51
|
Bansal Y, Minhas R, Singhal A, Arora RK, Bansal G. Benzimidazole: A Multifacted Nucelus for Anticancer Agents. CURR ORG CHEM 2021. [DOI: 10.2174/1385272825666210208141107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cancer is characterized by an uncontrolled proliferation of cells, dedifferentiation,
invasiveness and metastasis. Endothelial growth factor (eGF), insulin-like growth factor
(IGF), platelet-derived growth factor (PDGF), Fibroblast growth factor (FGF), Vascular endothelial
growth factor (VEGF), checkpoint kinase 1 & 2 ( Chk1 & Chk2), aurora kinases,
topoisomerases, histone deacetylators (HDAC), poly(ADP-Ribose)polymerase (PARP), farnesyl
transferases, RAS-MAPK pathway and PI3K-Akt-mTOR pathway, are some of the
prominent mediators implicated in the proliferation of tumor cells. Huge artillery of natural
and synthetic compounds as anticancer, which act by inhibiting one or more of the enzymes
and/or pathways responsible for the progression of tumor cells, is reported in the literature.
The major limitations of anticancer agents used in clinics as well as of those under development
in literature are normal cell toxicity and other side effects due to lack of specificity.
Hence, medicinal chemists across the globe have been working for decades to develop potent and safe anticancer
agents from natural sources as well as from different classes of heterocycles. Benzimidazole is one of the most important
and explored heteronucelus because of their versatility in biological actions as well as synthetic applications
in medicinal chemistry. The structural similarity of amino derivatives of benzimidazole with purines makes it a fascinating
nucleus for the development of anticancer, antimicrobial and anti-HIV agents. This review article is an attempt
to critically analyze various reports on benzimidazole derivatives acting on different targets to act as anticancer so as
to understand the structural requirements around benzimidazole nucleus for each target and enable medicinal chemists
to promote rational development of antitumor agents.
Collapse
Affiliation(s)
- Yogita Bansal
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala - 147002, India
| | - Richa Minhas
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala - 147002, India
| | - Ankit Singhal
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala - 147002, India
| | - Radhey Krishan Arora
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala - 147002, India
| | - Gulshan Bansal
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala - 147002, India
| |
Collapse
|
52
|
Lee M, Song Y, Choi I, Lee SY, Kim S, Kim SH, Kim J, Seo HR. Expression of HYOU1 via Reciprocal Crosstalk between NSCLC Cells and HUVECs Control Cancer Progression and Chemoresistance in Tumor Spheroids. Mol Cells 2021; 44:50-62. [PMID: 33455947 PMCID: PMC7854178 DOI: 10.14348/molcells.2020.0212] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/17/2020] [Indexed: 12/25/2022] Open
Abstract
Among all cancer types, lung cancer ranks highest worldwide in terms of both incidence and mortality. The crosstalk between lung cancer cells and their tumor microenvironment (TME) has begun to emerge as the "Achilles heel" of the disease and thus constitutes an attractive target for anticancer therapy. We previously revealed that crosstalk between lung cancer cells and endothelial cells (ECs) induces chemoresistance in multicellular tumor spheroids (MCTSs). In this study, we demonstrated that factors secreted in response to crosstalk between ECs and lung cancer cells play pivotal roles in the development of chemoresistance in lung cancer spheroids. We subsequently determined that the expression of hypoxia up-regulated protein 1 (HYOU1) in lung cancer spheroids was increased by factors secreted in response to crosstalk between ECs and lung cancer cells. Direct interaction between lung cancer cells and ECs also caused an elevation in the expression of HYOU1 in MCTSs. Inhibition of HYOU1 expression not only suppressed stemness and malignancy, but also facilitated apoptosis and chemosensitivity in lung cancer MCTSs. Inhibition of HYOU1 expression also significantly increased the expression of interferon signaling components in lung cancer cells. Moreover, the activation of the PI3K/AKT/mTOR pathway was involved in the HYOU1-induced aggression of lung cancer cells. Taken together, our results identify HYOU1, which is induced in response to crosstalk between ECs and lung cancer cells within the TME, as a potential therapeutic target for combating the aggressive behavior of cancer cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jiho Kim
- Screening Discovery Platform, Institut Pasteur Korea, Seongnam 13488, Korea
| | | |
Collapse
|
53
|
Bu L, Hameed NUF, Luo C, Hong P, Zhou X, Wang S, Wu S. Germline ALK variations are associated with a poor prognosis in glioma and IDH-wildtype glioblastoma. J Neurooncol 2021; 152:27-36. [PMID: 33486679 DOI: 10.1007/s11060-020-03676-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/12/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Glioma is the most common primary brain tumor. Clear classification is crucial for accurate diagnosis and individualized treatment. Histopathological characteristics and genetic alterations have shown to be related to prognosis and treatment response. Germline variants are important components of genetic alterations. However, the distribution of germline variations in glioma patients and their association with survival remain unknown. METHODS We carried out whole-exome sequencing on 99 cases to explore germline variants in glioma. We also analyzed the association of germline variants with clinicopathological features and other prognostic indicators. RESULTS All the glioma cases harbored rare germline variants. Germline ALK variants (gALK-Mut) were identified in 12/99 (12.12%) patients. The gALK-Mut patients had significantly shorter overall survival than germline ALK wildtype (gALK-WT) patients in the all glioma group (99 cases) and the subset of patients with IDH-wildtype glioblastoma (IDH-WT-GBM, 39 cases) (P = 0.013 and 0.027, respectively). The gALK-Mut patients also had higher frequency of BIRC5, PIK3CA and RPN1 somatic mutations than the gALK-WT patients in IDH-WT-GBM. Other confounding factors appeared to contribute to patient survival. The subgroup of patients in IDH-WT-GBM with gALK-Mut/TP53-Mut had worse prognosis than the gALK-WT/TP53-Mut subgroup (P = 0.031); The gALK-Mut/TERT-WT and gALK-Mut/TERT-Mut subgroups both had a worse prognosis than the gALK-WT/TERT-Mut subgroup (P = 0.031 and 0.018, respectively). CONCLUSIONS Our study revealed ALK variation was an independent indicator of poor prognosis in glioma and IDH-WT-GBM. It could be a promising biomarker and tractable therapeutic target for this deadly disease.
