51
|
Thambiraj S, Vijayalakshmi R, Ravi Shankaran D. An effective strategy for development of docetaxel encapsulated gold nanoformulations for treatment of prostate cancer. Sci Rep 2021; 11:2808. [PMID: 33531521 PMCID: PMC7854673 DOI: 10.1038/s41598-020-80529-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 12/03/2020] [Indexed: 01/30/2023] Open
Abstract
Nanoformulation based drug delivery is one of the most important research areas in the field of nanomedicine, which provides promising alternatives to the limitations of conventional chemotherapy. Nano drug delivery enables improved pharmacokinetic profile, bioavailability and therapeutic efficiency compared to the regular chemotherapeutic drugs. Herein, we have established a simple method for the synthesis of docetaxel (Dtx) encapsulated poly (ethylene glycol) (PEG) functionalized gold nanoparticles (AuNPs) for targeted drug delivery to prostate cancer. AuNPs were synthesized by the citrate ion reduction method followed by functionalization with thiol-PEG-amine (SH-PEG-NH2). SH-PEG-NH2 functionalized AuNPs were conjugated with the targeting vehicle, folic acid (FA). The anticancer drug, Dtx was encapsulated within AuNPs by the non-covalent linkage method. The physicochemical characteristics of the synthesized nanoformulations were extensively characterized by various spectral and microscopic studies. HR-TEM indicates the average size of the AuNPs is 16 nm and the nanoformulations is 18 nm. The encapsulation efficiency of the Dtx is ~ 96% which is confirmed by the elemental mapping analysis. The in vitro drug release profile of Dtx and AuNPs nanoformulations were studied by the dialysis membrane method. The anticancer activity of docetaxel encapsulated AuNPs were evaluated with prostate cancer cell lines (PC3). The drug encapsulated nanoformulations reduced the cell viability to about 40% (40 µM concentration at 24, 48 and 72 h of treatment). The optical microscopy observation reveals that the damage of prostate cancer cells after exposure to Dtx encapsulated AuNPs. The good cytotoxic activity of the present nanoformulation against prostate cancer cell lines enables its application for targeted drug delivery to prostate cancer.
Collapse
Affiliation(s)
- S Thambiraj
- Nano-Bio Materials and Sensors Laboratory, National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai, Tamil Nadu, 600 025, India
| | - R Vijayalakshmi
- Department of Preventive Oncology, Cancer Institute (WIA), Adyar, Chennai, 600 020, India
| | - D Ravi Shankaran
- Nano-Bio Materials and Sensors Laboratory, National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai, Tamil Nadu, 600 025, India.
| |
Collapse
|
52
|
Avilova IA, Soldatova YV, Kraevaya OA, Zhilenkov AV, Dolgikh EA, Kotel’nikova RA, Troshin PA, Volkov VI. Self-Diffusion of Fullerene С60 Derivatives in Aqueous Solutions and Suspensions of Erythrocytes According to Pulsed Field Gradient NMR Data. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2021. [DOI: 10.1134/s0036024421020047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
53
|
Ulagesan S, Nam TJ, Choi YH. Cytotoxicity against human breast carcinoma cells of silver nanoparticles biosynthesized using Capsosiphon fulvescens extract. Bioprocess Biosyst Eng 2021; 44:901-911. [PMID: 33486577 DOI: 10.1007/s00449-020-02498-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/10/2020] [Indexed: 10/22/2022]
Abstract
Targeting cancer cells with small nanoparticles is a novel and promising approach to cancer therapy. Breast cancer is the most common cancer afflicting women worldwide. In the present study, silver nanoparticles (AgNPs) were synthesized using the aqueous extract of the marine alga Capsosiphon (C.) fulvescens, and the cytotoxicity and anti-cancer activities of the nanoparticles against MCF-7 breast cancer cells were analyzed. Nanoparticle formation was confirmed by solution color change and UV-Vis spectroscopy. The size and distribution of the C. fulvescens-biosynthesized silver nanoparticles (CfAgNPs) were then examined using various analytical methods; the particle size was around 20-22 nm and spherical in shape with no agglomeration. Cytotoxicity analysis revealed that the inhibitory concentration (IC50) of CfAgNPs was 50 μg/ml. MCF-7 cell viability decreased with increasing concentrations of CfAgNPs. MCF-7 cells were evaluated for morphological changes before and after treatment with the CfAgNPs; cells treated with C. fulvescens aqueous algal extract (without CfAgNPs) showed irregular confluent aggregates with round polygonal cells, similar to the untreated control. Tamoxifen- (TMX) and CfAgNPs-treated cells show significant morphological changes. An apoptosis study was conducted using 4',6-diamidino-2-phenylindole (DAPI) staining, in which CfAgNP-treated MCF-7 cells generated bright blue fluorescence and shortened, disjointed chromatin was evident; control cells displayed less bright fluorescence. Flow cytometry analysis revealed that the percentage of cells in late apoptosis was high following treatment with TMX (77.2%) and CfAgNP (74.6%). A novel anti-cancer agent, developed by generating silver nanoparticles from C. fulvescens extract, showed strong cytotoxic activity against MCF-7 cells.
Collapse
Affiliation(s)
- Selvakumari Ulagesan
- Institute of Fisheries Sciences, Pukyong National University, Busan, 46041, Republic of Korea
| | - Taek-Jeong Nam
- Institute of Fisheries Sciences, Pukyong National University, Busan, 46041, Republic of Korea.
| | - Youn-Hee Choi
- Institute of Fisheries Sciences, Pukyong National University, Busan, 46041, Republic of Korea.
- Department of Marine Bio-Materials and Aquaculture, Pukyong National University, 45, Yongso-ro, Nam-Gu, Busan, 48513, Republic of Korea.
| |
Collapse
|
54
|
Damasco JA, Ravi S, Perez JD, Hagaman DE, Melancon MP. Understanding Nanoparticle Toxicity to Direct a Safe-by-Design Approach in Cancer Nanomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2186. [PMID: 33147800 PMCID: PMC7692849 DOI: 10.3390/nano10112186] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2022]
Abstract
Nanomedicine is a rapidly growing field that uses nanomaterials for the diagnosis, treatment and prevention of various diseases, including cancer. Various biocompatible nanoplatforms with diversified capabilities for tumor targeting, imaging, and therapy have materialized to yield individualized therapy. However, due to their unique properties brought about by their small size, safety concerns have emerged as their physicochemical properties can lead to altered pharmacokinetics, with the potential to cross biological barriers. In addition, the intrinsic toxicity of some of the inorganic materials (i.e., heavy metals) and their ability to accumulate and persist in the human body has been a challenge to their translation. Successful clinical translation of these nanoparticles is heavily dependent on their stability, circulation time, access and bioavailability to disease sites, and their safety profile. This review covers preclinical and clinical inorganic-nanoparticle based nanomaterial utilized for cancer imaging and therapeutics. A special emphasis is put on the rational design to develop non-toxic/safe inorganic nanoparticle constructs to increase their viability as translatable nanomedicine for cancer therapies.
Collapse
Affiliation(s)
- Jossana A. Damasco
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.A.D.); (J.D.P.); (D.E.H.)
| | - Saisree Ravi
- School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| | - Joy D. Perez
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.A.D.); (J.D.P.); (D.E.H.)
| | - Daniel E. Hagaman
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.A.D.); (J.D.P.); (D.E.H.)
| | - Marites P. Melancon
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.A.D.); (J.D.P.); (D.E.H.)
- UT Health Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
55
|
Andraos C, Yu IJ, Gulumian M. Interference: A Much-Neglected Aspect in High-Throughput Screening of Nanoparticles. Int J Toxicol 2020; 39:397-421. [PMID: 32672081 DOI: 10.1177/1091581820938335] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Despite several studies addressing nanoparticle (NP) interference with conventional toxicity assay systems, it appears that researchers still rely heavily on these assays, particularly for high-throughput screening (HTS) applications in order to generate "big" data for predictive toxicity approaches. Moreover, researchers often overlook investigating the different types of interference mechanisms as the type is evidently dependent on the type of assay system implemented. The approaches implemented in the literature appear to be not adequate as it often addresses only one type of interference mechanism with the exclusion of others. For example, interference of NPs that have entered cells would require intracellular assessment of their interference with fluorescent dyes, which has so far been neglected. The present study investigated the mechanisms of interference of gold NPs and silver NPs in assay systems implemented in HTS including optical interference as well as adsorption or catalysis. The conventional assays selected cover all optical read-out systems, that is, absorbance (XTT toxicity assay), fluorescence (CytoTox-ONE Homogeneous membrane integrity assay), and luminescence (CellTiter Glo luminescent assay). Furthermore, this study demonstrated NP quenching of fluorescent dyes also used in HTS (2',7'-dichlorofluorescein, propidium iodide, and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-benzamidazolocarbocyanin iodide). To conclude, NP interference is, as such, not a novel concept, however, ignoring this aspect in HTS may jeopardize attempts in predictive toxicology. It should be mandatory to report the assessment of all mechanisms of interference within HTS, as well as to confirm results with label-free methodologies to ensure reliable big data generation for predictive toxicology.
Collapse
Affiliation(s)
- Charlene Andraos
- Toxicology Department, 71899National Institute for Occupational Health, Johannesburg, South Africa
| | - Il Je Yu
- HCTm CO, LTD, Majang-myeon, Icheon, South Korea
| | - Mary Gulumian
- Toxicology Department, 71899National Institute for Occupational Health, Johannesburg, South Africa.,Haematology and Molecular Medicine Department, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
56
|
Xu L, Wang YY, Huang J, Chen CY, Wang ZX, Xie H. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics 2020; 10:8996-9031. [PMID: 32802176 PMCID: PMC7415816 DOI: 10.7150/thno.45413] [Citation(s) in RCA: 437] [Impact Index Per Article: 87.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/26/2020] [Indexed: 12/17/2022] Open
Abstract
Silver nanoparticles (AgNPs) have been one of the most attractive nanomaterials in biomedicine due to their unique physicochemical properties. In this paper, we review the state-of-the-art advances of AgNPs in the synthesis methods, medical applications and biosafety of AgNPs. The synthesis methods of AgNPs include physical, chemical and biological routes. AgNPs are mainly used for antimicrobial and anticancer therapy, and also applied in the promotion of wound repair and bone healing, or as the vaccine adjuvant, anti-diabetic agent and biosensors. This review also summarizes the biological action mechanisms of AgNPs, which mainly involve the release of silver ions (Ag+), generation of reactive oxygen species (ROS), destruction of membrane structure. Despite these therapeutic benefits, their biological safety problems such as potential toxicity on cells, tissue, and organs should be paid enough attention. Besides, we briefly introduce a new type of Ag particles smaller than AgNPs, silver Ångstrom (Å, 1 Å = 0.1 nm) particles (AgÅPs), which exhibit better biological activity and lower toxicity compared with AgNPs. Finally, we conclude the current challenges and point out the future development direction of AgNPs.
