51
|
Arginine-Rich Small Proteins with a Domain of Unknown Function, DUF1127, Play a Role in Phosphate and Carbon Metabolism of Agrobacterium tumefaciens. J Bacteriol 2020; 202:JB.00309-20. [PMID: 33093235 DOI: 10.1128/jb.00309-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
In any given organism, approximately one-third of all proteins have a yet-unknown function. A widely distributed domain of unknown function is DUF1127. Approximately 17,000 proteins with such an arginine-rich domain are found in 4,000 bacteria. Most of them are single-domain proteins, and a large fraction qualifies as small proteins with fewer than 50 amino acids. We systematically identified and characterized the seven DUF1127 members of the plant pathogen Agrobacterium tumefaciens They all give rise to authentic proteins and are differentially expressed as shown at the RNA and protein levels. The seven proteins fall into two subclasses on the basis of their length, sequence, and reciprocal regulation by the LysR-type transcription factor LsrB. The absence of all three short DUF1127 proteins caused a striking phenotype in later growth phases and increased cell aggregation and biofilm formation. Protein profiling and transcriptome sequencing (RNA-seq) analysis of the wild type and triple mutant revealed a large number of differentially regulated genes in late exponential and stationary growth. The most affected genes are involved in phosphate uptake, glycine/serine homeostasis, and nitrate respiration. The results suggest a redundant function of the small DUF1127 paralogs in nutrient acquisition and central carbon metabolism of A. tumefaciens They may be required for diauxic switching between carbon sources when sugar from the medium is depleted. We end by discussing how DUF1127 might confer such a global impact on cell physiology and gene expression.IMPORTANCE Despite being prevalent in numerous ecologically and clinically relevant bacterial species, the biological role of proteins with a domain of unknown function, DUF1127, is unclear. Experimental models are needed to approach their elusive function. We used the phytopathogen Agrobacterium tumefaciens, a natural genetic engineer that causes crown gall disease, and focused on its three small DUF1127 proteins. They have redundant and pervasive roles in nutrient acquisition, cellular metabolism, and biofilm formation. The study shows that small proteins have important previously missed biological functions. How small basic proteins can have such a broad impact is a fascinating prospect of future research.
Collapse
|
52
|
Shimagaki K, Koga R, Fujino H, Ahagon A, Tateishi H, Otsuka M, Yamaguchi Y, Fujita M. The stability of HIV-2 Vpx and Vpr proteins is regulated by the presence or absence of zinc-binding sites and poly-proline motifs with distinct roles. J Gen Virol 2020; 101:997-1007. [PMID: 32553018 DOI: 10.1099/jgv.0.001456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Vpx and Vpr proteins of human immunodeficiency virus type 2 (HIV-2) are important for virus replication. Although these proteins are homologous, Vpx is expressed at much higher levels than Vpr. Previous studies demonstrated that this difference results from the presence of an HHCC zinc-binding site in Vpx that is absent in Vpr. Vpx has another unique region, a poly-proline motif (PPM) of seven consecutive prolines at the C-terminus. Using PPM point mutants of Vpx, this study demonstrated that these seven consecutive prolines are critical for suppressing proteasome degradation of Vpx in the absence of Gag. Both the PPM and the zinc-binding site stabilize Vpx but do so via different mechanisms. PPM and zinc-binding site mutants overexpressed in Escherichia coli aggregated readily, indicating that these motifs normally prevent exposure of the hydrophobic region outside the structure. Furthermore, introduction of the zinc-binding site and the PPM into Vpr increased the level of Vpr expression so that it was as high as that of Vpx. Intriguingly, HIV-2 has evolved to express Vpx at high levels and Vpr at low levels based on the presence and absence of these two motifs with distinct roles.
Collapse
Affiliation(s)
- Kazunori Shimagaki
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Ryoko Koga
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Haruna Fujino
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Ami Ahagon
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Tateishi
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Masami Otsuka
- Science Farm Ltd, Kumamoto, Japan.,Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | | | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
53
|
Zamyatnin AA, Belozerskaya TA. Multiple Diversity of Mitochondrial Cytochrome b Amino Acid Sequences of the Same Length in Animals. Front Mol Biosci 2020; 7:102. [PMID: 32626724 PMCID: PMC7311756 DOI: 10.3389/fmolb.2020.00102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/05/2020] [Indexed: 12/03/2022] Open
Abstract
The size of natural peptide molecules (proteins) can be considered as the number of amino acid residues p (protein length). The aim of the work was to analyze the region of existence and occurrence of natural amino acid residue sequences formed as a result of matrix synthesis on the p scale. The object of the study was the Swiss-Prot database consisting of more than 5.6 × 105 primary peptide structures, which were fully determined (complete sequence). Sequences containing non-standard amino acid residues, as well as identical copies of sequences, were removed from them. The remaining 463,450 different sequences with a length of 2–35,213 residues were used for further analysis. It was shown that the protein lengths of different biological domains and kingdoms are characterized by different regions of existence, and the profile shapes of the obtained curves are close to a number of known distributions. At the same time, they have sharp high peaks, indicating the existence of a large number of specific molecules with the same protein length. One of these peaks characterizes more than 1,000 different sequences of mitochondrial cytochrome b molecules at p = 379. Such examples may indicate that the most perfect protein lengths were selected in the evolutionary process to perform this function. As a result, many protein molecules with different sequences of the same length and characterized by the same functions were formed.
Collapse
Affiliation(s)
- Alexander A Zamyatnin
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, Russia
| | - Tatiana A Belozerskaya
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
54
|
Hattori LT, Pinheiro BA, Frigori RB, Benítez CMV, Lopes HS. PathMolD-AB: Spatiotemporal pathways of protein folding using parallel molecular dynamics with a coarse-grained model. Comput Biol Chem 2020; 87:107301. [PMID: 32554177 DOI: 10.1016/j.compbiolchem.2020.107301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 10/24/2022]
Abstract
Solving the protein folding problem (PFP) is one of the grand challenges still open in computational biophysics. Globular proteins are believed to evolve from initial configurations through folding pathways connecting several thermodynamically accessible states in a free energy landscape until reaching its minimum, inhabited by the stable native structures. Despite its huge computational burden, molecular dynamics (MD) is the leading approach in the PFP studies by preserving the Newtonian temporal evolution in the canonical ensemble. Non-trivial improvements are provided by highly parallel implementations of MD in cost-effective GPUs, concomitant to multiscale descriptions of proteins by coarse-grained minimalist models. In this vein, we present the PathMolD-AB framework, a comprehensive software package for massively parallel MD simulations using the canonical ensemble, structural analysis, and visualization of the folding pathways using the minimalist AB-model. It has, also, a tool to compare the results with proteins re-scaled from the PDB. We simulate and analyze, as case studies, the folding of four proteins: 13FIBO, 2GB1, 1PLC and 5ANZ, with 13, 55, 99 and 223 amino acids, respectively. The datasets generated from simulations correspond to the MD evolution of 3500 folding pathways, encompassing 35×106 states, which contains the spatial amino acid positions, the protein free energies and radii of gyration at each time step. Results indicate that the speedup of our approach grows logarithmically with the protein length and, therefore, it is suited for most of the proteins in the PDB. The predicted structures simulated by PathMolD-AB were similar to the re-scaled biological structures, indicating that it is promising for the study of the PFP study.
