51
|
Liu CJ, Xue YL, Guo J, Ren HC, Jiang S, Li DJ, Song JF, Zhang ZY. Citric acid and sucrose pretreatment improves the crispness of puffed peach chips by regulating cell structure and mechanical properties. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
52
|
Rohrbach JC, Luterbacher JS. Investigating the effects of substrate morphology and experimental conditions on the enzymatic hydrolysis of lignocellulosic biomass through modeling. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:103. [PMID: 33902675 PMCID: PMC8073973 DOI: 10.1186/s13068-021-01920-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Understanding how the digestibility of lignocellulosic biomass is affected by its morphology is essential to design efficient processes for biomass deconstruction. In this study, we used a model based on a set of partial differential equations describing the evolution of the substrate morphology to investigate the interplay between experimental conditions and the physical characteristics of biomass particles as the reaction proceeds. Our model carefully considers the overall quantity of cellulase present in the hydrolysis mixture and explores its interplay with the available accessible cellulose surface. RESULTS Exploring the effect of various experimental and structural parameters highlighted the significant role of internal mass transfer as the substrate size increases and/or the enzyme loading decreases. In such cases, diffusion of cellulases to the available cellulose surface limits the rate of glucose release. We notably see that increasing biomass loading, while keeping enzyme loading constant should be favored for both small- (R < 300 [Formula: see text]) and middle-ranged (300 < R < 1000 [Formula: see text]) substrates to enhance enzyme diffusion while minimizing the use of enzymes. In such cases, working at enzyme loadings exceeding the full coverage of the cellulose surface (i.e. eI>1) does not bring a significant benefit. For larger particles (R > 1000 [Formula: see text]), increases in biomass loading do not offset the significant internal mass transfer limitations, but high enzyme loadings improve enzyme penetration by maintaining a high concentration gradient within the particle. We also confirm the well-known importance of cellulose accessibility, which increases with pretreatment. CONCLUSIONS Based on the developed model, we are able to propose several design criteria for deconstruction process. Importantly, we highlight the crucial role of adjusting the enzyme and biomass loading to the wood particle size and accessible cellulose surface to maintain a strong concentration gradient, while avoiding unnecessary excess in cellulase loading. Theory-based approaches that explicitly consider the entire lignocellulose particle structure can be used to clearly identify the relative importance of bottlenecks during the biomass deconstruction process, and serve as a framework to build on more detailed cellulase mechanisms.
Collapse
Affiliation(s)
- Jessica C Rohrbach
- Laboratory of Sustainable and Catalytic Processing, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Jeremy S Luterbacher
- Laboratory of Sustainable and Catalytic Processing, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
| |
Collapse
|
53
|
Silva JP, Ticona ARP, Hamann PRV, Quirino BF, Noronha EF. Deconstruction of Lignin: From Enzymes to Microorganisms. Molecules 2021; 26:2299. [PMID: 33921125 PMCID: PMC8071518 DOI: 10.3390/molecules26082299] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 11/20/2022] Open
Abstract
Lignocellulosic residues are low-cost abundant feedstocks that can be used for industrial applications. However, their recalcitrance currently makes lignocellulose use limited. In natural environments, microbial communities can completely deconstruct lignocellulose by synergistic action of a set of enzymes and proteins. Microbial degradation of lignin by fungi, important lignin degraders in nature, has been intensively studied. More recently, bacteria have also been described as able to break down lignin, and to have a central role in recycling this plant polymer. Nevertheless, bacterial deconstruction of lignin has not been fully elucidated yet. Direct analysis of environmental samples using metagenomics, metatranscriptomics, and metaproteomics approaches is a powerful strategy to describe/discover enzymes, metabolic pathways, and microorganisms involved in lignin breakdown. Indeed, the use of these complementary techniques leads to a better understanding of the composition, function, and dynamics of microbial communities involved in lignin deconstruction. We focus on omics approaches and their contribution to the discovery of new enzymes and reactions that impact the development of lignin-based bioprocesses.
Collapse
Affiliation(s)
- Jéssica P. Silva
- Enzymology Laboratory, Cell Biology Department, University of Brasilia, 70910-900 Brasília, Brazil; (J.P.S.); (A.R.P.T.); (P.R.V.H.)
| | - Alonso R. P. Ticona
- Enzymology Laboratory, Cell Biology Department, University of Brasilia, 70910-900 Brasília, Brazil; (J.P.S.); (A.R.P.T.); (P.R.V.H.)
| | - Pedro R. V. Hamann
- Enzymology Laboratory, Cell Biology Department, University of Brasilia, 70910-900 Brasília, Brazil; (J.P.S.); (A.R.P.T.); (P.R.V.H.)
| | - Betania F. Quirino
- Genetics and Biotechnology Laboratory, Embrapa-Agroenergy, 70770-901 Brasília, Brazil;
| | - Eliane F. Noronha
- Enzymology Laboratory, Cell Biology Department, University of Brasilia, 70910-900 Brasília, Brazil; (J.P.S.); (A.R.P.T.); (P.R.V.H.)
| |
Collapse
|
54
|
Wilson LA, Deligey F, Wang T, Cosgrove DJ. Saccharide analysis of onion outer epidermal walls. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:66. [PMID: 33722273 PMCID: PMC7962260 DOI: 10.1186/s13068-021-01923-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/06/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND Epidermal cell walls have special structural and biological roles in the life of the plant. Typically they are multi-ply structures encrusted with waxes and cutin which protect the plant from dehydration and pathogen attack. These characteristics may also reduce chemical and enzymatic deconstruction of the wall for sugar analysis and conversion to biofuels. We have assessed the saccharide composition of the outer epidermal wall of onion scales with different analytical methods. This wall is a particularly useful model for cell wall imaging and mechanics. RESULTS Epidermal walls were depolymerized by acidic methanolysis combined with 2M trifluoracetic acid hydrolysis and the resultant sugars were analyzed by high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD). Total sugar yields based on wall dry weight were low (53%). Removal of waxes with chloroform increased the sugar yields to 73% and enzymatic digestion did not improve these yields. Analysis by gas chromatography/mass spectrometry (GC/MS) of per-O-trimethylsilyl (TMS) derivatives of the sugar methyl glycosides produced by acidic methanolysis gave a high yield for galacturonic acid (GalA) but glucose (Glc) was severely reduced. In a complementary fashion, GC/MS analysis of methyl alditols produced by permethylation gave substantial yields for glucose and other neutral sugars, but GalA was severely reduced. Analysis of the walls by 13C solid-state NMR confirmed and extended these results and revealed 15% lipid content after chloroform extraction (potentially cutin and unextractable waxes). CONCLUSIONS Although exact values vary with the analytical method, our best estimate is that polysaccharide in the outer epidermal wall of onion scales is comprised of homogalacturonan (~ 50%), cellulose (~ 20%), galactan (~ 10%), xyloglucan (~ 10%) and smaller amounts of other polysaccharides. Low yields of specific monosaccharides by some methods may be exaggerated in epidermal walls impregnated with waxes and cutin and call for cautious interpretation of the results.
Collapse
Affiliation(s)
- Liza A Wilson
- Center for Lignocellulose Structure and Formation, Department of Biology, Pennsylvania State University, 208 Mueller Lab, University Park, PA, 16802, USA.
| | - Fabien Deligey
- Department of Chemistry, Louisiana State University, 133 Choppin Hall, Baton Rouge, LA, 70803, USA
| | - Tuo Wang
- Department of Chemistry, Louisiana State University, 133 Choppin Hall, Baton Rouge, LA, 70803, USA
| | - Daniel J Cosgrove
- Center for Lignocellulose Structure and Formation, Department of Biology, Pennsylvania State University, 208 Mueller Lab, University Park, PA, 16802, USA
| |
Collapse
|
55
|
Wang J, Xu Y, Meng X, Pu Y, Ragauskas A, Zhang J. Production of xylo-oligosaccharides from poplar by acetic acid pretreatment and its impact on inhibitory effect of poplar lignin. BIORESOURCE TECHNOLOGY 2021; 323:124593. [PMID: 33387707 DOI: 10.1016/j.biortech.2020.124593] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Recently, efficient production of xylo-oligosaccharides (XOS) from poplar by acetic acid (AA) pretreatment was developed; but the effect of residual lignin on subsequent cellulase hydrolysis was unclear. Herein, XOS was produced from poplar by AA pretreatment and the effect of AA pretreatment on lignin inhibition to cellulase hydrolysis was investigated. The results indicated that a high XOS yield of 55.8% was obtained, and the inhibition degree of lignin in poplar increased from 1.0% to 6.8% after AA pretreatment. Lignin was acetylated and its molecular weight decreased from 12,211 to 2871 g/mol after AA pretreatment. The increase of S/G ratio, phenolic hydroxyl, and condensed units of lignin after AA pretreatment might be reasons for this intensified inhibition. The results advanced our understanding of the structural and inhibitory properties of lignin after production of XOS from poplar with AA pretreatment, and provided references for efficient cellulase hydrolysis of poplar after AA pretreatment.
Collapse
Affiliation(s)
- Jinye Wang
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China
| | - Xianzhi Meng
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996-2200, USA
| | - Yunqiao Pu
- Joint Institute for Biological Sciences, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA
| | - Arthur Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996-2200, USA; Joint Institute for Biological Sciences, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA
| | - Junhua Zhang
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China.
| |
Collapse
|
56
|
Wang WY, Qin Z, Liu HM, Wang XD, Gao JH, Qin GY. Structural Changes in Milled Wood Lignin (MWL) of Chinese Quince ( Chaenomeles sinensis) Fruit Subjected to Subcritical Water Treatment. Molecules 2021; 26:E398. [PMID: 33451119 PMCID: PMC7828612 DOI: 10.3390/molecules26020398] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 01/16/2023] Open
Abstract
Subcritical water treatment has received considerable attention due to its cost effectiveness and environmentally friendly properties. In this investigation, Chinese quince fruits were submitted to subcritical water treatment (130, 150, and 170 °C), and the influence of treatments on the structure of milled wood lignin (MWL) was evaluated. Structural properties of these lignin samples (UL, L130, L150, and L170) were investigated by high-performance anion exchange chromatography (HPAEC), FT-IR, gel permeation chromatography (GPC), TGA, pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS), 2D-Heteronculear Single Quantum Coherence (HSQC) -NMR, and 31P-NMR. The carbohydrate analysis showed that xylose in the samples increased significantly with higher temperature, and according to molecular weight and thermal analysis, the MWLs of the pretreated residues have higher thermal stability with increased molecular weight. The spectra of 2D-NMR and 31P-NMR demonstrated that the chemical linkages in the MWLs were mainly β-O-4' ether bonds, β-5' and β-β', and the units were principally G- S- H- type with small amounts of ferulic acids; these results are consistent with the results of Py-GC/MS analysis. It is believed that understanding the structural changes in MWL caused by subcritical water treatment will contribute to understanding the mechanism of subcritical water extraction, which in turn will provide a theoretical basis for developing the technology of subcritical water extraction.