Collapse
Affiliation(s)
- Li Xu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Xiangya Hospital of Central South University-Amcan Medical Biotechnology Co. Ltd. Joint Research Center, Changsha, Hunan 410008, China
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Yi-Yi Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jie Huang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Xiangya Hospital of Central South University-Amcan Medical Biotechnology Co. Ltd. Joint Research Center, Changsha, Hunan 410008, China
| | - Chun-Yuan Chen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Xiangya Hospital of Central South University-Amcan Medical Biotechnology Co. Ltd. Joint Research Center, Changsha, Hunan 410008, China
| | - Zhen-Xing Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Xiangya Hospital of Central South University-Amcan Medical Biotechnology Co. Ltd. Joint Research Center, Changsha, Hunan 410008, China
| | - Hui Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Xiangya Hospital of Central South University-Amcan Medical Biotechnology Co. Ltd. Joint Research Center, Changsha, Hunan 410008, China
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Organ Injury, Aging and Regenerative Medicine, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Bone Joint Degeneration and Injury, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
57
|
Nicholas TP, Haick AK, Workman TW, Griffith WC, Nolin JD, Kavanagh TJ, Faustman EM, Altemeier WA. The effects of genotype × phenotype interactions on silver nanoparticle toxicity in organotypic cultures of murine tracheal epithelial cells. Nanotoxicology 2020; 14:908-928. [PMID: 32574512 DOI: 10.1080/17435390.2020.1777475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Silver nanoparticles (AgNP) are used in multiple applications but primarily in the manufacturing of antimicrobial products. Previous studies have identified AgNP toxicity in airway epithelial cells, but no in vitro studies to date have used organotypic cultures as a high-content in vitro model of the conducting airway to characterize the effects of interactions between host genetic and acquired factors, or gene × phenotype interactions (G × P), on AgNP toxicity. In the present study, we derived organotypic cultures from primary murine tracheal epithelial cells (MTEC) to characterize nominal and dosimetric dose-response relationships for AgNPs with a gold core on barrier dysfunction, glutathione (GSH) depletion, reactive oxygen species (ROS) production, lipid peroxidation, and cytotoxicity across two genotypes (A/J and C57BL/6J mice), two phenotypes ('Normal' and 'Type 2 [T2]-Skewed'), and two exposures (an acute exposure of 24 h and a subacute exposure of 4 h, every other day, over 5 days [5 × 4 h]). We characterized the 'T2-Skewed' phenotype as an in vitro model of chronic respiratory diseases, which was marked by increased sensitivity to AgNP-induced barrier dysfunction, GSH depletion, ROS production, lipid peroxidation, and cytotoxicity, suggesting that asthmatics are a sensitive population to AgNP exposures in occupational settings. This also suggests that exposure limits, which should be based upon the most sensitive population, should be derived using in vitro and in vivo models of chronic respiratory diseases. This study highlights the importance of considering dosimetry as well as G × P effects when screening and prioritizing potential respiratory toxicants. Such in vitro studies can be used to inform regulatory policy aimed at special protections for all populations.
Collapse
Affiliation(s)
- Tyler P Nicholas
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA.,Center for Lung Biology, University of Washington, Seattle, WA, USA
| | - Anoria K Haick
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Tomomi W Workman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - William C Griffith
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - James D Nolin
- Center for Lung Biology, University of Washington, Seattle, WA, USA
| | - Terrance J Kavanagh
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA.,Center for Lung Biology, University of Washington, Seattle, WA, USA
| | - Elaine M Faustman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - William A Altemeier
- Center for Lung Biology, University of Washington, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
58
|
Sun H, Wang X, Zhai S. The Rational Design and Biological Mechanisms of Nanoradiosensitizers. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E504. [PMID: 32168899 PMCID: PMC7153263 DOI: 10.3390/nano10030504] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 01/01/2023]
Abstract
Radiotherapy (RT) has been widely used for cancer treatment. However, the intrinsic drawbacks of RT, such as radiotoxicity in normal tissues and tumor radioresistance, promoted the development of radiosensitizers. To date, various kinds of nanoparticles have been found to act as radiosensitizers in cancer radiotherapy. This review focuses on the current state of nanoradiosensitizers, especially the related biological mechanisms, and the key design strategies for generating nanoradiosensitizers. The regulation of oxidative stress, DNA damage, the cell cycle, autophagy and apoptosis by nanoradiosensitizers in vitro and in vivo is highlighted, which may guide the rational design of therapeutics for tumor radiosensitization.
Collapse
Affiliation(s)
- Hainan Sun
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China; (H.S.); (X.W.)
- Shandong Vocational College of Light Industry, Zibo 255300, Shandong, China
| | - Xiaoling Wang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China; (H.S.); (X.W.)
| | - Shumei Zhai
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China; (H.S.); (X.W.)
| |
Collapse
|
59
|
Frank L, Onzi G, Morawski A, Pohlmann A, Guterres S, Contri R. Chitosan as a coating material for nanoparticles intended for biomedical applications. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2019.104459] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
60
|
Karnjanapratum S, Benjakul S. Asian bullfrog (Rana tigerina) skin gelatin extracted by ultrasound-assisted process: Characteristics and in-vitro cytotoxicity. Int J Biol Macromol 2020; 148:391-400. [PMID: 31954782 DOI: 10.1016/j.ijbiomac.2020.01.150] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/29/2019] [Accepted: 01/15/2020] [Indexed: 12/14/2022]
Abstract
Impact of ultrasound-assisted process (UAP) on yield and characteristics of Asian bullfrog (Rana tigerina) skin gelatin was studied and the in-vitro cytotoxicity of the resulting frog skin gelatin was evaluated using CaCo-2, Raw264.7 and L929 cell lines. Different ultrasonication modes (5 min on-time with 25 min off-time (5/25) and 10 min on-time with 50 min off-times (10/50)) were implemented for different total ultrasonication times (10-60 min) during gelatin extraction at 55 °C. UAP could effectively augment yield and recovery of frog skin gelatin, compared with the typical process (without UAP). Different UAPs used affected characteristics and properties of gelatin differently. Increased total ultrasonication time increased color changes and turbidity of resulting gelatin and induced protein fragmentation, regardless of modes used. At the same total ultrasonication time, mode of 10/50 provided gelatin with higher hydroxyproline content and higher gel strength than 5/25 mode. Gelatin extracted by UAP with 10/50 mode for 60 min (FU) possessed high yield and good gel property. Gelling and melting temperatures and FTIR-spectra of FU were similar to those of gel from typical process. Based on in-vitro cytotoxicity toward different cell lines, frog skin gelatin could be used as biocompatible material, which could be safe for human consumption.
Collapse
Affiliation(s)
- Supatra Karnjanapratum
- Faculty of Agro-Industry, King Mongkut's Institute of Technology Ladkrabang, Ladkrabang, Bangkok 10520, Thailand.
| | - Soottawat Benjakul
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| |
Collapse
|
61
|
Sharma KS, Dubey AK, Koijam AS, Kumar C, Ballal A, Mukherjee S, Phadnis PP, Vatsa RK. Synthesis of 2-deoxy- d-glucose coated Fe 3O 4 nanoparticles for application in targeted delivery of the Pt( iv) prodrug of cisplatin – a novel approach in chemotherapy. NEW J CHEM 2020. [DOI: 10.1039/c9nj05989j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pt(IV) prodrug of cisplatin was loaded on 2DG functionalized silica coated Fe3O4 nanoparticles. The formulation alone exhibited biocompatibility whereas Pt(IV) loaded formulation exhibited cytotoxicity comparable with cisplatin.
Collapse
Affiliation(s)
| | - Akhil K. Dubey
- Bio-Organic Division
- Bhabha Atomic Research Centre
- Mumbai-400 085
- India
| | - Arunkumar S. Koijam
- Radiopharmaceuticals Division
- Bhabha Atomic Research Centre
- Mumbai-400 085
- India
| | - Chandan Kumar
- Radiopharmaceuticals Division
- Bhabha Atomic Research Centre
- Mumbai-400 085
- India
| | - Anand Ballal
- Molecular Biology Division
- Bhabha Atomic Research Centre
- Mumbai-400 085
- India
| | - Sudip Mukherjee
- UGC-DAE Consortium for Scientific Research
- Mumbai Centre
- Mumbai-400 085
- India
| | - Prasad P. Phadnis
- Chemistry Division
- Bhabha Atomic Research Centre
- Mumbai-400 085
- India
- Homi Bhabha National Institute
| | - Rajesh K. Vatsa
- Chemistry Division
- Bhabha Atomic Research Centre
- Mumbai-400 085
- India
- Homi Bhabha National Institute
| |
Collapse
|
62
|
Nicholas TP, Haick AK, Bammler TK, Workman TW, Kavanagh TJ, Faustman EM, Gharib SA, Altemeier WA. The Effects of Genotype × Phenotype Interactions on Transcriptional Response to Silver Nanoparticle Toxicity in Organotypic Cultures of Murine Tracheal Epithelial Cells. Toxicol Sci 2020; 173:131-143. [PMID: 31562762 PMCID: PMC6944213 DOI: 10.1093/toxsci/kfz209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The airway epithelium is critical for maintaining innate and adaptive immune responses, and occupational exposures that disrupt its immune homeostasis may initiate and amplify airway inflammation. In our previous study, we demonstrated that silver nanoparticles (AgNP), which are engineered nanomaterials used in multiple applications but primarily in the manufacturing of many antimicrobial products, induce toxicity in organotypic cultures derived from murine tracheal epithelial cells (MTEC), and those differentiated toward a "Type 2 [T2]-Skewed" phenotype experienced an increased sensitivity to AgNP toxicity, suggesting that asthmatics could be a sensitive population to AgNP exposures in occupational settings. However, the mechanistic basis for this genotype × phenotype (G × P) interaction has yet to be defined. In this study, we conducted transcriptional profiling using RNA-sequencing to predict the enrichment of specific canonical pathways and upstream transcriptional regulators to assist in defining a mechanistic basis for G × P effects on AgNP toxicity. Organotypic cultures were derived from MTEC across 2 genetically inbred mouse strains (A/J and C57BL/6J mice), 2 phenotypes ("Normal" and "T2-Skewed"), and 1 AgNP exposure (an acute 24 h exposure) to characterize G × P effects on transcriptional response to AgNP toxicity. The "T2-Skewed" phenotype was marked by increased pro-inflammatory T17 responses to AgNP toxicity, which are significant predictors of neutrophilic/difficult-to-control asthma and suggests that asthmatics could be a sensitive population to AgNP exposures in occupational settings. This study highlights the importance of considering G × P effects when identifying these sensitive populations, whose underlying genetics or diseases could directly modify their response to AgNP exposures.
