticle (doped semiconductor nanoparticle (DSN)) which has high potency for killing Leishmania tropica by producing reactive oxygen species on exposure to sunlight. The current report is focused on Leishmania DNA interaction and damage caused by the DSN. Here, we showed that the damage to Leishmania DNA was indirect, as the DSN was unable to interact with the DNA in intact Leishmania cell, indicating the incapability of PEGylated DSN to cross the nucleus barrier. The DNA damage was the result of high production of singlet oxygen on exposure to sunlight. The DNA damage was successfully prevented by singlet oxygen scavenger (sodium azide) confirming involvement of the highly energetic singlet oxygen in the DNA degradation process.
Collapse
Affiliation(s)
- Akhtar Nadhman
- Nanosciences and Catalysis Division, National Centre for physics, Shahdra Valley Road, Quaid-i-Azam University campus, Islamabad, Pakistan.
| | - Muhammad Sirajuddin
- Department of Chemistry, University of Science & Technology, Bannu, Pakistan
| | - Samina Nazir
- Nanosciences and Catalysis Division, National Centre for physics, Shahdra Valley Road, Quaid-i-Azam University campus, Islamabad, Pakistan
| | - Masoom Yasinzai
- Center of Interdisciplinary Research, International Islamic University, Islamabad, Pakistan
| |
Collapse
|
57
|
Abstract
Copper based nanoparticles (NPs) have attracted increased attention for biomedical applications. Copper chalcogenide NPs exhibit strong absorption in near-infrared region, demonstrate highly efficient light-to-heat transformation under near-infrared laser irradiation, and cause selective thermal destruction to the tumor. Smaller copper NPs display fluorescence signal and capability for optical imaging. Copper based NPs also serve as a versatile vehicle for drug delivery and image-guided therapy. This review covers recent advances related to the biomedical application of copper based NPs, with a focus on cancer imaging and therapy. We also discuss challenges to their successful clinical translation.
Collapse
Affiliation(s)
- Min Zhou
- Departments of Cancer Systems Imaging The University of Texas M. D. Anderson Cancer Center 1881 East Road, Houston, Texas 77054, United States.,PET center, Department of Nuclear Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University , Hangzhou, Zhejiang 310009, China.,Institute of Translational Medicine, Zhejiang University , Hangzhou, Zhejiang 310009, China
| | - Mei Tian
- PET center, Department of Nuclear Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University , Hangzhou, Zhejiang 310009, China
| | - Chun Li
- Departments of Cancer Systems Imaging The University of Texas M. D. Anderson Cancer Center 1881 East Road, Houston, Texas 77054, United States
| |
Collapse
|
58
|
Vodyanoy V, Daniels Y, Pustovyy O, MacCrehan WA, Muramoto S, Stan G. Engineered metal nanoparticles in the sub-nanomolar levels kill cancer cells. Int J Nanomedicine 2016; 11:1567-76. [PMID: 27143879 PMCID: PMC4841435 DOI: 10.2147/ijn.s101463] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Small metal nanoparticles obtained from animal blood were observed to be toxic to cultured cancer cells, whereas noncancerous cells were much less affected. In this work, engineered zinc and copper metal nanoparticles were produced from bulk metal rods by an underwater high-voltage discharge method. The metal nanoparticles were characterized by atomic force microscopy and X-ray photoelectron spectroscopy. The metal nanoparticles, with estimated diameters of 1 nm–2 nm, were determined to be more than 85% nonoxidized. A cell viability assay and high-resolution light microscopy showed that exposure of RG2, cultured rat brain glioma cancer cells, to the zinc and copper nanoparticles resulted in cell morphological changes, including decreased cell adherence, shrinking/rounding, nuclear condensation, and budding from cell bodies. The metal-induced cell injuries were similar to the effects of staurosporine, an active apoptotic reagent. The viability experiments conducted for zinc and copper yielded values of dissociation constants of 0.22±0.08 nmol/L (standard error [SE]) and 0.12±0.02 nmol/L (SE), respectively. The noncancerous astrocytes were not affected at the same conditions. Because metal nanoparticles were lethal to the cancer cells at sub-nanomolar concentrations, they are potentially important as nanomedicine. Purpose Lethal concentrations of synthetic metal nanoparticles reported in the literature are a few orders of magnitude higher than the natural, blood-isolated metal nanoparticles; therefore, in this work, engineered metal nanoparticles were examined to mimic the properties of endogenous metal nanoparticles. Materials and methods RG2, rat brain glioma cells CTX TNA2 brain rat astrocytes, obtained from the American Type Culture Collection, high-voltage discharge, atomic force microscope, X-ray photoelectron spectroscopy, high-resolution light microscopy, zeta potential measurements, and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay were used in this work. Results Engineered zinc and copper metal nanoparticles of size 1 nm–2 nm were lethal to cultured RG2 glioma cancer cells. Cell death was confirmed by MTT assay, showing that the relative viability of RG2 glioma cells is reduced in a dose-dependent manner at sub-nanomolar concentrations of the nanoparticles. The noncancerous astrocytes were not affected at the same conditions. Conclusion The engineered and characterized zinc and copper nanoparticles are potentially significant as biomedicine.
