51
|
Wang C, Jiang C, Yang Y, Xi C, Yin Y, Wu H, Qian C. Therapeutic potential of HUC-MSC-exos primed with IFN-γ against LPS-induced acute lung injury. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:375-382. [PMID: 38333754 PMCID: PMC10849211 DOI: 10.22038/ijbms.2023.74372.16156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/30/2023] [Indexed: 02/10/2024]
Abstract
Objectives Human umbilical cord mesenchymal stem cells (HUC-MSCs) are pluripotent stem cells with anti-inflammatory and immunomodulatory properties used in the treatment of acute lung injury (ALI). However, the treatment of ALI using exosomes derived from HUC-MSCs (HUC-MSC-exos) primed with interferon-gamma (IFN-γ-exos) has not been described. This study investigated the effects of IFN-γ-exos on ALI. Materials and Methods IFN-γ primed and unprimed HUC-MSC-exos (IFN-γ-exos and CON-exos, respectively) were extracted, identified, and traced. A549 cells and mice subjected to lipopolysaccharide (LPS)-induced inflammation were treated with IFN-γ-exos or CON-exos. Viability; interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and reactive oxygen species (ROS) levels; NF-κB p65, and NLRP3 expression and histology and lung injury scores were measured in cell, supernatant or lung tissue. Results Indoleamine 2,3-dioxygenase (IDO) mRNA expression was elevated in HUC-MSCs primed with 5 ng/mL IFN-γ (P<0.001), and IFN-γ-exos and CON-exos were successfully extracted. LPS-induced inflammation resulted in decreased cell viability in A549 cells, and increased IL-1β, IL-6, TNF-α and ROS levels and NF-κB p65 and NLRP3 expression in A549 cells and mice(P<0.05 to P<0.001). Treatment with IFN-γ-exos and CON-exos increased cell viability and decreased the concentrations of IL-1β, and ROS, expression of NF-κB p65 and NLRP3, and the lung injury score, and these effects were more obvious for IFN-γ-exos(P<0.05 to P<0.001). Conclusion IFN-γ-exos reduced oxidative stress and inflammatory responses in LPS-induced A549 cells and mice. The result demonstrated the therapeutic potential of IFN-γ-exos in LPS-induced ALI.
Collapse
Affiliation(s)
- Chun Wang
- Kunming Medical University, Kunming, China
- Department of Emergency Intensive Care Unit, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, China
| | - Chen Jiang
- Kunming Medical University, Kunming, China
| | - Yiran Yang
- Kunming Medical University, Kunming, China
| | - Cheng Xi
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, China
| | - Yunxiang Yin
- Department of Emergency Intensive Care Unit, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, China
| | - Haiying Wu
- Department of Emergency, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, China
| | - Chuanyun Qian
- Department of Emergency, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, China
| |
Collapse
|
52
|
Jang HJ, Shim KS, Lee J, Park JH, Kang SJ, Shin YM, Lee JB, Baek W, Yoon JK. Engineering of Cell Derived-Nanovesicle as an Alternative to Exosome Therapy. Tissue Eng Regen Med 2024; 21:1-19. [PMID: 38066355 PMCID: PMC10764700 DOI: 10.1007/s13770-023-00610-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 01/04/2024] Open
Abstract
BACKGROUND Exosomes, nano-sized vesicles ranging between 30 and 150 nm secreted by human cells, play a pivotal role in long-range intercellular communication and have attracted significant attention in the field of regenerative medicine. Nevertheless, their limited productivity and cost-effectiveness pose challenges for clinical applications. These issues have recently been addressed by cell-derived nanovesicles (CDNs), which are physically synthesized exosome-mimetic nanovesicles from parent cells, as a promising alternative to exosomes. CDNs exhibit structural, physical, and biological properties similar to exosomes, containing intracellular protein and genetic components encapsulated by the cell plasma membrane. These characteristics allow CDNs to be used as regenerative medicine and therapeutics on their own, or as a drug delivery system. METHODS The paper reviews diverse methods for CDN synthesis, current analysis techniques, and presents engineering strategies to improve lesion targeting efficiency and/or therapeutic efficacy. RESULTS CDNs, with their properties similar to those of exosomes, offer a cost-effective and highly productive alternative due to their non-living biomaterial nature, nano-size, and readiness for use, allowing them to overcome several limitations of conventional cell therapy methods. CONCLUSION Ongoing research and enhancement of CDNs engineering, along with comprehensive safety assessments and stability analysis, exhibit vast potential to advance regenerative medicine by enabling the development of efficient therapeutic interventions.
Collapse
Affiliation(s)
- Hye-Jeong Jang
- Department of Systems Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea
| | - Kyu-Sik Shim
- Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jinah Lee
- Department of Biological Science, Research Institute of Women's Health, Brain Korea 21 Project, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Joo Hyeon Park
- Department of Biological Science, Research Institute of Women's Health, Brain Korea 21 Project, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Seong-Jun Kang
- Department of Systems Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea
| | - Young Min Shin
- Department of Biological Science, Research Institute of Women's Health, Brain Korea 21 Project, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Jung Bok Lee
- Department of Biological Science, Research Institute of Women's Health, Brain Korea 21 Project, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| | - Wooyeol Baek
- Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Jeong-Kee Yoon
- Department of Systems Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea.
| |
Collapse
|
53
|
Amirzadeh Gougheri K, Ahmadi A, Ahmadabadi MG, Babajani A, Yazdanpanah G, Bahrami S, Hassani M, Niknejad H. Exosomal Cargo: Pro-angiogeneic, anti-inflammatory, and regenerative effects in ischemic and non-ischemic heart diseases - A comprehensive review. Biomed Pharmacother 2023; 168:115801. [PMID: 37918257 DOI: 10.1016/j.biopha.2023.115801] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023] Open
Abstract
Heart diseases are the primary cause of mortality and morbidity worldwide which inflict a heavy social and economic burden. Among heart diseases, most deaths are due to myocardial infarction (MI) or heart attack, which occurs when a decrement in blood flow to the heart causes injury to cardiac tissue. Despite several available diagnostic, therapeutic, and prognostic approaches, heart disease remains a significant concern. Exosomes are a kind of small extracellular vesicles released by different types of cells that play a part in intercellular communication by transferring bioactive molecules important in regenerative medicine. Many studies have reported the diagnostic, therapeutic, and prognostic role of exosomes in various heart diseases. Herein, we reviewed the roles of exosomes as new emerging agents in various types of heart diseases, including ischemic heart disease, cardiomyopathy, arrhythmia, and valvular disease, focusing on pathogenesis, therapeutic, diagnostic, and prognostic roles in different areas. We have also mentioned different routes of exosome delivery to target tissues, the effects of preconditioning and modification on exosome's capability, exosome production in compliance with good manufacturing practice (GMP), and their ongoing clinical applications in various medical contexts to shed light on possible clinical translation.
Collapse
Affiliation(s)
- Kowsar Amirzadeh Gougheri
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armin Ahmadi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, 1855 W. Taylor Street, MC 648, Chicago, IL 60612, USA
| | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Mohammad Hassani
- Department of Vascular and Endovascular Surgery, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
54
|
Feng T, Liang Y, Sun L, Feng L, Min J, Mulholland MW, Yin Y, Zhang W. Regulation of hepatic lipid metabolism by intestine epithelium-derived exosomes. LIFE METABOLISM 2023; 2:load044. [PMID: 39872853 PMCID: PMC11749469 DOI: 10.1093/lifemeta/load044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2025]
Abstract
The "gut-liver axis" is critical for the control of hepatic lipid homeostasis, where the intestine affects the liver through multiple pathways, such as nutrient uptake, gastrointestinal hormone release, and gut microbiota homeostasis. Whether intestine-originated exosomes mediate the gut's influence on liver steatosis remains unknown. Here, we aimed to determine whether intestinal epithelium-derived exosomes (intExos) contribute to the regulation of hepatic lipid metabolism. We found that mouse intExos could be taken up by hepatic cells. Mice fed high-fat diet (HFD) received intExos showed strong resistance to liver steatosis. MicroRNA sequencing of intExos indicated the correlation between miR-21a-5p/miR-145a-5p and hepatic lipid metabolism. Both liver overexpression of miR-21a-5p and intExos containing miR-21a-5p alleviated hepatic steatosis in mice fed with HFD. Mechanistically, miR-21a-5p suppressed the expression of Ccl1 (C-C motif chemokine ligand 1) in macrophages, as well as lipid transport genes Cd36 (cluster of differentiation 36) and Fabp7 (fatty acid binding protein 7) in hepatocytes. Liver-specific inhibition of miR-145a-5p significantly reduced hepatic lipid accumulation in mice fed with HFD through negatively regulating the expression of Btg1 (BTG anti-proliferation factor 1), leading to an increase of stearoyl-CoA desaturase-1 and lipogenesis. Our study demonstrates that intExos regulate hepatic lipid metabolism and non-alcoholic fatty liver disease (NAFLD) progression via miR-21a-5p and miR-145a-5p pathways, providing novel mediators for the gut-liver crosstalk and potential targets for regulating hepatic lipid metabolism.
Collapse
Affiliation(s)
- Tiange Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing 100191, China
| | - Yuan Liang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing 100191, China
| | - Lijun Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing 100191, China
| | - Lu Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing 100191, China
| | - Jiajie Min
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing 100191, China
| | - Michael W Mulholland
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109, United States
| | - Yue Yin
- Department of Pharmacology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing 100191, China
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing 100191, China
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109, United States
| |
Collapse
|
55
|
Wang N, Li J, Hu Z, Ngowi EE, Yan B, Qiao A. Exosomes: New Insights into the Pathogenesis of Metabolic Syndrome. BIOLOGY 2023; 12:1480. [PMID: 38132306 PMCID: PMC10740970 DOI: 10.3390/biology12121480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Exosomes are a subtype of extracellular vesicles (EVs) with a diameter of 30~150 nm (averaging ~100 nm) that are primarily produced through the endosomal pathway, and carry various components such as lipids, proteins, RNA, and other small molecular substances. Exosomes can mediate intercellular communication through the bioactive substances they carry, thus participating in different physiological activities. Metabolic syndrome (MS) is a disease caused by disturbances in the body's metabolism, mainly including insulin resistance (IR), diabetes, obesity, non-alcoholic fatty liver disease (NAFLD), hyperlipidemia, and atherosclerosis (AS). Recent studies have shown that exosomes are closely related to the occurrence and development of MS. Exosomes can act as messengers to mediate signaling transductions between metabolic cells in the organism and play a bidirectional regulatory role in the MS process. This paper mainly reviews the components, biogenesis, biological functions and potential applications of exosomes, and exosomes involved in the pathogenesis of MS as well as their clinical significance in MS diagnosis.