Collapse
Affiliation(s)
- Leandro Takeshi Hattori
- Bioinformatics and Computational Intelligence Laboratory (LABIC), Federal University of Technology Paraná (UTFPR), Av. 7 de Setembro, 3165, 80230-901 Curitiba, PR, Brazil.
| | - Bruna Araujo Pinheiro
- Bioinformatics and Computational Intelligence Laboratory (LABIC), Federal University of Technology Paraná (UTFPR), Av. 7 de Setembro, 3165, 80230-901 Curitiba, PR, Brazil.
| | - Rafael Bertolini Frigori
- Bioinformatics and Computational Intelligence Laboratory (LABIC), Federal University of Technology Paraná (UTFPR), Av. 7 de Setembro, 3165, 80230-901 Curitiba, PR, Brazil.
| | - César Manuel Vargas Benítez
- Bioinformatics and Computational Intelligence Laboratory (LABIC), Federal University of Technology Paraná (UTFPR), Av. 7 de Setembro, 3165, 80230-901 Curitiba, PR, Brazil
| | - Heitor Silvério Lopes
- Bioinformatics and Computational Intelligence Laboratory (LABIC), Federal University of Technology Paraná (UTFPR), Av. 7 de Setembro, 3165, 80230-901 Curitiba, PR, Brazil.
| |
Collapse
|
55
|
Zhang Y, Tammaro R, Peters P, Ravelli R. Could Egg White Lysozyme be Solved by Single Particle Cryo-EM? J Chem Inf Model 2020; 60:2605-2613. [PMID: 32202786 PMCID: PMC7254834 DOI: 10.1021/acs.jcim.9b01176] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 12/29/2022]
Abstract
The combination of high-end cryogenic transmission electron microscopes (cryo-EM), direct electron detectors, and advanced image algorithms allows researchers to obtain the 3D structures of much smaller macromolecules than years ago. However, there are still major challenges for the single-particle cryo-EM method to achieve routine structure determinations for macromolecules much smaller than 100 kDa, which are the majority of all plant and animal proteins. These challenges include sample characteristics such as sample heterogeneity, beam damage, ice layer thickness, stability, and quality, as well as hardware limitations such as detector performance, beam, and phase plate quality. Here, single particle data sets were simulated for samples that were ideal in terms of homogeneity, distribution, and stability, but with realistic parameters for ice layer, dose, detector performance, and beam characteristics. Reference data were calculated for human apo-ferritin using identical parameters reported for an experimental data set downloaded from EMPIAR. Processing of the simulated data set resulted in a value of 1.86 Å from 20 214 particles, similar to a 2 Å density map obtained from 29 224 particles selected from real micrographs. Simulated data sets were then generated for a 14 kDa protein, hen egg white lysozyme (HEWL), with and without an ideal phase plate (PP). Whereas we could not obtain a high-resolution 3D reconstruction of HEWL for the data set without PP, the one with PP resulted in a 2.78 Å resolution density map from 225 751 particles. Our simulator and simulations could help in pushing the size limits of cryo-EM.
Collapse
Affiliation(s)
- Y. Zhang
- The Maastricht Multimodal
Molecular Imaging Institute (M4I), Division of Nanoscopy, Maastricht University, 6229ER, Maastricht, The Netherlands
| | - R. Tammaro
- The Maastricht Multimodal
Molecular Imaging Institute (M4I), Division of Nanoscopy, Maastricht University, 6229ER, Maastricht, The Netherlands
| | - P.J. Peters
- The Maastricht Multimodal
Molecular Imaging Institute (M4I), Division of Nanoscopy, Maastricht University, 6229ER, Maastricht, The Netherlands
| | - R.B.G. Ravelli
- The Maastricht Multimodal
Molecular Imaging Institute (M4I), Division of Nanoscopy, Maastricht University, 6229ER, Maastricht, The Netherlands
| |
Collapse
|
56
|
Sheldon RA, Brady D, Bode ML. The Hitchhiker's guide to biocatalysis: recent advances in the use of enzymes in organic synthesis. Chem Sci 2020; 11:2587-2605. [PMID: 32206264 PMCID: PMC7069372 DOI: 10.1039/c9sc05746c] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/12/2020] [Indexed: 12/12/2022] Open
Abstract
Enzymes are excellent catalysts that are increasingly being used in industry and academia. This perspective is primarily aimed at synthetic organic chemists with limited experience using enzymes and provides a general and practical guide to enzymes and their synthetic potential, with particular focus on recent applications.
Collapse
Affiliation(s)
- Roger A Sheldon
- Molecular Sciences Institute , School of Chemistry , University of the Witwatersrand , Johannesburg , South Africa .
- Department of Biotechnology , Delft University of Technology , Delft , The Netherlands
| | - Dean Brady
- Molecular Sciences Institute , School of Chemistry , University of the Witwatersrand , Johannesburg , South Africa .
| | - Moira L Bode
- Molecular Sciences Institute , School of Chemistry , University of the Witwatersrand , Johannesburg , South Africa .
| |
Collapse
|
57
|
Frenkel-Pinter M, Samanta M, Ashkenasy G, Leman LJ. Prebiotic Peptides: Molecular Hubs in the Origin of Life. Chem Rev 2020; 120:4707-4765. [PMID: 32101414 DOI: 10.1021/acs.chemrev.9b00664] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The fundamental roles that peptides and proteins play in today's biology makes it almost indisputable that peptides were key players in the origin of life. Insofar as it is appropriate to extrapolate back from extant biology to the prebiotic world, one must acknowledge the critical importance that interconnected molecular networks, likely with peptides as key components, would have played in life's origin. In this review, we summarize chemical processes involving peptides that could have contributed to early chemical evolution, with an emphasis on molecular interactions between peptides and other classes of organic molecules. We first summarize mechanisms by which amino acids and similar building blocks could have been produced and elaborated into proto-peptides. Next, non-covalent interactions of peptides with other peptides as well as with nucleic acids, lipids, carbohydrates, metal ions, and aromatic molecules are discussed in relation to the possible roles of such interactions in chemical evolution of structure and function. Finally, we describe research involving structural alternatives to peptides and covalent adducts between amino acids/peptides and other classes of molecules. We propose that ample future breakthroughs in origin-of-life chemistry will stem from investigations of interconnected chemical systems in which synergistic interactions between different classes of molecules emerge.