Collapse
Affiliation(s)
- Wen-Yue Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China;
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; (Z.Q.); (X.-D.W.); (J.-H.G.)
| | - Zhao Qin
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; (Z.Q.); (X.-D.W.); (J.-H.G.)
| | - Hua-Min Liu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; (Z.Q.); (X.-D.W.); (J.-H.G.)
| | - Xue-De Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; (Z.Q.); (X.-D.W.); (J.-H.G.)
| | - Jing-Hao Gao
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; (Z.Q.); (X.-D.W.); (J.-H.G.)
| | - Guang-Yong Qin
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China;
| |
Collapse
|
57
|
Badgujar KC, Dange R, Bhanage BM. Recent advances of use of the supercritical carbon dioxide for the biomass pre-treatment and extraction: A mini-review. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
58
|
Farmanbordar S, Amiri H, Karimi K. Synergy of municipal solid waste co-processing with lignocellulosic waste for improved biobutanol production. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 118:45-54. [PMID: 32889233 DOI: 10.1016/j.wasman.2020.07.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/15/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Co-processing of lignocellulosic wastes, e.g., garden and paper wastes, and the organic matters fraction of municipal solid waste (OMSW) in an integrated bioprocess is a possible approach to realize the potential of wastes for biobutanol production. Dilute acid pretreatment is a multi-functional stage for breaking the recalcitrant lignocellulose's structure, hydrolyzing hemicellulose, and hydrolyzing/solubilizing starch, leading to a pretreated solid and a rich hydrolysate. In this study, dilute-acid pretreatment of the combination of wastepaper and OMSW, composite I, as well as garden waste and OMSW, composite II, at severe conditions resulted in "pretreatment hydrolysates" containing 33.7 and 19.4 g/L sugar along with 18.9 and 33.2 g/L soluble starch, respectively. In addition, the hydrolysis of solid remained after the pretreatment of composite I and II resulted in "enzymatic hydrolysates" comprising 19.4 and 33 g/L sugar, respectively. The fermentation of the pretreatment hydrolysates and enzymatic hydrolysates resulted in 3.5 and 6.4 g/L ABE from composite I and 15 and 5.2 g/L ABE from composite II, respectively. In this process, 148 and 173 g ABE (60 and 100 g gasoline equivalent/kg) was obtained from each kg composite I and composite II, respectively, where co-processing of OMSW with lignocellulosic wastes resulted in 10 and 49% higher ABE than that produced from the individual substrates.
Collapse
Affiliation(s)
- Sara Farmanbordar
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Hamid Amiri
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran; Environmental Research Institute, University of Isfahan, Isfahan 81746-73441, Iran.
| | - Keikhosro Karimi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Industrial Biotechnology Group, Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| |
Collapse
|
59
|
Oliveira JAR, Conceição AC, Silva Martins LH, Moreira DKT, Passos MF, Komesu A. Evaluation of the technological potential of four wastes from Amazon fruit industry in glucose and ethanol production. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | | | | | | | | | - Andrea Komesu
- Department of Marine Sciences (DCMar) Federal University of São Paulo (UNIFESP) Santos São Paulo Brazil
| |
Collapse
|
60
|
Physicochemical Properties and Lignin Degradation of Thermal-Pretreated Oil Palm Empty Fruit Bunch. ENERGIES 2020. [DOI: 10.3390/en13225966] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Oil palm empty fruit bunches (EFB) are recoverable lignocellulosic biomass serving as feedstock for biofuel production. The major hurdle in producing biofuel from biomass is the abundance of embedded recalcitrant lignin. Pretreatment is a key step to increase the accessibility of enzymes to fermentable sugars. In this study, thermal pretreatments at moderate temperatures ranging from 150 °C to 210 °C, at different durations (30–120 min) and EFB particle sizes (1–10 mm), were employed to maximize lignin degradation. Observation through a scanning electron microscope (SEM) revealed disruptions in EFB structure and the removal of silica bodies and other impurities upon thermal pretreatment. Remarkable changes on the elemental contents and functional groups occurred, as was evident from the energy dispersive X-ray (EDX) and Fourier transform infrared (FTIR) analyses. The smallest EFB size yielded higher lignin degradation—about 2.3-fold and 1.2-fold higher—than the biggest and moderate tested EFB sizes, indicating a smaller particle size provides a higher surface area for bioreaction. Furthermore, applying a longer duration of treatment and a higher temperature enhanced lignin degradation by up to 58%. This study suggests that moderate thermal treatment could enhance lignin degradation by altering the physicochemical structure of EFB, which is beneficial in improving biofuel production.
Collapse
|
61
|
de Melo RR, de Lima EA, Persinoti GF, Vieira PS, de Sousa AS, Zanphorlin LM, de Giuseppe PO, Ruller R, Murakami MT. Identification of a cold-adapted and metal-stimulated β-1,4-glucanase with potential use in the extraction of bioactive compounds from plants. Int J Biol Macromol 2020; 166:190-199. [PMID: 33164774 DOI: 10.1016/j.ijbiomac.2020.10.137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 02/05/2023]
Abstract
Cold-adapted endo-β-1,4-glucanases hold great potential for industrial processes requiring high activity at mild temperatures such as in food processing and extraction of bioactive compounds from plants. Here, we identified and explored the specificity, mode of action, kinetic behavior, molecular structure and biotechnological application of a novel endo-β-1,4-glucanase (XacCel8) from the phytopathogen Xanthomonas citri subsp. citri. This enzyme belongs to an uncharacterized phylogenetic branch of the glycoside hydrolase family 8 (GH8) and specifically cleaves internal β-1,4-linkages of cellulose and mixed-linkage β-glucans releasing short cello-oligosaccharides ranging from cellobiose to cellohexaose. XacCel8 acts in near-neutral pHs and in a broad temperature range (10-50 °C), which are distinguishing features from conventional thermophilic β-1,4-glucanases. Interestingly, XacCel8 was greatly stimulated by cobalt ions, which conferred higher conformational stability and boosted the enzyme turnover number. The potential application of XacCel8 was demonstrated in the caffeine extraction from guarana seeds, which improved the yield by 2.5 g/kg compared to the traditional hydroethanolic method (HEM), indicating to be an effective additive in this industrial process. Therefore, XacCel8 is a metal-stimulated and cold-adapted endo-β-1,4-glucanase that could be applied in a diverse range of biotechnological processes under mild conditions such as caffeine extraction from guarana seeds.
Collapse
Affiliation(s)
- Ricardo Rodrigues de Melo
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Evandro Antonio de Lima
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Gabriela Felix Persinoti
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Plínio Salmazo Vieira
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Amanda Silva de Sousa
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Letícia Maria Zanphorlin
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Priscila Oliveira de Giuseppe
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Roberto Ruller
- Microorganisms and General Biochemistry Laboratory, Institute of Bioscience (INBio), Federal University of Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil
| | - Mario Tyago Murakami
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil.
| |
Collapse
|
62
|
Wu Y, Ge S, Xia C, Cai L, Mei C, Sonne C, Park YK, Kim YM, Chen WH, Chang JS, Lam SS. Using low carbon footprint high-pressure carbon dioxide in bioconversion of aspen branch waste for sustainable bioethanol production. BIORESOURCE TECHNOLOGY 2020; 313:123675. [PMID: 32563796 DOI: 10.1016/j.biortech.2020.123675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
An innovative approach was developed by incorporating high-pressure CO2 into the separate hydrolysis-fermentation of aspen leftover branches, aiming to enhance the bioethanol production efficiency. The high-pressure CO2 significantly increased the 72-h enzymatic hydrolysis yield of converting aspen into glucose from 53.8% to 82.9%. The hydrolysis process was performed with low enzyme loading (10 FPU g-1 glucan) with the aim of reducing the cost of fuel bioethanol production. The ethanol yield from fermentation of the hydrolyzed glucose using yeast (Saccharomyces cerevisiae) was 8.7 g L-1, showing increment of 10% compared with the glucose control. Techno-economic analysis indicated that the energy consumption of fuel bioethanol production from aspen branch chips was reduced by 35% and the production cost was cut 44% to 0.615 USD L-1, when 68 atm CO2 was introduced into the process. These results furtherly emphasized the low carbon footprint of this sustainable energy production approach.
Collapse
Affiliation(s)
- Yingji Wu
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Shengbo Ge
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Changlei Xia
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Anhui Juke Graphene Technology Co., Ltd., Bozhou, Anhui 233600, China
| | - Liping Cai
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Changtong Mei
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Young-Min Kim
- Department of Environmental Engineering, Daegu University, Gyeongsan 38453, Republic of Korea
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Henan Province Engineering Research Center for Biomass Value-Added Products, Henan Agricultural University, Zhengzhou, Henan 450002, China; Anhui Juke Graphene Technology Co., Ltd., Bozhou, Anhui 233600, China.
| |
Collapse
|
63
|
Xu J, Li C, Dai L, Xu C, Zhong Y, Yu F, Si C. Biomass Fractionation and Lignin Fractionation towards Lignin Valorization. CHEMSUSCHEM 2020; 13:4284-4295. [PMID: 32672385 DOI: 10.1002/cssc.202001491] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/07/2020] [Indexed: 05/12/2023]
Abstract
Lignin, as the most abundant aromatic biopolymer in nature, has attracted great attention due to the complexity and richness of its functional groups for value-added applications. The yield of production of lignin and the reactivity of prepared lignin are very important to guarantee the study and development of lignin-based chemicals and materials. Various fractionation techniques have been developed to obtain high yield and relatively high-purity lignin as well as carbohydrates (hemicelluloses and celluloses) and to reduce the condensed and degraded nature of conventional biorefinery lignin. Herein, novel and efficient biomass fractionation and lignin fractionation towards lignin valorization are summarized and discussed.
Collapse
Affiliation(s)
- Jiayun Xu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, No. 9 at 13th Avenue, TEDA, Tianjin, 300457, P. R. China
- Johan Gadolin Process Chemistry Centre, Laboratory of Natural Materials Technology, Åbo Akademi, Turku FI, 20500, Finland
| | - Chenyu Li
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, No. 1 at Dali road, Tianjin, 300050, P. R. China
| | - Lin Dai
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, No. 9 at 13th Avenue, TEDA, Tianjin, 300457, P. R. China
| | - Chunlin Xu
- Johan Gadolin Process Chemistry Centre, Laboratory of Natural Materials Technology, Åbo Akademi, Turku FI, 20500, Finland
| | - Yongda Zhong
- The Key Laboratory of Horticultural Plant Genetic and Improvement of Jiangxi Province, Institute of Biological Resources, Jiangxi Academy of Sciences, No. 7777, Changdong Road, Gaoxin District, Nanchang, 330096, P. R. China
| | - Faxin Yu
- The Key Laboratory of Horticultural Plant Genetic and Improvement of Jiangxi Province, Institute of Biological Resources, Jiangxi Academy of Sciences, No. 7777, Changdong Road, Gaoxin District, Nanchang, 330096, P. R. China
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, No. 9 at 13th Avenue, TEDA, Tianjin, 300457, P. R. China
- The Key Laboratory of Horticultural Plant Genetic and Improvement of Jiangxi Province, Institute of Biological Resources, Jiangxi Academy of Sciences, No. 7777, Changdong Road, Gaoxin District, Nanchang, 330096, P. R. China
| |
Collapse
|
64
|
Acidic depolymerization vs ionic liquid solubilization in lignin extraction from eucalyptus wood using the protic ionic liquid 1-methylimidazolium chloride. Int J Biol Macromol 2020; 157:461-469. [DOI: 10.1016/j.ijbiomac.2020.04.194] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 02/03/2023]
|
65
|
Mariano APB, Unpaprom Y, Ramaraj R. Hydrothermal pretreatment and acid hydrolysis of coconut pulp residue for fermentable sugar production. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
66
|
Mohamad Zabidi NA, Foo HL, Loh TC, Mohamad R, Abdul Rahim R. Enhancement of Versatile Extracellular Cellulolytic and Hemicellulolytic Enzyme Productions by Lactobacillus plantarum RI 11 Isolated from Malaysian Food Using Renewable Natural Polymers. Molecules 2020; 25:molecules25112607. [PMID: 32503356 PMCID: PMC7321320 DOI: 10.3390/molecules25112607] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 02/02/2023] Open
Abstract
Lactobacillus plantarum RI 11 was reported recently to be a potential lignocellulosic biomass degrader since it has the capability of producing versatile extracellular cellulolytic and hemicellulolytic enzymes. Thus, this study was conducted to evaluate further the effects of various renewable natural polymers on the growth and production of extracellular cellulolytic and hemicellulolytic enzymes by this novel isolate. Basal medium supplemented with molasses and yeast extract produced the highest cell biomass (log 10.51 CFU/mL) and extracellular endoglucanase (11.70 µg/min/mg), exoglucanase (9.99 µg/min/mg), β-glucosidase (10.43 nmol/min/mg), and mannanase (8.03 µg/min/mg), respectively. Subsequently, a statistical optimization approach was employed for the enhancement of cell biomass, and cellulolytic and hemicellulolytic enzyme productions. Basal medium that supplemented with glucose, molasses and soybean pulp (F5 medium) or with rice straw, yeast extract and soybean pulp (F6 medium) produced the highest cell population of log 11.76 CFU/mL, respectively. However, formulated F12 medium supplemented with glucose, molasses and palm kernel cake enhanced extracellular endoglucanase (4 folds), exoglucanase (2.6 folds) and mannanase (2.6 folds) specific activities significantly, indicating that the F12 medium could induce the highest production of extracellular cellulolytic and hemicellulolytic enzymes concomitantly. In conclusion, L. plantarum RI 11 is a promising and versatile bio-transformation agent for lignocellulolytic biomass.