Collapse
Affiliation(s)
- Ning Wang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (N.W.); (J.L.); (Z.H.); (E.E.N.)
| | - Jing Li
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (N.W.); (J.L.); (Z.H.); (E.E.N.)
| | - Zixuan Hu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (N.W.); (J.L.); (Z.H.); (E.E.N.)
| | - Ebenezeri Erasto Ngowi
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (N.W.); (J.L.); (Z.H.); (E.E.N.)
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 101408, China
- Department of Biological Sciences, Dar es Salaam University College of Education, Dar es Salaam 2329, Tanzania
| | - Baolong Yan
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China;
| | - Aijun Qiao
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (N.W.); (J.L.); (Z.H.); (E.E.N.)
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| |
Collapse
|
56
|
Zhou M, He X, Mei C, Ou C. Exosome derived from tumor-associated macrophages: biogenesis, functions, and therapeutic implications in human cancers. Biomark Res 2023; 11:100. [PMID: 37981718 PMCID: PMC10658727 DOI: 10.1186/s40364-023-00538-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/05/2023] [Indexed: 11/21/2023] Open
Abstract
Tumor-associated macrophages (TAMs), one of the most abundant immune cell types in the tumor microenvironment (TME), account for approximately 50% of the local hematopoietic cells. TAMs play an important role in tumorigenesis and tumor development through crosstalk between various immune cells and cytokines in the TME. Exosomes are small extracellular vesicles with a diameter of 50-150 nm, that can transfer biological information (e.g., proteins, nucleic acids, and lipids) from secretory cells to recipient cells through the circulatory system, thereby influencing the progression of various human diseases, including cancer. Recent studies have suggested that TAMs-derived exosomes play crucial roles in malignant cell proliferation, invasion, metastasis, angiogenesis, immune responses, drug resistance, and tumor metabolic reprogramming. TAMs-derived exosomes have the potential to be targeted for tumor therapy. In addition, the abnormal expression of non-coding RNAs and proteins in TAMs-derived exosomes is closely related to the clinicopathological features of patients with cancer, and these exosomes are expected to become new liquid biopsy markers for the early diagnosis, prognosis, and monitoring of tumors. In this review, we explored the role of TAMs-derived exosomes in tumorigenesis to provide new diagnostic biomarkers and therapeutic targets for cancer prevention.
Collapse
Affiliation(s)
- Manli Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiaoyun He
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Cheng Mei
- Department of Blood Transfusion, Xiangya Hospital, Clinical Transfusion Research Center, Central South University, Changsha, 410008, Hunan, China.
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
57
|
Pan T, Shi Y, Yu G, Mamtimin A, Zhu W. Intracranial Aneurysms and Lipid Metabolism Disorders: From Molecular Mechanisms to Clinical Implications. Biomolecules 2023; 13:1652. [PMID: 38002334 PMCID: PMC10669412 DOI: 10.3390/biom13111652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Many vascular diseases are linked to lipid metabolism disorders, which cause lipid accumulation and peroxidation in the vascular wall. These processes lead to degenerative changes in the vessel, such as phenotypic transformation of smooth muscle cells and dysfunction and apoptosis of endothelial cells. In intracranial aneurysms, the coexistence of lipid plaques is often observed, indicating localized lipid metabolism disorders. These disorders may impair the function of the vascular wall or result from it. We summarize the literature on the relationship between lipid metabolism disorders and intracranial aneurysms below.
Collapse
Affiliation(s)
- Tonglin Pan
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200090, China; (T.P.); (Y.S.); (G.Y.); (A.M.)
- Neurosurgical Institute, Fudan University, Shanghai 200032, China
| | - Yuan Shi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200090, China; (T.P.); (Y.S.); (G.Y.); (A.M.)
- Neurosurgical Institute, Fudan University, Shanghai 200032, China
| | - Guo Yu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200090, China; (T.P.); (Y.S.); (G.Y.); (A.M.)
- Neurosurgical Institute, Fudan University, Shanghai 200032, China
| | - Abdureshid Mamtimin
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200090, China; (T.P.); (Y.S.); (G.Y.); (A.M.)
- Neurosurgical Institute, Fudan University, Shanghai 200032, China
| | - Wei Zhu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200090, China; (T.P.); (Y.S.); (G.Y.); (A.M.)
- Neurosurgical Institute, Fudan University, Shanghai 200032, China
| |
Collapse
|
58
|
Della Corte V, Todaro F, Cataldi M, Tuttolomondo A. Atherosclerosis and Its Related Laboratory Biomarkers. Int J Mol Sci 2023; 24:15546. [PMID: 37958528 PMCID: PMC10649778 DOI: 10.3390/ijms242115546] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/18/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023] Open
Abstract
Atherosclerosis constitutes a persistent inflammatory ailment, serving as the predominant underlying condition for coronary artery disease (CAD), peripheral artery disease (PAD), and cerebrovascular disease. The progressive buildup of plaques within the walls of medium- and large-caliber arteries characterizes the atherosclerotic process. This accumulation results in significant narrowing that impedes blood flow, leading to critical tissue oxygen deficiency. Spontaneous blockage of thrombotic vessels can precipitate stroke and myocardial infarction, which are complications representing the primary global causes of mortality. Present-day models for predicting cardiovascular risk incorporate conventional risk factors to gauge the likelihood of cardiovascular events over a ten-year span. In recent times, researchers have identified serum biomarkers associated with an elevated risk of atherosclerotic events. Many of these biomarkers, whether used individually or in combination, have been integrated into risk prediction models to assess whether their inclusion enhances predictive accuracy. In this review, we have conducted a comprehensive analysis of the most recently published literature concerning serum biomarkers associated with atherosclerosis. We have explored the potential utility of incorporating these markers in guiding clinical decisions.
Collapse
|
59
|
Hegde M, Kumar A, Girisa S, Alqahtani MS, Abbas M, Goel A, Hui KM, Sethi G, Kunnumakkara AB. Exosomal noncoding RNA-mediated spatiotemporal regulation of lipid metabolism: Implications in immune evasion and chronic inflammation. Cytokine Growth Factor Rev 2023; 73:114-134. [PMID: 37419767 DOI: 10.1016/j.cytogfr.2023.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 07/09/2023]
Abstract
The hallmark of chronic inflammatory diseases is immune evasion. Successful immune evasion involves numerous mechanisms to suppress both adaptive and innate immune responses. Either direct contact between cells or paracrine signaling triggers these responses. Exosomes are critical drivers of these interactions and exhibit both immunogenic and immune evasion properties during the development and progression of various chronic inflammatory diseases. Exosomes carry diverse molecular cargo, including lipids, proteins, and RNAs that are crucial for immunomodulation. Moreover, recent studies have revealed that exosomes and their cargo-loaded molecules are extensively involved in lipid remodeling and metabolism during immune surveillance and disease. Many studies have also shown the involvement of lipids in controlling immune cell activities and their crucial upstream functions in regulating inflammasome activation, suggesting that any perturbation in lipid metabolism results in abnormal immune responses. Strikingly, the expanded immunometabolic reprogramming capacities of exosomes and their contents provided insights into the novel mechanisms behind the prophylaxis of inflammatory diseases. By summarizing the tremendous therapeutic potential of exosomes, this review emphasizes the role of exosome-derived noncoding RNAs in regulating immune responses through the modulation of lipid metabolism and their promising therapeutic applications.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia; Computers and communications Department College of Engineering Delta University for Science and Technology, Gamasa 35712, Egypt
| | - Akul Goel
- California Institute of Technology (CalTech), Pasadena, CA, USA
| | - Kam Man Hui
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore 169610, Singapore
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
60
|
Ye L, Li Y, Zhang S, Wang J, Lei B. Exosomes-regulated lipid metabolism in tumorigenesis and cancer progression. Cytokine Growth Factor Rev 2023; 73:27-39. [PMID: 37291031 DOI: 10.1016/j.cytogfr.2023.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
Increasing evidence highlights the role of lipid metabolism in tumorigenesis and tumor progression. Targeting the processes of lipid metabolism, including lipogenesis, lipid uptake, fatty acid oxidation, and lipolysis, is an optimal strategy for anti-cancer therapy. Beyond cell-cell membrane surface interaction, exosomes are pivotal factors that transduce intercellular signals in the tumor microenvironment (TME). Most research focuses on the role of lipid metabolism in regulating exosome biogenesis and extracellular matrix (ECM) remodeling. The mechanisms of exosome and ECM-mediated reprogramming of lipid metabolism are currently unclear. We summarize several mechanisms associated with the regulation of lipid metabolism in cancer, including transport of exosomal carriers and membrane receptors, activation of the PI3K pathway, ECM ligand-receptor interactions, and mechanical stimulation. This review aims to highlight the significance of these intercellular factors in TME and to deepen the understanding of the functions of exosomes and ECM in the regulation of lipid metabolism.
Collapse
Affiliation(s)
- Leiguang Ye
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Yingpu Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Sifan Zhang
- Department of Neurobiology, Harbin Medical University, Harbin 150081, China
| | - Jinsong Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China.
| | - Bo Lei
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China.
| |
Collapse
|
61
|
Fayyazpour P, Fayyazpour A, Abbasi K, Vaez-Gharamaleki Y, Zangbar MSS, Raeisi M, Mehdizadeh A. The role of exosomes in cancer biology by shedding light on their lipid contents. Pathol Res Pract 2023; 250:154813. [PMID: 37769395 DOI: 10.1016/j.prp.2023.154813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 09/30/2023]
Abstract
Exosomes are extracellular bilayer membrane nanovesicles released by cells after the fusion of multivesicular bodies (MVBs) with the plasma membrane. One of the interesting features of exosomes is their ability to carry and transfer various molecules, including lipids, proteins, nucleic acids, and therapeutic cargoes among cells. As intercellular signaling organelles, exosomes participate in various signaling processes such as tumor growth, metastasis, angiogenesis, epithelial-to-mesenchymal transition (EMT), and cell physiology such as cell-to-cell communication. Moreover, these particles are considered good vehicles to shuttle vaccines and drugs for therapeutic applications regarding cancers and tumor cells. These bioactive vesicles are also rich in various lipid molecules such as cholesterol, sphingomyelin (SM), glycosphingolipids, and phosphatidylserine (PS). These lipids play an important role in the formation, release, and function of the exosomes and interestingly, some lipids are used as biomarkers in cancer diagnosis. This review aimed to focus on exosomes lipid content and their role in cancer biology.