Collapse
Affiliation(s)
- Moran Frenkel-Pinter
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mousumi Samanta
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Gonen Ashkenasy
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Luke J Leman
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
58
|
Zadeh Hosseingholi E, Zarrini G, Pashazadeh M, Gheibi Hayat SM, Molavi G. In Silico Identification of Probable Drug and Vaccine Candidates Against Antibiotic-Resistant Acinetobacter baumannii. Microb Drug Resist 2019; 26:456-467. [PMID: 31742478 DOI: 10.1089/mdr.2019.0236] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Acinetobacter baumannii is known as a Gram-negative bacterium that has become one of the most important health problems due to antibiotic resistance. Today, numerous efforts are being made to find new antibiotics against this nosocomial pathogen. As an alternative solution, finding bacterial target(s), necessary for survival and spread of most resistant strains, can be a benefit exploited in drug and vaccine design. In this study, a list of extensive drug-resistant and carbapenem-resistant (multidrug resistant) A. bumannii strains with complete sequencing of genome were prepared and common hypothetical proteins (HPs) composed of more than 200 amino acids were selected. Then, a number of bioinformatics tools were combined for functional assignments of HPs using their sequence. Overall, among 18 in silico investigated proteins, the results showed that 7 proteins implicated in transcriptional regulation, pilus assembly, protein catabolism, fatty acid biosynthesis, adhesion, urea catalysis, and hydrolysis of phosphate monoesters have theoretical potential of involvement in successful survival and pathogenesis of A. baumannii. In addition, immunological analyses with prediction softwares indicated 4 HPs to be probable vaccine candidates. The outcome of this work will be helpful to find novel vaccine design candidates and therapeutic targets for A. baumannii through experimental investigations.
Collapse
Affiliation(s)
| | - Gholamreza Zarrini
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Marayam Pashazadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Seyed Mohammad Gheibi Hayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | - Ghader Molavi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
59
|
Braun EL. An evolutionary model motivated by physicochemical properties of amino acids reveals variation among proteins. Bioinformatics 2019; 34:i350-i356. [PMID: 29950007 PMCID: PMC6022633 DOI: 10.1093/bioinformatics/bty261] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Motivation The relative rates of amino acid interchanges over evolutionary time are likely to vary among proteins. Variation in those rates has the potential to reveal information about constraints on proteins. However, the most straightforward model that could be used to estimate relative rates of amino acid substitution is parameter-rich and it is therefore impractical to use for this purpose. Results A six-parameter model of amino acid substitution that incorporates information about the physicochemical properties of amino acids was developed. It showed that amino acid side chain volume, polarity and aromaticity have major impacts on protein evolution. It also revealed variation among proteins in the relative importance of those properties. The same general approach can be used to improve the fit of empirical models such as the commonly used PAM and LG models. Availability and implementation Perl code and test data are available from https://github.com/ebraun68/sixparam. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Edward L Braun
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
60
|
Mohanta TK, Khan A, Hashem A, Abd Allah EF, Al-Harrasi A. The molecular mass and isoelectric point of plant proteomes. BMC Genomics 2019; 20:631. [PMID: 31382875 PMCID: PMC6681478 DOI: 10.1186/s12864-019-5983-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/17/2019] [Indexed: 01/02/2023] Open
Abstract
Background Cell contain diverse array of proteins with different molecular weight and isoelectric point (pI). The molecular weight and pI of protein play important role in determining the molecular biochemical function. Therefore, it was important to understand the detail regarding the molecular weight and pI of the plant proteins. Results A proteome-wide analysis of plant proteomes from 145 species revealed a pI range of 1.99 (epsin) to 13.96 (hypothetical protein). The spectrum of molecular mass of the plant proteins varied from 0.54 to 2236.8 kDa. A putative Type-I polyketide synthase (22244 amino acids) in Volvox carteri was found to be the largest protein in the plant kingdom. However, Type-I polyketide synthase was not found in higher plant species. Titin (806.46 kDa) and misin/midasin (730.02 kDa) were the largest proteins identified in higher plant species. The pI and molecular weight of the plant proteins showed a trimodal distribution. An acidic pI (56.44% of proteins) was found to be predominant over a basic pI (43.34% of proteins) and the abundance of acidic pI proteins was higher in unicellular algae species relative to multicellular higher plants. In contrast, the seaweed, Porphyra umbilicalis, possesses a higher proportion of basic pI proteins (70.09%). Plant proteomes were also found to contain selenocysteine (Sec), amino acid that was found only in lower eukaryotic aquatic plant lineage. Amino acid composition analysis showed Leu was high and Trp was low abundant amino acids in the plant proteome. Additionally, the plant proteomes also possess ambiguous amino acids Xaa (unknown), Asx (asparagine or aspartic acid), Glx (glutamine or glutamic acid), and Xle (leucine or isoleucine) as well. Conclusion The diverse molecular weight and isoelectric point range of plant proteome will be helpful to understand their biochemical and functional aspects. The presence of selenocysteine proteins in lower eukaryotic organism is of interest and their expression in higher plant system can help us to understand their functional role. Electronic supplementary material The online version of this article (10.1186/s12864-019-5983-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tapan Kumar Mohanta
- Natural and Medical Science Research Centre, University of Nizwa, 616, Nizwa, Oman.
| | - Abdullatif Khan
- Natural and Medical Science Research Centre, University of Nizwa, 616, Nizwa, Oman
| | - Abeer Hashem
- Botany and Microbiology Department, King Saud University, Riyadh, 11451, Saudi Arabia
| | | | - Ahmed Al-Harrasi
- Natural and Medical Science Research Centre, University of Nizwa, 616, Nizwa, Oman.