Collapse
Affiliation(s)
- Nursyafiqah A. Mohamad Zabidi
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (N.A.M.Z.); (R.M.)
| | - Hooi Ling Foo
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (N.A.M.Z.); (R.M.)
- Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
- Correspondence: (H.L.F.); (T.C.L.); Tel.: +60-3-9769-7476 (H.L.F.); +60-3-97694814 (T.C.L.)
| | - Teck Chwen Loh
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
- Correspondence: (H.L.F.); (T.C.L.); Tel.: +60-3-9769-7476 (H.L.F.); +60-3-97694814 (T.C.L.)
| | - Rosfarizan Mohamad
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (N.A.M.Z.); (R.M.)
- Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
- Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - Raha Abdul Rahim
- Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
- Office of Vice Chancellor, Universiti Teknikal Malaysia Melaka, Jalan Hang Tuah Jaya, Durian Tunggal 76100, Melaka, Malaysia
| |
Collapse
|
67
|
Xu L, Zhang SJ, Zhong C, Li BZ, Yuan YJ. Alkali-Based Pretreatment-Facilitated Lignin Valorization: A Review. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01456] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Li Xu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, P. R. China
| | - Sen-Jia Zhang
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Cheng Zhong
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, P. R. China
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
68
|
Wells JM, Drielak E, Surendra KC, Kumar Khanal S. Hot water pretreatment of lignocellulosic biomass: Modeling the effects of temperature, enzyme and biomass loadings on sugar yield. BIORESOURCE TECHNOLOGY 2020; 300:122593. [PMID: 31881517 DOI: 10.1016/j.biortech.2019.122593] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 05/28/2023]
Abstract
Experimental conditions of liquid hot water (LHW) pretreatment were tested for two dedicated energy crops, Napiergrass (Pennisetum purpureum) and Energycane (Saccharum officinarum × Saccharum robustum). Both crops showed differential resistance to temperature during pretreatment and differences in response to biomass and enzyme loadings during subsequent enzymatic hydrolysis. Sugar response surfaces, for both glucose release per g pretreated biomass and as percent yield of glucose present in the initial biomass, were estimated using a General Additive Model (GAM) in R to compare non-linear sugar release as temperature, and biomass and enzyme loadings were manipulated. Compared to Napiergrass, more structural glucose is estimated to be recovered from Energycane per g of pretreated biomass under relatively less harsh pretreatment conditions, however, Napiergrass had the highest measured glucose yield. Sugar degradation products (furfural and hydroxymethylfurfural), pH, and biomass recovery differed significantly between crops across pretreatment temperatures, which could adversely affect downstream biochemical processes.
Collapse
Affiliation(s)
- Jon M Wells
- Department of Natural Resources and Environmental Management, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Edward Drielak
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - K C Surendra
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA.
| |
Collapse
|
69
|
Zhang Y, Wang Z, Feng J, Pan H. Maximizing utilization of poplar wood by microwave-assisted pretreatment with methanol/dioxane binary solvent. BIORESOURCE TECHNOLOGY 2020; 300:122657. [PMID: 31918300 DOI: 10.1016/j.biortech.2019.122657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 05/15/2023]
Abstract
Organosolv is a promising pretreatment for lignocellulose biorefinery on the integrated utilization of full components from lignocellulosic biomass. A highly efficient pretreatment process using methanol/dioxane binary solvent with microwave irradiation is proposed in this study. Poplar wood was fractionated to high quality cellulosic residue, lignin, and monosaccharide derivatives under mild conditions (120 °C, 10 min). The follow-up enzymatic hydrolysis of resulting cellulosic residues achieved almost theoretical glucan conversion over 99%. The 2D-NMR and GPC results showed that the recovered lignin precipitates contain low amount of condensed structures and have relatively narrow molecular weight distributions. The composition analysis of monosaccharide derivatives indicated that the methanol/dioxane solvent tends to convert monosaccharides into glycosides rather than further degradation by-products. The mass balance result estimated that totally 74.2% of raw poplar can be utilized by the pretreatment proposed in this study.
Collapse
Affiliation(s)
- Yongjian Zhang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159# Longpan Road, Nanjing 210037, PR China; College of Chemical Engineering, Nanjing Forestry University, 159# Longpan Road, Nanjing 210037, PR China
| | - Zining Wang
- College of Chemical Engineering, Nanjing Forestry University, 159# Longpan Road, Nanjing 210037, PR China
| | - Junfeng Feng
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159# Longpan Road, Nanjing 210037, PR China; College of Chemical Engineering, Nanjing Forestry University, 159# Longpan Road, Nanjing 210037, PR China
| | - Hui Pan
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159# Longpan Road, Nanjing 210037, PR China; College of Chemical Engineering, Nanjing Forestry University, 159# Longpan Road, Nanjing 210037, PR China.
| |
Collapse
|
70
|
Ruiz HA, Conrad M, Sun SN, Sanchez A, Rocha GJM, Romaní A, Castro E, Torres A, Rodríguez-Jasso RM, Andrade LP, Smirnova I, Sun RC, Meyer AS. Engineering aspects of hydrothermal pretreatment: From batch to continuous operation, scale-up and pilot reactor under biorefinery concept. BIORESOURCE TECHNOLOGY 2020; 299:122685. [PMID: 31918970 DOI: 10.1016/j.biortech.2019.122685] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
Different pretreatments strategies have been developed over the years mainly to enhance enzymatic cellulose degradation. In the new biorefinery era, a more holistic view on pretreatment is required to secure optimal use of the whole biomass. Hydrothermal pretreatment technology is regarded as very promising for lignocellulose biomass fractionation biorefinery and to be implemented at the industrial scale for biorefineries of second generation and circular bioeconomy, since it does not require no chemical inputs other than liquid water or steam and heat. This review focuses on the fundamentals of hydrothermal pretreatment, structure changes of biomass during this pretreatment, multiproduct strategies in terms of biorefinery, reactor technology and engineering aspects from batch to continuous operation. The treatise includes a case study of hydrothermal biomass pretreatment at pilot plant scale and integrated process design.
Collapse
Affiliation(s)
- Héctor A Ruiz
- Biorefinery Group, Food Research Department, Faculty of Chemistry Sciences, Autonomous University of Coahuila, Saltillo, Coahuila 25280, Mexico.
| | - Marc Conrad
- Hamburg University of Technology (TUHH), Institute of Thermal Separation Processes, Eißendorfer Straße 38, 21073 Hamburg, Germany
| | - Shao-Ni Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Arturo Sanchez
- Laboratorio de Futuros en Bioenergía, Unidad Guadalajara de Ingeniería Avanzada, Centro de Investigación y Estudios Avanzados (CINVESTAV), Zapopan, Jalisco, Mexico
| | - George J M Rocha
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center of Research in Energy and Materials (CNPEM), Campinas, São Paulo 13083-100, Brazil
| | - Aloia Romaní
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Eulogio Castro
- Department of Chemical, Environmental and Materials Engineering, Center for Advanced Studies in Energy and Environment (CEAEMA), University of Jaén, Campus Las Lagunillas, s/n, Building B3, 23071 Jaén, Spain
| | - Ana Torres
- Instituto de Ingeniería Química, Facultad de Ingeniería, Universidad de la República, Montevideo 11300, Uruguay
| | - Rosa M Rodríguez-Jasso
- Biorefinery Group, Food Research Department, Faculty of Chemistry Sciences, Autonomous University of Coahuila, Saltillo, Coahuila 25280, Mexico
| | - Liliane P Andrade
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center of Research in Energy and Materials (CNPEM), Campinas, São Paulo 13083-100, Brazil; Postgraduate Program in Functional and Molecular Biology, Institute of Biology, State University of Campinas, Campinas, São Paulo 13084-970, Brazil
| | - Irina Smirnova
- Hamburg University of Technology (TUHH), Institute of Thermal Separation Processes, Eißendorfer Straße 38, 21073 Hamburg, Germany
| | - Run-Cang Sun
- Center for Lignocellulose Science and Engineering, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Anne S Meyer
- Protein Chemistry and Enzyme Technology, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
71
|
Zhao C, Shao Q, Chundawat SPS. Recent advances on ammonia-based pretreatments of lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2020; 298:122446. [PMID: 31791921 DOI: 10.1016/j.biortech.2019.122446] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 05/06/2023]
Abstract
Ammonia-based pretreatments have been extensively studied in the last decade as one of the leading pretreatment technologies for lignocellulose biorefining. Here, we discuss the key features and compare performances of several leading ammonia-based pretreatments (e.g., soaking in aqueous ammonia or SAA, ammonia recycled percolation or ARP, ammonia fiber expansion or AFEX, and extractive ammonia or EA). We provide detailed insight into the distinct physicochemical mechanisms employed during ammonia-based pretreatments and its impact on downstream bioprocesses (e.g., enzymatic saccharification); such as modification of cellulose crystallinity, lignin/hemicellulose structure, and other ultrastructural changes such as cell wall porosity. Lastly, a brief overview of process technoeconomics and environmental impacts are discussed, along with recommendations for future areas of research on ammonia-based pretreatments.
Collapse
Affiliation(s)
- Chao Zhao
- National Engineering Research Center for Wood-based Resource Utilization, School of Engineering, Zhejiang A&F University, Linan, Zhejiang 311300, People's Republic of China
| | - Qianjun Shao
- Faculty of Mechanical Engineering & Mechanics, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Shishir P S Chundawat
- Department of Chemical & Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
72
|
Weidener D, Dama M, Dietrich SK, Ohrem B, Pauly M, Leitner W, Domínguez de María P, Grande PM, Klose H. Multiscale analysis of lignocellulose recalcitrance towards OrganoCat pretreatment and fractionation. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:155. [PMID: 32944071 PMCID: PMC7487623 DOI: 10.1186/s13068-020-01796-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/01/2020] [Indexed: 05/15/2023]
Abstract
BACKGROUND Biomass recalcitrance towards pretreatment and further processing can be related to the compositional and structural features of the biomass. However, the exact role and relative importance to those structural attributes has still to be further evaluated. Herein, ten different types of biomass currently considered to be important raw materials for biorefineries were chosen to be processed by the recently developed, acid-catalyzed OrganoCat pretreatment to produce cellulose-enriched pulp, sugars, and lignin with different amounts and qualities. Using wet chemistry analysis and NMR spectroscopy, the generic factors of lignocellulose recalcitrance towards OrganoCat were determined. RESULTS The different materials were processed applying different conditions (e.g., type of acid catalyst and temperature), and fractions with different qualities were obtained. Raw materials and products were characterized in terms of their compositional and structural features. For the first time, generic correlation coefficients were calculated between the measured chemical and structural features and the different OrganoCat product yields and qualities. Especially lignin-related factors displayed a detrimental role for enzymatic pulp hydrolysis, as well as sugar and lignin yield exhibiting inverse correlation coefficients. Hemicellulose appeared to have less impact, not being as detrimental as lignin factors, but xylan-O-acetylation was inversely correlated with product yield and qualities. CONCLUSION These results illustrate the role of generic features of lignocellulosic recalcitrance towards acidic pretreatments and fractionation, exemplified in the OrganoCat strategy. Discriminating between types of lignocellulosic biomass and highlighting important compositional variables, the improved understanding of how these parameters affect OrganoCat products will ameliorate bioeconomic concepts from agricultural production to chemical products. Herein, a methodological approach is proposed.