Collapse
Affiliation(s)
- Tyler P Nicholas
- Department of Environmental and Occupational Health Sciences
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Anoria K Haick
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences
| | | | - Terrance J Kavanagh
- Department of Environmental and Occupational Health Sciences
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | | | - Sina A Gharib
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - William A Altemeier
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
63
|
Jesna KK, Ilanchelian M. Gold nanorods–trypsin biocorona: a novel nano composite for in vitro cytotoxic activity towards MCF-7 and A-549 cancer cells. NEW J CHEM 2020. [DOI: 10.1039/d0nj03299a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In the present work, we have synthesized cetyltrimethyl ammonium bromide (CTAB) capped gold nanorods (Au NRs) to evaluate apparent binding affinities for the adsorption of trypsin (TRP).
Collapse
|
64
|
Deville S, Honrath B, Tran QTD, Fejer G, Lambrichts I, Nelissen I, Dolga AM, Salvati A. Time-resolved characterization of the mechanisms of toxicity induced by silica and amino-modified polystyrene on alveolar-like macrophages. Arch Toxicol 2019; 94:173-186. [PMID: 31677074 DOI: 10.1007/s00204-019-02604-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/23/2019] [Indexed: 12/21/2022]
Abstract
Macrophages play a major role in the removal of foreign materials, including nano-sized materials, such as nanomedicines and other nanoparticles, which they accumulate very efficiently. Because of this, it is recognized that for a safe development of nanotechnologies and nanomedicine, it is essential to investigate potential effects induced by nano-sized materials on macrophages. To this aim, in this work, a recently established model of primary murine alveolar-like macrophages was used to investigate macrophage responses to two well-known nanoparticle models: 50 nm amino-modified polystyrene, known to induce cell death via lysosomal damage and apoptosis in different cell types, and 50 nm silica nanoparticles, which are generally considered non-toxic. Then, a time-resolved study was performed to characterize in detail the response of the macrophages following exposure to the two nanoparticles. As expected, exposure to the amino-modified polystyrene led to cell death, but surprisingly no lysosomal swelling or apoptosis were detected. On the contrary, a peculiar mitochondrial membrane hyperpolarization was observed, accompanied by endoplasmic reticulum stress (ER stress), increased cellular reactive oxygen species (ROS) and changes of metabolic activity, ultimately leading to cell death. Strong toxic responses were observed also after exposure to silica, which included mitochondrial ROS production, mitochondrial depolarization and cell death by apoptosis. Overall, these results showed that exposure to the two nanoparticles led to a very different series of intracellular events, suggesting that the macrophages responded differently to the two nanoparticle models. Similar time-resolved studies are required to characterize the response of macrophages to nanoparticles, as a key parameter in nanosafety assessment.
Collapse
Affiliation(s)
- Sarah Deville
- Department Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- Health Department, Flemish Institute for Technological Research, Mol, Belgium
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Birgit Honrath
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Quynh T D Tran
- Department Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Gyorgy Fejer
- School of Biomedical Sciences, Faculty of Medicine and Dentistry, Plymouth University, Derriford Research Facility, Plymouth, UK
| | - Ivo Lambrichts
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Inge Nelissen
- Health Department, Flemish Institute for Technological Research, Mol, Belgium
| | - Amalia M Dolga
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Anna Salvati
- Department Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
65
|
Zor F, Selek FN, Orlando G, Williams DF. Biocompatibility in regenerative nanomedicine. Nanomedicine (Lond) 2019; 14:2763-2775. [PMID: 31612774 DOI: 10.2217/nnm-2019-0140] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Biocompatibility is a very common word that is used within biomaterial science and used for description of the interactions between the foreign material and the body. However, the meaning of biocompatibility as well as the mechanisms that collectively constitutes is still unclear. With the advance of nanotechnology, new concerns have been observed related to biocompatibility of these biomaterials. Due to their small size and variability of their physical and chemical properties, nanoparticles' (NP) distribution within the body and interactions with the target cells and tissues are highly variable. Here, we tried to provide an overview about NPs, the concept of biocompatibility and biocompatibility-related issues in nanomedicine and several different NPs.
Collapse
Affiliation(s)
- Fatih Zor
- Department of Surgery, Wake Forest University Health Sciences, Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27101, USA
| | - Fatma Nurefsan Selek
- Department of Surgery, Wake Forest University Health Sciences, Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27101, USA
| | - Giuseppe Orlando
- Section of Transplantation, Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - David F Williams
- Wake Forest School of Medicine, Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27101, USA
| |
Collapse
|
66
|
Shiehzadeh F, Hadizadeh F, Mohammadpour A, Aryan E, Gholami L, Tafaghodi M. Streptomycin sulfate dry powder inhalers for the new tuberculosis treatment schedule. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.05.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
67
|
Martin ME, Reaves DK, Jeffcoat B, Enders JR, Costantini LM, Yeyeodu ST, Botta D, Kavanagh TJ, Fleming JM. Silver nanoparticles alter epithelial basement membrane integrity, cell adhesion molecule expression, and TGF-β1 secretion. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 21:102070. [PMID: 31351238 DOI: 10.1016/j.nano.2019.102070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/21/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023]
Abstract
Silver nanoparticles (AgNPs) are widely used in consumer and pharmaceutical products due to their antipathogenic properties. However, safety concerns have been raised due to their bioactive properties. While reports have demonstrated AgNPs can embed within the extracellular matrix, their effects on basement membrane (BM) production, integrin engagement, and tissue-integrity are not well-defined. This study analyzed the effects of AgNPs on BM production, composition and integrin/focal adhesion interactions in representative lung, esophageal, breast and colorectal epithelia models. A multidisciplinary approach including focused proteomics, QPCR arrays, pathway analyses, and immune-based, structural and functional assays was used to identify molecular and physiological changes in cell adhesions and the BM induced by acute and chronic AgNP exposure. Dysregulated targets included CD44 and transforming growth factor-beta, two proteins frequently altered during pathogenesis. Results indicate AgNP exposure interferes with BM and cell adhesion dynamics, and provide insight into the mechanisms of AgNP-induced disruption of epithelial physiology.
Collapse
Affiliation(s)
- Megan E Martin
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC, USA
| | - Denise K Reaves
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC, USA
| | - Breanna Jeffcoat
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC, USA
| | - Jeffrey R Enders
- Molecular Education, Technology and Research Innovation Center, North Carolina State University, Raleigh, NC, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | - Lindsey M Costantini
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC, USA
| | | | - Diane Botta
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Terrance J Kavanagh
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Jodie M Fleming
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA; Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
68
|
Hassanen EI, Khalaf AA, Tohamy AF, Mohammed ER, Farroh KY. Toxicopathological and immunological studies on different concentrations of chitosan-coated silver nanoparticles in rats. Int J Nanomedicine 2019; 14:4723-4739. [PMID: 31308655 PMCID: PMC6614591 DOI: 10.2147/ijn.s207644] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/23/2019] [Indexed: 11/23/2022] Open
Abstract
Background Much consideration has been paid to the toxicological assessment of nanoparticles prior to clinical and biological applications. While in vitro studies have been expanding continually, in vivo investigations of nanoparticles have not developed a cohesive structure. This study aimed to assess the acute toxicity of different concentrations of chitosan-coated silver nanoparticles (Ch-AgNPs) in main organs, including liver, kidneys, and spleen. Materials and methods Twenty-eight male albino rats were used and divided into 4 groups (n=7). Group 1 was kept as a negative control group. Groups 2, 3, and 4 were treated intraperitoneally with Ch-AgNPs each day for 14 days at doses of 50, 25, and 10 mg/kg body weight (bwt) respectively. Histopathological, morphometric and immunohistochemical studies were performed as well as oxidative stress evaluations, and specific functional examinations for each organ were elucidated. Results It was revealed that Ch-AgNPs induced dose-dependent toxicity, and the repeated dosing of rats with 50 mg/kg Ch-AgNPs induced severe toxicities. Histopathological examination showed congestion, hemorrhage, cellular degeneration, apoptosis and necrosis in hepatic and renal tissue as well as lymphocytic depletion with increasing tangible macrophages in the spleen. The highest levels of malondialdehyde, alanine aminotransferase, aspartate aminotransferase (MDA, ALT, AST) and the lowest levels of reduced glutathione, immunoglobulin G, M and total protein (GSH, IgG, IgM, TP) were observed in this group. On the other hand, repeated dosing with 25 mg/kg induced mild to moderate disturbance in the previous parameters, while there was no significant difference in results of pathological examination and biochemical tests between the control group and those treated with 10 mg/kg bwt Ch-AgNPs. Conclusion Chitosan-coated silver nanoparticles induce dose-dependent adverse effects on rats.