Collapse
Affiliation(s)
- Vitaly Vodyanoy
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, USA
| | - Yasmine Daniels
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MA, USA
| | - Oleg Pustovyy
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, USA
| | - William A MacCrehan
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MA, USA
| | - Shin Muramoto
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MA, USA
| | - Gheorghe Stan
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MA, USA
| |
Collapse
|
59
|
Röttgermann PJF, Dawson KA, Rädler JO. Time-Resolved Study of Nanoparticle Induced Apoptosis Using Microfabricated Single Cell Arrays. ACTA ACUST UNITED AC 2016; 5:microarrays5020008. [PMID: 27600074 PMCID: PMC5003484 DOI: 10.3390/microarrays5020008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/01/2016] [Accepted: 04/07/2016] [Indexed: 02/06/2023]
Abstract
Cell fate decisions like apoptosis are heterogeneously implemented within a cell population and, consequently, the population response is recognized as sum of many individual dynamic events. Here, we report on the use of micro-patterned single-cell arrays for real-time tracking of nanoparticle-induced (NP) cell death in sets of thousands of cells in parallel. Annexin (pSIVA) and propidium iodide (PI), two fluorescent indicators of apoptosis, are simultaneously monitored after exposure to functionalized polystyrene (PS - NH 2) nanobeads as a model system. We find that the distribution of Annexin onset times shifts to later times and broadens as a function of decreasing NP dose. We discuss the mean time-to-death as a function of dose, and show how the EC 50 value depends both on dose and time of measurement. In addition, the correlations between the early and late apoptotic markers indicate a systematic shift from apoptotic towards necrotic cell death during the course of the experiment. Thus, our work demonstrates the potential of array-based single cell cytometry for kinetic analysis of signaling cascades in a high-throughput format.
Collapse
Affiliation(s)
- Peter J F Röttgermann
- Faculty of Physics and Center for NanoSciene (CeNS), Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539 Munich, Germany.
| | - Kenneth A Dawson
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Joachim O Rädler
- Faculty of Physics and Center for NanoSciene (CeNS), Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539 Munich, Germany.