Collapse
Affiliation(s)
- Dennis Weidener
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Leo- Brandt-Straße, 52425 Jülich, Germany
- Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany
- Bioeconomy Science Center (BioSC) C/O Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Murali Dama
- Bioeconomy Science Center (BioSC) C/O Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University, Universitätsstraße. 1, 40225 Düsseldorf, Germany
| | - Sabine K. Dietrich
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Leo- Brandt-Straße, 52425 Jülich, Germany
- Bioeconomy Science Center (BioSC) C/O Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Benedict Ohrem
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Leo- Brandt-Straße, 52425 Jülich, Germany
- Bioeconomy Science Center (BioSC) C/O Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Markus Pauly
- Bioeconomy Science Center (BioSC) C/O Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University, Universitätsstraße. 1, 40225 Düsseldorf, Germany
| | - Walter Leitner
- Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an Der Ruhr, Germany
| | | | - Philipp M. Grande
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Leo- Brandt-Straße, 52425 Jülich, Germany
- Bioeconomy Science Center (BioSC) C/O Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Holger Klose
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Leo- Brandt-Straße, 52425 Jülich, Germany
- Bioeconomy Science Center (BioSC) C/O Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|
73
|
Xia M, Peng M, Xue D, Cheng Y, Li C, Wang D, Lu K, Zheng Y, Xia T, Song J, Wang M. Development of optimal steam explosion pretreatment and highly effective cell factory for bioconversion of grain vinegar residue to butanol. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:111. [PMID: 32595760 PMCID: PMC7315531 DOI: 10.1186/s13068-020-01751-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/13/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND The industrial vinegar residue (VR) from solid-state fermentation, mainly cereals and their bran, will be a potential feedstock for future biofuels because of their low cost and easy availability. However, utilization of VR for butanol production has not been as much optimized as other sources of lignocellulose, which mainly stem from two key elements: (i) high biomass recalcitrance to enzymatic sugar release; (ii) lacking of suitable industrial biobutanol production strain. Though steam explosion has been proved effective for bio-refinery, few studies report SE for VR pretreatment. Much of the relevant knowledge remains unknown. Meanwhile, recent efforts on rational metabolic engineering approaches to increase butanol production in Clostridium strain are quite limited. In this study, we assessed the impact of SE pretreatment, enzymatic hydrolysis kinetics, overall sugar recovery and applied atmospheric and room temperature plasma (ARTP) mutant method for the Clostridium strain development to solve the long-standing problem. RESULTS SE pretreatment was first performed. At the optimal condition, 29.47% of glucan, 71.62% of xylan and 22.21% of arabinan were depolymerized and obtained in the water extraction. In the sequential enzymatic hydrolysis process, enzymatic hydrolysis rate was increased by 13-fold compared to the VR without pretreatment and 19.60 g glucose, 15.21 g xylose and 5.63 g arabinose can be obtained after the two-step treatment from 100 g VR. Porous properties analysis indicated that steam explosion can effectively generate holes with diameter within 10-20 nm. Statistical analysis proved that enzymatic hydrolysis rate of VR followed the Pseudop-second-order kinetics equation and the relationship between SE severity and enzymatic hydrolysis rate can be well revealed by Boltzmann model. Finally, a superior inhibitor-tolerant strain, Clostridium acetobutylicum Tust-001, was generated with ARTP treatment. The water extraction and enzymolysis liquid gathered were successfully fermented, resulting in butanol titer of 7.98 g/L and 12.59 g/L of ABE. CONCLUSIONS SE proved to be quite effective for VR due to high fermentable sugar recovery and enzymatic hydrolysate fermentability. Inverse strategy employing ARTP and repetitive domestication for strain breeding is quite feasible, providing us with a new tool for solving the problem in the biofuel fields.
Collapse
Affiliation(s)
- Menglei Xia
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Mingmeng Peng
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Danni Xue
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Yang Cheng
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Caixia Li
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Di Wang
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Kai Lu
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Yu Zheng
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Ting Xia
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Jia Song
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Min Wang
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
| |
Collapse
|
74
|
Wang LQ, Cai LY, Ma YL. Study on inhibitors from acid pretreatment of corn stalk on ethanol fermentation by alcohol yeast. RSC Adv 2020; 10:38409-38415. [PMID: 35517568 PMCID: PMC9057280 DOI: 10.1039/d0ra04965d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/25/2020] [Indexed: 11/21/2022] Open
Abstract
The inhibitory effects of the main inhibitors formed during acid pretreatment of corn stalk were studied through ethanol fermentations of model substrates and hydrolysates from corn stalk by alcohol yeast. Experimental results showed that the tested inhibitors had no significant effect on ethanol fermentations when they were added separately at a concentration according to analysis results from hydrolysate of corn stalk. However, when they were added as a mixture, the inhibitory effects became obvious. With the increase of concentration, there was a delay in ethanol productivity. But complete inhibition was observed at 5.0 g L−1 furfural, 10.0 g L−1 acetic acid, 7.0 g L−1 ferulic acid, and 7.0 g L−1p-coumaric acid, respectively. The inhibitory effect decreased in the order: furfural > acetic acid > ferulic acid > p-coumaric acid > HMF. These results suggest that a high concentration of inhibitor has a strong negative influence on ethanol fermentation, but the inhibiting abilities of various inhibitors are different. The inhibitory effects of the main inhibitors formed during acid pretreatment of corn stalk were studied through ethanol fermentations of model substrates and hydrolysates from corn stalk by alcohol yeast.![]()
Collapse
Affiliation(s)
- Li-Qiong Wang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
| | - Ling-Yan Cai
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
| | - Yu-Long Ma
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
| |
Collapse
|
75
|
Mogodiniyai Kasmaei K, Sundh J. Identification of Novel Putative Bacterial Feruloyl Esterases From Anaerobic Ecosystems by Use of Whole-Genome Shotgun Metagenomics and Genome Binning. Front Microbiol 2019; 10:2673. [PMID: 31824458 PMCID: PMC6879456 DOI: 10.3389/fmicb.2019.02673] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/04/2019] [Indexed: 12/20/2022] Open
Abstract
Feruloyl esterases (FAEs) can reduce the recalcitrance of lignocellulosic biomass to enzymatic hydrolysis, thereby enhancing biorefinery potentials or animal feeding values of the biomass. In addition, ferulic acid, a product of FAE activity, has applications in pharmaceutical and food/beverage industries. It is therefore of great interest to identify new FAEs to enhance understanding about this enzyme family. For this purpose, we used whole-genome shotgun metagenomics and genome binning to explore rumens of dairy cows, large intestines of horses, sediments of freshwater and forest topsoils to identify novel prokaryotic FAEs and trace the responsible microorganisms. A number of prokaryotic genomes were recovered of which, genomes of Clostridiales order and Candidatus Rhabdochlamydia genus showed FAE coding capacities. In total, five sequences were deemed as putative FAE. The BLASTP search against non-redundant protein database of NCBI indicated that these putative FAEs represented novel sequences within this enzyme family. The phylogenetic analysis showed that at least three putative sequences shared evolutionary lineage with FAEs of type A and thus could possess specific activities similar to this type of FAEs, something that is not previously found outside fungal kingdom. We nominate Candidatus Rhabdochlamydia genus as a novel FAE producing taxonomic unit.
Collapse
Affiliation(s)
- Kamyar Mogodiniyai Kasmaei
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - John Sundh
- Science for Life Laboratory, Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Stockholm University, Solna, Sweden
| |
Collapse
|
76
|
Tang S, Dong Q, Fang Z, Cong WJ, Miao ZD. High-concentrated substrate enzymatic hydrolysis of pretreated rice straw with glycerol and aluminum chloride at low cellulase loadings. BIORESOURCE TECHNOLOGY 2019; 294:122164. [PMID: 31563115 DOI: 10.1016/j.biortech.2019.122164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Rice straw was pretreated with glycerol and AlCl3 for enzymatic hydrolysis at low cellulase loadings. Based on a central composite design, 83% delignification, 94% hemicellulose removal, and 92% cellulose recovery (or 76% cellulose in solid residue) were achieved under the optimized pretreatment conditions (0.08 mol/L AlCl3 as catalyst at 146.8 °C for 20 min with 90% glycerol). During glycerol-AlCl3 pretreatment, the lignin-carbohydrate complex was depolymerized, resulting in the complex and recalcitrant construction of straw effectively being destroyed. The enzyme adsorption ability of pretreated straw was 16.5 times that for the original sample. After pretreatment, glucose yield was increased by 2.4 times to 74% for 48 h. Moreover, concentrated solid (15%) with low cellulase loading (3.3 FPU/g dry substrate) achieved 58.6% glucose yield, and further increased by 12% to 65.7% by adding Tween 80. Glycerol-AlCl3 pretreatment was a promising approach to realize high-concentrated solid hydrolysis for sugars at low cellulase loadings.
Collapse
Affiliation(s)
- Song Tang
- Biomass Group, College of Engineering, Nanjing Agricultural University, 40 Dianjiangtai Road, Nanjing, Jiangsu 210031, China
| | - Qian Dong
- Biomass Group, College of Engineering, Nanjing Agricultural University, 40 Dianjiangtai Road, Nanjing, Jiangsu 210031, China
| | - Zhen Fang
- Biomass Group, College of Engineering, Nanjing Agricultural University, 40 Dianjiangtai Road, Nanjing, Jiangsu 210031, China. http://biomass-group.njau.edu.cn/
| | - Wen-Jie Cong
- Biomass Group, College of Engineering, Nanjing Agricultural University, 40 Dianjiangtai Road, Nanjing, Jiangsu 210031, China
| | - Zheng-Diao Miao
- Biomass Group, College of Engineering, Nanjing Agricultural University, 40 Dianjiangtai Road, Nanjing, Jiangsu 210031, China
| |
Collapse
|
77
|
Liu D, Li J, Zhang M, Wang D. A study on the association between biomass types and magnesium oxide pretreatment. BIORESOURCE TECHNOLOGY 2019; 293:122035. [PMID: 31454731 DOI: 10.1016/j.biortech.2019.122035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/16/2019] [Accepted: 08/17/2019] [Indexed: 06/10/2023]
Abstract
This work studied the association between biomass types and MgO pretreatment using representative agricultural residues (corn stover, sorghum stalk, and wheat straw), energy crops (miscanthus, switchgrass, and big bluestem), and woody biomass (poplar). Differences in biomass chemical components (24.7-40.3% cellulose, 17.4-27.6% hemicellulose, 12.1-22.0% lignin, and 5.1-38.3% extractives) and the amount of acetic acid (1.9-5.3%) affected biomass structure and pretreatment severity. Optimal pretreatment temperature and time were 170 °C and 40 min for wheat straw and switchgrass; 180 °C and 30 min for miscanthus and poplar; and 180 °C and 40 min for corn stover, sorghum stalk, and big bluestem. Big bluestem and poplar have a larger amount of acetic acid and required more MgO loading (0.12 mol/L). Except for sorghum stalk (0.10 mol/L), the rest required less MgO loading (0.08 mol/L). Approximate MgO loading completely neutralized released acetic acid during pretreatment, reducing sugar degradation and eliminating inhibitor formation.