Collapse
Affiliation(s)
- Eman Ibrahim Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Abdelazeem Ali Khalaf
- Department of Toxicology & Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Adel Fathy Tohamy
- Department of Toxicology & Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Eman Ragab Mohammed
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Khaled Yehia Farroh
- Nanotechnology & Advanced Materials Central Laboratory, Agricultural Research Center, Giza, Egypt
| |
Collapse
|
69
|
Öhlinger K, Kolesnik T, Meindl C, Gallé B, Absenger-Novak M, Kolb-Lenz D, Fröhlich E. Air-liquid interface culture changes surface properties of A549 cells. Toxicol In Vitro 2019; 60:369-382. [PMID: 31233786 DOI: 10.1016/j.tiv.2019.06.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/15/2019] [Accepted: 06/19/2019] [Indexed: 01/08/2023]
Abstract
A549 cells are common models in the assessment of respiratory cytotoxicity. To provide physiologically more representative exposure conditions and increase the differentiation state, respiratory cells, for instance Calu-3 bronchial epithelial cells, are cultured at an air-liquid interface (ALI). There are indications that A549 cells also change their phenotype upon culture in ALI. The influence of culture in two variations of transwell cultures compared to conventional culture in plastic wells on the phenotype of A549 cells was studied. Cells were characterized by morphology, proliferation and transepithelial electrical resistance, whole genome transcription analysis, Western blot and immunocytochemical detection of pro-surfactant proteins. Furthermore, lipid staining, surface morphology, cell elasticity, surface tension and reaction to quartz particles were performed. Relatively small changes were noted in the expression of differentiation markers for alveolar cells but A549 cells cultured in ALI showed marked differences in lipid staining and surface morphology, surface tension and cytotoxicity of quartz particles. Data show that changes in physiological reactions of A549 cells in ALI culture were rather caused by change of surface properties than by increased expression of surfactant proteins.
Collapse
Affiliation(s)
- Kristin Öhlinger
- Center for Medical Research, Medical University of Graz, Stiftingtalstr. 24, 8010 Graz, Austria
| | - Tatjana Kolesnik
- Center for Medical Research, Medical University of Graz, Stiftingtalstr. 24, 8010 Graz, Austria
| | - Claudia Meindl
- Center for Medical Research, Medical University of Graz, Stiftingtalstr. 24, 8010 Graz, Austria
| | - Birgit Gallé
- Center for Medical Research, Medical University of Graz, Stiftingtalstr. 24, 8010 Graz, Austria
| | - Markus Absenger-Novak
- Center for Medical Research, Medical University of Graz, Stiftingtalstr. 24, 8010 Graz, Austria
| | - Dagmar Kolb-Lenz
- Center for Medical Research, Medical University of Graz, Stiftingtalstr. 24, 8010 Graz, Austria
| | - Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, Stiftingtalstr. 24, 8010 Graz, Austria.
| |
Collapse
|
70
|
Leve F, Bonfim DP, Fontes G, Morgado-Díaz JA. Gold nanoparticles regulate tight junctions and improve cetuximab effect in colon cancer cells. Nanomedicine (Lond) 2019; 14:1565-1578. [PMID: 31215349 DOI: 10.2217/nnm-2019-0023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Aim: Colon cancer (CC) is the second cause of cancer death worldwide. The use of nanoparticles for drug delivery has been increasing in cancer clinical trials over recent years. Materials & methods: We evaluated cytotoxicity of citrate-capped gold nanoparticles (GNPs) and the role they play on cell-cell adhesion. We also used GNP for delivery of cetuximab into different CC cell lines. Results: CC cells with well-formed tight junctions impair GNP uptake. Noncytotoxic concentration of GNP increases paracellular permeability in Caco-2 cells in a reversible way, concomitantly to tight junctions proteins CLDN1 and ZO-1 redistribution. GNP functionalized with cetuximab increases death of invasive HCT-116 CC cells. Conclusion: GNP can be used for drug delivery and can improve efficiency of CC therapy.
Collapse
Affiliation(s)
- Fernanda Leve
- Tissue Bioengineering Laboratory (Labio), Division of Metrology Applied to Life Sciences (Dimav), National Institute of Metrology Quality & Technology (Inmetro), Duque de Caxias, Brazil
| | - Daniella P Bonfim
- Tissue Bioengineering Laboratory (Labio), Division of Metrology Applied to Life Sciences (Dimav), National Institute of Metrology Quality & Technology (Inmetro), Duque de Caxias, Brazil
| | - Giselle Fontes
- Cellular & Molecular Oncobiology Program, National Institute of Cancer (INCa), Rio de Janeiro, Brazil
| | - José A Morgado-Díaz
- Microscopy Applied to Life Sciences Laboratory (Lamav), Division of Metrology Applied to Life Sciences (Dimav), National Institute of Metrology Quality & Technology (Inmetro), Duque de Caxias, Brazil
| |
Collapse
|
71
|
Nicholas TP, Kavanagh TJ, Faustman EM, Altemeier WA. The Effects of Gene × Environment Interactions on Silver Nanoparticle Toxicity in the Respiratory System. Chem Res Toxicol 2019; 32:952-968. [PMID: 31124663 DOI: 10.1021/acs.chemrestox.8b00234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Silver nanoparticles (AgNP) are used in multiple applications but primarily in the manufacturing of antimicrobial products. AgNP toxicity in the respiratory system is well characterized, but few in vitro or in vivo studies have evaluated the effects of interactions between host genetic and acquired factors or gene × environment interactions (G × E) on AgNP toxicity in the respiratory system. The primary goal of this article is to review host genetic and acquired factors identified across in vitro and in vivo studies and prioritize those necessary for defining exposure limits to protect all populations. The impact of these exposures and the work being done to address the current limited protections are also discussed. Future research on G × E effects on AgNP toxicity is warranted and will assist with informing regulatory or recommended exposure limits that enforce special protections for all populations to AgNP exposures in occupational settings.
Collapse
Affiliation(s)
- Tyler P Nicholas
- Department of Environmental and Occupational Health Sciences , University of Washington , Seattle , Washington 98109 , United States
| | - Terrance J Kavanagh
- Department of Environmental and Occupational Health Sciences , University of Washington , Seattle , Washington 98109 , United States
| | - Elaine M Faustman
- Department of Environmental and Occupational Health Sciences , University of Washington , Seattle , Washington 98109 , United States
| | - William A Altemeier
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine , University of Washington , Seattle , Washington 98109 , United States
| |
Collapse
|
72
|
Lee SH, Jun BH. Silver Nanoparticles: Synthesis and Application for Nanomedicine. Int J Mol Sci 2019; 20:ijms20040865. [PMID: 30781560 PMCID: PMC6412188 DOI: 10.3390/ijms20040865] [Citation(s) in RCA: 571] [Impact Index Per Article: 95.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/10/2019] [Accepted: 02/15/2019] [Indexed: 02/07/2023] Open
Abstract
Over the past few decades, metal nanoparticles less than 100 nm in diameter have made a substantial impact across diverse biomedical applications, such as diagnostic and medical devices, for personalized healthcare practice. In particular, silver nanoparticles (AgNPs) have great potential in a broad range of applications as antimicrobial agents, biomedical device coatings, drug-delivery carriers, imaging probes, and diagnostic and optoelectronic platforms, since they have discrete physical and optical properties and biochemical functionality tailored by diverse size- and shape-controlled AgNPs. In this review, we aimed to present major routes of synthesis of AgNPs, including physical, chemical, and biological synthesis processes, along with discrete physiochemical characteristics of AgNPs. We also discuss the underlying intricate molecular mechanisms behind their plasmonic properties on mono/bimetallic structures, potential cellular/microbial cytotoxicity, and optoelectronic property. Lastly, we conclude this review with a summary of current applications of AgNPs in nanoscience and nanomedicine and discuss their future perspectives in these areas.
Collapse
Affiliation(s)
- Sang Hun Lee
- Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, USA.
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang-dong, Gwanjin-gu, Seoul 143-701, Korea.
| |
Collapse
|
73
|
Ren W, Li Y, Wang J, Li L, Xu L, Wu Y, Wang Y, Fei X, Tian J. Synthesis of magnetic nanoflower immobilized lipase and its continuous catalytic application. NEW J CHEM 2019. [DOI: 10.1039/c8nj06429f] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We have synthesized a kind of magnetic lipase–Cu3(PO4)2 nanoflowers (lipase@MNFs), which can be separated quickly from the reaction system under the external magnetic field. Compared with free lipase, the lipase@MNFs exhibited higher enzymatic activity (∼110%) and stability.
Collapse
Affiliation(s)
- Weifan Ren
- Instrumental Analysis Center
- Dalian Polytechnic University
- Dalian 116034
- China
- School of Biological Engineering
| | - Yao Li
- School of Light Industry and Chemical Engineering
- Dalian Polytechnic University
- Dalian 116034
- China
| | - Jihui Wang
- School of Biological Engineering
- Dalian Polytechnic University
- Dalian 116034
- China
- School of Chemical Engineering & Energy Technology
| | - Lin Li
- School of Chemical Engineering & Energy Technology
- Dongguan University of Technology
- Dongguan
- China
| | - Longquan Xu
- Instrumental Analysis Center
- Dalian Polytechnic University
- Dalian 116034
- China
| | - Yuxuan Wu
- School of Biological Engineering
- Dalian Polytechnic University
- Dalian 116034
- China
| | - Yi Wang
- School of Biological Engineering
- Dalian Polytechnic University
- Dalian 116034
- China
| | - Xu Fei
- Instrumental Analysis Center
- Dalian Polytechnic University
- Dalian 116034
- China
| | - Jing Tian
- School of Biological Engineering
- Dalian Polytechnic University
- Dalian 116034
- China
| |
Collapse
|
74
|
Manshian BB, Pokhrel S, Mädler L, Soenen SJ. The impact of nanoparticle-driven lysosomal alkalinization on cellular functionality. J Nanobiotechnology 2018; 16:85. [PMID: 30382919 PMCID: PMC6208102 DOI: 10.1186/s12951-018-0413-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/25/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The biomedical use of nanosized materials is rapidly gaining interest, which drives the quest to elucidate the behavior of nanoparticles (NPs) in a biological environment. Apart from causing direct cell death, NPs can affect cellular wellbeing through a wide range of more subtle processes that are often overlooked. Here, we aimed to study the effect of two biomedically interesting NP types on cellular wellbeing. RESULTS In the present work, gold and SiO2 NPs of similar size and surface charge are used and their interactions with cultured cells is studied. Initial screening shows that at subcytotoxic conditions gold NPs induces cytoskeletal aberrations while SiO2 NPs do not. However, these transformations are only transient. In-depth investigation reveals that Au NPs reduce lysosomal activity by alkalinization of the lysosomal lumen. This leads to an accumulation of autophagosomes, resulting in a reduced cellular degradative capacity and less efficient clearance of damaged mitochondria. The autophagosome accumulation induces Rac and Cdc42 activity, and at a later stage activates RhoA. These transient cellular changes also affect cell functionality, where Au NP-labelled cells display significantly impeded cell migration and invasion. CONCLUSIONS These data highlight the importance of in-depth understanding of bio-nano interactions to elucidate how one biological parameter (impact on cellular degradation) can induce a cascade of different effects that may have significant implications on the further use of labeled cells.