| |
Collapse
|
61
|
López-González C, Juárez-Colunga S, Morales-Elías NC, Tiessen A. Exploring regulatory networks in plants: transcription factors of starch metabolism. PeerJ 2019; 7:e6841. [PMID: 31328026 PMCID: PMC6625501 DOI: 10.7717/peerj.6841] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/25/2019] [Indexed: 11/20/2022] Open
Abstract
Biological networks are complex (non-linear), redundant (cyclic) and compartmentalized at the subcellular level. Rational manipulation of plant metabolism may have failed due to inherent difficulties of a comprehensive understanding of regulatory loops. We first need to identify key factors controlling the regulatory loops of primary metabolism. The paradigms of plant networks are revised in order to highlight the differences between metabolic and transcriptional networks. Comparison between animal and plant transcription factors (TFs) reveal some important differences. Plant transcriptional networks function at a lower hierarchy compared to animal regulatory networks. Plant genomes contain more TFs than animal genomes, but plant proteins are smaller and have less domains as animal proteins which are often multifunctional. We briefly summarize mutant analysis and co-expression results pinpointing some TFs regulating starch enzymes in plants. Detailed information is provided about biochemical reactions, TFs and cis regulatory motifs involved in sucrose-starch metabolism, in both source and sink tissues. Examples about coordinated responses to hormones and environmental cues in different tissues and species are listed. Further advancements require combined data from single-cell transcriptomic and metabolomic approaches. Cell fractionation and subcellular inspection may provide valuable insights. We propose that shuffling of promoter elements might be a promising strategy to improve in the near future starch content, crop yield or food quality.
Collapse
Affiliation(s)
| | | | | | - Axel Tiessen
- Departamento de Ingeniería Genética, CINVESTAV Unidad Irapuato, Irapuato, México.,Laboratorio Nacional PlanTECC, Irapuato, México
| |
Collapse
|
62
|
Cassidy L, Kaulich PT, Tholey A. Depletion of High-Molecular-Mass Proteins for the Identification of Small Proteins and Short Open Reading Frame Encoded Peptides in Cellular Proteomes. J Proteome Res 2019; 18:1725-1734. [DOI: 10.1021/acs.jproteome.8b00948] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Liam Cassidy
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Philipp T. Kaulich
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| |
Collapse
|
63
|
Gurumurthy CB, Perez-Pinera P. Technological advances in integrating multi-kilobase DNA sequences into genomes. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2018. [DOI: 10.1016/j.cobme.2018.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
64
|
Abstract
A half century of studying protein folding in vitro and modeling it in silico has not provided us with a reliable computational method to predict the native conformations of proteins de novo, let alone identify the intermediates on their folding pathways. In this Opinion article, we suggest that the reason for this impasse is the over-reliance on current physical models of protein folding that are based on the assumption that proteins are able to fold spontaneously without assistance. These models arose from studies conducted in vitro on a biased sample of smaller, easier-to-isolate proteins, whose native structures appear to be thermodynamically stable. Meanwhile, the vast empirical data on the majority of larger proteins suggests that once these proteins are completely denatured in vitro, they cannot fold into native conformations without assistance. Moreover, they tend to lose their native conformations spontaneously and irreversibly in vitro, and therefore such conformations must be metastable. We propose a model of protein folding that is based on the notion that the folding of all proteins in the cell is mediated by the actions of the "protein folding machine" that includes the ribosome, various chaperones, and other components involved in co-translational or post-translational formation, maintenance and repair of protein native conformations in vivo. The most important and universal component of the protein folding machine consists of the ribosome in complex with the welcoming committee chaperones. The concerted actions of molecular machinery in the ribosome peptidyl transferase center, in the exit tunnel, and at the surface of the ribosome result in the application of mechanical and other forces to the nascent peptide, reducing its conformational entropy and possibly creating strain in the peptide backbone. The resulting high-energy conformation of the nascent peptide allows it to fold very fast and to overcome high kinetic barriers along the folding pathway. The early folding intermediates in vivo are stabilized by interactions with the ribosome and welcoming committee chaperones and would not be able to exist in vitro in the absence of such cellular components. In vitro experiments that unfold proteins by heat or chemical treatment produce denaturation ensembles that are very different from folding intermediates in vivo and therefore have very limited use in reconstructing the in vivo folding pathways. We conclude that computational modeling of protein folding should deemphasize the notion of unassisted thermodynamically controlled folding, and should focus instead on the step-by-step reverse engineering of the folding process as it actually occurs in vivo. REVIEWERS This article was reviewed by Eugene Koonin and Frank Eisenhaber.
Collapse
|
65
|
Mahmoudabadi G, Phillips R. A comprehensive and quantitative exploration of thousands of viral genomes. eLife 2018; 7:31955. [PMID: 29624169 PMCID: PMC5908442 DOI: 10.7554/elife.31955] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 03/30/2018] [Indexed: 01/27/2023] Open
Abstract
The complete assembly of viral genomes from metagenomic datasets (short genomic sequences gathered from environmental samples) has proven to be challenging, so there are significant blind spots when we view viral genomes through the lens of metagenomics. One approach to overcoming this problem is to leverage the thousands of complete viral genomes that are publicly available. Here we describe our efforts to assemble a comprehensive resource that provides a quantitative snapshot of viral genomic trends – such as gene density, noncoding percentage, and abundances of functional gene categories – across thousands of viral genomes. We have also developed a coarse-grained method for visualizing viral genome organization for hundreds of genomes at once, and have explored the extent of the overlap between bacterial and bacteriophage gene pools. Existing viral classification systems were developed prior to the sequencing era, so we present our analysis in a way that allows us to assess the utility of the different classification systems for capturing genomic trends.
Collapse
Affiliation(s)
- Gita Mahmoudabadi
- Department of Bioengineering, California Institute of Technology, Pasadena, United States
| | - Rob Phillips
- Department of Bioengineering, California Institute of Technology, Pasadena, United States.,Department of Applied Physics, California Institute of Technology, Pasadena, United States
| |
Collapse
|
66
|
Pohorille A, Wilson MA, Shannon G. Flexible Proteins at the Origin of Life. Life (Basel) 2017; 7:E23. [PMID: 28587235 PMCID: PMC5492145 DOI: 10.3390/life7020023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/10/2017] [Accepted: 05/24/2017] [Indexed: 11/17/2022] Open
Abstract
Almost all modern proteins possess well-defined, relatively rigid scaffolds that provide structural preorganization for desired functions. Such scaffolds require the sufficient length of a polypeptide chain and extensive evolutionary optimization. How ancestral proteins attained functionality, even though they were most likely markedly smaller than their contemporary descendants, remains a major, unresolved question in the origin of life. On the basis of evidence from experiments and computer simulations, we argue that at least some of the earliest water-soluble and membrane proteins were markedly more flexible than their modern counterparts. As an example, we consider a small, evolved in vitro ligase, based on a novel architecture that may be the archetype of primordial enzymes. The protein does not contain a hydrophobic core or conventional elements of the secondary structure characteristic of modern water-soluble proteins, but instead is built of a flexible, catalytic loop supported by a small hydrophilic core containing zinc atoms. It appears that disorder in the polypeptide chain imparts robustness to mutations in the protein core. Simple ion channels, likely the earliest membrane protein assemblies, could also be quite flexible, but still retain their functionality, again in contrast to their modern descendants. This is demonstrated in the example of antiamoebin, which can serve as a useful model of small peptides forming ancestral ion channels. Common features of the earliest, functional protein architectures discussed here include not only their flexibility, but also a low level of evolutionary optimization and heterogeneity in amino acid composition and, possibly, the type of peptide bonds in the protein backbone.