Collapse
Affiliation(s)
- Dan Liu
- College of Engineering, Heilongjiang Bayi Agricultural University, Daqing 163319, China; Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, KS 66506, United States
| | - Jun Li
- Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, KS 66506, United States.
| | - Meng Zhang
- Department of Industrial and Manufacturing Systems Engineering, Kansas State University, Manhattan, KS 66506, United States
| | - Donghai Wang
- Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, KS 66506, United States
| |
Collapse
|
78
|
Mogodiniyai Kasmaei K, Schlosser D, Sträuber H, Kleinsteuber S. Does glucose affect the de-esterification of methyl ferulate by Lactobacillus buchneri? Microbiologyopen 2019; 9:e971. [PMID: 31782612 PMCID: PMC7002112 DOI: 10.1002/mbo3.971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/22/2019] [Accepted: 10/28/2019] [Indexed: 11/30/2022] Open
Abstract
Silage, the fermented product from anaerobic storage of forage crops with high water contents (50%–70%), is normally used as animal feed but also for the production of biofuels and value‐added products. To improve the utilization of plant fibers during ensiling, previous attempts have aimed at breaking linkages between lignin and hemicellulose by use of Lactobacillus buchneri LN 4017 (ATCC PTA‐6138), a feruloyl esterase (FAE)‐producing strain, but results have been inconsistent. Normally, there are sufficient amounts of readily available substrates for bacterial growth in silage. We thus hypothesized that the inconsistent effect of L. buchneri LN 4017 on the digestibility of silage fibers is due to the catabolic repression of FAE activity by substrates present in silage (e.g., glucose). To test this hypothesis, we analyzed the effect of glucose on the de‐esterification of methyl ferulate (MF), a model substrate used for FAE activity assays. At three glucose:MF ratios (0:1, 1:1, and 13:1), the bacteria continued hydrolyzing MF with increasing glucose:MF ratios, indicating that the de‐esterification reaction was not repressed by glucose. We therefore conclude that the de‐esterification activity of L. buchneri LN 4017 is not repressed by silage substrates during ensiling.
Collapse
Affiliation(s)
- Kamyar Mogodiniyai Kasmaei
- Department of Animal Nutrition and management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Dietmar Schlosser
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Heike Sträuber
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Sabine Kleinsteuber
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| |
Collapse
|
79
|
Oregui-Bengoechea M, Agirre I, Iriondo A, Lopez-Urionabarrenechea A, Requies JM, Agirrezabal-Telleria I, Bizkarra K, Barrio VL, Cambra JF. Heterogeneous Catalyzed Thermochemical Conversion of Lignin Model Compounds: An Overview. Top Curr Chem (Cham) 2019; 377:36. [PMID: 31728773 DOI: 10.1007/s41061-019-0260-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/18/2019] [Indexed: 02/08/2023]
Abstract
Thermochemical lignin conversion processes can be described as complex reaction networks involving not only de-polymerization and re-polymerization reactions, but also chemical transformations of the depolymerized mono-, di-, and oligomeric compounds. They typically result in a product mixture consisting of a gaseous, liquid (i.e., mono-, di-, and oligomeric products), and solid phase. Consequently, researchers have developed a common strategy to simplify this issue by replacing lignin with simpler, but still representative, lignin model compounds. This strategy is typically applied to the elucidation of reaction mechanisms and the exploration of novel lignin conversion approaches. In this review, we present a general overview of the latest advances in the principal thermochemical processes applied for the conversion of lignin model compounds using heterogeneous catalysts. This review focuses on the most representative lignin conversion methods, i.e., reductive, oxidative, pyrolytic, and hydrolytic processes. An additional subchapter on the reforming of pyrolysis oil model compounds has also been included. Special attention will be given to those research papers using "green" reactants (i.e., H2 or renewable hydrogen donor molecules in reductive processes or air/O2 in oxidative processes) and solvents, although less environmentally friendly chemicals will be also considered. Moreover, the scope of the review is limited to those most representative lignin model compounds and to those reaction products that are typically targeted in lignin valorization.
Collapse
Affiliation(s)
- Mikel Oregui-Bengoechea
- Department of Chemical and Environmental Engineering, School of Engineering, University of the Basque Country EHU/UPV, Plaza Ingeniero Torres Quevedo 1, 48013, Bilbao, Spain.
| | - Ion Agirre
- Department of Chemical and Environmental Engineering, School of Engineering, University of the Basque Country EHU/UPV, Plaza Ingeniero Torres Quevedo 1, 48013, Bilbao, Spain
| | - Aitziber Iriondo
- Department of Chemical and Environmental Engineering, School of Engineering, University of the Basque Country EHU/UPV, Plaza Ingeniero Torres Quevedo 1, 48013, Bilbao, Spain
| | - Alexander Lopez-Urionabarrenechea
- Department of Chemical and Environmental Engineering, School of Engineering, University of the Basque Country EHU/UPV, Plaza Ingeniero Torres Quevedo 1, 48013, Bilbao, Spain
| | - Jesus M Requies
- Department of Chemical and Environmental Engineering, School of Engineering, University of the Basque Country EHU/UPV, Plaza Ingeniero Torres Quevedo 1, 48013, Bilbao, Spain
| | - Iker Agirrezabal-Telleria
- Department of Chemical and Environmental Engineering, School of Engineering, University of the Basque Country EHU/UPV, Plaza Ingeniero Torres Quevedo 1, 48013, Bilbao, Spain
| | - Kepa Bizkarra
- Department of Chemical and Environmental Engineering, School of Engineering, University of the Basque Country EHU/UPV, Plaza Ingeniero Torres Quevedo 1, 48013, Bilbao, Spain
| | - V Laura Barrio
- Department of Chemical and Environmental Engineering, School of Engineering, University of the Basque Country EHU/UPV, Plaza Ingeniero Torres Quevedo 1, 48013, Bilbao, Spain
| | - Jose F Cambra
- Department of Chemical and Environmental Engineering, School of Engineering, University of the Basque Country EHU/UPV, Plaza Ingeniero Torres Quevedo 1, 48013, Bilbao, Spain
| |
Collapse
|
80
|
Nagel E, Zhang C. Hydrothermal Decomposition of a Lignin Dimer under Neutral and Basic Conditions: A Mechanism Study. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eric Nagel
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota 57007, United States
| | - Cheng Zhang
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota 57007, United States
| |
Collapse
|
81
|
Patri AS, Mostofian B, Pu Y, Ciaffone N, Soliman M, Smith MD, Kumar R, Cheng X, Wyman CE, Tetard L, Ragauskas AJ, Smith JC, Petridis L, Cai CM. A Multifunctional Cosolvent Pair Reveals Molecular Principles of Biomass Deconstruction. J Am Chem Soc 2019; 141:12545-12557. [PMID: 31304747 DOI: 10.1021/jacs.8b10242] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The complex structure of plant cell walls resists chemical or biological degradation, challenging the breakdown of lignocellulosic biomass into renewable chemical precursors that could form the basis of future production of green chemicals and transportation fuels. Here, experimental and computational results reveal that the effect of the tetrahydrofuran (THF)-water cosolvents on the structure of lignin and on its interactions with cellulose in the cell wall drives multiple synergistic mechanisms leading to the efficient breakdown and fractionation of biomass into valuable chemical precursors. Molecular simulations show that THF-water is an excellent "theta" solvent, such that lignin dissociates from itself and from cellulose and expands to form a random coil. The expansion of the lignin molecules exposes interunit linkages, rendering them more susceptible to depolymerization by acid-catalyzed cleavage of aryl-ether bonds. Nanoscale infrared sensors confirm cosolvent-mediated molecular rearrangement of lignin in the cell wall of micrometer-thick hardwood slices and track the disappearance of lignin. At bulk scale, adding dilute acid to the cosolvent mixture liberates the majority of the hemicellulose and lignin from biomass, allowing unfettered access of cellulolytic enzymes to the remaining cellulose-rich material, allowing them to sustain high rates of hydrolysis to glucose without enzyme deactivation. Through this multiscale analysis, synergistic mechanisms for biomass deconstruction are identified, portending a paradigm shift toward first-principles design and evaluation of other cosolvent methods to realize low cost fuels and bioproducts.
Collapse
Affiliation(s)
- Abhishek S Patri
- Department of Chemical and Environmental Engineering, Bourns College of Engineering , University of California, Riverside , 900 University Avenue , Riverside , California 92521 , United States.,Center for Environmental Research and Technology, Bourns College of Engineering , University of California, Riverside , 1084 Columbia Avenue , Riverside , California 92507 , United States
| | | | | | - Nicholas Ciaffone
- NanoScience Technology Center and ¶Department of Physics , University of Central Florida , Orlando , Florida 32826 , United States
| | - Mikhael Soliman
- NanoScience Technology Center and ¶Department of Physics , University of Central Florida , Orlando , Florida 32826 , United States
| | | | - Rajeev Kumar
- Center for Environmental Research and Technology, Bourns College of Engineering , University of California, Riverside , 1084 Columbia Avenue , Riverside , California 92507 , United States
| | - Xiaolin Cheng
- College of Pharmacy , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Charles E Wyman
- Department of Chemical and Environmental Engineering, Bourns College of Engineering , University of California, Riverside , 900 University Avenue , Riverside , California 92521 , United States.,Center for Environmental Research and Technology, Bourns College of Engineering , University of California, Riverside , 1084 Columbia Avenue , Riverside , California 92507 , United States
| | - Laurene Tetard
- NanoScience Technology Center and ¶Department of Physics , University of Central Florida , Orlando , Florida 32826 , United States
| | | | | | | | - Charles M Cai
- Department of Chemical and Environmental Engineering, Bourns College of Engineering , University of California, Riverside , 900 University Avenue , Riverside , California 92521 , United States.,Center for Environmental Research and Technology, Bourns College of Engineering , University of California, Riverside , 1084 Columbia Avenue , Riverside , California 92507 , United States
| |
Collapse
|
82
|
Petit J, Gulisano A, Dechesne A, Trindade LM. Phenotypic Variation of Cell Wall Composition and Stem Morphology in Hemp ( Cannabis sativa L.): Optimization of Methods. FRONTIERS IN PLANT SCIENCE 2019; 10:959. [PMID: 31402925 PMCID: PMC6671528 DOI: 10.3389/fpls.2019.00959] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/09/2019] [Indexed: 05/24/2023]
Abstract
The growing demands for sustainable fibers have stimulated the study of genetic diversity in the quality of hemp fiber (Cannabis sativa L.). Nevertheless, the lack of high-throughput phenotyping methods that are suited for the analysis of hemp fiber, hampers the analysis of many accessions, and consequently the breeding for this complex trait. In the present report, we developed and optimized the throughput of five methods to study the diversity in hemp fiber quality including cell wall extraction, biochemical composition of cell wall polysaccharides, quantification of lignin, quantification of crystalline polysaccharides and morphology of the stems. Six hemp accessions contrasting for cell wall properties were used to assess the throughput and suitability of these methods for genetic studies. The methods presented revealed to be highly repeatable, with low coefficients of variation between technical replicates. With these methods we were able to detect significant phenotypic variation in cell wall composition and stem morphology between the six accessions. In addition, the throughput of the methods has been upgraded to a level that enables their use for phenotyping cell wall traits in breeding programs. The cell wall extraction was optimized to extract enough material for the complete characterization of the cell wall of hemp while reducing the time for the entire analysis. The throughput of the stem morphological analysis was improved by decreasing the timing of fixation, infiltration, and embedding of mature and dry hemp stems. Notwithstanding, our methods already have the potential to phenotype large number of accessions in a relatively short period of time. Our methods will enable exploration of genetic diversity of fiber quality and will contribute to the development of new hemp varieties with advanced quality of fibers.