Collapse
Affiliation(s)
- Bella B Manshian
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.,Molecular Small Animal Imaging Center, KU Leuven, Leuven, Belgium
| | - Suman Pokhrel
- Foundation Institute of Materials Science (IWT), Department of Production Engineering, University of Bremen, 28359, Bremen, Germany.,Leibniz Institute for Materials Engineering IWT, Badgasteiner Str. 3, 28359, Bremen, Germany
| | - Lutz Mädler
- Foundation Institute of Materials Science (IWT), Department of Production Engineering, University of Bremen, 28359, Bremen, Germany.,Leibniz Institute for Materials Engineering IWT, Badgasteiner Str. 3, 28359, Bremen, Germany
| | - Stefaan J Soenen
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium. .,Molecular Small Animal Imaging Center, KU Leuven, Leuven, Belgium.
| |
Collapse
|
75
|
Boyles MSP, Brown D, Knox J, Horobin M, Miller MR, Johnston HJ, Stone V. Assessing the bioactivity of crystalline silica in heated high-temperature insulation wools. Inhal Toxicol 2018; 30:255-272. [PMID: 30328741 PMCID: PMC6334780 DOI: 10.1080/08958378.2018.1513610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
High-Temperature Insulation Wools (HTIW), such as alumino silicate wools (Refractory Ceramic Fibers) and Alkaline Earth Silicate wools, are used in high-temperature industries for thermal insulation. These materials have an amorphous glass-like structure. In some applications, exposure to high temperatures causes devitrification resulting in the formation of crystalline species including crystalline silica. The formation of this potentially carcinogenic material raises safety concerns regarding after-use handling and disposal. This study aims to determine whether cristobalite formed in HTIW is bioactive in vitro. Mouse macrophage (J774A.1) and human alveolar epithelial (A549) cell lines were exposed to pristine HTIW of different compositions, and corresponding heat-treated samples. Cell death, cytokine release, and reactive oxygen species (ROS) formation were assessed in both cell types. Cell responses to aluminum lactate-coated fibers were assessed to determine if responses were caused by crystalline silica. DQ12 α-quartz was used as positive control, and TiO2 as negative control. HTIW did not induce cell death or intracellular ROS, and their ability to induce pro-inflammatory mediator release was low. In contrast, DQ12 induced cytotoxicity, a strong pro-inflammatory response and ROS generation. The modest pro-inflammatory mediator responses of HTIW did not always coincide with the formation of cristobalite in heated fibers; therefore, we cannot confirm that devitrification of HTIW results in bioactive cristobalite in vitro. In conclusion, the biological responses to HTIW observed were not attributable to a single physicochemical characteristic; instead, a combination of physicochemical characteristics (cristobalite content, fiber chemistry, dimensions and material solubility) appear to contribute to induction of cellular responses.
Collapse
Affiliation(s)
- Matthew S P Boyles
- a Nano Safety Research Group, School of Engineering and Physical Sciences, Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University , Edinburgh , UK
| | - David Brown
- a Nano Safety Research Group, School of Engineering and Physical Sciences, Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University , Edinburgh , UK
| | - Jilly Knox
- b Morgan Advanced Materials, Thermal Ceramics , Bromborough, UK
| | - Michael Horobin
- b Morgan Advanced Materials, Thermal Ceramics , Bromborough, UK
| | - Mark R Miller
- c Centre for Cardiovascular Science , University of Edinburgh , Edinburgh , UK
| | - Helinor J Johnston
- a Nano Safety Research Group, School of Engineering and Physical Sciences, Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University , Edinburgh , UK
| | - Vicki Stone
- a Nano Safety Research Group, School of Engineering and Physical Sciences, Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University , Edinburgh , UK
| |
Collapse
|
76
|
Ibrahim KE, Al-Mutary MG, Bakhiet AO, Khan HA. Histopathology of the Liver, Kidney, and Spleen of Mice Exposed to Gold Nanoparticles. Molecules 2018; 23:E1848. [PMID: 30044410 PMCID: PMC6222535 DOI: 10.3390/molecules23081848] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 02/05/2023] Open
Abstract
Gold nanoparticles (GNPs) are biocompatible nanomaterials that are currently researched for biomedical applications such as imaging and targeted drug delivery. In this investigation, we studied the effects of a single dose (injected on day 1) as well as a priming dose (two injections with a gap of one week) of 5 nm, 20 nm, and 50 nm diameter GNPs on the structural and biochemical changes in the liver, kidney, and spleen of mice. The results showed that small sized GNPs (5 nm) produced significant pathological changes in the liver on day 2 that gradually reduced on day 8. The medium (20 nm) and large (50 nm) sized GNPs preferentially targeted the spleen and caused significant pathological changes to the spleen architecture on day 2 that persisted on day 8 as well. There were minimal and insignificant pathological changes to the kidneys irrespective of the GNPs size. The animals that were primed with the pre-exposure of GNPs did not show any aggravation of histological changes after the second dose of the same GNPs. None of the dose regimens of the GNPs were able to significantly affect the markers of oxidative stress including glutathione (GSH) and malondialdehyde (MDA) in all of the organs that were studied. In conclusion, the size of GNPs plays an important role in their pathological effects on different organs of mice. Moreover, the primed animals become refractory to further pathological changes after the second dose of GNPs, suggesting the importance of a priming dose in medical applications of GNPs.
Collapse
Affiliation(s)
- Khalid Elfaki Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Mohsen Ghaleb Al-Mutary
- Department of Basic Sciences, College of Education, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia.
| | - Amel Omer Bakhiet
- Deanship of Scientific Research, Sudan University of Science and Technology, Khartoum 11111, Sudan.
| | - Haseeb Ahmad Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
77
|
Scala G, Kinaret P, Marwah V, Sund J, Fortino V, Greco D. Multi-omics analysis of ten carbon nanomaterials effects highlights cell type specific patterns of molecular regulation and adaptation. NANOIMPACT 2018; 11:99-108. [PMID: 32140619 PMCID: PMC7043328 DOI: 10.1016/j.impact.2018.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/28/2018] [Accepted: 05/05/2018] [Indexed: 05/19/2023]
Abstract
New strategies to characterize the effects of engineered nanomaterials (ENMs) based on omics technologies are emerging. However, given the intricate interplay of multiple regulatory layers, the study of a single molecular species in exposed biological systems might not allow the needed granularity to successfully identify the pathways of toxicity (PoT) and, hence, portraying adverse outcome pathways (AOPs). Moreover, the intrinsic diversity of different cell types composing the exposed organs and tissues in living organisms poses a problem when transferring in vivo experimentation into cell-based in vitro systems. To overcome these limitations, we have profiled genome-wide DNA methylation, mRNA and microRNA expression in three human cell lines representative of relevant cell types of the respiratory system, A549, BEAS-2B and THP-1, exposed to a low dose of ten carbon nanomaterials (CNMs) for 48 h. We applied advanced data integration and modelling techniques in order to build comprehensive regulatory and functional maps of the CNM effects in each cell type. We observed that different cell types respond differently to the same CNM exposure even at concentrations exerting similar phenotypic effects. Furthermore, we linked patterns of genomic and epigenomic regulation to intrinsic properties of CNM. Interestingly, DNA methylation and microRNA expression only partially explain the mechanism of action (MOA) of CNMs. Taken together, our results strongly support the implementation of approaches based on multi-omics screenings on multiple tissues/cell types, along with systems biology-based multi-variate data modelling, in order to build more accurate AOPs.