Collapse
Affiliation(s)
- Linghao Bu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - N U Farrukh Hameed
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Chen Luo
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Pengjie Hong
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Xiaoyu Zhou
- GenomiCare Biotechnology (Shanghai) Co. Ltd.,, Shanghai, China
| | - Shengzhou Wang
- GenomiCare Biotechnology (Shanghai) Co. Ltd.,, Shanghai, China
| | - Shuai Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China. .,Neurosurgical Institute of Fudan University, Shanghai, China. .,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China. .,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.
| |
Collapse
|
54
|
NPM-ALK: A Driver of Lymphoma Pathogenesis and a Therapeutic Target. Cancers (Basel) 2021; 13:cancers13010144. [PMID: 33466277 PMCID: PMC7795840 DOI: 10.3390/cancers13010144] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Anaplastic lymphoma kinase (ALK) is a tyrosine kinase associated with Anaplastic Large Cell lymphoma (ALCL) through oncogenic translocations mainly NPM-ALK. Chemotherapy is effective in ALK(+) ALCL patients and induces remission rates of approximately 80%. The remaining patients do not respond to chemotherapy and some patients have drug-resistant relapses. Different classes of ALK tyrosine kinase inhibitors (TKI) are available but used exclusively for EML4-ALK (+) lung cancers. The significant toxicities of most ALK inhibitors explain the delay in their use in pediatric ALCL patients. Some ALCL patients do not respond to the first generation TKI or develop an acquired resistance. Combination therapy with ALK inhibitors in ALCL is the current challenge. Abstract Initially discovered in anaplastic large cell lymphoma (ALCL), the ALK anaplastic lymphoma kinase is a tyrosine kinase which is affected in lymphomas by oncogenic translocations, mainly NPM-ALK. To date, chemotherapy remains a viable option in ALCL patients with ALK translocations as it leads to remission rates of approximately 80%. However, the remaining patients do not respond to chemotherapy and some patients have drug-resistant relapses. It is therefore crucial to identify new and better treatment options. Nowadays, different classes of ALK tyrosine kinase inhibitors (TKI) are available and used exclusively for EML4-ALK (+) lung cancers. In fact, the significant toxicities of most ALK inhibitors explain the delay in their use in ALCL patients, who are predominantly children. Moreover, some ALCL patients do not respond to Crizotinib, the first generation TKI, or develop an acquired resistance months following an initial response. Combination therapy with ALK inhibitors in ALCL is the current challenge.
Collapse
|
55
|
Zhong Y, Lin F, Xu F, Schubert J, Wu J, Wainwright L, Zhao X, Cao K, Fan Z, Chen J, Lang SS, Kennedy BC, Viaene AN, Santi M, Resnick AC, Storm PB, Li MM. Genomic characterization of a PPP1CB-ALK fusion with fusion gene amplification in a congenital glioblastoma. Cancer Genet 2020; 252-253:37-42. [PMID: 33341678 DOI: 10.1016/j.cancergen.2020.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/22/2020] [Accepted: 12/06/2020] [Indexed: 12/26/2022]
Abstract
ALK (Anaplastic lymphoma kinase) fusion proteins are oncogenic and have been seen in various tumors. PPP1CB-ALK fusions are rare but have been reported in a few patients with low- or high-grade gliomas. However, little is known regarding the mechanism of fusion formation and genomic break points of this fusion. We performed genomic characterization of a PPP1CB-ALK fusion with fusion gene amplification in a congenital glioblastoma. The PPP1CB-ALK consists of exons 1-5 of PPP1CB and exons 20-29 of ALK. The genomic translocation breakpoints were determined by real-time quantitative PCR (RT-qPCR) and Sanger sequencing of genomic DNA. Next generation sequencing, RT-qPCR and fluorescence in situ hybridization analyses demonstrated PPP1CB-ALK amplification. Copy number analyses of genes between PPP1CB and ALK using RT-qPCR suggest that the PPP1CB-ALK is likely the result of local chromothripsis followed by episomal amplification. Transcriptome sequencing demonstrated high-level SOX2 expression and predicted WNT/β-catenin pathway activation, suggesting possible therapeutic approaches.
Collapse
Affiliation(s)
- Yiming Zhong
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Fumin Lin
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Feng Xu
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jeff Schubert
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jinhua Wu
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Luanne Wainwright
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Xiaonan Zhao
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Kajia Cao
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Zhiqian Fan
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jiani Chen
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Shih-Shan Lang
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Benjamin C Kennedy
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Angela N Viaene
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Mariarita Santi
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Adam C Resnick
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Phillip B Storm
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Marilyn M Li
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
56
|
Zhang C, Wang Z, Zhuang R, Guo X, Feng Y, Shen F, Liu W, Zhang Y, Tong H, Sun W, Liu J, Wang G, Dai C, Lu W, Zhou Y. Efficacy and Resistance of ALK Inhibitors in Two Inflammatory Myofibroblastic Tumor Patients with ALK Fusions Assessed by Whole Exome and RNA Sequencing. Onco Targets Ther 2020; 13:10335-10342. [PMID: 33116613 PMCID: PMC7568619 DOI: 10.2147/ott.s270481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/04/2020] [Indexed: 11/23/2022] Open
Abstract
We report two inflammatory myofibroblastic tumor (IMT) patients with ALK fusions (RRBP-ALK and TNS1-ALK, respectively). They both received tumor resection surgery and treatment with ALK inhibitors crizotinib followed by alectinib, and upon receiving each of the drugs, showed a brief response, then experienced recurrence or progression of the disease. During the treatment, whole exome sequencing (WES) and RNA sequencing (RNA-Seq) were applied to monitor potential drug-induced gene mutation and expression changes. A novel, secondary mutation in ALK exon 23 (L1196Q) was identified in patient 1 after alectinib resistance developed. Guided by this result, a newer ALK inhibitor, ceritinib was prescribed. The patient was able to achieve a partial response (PR) and is in good condition as of the manuscript date. On the contrary, there was no secondary mutation identified in ALK in patient 2 after drug resistance. While the expression of PTCH1, a negative regulator of the sonic hedgehog (SHH) signaling pathway, was significantly reduced at the time after the treatment with crizotinib before that of alectinib. The expression of PTCH1 was also reduced after the treatment with alectinib. It was reported that ALK can exert its biological functions partially by activating SHH signaling pathway. The down-regulation of PTCH1 suggests the compensatory activation of SHH pathway may cause resistance to ALK inhibitors in IMT. Going forward, monitoring gene mutation and expression changes through DNA and RNA sequencing will be able to offer opportunities to investigate potential mechanisms of drug resistance and will help to achieve precise prescription for better treatment outcomes.