Collapse
Affiliation(s)
| | | | | | - Luisa M. Trindade
- Wageningen UR Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
83
|
Structure and distribution changes of Eucalyptus hemicelluloses during hydrothermal and alkaline pretreatments. Int J Biol Macromol 2019; 133:514-521. [DOI: 10.1016/j.ijbiomac.2019.04.127] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 04/13/2019] [Accepted: 04/16/2019] [Indexed: 11/19/2022]
|
84
|
Rivadeneira J, Flavier M, Nayve, Jr. F. Optimization of Acid and Steam Explosion Pretreatment of Cogon Grass for Improved Cellulose Enzymatic Saccharification. EURASIAN CHEMICO-TECHNOLOGICAL JOURNAL 2019. [DOI: 10.18321/ectj824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Acid-impregnation and its combination with steam explosion were evaluated and optimized using Response Surface Methodology. At 10% solid-liquid ratio, cogon was impregnated with diluted H2SO4 solution (0 to 3%, w/w) at different ranges of temperature (40 to 120 °C) and varied time (0 to 130 min). Impregnated samples were then subjected to enzymatic saccharification using 60 FPU/g Accelerase 1500™. After enzymatic saccharification, the concentration of reducing sugar released was measured using Dinitrosalicylic (DNS) Colorimetric Method. Based on the results, Response Surface Model (RSM) showed that the optimum condition, predicting 7.18% Reducing Sugar Yield (RSY), was impregnation of cogon using 1.9% H2SO4 at 91.8 °C for 56 min. Experimental verification of optimum condition, done in triplicates, showed 6.35 + 0.05% RSY. Acid-impregnated cogon was subjected to steam explosion to improve saccharifiability. Factors varied were temperature (137 to 222 °C) and exposure time (17 to 582 s). Steam-exploded samples were saccharified and RSY was determined. RSM indicated that the best steam explosion condition, predicting 7.91% RSY, was 179 °C and 500 s. Experimental verification of optimum condition showed 8.78 + 0.02% RSY. Using RSY as basis, steam explosion improved saccharifiability of H2SO4-impregnated cogon by 38%, thus, increasing production of reducing sugars for potential bioethanol production.
Collapse
|
85
|
Waliszewska H, Zborowska M, Stachowiak-Wencek A, Waliszewska B, Czekała W. Lignin Transformation of One-Year-Old Plants During Anaerobic Digestion (AD). Polymers (Basel) 2019; 11:polym11050835. [PMID: 31071988 PMCID: PMC6572192 DOI: 10.3390/polym11050835] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 12/28/2022] Open
Abstract
The aim of the research is to identify the changes which occur in lignin from miscanthus and sorghum, one of the main biomass components, as a result of an anaerobic digestion (AD) process. The percentage content and structure of lignin before and after the fermentation process were analysed using biomass harvested in two growing periods—before and after vegetation. It was shown that plants at different developmental stages differ in lignin content. During plant growth, the lignin structure also changes—the syringyl-to-guaiacyl ratio (S/G) increases, whereas the aliphatic and aromatic structure ratio (Al/Ar) decreases. The AD process leads to an increase in percentage lignin content in cell walls, and the increase is higher for plants harvested during vegetation. It has been shown in studies that the methane fermentation of miscanthus and sorghum produces waste containing a large amount of lignin, the structure of which is altered relative to native lignin. The quantity and the new, simplified structure of lignin create new possibilities for using this aromatic polymer.
Collapse
Affiliation(s)
- Hanna Waliszewska
- Institute of Wood Chemical Technology, Faculty of Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland.
| | - Magdalena Zborowska
- Institute of Wood Chemical Technology, Faculty of Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland.
| | - Agata Stachowiak-Wencek
- Institute of Wood Chemical Technology, Faculty of Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland.
| | - Bogusława Waliszewska
- Institute of Wood Chemical Technology, Faculty of Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland.
| | - Wojciech Czekała
- Institute of Biosystems Engineering, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland.
| |
Collapse
|
86
|
Kellock M, Maaheimo H, Marjamaa K, Rahikainen J, Zhang H, Holopainen-Mantila U, Ralph J, Tamminen T, Felby C, Kruus K. Effect of hydrothermal pretreatment severity on lignin inhibition in enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2019; 280:303-312. [PMID: 30776657 DOI: 10.1016/j.biortech.2019.02.051] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 05/19/2023]
Abstract
Hydrothermal pretreatment is commonly used for enhancing enzymatic hydrolysis of lignocellulosics. Spruce and wheat straw were pretreated with increasing severity and lignin characteristics were analysed. The effect of enzymatically isolated lignin on the hydrolysis of Avicel and the adsorption of a cellobiohydrolase onto lignin was measured. Non-pretreated lignins had only a minor effect on Avicel hydrolysis. The structural changes in lignin accompanying hydrothermal pretreatment were associated with increased binding and inactivation of the cellulase on the lignin surface. The inhibitory effect was more pronounced in spruce than in wheat straw lignin. However, similar pretreatment severities caused similar levels of inhibition in Avicel hydrolysis for both biomass sources. The combined severity factor of the pretreatment correlated well with the inhibitory effect of lignin.
Collapse
Affiliation(s)
- Miriam Kellock
- VTT Technical Research Centre of Finland Ltd, P.O Box 1000, 02044 VTT, Finland.
| | - Hannu Maaheimo
- VTT Technical Research Centre of Finland Ltd, P.O Box 1000, 02044 VTT, Finland.
| | - Kaisa Marjamaa
- VTT Technical Research Centre of Finland Ltd, P.O Box 1000, 02044 VTT, Finland.
| | - Jenni Rahikainen
- VTT Technical Research Centre of Finland Ltd, P.O Box 1000, 02044 VTT, Finland.
| | - Heng Zhang
- University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg C, Denmark.
| | | | - John Ralph
- University of Wisconsin, Madison, WI 53726, USA.
| | - Tarja Tamminen
- VTT Technical Research Centre of Finland Ltd, P.O Box 1000, 02044 VTT, Finland.
| | - Claus Felby
- University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg C, Denmark.
| | - Kristiina Kruus
- VTT Technical Research Centre of Finland Ltd, P.O Box 1000, 02044 VTT, Finland.
| |
Collapse
|
87
|
Chambon CL, Chen M, Fennell PS, Hallett JP. Efficient Fractionation of Lignin- and Ash-Rich Agricultural Residues Following Treatment With a Low-Cost Protic Ionic Liquid. Front Chem 2019; 7:246. [PMID: 31058135 PMCID: PMC6478884 DOI: 10.3389/fchem.2019.00246] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 03/27/2019] [Indexed: 11/13/2022] Open
Abstract
Agricultural residues from rice, wheat and sugarcane production are annually available at the gigaton-scale worldwide, particularly in Asia. Due to their high sugar content and ash compositions, their conversion to bioethanol is an attractive alternative to their present disposal by open-field burning and landfilling. In this work, we demonstrate application of the low-cost protic ionic liquid triethylammonium hydrogen sulfate ([TEA][HSO4]) for pretreatment of rice straw, rice husk, wheat straw and sugarcane bagasse. The feedstocks had high ash (up to 13 wt%) and lignin content (up to 28 wt%). Pretreatment effectiveness was examined at 150 and 170°C and an optimal pretreatment time was identified and characterized by glucose release following enzymatic saccharification (i.e., hydrolysis), biomass delignification observed by compositional analysis, and lignin recovery. The isolated lignin fractions were analyzed by 2D HSQC NMR to obtain insights into the structural changes occurring following ionic liquid pretreatment. After treatment at 170°C for 30-45 min, enzymatic hydrolysis of three agroresidues gave near-quantitative glucose yields approaching 90% while rice husk gave 73% yield. Glucose release from the pulps was enhanced by saccharifying wet pulps without an air-drying step to reduce hornification. According to pulp compositional analysis, up to 82% of lignin was removed from biomass during pretreatment, producing highly digestible cellulose-rich pulps. HSQC NMR of the extracted lignins showed that delignification proceeded via extensive cleavage of β-O-4' aryl ether linkages which was accompanied by condensation reactions in the isolated lignins. The high saccharification yields obtained indicate excellent potential for valorization of low-cost agroresidues in large volumes, which is promising for commercialization of biofuels production using the ionoSolv pretreatment technology.
Collapse
Affiliation(s)
- Clementine L Chambon
- Laboratory of Sustainable Chemical Technology, Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Meng Chen
- Laboratory of Sustainable Chemical Technology, Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Paul S Fennell
- Laboratory of Sustainable Chemical Technology, Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Jason P Hallett
- Laboratory of Sustainable Chemical Technology, Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, United Kingdom
| |
Collapse
|
88
|
Tsegaye B, Balomajumder C, Roy P. Alkali pretreatment of wheat straw followed by microbial hydrolysis for bioethanol production. ENVIRONMENTAL TECHNOLOGY 2019; 40:1203-1211. [PMID: 29251554 DOI: 10.1080/09593330.2017.1418911] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The combination of NaOH pretreatment and microorganisms isolated from termite was used for releasing wrapped polysaccharides from wheat straw biomass matrix. Different concentrations of NaOH (1%, 3%, 5%, 7% and 10%) were considered to remove lignin and to release polysaccharides as a pretreatment method at 80°C for 4 h before subjecting it to microbial hydrolysis. Data obtained from compositional analysis of pretreated wheat straws show that a significant amount of cellulose and lignin were released after NaOH pretreatments. The amount of cellulose and lignin released was increased with increasing concentration of NaOH in the pretreatment solution. Further analysis of X-Ray diffraction, field emission scanning electron microscope and Fourier transform infrared spectroscopy confirms the removal of lignin and release of cellulose. About 69.5% of lignin was solubilized and 72.67% of cellulose was released after 10% NaOH pretreatment which was the maximum. Data from spectrophotometric analysis of reducing sugar by the 3,5-dinitrosalycilic acid method show that 83.68% (0.706 g/100 ml) of polysaccharides were converted to glucose and xylose by isolated bacteria after the 15th day of hydrolysis.
Collapse
Affiliation(s)
- Bahiru Tsegaye
- a Department of Chemical Engineering , Indian Institute of Technology Roorkee , Roorkee , India
| | - Chandrajit Balomajumder
- a Department of Chemical Engineering , Indian Institute of Technology Roorkee , Roorkee , India
| | - Partha Roy
- b Department of Biotechnology , Indian Institute of Technology Roorkee , Roorkee , India
| |
Collapse
|
89
|
Batista G, Souza RBA, Pratto B, Dos Santos-Rocha MSR, Cruz AJG. Effect of severity factor on the hydrothermal pretreatment of sugarcane straw. BIORESOURCE TECHNOLOGY 2019; 275:321-327. [PMID: 30594843 DOI: 10.1016/j.biortech.2018.12.073] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 05/15/2023]
Abstract
The recalcitrant structures of sugarcane straw and related lignocellulosic biomasses require a pretreatment step to enable a better enzymatic attack during the hydrolysis. Factors like the energy consumption and the formation of inhibitors require the optimization of the pretreatment step. Thus, the influence of different severity factors (SF) on hydrothermal (also called liquid hot water, LHW) pretreatment was evaluated using a factorial design 22 with central point. The obtained results showed that low values of SF (<3.39) did not promote reasonable alteration in the sugarcane straw structures, whereas high SF values (>4.70) resulted in loss of hydrolyzed sugars, generation of inhibitors such as furfural, and formation of pseudo-lignin structures, despite high hemicellulose removal (∼97%). The residence time exhibited low influence on LHW. An optimum condition was found for the process (10 min and 195 °C) with low cellulose solubilization (9.80%) and a reasonable hemicellulose removal (85.45%).