Collapse
Affiliation(s)
- Giovanni Scala
- Faculty of Medicine and Life Sciences, University of Tampere, Finland
- Institute of Biosciences and Medical Technologies (BioMediTech), University of Tampere, Finland
- Institute of Biotechnology, University of Helsinki, Finland
| | - Pia Kinaret
- Faculty of Medicine and Life Sciences, University of Tampere, Finland
- Institute of Biosciences and Medical Technologies (BioMediTech), University of Tampere, Finland
- Institute of Biotechnology, University of Helsinki, Finland
| | - Veer Marwah
- Faculty of Medicine and Life Sciences, University of Tampere, Finland
- Institute of Biosciences and Medical Technologies (BioMediTech), University of Tampere, Finland
| | - Jukka Sund
- Faculty of Medicine and Life Sciences, University of Tampere, Finland
| | - Vittorio Fortino
- Faculty of Medicine and Life Sciences, University of Tampere, Finland
- Institute of Biosciences and Medical Technologies (BioMediTech), University of Tampere, Finland
- Institute of Biomedicine, University of Eastern Finland, Kuopio Campus, Finland
| | - Dario Greco
- Faculty of Medicine and Life Sciences, University of Tampere, Finland
- Institute of Biosciences and Medical Technologies (BioMediTech), University of Tampere, Finland
- Institute of Biotechnology, University of Helsinki, Finland
| |
Collapse
|
78
|
Alea-Reyes ME, Penon O, García Calavia P, Marín MJ, Russell DA, Pérez-García L. Synthesis and in vitro phototoxicity of multifunctional Zn(II)meso-tetrakis(4-carboxyphenyl)porphyrin-coated gold nanoparticles assembled via axial coordination with imidazole ligands. J Colloid Interface Sci 2018; 521:81-90. [DOI: 10.1016/j.jcis.2018.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/04/2018] [Accepted: 03/06/2018] [Indexed: 02/07/2023]
|
79
|
Dağlıoğlu Y, Özkan Yılmaz H, Yılmaz O. Memeli Tümör ve Normal Hücre Hatlarında Nanopartikül Uygulamaları. ARŞIV KAYNAK TARAMA DERGISI 2018. [DOI: 10.17827/aktd.346216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
80
|
Ganguly P, Breen A, Pillai SC. Toxicity of Nanomaterials: Exposure, Pathways, Assessment, and Recent Advances. ACS Biomater Sci Eng 2018; 4:2237-2275. [DOI: 10.1021/acsbiomaterials.8b00068] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Priyanka Ganguly
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, School of Science, Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
| | - Ailish Breen
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, School of Science, Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
| | - Suresh C. Pillai
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, School of Science, Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
| |
Collapse
|
81
|
Martínez-Torres AC, Zarate-Triviño DG, Lorenzo-Anota HY, Ávila-Ávila A, Rodríguez-Abrego C, Rodríguez-Padilla C. Chitosan gold nanoparticles induce cell death in HeLa and MCF-7 cells through reactive oxygen species production. Int J Nanomedicine 2018; 13:3235-3250. [PMID: 29910612 PMCID: PMC5987788 DOI: 10.2147/ijn.s165289] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Nanotechnology has gained important interest, especially in the development of new therapies; the application of gold nanoparticles (AuNPs) in the treatment and detection of diseases is a growing trend in this field. As cancer represents a serious health problem around the world, AuNPs are studied as potential drugs or drug carriers for anticancer agents. Recent studies show that AuNPs stabilized with chitosan (CH) possess interesting biological activities, including potential antitumor effects that could be selective to cancer cells. Materials and methods In this study, we synthesized sodium citrate-AuNPs and CH-capped AuNPs of 3-10 nm, and analyzed their cytotoxicity in cervical (HeLa) and breast (MCF-7) cancer cells, and in peripheral blood mononuclear cells (PBMCs). Then, we evaluated the clonogenic potential, cell cycle, nuclear alterations, caspase dependence, and reactive oxygen species (ROS) production in HeLa and MCF-7 cells after chitosan gold nanoparticles (CH-AuNPs) exposure. Results Our data showed that CH-AuNPs are cytotoxic in a dose-dependent manner in the cancer cell lines tested, while they induce low cytotoxicity in PBMCs. Sodium citrate gold nanoparticles did not show cytotoxic effects. In both HeLa and MCF-7 cell lines, CH-AuNPs inhibit clonogenic potential without inducing cell cycle arrest or nuclear alterations. The cell death mechanism is specific for the type of cancer cell line tested, as it depends on caspase activation in HeLa cells, whereas it is caspase independent in MCF-7 cells. In all cases, ROS production is mandatory for cell death induction by CH-AuNPs, as ROS inhibition with N-acetyl cysteine inhibits cell death. Conclusion Our results show that CH-AuNPs are selective for HeLa and MCF-7 cancer cells, rather than normal PBMCs, and that ROS production seems to be a conserved feature of the cell death mechanism induced by CH-AuNPs. These results improve the knowledge of CH-AuNPs and open the way to the design of new pharmacological strategies using these agents against cancer.
Collapse
Affiliation(s)
- Ana Carolina Martínez-Torres
- Laboratory of Immunology and Virology, Faculty of Biological Sciences, Autonomous University of Nuevo Leon, Monterrey, Mexico
| | - Diana G Zarate-Triviño
- Laboratory of Immunology and Virology, Faculty of Biological Sciences, Autonomous University of Nuevo Leon, Monterrey, Mexico
| | - Helen Yarimet Lorenzo-Anota
- Laboratory of Immunology and Virology, Faculty of Biological Sciences, Autonomous University of Nuevo Leon, Monterrey, Mexico
| | - Andrea Ávila-Ávila
- Laboratory of Immunology and Virology, Faculty of Biological Sciences, Autonomous University of Nuevo Leon, Monterrey, Mexico
| | - Carolina Rodríguez-Abrego
- Laboratory of Immunology and Virology, Faculty of Biological Sciences, Autonomous University of Nuevo Leon, Monterrey, Mexico
| | - Cristina Rodríguez-Padilla
- Laboratory of Immunology and Virology, Faculty of Biological Sciences, Autonomous University of Nuevo Leon, Monterrey, Mexico
| |
Collapse
|
82
|
Chen B, Yoo K, Xu W, Pan R, Han XX, Chen P. Characterization and evaluation of a peptide-based siRNA delivery system in vitro. Drug Deliv Transl Res 2018; 7:507-515. [PMID: 28349343 DOI: 10.1007/s13346-017-0371-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Since its inception more than a decade ago, gene silencing mediated by double-stranded small interfering RNA (siRNA) has been widely investigated as a potential therapeutic approach for a variety of diseases. However, the use of siRNA is hampered by its rapid degradation and poor cellular uptake in vitro and in vivo. Recently, peptide-based carriers have been applied to siRNA delivery, as an alternative to the traditional delivery systems. Here, a histidine-containing amphipathic amino acid pairing peptide, C6M3, which can form complexes with siRNA, was used as a new siRNA delivery system. This peptide exhibited a high affinity for siRNA and ability to efficiently deliver siRNA into the cells. The interaction of C6M3 with siRNA was investigated to determine the loading capacity of C6M3 at different peptide/siRNA molar ratios. At C6M3/siRNA molar ratio of 10/1, siRNA molecules were entirely associated with C6M3 as indicated by a gel electrophoretic assay and further confirmed by zeta potential analysis. The particle size distribution of the C6M3-siRNA complexes was studied using dynamic light scattering, which showed an intensity-based size distribution peaked approximately at 100 nm in RNase-free water and 220 nm in the Opti-MEM medium. C6M3 adopted a helical secondary structure in RNase-free water and became more so after forming complexes with siRNA. The interaction of siRNA with C6M3 is an entropy-driven spontaneous process, as determined by isothermal titration calorimetry (ITC) study. The efficiency of cellular uptake of the siRNA complexes at different C6M3/siRNA molar ratios was evaluated, and the results showed that C6M3 promoted efficient cellular uptake of siRNA into cells. Furthermore, a significant level of GAPDH gene silencing efficiency (69%) was achieved in CHO-K1 cells, with minimal cytotoxicity.
Collapse
Affiliation(s)
- Baoling Chen
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.,Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Kimoon Yoo
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Wen Xu
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.,Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Ran Pan
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.,Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Xiao Xia Han
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.,Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - P Chen
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada. .,Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
83
|
Yadav P, Singh SP, Rengan AK, Shanavas A, Srivastava R. Gold laced bio-macromolecules for theranostic application. Int J Biol Macromol 2018; 110:39-53. [DOI: 10.1016/j.ijbiomac.2017.10.124] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/26/2017] [Accepted: 10/18/2017] [Indexed: 02/07/2023]
|
84
|
Alamer S, Eissa S, Chinnappan R, Zourob M. A rapid colorimetric immunoassay for the detection of pathogenic bacteria on poultry processing plants using cotton swabs and nanobeads. Mikrochim Acta 2018; 185:164. [DOI: 10.1007/s00604-018-2696-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/20/2018] [Indexed: 12/20/2022]
|
85
|
Xu Y, Li G, Zhuang W, Yu H, Hu Y, Wang Y. Micelles prepared from poly(N-isopropylacrylamide-co-tetraphenylethene acrylate)-b-poly[oligo(ethylene glycol) methacrylate] double hydrophilic block copolymer as hydrophilic drug carrier. J Mater Chem B 2018; 6:7495-7502. [DOI: 10.1039/c8tb02247j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Thermal-induced micelles prepared with P(NIPAAm-co-TPE)-b-POEGMA double hydrophilic block copolymers for hydrophilic drug release. Hydrogen bonds are formed between PNIPAAm and thymopentin.
Collapse
Affiliation(s)
- YangYang Xu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- P. R. China
| | - Gaocan Li
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- P. R. China
| | - Weihua Zhuang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- P. R. China
| | - HongChi Yu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- P. R. China
| | - Yanfei Hu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- P. R. China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- P. R. China
| |
Collapse
|
86
|
Efficient in situ growth of enzyme-inorganic hybrids on paper strips for the visual detection of glucose. Biosens Bioelectron 2018; 99:603-611. [DOI: 10.1016/j.bios.2017.08.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/11/2017] [Accepted: 08/07/2017] [Indexed: 12/27/2022]
|
87
|
Londono N, Donovan AR, Shi H, Geisler M, Liang Y. Impact of TiO 2 and ZnO nanoparticles on an aquatic microbial community: effect at environmentally relevant concentrations. Nanotoxicology 2017; 11:1140-1156. [PMID: 29125011 DOI: 10.1080/17435390.2017.1401141] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
To investigate effects of engineered nanoparticles (ENPs) at environmentally relevant concentrations to aquatic microbial communities, TiO2 at 700 µg/L and ZnO at 70 µg/L were spiked to river water samples either separately or combined. Compared to controls where no ENPs were added, the addition of TiO2 ENPs alone at the tested concentration had no statistically significant effect on both the bacterial and eukaryotic communities. The presence of added ENPs: ZnO or ZnO + TiO2 led to significant shift of the microbial community structure and genus distribution. This shift was more obvious for the bacteria than the eukaryotes. Based on results from single particle - inductively coupled plasma - mass spectrometry (SP-ICP-MS), all ENPs aggregated rapidly in water and resulted in much larger particles sizes than the original counterparts. "Dissolved" (including particles smaller than the size detection limits and dissolved ions) concentrations of Ti and Zn increased, too in treatment groups vs. the controls.