| |
Collapse
|
60
|
Gossner MM, Struwe JF, Sturm S, Max S, McCutcheon M, Weisser WW, Zytynska SE. Searching for the Optimal Sampling Solution: Variation in Invertebrate Communities, Sample Condition and DNA Quality. PLoS One 2016; 11:e0148247. [PMID: 26840598 PMCID: PMC4740435 DOI: 10.1371/journal.pone.0148247] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/16/2016] [Indexed: 11/18/2022] Open
Abstract
There is a great demand for standardising biodiversity assessments in order to allow optimal comparison across research groups. For invertebrates, pitfall or flight-interception traps are commonly used, but sampling solution differs widely between studies, which could influence the communities collected and affect sample processing (morphological or genetic). We assessed arthropod communities with flight-interception traps using three commonly used sampling solutions across two forest types and two vertical strata. We first considered the effect of sampling solution and its interaction with forest type, vertical stratum, and position of sampling jar at the trap on sample condition and community composition. We found that samples collected in copper sulphate were more mouldy and fragmented relative to other solutions which might impair morphological identification, but condition depended on forest type, trap type and the position of the jar. Community composition, based on order-level identification, did not differ across sampling solutions and only varied with forest type and vertical stratum. Species richness and species-level community composition, however, differed greatly among sampling solutions. Renner solution was highly attractant for beetles and repellent for true bugs. Secondly, we tested whether sampling solution affects subsequent molecular analyses and found that DNA barcoding success was species-specific. Samples from copper sulphate produced the fewest successful DNA sequences for genetic identification, and since DNA yield or quality was not particularly reduced in these samples additional interactions between the solution and DNA must also be occurring. Our results show that the choice of sampling solution should be an important consideration in biodiversity studies. Due to the potential bias towards or against certain species by Ethanol-containing sampling solution we suggest ethylene glycol as a suitable sampling solution when genetic analysis tools are to be used and copper sulphate when focusing on morphological species identification and facing financial restrictions in biodiversity studies.
Collapse
Affiliation(s)
- Martin M. Gossner
- Technische Universität München, Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, School of Life Sciences Weihenstephan, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany
- * E-mail: ;
| | - Jan-Frederic Struwe
- Zoological Research Museum Alexander Koenig, Adenauerallee 160–162, 53113, Bonn, Germany
| | - Sarah Sturm
- Technische Universität München, Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, School of Life Sciences Weihenstephan, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany
| | - Simeon Max
- Technische Universität München, Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, School of Life Sciences Weihenstephan, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany
| | - Michelle McCutcheon
- Technische Universität München, Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, School of Life Sciences Weihenstephan, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany
| | - Wolfgang W. Weisser
- Technische Universität München, Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, School of Life Sciences Weihenstephan, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany
| | - Sharon E. Zytynska
- Technische Universität München, Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, School of Life Sciences Weihenstephan, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany
| |
Collapse
|
61
|
Nadhman A, Nazir S, Khan MI, Ayub A, Muhammad B, Khan M, Shams DF, Yasinzai M. Visible-light-responsive ZnCuO nanoparticles: benign photodynamic killers of infectious protozoans. Int J Nanomedicine 2015; 10:6891-6903. [PMID: 26604755 PMCID: PMC4639553 DOI: 10.2147/ijn.s91666] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Human beings suffer from several infectious agents such as viruses, bacteria, and protozoans. Recently, there has been a great interest in developing biocompatible nanostructures to deal with infectious agents. This study investigated benign ZnCuO nanostructures that were visible-light-responsive due to the resident copper in the lattice. The nanostructures were synthesized through a size-controlled hot-injection process, which was adaptable to the surface ligation processes. The nanostructures were then characterized through transmission electron microscopy, X-ray diffraction, diffused reflectance spectroscopy, Rutherford backscattering, and photoluminescence analysis to measure crystallite nature, size, luminescence, composition, and band-gap analyses. Antiprotozoal efficiency of the current nanoparticles revealed the photodynamic killing of Leishmania protozoan, thus acting as efficient metal-based photosensitizers. The crystalline nanoparticles showed good biocompatibility when tested for macrophage toxicity and in hemolysis assays. The study opens a wide avenue for using toxic material in resident nontoxic forms as an effective antiprotozoal treatment.