Collapse
Affiliation(s)
- Gustavo Batista
- Chemical Engineering Graduate Program, Federal University of São Carlos, Rod. Washington Luís - km 235, CEP: 13565-905, São Carlos, SP, Brazil
| | - Renata B A Souza
- Chemical Engineering Graduate Program, Federal University of São Carlos, Rod. Washington Luís - km 235, CEP: 13565-905, São Carlos, SP, Brazil
| | - Bruna Pratto
- Chemical Engineering Graduate Program, Federal University of São Carlos, Rod. Washington Luís - km 235, CEP: 13565-905, São Carlos, SP, Brazil
| | - Martha S R Dos Santos-Rocha
- Chemical Engineering Graduate Program, Federal University of Alagoas, Avenida Lourival de Melo Mota, s/n, Cidade Universitária, CEP: 57072-970, Maceió, AL, Brazil
| | - Antonio J G Cruz
- Chemical Engineering Graduate Program, Federal University of São Carlos, Rod. Washington Luís - km 235, CEP: 13565-905, São Carlos, SP, Brazil.
| |
Collapse
|
90
|
Figueiredo R, Araújo P, Llerena JPP, Mazzafera P. Suberin and hemicellulose in sugarcane cell wall architecture and crop digestibility: A biotechnological perspective. Food Energy Secur 2019. [DOI: 10.1002/fes3.163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Raquel Figueiredo
- Department of Plant Biology Institute of Biology State University of Campinas Campinas Brazil
| | - Pedro Araújo
- Department of Genetics, Evolution and Bioagents Institute of Biology State University of Campinas Campinas Brazil
| | - Juan Pablo P. Llerena
- Department of Plant Biology Institute of Biology State University of Campinas Campinas Brazil
| | - Paulo Mazzafera
- Department of Plant Biology Institute of Biology State University of Campinas Campinas Brazil
- Department of Crop Science College of Agriculture Luiz de Queiroz University of São Paulo Piracicaba Brazil
| |
Collapse
|
91
|
Shah R, Huang S, Pingali SV, Sawada D, Pu Y, Rodriguez M, Ragauskas AJ, Kim SH, Evans BR, Davison BH, O'Neill H. Hemicellulose-Cellulose Composites Reveal Differences in Cellulose Organization after Dilute Acid Pretreatment. Biomacromolecules 2019; 20:893-903. [PMID: 30554514 DOI: 10.1021/acs.biomac.8b01511] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Model hemicellulose-cellulose composites that mimic plant cell wall polymer interactions were prepared by synthesizing deuterated bacterial cellulose in the presence of glucomannan or xyloglucan. Dilute acid pretreatment (DAP) of these materials was studied using small-angle neutron scattering, X-ray diffraction, and sum frequency generation spectroscopy. The macrofibril dimensions of the pretreated cellulose alone were smaller but with similar entanglement of macrofibrillar network as native cellulose. In addition, the crystallite size dimension along the (010) plane increased. Glucomannan-cellulose underwent similar changes to cellulose, except that the macrofibrillar network was more entangled after DAP. Conversely, in xyloglucan-cellulose the macrofibril dimensions and macrofibrillar network were relatively unchanged after pretreatment, but the cellulose Iβ content was increased. Our results point to a tight interaction of xyloglucan with microfibrils while glucomannan only interacts with macrofibril surfaces. This study provides insight into roles of different hemicellulose-cellulose interactions and may help in improving pretreatment processes or engineering plants with decreased recalcitrance.
Collapse
Affiliation(s)
- Riddhi Shah
- Bredesen Center for Interdisciplinary Research , University of Tennessee , Knoxville Tennessee 37996 , United States
| | - Shixin Huang
- Department of Chemical Engineering , Pennsylvania State University , State College , Pennsylvania 16802 , United States
| | | | | | | | | | | | - Seong H Kim
- Department of Chemical Engineering , Pennsylvania State University , State College , Pennsylvania 16802 , United States
| | | | | | | |
Collapse
|
92
|
Ding D, Li P, Zhang X, Ramaswamy S, Xu F. Synergy of hemicelluloses removal and bovine serum albumin blocking of lignin for enhanced enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2019; 273:231-236. [PMID: 30447624 DOI: 10.1016/j.biortech.2018.11.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
A cost efficient synergistic strategy combining mild alkaline pretreatment (0.5-5% NaOH at 70 °C for 60 min) and bovine serum albumin (BSA) blocking of lignin was evaluated for effective conversion of poplar. The highest glucose yield of 69.2% was obtained for 5% alkaline pretreated sample, which was 4.4 times that of untreated sample. The enhanced enzymatic hydrolysis was attributed to significant hemicelluloses removal with limited delignification. Delignification mainly occurred in secondary wall, leading to more open cell wall structure, thus facilitating better transport of enzyme. Hemicelluloses removal helped split adjacent microfibrils, thus increased the specific sites for cellulase binding. After BSA addition in enzymatic hydrolysis, cellulose conversion further improved to 78.4% with 33% reduction of cellulase dosage due to decreased non-specific adsorption of cellulase on residual lignin. The utilization of synergistic alkaline pretreatment - BSA strategy may improve the overall economics of biomass conversion and successful commercial implementation of biorefineries.
Collapse
Affiliation(s)
- Dayong Ding
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Pengyun Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Xueming Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Shri Ramaswamy
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN 55108, USA
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
93
|
Sun D, Wang HM, Wang B, Wen JL, Li MF, Sun RC. Comparative study of hemicelluloses from Hybrid Pennisetum via a green and clean integrated process. Carbohydr Polym 2019; 205:135-142. [DOI: 10.1016/j.carbpol.2018.10.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/05/2018] [Accepted: 10/09/2018] [Indexed: 12/17/2022]
|
94
|
Li M, Yoo CG, Pu Y, Biswal AK, Tolbert AK, Mohnen D, Ragauskas AJ. Downregulation of pectin biosynthesis gene GAUT4 leads to reduced ferulate and lignin-carbohydrate cross-linking in switchgrass. Commun Biol 2019; 2:22. [PMID: 30675520 PMCID: PMC6336719 DOI: 10.1038/s42003-018-0265-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 12/07/2018] [Indexed: 11/09/2022] Open
Abstract
Knockdown (KD) expression of GAlactUronosylTransferase 4 (GAUT4) in switchgrass improves sugar yield and ethanol production from the biomass. The reduced recalcitrance of GAUT4-KD transgenic biomass is associated with reduced cell wall pectic homogalacturonan and rhamnogalacturonan II content and cross-linking, and the associated increases in accessibility of cellulose to enzymatic deconstruction. To further probe the molecular basis for the reduced recalcitrance of GAUT4-KD biomass, potential recalcitrance-related factors including the physicochemical properties of lignin and hemicellulose are investigated. We show that the transgenic switchgrass have a lower abundance of ferulate and lignin-carbohydrate complex cross-linkages, reduced amounts of residual arabinan and xylan in lignin-enriched fractions after enzymatic hydrolysis, and greater coalescence and migration of lignin after hydrothermal pretreatment in comparison to the wild-type switchgrass control. The results reveal the roles of both decreased lignin-polymer and pectin cross-links in the reduction of recalcitrance in PvGAUT4-KD switchgrass.
Collapse
Affiliation(s)
- Mi Li
- BioEnergy Science Center, Oak Ridge National Laboratory (ORNL), 1 Bethel Valley Road, Oak Ridge, TN 37831 USA
- Joint Institute for Biological Sciences, Biosciences Division, ORNL, 1 Bethel Valley Road, Oak Ridge, TN 37831 USA
| | - Chang Geun Yoo
- BioEnergy Science Center, Oak Ridge National Laboratory (ORNL), 1 Bethel Valley Road, Oak Ridge, TN 37831 USA
- Joint Institute for Biological Sciences, Biosciences Division, ORNL, 1 Bethel Valley Road, Oak Ridge, TN 37831 USA
- Center for Bioenergy Innovation, ORNL, 1 Bethel Valley Road, Oak Ridge, TN 37831 USA
- Present Address: Department of Paper and Bioprocess Engineering, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210-2781 USA
| | - Yunqiao Pu
- BioEnergy Science Center, Oak Ridge National Laboratory (ORNL), 1 Bethel Valley Road, Oak Ridge, TN 37831 USA
- Joint Institute for Biological Sciences, Biosciences Division, ORNL, 1 Bethel Valley Road, Oak Ridge, TN 37831 USA
- Center for Bioenergy Innovation, ORNL, 1 Bethel Valley Road, Oak Ridge, TN 37831 USA
| | - Ajaya K. Biswal
- BioEnergy Science Center, Oak Ridge National Laboratory (ORNL), 1 Bethel Valley Road, Oak Ridge, TN 37831 USA
- Center for Bioenergy Innovation, ORNL, 1 Bethel Valley Road, Oak Ridge, TN 37831 USA
- Department of Biochemistry and Molecular Biology and Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602 USA
| | - Allison K. Tolbert
- BioEnergy Science Center, Oak Ridge National Laboratory (ORNL), 1 Bethel Valley Road, Oak Ridge, TN 37831 USA
- School of Chemistry and Biochemistry and Renewable Bioproducts Institute, Georgia Institute of Technology, 500 10th Street NW, Atlanta, GA 30332 USA
| | - Debra Mohnen
- BioEnergy Science Center, Oak Ridge National Laboratory (ORNL), 1 Bethel Valley Road, Oak Ridge, TN 37831 USA
- Center for Bioenergy Innovation, ORNL, 1 Bethel Valley Road, Oak Ridge, TN 37831 USA
- Department of Biochemistry and Molecular Biology and Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602 USA
| | - Arthur J. Ragauskas
- BioEnergy Science Center, Oak Ridge National Laboratory (ORNL), 1 Bethel Valley Road, Oak Ridge, TN 37831 USA
- Joint Institute for Biological Sciences, Biosciences Division, ORNL, 1 Bethel Valley Road, Oak Ridge, TN 37831 USA
- Center for Bioenergy Innovation, ORNL, 1 Bethel Valley Road, Oak Ridge, TN 37831 USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, 1512 Middle Drive, Knoxville, TN 37996 USA
- Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, University of Tennessee Institute of Agriculture, 2506 Jacob Drive, Knoxville, TN 37996 USA
| |
Collapse
|
95
|
Kont R, Pihlajaniemi V, Borisova AS, Aro N, Marjamaa K, Loogen J, Büchs J, Eijsink VGH, Kruus K, Väljamäe P. The liquid fraction from hydrothermal pretreatment of wheat straw provides lytic polysaccharide monooxygenases with both electrons and H 2O 2 co-substrate. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:235. [PMID: 31624497 PMCID: PMC6781412 DOI: 10.1186/s13068-019-1578-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/24/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Enzyme-aided valorization of lignocellulose represents a green and sustainable alternative to the traditional chemical industry. The recently discovered lytic polysaccharide monooxygenases (LPMOs) are important components of the state-of-the art enzyme cocktails for cellulose conversion. Yet, these monocopper enzymes are poorly characterized in terms of their kinetics, as exemplified by the growing evidence for that H2O2 may be a more efficient co-substrate for LPMOs than O2. LPMOs need external electron donors and one key question of relevance for bioprocess development is whether the required reducing power may be provided by the lignocellulosic substrate. RESULTS Here, we show that the liquid fraction (LF) resulting from hydrothermal pretreatment of wheat straw supports LPMO activity on both chitin and cellulose. The initial, transient activity burst of the LPMO reaction was caused by the H2O2 present in the LF before addition of LPMO, while the steady-state rate of LPMO reaction was limited by the LPMO-independent production of H2O2 in the LF. H2O2 is an intermediate of LF oxidation as evidenced by a slow H2O2 accumulation in LF, despite high H2O2 production rates. This H2O2 scavenging ability of LF is important since high concentrations of H2O2 may lead to irreversible inactivation of LPMOs. CONCLUSIONS Our results support the growing understanding that fine-tuned control over the rates of H2O2 production and consumption in different, enzymatic and non-enzymatic reactions is essential for harnessing the full catalytic potential of LPMOs in lignocellulose valorization.