Collapse
Affiliation(s)
- Chenlu Zhang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Zhiming Wang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Rongyuan Zhuang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Xi Guo
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yi Feng
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Feng Shen
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Wenshuai Liu
- Department of General Surgery, Shanghai Public Health Clinical Center, Shanghai, People's Republic of China
| | - Yong Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Hanxing Tong
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Wending Sun
- GenomiCare Biotechnology Co. Ltd, Shanghai, People's Republic of China
| | - Jun Liu
- GenomiCare Biotechnology Co. Ltd, Shanghai, People's Republic of China
| | - Guan Wang
- GenomiCare Biotechnology Co. Ltd, Shanghai, People's Republic of China
| | - Chun Dai
- GenomiCare Biotechnology Co. Ltd, Shanghai, People's Republic of China
| | - Weiqi Lu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yuhong Zhou
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
57
|
Ghulam A, Lei X, Guo M, Bian C. A Review of Pathway Databases and Related Methods Analysis. Curr Bioinform 2020. [DOI: 10.2174/1574893614666191018162505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pathway analysis integrates most of the computational tools for the investigation of
high-level and complex human diseases. In the field of bioinformatics research, biological pathways
analysis is an important part of systems biology. The molecular complexities of biological
pathways are difficult to understand in human diseases, which can be explored through pathway
analysis. In this review, we describe essential information related to pathway databases and their
mechanisms, algorithms and methods. In the pathway database analysis, we present a brief introduction
on how to gain knowledge from fundamental pathway data in regard to specific human
pathways and how to use pathway databases and pathway analysis to predict diseases during an
experiment. We also provide detailed information related to computational tools that are used in
complex pathway data analysis, the roles of these tools in the bioinformatics field and how to store
the pathway data. We illustrate various methodological difficulties that are faced during pathway
analysis. The main ideas and techniques for the pathway-based examination approaches are presented.
We provide the list of pathway databases and analytical tools. This review will serve as a
helpful manual for pathway analysis databases.
Collapse
Affiliation(s)
- Ali Ghulam
- School of Computer Science, Shaanxi Normal University, Xian, China
| | - Xiujuan Lei
- School of Computer Science, Shaanxi Normal University, Xian, China
| | - Min Guo
- School of Computer Science, Shaanxi Normal University, Xian, China
| | - Chen Bian
- School of Computer Science, Shaanxi Normal University, Xian, China
| |
Collapse
|
58
|
Jin SC, Lewis SA, Bakhtiari S, Zeng X, Sierant MC, Shetty S, Nordlie SM, Elie A, Corbett MA, Norton BY, van Eyk CL, Haider S, Guida BS, Magee H, Liu J, Pastore S, Vincent JB, Brunstrom-Hernandez J, Papavasileiou A, Fahey MC, Berry JG, Harper K, Zhou C, Zhang J, Li B, Zhao H, Heim J, Webber DL, Frank MSB, Xia L, Xu Y, Zhu D, Zhang B, Sheth AH, Knight JR, Castaldi C, Tikhonova IR, López-Giráldez F, Keren B, Whalen S, Buratti J, Doummar D, Cho M, Retterer K, Millan F, Wang Y, Waugh JL, Rodan L, Cohen JS, Fatemi A, Lin AE, Phillips JP, Feyma T, MacLennan SC, Vaughan S, Crompton KE, Reid SM, Reddihough DS, Shang Q, Gao C, Novak I, Badawi N, Wilson YA, McIntyre SJ, Mane SM, Wang X, Amor DJ, Zarnescu DC, Lu Q, Xing Q, Zhu C, Bilguvar K, Padilla-Lopez S, Lifton RP, Gecz J, MacLennan AH, Kruer MC. Mutations disrupting neuritogenesis genes confer risk for cerebral palsy. Nat Genet 2020; 52:1046-1056. [PMID: 32989326 PMCID: PMC9148538 DOI: 10.1038/s41588-020-0695-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 08/20/2020] [Indexed: 01/28/2023]
Abstract
In addition to commonly associated environmental factors, genomic factors may cause cerebral palsy. We performed whole-exome sequencing of 250 parent-offspring trios, and observed enrichment of damaging de novo mutations in cerebral palsy cases. Eight genes had multiple damaging de novo mutations; of these, two (TUBA1A and CTNNB1) met genome-wide significance. We identified two novel monogenic etiologies, FBXO31 and RHOB, and showed that the RHOB mutation enhances active-state Rho effector binding while the FBXO31 mutation diminishes cyclin D levels. Candidate cerebral palsy risk genes overlapped with neurodevelopmental disorder genes. Network analyses identified enrichment of Rho GTPase, extracellular matrix, focal adhesion and cytoskeleton pathways. Cerebral palsy risk genes in enriched pathways were shown to regulate neuromotor function in a Drosophila reverse genetics screen. We estimate that 14% of cases could be attributed to an excess of damaging de novo or recessive variants. These findings provide evidence for genetically mediated dysregulation of early neuronal connectivity in cerebral palsy.