Collapse
Affiliation(s)
- Akhtar Nadhman
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
- Nanosciences and Catalysis Division, National Centre for Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan
| | - Samina Nazir
- Nanosciences and Catalysis Division, National Centre for Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan
| | | | - Attiya Ayub
- Nanosciences and Catalysis Division, National Centre for Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan
- Department of Chemistry, Hazara University, Dhodial, Pakistan
| | | | - Momin Khan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Dilawar Farhan Shams
- Department of Environmental Sciences, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Masoom Yasinzai
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
- Center of Interdisciplinary Research, International Islamic University, Islamabad, Pakistan
| |
Collapse
|
62
|
Isolation of phenazine 1,6-di-carboxylic acid from Pseudomonas aeruginosa strain HRW.1-S3 and its role in biofilm-mediated crude oil degradation and cytotoxicity against bacterial and cancer cells. Appl Microbiol Biotechnol 2015; 99:8653-65. [PMID: 26051670 DOI: 10.1007/s00253-015-6707-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/08/2015] [Accepted: 05/19/2015] [Indexed: 10/23/2022]
Abstract
Pseudomonas sp. has long been known for production of a wide range of secondary metabolites during late exponential and stationary phases of growth. Phenazine derivatives constitute a large group of secondary metabolites produced by microorganisms including Pseudomonas sp. Phenazine 1,6-di-carboxylic acid (PDC) is one of such metabolites and has been debated for its origin from Pseudomonas sp. The present study describes purification and characterization of PDC isolated from culture of a natural isolate of Pseudomonas sp. HRW.1-S3 while grown in presence of crude oil as sole carbon source. The isolated PDC was tested for its effect on biofilm formation by another environmental isolate of Pseudomonas sp. DSW.1-S4 which lacks the ability to produce any phenazine compound. PDC showed profound effect on both planktonic as well as biofilm mode of growth of DSW.1-S4 at concentrations between 5 and 20 μM. Interestingly, PDC showed substantial cytotoxicity against three cancer cell lines and against both Gram-positive and Gram-negative bacteria. Thus, the present study not only opens an avenue to understand interspecific cooperation between Pseudomonas species which may lead its applicability in bioremediation, but also it signifies the scope of future investigation on PDC for its therapeutic applications.
Collapse
|
63
|
Wu B, Torres-Duarte C, Cole BJ, Cherr GN. Copper oxide and zinc oxide nanomaterials act as inhibitors of multidrug resistance transport in sea urchin embryos: their role as chemosensitizers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:5760-5770. [PMID: 25851746 DOI: 10.1021/acs.est.5b00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The ability of engineered nanomaterials (NMs) to act as inhibitors of ATP-binding cassette (ABC) efflux transporters in embryos of white sea urchin (Lytechinus pictus) was studied. Nanocopper oxide (nano-CuO), nanozinc oxide (nano-ZnO), and their corresponding metal ions (CuSO4 and ZnSO4) were used as target chemicals. The results showed that nano-CuO, nano-ZnO, CuSO4, and ZnSO4, even at relatively low concentrations (0.5 ppm), significantly increased calcein-AM (CAM, an indicator of ABC transporter activity) accumulation in sea urchin embryos at different stages of development. Exposure to nano-CuO, a very low solubility NM, at increasing times after fertilization (>30 min) decreased CAM accumulation, but nano-ZnO (much more soluble NM) did not, indicating that metal ions could cross the hardened fertilization envelope, but not undissolved metal oxide NMs. Moreover, nontoxic levels (0.5 ppm) of nano-CuO and nano-ZnO significantly increased developmental toxicity of vinblastine (an established ABC transporter substrate) and functioned as chemosensitizers. The multidrug resistance associated protein (MRP, one of ABC transporters) inhibitor MK571 significantly increased copper concentrations in embryos, indicating ABC transporters are important in maintaining low intracellular copper levels. We show that low concentrations of nano-CuO and nano-ZnO can make embryos more susceptible to other contaminants, representing a potent amplification of nanomaterial-related developmental toxicity.