Collapse
Affiliation(s)
- Riin Kont
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | | | | | - Nina Aro
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - Kaisa Marjamaa
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - Judith Loogen
- Department of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, Aachen, Germany
| | - Jochen Büchs
- Department of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, Aachen, Germany
| | | | - Kristiina Kruus
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - Priit Väljamäe
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| |
Collapse
|
96
|
Zhang Y, Huang M, Su J, Hu H, Yang M, Huang Z, Chen D, Wu J, Feng Z. Overcoming biomass recalcitrance by synergistic pretreatment of mechanical activation and metal salt for enhancing enzymatic conversion of lignocellulose. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:12. [PMID: 30647772 PMCID: PMC6327530 DOI: 10.1186/s13068-019-1354-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/04/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Due to biomass recalcitrance, including complexity of lignocellulosic matrix, crystallinity of cellulose, and inhibition of lignin, the bioconversion of lignocellulosic biomass is difficult and inefficient. The aim of this study is to investigate an effective and green pretreatment method for overcoming biomass recalcitrance of lignocellulose. RESULTS An effective mechanical activation (MA) + metal salt (MAMS) technology was applied to pretreat sugarcane bagasse (SCB), a typical kind of lignocellulosic biomass, in a stirring ball mill. Chlorides and nitrates of Al and Fe showed better synergistic effect with MA, especially AlCl3, ascribing to the interaction between metal salt and oxygen-containing groups induced by MA. Comparative studies showed that MAMS pretreatment effectively changed the recalcitrant structural characteristics of lignocellulosic matrix and reduced the inhibitory action of lignin on enzymatic conversion of SCB. The increase in hydroxyl and carboxyl groups of lignin induced by MAMS pretreatment led to the increase of its hydrophilicity, which could weaken the binding force between cellulase and lignin and reduce the nonproductive binding of cellulase enzymes to lignin. CONCLUSIONS MAMS pretreatment significantly enhanced the enzymatic digestibility of polysaccharides substrate by overcoming biomass recalcitrance without the removal of lignin from enzymatic hydrolysis system.
Collapse
Affiliation(s)
- Yanjuan Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004 China
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, 530007 China
| | - Min Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004 China
| | - Jianmei Su
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004 China
| | - Huayu Hu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004 China
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, 530007 China
| | - Mei Yang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004 China
| | - Zuqiang Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004 China
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, 530007 China
| | - Dong Chen
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, 530007 China
| | - Juan Wu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004 China
| | - Zhenfei Feng
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004 China
| |
Collapse
|
97
|
Patri AS, McAlister L, Cai CM, Kumar R, Wyman CE. CELF significantly reduces milling requirements and improves soaking effectiveness for maximum sugar recovery of Alamo switchgrass over dilute sulfuric acid pretreatment. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:177. [PMID: 31320925 PMCID: PMC6617576 DOI: 10.1186/s13068-019-1515-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/21/2019] [Indexed: 05/11/2023]
Abstract
BACKGROUND Pretreatment is effective in reducing the natural recalcitrance of plant biomass so polysaccharides in cell walls can be accessed for conversion to sugars. Furthermore, lignocellulosic biomass must typically be reduced in size to increase the pretreatment effectiveness and realize high sugar yields. However, biomass size reduction is a very energy-intensive operation and contributes significantly to the overall capital cost. RESULTS In this study, the effect of particle size reduction and biomass presoaking on the deconstruction of Alamo switchgrass was examined prior to pretreatment by dilute sulfuric acid (DSA) and Co-solvent Enhanced Lignocellulosic Fractionation (CELF) at pretreatment conditions optimized for maximum sugar release by each pretreatment coupled with subsequent enzymatic hydrolysis. Sugar yields by enzymatic hydrolysis were measured over a range of enzyme loadings. In general, DSA successfully solubilized hemicellulose, while CELF removed nearly 80% of Klason lignin from switchgrass in addition to the majority of hemicellulose. Presoaking and particle size reduction did not have a significant impact on biomass compositions after pretreatment for both DSA and CELF. However, presoaking for 4 h slightly increased sugar yields by enzymatic hydrolysis of DSA-pretreated switchgrass compared to unsoaked samples, whereas sugar yields from enzymatic hydrolysis of CELF solids continued to increase substantially for up to 18 h of presoaking time. Of particular importance, DSA required particle size reduction by knife milling to < 2 mm in order to achieve adequate sugar yields by subsequent enzymatic hydrolysis. CELF solids, on the other hand, realized nearly identical sugar yields from unmilled and milled switchgrass even at very low enzyme loadings. CONCLUSIONS CELF was capable of achieving nearly theoretical sugar yields from enzymatic hydrolysis of pretreated switchgrass solids without size reduction, unlike DSA. These results indicate that CELF may be able to eliminate particle size reduction prior to pretreatment and thereby reduce overall costs of biological processing of biomass to fuels. In addition, presoaking proved much more effective for CELF than for DSA, particularly at low enzyme loadings.
Collapse
Affiliation(s)
- Abhishek S. Patri
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, 900 University Ave, Riverside, CA 92521 USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831 USA
- Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California, Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831 USA
| | - Laura McAlister
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, 900 University Ave, Riverside, CA 92521 USA
- Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California, Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA
| | - Charles M. Cai
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, 900 University Ave, Riverside, CA 92521 USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831 USA
- Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California, Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831 USA
| | - Rajeev Kumar
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831 USA
- Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California, Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831 USA
| | - Charles E. Wyman
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, 900 University Ave, Riverside, CA 92521 USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831 USA
- Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California, Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831 USA
| |
Collapse
|
98
|
Hodgson-Kratky K, Papa G, Rodriguez A, Stavila V, Simmons B, Botha F, Furtado A, Henry R. Relationship between sugarcane culm and leaf biomass composition and saccharification efficiency. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:247. [PMID: 31636706 PMCID: PMC6796448 DOI: 10.1186/s13068-019-1588-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/05/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Lignocellulosic biomass is recognized as a promising renewable feedstock for the production of biofuels. However, current methods for converting biomass into fermentable sugars are considered too expensive and inefficient due to the recalcitrance of the secondary cell wall. Biomass composition can be modified to create varieties that are efficiently broken down to release cell wall sugars. This study focused on identifying the key biomass components influencing plant cell wall recalcitrance that can be targeted for selection in sugarcane, an important and abundant source of biomass. RESULTS Biomass composition and the amount of glucan converted into glucose after saccharification were measured in leaf and culm tissues from seven sugarcane genotypes varying in fiber composition after no pretreatment and dilute acid, hydrothermal and ionic liquid pretreatments. In extractives-free sugarcane leaf and culm tissue, glucan, xylan, acid-insoluble lignin (AIL) and acid-soluble lignin (ASL) ranged from 20 to 32%, 15% to 21%, 14% to 20% and 2% to 4%, respectively. The ratio of syringyl (S) to guaiacyl (G) content in the lignin ranged from 1.5 to 2.2 in the culm and from 0.65 to 1.1 in the leaf. Hydrothermal and dilute acid pretreatments predominantly reduced xylan content, while the ionic liquid (IL) pretreatment targeted AIL reduction. The amount of glucan converted into glucose after 26 h of pre-saccharification was highest after IL pretreatment (42% in culm and 63.5% in leaf) compared to the other pretreatments. Additionally, glucan conversion in leaf tissues was approximately 1.5-fold of that in culm tissues. Percent glucan conversion varied between genotypes but there was no genotype that was superior to all others across the pretreatment groups. Path analysis revealed that S/G ratio, AIL and xylan had the strongest negative associations with percent glucan conversion, while ASL and glucan content had strong positive influences. CONCLUSION To improve saccharification efficiency of lignocellulosic biomass, breeders should focus on reducing S/G ratio, xylan and AIL content and increasing ASL and glucan content. This will be key for the development of sugarcane varieties for bioenergy uses.
Collapse
Affiliation(s)
- K. Hodgson-Kratky
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD 4072 Australia
| | - G. Papa
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Advanced Biofuels and Bioproducts Process Development Unit, Emeryville, CA 94608 USA
| | - A. Rodriguez
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Sandia National Laboratories, Livermore, CA 94550 USA
| | - V. Stavila
- Sandia National Laboratories, Livermore, CA 94550 USA
| | - B. Simmons
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD 4072 Australia
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
| | - F. Botha
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD 4072 Australia
- Sugar Research Australia, Brisbane, QLD 4068 Australia
| | - A. Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD 4072 Australia
| | - R. Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD 4072 Australia
| |
Collapse
|
99
|
Wen P, Zhang T, Wang J, Lian Z, Zhang J. Production of xylooligosaccharides and monosaccharides from poplar by a two-step acetic acid and peroxide/acetic acid pretreatment. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:87. [PMID: 31011370 PMCID: PMC6463647 DOI: 10.1186/s13068-019-1423-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/03/2019] [Indexed: 05/11/2023]
Abstract
BACKGROUND Populus (poplar) tree species including hybrid varieties are considered as promising biomass feedstock for biofuels and biochemicals production due to their fast growing, short vegetative cycle, and widely distribution. In this work, poplar was pretreated with acetic acid (AC) to produce xylooligosaccharides (XOS), and hydrogen peroxide-acetic acid (HPAC) was used to remove residual lignin in AC-pretreated poplar for enzymatic hydrolysis. The aim of this work is to produce XOS and monosaccharides from poplar by a two-step pretreatment method. RESULTS The optimal conditions for the AC pretreatment were 170 °C, 5% AC, and 30 min, giving a XOS yield of 55.8%. The optimal HPAC pretreatment conditions were 60 °C, 2 h, and 80% HPAC, resulting in 92.7% delignification and 87.8% cellulose retention in the AC-pretreated poplar. The two step-treated poplar presented 86.6% glucose yield and 89.0% xylose yield by enzymatic hydrolysis with a cellulases loading of 7.2 m/g dry mass. Very high glucose (93.8%) and xylose (94.6%) yields were obtained with 14.3 mg cellulases/g dry mass. Both Tween 80 and β-glucosidase enhanced glucose yield of HPAC-pretreated poplar by alleviating the accumulation of cellobiose. Under the optimal conditions, 6.9 g XOS, 40.3 g glucose, and 8.9 g xylose were produced from 100 g poplar. CONCLUSIONS The AC and HPAC pretreatment of poplar represented an efficient strategy to produce XOS and fermentable sugars with high yields. This two-step pretreatment was a recyclable benign and advantageous scheme for biorefinery of the poplar into XOS and monosaccharides.
Collapse
Affiliation(s)
- Peiyao Wen
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling, 712100 Shaanxi China
| | - Tian Zhang
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling, 712100 Shaanxi China
| | - Jinye Wang
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling, 712100 Shaanxi China
| | - Zhina Lian
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 Jiangsu China
| | - Junhua Zhang
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling, 712100 Shaanxi China
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 Jiangsu China
| |
Collapse
|
100
|
Prasad S, Malav MK, Kumar S, Singh A, Pant D, Radhakrishnan S. Enhancement of bio-ethanol production potential of wheat straw by reducing furfural and 5-hydroxymethylfurfural (HMF). ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.biteb.2018.09.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|