Collapse
Affiliation(s)
- Parisa Fayyazpour
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Fayyazpour
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Khadijeh Abbasi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yosra Vaez-Gharamaleki
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mortaza Raeisi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
62
|
Rani S, Lai A, Nair S, Sharma S, Handberg A, Carrion F, Möller A, Salomon C. Extracellular vesicles as mediators of cell-cell communication in ovarian cancer and beyond - A lipids focus. Cytokine Growth Factor Rev 2023; 73:52-68. [PMID: 37423866 DOI: 10.1016/j.cytogfr.2023.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023]
Abstract
Extracellular vesicles (EVs) are messengers that carry information in the form of proteins, lipids, and nucleic acids and are not only essential for intercellular communication but also play a critical role in the progression of various pathologies, including ovarian cancer. There has been recent substantial research characterising EV cargo, specifically, the lipid profile of EVs. Lipids are involved in formation and cargo sorting of EVs, their release and cellular uptake. Numerous lipidomic studies demonstrated the enrichment of specific classes of lipids in EVs derived from cancer cells suggesting that the EV associated lipids can potentially be employed as minimally invasive biomarkers for early diagnosis of various malignancies, including ovarian cancer. In this review, we aim to provide a general overview of the heterogeneity of EV, biogenesis, their lipid content, and function in cancer progression focussing on ovarian cancer.
Collapse
Affiliation(s)
- Shikha Rani
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD 4029, Australia
| | - Andrew Lai
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD 4029, Australia
| | - Soumya Nair
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD 4029, Australia
| | - Shayna Sharma
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD 4029, Australia
| | - Aase Handberg
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Flavio Carrion
- Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile
| | - Andreas Möller
- Department of Otorhinolaryngology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD 4029, Australia; Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile.
| |
Collapse
|
63
|
Guo W, Ying P, Ma R, Jing Z, Ma G, Long J, Li G, Liu Z. Liquid biopsy analysis of lipometabolic exosomes in pancreatic cancer. Cytokine Growth Factor Rev 2023; 73:69-77. [PMID: 37684117 DOI: 10.1016/j.cytogfr.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 09/10/2023]
Abstract
Pancreatic cancer is characterized by its high malignancy, insidious onset and poor prognosis. Most patients with pancreatic cancer are usually diagnosed at advanced stage or with the distant metastasis due to the lack of an effective early screening method. Liquid biopsy technology is promising in studying the occurrence, progression, and early metastasis of pancreatic cancer. In particular, exosomes are pivotal biomarkers in lipid metabolism and liquid biopsy of blood exosomes is valuable for the evaluation of pancreatic cancer. Lipid metabolism is crucial for the formation and activity of exosomes in the extracellular environment. Exosomes and lipids have a complex relationship of mutual influence. Furthermore, spatial metabolomics can quantify the levels and spatial locations of individual metabolites in cancer tissue, cancer stroma, and para-cancerous tissue in pancreatic cancer. However, the relationship among exosomes, lipid metabolism, and pancreatic cancer is also worth considering. This study mainly updates the research progress of metabolomics in pancreatic cancer, their relationship with exosomes, an important part of liquid biopsy, and their lipometabolic roles in pancreatic cancer. We also discuss the mechanisms by which possible metabolites, especially lipid metabolites through exosome transport and other processes, contribute to the recurrence and metastasis of pancreatic cancer.
Collapse
Affiliation(s)
- Wei Guo
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Peiyao Ying
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| | - Ruiyang Ma
- Department of Otorhinolaryngology, The First Hospital of China Medical University, Shenyang, China
| | - Zuoqian Jing
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Gang Ma
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Jin Long
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Guichen Li
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China.
| | - Zhe Liu
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
64
|
Li S, Dong R, Kang Z, Li H, Wu X, Li T. Exosomes: Another intercellular lipometabolic communication mediators in digestive system neoplasms? Cytokine Growth Factor Rev 2023; 73:93-100. [PMID: 37541791 DOI: 10.1016/j.cytogfr.2023.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 08/06/2023]
Abstract
Neoplasms are one of the most concerned public health problems worldwide. Digestive system neoplasms, with a high morbidity and mortality, is one of the most common malignant tumors in human being. It is found that exosomes act as an intercellular communication media to carry the metabolic and genetic information of parental cells to target cells. Likely, exosomes participate in lipid metabolism and regulates multiple processes in digestive system neoplasms, including the information transmission among cancer cells, the formation of neoplastic microenvironment, and the neoplastic biological behaviors like metastasis, invasion, and the chemotherapy resistance. In this review, we firstly introduce the main mechanisms whereas exosomes act as intercellular lipometabolic communication mediator in digestive system neoplasms. Thereafter we introduce the relationship between exosomes lipid metabolism and various type of digestive system neoplasms, including gastric cancer, hepatocellular carcinoma, pancreatic cancer, and colorectal cancer. Eventually, we summarized and prospected the development and implication of exosomes in digestive system neoplasms. The further research of exosomes as intercellular lipid metabolism mediator will contribute to accurate and efficient diagnosis and treatment of digestive system neoplasms.
Collapse
Affiliation(s)
- Shaodong Li
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, China; Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun 130021, China
| | - Ruizhi Dong
- Department of Colorectal & Anal Surgery, General Surgery Center, First Hospital of Jilin University, Changchun 130021, China
| | - Zhenhua Kang
- Department of Colorectal & Anal Surgery, General Surgery Center, First Hospital of Jilin University, Changchun 130021, China
| | - Hucheng Li
- Department of Hepato-Pancreato-Biliary Center, Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China.
| | - Xueliang Wu
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, China; Tumor Research Institute, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, China.
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
65
|
Polónia B, Xavier CPR, Kopecka J, Riganti C, Vasconcelos MH. The role of Extracellular Vesicles in glycolytic and lipid metabolic reprogramming of cancer cells: Consequences for drug resistance. Cytokine Growth Factor Rev 2023; 73:150-162. [PMID: 37225643 DOI: 10.1016/j.cytogfr.2023.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/26/2023]
Abstract
In order to adapt to a higher proliferative rate and an increased demand for energy sources, cancer cells rewire their metabolic pathways, a process currently recognized as a hallmark of cancer. Even though the metabolism of glucose is perhaps the most discussed metabolic shift in cancer, lipid metabolic alterations have been recently recognized as relevant players in the growth and proliferation of cancer cells. Importantly, some of these metabolic alterations are reported to induce a drug resistant phenotype in cancer cells. The acquisition of drug resistance traits severely hinders cancer treatment, being currently considered one of the major challenges of the oncological field. Evidence suggests that Extracellular Vesicles (EVs), which play a crucial role in intercellular communication, may act as facilitators of tumour progression, survival and drug resistance by modulating several aspects involved in the metabolism of cancer cells. This review aims to gather and discuss relevant data regarding metabolic reprograming in cancer, particularly involving the glycolytic and lipid alterations, focusing on its influence on drug resistance and highlighting the relevance of EVs as intercellular mediators of this process.
Collapse
Affiliation(s)
- Bárbara Polónia
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Portugal, 4200-135 Porto, Portugal; Department of Biological Sciences, FFUP - Faculty of Pharmacy of the University of Porto, Porto, Portugal
| | - Cristina P R Xavier
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Portugal, 4200-135 Porto, Portugal
| | - Joanna Kopecka
- Department of Oncology, University of Torino, 10126 Torino, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, 10126 Torino, Italy; Interdepartmental Research Center for Molecular Biotechnology "G. Tarone", University of Torino, 10126 Torino, Italy
| | - M Helena Vasconcelos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Portugal, 4200-135 Porto, Portugal; Department of Biological Sciences, FFUP - Faculty of Pharmacy of the University of Porto, Porto, Portugal.
| |
Collapse
|
66
|
Chen H, Yao H, Chi J, Li C, Liu Y, Yang J, Yu J, Wang J, Ruan Y, Pi J, Xu JF. Engineered exosomes as drug and RNA co-delivery system: new hope for enhanced therapeutics? Front Bioeng Biotechnol 2023; 11:1254356. [PMID: 37823027 PMCID: PMC10562639 DOI: 10.3389/fbioe.2023.1254356] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/05/2023] [Indexed: 10/13/2023] Open
Abstract
Chemotherapy often faces some obstacles such as low targeting effects and drug resistance, which introduce the low therapeutic efficiency and strong side effects. Recent advances in nanotechnology allows the use of novel nanosystems for targeted drug delivery, although the chemically synthesized nanomaterials always show unexpected low biocompability. The emergence of exosome research has offered a better understanding of disease treatment and created novel opportunities for developing effective drug delivery systems with high biocompability. Moreover, RNA interference has emerged as a promising strategy for disease treatments by selectively knocking down or over-expressing specific genes, which allows new possibilities to directly control cell signaling events or drug resistance. Recently, more and more interests have been paid to develop optimal delivery nanosystems with high efficiency and high biocompability for drug and functional RNA co-delivery to achieve enhanced chemotherapy. In light of the challenges for developing drug and RNA co-delivery system, exosomes have been found to show very attractive prospects. This review aims to explore current technologies and challenges in the use of exosomes as drug and RNA co-delivery system with a focus on the emerging trends and issues associated with their further applications, which may contribute to the accelerated developments of exosome-based theraputics.