Collapse
Affiliation(s)
- Bing Wu
- †State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, P.R. China
- ‡Bodega Marine Laboratory, University of California, Davis, Bodega Bay, California 94923, United States
| | - Cristina Torres-Duarte
- ‡Bodega Marine Laboratory, University of California, Davis, Bodega Bay, California 94923, United States
| | - Bryan J Cole
- ‡Bodega Marine Laboratory, University of California, Davis, Bodega Bay, California 94923, United States
| | - Gary N Cherr
- ‡Bodega Marine Laboratory, University of California, Davis, Bodega Bay, California 94923, United States
- §Departments of Environmental Toxicology and Nutrition, University of California, Davis, California 95616, United States
| |
Collapse
|
64
|
Regiel-Futyra A, Kus-Liśkiewicz M, Sebastian V, Irusta S, Arruebo M, Stochel G, Kyzioł A. Development of noncytotoxic chitosan-gold nanocomposites as efficient antibacterial materials. ACS APPLIED MATERIALS & INTERFACES 2015; 7:1087-99. [PMID: 25522372 PMCID: PMC4326049 DOI: 10.1021/am508094e] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 12/18/2014] [Indexed: 05/17/2023]
Abstract
This work describes the synthesis and characterization of noncytotoxic nanocomposites either colloidal or as films exhibiting high antibacterial activity. The biocompatible and biodegradable polymer chitosan was used as reducing and stabilizing agent for the synthesis of gold nanoparticles embedded in it. Herein, for the first time, three different chitosan grades varying in the average molecular weight and deacetylation degree (DD) were used with an optimized gold precursor concentration. Several factors were analyzed in order to obtain antimicrobial but not cytotoxic nanocomposite materials. Films based on chitosan with medium molecular weight and the highest DD exhibited the highest antibacterial activity against biofilm forming strains of Staphylococcus aureus and Pseudomonas aeruginosa. The resulting nanocomposites did not show any cytotoxicity against mammalian somatic and tumoral cells. They produced a disruptive effect on the bacteria wall while their internalization was hindered on the eukaryotic cells. This selectivity and safety make them potentially applicable as antimicrobial coatings in the biomedical field.
Collapse
Affiliation(s)
- Anna Regiel-Futyra
- Faculty
of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland
| | - Małgorzata Kus-Liśkiewicz
- Faculty
of Biotechnology, Biotechnology Centre for Applied and Fundamental
Sciences, University of Rzeszów, Sokołowska 26, 36-100 Kolbuszowa, Poland
| | - Victor Sebastian
- Department
of Chemical Engineering and Nanoscience Institute of Aragon (INA), University of Zaragoza, 50018 Zaragoza, Spain
- Networking
Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 50018 Zaragoza, Spain
| | - Silvia Irusta
- Department
of Chemical Engineering and Nanoscience Institute of Aragon (INA), University of Zaragoza, 50018 Zaragoza, Spain
- Networking
Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 50018 Zaragoza, Spain
| | - Manuel Arruebo
- Department
of Chemical Engineering and Nanoscience Institute of Aragon (INA), University of Zaragoza, 50018 Zaragoza, Spain
- Networking
Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 50018 Zaragoza, Spain
| | - Grażyna Stochel
- Faculty
of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland
| | - Agnieszka Kyzioł
- Faculty
of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland
| |
Collapse
|
65
|
Dasgupta P, Bhattacharya A, Pal R, Dasgupta AK, Sengupta (Bandyopadhayay) S. Synthesis of diallyl disulfide (DADS) induced gold nanoparticles: characterization and study of its biological activity in human leukemic cell-lines. RSC Adv 2015. [DOI: 10.1039/c4ra15388j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Novel approaches to nanoparticle synthesis using herbal products and their potential application in treatments are now in the limelight of recent cancer research.
Collapse
Affiliation(s)
- Pritha Dasgupta
- Department of Biophysics
- Molecular Biology and Bioinformatics
- University of Calcutta
- Kolkata 700009
- India
| | | | - Rajat Pal
- Department of Biophysics
- Molecular Biology and Bioinformatics
- University of Calcutta
- Kolkata 700009
- India
| | | | | |
Collapse
|
66
|
MubarakAli D, Arunkumar J, Pooja P, Subramanian G, Thajuddin N, Alharbi NS. Synthesis and characterization of biocompatibility of tenorite nanoparticles and potential property against biofilm formation. Saudi Pharm J 2014; 23:421-8. [PMID: 27134545 PMCID: PMC4834685 DOI: 10.1016/j.jsps.2014.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 11/17/2014] [Indexed: 10/29/2022] Open
Abstract
Aim is to assess the anti-biofilm property of tenorite nanoparticles and to study their suitability as a possible coating material for medical implants. Tenorite (CuO) nanoparticles were synthesized by the optimized thermal decomposition method and characterized using TEM, XRD, FTIR and UV-Vis analysis. Their influence on biofilm formation of microbes was studied by growing multi drug resistant bacterial strains in the presence or absence of these nanoparticles at various concentrations. The cytotoxicity of nanoparticles on mammalian cells was studied at the corresponding concentrations. The nanoparticles were found to be uniformly dispersed, spherical shaped and <50 nm in size. They showed various degrees of anti-biofilm property against clinically isolated, biofilm forming multi drug resistant microorganisms such as Staphylococcus aureus, Pseudomonas fluorescens, Burkholderia mallei, Klebsiella pneumoniae, and Escherichia coli. Furthermore, Hep-2 cells showed excellent viability at tenorite nanoparticles concentration toxic to microbial growth. These results indicate that tenorite nanoparticles may be ideal candidates for being utilized as coating on medical implants in general and dental implants in particular.