Collapse
Affiliation(s)
- Sheng Chih Jin
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, Rockefeller University, New York, NY, USA
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - Sara A Lewis
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Somayeh Bakhtiari
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Xue Zeng
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, Rockefeller University, New York, NY, USA
| | - Michael C Sierant
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, Rockefeller University, New York, NY, USA
| | - Sheetal Shetty
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Sandra M Nordlie
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Aureliane Elie
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Mark A Corbett
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Bethany Y Norton
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Clare L van Eyk
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Shozeb Haider
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, London, UK
| | - Brandon S Guida
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Helen Magee
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - James Liu
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Stephen Pastore
- Molecular Brain Sciences, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - John B Vincent
- Molecular Brain Sciences, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | | | | - Michael C Fahey
- Department of Pediatrics, Monash University, Melbourne, Victoria, Australia
| | - Jesia G Berry
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kelly Harper
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Chongchen Zhou
- Henan Key Laboratory of Child Genetics and Metabolism, Rehabilitation Department, Children's Hospital of Zhengzhou University, Zhengzhou, China
| | - Junhui Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Boyang Li
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Jennifer Heim
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Dani L Webber
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Mahalia S B Frank
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Lei Xia
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dengna Zhu
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bohao Zhang
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Amar H Sheth
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - James R Knight
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | | | - Irina R Tikhonova
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | | | - Boris Keren
- Department of Genetics, Pitié-Salpêtrière Hospital, APHP.Sorbonne Université, Paris, France
| | - Sandra Whalen
- UF de Génétique Clinique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, APHP.Sorbonne Université, Hôpital Armand Trousseau, Paris, France
| | - Julien Buratti
- Department of Genetics, Pitié-Salpêtrière Hospital, APHP.Sorbonne Université, Paris, France
| | - Diane Doummar
- Sorbonne Université, APHP, Service de Neurologie Pédiatrique et Centre de Référence Neurogénétique, Hôpital Armand Trousseau, Paris, France
| | | | | | | | - Yangong Wang
- Institute of Biomedical Science and Children's Hospital, and Key Laboratory of Reproduction Regulation of the National Population and Family Planning Commission (NPFPC), Shanghai Institute of Planned Parenthood Research (SIPPR), IRD, Fudan University, Shanghai, China
| | - Jeff L Waugh
- Departments of Pediatrics & Neurology, University of Texas Southwestern and Children's Medical Center of Dallas, Dallas, TX, USA
| | - Lance Rodan
- Departments of Genetics & Genomics and Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Julie S Cohen
- Division of Neurogenetics and Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Ali Fatemi
- Division of Neurogenetics and Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Angela E Lin
- Medical Genetics, Department of Pediatrics, MassGeneral Hospital for Children, Boston, MA, USA
| | - John P Phillips
- Departments of Pediatrics and Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Timothy Feyma
- Division of Pediatric Neurology, Gillette Children's Hospital, St Paul, MN, USA
| | - Suzanna C MacLennan
- Department of Paediatric Neurology, Women's & Children's Hospital, Adelaide, South Australia, Australia
| | - Spencer Vaughan
- Departments of Molecular & Cellular Biology and Neuroscience, University of Arizona, Tucson, AZ, USA
| | - Kylie E Crompton
- Murdoch Children's Research Institute and University of Melbourne Department of Paediatrics, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Susan M Reid
- Murdoch Children's Research Institute and University of Melbourne Department of Paediatrics, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Dinah S Reddihough
- Murdoch Children's Research Institute and University of Melbourne Department of Paediatrics, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Qing Shang
- Henan Key Laboratory of Child Genetics and Metabolism, Rehabilitation Department, Children's Hospital of Zhengzhou University, Zhengzhou, China
| | - Chao Gao
- Rehabilitation Department, Children's Hospital of Zhengzhou University/Henan Children's Hospital, Zhengzhou, China
| | - Iona Novak
- Cerebral Palsy Alliance Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Nadia Badawi
- Cerebral Palsy Alliance Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Yana A Wilson
- Cerebral Palsy Alliance Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Sarah J McIntyre
- Cerebral Palsy Alliance Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Shrikant M Mane
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - David J Amor
- Murdoch Children's Research Institute and University of Melbourne Department of Paediatrics, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Daniela C Zarnescu
- Departments of Molecular & Cellular Biology and Neuroscience, University of Arizona, Tucson, AZ, USA
| | - Qiongshi Lu
- Department of Biostatistics & Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Qinghe Xing
- Institute of Biomedical Science and Children's Hospital, and Key Laboratory of Reproduction Regulation of the National Population and Family Planning Commission (NPFPC), Shanghai Institute of Planned Parenthood Research (SIPPR), IRD, Fudan University, Shanghai, China
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Kaya Bilguvar
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | - Sergio Padilla-Lopez
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Richard P Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, Rockefeller University, New York, NY, USA
| | - Jozef Gecz
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Alastair H MacLennan
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Michael C Kruer
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA.
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA.
| |
Collapse
|
59
|
Li Petri G, Spanò V, Spatola R, Holl R, Raimondi MV, Barraja P, Montalbano A. Bioactive pyrrole-based compounds with target selectivity. Eur J Med Chem 2020; 208:112783. [PMID: 32916311 PMCID: PMC7455853 DOI: 10.1016/j.ejmech.2020.112783] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022]
Abstract
The discovery of novel synthetic compounds with drug-like properties is an ongoing challenge in medicinal chemistry. Natural products have inspired the synthesis of compounds for pharmaceutical application, most of which are based on N-heterocyclic motifs. Among these, the pyrrole ring is one of the most explored heterocycles in drug discovery programs for several therapeutic areas, confirmed by the high number of pyrrole-based drugs reaching the market. In the present review, we focused on pyrrole and its hetero-fused derivatives with anticancer, antimicrobial, and antiviral activities, reported in the literature between 2015 and 2019, for which a specific target was identified, being responsible for their biological activity. It emerges that the powerful pharmaceutical and pharmacological features provided by the pyrrole nucleus as pharmacophore unit of many drugs are still recognized by medicinal chemists. Pyrrole nucleus is one of the most explored heterocycle in drug discovery. Pyrrole derivatives exhibit antitumor, antimicrobial and antiviral activities. Targets involved in their biological activities were identified. SAR to underline their most important features were discussed.
Collapse
Affiliation(s)
- Giovanna Li Petri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Virginia Spanò
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Roberto Spatola
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Ralph Holl
- Department of Chemistry, Institute of Organic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Maria Valeria Raimondi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy.