Collapse
Affiliation(s)
- Andrew Pohorille
- Exobiology Branch, MS 239-4, NASA Ames Research Center, Moffett Field, CA 94035, USA.
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94132, USA.
| | - Michael A Wilson
- Exobiology Branch, MS 239-4, NASA Ames Research Center, Moffett Field, CA 94035, USA.
- SETI Institute, 189 N Bernardo Ave #200, Mountain View, CA 94043, USA.
| | - Gareth Shannon
- Exobiology Branch, MS 239-4, NASA Ames Research Center, Moffett Field, CA 94035, USA.
- NASA Postdoctoral Program Fellow, NASA Ames Research Center, Moffett Field, CA 94035, USA.
| |
Collapse
|
67
|
Ramírez-Sánchez O, Pérez-Rodríguez P, Delaye L, Tiessen A. Plant Proteins Are Smaller Because They Are Encoded by Fewer Exons than Animal Proteins. GENOMICS, PROTEOMICS & BIOINFORMATICS 2016; 14:357-370. [PMID: 27998811 PMCID: PMC5200936 DOI: 10.1016/j.gpb.2016.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 06/03/2016] [Accepted: 06/03/2016] [Indexed: 01/27/2023]
Abstract
Protein size is an important biochemical feature since longer proteins can harbor more domains and therefore can display more biological functionalities than shorter proteins. We found remarkable differences in protein length, exon structure, and domain count among different phylogenetic lineages. While eukaryotic proteins have an average size of 472 amino acid residues (aa), average protein sizes in plant genomes are smaller than those of animals and fungi. Proteins unique to plants are ∼81aa shorter than plant proteins conserved among other eukaryotic lineages. The smaller average size of plant proteins could neither be explained by endosymbiosis nor subcellular compartmentation nor exon size, but rather due to exon number. Metazoan proteins are encoded on average by ∼10 exons of small size [∼176 nucleotides (nt)]. Streptophyta have on average only ∼5.7 exons of medium size (∼230nt). Multicellular species code for large proteins by increasing the exon number, while most unicellular organisms employ rather larger exons (>400nt). Among subcellular compartments, membrane proteins are the largest (∼520aa), whereas the smallest proteins correspond to the gene ontology group of ribosome (∼240aa). Plant genes are encoded by half the number of exons and also contain fewer domains than animal proteins on average. Interestingly, endosymbiotic proteins that migrated to the plant nucleus became larger than their cyanobacterial orthologs. We thus conclude that plants have proteins larger than bacteria but smaller than animals or fungi. Compared to the average of eukaryotic species, plants have ∼34% more but ∼20% smaller proteins. This suggests that photosynthetic organisms are unique and deserve therefore special attention with regard to the evolutionary forces acting on their genomes and proteomes.
Collapse
Affiliation(s)
- Obed Ramírez-Sánchez
- Genetic Engineering Department, CINVESTAV Unidad Irapuato, Irapuato, CP 36821, Mexico
| | | | - Luis Delaye
- Genetic Engineering Department, CINVESTAV Unidad Irapuato, Irapuato, CP 36821, Mexico
| | - Axel Tiessen
- Genetic Engineering Department, CINVESTAV Unidad Irapuato, Irapuato, CP 36821, Mexico.
| |
Collapse
|
68
|
Zhang J, Misra S, Wang H, Feng WC. muBLASTP: database-indexed protein sequence search on multicore CPUs. BMC Bioinformatics 2016; 17:443. [PMID: 27809763 PMCID: PMC5096327 DOI: 10.1186/s12859-016-1302-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 10/21/2016] [Indexed: 11/16/2022] Open
Abstract
Background The Basic Local Alignment Search Tool (BLAST) is a fundamental program in the life sciences that searches databases for sequences that are most similar to a query sequence. Currently, the BLAST algorithm utilizes a query-indexed approach. Although many approaches suggest that sequence search with a database index can achieve much higher throughput (e.g., BLAT, SSAHA, and CAFE), they cannot deliver the same level of sensitivity as the query-indexed BLAST, i.e., NCBI BLAST, or they can only support nucleotide sequence search, e.g., MegaBLAST. Due to different challenges and characteristics between query indexing and database indexing, the existing techniques for query-indexed search cannot be used into database indexed search. Results muBLASTP, a novel database-indexed BLAST for protein sequence search, delivers identical hits returned to NCBI BLAST. On Intel Haswell multicore CPUs, for a single query, the single-threaded muBLASTP achieves up to a 4.41-fold speedup for alignment stages, and up to a 1.75-fold end-to-end speedup over single-threaded NCBI BLAST. For a batch of queries, the multithreaded muBLASTP achieves up to a 5.7-fold speedups for alignment stages, and up to a 4.56-fold end-to-end speedup over multithreaded NCBI BLAST. Conclusions With a newly designed index structure for protein database and associated optimizations in BLASTP algorithm, we re-factored BLASTP algorithm for modern multicore processors that achieves much higher throughput with acceptable memory footprint for the database index. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1302-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Computer Science, Virginia Tech, 225 Stanger Street, Blacksburg, 24060, VA, USA.