Collapse
Affiliation(s)
- Davoodbasha MubarakAli
- Division of Bioengineering, School of Lifescience and Bioengineering, Incheon National University, Republic of Korea; Central Inter-Disciplinary Research Facility (CIDRF), Mahatma Gandhi Medical College and Research Institute Campus, Puducherry 607402, India; Department of Microbiology, Bharathidasan University, Tiruchirappalli, India
| | | | - Pratheesh Pooja
- Central Inter-Disciplinary Research Facility (CIDRF), Mahatma Gandhi Medical College and Research Institute Campus, Puducherry 607402, India
| | - Gopalakrishnan Subramanian
- Central Inter-Disciplinary Research Facility (CIDRF), Mahatma Gandhi Medical College and Research Institute Campus, Puducherry 607402, India
| | - Nooruddin Thajuddin
- Department of Microbiology, Bharathidasan University, Tiruchirappalli, India; Department of Botany and Microbiology, College of Science, King Saud University, Riyadh-11451, Kingdom of Saudi Arabia
| | - Naiyf S Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh-11451, Kingdom of Saudi Arabia
| |
Collapse
|
67
|
Mu Q, Jiang G, Chen L, Zhou H, Fourches D, Tropsha A, Yan B. Chemical basis of interactions between engineered nanoparticles and biological systems. Chem Rev 2014; 114:7740-81. [PMID: 24927254 PMCID: PMC4578874 DOI: 10.1021/cr400295a] [Citation(s) in RCA: 378] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Qingxin Mu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China, 250100
- Present address: Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence, Kansas, 66047
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Lingxin Chen
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Hongyu Zhou
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China, 250100
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, 30322, U.S.A
| | | | - Alexander Tropsha
- Laboratory for Molecular Modeling, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Bing Yan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China, 250100
| |
Collapse
|
68
|
Sadiq R, Khan QM, Mobeen A, Hashmat AJ. In vitrotoxicological assessment of iron oxide, aluminium oxide and copper nanoparticles in prokaryotic and eukaryotic cell types. Drug Chem Toxicol 2014; 38:152-61. [DOI: 10.3109/01480545.2014.919584] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
69
|
Hydrothermal synthesis of copper based nanoparticles: Antimicrobial screening and interaction with DNA. J Inorg Biochem 2014; 133:24-32. [DOI: 10.1016/j.jinorgbio.2013.12.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/23/2013] [Accepted: 12/24/2013] [Indexed: 01/24/2023]
|
70
|
He W, Liu Y, Wamer WG, Yin JJ. Electron spin resonance spectroscopy for the study of nanomaterial-mediated generation of reactive oxygen species. J Food Drug Anal 2014; 22:49-63. [PMID: 24673903 PMCID: PMC9359146 DOI: 10.1016/j.jfda.2014.01.004] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/20/2013] [Accepted: 12/21/2013] [Indexed: 12/18/2022] Open
Abstract
Many of the biological applications and effects of nanomaterials are attributed to their ability to facilitate the generation of reactive oxygen species (ROS). Electron spin resonance (ESR) spectroscopy is a direct and reliable method to identify and quantify free radicals in both chemical and biological environments. In this review, we discuss the use of ESR spectroscopy to study ROS generation mediated by nanomaterials, which have various applications in biological, chemical, and materials science. In addition to introducing the theory of ESR, we present some modifications of the method such as spin trapping and spin labeling, which ultimately aid in the detection of short-lived free radicals. The capability of metal nanoparticles in mediating ROS generation and the related mechanisms are also presented.