Collapse
Affiliation(s)
- Haorong Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Hanbo Yao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jiaxin Chi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
| | - Chaowei Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Yilin Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jiayi Yang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jiaqi Yu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jiajun Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Yongdui Ruan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| |
Collapse
|
67
|
Ghaffari K, Moradi-Hasanabad A, Sobhani-Nasab A, Javaheri J, Ghasemi A. Application of cell-derived exosomes in the hematological malignancies therapy. Front Pharmacol 2023; 14:1263834. [PMID: 37745073 PMCID: PMC10515215 DOI: 10.3389/fphar.2023.1263834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/31/2023] [Indexed: 09/26/2023] Open
Abstract
Exosomes are small membrane vesicles of endocytic origin that are produced by both tumor and normal cells and can be found in physiological fluids like plasma and cell culture supernatants. They include cytokines, growth factors, proteins, lipids, RNAs, and metabolites and are important intercellular communication controllers in several disorders. According to a vast amount of research, exosomes could support or inhibit tumor start and diffusion in a variety of solid and hematological malignancies by paracrine signaling. Exosomes are crucial therapeutic agents for a variety of illnesses, such as cancer and autoimmune diseases. This review discusses the most current and encouraging findings from in vitro and experimental in vivo research, as well as the scant number of ongoing clinical trials, with a focus on the impact of exosomes in the treatment of malignancies. Exosomes have great promise as carriers of medications, antagonists, genes, and other therapeutic materials that can be incorporated into their core in a variety of ways. Exosomes can also alter the metabolism of cancer cells, alter the activity of immunologic effectors, and alter non-coding RNAs, all of which can alter the tumor microenvironment and turn it from a pro-tumor to an anti-tumor milieu. This subject is covered in the current review, which also looks at how exosomes contribute to the onset and progression of hematological malignancies, as well as their importance in diagnosing and treating these conditions.
Collapse
Affiliation(s)
- Kazem Ghaffari
- Department of Basic and Laboratory Sciences, Khomein University of Medical Sciences, Khomein, Iran
| | - Amin Moradi-Hasanabad
- Autoimmune Diseases Research Center, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Sobhani-Nasab
- Autoimmune Diseases Research Center, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Javad Javaheri
- Department of Health and Community Medicine, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Ali Ghasemi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
68
|
Tamrin SH, Phelps J, Nezhad AS, Sen A. Critical considerations in determining the surface charge of small extracellular vesicles. J Extracell Vesicles 2023; 12:e12353. [PMID: 37632212 PMCID: PMC10457570 DOI: 10.1002/jev2.12353] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 08/27/2023] Open
Abstract
Small extracellular vesicles (EVs) have emerged as a focal point of EV research due to their significant role in a wide range of physiological and pathological processes within living systems. However, uncertainties about the nature of these vesicles have added considerable complexity to the already difficult task of developing EV-based diagnostics and therapeutics. Whereas small EVs have been shown to be negatively charged, their surface charge has not yet been properly quantified. This gap in knowledge has made it challenging to fully understand the nature of these particles and the way they interact with one another, and with other biological structures like cells. Most published studies have evaluated EV charge by focusing on zeta potential calculated using classical theoretical approaches. However, these approaches tend to underestimate zeta potential at the nanoscale. Moreover, zeta potential alone cannot provide a complete picture of the electrical properties of small EVs since it ignores the effect of ions that bind tightly to the surface of these particles. The absence of validated methods to accurately estimate the actual surface charge (electrical valence) and determine the zeta potential of EVs is a significant knowledge gap, as it limits the development of effective label-free methods for EV isolation and detection. In this study, for the first time, we show how the electrical charge of small EVs can be more accurately determined by accounting for the impact of tightly bound ions. This was accomplished by measuring the electrophoretic mobility of EVs, and then analytically correlating the measured values to their charge in the form of zeta potential and electrical valence. In contrast to the currently used theoretical expressions, the employed analytical method in this study enabled a more accurate estimation of EV surface charge, which will facilitate the development of EV-based diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Sara Hassanpour Tamrin
- Pharmaceutical Production Research Facility, Department of Chemical and Petroleum Engineering, Schulich School of EngineeringUniversity of CalgaryCalgaryAlbertaCanada
- Department of Biomedical Engineering, Schulich School of EngineeringUniversity of CalgaryCalgaryAlbertaCanada
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Biomedical Engineering, Schulich School of EngineeringUniversity of CalgaryCalgaryAlbertaCanada
| | - Jolene Phelps
- Pharmaceutical Production Research Facility, Department of Chemical and Petroleum Engineering, Schulich School of EngineeringUniversity of CalgaryCalgaryAlbertaCanada
- Department of Biomedical Engineering, Schulich School of EngineeringUniversity of CalgaryCalgaryAlbertaCanada
| | - Amir Sanati Nezhad
- Department of Biomedical Engineering, Schulich School of EngineeringUniversity of CalgaryCalgaryAlbertaCanada
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Biomedical Engineering, Schulich School of EngineeringUniversity of CalgaryCalgaryAlbertaCanada
| | - Arindom Sen
- Pharmaceutical Production Research Facility, Department of Chemical and Petroleum Engineering, Schulich School of EngineeringUniversity of CalgaryCalgaryAlbertaCanada
- Department of Biomedical Engineering, Schulich School of EngineeringUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
69
|
Kulus J, Kranc W, Kulus M, Bukowska D, Piotrowska-Kempisty H, Mozdziak P, Kempisty B, Antosik P. New Gene Markers of Exosomal Regulation Are Involved in Porcine Granulosa Cell Adhesion, Migration, and Proliferation. Int J Mol Sci 2023; 24:11873. [PMID: 37511632 PMCID: PMC10380331 DOI: 10.3390/ijms241411873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
Exosomal regulation is intimately involved in key cellular processes, such as migration, proliferation, and adhesion. By participating in the regulation of basic mechanisms, extracellular vesicles are important in intercellular signaling and the functioning of the mammalian reproductive system. The complexity of intercellular interactions in the ovarian follicle is also based on multilevel intercellular signaling, including the mechanisms involving cadherins, integrins, and the extracellular matrix. The processes in the ovary leading to the formation of a fertilization-ready oocyte are extremely complex at the molecular level and depend on the oocyte's ongoing relationship with granulosa cells. An analysis of gene expression from material obtained from a primary in vitro culture of porcine granulosa cells was employed using microarray technology. Genes with the highest expression (LIPG, HSD3B1, CLIP4, LOX, ANKRD1, FMOD, SHAS2, TAGLN, ITGA8, MXRA5, and NEXN) and the lowest expression levels (DAPL1, HSD17B1, SNX31, FST, NEBL, CXCL10, RGS2, MAL2, IHH, and TRIB2) were selected for further analysis. The gene expression results obtained from the microarrays were validated using quantitative RT-qPCR. Exosomes may play important roles regarding intercellular signaling between granulosa cells. Therefore, exosomes may have significant applications in regenerative medicine, targeted therapy, and assisted reproduction technologies.
Collapse
Affiliation(s)
- Jakub Kulus
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Wiesława Kranc
- Department of Anatomy, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Paul Mozdziak
- Physiology Graduate Faculty, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
- Physiology Graduate Faculty, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-367 Wroclaw, Poland
- Center of Assisted Reproduction, Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 601 77 Brno, Czech Republic
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| |
Collapse
|
70
|
Ghadami S, Dellinger K. The lipid composition of extracellular vesicles: applications in diagnostics and therapeutic delivery. Front Mol Biosci 2023; 10:1198044. [PMID: 37520326 PMCID: PMC10381967 DOI: 10.3389/fmolb.2023.1198044] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Extracellular vesicles (EVs), including exosomes, with nanoscale sizes, biological origins, various functions, and unique lipid and protein compositions have been introduced as versatile tools for diagnostic and therapeutic medical applications. Numerous studies have reported the importance of the lipid composition of EVs and its influence on their mechanism of action. For example, changes in the lipidomic profile of EVs have been shown to influence the progression of various diseases, including ovarian malignancies and prostate cancer. In this review, we endeavored to examine differences in the lipid content of EV membranes derived from different cell types to characterize their capabilities as diagnostic tools and treatments for diseases like cancer and Alzheimer's disease. We additionally discuss designing functionalized vesicles, whether synthetically by hybrid methods or by changing the lipid composition of natural EVs. Lastly, we provide an overview of current and potential biomedical applications and perspectives on the future of this growing field.
Collapse
Affiliation(s)
| | - Kristen Dellinger
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, Greensboro, NC, United States
| |
Collapse
|
71
|
Dave KM, Stolz DB, Manickam DS. Delivery of mitochondria-containing extracellular vesicles to the BBB for ischemic stroke therapy. Expert Opin Drug Deliv 2023; 20:1769-1788. [PMID: 37921194 DOI: 10.1080/17425247.2023.2279115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023]
Abstract
INTRODUCTION Ischemic stroke-induced mitochondrial dysfunction in brain endothelial cells (BECs) leads to breakdown of the blood-brain barrier (BBB) causing long-term neurological dysfunction. Restoration of mitochondrial function in injured BECs is a promising therapeutic strategy to alleviate stroke-induced damage. Mounting evidence demonstrate that selected subsets of cell-derived extracellular vehicles (EVs), such as exosomes (EXOs) and microvesicles (MVs), contain functional mitochondrial components. Therefore, development of BEC-derived mitochondria-containing EVs for delivery to the BBB will (1) alleviate mitochondrial dysfunction and limit long-term neurological dysfunction in ischemic stroke and (2) provide an alternative therapeutic option for treating numerous other diseases associated with mitochondrial dysfunction. AREA COVERED This review will discuss (1) how EV subsets package different types of mitochondrial components during their biogenesis, (2) mechanisms of EV internalization and functional mitochondrial responses in the recipient cells, and (3) EV biodistribution and pharmacokinetics - key factors involved in the development of mitochondria-containing EVs as a novel BBB-targeted stroke therapy. EXPERT OPINION Mitochondria-containing MVs have demonstrated therapeutic benefits in ischemic stroke and other pathologies associated with mitochondrial dysfunction. Delivery of MV mitochondria to the BBB is expected to protect the BBB integrity and neurovascular unit post-stroke. MV mitochondria quality control, characterization, mechanistic understanding of its effects in vivo, safety and efficacy in different preclinical models, large-scale production, and establishment of regulatory guidelines are foreseeable milestones to harness the clinical potential of MV mitochondria delivery.
Collapse
Affiliation(s)
- Kandarp M Dave
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Donna B Stolz
- Center for Biologic Imaging, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - Devika S Manickam
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| |
Collapse
|
72
|
Fu X, Song J, Yan W, Downs BM, Wang W, Li J. The biological function of tumor-derived extracellular vesicles on metabolism. Cell Commun Signal 2023; 21:150. [PMID: 37349803 PMCID: PMC10286389 DOI: 10.1186/s12964-023-01111-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/24/2023] [Indexed: 06/24/2023] Open
Abstract
Multiple studies have shown that extracellular vesicles (EVs) play a key role in the process of information transfer and material transport between cells. EVs are classified into different types according to their sizes, which includes the class of exosomes. In comparison to normal EVs, tumor-derived EVs (TDEs) have both altered components and quantities of contents. TDEs have been shown to help facilitate an environment conducive to the occurrence and development of tumor by regulation of glucose, lipids and amino acids. Furthermore, TDEs can also affect the host metabolism and immune system. EVs have been shown to have multiple clinically useful properties, including the use of TDEs as biomarkers for the early diagnosis of diseases and using the transport properties of exosomes for drug delivery. Targeting the key bioactive cargoes of exosomes could be applied to provide new strategies for the treatment of tumors. In this review, we summarize the finding of studies focused on measuring the effects of TDE on tumor-related microenvironment and systemic metabolism. Video Abstract.