| | - Paola Barraja
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Alessandra Montalbano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| |
Collapse
|
60
|
Liu D, Wu Y. Association of an anaplastic lymphoma kinase pathway signature with cell de-differentiation, neoadjuvant chemotherapy response, and recurrence risk in breast cancer. Cancer Commun (Lond) 2020; 40:422-434. [PMID: 32822101 PMCID: PMC7494065 DOI: 10.1002/cac2.12038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/01/2019] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
Background Aberrant activation of anaplastic lymphoma kinase (ALK) signaling has been found to be involved in the tumorigenesis of multiple types of cancer. The aim of this study was to determine the role of this pathway in the pathogenesis of breast cancer. Methods An ALK pathway signature that we generated previously was used to compute the ALK pathway activity in 6381 breast cancer samples from 42 microarray datasets, and the associations between ALK pathway signature score and clinical variables were examined using logistic regression and survival analyses. Results Our results indicated that high ALK pathway activity was a significant risk factor for hormone receptor‐negative, high‐grade breast cancer in the 42 datasets. ALK pathway activity was positively associated with pathological complete response (pCR) in 15 datasets annotated with patient's neoadjuvant chemotherapy response information (overall odds ratio = 1.67, P < 0.01), and this association was more significant in HER2‐negative and grade 1&2 tumors than in HER2‐positive and grade 3 tumors. ALK pathway activity was also positively associated with recurrence risk in breast cancer patients from 30 datasets annotated with survival information (overall hazard ratio = 1.21, P < 0.01), particularly in patients with age > 50 years old, with positive lymph nodes, or with residual disease after neoadjuvant chemotherapy. Conclusions ALK may be involved in breast cancer tumorigenesis, and ALK pathway signature score may serve as a prognostic biomarker for breast cancer.
Collapse
Affiliation(s)
- Dingxie Liu
- Bluewater Biotech LLC, New Providence, Mandaluyong, NJ, 07974, USA
| | - Yong Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, 90059, USA.,David Geffen UCLA School of Medicine, and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, 90059, USA
| |
Collapse
|
61
|
Gower A, Golestany B, Gong J, Singhi AD, Hendifar AE. Novel ALK Fusion, PPFIBP1-ALK, in Pancreatic Ductal Adenocarcinoma Responsive to Alectinib and Lorlatinib. JCO Precis Oncol 2020; 4:PO.19.00365. [PMID: 32923899 PMCID: PMC7446504 DOI: 10.1200/po.19.00365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2020] [Indexed: 12/14/2022] Open
Affiliation(s)
- Arjan Gower
- Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA
| | - Barry Golestany
- Department of Radiology, Cedars Sinai Medical Center, Los Angeles, CA
| | - Jun Gong
- Division of Hematology and Oncology, Cedars Sinai Medical Center, Los Angeles, CA
| | - Aatur D. Singhi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | | |
Collapse
|
62
|
Azad T, Rezaei R, Surendran A, Singaravelu R, Boulton S, Dave J, Bell JC, Ilkow CS. Hippo Signaling Pathway as a Central Mediator of Receptors Tyrosine Kinases (RTKs) in Tumorigenesis. Cancers (Basel) 2020; 12:cancers12082042. [PMID: 32722184 PMCID: PMC7463967 DOI: 10.3390/cancers12082042] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/18/2022] Open
Abstract
The Hippo pathway plays a critical role in tissue and organ growth under normal physiological conditions, and its dysregulation in malignant growth has made it an attractive target for therapeutic intervention in the fight against cancer. To date, its complex signaling mechanisms have made it difficult to identify strong therapeutic candidates. Hippo signaling is largely carried out by two main activated signaling pathways involving receptor tyrosine kinases (RTKs)—the RTK/RAS/PI3K and the RTK-RAS-MAPK pathways. However, several RTKs have also been shown to regulate this pathway to engage downstream Hippo effectors and ultimately influence cell proliferation. In this text, we attempt to review the diverse RTK signaling pathways that influence Hippo signaling in the context of oncogenesis.
Collapse
Affiliation(s)
- Taha Azad
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (T.A.); (R.R.); (A.S.); (R.S.); (S.B.); (J.D.); (J.C.B.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Reza Rezaei
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (T.A.); (R.R.); (A.S.); (R.S.); (S.B.); (J.D.); (J.C.B.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Abera Surendran
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (T.A.); (R.R.); (A.S.); (R.S.); (S.B.); (J.D.); (J.C.B.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Ragunath Singaravelu
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (T.A.); (R.R.); (A.S.); (R.S.); (S.B.); (J.D.); (J.C.B.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Stephen Boulton
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (T.A.); (R.R.); (A.S.); (R.S.); (S.B.); (J.D.); (J.C.B.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jaahnavi Dave
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (T.A.); (R.R.); (A.S.); (R.S.); (S.B.); (J.D.); (J.C.B.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - John C. Bell
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (T.A.); (R.R.); (A.S.); (R.S.); (S.B.); (J.D.); (J.C.B.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Carolina S. Ilkow
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (T.A.); (R.R.); (A.S.); (R.S.); (S.B.); (J.D.); (J.C.B.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Correspondence: ; Tel.: +1-613-737-8899 (ext. 75208)
| |
Collapse
|
63
|
Orthofer M, Valsesia A, Mägi R, Wang QP, Kaczanowska J, Kozieradzki I, Leopoldi A, Cikes D, Zopf LM, Tretiakov EO, Demetz E, Hilbe R, Boehm A, Ticevic M, Nõukas M, Jais A, Spirk K, Clark T, Amann S, Lepamets M, Neumayr C, Arnold C, Dou Z, Kuhn V, Novatchkova M, Cronin SJF, Tietge UJF, Müller S, Pospisilik JA, Nagy V, Hui CC, Lazovic J, Esterbauer H, Hagelkruys A, Tancevski I, Kiefer FW, Harkany T, Haubensak W, Neely GG, Metspalu A, Hager J, Gheldof N, Penninger JM. Identification of ALK in Thinness. Cell 2020; 181:1246-1262.e22. [PMID: 32442405 DOI: 10.1016/j.cell.2020.04.034] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 01/28/2020] [Accepted: 04/20/2020] [Indexed: 12/25/2022]
Abstract
There is considerable inter-individual variability in susceptibility to weight gain despite an equally obesogenic environment in large parts of the world. Whereas many studies have focused on identifying the genetic susceptibility to obesity, we performed a GWAS on metabolically healthy thin individuals (lowest 6th percentile of the population-wide BMI spectrum) in a uniquely phenotyped Estonian cohort. We discovered anaplastic lymphoma kinase (ALK) as a candidate thinness gene. In Drosophila, RNAi mediated knockdown of Alk led to decreased triglyceride levels. In mice, genetic deletion of Alk resulted in thin animals with marked resistance to diet- and leptin-mutation-induced obesity. Mechanistically, we found that ALK expression in hypothalamic neurons controls energy expenditure via sympathetic control of adipose tissue lipolysis. Our genetic and mechanistic experiments identify ALK as a thinness gene, which is involved in the resistance to weight gain.