Collapse
Affiliation(s)
- Nathalia Londono
- a Department of Civil and Environmental Engineering , Southern Illinois University , Carbondale , IL , USA
| | - Ariel R Donovan
- b Department of Chemistry , Missouri University of Science and Technology , Rolla , MO , USA
| | - Honglan Shi
- b Department of Chemistry , Missouri University of Science and Technology , Rolla , MO , USA.,c Center for Single Nanoparticle, Single Cell, and Single Molecule Monitoring (CS3M) , Rolla , MO , USA
| | - Matthew Geisler
- d Department of Plant Biology , Life Science II, Southern Illinois University , Carbondale , IL , USA
| | - Yanna Liang
- a Department of Civil and Environmental Engineering , Southern Illinois University , Carbondale , IL , USA.,e Department of Environmental and Sustainable Engineering , University at Albany, State University of New York , Albany , NY , USA
| |
Collapse
|
88
|
Pérez-Hernández M, Moros M, Stepien G, Del Pino P, Menao S, de Las Heras M, Arias M, Mitchell SG, Pelaz B, Gálvez EM, de la Fuente JM, Pardo J. Multiparametric analysis of anti-proliferative and apoptotic effects of gold nanoprisms on mouse and human primary and transformed cells, biodistribution and toxicity in vivo. Part Fibre Toxicol 2017; 14:41. [PMID: 29073907 PMCID: PMC5658988 DOI: 10.1186/s12989-017-0222-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 10/17/2017] [Indexed: 12/02/2022] Open
Abstract
Background The special physicochemical properties of gold nanoprisms make them very useful for biomedical applications including biosensing and cancer therapy. However, it is not clear how gold nanoprisms may affect cellular physiology including viability and other critical functions. We report a multiparametric investigation on the impact of gold-nanoprisms on mice and human, transformed and primary cells as well as tissue distribution and toxicity in vivo after parental injection. Methods Cellular uptake of the gold-nanoprisms (NPRs) and the most crucial parameters of cell fitness such as generation of reactive oxygen species (ROS), mitochondria membrane potential, cell morphology and apoptosis were systematically assayed in cells. Organ distribution and toxicity including inflammatory response were analysed in vivo in mice at 3 days or 4 months after parental administration. Results Internalized gold-nanoprisms have a significant impact in cell morphology, mitochondrial function and ROS production, which however do not affect the potential of cells to proliferate and form colonies. In vivo NPRs were only detected in spleen and liver at 3 days and 4 months after administration, which correlated with some changes in tissue architecture. However, the main serum biochemical markers of organ damage and inflammation (TNFα and IFNγ) remained unaltered even after 4 months. In addition, animals did not show any macroscopic sign of toxicity and remained healthy during all the study period. Conclusion Our data indicate that these gold-nanoprisms are neither cytotoxic nor cytostatic in transformed and primary cells, and suggest that extensive parameters should be analysed in different cell types to draw useful conclusions on nanomaterials safety. Moreover, although there is a tendency for the NPRs to accumulate in liver and spleen, there is no observable negative impact on animal health. Electronic supplementary material The online version of this article (10.1186/s12989-017-0222-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marta Pérez-Hernández
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009, Zaragoza, Spain. .,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Centro de Investigación Biomédica de Aragón (CIBA), Universidad de Zaragoza, 50009, Zaragoza, Spain.
| | - María Moros
- Instituto Universitario de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018, Zaragoza, Spain.,Institute of Applied Sciences and Intelligent Systems-CNR, Via Campi Flegrei, 34, 80078, Pozzuoli, Italy
| | - Grazyna Stepien
- Fundación Instituto Universitario de Nanociencia de Aragón (FINA), Universidad de Zaragoza, 50018, Zaragoza, Spain.,CIBER in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Pablo Del Pino
- Instituto Universitario de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018, Zaragoza, Spain.,Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CiQUS) y Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Sebastián Menao
- Departamento de Bioquímica clínica. H.C.U. Lozano Blesa, 50009, Zaragoza, Spain
| | - Marcelo de Las Heras
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, 50009, Zaragoza, Spain
| | - Maykel Arias
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Centro de Investigación Biomédica de Aragón (CIBA), Universidad de Zaragoza, 50009, Zaragoza, Spain
| | - Scott G Mitchell
- Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza, Zaragoza, Spain
| | - Beatriz Pelaz
- Instituto Universitario de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018, Zaragoza, Spain.,Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CiQUS) y Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Eva M Gálvez
- Instituto de Carboquímica ICB-CSIC, 50018, Zaragoza, Spain
| | - Jesús M de la Fuente
- CIBER in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain.,Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza, Zaragoza, Spain
| | - Julián Pardo
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Centro de Investigación Biomédica de Aragón (CIBA), Universidad de Zaragoza, 50009, Zaragoza, Spain.,Instituto Universitario de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018, Zaragoza, Spain.,Departamento de Microbiología, Medicina Preventiva y Salud Pública, Facultad de Medicina, Universidad de Zaragoza, 50009, Zaragoza, Spain.,Aragón I+D Foundation (ARAID), Gobierno de Aragón, Zaragoza, Spain
| |
Collapse
|
89
|
Park C, Park S, Lee D, Choi KS, Lim HP, Kim J. Graphene as an Enabling Strategy for Dental Implant and Tissue Regeneration. Tissue Eng Regen Med 2017; 14:481-493. [PMID: 30603503 PMCID: PMC6171627 DOI: 10.1007/s13770-017-0052-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 11/28/2022] Open
Abstract
Graphene-based approaches have been influential in the design and manipulation of dental implants and tissue regeneration to overcome the problems associated with traditional titanium-based dental implants, such as their low biological affinity. Here, we describe the current progress of graphene-based platforms, which have contributed to major advances for improving cellular functions in in vitro and in vivo applications of dental implants. We also present opinions on the principal challenges and future prospects for new graphene-based platforms for the development of advanced graphene dental implants and tissue regeneration.
Collapse
Affiliation(s)
- Chan Park
- Department of Prosthodontics, School of Dentistry, Dental Science Research Institute, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju, 61186 Korea
| | - Sunho Park
- Department of Rural and Biosystems Engineering, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju, 61186 Korea
| | - Dohyeon Lee
- Department of Rural and Biosystems Engineering, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju, 61186 Korea
| | - Kyoung Soon Choi
- Advanced Nano-Surface Research Group, Korea Basic Science Institute (KBSI), 70, Yuseong-daero 1689-gil, Yuseong-gu Daejeon, 34047 Korea
| | - Hyun-Pil Lim
- Department of Prosthodontics, School of Dentistry, Dental Science Research Institute, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju, 61186 Korea
| | - Jangho Kim
- Department of Rural and Biosystems Engineering, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju, 61186 Korea
| |
Collapse
|
90
|
Jannathul Firdhouse M, Lalitha P. Cytotoxicity of spherical gold nanoparticles synthesised using aqueous extracts of aerial roots of Rhaphidophora aurea (Linden ex Andre) intertwined over Lawsonia inermis and Areca catechu on MCF-7 cell line. IET Nanobiotechnol 2017; 11:2-11. [PMID: 28476954 DOI: 10.1049/iet-nbt.2016.0076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A facile synthesis of gold nanoparticles (GNPs) using the aqueous extracts of the aerial roots of Rhaphidophora aurea (Linden ex Andre) intertwined over Lawsonia inermis and Areca catechu was carried out under different conditions, namely room temperature, higher temperature, sonication, solar irradiation and pH variation. The surface plasmon resonance (SPR) band at 536 and 575 nm obtained in UV-visible spectrum revealed the formation of AuNP's. The sharp SPR band of the synthesised nanogold indicates the formation of spherical-shaped and uniform-sized nanoparticles. The TEM analysis revealed spherical nanogold particles of size 35 and 10 nm for MM and MP extracts. The secondary metabolites present in the aqueous extract are suggested to be responsible for the reduction of metal ions to metal nanoparticles as evidenced from results of FTIR analysis. Rapid synthesis of GNPs by sunlight is the production of microscopic grains of gold due to the dissociation of gold chloride. This may induce the reaction between secondary metabolites and gold chloride solutions and results in GNPs. The cytotoxic activity of the synthesised nanogold studied against human breast cancer cells (MCF-7) by 3-[4,5-dimethylthiazol-2-yl]2,5-diphenyltetrazolium bromide assay showed significant activity at higher concentration.
Collapse
Affiliation(s)
- Mubarak Jannathul Firdhouse
- Department of Chemistry, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641043, Tamil Nadu, India
| | - Pottail Lalitha
- Department of Chemistry, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641043, Tamil Nadu, India.
| |
Collapse
|
91
|
|
92
|
Liu Y, Zhou H, Hu Z, Yu G, Yang D, Zhao J. Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: A review. Biosens Bioelectron 2017; 94:131-140. [DOI: 10.1016/j.bios.2017.02.032] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/20/2017] [Accepted: 02/22/2017] [Indexed: 12/21/2022]
|
93
|
Susceptibility of Colistin-Resistant, Gram-Negative Bacteria to Antimicrobial Peptides and Ceragenins. Antimicrob Agents Chemother 2017; 61:AAC.00292-17. [PMID: 28584137 PMCID: PMC5527650 DOI: 10.1128/aac.00292-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/20/2017] [Indexed: 11/20/2022] Open
Abstract
The susceptibility of colistin-resistant clinical isolates of Klebsiella pneumoniae to ceragenins and antimicrobial peptides (AMPs) suggests that there is little to no cross-resistance between colistin and ceragenins/AMPs and that lipid A modifications are found in bacteria with modest changes in susceptibility to ceragenins and with high levels of resistance to colistin. These results suggest that there are differences in the resistance mechanisms to colistin and ceragenins/AMPs.