Collapse
Affiliation(s)
- Xiaoyu Fu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei China
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei China
| | - Junlong Song
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei China
| | - Wei Yan
- School of Life Science, Wuhan University, Wuhan, 430072 Hubei China
| | - Bradley M. Downs
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231 USA
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei China
| | - Juanjuan Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei China
| |
Collapse
|
73
|
Müller GA, Müller TD. (Patho)Physiology of Glycosylphosphatidylinositol-Anchored Proteins II: Intercellular Transfer of Matter (Inheritance?) That Matters. Biomolecules 2023; 13:994. [PMID: 37371574 DOI: 10.3390/biom13060994] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (APs) are anchored at the outer leaflet of the plasma membrane (PM) bilayer by covalent linkage to a typical glycolipid and expressed in all eukaryotic organisms so far studied. Lipolytic release from PMs into extracellular compartments and intercellular transfer are regarded as the main (patho)physiological roles exerted by GPI-APs. The intercellular transfer of GPI-APs relies on the complete GPI anchor and is mediated by extracellular vesicles such as microvesicles and exosomes and lipid-free homo- or heteromeric aggregates, and lipoprotein-like particles such as prostasomes and surfactant-like particles, or lipid-containing micelle-like complexes. In mammalian organisms, non-vesicular transfer is controlled by the distance between donor and acceptor cells/tissues; intrinsic conditions such as age, metabolic state, and stress; extrinsic factors such as GPI-binding proteins; hormones such as insulin; and drugs such as anti-diabetic sulfonylureas. It proceeds either "directly" upon close neighborhood or contact of donor and acceptor cells or "indirectly" as a consequence of the induced lipolytic release of GPI-APs from PMs. Those displace from the serum GPI-binding proteins GPI-APs, which have retained the complete anchor, and become assembled in aggregates or micelle-like complexes. Importantly, intercellular transfer of GPI-APs has been shown to induce specific phenotypes such as stimulation of lipid and glycogen synthesis, in cultured human adipocytes, blood cells, and induced pluripotent stem cells. As a consequence, intercellular transfer of GPI-APs should be regarded as non-genetic inheritance of (acquired) features between somatic cells which is based on the biogenesis and transmission of matter such as GPI-APs and "membrane landscapes", rather than the replication and transmission of information such as DNA. Its operation in mammalian organisms remains to be clarified.
Collapse
Affiliation(s)
- Günter A Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) and German Center for Diabetes Research (DZD) at the Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) and German Center for Diabetes Research (DZD) at the Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| |
Collapse
|
74
|
Kim E, Ra K, Lee MS, Kim GA. Porcine Follicular Fluid-Derived Exosome: The Pivotal Material for Porcine Oocyte Maturation in Lipid Antioxidant Activity. Int J Mol Sci 2023; 24:9807. [PMID: 37372955 DOI: 10.3390/ijms24129807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Several studies have examined exosomes derived from porcine follicular fluid (FF), but few have reported their application in controlled experiments. The main concern in the field of embryology may be that controlled conditions, such as using a defined medium intermittently, cause poor results in mammalian oocyte maturation and embryo development. The first reason is the absence of the FF, which copes with the majority of the processes emerging in oocytes and embryos. Therefore, we added exosomes derived from porcine FF to the maturation medium of porcine oocytes. For morphological assessment, cumulus cell expansion and subsequent embryonic development were evaluated. Moreover, several stainings, such as glutathione (GSH) and reactive oxygen species (ROS), fatty acid, ATP, and mitochondrial activity, as well as evaluations of gene expression and protein analysis, were used for the functional verification of exosomes. When the oocytes were treated with exosomes, the lipid metabolism and cell survival of the oocytes were fully recovered, as well as morphological evaluations compared to the porcine FF-excluded defined medium. Therefore, controlled experiments may produce reliable data if the exosomes are treated with the desired amounts, and we suggest applying FF-derived exosomes to promote experimental data when performing controlled experiments in embryology.
Collapse
Affiliation(s)
- Euihyun Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Kihae Ra
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Myung-Shin Lee
- Department of Microbiology and Immunology, School of Medicine, Eulji University, Daejeon 35233, Republic of Korea
| | - Geon A Kim
- Department of Biomedical Laboratory Science, School of Healthcare Science, Eulji University, Uijeongbu 34824, Republic of Korea
| |
Collapse
|
75
|
Ou X, Wang H, Tie H, Liao J, Luo Y, Huang W, Yu R, Song L, Zhu J. Novel plant-derived exosome-like nanovesicles from Catharanthus roseus: preparation, characterization, and immunostimulatory effect via TNF-α/NF-κB/PU.1 axis. J Nanobiotechnology 2023; 21:160. [PMID: 37210530 DOI: 10.1186/s12951-023-01919-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/04/2023] [Indexed: 05/22/2023] Open
Abstract
BACKGROUND Plant-derived exosomes-like nanovesicles (PDENs) have been found to be advantageous in disease treatment and drug delivery, but research on their biogenesis, compositional analysis, and key marker proteins is still in its infancy, which limits the standardized production of PDENs. Efficient preparation of PDENs continues to be a major challenge. RESULTS Novel PDENs-based chemotherapeutic immune modulators, Catharanthus roseus (L.) Don leaves-derived exosome-like nanovesicles (CLDENs) were isolated from apoplastic fluid. CLDENs were membrane structured vesicles with a particle size of 75.51 ± 10.19 nm and a surface charge of -21.8 mV. CLDENs exhibited excellent stability, tolerating multiple enzymatic digestions, resisting extreme pH environments, and remaining stable in the gastrointestinal simulating fluid. Biodistribution experiments showed that CLDENs could be internalized by immune cells, and targeted at immune organs after intraperitoneal injection. The lipidomic analysis revealed CLDENs' special lipid composition, which contained 36.5% ether-phospholipids. Differential proteomics supported the origin of CLDENs in multivesicular bodies, and six marker proteins of CLDENs were identified for the first time. 60 ~ 240 μg/ml of CLDENs promoted the polarization and phagocytosis of macrophages as well as lymphocyte proliferation in vitro. Administration of 20 mg/kg and 60 mg/kg of CLDENs alleviated white blood cell reduction and bone marrow cell cycle arrest in immunosuppressive mice induced by cyclophosphamide. CLDENs strongly stimulated the secretion of TNF-α, activated NF-κB signal pathway and increased the expression of the hematopoietic function-related transcription factor PU.1 both in vitro and in vivo. To ensure a steady supply of CLDENs, plant cell culture systems of C. roseus were established to provide CLDENs-like nanovesicles which had similar physical properties and biological activities. Gram-level nanovesicles were successfully obtained from the culture medium, and the yield was three times as high as the original. CONCLUSIONS Our research supports the use of CLDENs as a nano-biomaterial with excellent stability and biocompatibility, and for post-chemotherapy immune adjuvant therapy applications.
Collapse
Affiliation(s)
- Xiaozheng Ou
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou, 511443, China
- Department of Pharmacology, Jinan University, Guangzhou, 511443, China
| | - Haoran Wang
- Weihai Neoland Biosciences Co., Ltd, Weihai, 264209, China
| | - Huilin Tie
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou, 511443, China
| | - Jiapei Liao
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou, 511443, China
| | - Yuanyuan Luo
- Department of Pharmacology, Jinan University, Guangzhou, 511443, China
| | - Weijuan Huang
- Department of Pharmacology, Jinan University, Guangzhou, 511443, China
| | - Rongmin Yu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou, 511443, China.
- Weihai Neoland Biosciences Co., Ltd, Weihai, 264209, China.
| | - Liyan Song
- Department of Pharmacology, Jinan University, Guangzhou, 511443, China.
| | - Jianhua Zhu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
76
|
Di Mambro T, Pellielo G, Agyapong ED, Carinci M, Chianese D, Giorgi C, Morciano G, Patergnani S, Pinton P, Rimessi A. The Tricky Connection between Extracellular Vesicles and Mitochondria in Inflammatory-Related Diseases. Int J Mol Sci 2023; 24:8181. [PMID: 37175888 PMCID: PMC10179665 DOI: 10.3390/ijms24098181] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/21/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Mitochondria are organelles present in almost all eukaryotic cells, where they represent the main site of energy production. Mitochondria are involved in several important cell processes, such as calcium homeostasis, OXPHOS, autophagy, and apoptosis. Moreover, they play a pivotal role also in inflammation through the inter-organelle and inter-cellular communications, mediated by the release of mitochondrial damage-associated molecular patterns (mtDAMPs). It is currently well-documented that in addition to traditional endocrine and paracrine communication, the cells converse via extracellular vesicles (EVs). These small membrane-bound particles are released from cells in the extracellular milieu under physio-pathological conditions. Importantly, EVs have gained much attention for their crucial role in inter-cellular communication, translating inflammatory signals into recipient cells. EVs cargo includes plasma membrane and endosomal proteins, but EVs also contain material from other cellular compartments, including mitochondria. Studies have shown that EVs may transport mitochondrial portions, proteins, and/or mtDAMPs to modulate the metabolic and inflammatory responses of recipient cells. Overall, the relationship between EVs and mitochondria in inflammation is an active area of research, although further studies are needed to fully understand the mechanisms involved and how they may be targeted for therapeutic purposes. Here, we have reported and discussed the latest studies focused on this fascinating and recent area of research, discussing of tricky connection between mitochondria and EVs in inflammatory-related diseases.