Collapse
Affiliation(s)
- Michael Orthofer
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna 1030, Austria
| | - Armand Valsesia
- Metabolic Phenotyping, Nestlé Research, EPFL Innovation Park, Lausanne 1015, Switzerland
| | - Reedik Mägi
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Qiao-Ping Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | | | - Ivona Kozieradzki
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna 1030, Austria
| | - Alexandra Leopoldi
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna 1030, Austria
| | - Domagoj Cikes
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna 1030, Austria
| | - Lydia M Zopf
- Vienna BioCenter Core Facilities GmbH (VBCF), Vienna 1030, Austria
| | - Evgenii O Tretiakov
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna 1090, Austria
| | - Egon Demetz
- Department of Internal Medicine II, Innsbruck Medical University, Innsbruck 6020, Austria
| | - Richard Hilbe
- Department of Internal Medicine II, Innsbruck Medical University, Innsbruck 6020, Austria
| | - Anna Boehm
- Department of Internal Medicine II, Innsbruck Medical University, Innsbruck 6020, Austria
| | - Melita Ticevic
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna 1030, Austria
| | - Margit Nõukas
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Alexander Jais
- Department of Laboratory Medicine, Medical University of Vienna, Vienna 1090, Austria
| | - Katrin Spirk
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna 1090, Austria
| | - Teleri Clark
- Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre, Centenary Institute, and School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2006, Australia
| | - Sabine Amann
- Department of Laboratory Medicine, Medical University of Vienna, Vienna 1090, Austria
| | - Maarja Lepamets
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | | | - Cosmas Arnold
- IMP, Institute of Molecular Pathology, Vienna 1030, Austria
| | - Zhengchao Dou
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Volker Kuhn
- Department of Internal Medicine II, Innsbruck Medical University, Innsbruck 6020, Austria
| | | | - Shane J F Cronin
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna 1030, Austria
| | - Uwe J F Tietge
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, 141 52 Huddinge, Sweden; Clinical Chemistry, Karolinska University Laboratory, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Simone Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - J Andrew Pospisilik
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Vanja Nagy
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, 1090 Vienna, Austria
| | - Chi-Chung Hui
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jelena Lazovic
- Vienna BioCenter Core Facilities GmbH (VBCF), Vienna 1030, Austria
| | - Harald Esterbauer
- Department of Laboratory Medicine, Medical University of Vienna, Vienna 1090, Austria
| | - Astrid Hagelkruys
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna 1030, Austria
| | - Ivan Tancevski
- Department of Internal Medicine II, Innsbruck Medical University, Innsbruck 6020, Austria
| | - Florian W Kiefer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna 1090, Austria
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna 1090, Austria; Section for Chemical Neurotransmission, Department of Neuroscience, Biomedicum 7D, Solnavägen 9, 17165 Solna, Sweden
| | - Wulf Haubensak
- IMP, Institute of Molecular Pathology, Vienna 1030, Austria
| | - G Gregory Neely
- Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre, Centenary Institute, and School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2006, Australia
| | - Andres Metspalu
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Jorg Hager
- Metabolic Phenotyping, Nestlé Research, EPFL Innovation Park, Lausanne 1015, Switzerland.
| | - Nele Gheldof
- Metabolic Phenotyping, Nestlé Research, EPFL Innovation Park, Lausanne 1015, Switzerland.
| | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna 1030, Austria; Department of Medical Genetics, Life Science Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
64
|
Friedman R, Bjelic S. Simulations Studies of Protein Kinases that are Molecular Targets in Cancer. Isr J Chem 2020. [DOI: 10.1002/ijch.202000015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ran Friedman
- Computational Chemistry and Biochemistry GroupLinnæus UniversityDepartment of Chemistry and Biomedical Sciences Kalmar Sweden
| | - Sinisa Bjelic
- Protein Engineering GroupLinnæus UniversityDepartment of Chemistry and Biomedical Sciences Kalmar Sweden
| |
Collapse
|
65
|
A user's guide to lorlatinib. Crit Rev Oncol Hematol 2020; 151:102969. [PMID: 32416346 DOI: 10.1016/j.critrevonc.2020.102969] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/15/2020] [Accepted: 04/15/2020] [Indexed: 12/19/2022] Open
Abstract
Rearrangements of the ALK gene are found in approximately 5% of non-small-cell lung cancer. It is of particular importance to test for this rearrangement in patients with metastatic lung adenocarcinoma because these tumors are highly sensitive to therapy with ALK-targeted inhibitors. Lorlatinib is a reversible potent third generation tyrosine kinase inhibitor that is highly selective and targets ALK and ROS1. It was developed to target resistant ALK mutants including the most common G1202R. Lorlatinib has excellent central nervous system (CNS) penetration and its efficacy has also been demonstrated even in patients with intracranial metastases after progression on second generation ALK inhibitors. Potential toxicities include neurocognitive effects and hyperlipidemia. "A User's Guide to Lorlatinib" reviews the mechanism of action, pharmacology and clinical trial data. Also covering the management of adverse events, this "guide" has been prepared to be a practical reference tool to both clinicians and basic researchers.
Collapse
|
66
|
Liu YM, Kuo CN, Liou JP. Anaplastic lymphoma kinase inhibitors: an updated patent review (2014-2018). Expert Opin Ther Pat 2020; 30:351-373. [PMID: 32125908 DOI: 10.1080/13543776.2020.1738389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Introduction: Anaplastic lymphoma kinase (ALK), a receptor tyrosine kinase, has been discovered in several cancers, including anaplastic large-cell lymphoma, non-small cell lung cancer, and inflammatory myofibroblastic tumors. The deregulation of ALK activities, such as translocation and point mutation, results in human carcinogenesis. The use of ALK inhibitors in clinical cancer treatment has been shown to be efficacious, and the issue of resistance to ALK inhibitors has been reported. Consequently, the development of a new generation of ALK inhibitors is necessary.Areas covered: This paper provides a comprehensive review of the patent literature from 2014 to 2018 including small molecule ALK inhibitors and their use as anticancer agents. The approved and developing ALK inhibitors are described.Expert commentary: The available three generations of ALK inhibitors have shown a good anticancer effect in ALK-positive non-small cell lung cancer. An urgent issue in this field is ALK resistance development. The development of new ALK inhibitors through structure modification of currently available ALK inhibitors is proceeding, such as the synthesis of macrocyclic compounds. This article arranges the ALK inhibitors that have published in the patent in recent years. It may help in the investigation of a new generation of ALK inhibitors, which can overcome the resistance issue and development of novel drug candidates in the future.