| | - Sanchit Misra
- Parallel Computing Lab, Intel Corporation, Bengaluru, Karnataka, 560102, India
| | - Hao Wang
- Department of Computer Science, Virginia Tech, 225 Stanger Street, Blacksburg, 24060, VA, USA
| | - Wu-Chun Feng
- Department of Computer Science, Virginia Tech, 225 Stanger Street, Blacksburg, 24060, VA, USA
| |
Collapse
|
69
|
Genome-Wide Analysis of Genes Encoding Methionine-Rich Proteins in Arabidopsis and Soybean Suggesting Their Roles in the Adaptation of Plants to Abiotic Stress. Int J Genomics 2016; 2016:5427062. [PMID: 27635394 PMCID: PMC5007304 DOI: 10.1155/2016/5427062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 07/19/2016] [Indexed: 11/30/2022] Open
Abstract
Oxidation and reduction of methionine (Met) play important roles in scavenging reactive oxygen species (ROS) and signaling in living organisms. To understand the impacts of Met oxidation and reduction in plants during stress, we surveyed the genomes of Arabidopsis and soybean (Glycine max L.) for genes encoding Met-rich proteins (MRPs). We found 121 and 213 genes encoding MRPs in Arabidopsis and soybean, respectively. Gene annotation indicated that those with known function are involved in vital cellular processes such as transcriptional control, calcium signaling, protein modification, and metal transport. Next, we analyzed the transcript levels of MRP-coding genes under normal and stress conditions. We found that 57 AtMRPs were responsive either to drought or to high salinity stress in Arabidopsis; 35 GmMRPs were responsive to drought in the leaf of late vegetative or early reproductive stages of soybean. Among the MRP genes with a known function, the majority of the abiotic stress-responsive genes are involved in transcription control and calcium signaling. Finally, Arabidopsis plant which overexpressed an MRP-coding gene, whose transcripts were downregulated by abiotic stress, was more sensitive to paraquat than the control. Taken together, our report indicates that MRPs participate in various vital processes of plants under normal and stress conditions.
Collapse
|
70
|
Cabrera-Quio LE, Herberg S, Pauli A. Decoding sORF translation - from small proteins to gene regulation. RNA Biol 2016; 13:1051-1059. [PMID: 27653973 DOI: 10.1080/15476286.2016.1218589] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Translation is best known as the fundamental mechanism by which the ribosome converts a sequence of nucleotides into a string of amino acids. Extensive research over many years has elucidated the key principles of translation, and the majority of translated regions were thought to be known. The recent discovery of wide-spread translation outside of annotated protein-coding open reading frames (ORFs) came therefore as a surprise, raising the intriguing possibility that these newly discovered translated regions might have unrecognized protein-coding or gene-regulatory functions. Here, we highlight recent findings that provide evidence that some of these newly discovered translated short ORFs (sORFs) encode functional, previously missed small proteins, while others have regulatory roles. Based on known examples we will also speculate about putative additional roles and the potentially much wider impact that these translated regions might have on cellular homeostasis and gene regulation.
Collapse
Affiliation(s)
| | - Sarah Herberg
- a The Research Institute of Molecular Pathology, Vienna Biocenter (VBC) , Vienna , Austria
| | - Andrea Pauli
- a The Research Institute of Molecular Pathology, Vienna Biocenter (VBC) , Vienna , Austria
| |
Collapse
|
71
|
Neves F, Abrantes J, Esteves PJ. Evolution of CCL11: genetic characterization in lagomorphs and evidence of positive and purifying selection in mammals. Innate Immun 2016; 22:336-43. [PMID: 27189425 DOI: 10.1177/1753425916647471] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/06/2016] [Indexed: 12/27/2022] Open
Abstract
The interactions between chemokines and their receptors are crucial for differentiation and activation of inflammatory cells. CC chemokine ligand 11 (CCL11) binds to CCR3 and to CCR5 that in leporids underwent gene conversion with CCR2. Here, we genetically characterized CCL11 in lagomorphs (leporids and pikas). All lagomorphs have a potentially functional CCL11, and the Pygmy rabbit has a mutation in the stop codon that leads to a longer protein. Other mammals also have mutations at the stop codon that result in proteins with different lengths. By employing maximum likelihood methods, we observed that, in mammals, CCL11 exhibits both signatures of purifying and positive selection. Signatures of purifying selection were detected in sites important for receptor binding and activation. Of the three sites detected as under positive selection, two were located close to the stop codon. Our results suggest that CCL11 is functional in all lagomorphs, and that the signatures of purifying and positive selection in mammalian CCL11 probably reflect the protein's biological roles.
Collapse
Affiliation(s)
- Fabiana Neves
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Vairão, Portugal UMIB/UP - Unidade Multidisciplinar de Investigação Biomédica/Universidade do Porto, Porto, Portugal
| | - Joana Abrantes
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Vairão, Portugal
| | - Pedro J Esteves
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Vairão, Portugal Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal CITS - Centro de Investigação em Tecnologias de Saúde, CESPU, Gandra, Portugal
| |
Collapse
|
72
|
Davidson DW, Kopchinskiy A, Salim KA, Grujic M, Lim L, Mei CC, Jones TH, Casamatta D, Atanasova L, Druzhinina IS. Nutrition of Borneo's ‘exploding’ ants (Hymenoptera: Formicidae:Colobopsis): a preliminary assessment. Biotropica 2016. [DOI: 10.1111/btp.12323] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Diane W. Davidson
- Department of Biology; University of Utah; 257 South, 1400 East Salt Lake City UT 84112-0840 U.S.A
- P.O. Box 16272 Portal AZ 85632-1272 U.S.A
| | - Alexey Kopchinskiy
- Research Area Biotechnology and Microbiology; Institute of Chemical Engineering; Technische Universität Wien; Gumpendorfer Strasse 1a A-1060 Vienna Austria
| | - Kamariah Abu Salim
- Environmental and Life Sciences; Universiti Brunei Darussalam; Jalan Tungku Link Bandar Seri Begawan BE 1410 Brunei Darussalam
| | - Marica Grujic
- Research Area Biotechnology and Microbiology; Institute of Chemical Engineering; Technische Universität Wien; Gumpendorfer Strasse 1a A-1060 Vienna Austria
| | - Linda Lim
- Chemistry Programme; Universiti Brunei Darussalam; Jalan Tungku Link Bandar Seri Begawan BE 1410 Brunei Darussalam
| | - Chan Chin Mei
- Chemistry Programme; Universiti Brunei Darussalam; Jalan Tungku Link Bandar Seri Begawan BE 1410 Brunei Darussalam
| | - Tappey H. Jones
- Department of Chemistry; Virginia Military Institute; Lexington VA 24450 U.S.A
| | - Dale Casamatta
- Department of Biology; University of North Florida; 1 UNF Drive Jacksonville FL 32224 U.S.A
| | - Lea Atanasova
- Research Area Biotechnology and Microbiology; Institute of Chemical Engineering; Technische Universität Wien; Gumpendorfer Strasse 1a A-1060 Vienna Austria
| | - Irina S. Druzhinina
- Research Area Biotechnology and Microbiology; Institute of Chemical Engineering; Technische Universität Wien; Gumpendorfer Strasse 1a A-1060 Vienna Austria
| |
Collapse
|
73
|
Teufel AI, Masel J, Liberles DA. What Fraction of Duplicates Observed in Recently Sequenced Genomes Is Segregating and Destined to Fail to Fix? Genome Biol Evol 2015. [PMID: 26220936 PMCID: PMC4558857 DOI: 10.1093/gbe/evv139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Most sequenced eukaryotic genomes show a large excess of recent duplicates. As duplicates age, both the population genetic process of failed fixation and the mutation-driven process of nonfunctionalization act to reduce the observed number of duplicates. Understanding the processes generating the age distributions of recent duplicates is important to also understand the role of duplicate genes in the functional divergence of genomes. To date, mechanistic models for duplicate gene retention only account for the mutation-driven nonfunctionalization process. Here, a neutral model for the distribution of synonymous substitutions in duplicated genes which are segregating and expected to never fix in a population is introduced. This model enables differentiation of neutral loss due to failed fixation from loss due to mutation-driven nonfunctionalization. The model has been validated on simulated data and subsequent analysis with the model on genomic data from human and mouse shows that conclusions about the underlying mechanisms for duplicate gene retention can be sensitive to consideration of population genetic processes.