Collapse
Affiliation(s)
- Tommaso Di Mambro
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
| | - Giulia Pellielo
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
| | - Esther Densu Agyapong
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
| | - Marianna Carinci
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
| | - Diego Chianese
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
| | - Carlotta Giorgi
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
| | - Giampaolo Morciano
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
| | - Simone Patergnani
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
- Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| | - Alessandro Rimessi
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
- Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
77
|
Abstract
PURPOSE OF REVIEW Exosomes are lipid-bound particles that carry lipids, protein, and nucleic acid and affect cellular function. This review highlights the current knowledge on the crosstalk between exosomes and lipid metabolism and their impact on cardiometabolic disease. RECENT FINDINGS Recent studies revealed that lipids and lipid metabolizing enzymes are important for exosome biogenesis and internalization and conversely how exosomes affect lipid metabolism, secretion, and degradation. The interplay between exosomes and lipid metabolism affects disease pathophysiology. More importantly, exosomes and lipids might function as biomarkers for diagnosis and prognosis or possibly therapies. SUMMARY Recent advances in our understanding of exosomes and lipid metabolism have implications for our understanding of normal cellular and physiological functions as well as disease pathogenesis. Exosome and lipid metabolism have implications in novel diagnostic tests and treatments of cardiometabolic disease.
Collapse
Affiliation(s)
- Zina Zein Abdin
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry
| | - Apple Ziquan Geng
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry
| | - Mark Chandy
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry
- Schulich School of Medicine and Dentistry, Division of Cardiology, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
78
|
Cortes-Galvez D, Dangerfield JA, Metzner C. Extracellular Vesicles and Their Membranes: Exosomes vs. Virus-Related Particles. MEMBRANES 2023; 13:397. [PMID: 37103824 PMCID: PMC10146078 DOI: 10.3390/membranes13040397] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Cells produce nanosized lipid membrane-enclosed vesicles which play important roles in intercellular communication. Interestingly, a certain type of extracellular vesicle, termed exosomes, share physical, chemical, and biological properties with enveloped virus particles. To date, most similarities have been discovered with lentiviral particles, however, other virus species also frequently interact with exosomes. In this review, we will take a closer look at the similarities and differences between exosomes and enveloped viral particles, with a focus on events taking place at the vesicle or virus membrane. Since these structures present an area with an opportunity for interaction with target cells, this is relevant for basic biology as well as any potential research or medical applications.
Collapse
Affiliation(s)
- Daniela Cortes-Galvez
- AG Histology and Embryology, Institute of Morphology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | | | | |
Collapse
|
79
|
Ding J, Xu C, Xu M, He XY, Li WN, He F. Emerging role of engineered exosomes in nonalcoholic fatty liver disease. World J Hepatol 2023; 15:386-392. [PMID: 37034232 PMCID: PMC10075012 DOI: 10.4254/wjh.v15.i3.386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/20/2023] [Accepted: 03/15/2023] [Indexed: 04/11/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. NAFLD comprises a continuum of liver abnormalities from nonalcoholic fatty liver to nonalcoholic steatohepatitis, and can even lead to cirrhosis and liver cancer. However, a well-established treatment for NAFLD has yet to be identified. Exosomes have become an ideal drug delivery tool because of their high transmissibility, low immunogenicity, easy accessibility and targeting. Exosomes with specific modifications, known as engineered exosomes, have the potential to treat a variety of diseases. Here, we review the treatment of NAFLD with engineered exosomes and the potential use of exosomes as biomarkers and therapeutic targets for NAFLD.
Collapse
Affiliation(s)
- Jian Ding
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Chen Xu
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Ming Xu
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Xiao-Yue He
- The Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272067, Shandong Province, China
| | - Wei-Na Li
- School of Basic Medicine, The Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Fei He
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Xi'an 710032, Shaanxi Province, China
| |
Collapse
|
80
|
Voigt AL, Dardari R, Lara NLM, He T, Steele H, Dufour A, Orwig KE, Dobrinski I. Multiomics approach to profiling Sertoli cell maturation during development of the spermatogonial stem cell niche. Mol Hum Reprod 2023; 29:gaad004. [PMID: 36688722 PMCID: PMC9976880 DOI: 10.1093/molehr/gaad004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/10/2022] [Indexed: 01/24/2023] Open
Abstract
Spermatogonial stem cells (SSCs) are the basis of spermatogenesis, a complex process supported by a specialized microenvironment, called the SSC niche. Postnatal development of SSCs is characterized by distinct metabolic transitions from prepubertal to adult stages. An understanding of the niche factors that regulate these maturational events is critical for the clinical application of SSCs in fertility preservation. To investigate the niche maturation events that take place during SSC maturation, we combined different '-omics' technologies. Serial single cell RNA sequencing analysis revealed changes in the transcriptomes indicative of niche maturation that was initiated at 11 years of age in humans and at 8 weeks of age in pigs, as evident by Monocle analysis of Sertoli cells and peritubular myoid cell (PMC) development in humans and Sertoli cell analysis in pigs. Morphological niche maturation was associated with lipid droplet accumulation, a characteristic that was conserved between species. Lipidomic profiling revealed an increase in triglycerides and a decrease in sphingolipids with Sertoli cell maturation in the pig model. Quantitative (phospho-) proteomics analysis detected the activation of distinct pathways with porcine Sertoli cell maturation. We show here that the main aspects of niche maturation coincide with the morphological maturation of SSCs, which is followed by their metabolic maturation. The main aspects are also conserved between the species and can be predicted by changes in the niche lipidome. Overall, this knowledge is pivotal to establishing cell/tissue-based biomarkers that could gauge stem cell maturation to facilitate laboratory techniques that allow for SSC transplantation for restoration of fertility.
Collapse
Affiliation(s)
- A L Voigt
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - R Dardari
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - N L M Lara
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - T He
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - H Steele
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - A Dufour
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
| | - K E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Women’s Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - I Dobrinski
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
81
|
Usenko T, Miroshnikova V, Bezrukova A, Basharova K, Landa S, Korobova Z, Liubimova N, Vlasov I, Nikolaev M, Izyumchenko A, Gavrilova E, Shlyk I, Chernitskaya E, Kovalchuk Y, Slominsky P, Totolian A, Polushin Y, Pchelina S. Fraction of plasma exomeres and low-density lipoprotein cholesterol as a predictor of fatal outcome of COVID-19. PLoS One 2023; 18:e0278083. [PMID: 36758022 PMCID: PMC9910704 DOI: 10.1371/journal.pone.0278083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
Transcriptomic analysis conducted by us previously revealed upregulation of genes involved in low-density lipoprotein particle receptor (LDLR) activity pathway in lethal COVID-19 caused by SARS-CoV-2 virus (severe acute respiratory syndrome coronavirus 2). Last data suggested the possible role of extracellular vesicles in COVID-19 pathogenesis. The aim of the present study was to retrospectively evaluate parameters of cholesterol metabolism and newly identified EVs, exomeres, as possible predictors of fatal outcome of COVID-19 patients infected by the Alpha and the Delta variants of SARS-CoV-2 virus. Blood from 67 patients with severe COVID-19 were collected at the time of admission to the intensive care unit (ICU) and 7 days after admission to the ICU. After 30 days patients were divided into two subgroups according to outcome-34 non-survivors and 33 survivors. This study demonstrated that plasma low- and high-density lipoprotein cholesterol levels (LDL-C and HDL-C) were decreased in non-survivors compared to controls at the time of admission to the ICU. The conjoint fraction of exomeres and LDL particles measured by dynamic light scattering (DLS) was decreased in non-survivors infected by the Alpha and the Delta variants compared to survivors at the time of admission to the ICU. We first showed that reduction of exomeres fraction may be critical in fatal outcome of COVID-19.
Collapse
Affiliation(s)
- Tatiana Usenko
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Gatchina, Russia
- Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russia
- Kurchatov Genome Center—PNPI, Saint-Petersburg, Russia
- * E-mail:
| | - Valentina Miroshnikova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Gatchina, Russia
- Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russia
| | - Anastasia Bezrukova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Gatchina, Russia
| | - Katerina Basharova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Gatchina, Russia
| | - Sergey Landa
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Gatchina, Russia
- Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russia
| | - Zoia Korobova
- Saint Petersburg Pasteur Institute, Saint-Petersburg, Russia
| | | | - Ivan Vlasov
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow, Russia
| | - Mikhael Nikolaev
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Gatchina, Russia
- Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russia
| | - Artem Izyumchenko
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Gatchina, Russia
| | - Elena Gavrilova
- Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russia
| | - Irina Shlyk
- Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russia
| | - Elena Chernitskaya
- Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russia
| | - Yurii Kovalchuk
- Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russia
| | - Petr Slominsky
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow, Russia
| | - Areg Totolian
- Saint Petersburg Pasteur Institute, Saint-Petersburg, Russia
| | - Yurii Polushin
- Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russia
| | - Sofya Pchelina
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Gatchina, Russia
- Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russia
- Kurchatov Genome Center—PNPI, Saint-Petersburg, Russia
| |
Collapse
|
82
|
Jalaludin I, Nguyen HQ, Jang KS, Lee J, Lubman DM, Kim J. Matrix-assisted laser desorption/ionization-Fourier-transform ion cyclotron resonance-mass spectrometry analysis of exosomal lipids from human serum. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9427. [PMID: 36321680 PMCID: PMC9757854 DOI: 10.1002/rcm.9427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
RATIONALE Exosomes contain biomarkers such as proteins and lipids that help in understanding normal physiology and diseases. Lipids, in particular, are infrequently studied using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) for biomarker discovery. In this study, MALDI was equipped with a high-resolution MS to investigate exosomal lipids from human serum. METHODS Exosomal lipids were profiled using MALDI with Fourier-transform ion cyclotron resonance (FTICR)-MS. Four matrices (i.e., α-cyano-4-hydroxycinnamic acid [CHCA], 2,5-dihydroxybenzoic acid, sinapinic acid, and graphene oxide [GO]) and three sample preparation methods (i.e., dried droplet, thin layer, and two layer) were compared for the number of lipid species detected and the relative abundance of each lipid from human serum and human serum exosomes. RESULTS In sum, 172 and 89 lipid species were identified from human serum and human serum exosomes, respectively, using all the methods. The highest number of exosome lipid species, 69, was detected using the CHCA matrix, whereas only 8 exosome lipid species were identified using the GO matrix. Among the identified lipid species, phosphatidylcholine was identified most frequently, probably due to the use of a positive ion mode. CONCLUSIONS Exosomes and human serum showed comparable lipid profiles as determined using MALDI-FTICR-MS. These findings provide a new perspective on exosomal lipidomics analysis and may serve as a foundation for future lipidomics-based biomarker research using MALDI-FTICR-MS.