Collapse
Affiliation(s)
- Yi-Min Liu
- TMU Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan.,Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Chun-Nan Kuo
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.,Department of Pharmacy, Taipei Medical University, Taipei Municipal Wanfang Hospital, Taipei, Taiwan
| | - Jing-Ping Liou
- TMU Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan.,School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
67
|
Zeng F, Xu B, Zhu H, Wu S, Liao G, Xie D, Huang L, Qiao G, Yang X, Zhou H. A cascade dual-targeted nanocarrier for enhanced alectinib delivery to ALK-positive lung cancer. Biomater Sci 2020; 8:6404-6413. [DOI: 10.1039/d0bm00970a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A polymeric nanocarrier with a cascade of magnetic and TAT targeting enhanced the therapeutic efficacy of alectinib towards ALK-positive lung cancer.
Collapse
|
68
|
Discovery of 2-aminopyridines bearing a pyridone moiety as potent ALK inhibitors to overcome the crizotinib-resistant mutants. Eur J Med Chem 2019; 183:111734. [DOI: 10.1016/j.ejmech.2019.111734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/22/2019] [Accepted: 09/23/2019] [Indexed: 02/03/2023]
|
69
|
Nouri K, Azad T, Lightbody E, Khanal P, Nicol CJ, Yang X. A kinome-wide screen using a NanoLuc LATS luminescent biosensor identifies ALK as a novel regulator of the Hippo pathway in tumorigenesis and immune evasion. FASEB J 2019; 33:12487-12499. [PMID: 31431076 DOI: 10.1096/fj.201901343r] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Hippo pathway is an emerging signaling pathway that plays important roles in organ size control, tissue homeostasis, tumorigenesis, metastasis, drug resistance, and immune response. Although many regulators of the Hippo pathway have been reported, the extracellular stimuli and kinase regulators of the Hippo pathway remain largely unknown. To identify novel regulars of the Hippo pathway, in this study we created the first ultra-bright NanoLuc biosensor (BS) to monitor the activity of large tumor suppressor (LATS) kinase 1, a central player of the Hippo pathway. We show that this NanoLuc BS achieves significantly advanced sensitivity and stability both in vitro using purified proteins and in vivo in living cells and mice. Using this BS, we perform the first kinome-wide screen and identify many kinases regulating LATS and its effectors yes-associated protein (YAP) and transcriptional co-activator with PDZ- binding motif (TAZ). We also show for the first time that activation of receptor tyrosine kinase anaplastic lymphoma kinase (ALK) by its extracellular ligand family with sequence similarity (FAM)150 activates Hippo effector YAP/TAZ by increasing their nuclear translocation. Significantly, we show that constitutively active ALK induces tumorigenic phenotypes, such as increased cancer cell proliferation/colony formation via YAP/TAZ and elevated immune evasion via YAP/TAZ-programmed death-ligand 1 in breast and lung cancer cells. In summary, we have developed a new LATS BS for cancer biology and therapeutics research and uncovered a novel ALK-LATS-YAP/TAZ signaling axis that may play important roles in cancer and possibly other biologic processes.-Nouri, K., Azad, T., Lightbody, E., Khanal, P., Nicol, C. J., Yang, X. A kinome-wide screen using a NanoLuc LATS luminescent biosensor identifies ALK as a novel regulator of the Hippo pathway in tumorigenesis and immune evasion.
Collapse
Affiliation(s)
- Kazem Nouri
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Taha Azad
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Elizabeth Lightbody
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Prem Khanal
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Christopher J Nicol
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Xiaolong Yang
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
70
|
Error Tolerance of Machine Learning Algorithms across Contemporary Biological Targets. Molecules 2019; 24:molecules24112115. [PMID: 31167452 PMCID: PMC6601015 DOI: 10.3390/molecules24112115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/31/2019] [Accepted: 06/01/2019] [Indexed: 12/16/2022] Open
Abstract
Machine learning continues to make strident advances in the prediction of desired properties concerning drug development. Problematically, the efficacy of machine learning in these arenas is reliant upon highly accurate and abundant data. These two limitations, high accuracy and abundance, are often taken together; however, insight into the dataset accuracy limitation of contemporary machine learning algorithms may yield insight into whether non-bench experimental sources of data may be used to generate useful machine learning models where there is a paucity of experimental data. We took highly accurate data across six kinase types, one GPCR, one polymerase, a human protease, and HIV protease, and intentionally introduced error at varying population proportions in the datasets for each target. With the generated error in the data, we explored how the retrospective accuracy of a Naïve Bayes Network, a Random Forest Model, and a Probabilistic Neural Network model decayed as a function of error. Additionally, we explored the ability of a training dataset with an error profile resembling that produced by the Free Energy Perturbation method (FEP+) to generate machine learning models with useful retrospective capabilities. The categorical error tolerance was quite high for a Naïve Bayes Network algorithm averaging 39% error in the training set required to lose predictivity on the test set. Additionally, a Random Forest tolerated a significant degree of categorical error introduced into the training set with an average error of 29% required to lose predictivity. However, we found the Probabilistic Neural Network algorithm did not tolerate as much categorical error requiring an average of 20% error to lose predictivity. Finally, we found that a Naïve Bayes Network and a Random Forest could both use datasets with an error profile resembling that of FEP+. This work demonstrates that computational methods of known error distribution like FEP+ may be useful in generating machine learning models not based on extensive and expensive in vitro-generated datasets.
Collapse
|
71
|
Rapoport B, Arani RB, Mathieson N, Krendyukov A. Meta-analysis comparing incidence of grade 3-4 neutropenia with ALK inhibitors and chemotherapy in patients with non-small-cell lung cancer. Future Oncol 2019; 15:2163-2174. [PMID: 31116035 DOI: 10.2217/fon-2018-0863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: This meta-analysis compared incidence of grade 3-4 neutropenia with ALK inhibitors versus chemotherapy in patients with non-small-cell lung cancer. Materials & methods: PubMed/MEDLINE was searched to identify Phase II and III randomized clinical trials published up to 25 October 2018. Summary incidence, relative risk and corresponding 95% CIs were calculated for grade 3-4 neutropenia. Results: Five randomized clinical trials were included. Relative risk (95% CI) of developing grade 3-4 neutropenia with ALK inhibitor versus chemotherapy was 0.27 (0.07-1.06). Probabilities of developing grade 3-4 neutropenia were 6.56 and 14.19%, respectively; no significant difference was found. Conclusion: In patients with non-small-cell lung cancer, incidence of grade 3-4 neutropenia with ALK-targeted therapy is not significantly different compared with chemotherapy.