Collapse
Affiliation(s)
- Ashley I Teufel
- Department of Molecular Biology, University of Wyoming Center for Computational Genetics and Genomics and Department of Biology, Temple University
| | - Joanna Masel
- Department of Ecology and Evolutionary Biology, University of Arizona
| | - David A Liberles
- Department of Molecular Biology, University of Wyoming Center for Computational Genetics and Genomics and Department of Biology, Temple University
| |
Collapse
|
74
|
Bhartiya D, Chandramouli B, Kumar N. Co-evolutionary analysis implies auxiliary functions of HSP110 in Plasmodium falciparum. Proteins 2015; 83:1513-25. [DOI: 10.1002/prot.24842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 05/21/2015] [Accepted: 05/27/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Deeksha Bhartiya
- Institute of Cytology and Preventive Oncology (ICMR); Noida 201301 Uttar Pradesh India
| | | | - Niti Kumar
- CSIR-Central Drug Research Institute; Lucknow 226031 Uttar Pradesh India
| |
Collapse
|
75
|
Hatton L, Warr G. Protein structure and evolution: are they constrained globally by a principle derived from information theory? PLoS One 2015; 10:e0125663. [PMID: 25970335 PMCID: PMC4429977 DOI: 10.1371/journal.pone.0125663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/19/2015] [Indexed: 01/01/2023] Open
Abstract
That the physicochemical properties of amino acids constrain the structure, function and evolution of proteins is not in doubt. However, principles derived from information theory may also set bounds on the structure (and thus also the evolution) of proteins. Here we analyze the global properties of the full set of proteins in release 13-11 of the SwissProt database, showing by experimental test of predictions from information theory that their collective structure exhibits properties that are consistent with their being guided by a conservation principle. This principle (Conservation of Information) defines the global properties of systems composed of discrete components each of which is in turn assembled from discrete smaller pieces. In the system of proteins, each protein is a component, and each protein is assembled from amino acids. Central to this principle is the inter-relationship of the unique amino acid count and total length of a protein and its implications for both average protein length and occurrence of proteins with specific unique amino acid counts. The unique amino acid count is simply the number of distinct amino acids (including those that are post-translationally modified) that occur in a protein, and is independent of the number of times that the particular amino acid occurs in the sequence. Conservation of Information does not operate at the local level (it is independent of the physicochemical properties of the amino acids) where the influences of natural selection are manifest in the variety of protein structure and function that is well understood. Rather, this analysis implies that Conservation of Information would define the global bounds within which the whole system of proteins is constrained; thus it appears to be acting to constrain evolution at a level different from natural selection, a conclusion that appears counter-intuitive but is supported by the studies described herein.
Collapse
Affiliation(s)
- Leslie Hatton
- Faculty of Science, Engineering and Computing, Kingston University, London, UK
- * E-mail:
| | - Gregory Warr
- Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
76
|
Endosymbiosis undone by stepwise elimination of the plastid in a parasitic dinoflagellate. Proc Natl Acad Sci U S A 2015; 112:5767-72. [PMID: 25902514 DOI: 10.1073/pnas.1423400112] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Organelle gain through endosymbiosis has been integral to the origin and diversification of eukaryotes, and, once gained, plastids and mitochondria seem seldom lost. Indeed, discovery of nonphotosynthetic plastids in many eukaryotes--notably, the apicoplast in apicomplexan parasites such as the malaria pathogen Plasmodium--highlights the essential metabolic functions performed by plastids beyond photosynthesis. Once a cell becomes reliant on these ancillary functions, organelle dependence is apparently difficult to overcome. Previous examples of endosymbiotic organelle loss (either mitochondria or plastids), which have been invoked to explain the origin of eukaryotic diversity, have subsequently been recognized as organelle reduction to cryptic forms, such as mitosomes and apicoplasts. Integration of these ancient symbionts with their hosts has been too well developed to reverse. Here, we provide evidence that the dinoflagellate Hematodinium sp., a marine parasite of crustaceans, represents a rare case of endosymbiotic organelle loss by the elimination of the plastid. Extensive RNA and genomic sequencing data provide no evidence for a plastid organelle, but, rather, reveal a metabolic decoupling from known plastid functions that typically impede organelle loss. This independence has been achieved through retention of ancestral anabolic pathways, enzyme relocation from the plastid to the cytosol, and metabolic scavenging from the parasite's host. Hematodinium sp. thus represents a further dimension of endosymbiosis--life after the organelle.
Collapse
|
77
|
Leija-Martínez N, Casas-Flores S, Cadena-Nava RD, Roca JA, Mendez-Cabañas JA, Gomez E, Ruiz-Garcia J. The separation between the 5'-3' ends in long RNA molecules is short and nearly constant. Nucleic Acids Res 2014; 42:13963-8. [PMID: 25428360 PMCID: PMC4267660 DOI: 10.1093/nar/gku1249] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
RNA molecules play different roles in coding, decoding and gene expression regulation. Such roles are often associated to the RNA secondary or tertiary structures. The folding dynamics lead to multiple secondary structures of long RNA molecules, since an RNA molecule might fold into multiple distinct native states. Despite an ensemble of different structures, it has been theoretically proposed that the separation between the 5′ and 3′ ends of long single-stranded RNA molecules (ssRNA) remains constant, independent of their base content and length. Here, we present the first experimental measurements of the end-to-end separation in long ssRNA molecules. To determine this separation, we use single molecule Fluorescence Resonance Energy Transfer of fluorescently end-labeled ssRNA molecules ranging from 500 to 5500 nucleotides in length, obtained from two viruses and a fungus. We found that the end-to-end separation is indeed short, within 5–9 nm. It is remarkable that the separation of the ends of all RNA molecules studied remains small and similar, despite the origin, length and differences in their secondary structure. This implies that the ssRNA molecules are ‘effectively circularized’ something that might be a general feature of RNAs, and could result in fine-tuning for translation and gene expression regulation.