Collapse
Affiliation(s)
- Iqbal Jalaludin
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Huu-Quang Nguyen
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Kyoung-Soon Jang
- Biomedical Omics Center, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Jaebeom Lee
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - David M Lubman
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Jeongkwon Kim
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
83
|
Zhao L, Yu L, Wang X, He J, Zhu X, Zhang R, Yang A. Mechanisms of function and clinical potential of exosomes in esophageal squamous cell carcinoma. Cancer Lett 2023; 553:215993. [PMID: 36328162 DOI: 10.1016/j.canlet.2022.215993] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/05/2022] [Accepted: 10/27/2022] [Indexed: 11/20/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) remains one of the most lethal and widespread malignancies in China. Exosomes, a subset of tiny extracellular vesicles manufactured by all cells and present in all body fluids, contribute to intercellular communication and have become a focus of the search for new therapeutic strategies for cancer. A number of global analyses of exosome-mediated functions and regulatory mechanism in malignant diseases have recently been reported. There is extensive evidence that exosomes can be used as diagnostic and prognostic markers for cancer. However, our understanding of their clinical value and mechanisms of action in ESCC is still limited and has not been systematically reviewed. Here, we review current research specifically focused on the functions and mechanisms of action of ESCC tumor-derived exosomes and non-ESCC-derived exosomes in ESCC progression and describe opportunities and challenges in the clinical translation of exosomes.
Collapse
Affiliation(s)
- Lijun Zhao
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Lili Yu
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Xiangpeng Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Jangtao He
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Xiaofei Zhu
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| | - Rui Zhang
- The State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Angang Yang
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China; The State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
84
|
Akbar S, Raza A, Mohsin R, Kanbour A, Qadri S, Parray A, Zar Gul AR, Philip A, Vijayakumar S, Merhi M, Hydrose S, Inchakalody VP, Al-Abdulla R, Abualainin W, Sirriya SA, Al-Bozom I, Uddin S, Khan OM, Mohamed Ibrahim MI, Al Homsi U, Dermime S. Circulating exosomal immuno-oncological checkpoints and cytokines are potential biomarkers to monitor tumor response to anti-PD-1/PD-L1 therapy in non-small cell lung cancer patients. Front Immunol 2023; 13:1097117. [PMID: 36741391 PMCID: PMC9890181 DOI: 10.3389/fimmu.2022.1097117] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/21/2022] [Indexed: 01/19/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) including anti-PD-1 and anti-PD-L1 antibodies, have significantly changed the treatment outcomes of NSCLC patients with better overall survival. However, 15-40% of the patients still fail to respond to ICIs therapy. Identification of biomarkers associated with responses are mandated in order to increase the efficacy of such therapy. In this study we evaluated 27 serum-derived exosomal immuno-oncological proteins and 44 cytokines/chemokines before and after ICIs therapy in 17 NSCLC patients to identify surrogate biomarkers for treatment/monitoring patient stratification for maximum therapeutic benefit. We first confirmed the identity of the isolated exosomes to have their specific markers (CD63, CD81, HSP70 and CD91). We have demonstrated that baseline concentration of exosomal-PD-L1 (p<0.0001), exosomal-PD-L2 (p=0.0413) and exosomal-PD-1 (p=0.0131) from NSCLC patients were significantly higher than their soluble-free forms. Furthermore, the exosomal-PD-L1 was present in all the patients (100%), while only 71% of patients expressed tissue PD-L1. This indicates that exosomal-PD-L1 is a more reliable diagnostic biomarker. Interestingly, exosomal-PD-L2 expression was significantly higher (p=0.0193) in tissue PD-L1-negative patients compared to tissue PD-L1-positive patients. We have also shown that immuno-oncological proteins isolated from pre-ICIs treated patients were significantly higher in exosomes compared to their soluble-free counterparts (CD152, p=0.0008; CD80, p=0.0182; IDO, p=0.0443; Arginase, p<0.0001; Nectin-2, p<0.0001; NT5E, p<0.0001; Siglec-7, p<0.0001; Siglec-9, p=0.0335; CD28, p=0.0092; GITR, p<0.0001; MICA, p<0.0001). Finally, the changes in the expression levels of exosomal immuno-oncological proteins/cytokines and their correlation with tumor response to ICIs treatment were assessed. There was a significant downregulation of exosomal PD-L1 (p=0.0156), E-Cadherin (p=0.0312), ULBP1 (p=0.0156), ULBP3 (p=0.0391), MICA (p=0.0391), MICB (p=0.0469), Siglec7 (p=0.0078) and significant upregulation of exosomal PD-1 (p=0.0156) and IFN- γ (p=0.0156) in responding patients. Non-responding patients showed a significant increase in exosomal-PD-L1 (p=0.0078). Furthermore, responding-patients without liver-metastasis showed significant-upregulation of PD-1 (p=0.0070), and downregulation of ULBP1 (p=0.0137) and Siglec-7 (p=0.0037). Non-responding patients had significant-downregulation of ULBP3 (p=0.0317) in patient without brain-metastasis and significant-upregulation/downregulation of PD-L1 and ULBP3 (p=0.0262/0.0286) in patients with pulmonary-metastasis. We demonstrated for the first time that exosomal immuno-oncological proteins/cytokines are potential biomarkers to monitor response to ICIs therapy and can predict the clinical outcomes in NSCLC patients.
Collapse
Affiliation(s)
- Shayista Akbar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Afsheen Raza
- Department of Medical Oncology, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar,Translational Cancer Research Facility, Translational Research Institute, Academic Health System, Hamad Medical Corporation (HMC), Doha, Qatar
| | - Reyad Mohsin
- Department of Medical Oncology, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Aladdin Kanbour
- Department of Medical Oncology, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shahnaz Qadri
- Irma Lerma Rangel College of Pharmacy, Texas A&M University, Kingsville, TX, United States
| | - Aijaz Parray
- Neuroscience Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Abdul Rehman Zar Gul
- Department of Medical Oncology, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Anite Philip
- Department of Medical Oncology, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Suma Vijayakumar
- Department of Medical Oncology, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Maysaloun Merhi
- Department of Medical Oncology, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar,Translational Cancer Research Facility, Translational Research Institute, Academic Health System, Hamad Medical Corporation (HMC), Doha, Qatar
| | - Shereena Hydrose
- Department of Medical Oncology, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar,Translational Cancer Research Facility, Translational Research Institute, Academic Health System, Hamad Medical Corporation (HMC), Doha, Qatar
| | - Varghese Philipose Inchakalody
- Department of Medical Oncology, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar,Translational Cancer Research Facility, Translational Research Institute, Academic Health System, Hamad Medical Corporation (HMC), Doha, Qatar
| | - Rajaa Al-Abdulla
- Anatomical Pathology, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Wafa Abualainin
- Diagnostic Genomic Division, Solid Tumor Section, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Shaza Abu Sirriya
- Diagnostic Genomic Division, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Issam Al-Bozom
- Anatomical Pathology, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar,Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Omar Muhammad Khan
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | | | - Ussama Al Homsi
- Department of Medical Oncology, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar,Department of Medical Oncology, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar,Translational Cancer Research Facility, Translational Research Institute, Academic Health System, Hamad Medical Corporation (HMC), Doha, Qatar,*Correspondence: Said Dermime,
| |
Collapse
|
85
|
Zhang Y, Liang F, Zhang D, Qi S, Liu Y. Metabolites as extracellular vesicle cargo in health, cancer, pleural effusion, and cardiovascular diseases: An emerging field of study to diagnostic and therapeutic purposes. Biomed Pharmacother 2023; 157:114046. [PMID: 36469967 DOI: 10.1016/j.biopha.2022.114046] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Extracellular vesicles (EVs) are highly diverse nanoscale membrane-bound structures released from different cell types into the extracellular environment. They play essential functions in cell signaling by transporting their cargo, such as proteins, RNA, DNA, lipids, metabolites, and small molecules, to recipient cells. It has recently been shown that EVs might modulate carcinogenesis by delivering cargo to recipient cells. Furthermore, recent discoveries revealed that changes in plasma-derived EV levels and cargo in subjects with metabolic diseases were documented by many researchers, suggesting that EVs might be a promising source of disease biomarkers. One of the cargos of EVs that has recently attracted the most attention is metabolites. The metabolome of these vesicles introduces a plethora of disease indicators; hence, examining the metabolomics of EVs detected in human biofluids would be an effective approach. On the other hand, metabolites have various roles in biological systems, including the production of energies, synthesizing macromolecules, and serving as signaling molecules and hormones. Metabolome rewiring in cancer and stromal cells is a characteristic of malignancy, but the current understanding of how this affects the metabolite composition and activity of tumor-derived EVs remains in its infancy. Since new findings and studies in the field of exosome biology and metabolism are constantly being published, it is likely that diagnostic and treatment techniques, including the use of exosome metabolites, will be launched in the coming years. Recent years have seen increased interest in the EV metabolome as a possible source for biomarker development. However, our understanding of the role of these molecules in health and disease is still immature. In this work, we have provided the latest findings regarding the role of metabolites as EV cargoes in the pathophysiology of diseases, including cancer, pleural effusion (PE), and cardiovascular disease (CVD). We also discussed the significance of metabolites as EV cargoes of microbiota and their role in host-microbe interaction. In addition, the latest findings on metabolites in the form of EV cargoes as biomarkers for disease diagnosis and treatment are presented in this study.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Feng Liang
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - DuoDuo Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin Province 130021, People's Republic of China
| | - Shuang Qi
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China.
| | - Yan Liu
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China.
| |
Collapse
|
86
|
Hu B, Huang M, Tao L, Li Y, Kuang Y, Liu G, Zhao S. Mesenchymal stem cells-derived exosomal miR-653-5p suppresses laryngeal papilloma progression by inhibiting BZW2. Clinics (Sao Paulo) 2023; 78:100129. [PMID: 36473368 PMCID: PMC9723928 DOI: 10.1016/j.clinsp.2022.100129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/14/2022] [Accepted: 09/29/2022] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Although miR-653-5p has been validated to participate in the progression of multiple types of cancer, the functional role of exosomal miR-653-5p derived from Mesenchymal Stem Cells (MSCs) in Laryngeal Papilloma (LP) has still remained elusive. Hence, this study aimed to investigate the role of MSCs-derived exosomal miR-653-5p in LP. METHODS LP tissues (n = 15) and adjacent normal tissues (n = 10) were collected to examine the expression level of miR-653-5p. The expression level of miR-653-5p in LP cells and normal cells was also detected. Then, miR-653-5p was overexpressed or silenced to explore its effects on the proliferation, migration, invasion, and apoptosis of LP cells. Thereafter, the effects of exosomal miR-653-5p derived from MSCs on LP cell progression and the potential regulatory mechanism of miR-653-5p were assessed. RESULTS It was revealed that the expression level of miR-653-5p was downregulated in LP tissues and cells. In addition, miR-653-5p suppressed the proliferation, migration, invasion, and apoptosis of LP cells. Exosomes derived from MSCs played a suppressive role in LP development and mediated the transmission of miR-653-5p to LP cells. Further exploration identified Basic leucine Zipper and W2 domains 2 (BZW2) as the target of miR-653-5p. More importantly, the rescue experiments revealed that MSCs-secreted exosomal miR-653-5p efficiently inhibited the aggressive phenotypes of LP cells, which could be significantly reversed by BZW2 overexpression in LP cells. CONCLUSION MSCs-derived exosomal miR-653-5p exerted inhibitory effects on LP progression through targeting BZW2, which provided a novel idea for the therapy of LP. CLINICAL TRIAL REGISTRATION NUMBER chictr-ior-17011021.