Collapse
|
94
|
Spezzati G, Fant K, Ahniyaz A, Lundin-Johnson M, Hensen EJM, Langermans H, Hofmann JP. Synthesis, Physicochemical Characterization, and Cytotoxicity Assessment of CeO2
Nanoparticles with Different Morphologies. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700248] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Giulia Spezzati
- Laboratory of Inorganic Materials Chemistry; Department of Chemical Engineering and Chemistry; Eindhoven University of Technology; P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Kristina Fant
- Chemistry, Materials and Surfaces; SP Technical Research Institute of Sweden; Box 857 50115 Borås Sweden
| | - Anwar Ahniyaz
- Chemistry, Materials and Surfaces; SP Technical Research Institute of Sweden; Box 5607 11486 Stockholm Sweden
| | - Maria Lundin-Johnson
- Chemistry, Materials and Surfaces; SP Technical Research Institute of Sweden; Box 5607 11486 Stockholm Sweden
| | - Emiel J. M. Hensen
- Laboratory of Inorganic Materials Chemistry; Department of Chemical Engineering and Chemistry; Eindhoven University of Technology; P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Harm Langermans
- DSM ChemTech Center; ACES Colloids and Interfaces; Urmonderbaan 22 6167 RD Geleen The Netherlands
| | - Jan P. Hofmann
- Laboratory of Inorganic Materials Chemistry; Department of Chemical Engineering and Chemistry; Eindhoven University of Technology; P.O. Box 513 5600 MB Eindhoven The Netherlands
| |
Collapse
|
95
|
Joris F, Valdepérez D, Pelaz B, Wang T, Doak SH, Manshian BB, Soenen SJ, Parak WJ, De Smedt SC, Raemdonck K. Choose your cell model wisely: The in vitro nanoneurotoxicity of differentially coated iron oxide nanoparticles for neural cell labeling. Acta Biomater 2017; 55:204-213. [PMID: 28373085 DOI: 10.1016/j.actbio.2017.03.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 03/27/2017] [Accepted: 03/30/2017] [Indexed: 02/06/2023]
Abstract
Currently, there is a large interest in the labeling of neural stem cells (NSCs) with iron oxide nanoparticles (IONPs) to allow MRI-guided detection after transplantation in regenerative medicine. For such biomedical applications, excluding nanotoxicity is key. Nanosafety is primarily evaluated in vitro where an immortalized or cancer cell line of murine origin is often applied, which is not necessarily an ideal cell model. Previous work revealed clear neurotoxic effects of PMA-coated IONPs in distinct cell types that could potentially be applied for nanosafety studies regarding neural cell labeling. Here, we aimed to assess if DMSA-coated IONPs could be regarded as a safer alternative for this purpose and how the cell model impacted our nanosafety optimization study. Hereto, we evaluated cytotoxicity, ROS production, calcium levels, mitochondrial homeostasis and cell morphology in six related neural cell types, namely neural stem cells, an immortalized cell line and a cancer cell line from human and murine origin. The cell lines mostly showed similar responses to both IONPs, which were frequently more pronounced for the PMA-IONPs. Of note, ROS and calcium levels showed opposite trends in the human and murine NSCs, indicating the importance of the species. Indeed, the human cell models were overall more sensitive than their murine counterpart. Despite the clear cell type-specific nanotoxicity profiles, our multiparametric approach revealed that the DMSA-IONPs outperformed the PMA-IONPs in terms of biocompatibility in each cell type. However, major cell type-dependent variations in the observed effects additionally warrant the use of relevant human cell models. STATEMENT OF SIGNIFICANCE Inorganic nanoparticle (NP) optimization is chiefly performed in vitro. For the optimization of iron oxide (IO)NPs for neural stem cell labeling in the context of regenerative medicine human or rodent neural stem cells, immortalized or cancer cell lines are applied. However, the use of certain cell models can be questioned as they phenotypically differ from the target cell. The impact of the neural cell model on nanosafety remains relatively unexplored. Here we evaluated cell homeostasis upon exposure to PMA- and DMSA-coated IONPs. Of note, the DMSA-IONPs outperformed the PMA-IONPs in each cell type. However, distinct cell type-specific effects were witnessed, indicating that nanosafety should be evaluated in a human cell model that represents the target cell as closely as possible.
Collapse
Affiliation(s)
- Freya Joris
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Daniel Valdepérez
- Philipps University of Marburg, Department of Physics, Renthof 7, D-35037 Marburg, Germany
| | - Beatriz Pelaz
- Philipps University of Marburg, Department of Physics, Renthof 7, D-35037 Marburg, Germany
| | - Tianqiang Wang
- Philipps University of Marburg, Department of Physics, Renthof 7, D-35037 Marburg, Germany
| | - Shareen H Doak
- Institute of Life Sciences, Swansea University Medical School, Singleton Park, Swansea, Wales SA2 8PP, UK
| | - Bella B Manshian
- Biomedical MRI Unit/MoSAIC, Department of Medicine, KULeuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Stefaan J Soenen
- Biomedical MRI Unit/MoSAIC, Department of Medicine, KULeuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Wolfgang J Parak
- Philipps University of Marburg, Department of Physics, Renthof 7, D-35037 Marburg, Germany
| | - Stefaan C De Smedt
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium.
| | - Koen Raemdonck
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| |
Collapse
|
96
|
Liu Y, Chen J, Du M, Wang X, Ji X, He Z. The preparation of dual-functional hybrid nanoflower and its application in the ultrasensitive detection of disease-related biomarker. Biosens Bioelectron 2017; 92:68-73. [DOI: 10.1016/j.bios.2017.02.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/31/2017] [Accepted: 02/02/2017] [Indexed: 12/29/2022]
|
97
|
Qian D, Li W, Chen F, Huang Y, Bao N, Gu H, Yu C. Voltammetric sensor for trichloroacetic acid using a glassy carbon electrode modified with Au@Ag nanorods and hemoglobin. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2175-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
98
|
Escobar S, Velasco-Lozano S, Lu CH, Lin YF, Mesa M, Bernal C, López-Gallego F. Understanding the functional properties of bio-inorganic nanoflowers as biocatalysts by deciphering the metal-binding sites of enzymes. J Mater Chem B 2017; 5:4478-4486. [PMID: 32263975 DOI: 10.1039/c6tb03295h] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The biomineralisation of metal phosphates is a promising approach to develop more efficient nanobiocatalysts; however, the interactions between the protein and the inorganic mineral are poorly understood. Elucidating which protein regions most likely participate in the mineral formation will guide the fabrication of more efficient biocatalysts based on metal-phosphate nanoflowers. We have biomineralised the lipase from Thermomyces lanuginosus using three calcium, zinc and copper phosphates to fabricate different types of bio-inorganic nanoflowers. To better understand how the biomineralisation process affects the enzyme properties, we have computationally predicted the protein regions with a higher propensity for binding Ca2+, Cu2+ and Zn2+. These binding sites can be considered as presumable nucleation points where the biomineralisation process starts and explain why different metals can form bio-inorganic nanoflowers of the same enzyme with different functional properties. The formation of calcium, copper and zinc phosphates in the presence of this lipase gives rise to nanoflowers with different morphologies and different enzymatic properties such as activity, stability, hyperactivation and activity-pH profile; these functional differences are supported by structural studies based on fluorescence spectroscopy and can be explained by the different locations of the predicted nucleation sites for the different metals. Among the three metals used herein, the mineralisation of this lipase with zinc-phosphate enables the fabrication of bio-inorganic nanoflowers 34 times more stable than the soluble enzyme. These bio-inorganic nanoflowers were reused for 8 reaction cycles achieving 100% yield in the hydrolysis of p-nitrophenol butyrate but losing more than 50% of their initial activity after 6 operational cycles. Finally, this heterogeneous biocatalyst was more active and enantioselective than the soluble enzyme (ee = 79%(R)) towards the kinetic resolution of rac-1-phenylethyl acetate yielding the R enantiomer with ee = 84%.
Collapse
Affiliation(s)
- Sindy Escobar
- Grupo Ciencia de los Materiales, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia - UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | | | | | | | | | | | | |
Collapse
|
99
|
Sthijns MMJPE, Thongkam W, Albrecht C, Hellack B, Bast A, Haenen GRMM, Schins RPF. Silver nanoparticles induce hormesis in A549 human epithelial cells. Toxicol In Vitro 2017; 40:223-233. [PMID: 28109747 DOI: 10.1016/j.tiv.2017.01.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/30/2016] [Accepted: 01/15/2017] [Indexed: 10/20/2022]
Abstract
Despite the gaps in our knowledge on the toxicity of silver nanoparticles (AgNPs), the application of these materials is fast expanding, from medicine, to food as well as the use in consumer products. It has been reported that prolonged exposure might make cells more resistant to AgNPs. This prompted us to investigate if AgNPs may give rise to a hormetic response. Two types of AgNPs were used, i.e. colloidal AgNPs and an AgNP powder. For both types of nanosilver it was found that a low dose pretreatment of A549 human epithelial cells with AgNPs induced protection against a toxic dose of AgNPs and acrolein. This protection was more pronounced after pretreatment with the colloidal AgNPs. Interestingly, the mechanism of the hormetic response appeared to differ from that of acrolein. Adaptation to acrolein is related to Nrf2 translocation, increased mRNA expression of γGCS, HO-1 and increased GSH levels and the increased GSH levels can explain the hormetic effect. The adaptive response to AgNPs was not related to an increase in mRNA expression of γGCS and GSH levels. Yet, HO-1 mRNA expression and Nrf2 immunoreactivity were enhanced, indicating that these processes might be involved. So, AgNPs induce adaptation, but in contrast to acrolein GSH plays no role.
Collapse
Affiliation(s)
- Mireille M J P E Sthijns
- Department of Pharmacology and Toxicology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Waluree Thongkam
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 DE Düsseldorf, Germany
| | - Catrin Albrecht
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 DE Düsseldorf, Germany
| | - Bryan Hellack
- Institute of Energy and Environmental Technology e.V. (IUTA), Bliersheimerstraße 58-60, 47229 Duisburg, Germany
| | - Aalt Bast
- Department of Pharmacology and Toxicology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Guido R M M Haenen
- Department of Pharmacology and Toxicology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Roel P F Schins
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 DE Düsseldorf, Germany
| |
Collapse
|
100
|
Dina NE, Zhou H, Colniţă A, Leopold N, Szoke-Nagy T, Coman C, Haisch C. Rapid single-cell detection and identification of pathogens by using surface-enhanced Raman spectroscopy. Analyst 2017; 142:1782-1789. [DOI: 10.1039/c7an00106a] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
For the successful treatment of infections, real-time analysis and enhanced multiplex capacity, sensitivity and cost-effectiveness of the developed detection method are critical.
Collapse
Affiliation(s)
- N. E. Dina
- Department of Molecular and Biomolecular Physics
- National Institute of R&D of Isotopic and Molecular Technologies
- Cluj-Napoca 400293
- Romania
| | - H. Zhou
- Department of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic of Traditional Chinese Medicine & New Drug Research
- Jinan University
- Guangzhou
- China
| | - A. Colniţă
- Department of Molecular and Biomolecular Physics
- National Institute of R&D of Isotopic and Molecular Technologies
- Cluj-Napoca 400293
- Romania
| | - N. Leopold
- Faculty of Physics
- Babeş-Bolyai University
- Cluj-Napoca 400084
- Romania
| | - T. Szoke-Nagy
- Department of Molecular and Biomolecular Physics
- National Institute of R&D of Isotopic and Molecular Technologies
- Cluj-Napoca 400293
- Romania
- Faculty of Biology and Geology
| | - C. Coman
- Institute of Biological Research Cluj-Napoca
- Branch of the National Institute of Research and Development for Biological Sciences Bucharest
- Cluj-Napoca 400015
- Romania
| | - C. Haisch
- Chair for Analytical Chemistry
- Institute of Hydrochemistry
- Technische Universität München
- Munich 81377
- Germany
| |
Collapse
|