Collapse
Affiliation(s)
- Weiwei He
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, Xuchang University, Xuchang, Henan, China; Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD 20740, USA
| | - Yitong Liu
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD 20740, USA
| | - Wayne G Wamer
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD 20740, USA
| | - Jun-Jie Yin
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD 20740, USA.
| |
Collapse
|
71
|
Rai M, Ingle A, Gupta I, Gaikwad S, Gade A, Rubilar O, Durán N. Cyto-, Geno-, and Ecotoxicity of Copper Nanoparticles. Nanotoxicology 2014. [DOI: 10.1007/978-1-4614-8993-1_15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
72
|
Chowdhury S, Basu A, Kundu S. Green synthesis of protein capped silver nanoparticles from phytopathogenic fungus Macrophomina phaseolina (Tassi) Goid with antimicrobial properties against multidrug-resistant bacteria. NANOSCALE RESEARCH LETTERS 2014; 9:365. [PMID: 25114655 PMCID: PMC4114801 DOI: 10.1186/1556-276x-9-365] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 07/19/2014] [Indexed: 05/18/2023]
Abstract
In recent years, green synthesis of nanoparticles, i.e., synthesizing nanoparticles using biological sources like bacteria, algae, fungus, or plant extracts have attracted much attention due to its environment-friendly and economic aspects. The present study demonstrates an eco-friendly and low-cost method of biosynthesis of silver nanoparticles using cell-free filtrate of phytopathogenic fungus Macrophomina phaseolina. UV-visible spectrum showed a peak at 450 nm corresponding to the plasmon absorbance of silver nanoparticles. Scanning electron microscopy (SEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM) revealed the presence of spherical silver nanoparticles of the size range 5 to 40 nm, most of these being 16 to 20 nm in diameter. X-ray diffraction (XRD) spectrum of the nanoparticles exhibited 2θ values corresponding to silver nanoparticles. These nanoparticles were found to be naturally protein coated. SDS-PAGE analysis showed the presence of an 85-kDa protein band responsible for capping and stabilization of the silver nanoparticles. Antimicrobial activities of the silver nanoparticles against human as well as plant pathogenic multidrug-resistant bacteria were assayed. The particles showed inhibitory effect on the growth kinetics of human and plant bacteria. Furthermore, the genotoxic potential of the silver nanoparticles with increasing concentrations was evaluated by DNA fragmentation studies using plasmid DNA.
Collapse
Affiliation(s)
- Supriyo Chowdhury
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Arpita Basu
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Surekha Kundu
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| |
Collapse
|
73
|
Fellahi O, Sarma RK, Das MR, Saikia R, Marcon L, Coffinier Y, Hadjersi T, Maamache M, Boukherroub R. The antimicrobial effect of silicon nanowires decorated with silver and copper nanoparticles. NANOTECHNOLOGY 2013; 24:495101. [PMID: 24231372 DOI: 10.1088/0957-4484/24/49/495101] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The paper reports on the preparation and antibacterial activity of silicon nanowire (SiNW) substrates coated with Ag or Cu nanoparticles (NPs) against Escherichia coli (E. coli) bacteria. The substrates are easily prepared using the metal-assisted chemical etching of crystalline silicon in hydrofluoric acid/silver nitrate (HF/AgNO3) aqueous solution. Decoration of the SiNWs with metal NPs is achieved by simple immersion in HF aqueous solutions containing silver or copper salts. The SiNWs coated with Ag NPs are biocompatible with human lung adenocarcinoma epithelial cell line A549 while possessing strong antibacterial properties to E. coli. In contrast, the SiNWs decorated with Cu NPs showed higher cytotoxicity and slightly lower antibacterial activity. Moreover, it was also observed that leakage of sugars and proteins from the cell wall of E. coli in interaction with SiNWs decorated with Ag NPs is higher compared to SiNWs modified with Cu NPs.