Collapse
Affiliation(s)
- Nehemías Leija-Martínez
- Biological Physics Laboratory, Physics Institute, Universidad Autónoma de San Luis Potosí, Alvaro Obregon 64, San Luis Potosí, S.L.P. 78290, México
| | - Sergio Casas-Flores
- División de Biología Molecular, IPICYT, Camino a la Presa San Jose s/n, San Luis Potosí, SLP 78216, México
| | - Rubén D Cadena-Nava
- Center for Nanociences and Nanotechnology, Universidad Nacional Autónoma de México, Km. 107 Carretera Tijuana-Ensenada s/n, Baja California 22800, México
| | - Joan A Roca
- Centre de Desenvolupament de Sensors, Instrumentación i Sistemes, Universitat Politecnica de Catalunya, Rambla de Sant Nebridi 10, E-0822, Terrasa, España
| | - José A Mendez-Cabañas
- Molecular Biophysics Laboratory, Physics Institute, Universidad Autónoma de San Luis Potosí, Alvaro Obregon 64, San Luis Potosí, SLP 78290, México
| | - Eduardo Gomez
- Biological Physics Laboratory, Physics Institute, Universidad Autónoma de San Luis Potosí, Alvaro Obregon 64, San Luis Potosí, S.L.P. 78290, México
| | - Jaime Ruiz-Garcia
- Biological Physics Laboratory, Physics Institute, Universidad Autónoma de San Luis Potosí, Alvaro Obregon 64, San Luis Potosí, S.L.P. 78290, México
| |
Collapse
|
78
|
Kusch S, Ahmadinejad N, Panstruga R, Kuhn H. In silico analysis of the core signaling proteome from the barley powdery mildew pathogen (Blumeria graminis f.sp. hordei). BMC Genomics 2014; 15:843. [PMID: 25277210 PMCID: PMC4195978 DOI: 10.1186/1471-2164-15-843] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 09/24/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Compared to other ascomycetes, the barley powdery mildew pathogen Blumeria graminis f.sp. hordei (Bgh) has a large genome (ca. 120 Mbp) that harbors a relatively small number of protein-coding genes (ca. 6500). This genomic assemblage is thought to be the result of numerous gene losses, which likely represent an evolutionary adaptation to a parasitic lifestyle in close association with its host plant, barley (Hordeum vulgare). Approximately 8% of the Bgh genes are predicted to encode virulence effectors that are secreted into host tissue and/or cells to promote pathogenesis; the remaining proteome is largely uncharacterized at present. RESULTS We provide a comparative analysis of the conceptual Bgh proteome, with an emphasis on proteins with known roles in fungal development and pathogenicity, for example heterotrimeric G proteins and G protein coupled receptors; components of calcium and cAMP signaling; small monomeric GTPases; mitogen-activated protein cascades and transcription factors. The predicted Bgh proteome lacks a number of proteins that are otherwise conserved in filamentous fungi, including two proteins that are required for the formation of anastomoses (somatic hyphal connections). By contrast, apart from minor modifications, all major canonical signaling pathways are retained in Bgh. A family of kinases that preferentially occur in pathogenic species of the fungal clade Leotiomyceta is unusually expanded in Bgh and its close relative, Blumeria graminis f.sp. tritici. CONCLUSIONS Our analysis reveals characteristic features of the proteome of a fungal phytopathogen that occupies an extreme habitat: the living plant cell.
Collapse
Affiliation(s)
| | | | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany.
| | | |
Collapse
|
79
|
Angeles-Núñez JG, Tiessen A. Regulation of AtSUS2 and AtSUS3 by glucose and the transcription factor LEC2 in different tissues and at different stages of Arabidopsis seed development. PLANT MOLECULAR BIOLOGY 2012; 78:377-92. [PMID: 22228409 DOI: 10.1007/s11103-011-9871-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 12/14/2011] [Indexed: 05/25/2023]
Abstract
Sucrose synthase (SUS) is a key enzyme of carbon metabolism in heterotrophic tissues of plants. The Arabidopsis genome contains six SUS genes. Two members of this family, namely AtSUS2 (At5g49190) and AtSUS3 (At4g02280) are strongly and differentially expressed in Arabidopsis seed. Expression analysis was carried out using SUS:promoter-GUS fusion lines in a wild-type genetic background or in a mutant carrying a lesion in the transcription factor LEAFY COTYLEDON 2 (LEC2; At1g28300). The accumulation patterns of mRNA, protein, and SUS activity were altered in the lec2 mutant during seed development 9-18 days after flowering. This indicates that LEC2 acts epistatically on the expression of AtSUS2 and AtSUS3. It appears that LEC2 is required for cotyledon-specific expression of both SUS genes but it is not responsible for expression in the radicle tip during embryo development. The AtSUS2 promoter was induced in planta by feeding of glucose but less so by sucrose and trehalose. Non-phosphorylable glucose analogs such as 3-O-methyl-glucose and 2-deoxyglucose also caused an induction, suggesting that sugar signaling proceeds by a hexokinase-independent pathway, possibly involving hexose sensing. Analysis of transgenic lines carrying of truncated versions of the AtSUS2:promoter fused to Beta-glucuronidase activity revealed an internal 421 bp region that was responsible for expression in seeds. Bioinformatic sequence analysis revealed regulatory cis-elements putatively responsible for the spatio-temporal pattern of AtSUS2 expression such as the SEF3 (aaccca) and W-box (ttgact) motifs. These findings are discussed in relation to the roles played by AtSUS2, AtSUS3 and LEC2 in the biosynthesis of seed storage products in Arabidopsis.
Collapse
Affiliation(s)
- Juan Gabriel Angeles-Núñez
- Departamento de Ingeniería Genética, CINVESTAV, Unidad Irapuato, Km 9.8 Libramiento Norte, CP 36821 Irapuato, Guanajuato, Mexico
| | | |
Collapse
|