Collapse
Affiliation(s)
- Bernardo Rapoport
- The Medical Oncology Centre of Rosebank, Johannesburg, 2196, South Africa.,Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, 0084, South Africa
| | - Ramin B Arani
- Biostatistics, Sandoz Inc., Princeton, NJ 08540, USA
| | | | | |
Collapse
|
72
|
Da Silva J, Dalstein V, Polette M, Nawrocki-Raby B. [Phenotypical plasticity and targeted therapies in non-small cell lung carcinomas]. Rev Mal Respir 2019; 36:438-441. [PMID: 31010761 DOI: 10.1016/j.rmr.2019.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 11/18/2022]
Abstract
Lung cancer is the most diagnosed and deathly type of cancer worldwide. It has a poor prognosis because of a late diagnosis, high metastatic potential and resistance to conventional therapies. Since the 2000s, the emergence of targeted therapies has improved patients' outcomes. However, these therapies concern only a small proportion of patients, selected by the presence of molecular biomarkers that indicate the targeting relevance. Here, we discuss the possibility that new phenotypical biomarkers could be predictive factors for targeted therapies in lung cancer.
Collapse
Affiliation(s)
- J Da Silva
- Inserm UMR-S 1250 P3Cell, Pathologies Pulmonaires et Plasticité Cellulaire, Université de Reims Champagne-Ardenne, 45, rue Cognacq-Jay, 51092 Reims cedex, France
| | - V Dalstein
- Inserm UMR-S 1250 P3Cell, Pathologies Pulmonaires et Plasticité Cellulaire, Université de Reims Champagne-Ardenne, 45, rue Cognacq-Jay, 51092 Reims cedex, France; Laboratoire de Biopathologie, CHU de Reims, 51100 Reims, France
| | - M Polette
- Inserm UMR-S 1250 P3Cell, Pathologies Pulmonaires et Plasticité Cellulaire, Université de Reims Champagne-Ardenne, 45, rue Cognacq-Jay, 51092 Reims cedex, France; Laboratoire de Biopathologie, CHU de Reims, 51100 Reims, France.
| | - B Nawrocki-Raby
- Inserm UMR-S 1250 P3Cell, Pathologies Pulmonaires et Plasticité Cellulaire, Université de Reims Champagne-Ardenne, 45, rue Cognacq-Jay, 51092 Reims cedex, France
| |
Collapse
|
73
|
Kim P, Zhou X. FusionGDB: fusion gene annotation DataBase. Nucleic Acids Res 2019; 47:D994-D1004. [PMID: 30407583 PMCID: PMC6323909 DOI: 10.1093/nar/gky1067] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/05/2018] [Accepted: 11/01/2018] [Indexed: 12/26/2022] Open
Abstract
Gene fusion is one of the hallmarks of cancer genome via chromosomal rearrangement initiated by DNA double-strand breakage. To date, many fusion genes (FGs) have been established as important biomarkers and therapeutic targets in multiple cancer types. To better understand the function of FGs in cancer types and to promote the discovery of clinically relevant FGs, we built FusionGDB (Fusion Gene annotation DataBase) available at https://ccsm.uth.edu/FusionGDB. We collected 48 117 FGs across pan-cancer from three representative fusion gene resources: the improved database of chimeric transcripts and RNA-seq data (ChiTaRS 3.1), an integrative resource for cancer-associated transcript fusions (TumorFusions), and The Cancer Genome Atlas (TCGA) fusions by Gao et al. For these ∼48K FGs, we performed functional annotations including gene assessment across pan-cancer fusion genes, open reading frame (ORF) assignment, and retention search of 39 protein features based on gene structures of multiple isoforms with different breakpoints. We also provided the fusion transcript and amino acid sequences according to multiple breakpoints and transcript isoforms. Our analyses identified 331, 303 and 667 in-frame FGs with retaining kinase, DNA-binding, and epigenetic factor domains, respectively, as well as 976 FGs lost protein-protein interaction. FusionGDB provides six categories of annotations: FusionGeneSummary, FusionProtFeature, FusionGeneSequence, FusionGenePPI, RelatedDrug and RelatedDisease.
Collapse
Affiliation(s)
- Pora Kim
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
74
|
Pacenta HL, Macy ME. Entrectinib and other ALK/TRK inhibitors for the treatment of neuroblastoma. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:3549-3561. [PMID: 30425456 PMCID: PMC6204873 DOI: 10.2147/dddt.s147384] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RTK plays important roles in many cellular signaling processes involved in cancer growth and development. ALK, TRKA, TRKB, TRKC, and ROS1 are RTKs involved in several canonical pathways related to oncogenesis. These proteins can be genetically altered in malignancies, leading to receptor activation and constitutive signaling through their respective downstream pathways. Neuroblastoma (NB) is the most common extracranial solid tumor in childhood, and despite intensive therapy, there is a high mortality rate in cases with a high-risk disease. Alterations of ALK and differential expression of TRK proteins are reported in a proportion of NB. Several inhibitors of ALK or TRKA/B/C have been evaluated both preclinically and clinically in the treatment of NB. These agents have had variable success and are not routinely used in the treatment of NB. Entrectinib (RXDX-101) is a pan-ALK, TRKA, TRKB, TRKC, and ROS1 inhibitor with activity against tumors with ALK, NTRK1, NTRK2, NTRK3, and ROS1 alterations in Phase I clinical trials in adults. Entrectinib’s activity against both ALK and TRK proteins suggests a possible role in NB treatment, and it is currently under investigation in both pediatric and adult oncology patients.
Collapse
Affiliation(s)
- Holly L Pacenta
- Department of Pediatrics, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, Aurora, CO, USA,
| | - Margaret E Macy
- Department of Pediatrics, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, Aurora, CO, USA,
| |
Collapse
|