Collapse
Affiliation(s)
- Ouarda Fellahi
- Institut de Recherche Interdisciplinaire (IRI, USR-3078), Université Lille1, Parc de la Haute Borne, 50 avenue de Halley, BP 70478, F-59658 Villeneuve d'Ascq, France. Unité de Développement de la Technologie du Silicium (UDTS), 2, Bd. Frantz Fanon, BP 140 Alger-7 merveilles, Algiers, Algeria. Laboratoire de Physique Quantique et Systèmes Dynamiques, Département de Physique, Université de Sétif, Sétif 19000, Algeria
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Chen C, Ahmed I, Fruk L. Reactive oxygen species production by catechol stabilized copper nanoparticles. NANOSCALE 2013; 5:11610-4. [PMID: 24121728 DOI: 10.1039/c3nr03563h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Stable Cu nanoparticles (NPs) prepared using catechol containing dopamine-based linkers could generate reactive oxygen species (ROS) that can activate peroxidase enzymes and catalyze the degradation of fluorescent dye pollutants.
Collapse
Affiliation(s)
- Cheng Chen
- Centre for Functional Nanostructures (CFN), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany.
| | | | | |
Collapse
|
75
|
Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: A review. Appl Microbiol Biotechnol 2013; 98:1001-9. [DOI: 10.1007/s00253-013-5422-8] [Citation(s) in RCA: 272] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/15/2013] [Accepted: 11/18/2013] [Indexed: 11/30/2022]
|
76
|
Pal R, Panigrahi S, Bhattacharyya D, Chakraborti AS. Characterization of citrate capped gold nanoparticle-quercetin complex: Experimental and quantum chemical approach. J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2013.04.043] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
77
|
MAGAYE RUTH, ZHAO JINSHUN, BOWMAN LINDA, DING MIN. Genotoxicity and carcinogenicity of cobalt-, nickel- and copper-based nanoparticles. Exp Ther Med 2012; 4:551-561. [PMID: 23170105 PMCID: PMC3501377 DOI: 10.3892/etm.2012.656] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 07/31/2012] [Indexed: 01/06/2023] Open
Abstract
The nanotechnology industry has matured and expanded at a rapid pace in the last decade, leading to the research and development of nanomaterials with enormous potential. The largest source of these nanomaterials is the transitional metals. It has been revealed that numerous properties of these nano-sized elements are not present in their bulk states. The nano size of these particles means they are easily transported into biological systems, thus, raising the question of their effects on the susceptible systems. Although advances have been made and insights have been gained on the effect of transitional metals on susceptible biological systems, there still is much ground to be covered, particularly with respect to our knowledge on the genotoxic and carcinogenic effects. Therefore, this review intends to summarize the current knowledge on the genotoxic and carcinogenic potential of cobalt-, nickel- and copper-based nanoparticles indicated in in vitro and in vivo mammalian studies. In the present review, we briefly state the sources, use and exposure routes of these nanoparticles and summarize the current literature findings on their in vivo and in vitro genotoxic and carcinogenic effects. Due to the increasing evidence of their role in carcinogenicity, we have also included studies that have reported epigenetic factors, such as abnormal apoptosis, enhanced oxidative stress and pro-inflammatory effects involving these nanoparticles.
Collapse
Affiliation(s)
- RUTH MAGAYE
- Department of Preventive Medicine of the Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang 315211,
P.R. China
| | - JINSHUN ZHAO
- Department of Preventive Medicine of the Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang 315211,
P.R. China
| | - LINDA BOWMAN
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505,
USA
| | - MIN DING
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505,
USA
| |
Collapse
|
78
|
Zhang L, Bai R, Liu Y, Meng L, Li B, Wang L, Xu L, Le Guyader L, Chen C. The dose-dependent toxicological effects and potential perturbation on the neurotransmitter secretion in brain following intranasal instillation of copper nanoparticles. Nanotoxicology 2011; 6:562-75. [DOI: 10.3109/17435390.2011.590906] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|