Collapse
Affiliation(s)
- Binya Hu
- Department of Otorhinolaryngology, Head and Neck Surgery, Hunan Children's Hospital, China.
| | - Min Huang
- Department of Otorhinolaryngology, Head and Neck Surgery, Hunan Children's Hospital, China
| | - Lihua Tao
- Department of Otorhinolaryngology, Head and Neck Surgery, Hunan Children's Hospital, China
| | - Yun Li
- Department of Otorhinolaryngology, Head and Neck Surgery, Hunan Children's Hospital, China
| | - Yuting Kuang
- Department of Otorhinolaryngology, Head and Neck Surgery, Hunan Children's Hospital, China
| | - Guangliang Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Hunan Children's Hospital, China
| | - Sijun Zhao
- Department of Otorhinolaryngology, Head and Neck Surgery, Hunan Children's Hospital, China.
| |
Collapse
|
87
|
Yang H, Wang J, Huang G. Small extracellular vesicles in metabolic remodeling of tumor cells: Cargos and translational application. Front Pharmacol 2022; 13:1009952. [PMID: 36588730 PMCID: PMC9800502 DOI: 10.3389/fphar.2022.1009952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Warburg effect is characterized by excessive consumption of glucose by the tumor cells under both aerobic and hypoxic conditions. This metabolic reprogramming allows the tumor cells to adapt to the unique microenvironment and proliferate rapidly, and also promotes tumor metastasis and therapy resistance. Metabolic reprogramming of tumor cells is driven by the aberrant expression and activity of metabolic enzymes, which results in the accumulation of oncometabolites, and the hyperactivation of intracellular growth signals. Recent studies suggest that tumor-associated metabolic remodeling also depends on intercellular communication within the tumor microenvironment (TME). Small extracellular vesicles (sEVs), also known as exosomes, are smaller than 200 nm in diameter and are formed by the fusion of multivesicular bodies with the plasma membrane. The sEVs are instrumental in transporting cargoes such as proteins, nucleic acids or metabolites between the tumor, stromal and immune cells of the TME, and are thus involved in reprogramming the glucose metabolism of recipient cells. In this review, we have summarized the biogenesis and functions of sEVs and metabolic cargos, and the mechanisms through they drive the Warburg effect. Furthermore, the potential applications of targeting sEV-mediated metabolic pathways in tumor liquid biopsy, imaging diagnosis and drug development have also been discussed.
Collapse
Affiliation(s)
- Hao Yang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China,*Correspondence: Gang Huang, ; Hao Yang,
| | - Jingyi Wang
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China,Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Gang Huang, ; Hao Yang,
| |
Collapse
|
88
|
Horbay R, Hamraghani A, Ermini L, Holcik S, Beug ST, Yeganeh B. Role of Ceramides and Lysosomes in Extracellular Vesicle Biogenesis, Cargo Sorting and Release. Int J Mol Sci 2022; 23:ijms232315317. [PMID: 36499644 PMCID: PMC9735581 DOI: 10.3390/ijms232315317] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Cells have the ability to communicate with their immediate and distant neighbors through the release of extracellular vesicles (EVs). EVs facilitate intercellular signaling through the packaging of specific cargo in all type of cells, and perturbations of EV biogenesis, sorting, release and uptake is the basis of a number of disorders. In this review, we summarize recent advances of the complex roles of the sphingolipid ceramide and lysosomes in the journey of EV biogenesis to uptake.
Collapse
Affiliation(s)
- Rostyslav Horbay
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Ali Hamraghani
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Leonardo Ermini
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Sophie Holcik
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Shawn T. Beug
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Department of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Correspondence: (S.T.B.); or (B.Y.); Tel.: +1-613-738-4176 (B.Y.); Fax: +1-613-738-4847 (S.T.B. & B.Y.)
| | - Behzad Yeganeh
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Correspondence: (S.T.B.); or (B.Y.); Tel.: +1-613-738-4176 (B.Y.); Fax: +1-613-738-4847 (S.T.B. & B.Y.)
| |
Collapse
|
89
|
Zeng W, Yin X, Jiang Y, Jin L, Liang W. PPARα at the crossroad of metabolic-immune regulation in cancer. FEBS J 2022; 289:7726-7739. [PMID: 34480827 DOI: 10.1111/febs.16181] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/04/2021] [Accepted: 09/03/2021] [Indexed: 01/14/2023]
Abstract
Rewiring metabolism to sustain cell growth, division, and survival is the most prominent feature of cancer cells. In particular, dysregulated lipid metabolism in cancer has received accumulating interest, since lipid molecules serve as cell membrane structure components, secondary signaling messengers, and energy sources. Given the critical role of immune cells in host defense against cancer, recent studies have revealed that immune cells compete for nutrients with cancer cells in the tumor microenvironment and accordingly develop adaptive metabolic strategies for survival at the expense of compromised immune functions. Among these strategies, lipid metabolism reprogramming toward fatty acid oxidation is closely related to the immunosuppressive phenotype of tumor-infiltrated immune cells, including macrophages and dendritic cells. Therefore, it is important to understand the lipid-mediated crosstalk between cancer cells and immune cells in the tumor microenvironment. Peroxisome proliferator-activated receptors (PPARs) consist of a nuclear receptor family for lipid sensing, and one of the family members PPARα is responsible for fatty acid oxidation, energy homeostasis, and regulation of immune cell functions. In this review, we discuss the emerging role of PPARα-associated metabolic-immune regulation in tumor-infiltrated immune cells, and key metabolic events and pathways involved, as well as their influences on antitumor immunity.
Collapse
Affiliation(s)
- Wenfeng Zeng
- Protein and Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaozhe Yin
- Protein and Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,School of Medicine, Tsinghua University, Beijing, China
| | - Yunhan Jiang
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Lingtao Jin
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Wei Liang
- Protein and Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
90
|
Research progress on the role of exosomes in obstructive sleep apnea-hypopnea syndrome-related atherosclerosis. Sleep Med Rev 2022; 66:101696. [PMID: 36174425 DOI: 10.1016/j.smrv.2022.101696] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 08/30/2022] [Accepted: 09/11/2022] [Indexed: 12/13/2022]
Abstract
Cardiovascular disease (CVD) is a leading cause of mortality worldwide. Atherosclerosis, a multifactorial disease with complicated pathogenesis, is the main cause of CVD, underlying several major adverse cardiovascular events. Obesity is the main cause of obstructive sleep apnea (OSA) and a significant risk for atherosclerosis. OSA is an independent risk factor for CVD. Recent research has focused on understanding the underlying molecular mechanisms by which OSA influences atherosclerosis pathogenesis. The role of exosomes in this process has attracted considerable attention. Exosomes are a type of extracellular vesicles (EV) that are released from many cells (both healthy and diseased) and mediate cell-to-cell communication by transporting microRNAs (miRNAs), proteins, mRNAs, DNA, or lipids to target cells, thereby modulating the functions of target cells and tissues. Intermittent hypoxia in OSA alters the exosomal carrier in circulation and promotes the permeability and dysfunction of endothelial cells, which have been associated with the pathogenesis of atherosclerosis. This review discusses the potential roles of exosomes and exosome-derived molecules in the development and progression of OSA-related atherosclerosis. Additionally, we explore the possible mechanisms underlying OSA-related atherosclerosis and provide new insights for the development of novel exosome-based therapeutics for OSA-related atherosclerosis and CVD.
Collapse
|
91
|
Li L, Wen J, Li H, He Y, Cui X, Zhang X, Guan X, Li Z, Cheng M. Exosomal circ-1199 derived from EPCs exposed to oscillating shear stress acts as a sponge of let-7g-5p to promote endothelial-mesenchymal transition of EPCs by increasing HMGA2 expression. Life Sci 2022; 312:121223. [PMID: 36435223 DOI: 10.1016/j.lfs.2022.121223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
AIMS Our previous study showed that oscillatory shear stress (OSS) induces endothelial progenitor cells (EPCs) to undergo endothelial to mesenchymal transition (EndoMT), which may contribute to the onset and progression of atherosclerosis (AS). However, the underlying mechanisms have not been elucidated. A recent study showed that exosomes (Exos) released from EPCs played a key role in various cardiovascular diseases. The purpose of this study was to identify the role and mechanism of Exos released by EPCs exposed to OSS in EPC EndoMT. MAIN METHODS EPCs derived from the human umbilical cord blood were cultured and characterized. The Flexcell flow STR-4000 parallel plate flow chamber system was employed to apply OSS (±3.5 dyne/cm2, 1 Hz) to EPCs for 12 h. Then, Exos were extracted from the cellular supernatant (Static-Exos) or perfusate (OSS-Exos) by exoEasy Maxi Kit. Afterward, cellular intervention, angiogenesis assays, high-throughput sequencing and online database predictions were used to identify the role and mechanism of OSS-Exos in EPC EndoMT. KEY FINDINGS OSS-Exos inhibited angiogenesis, promoted the proliferation of EPCs both in vivo and in vitro, and induced EPC EndoMT. In addition, the expression of circ-1199 in OSS-Exos was higher than that in Static-Exos. Moreover, circ-1199 induced EPC EndoMT. The dual-luciferase reporter gene assay showed that let-7g-5p was the direct target of circ-1199. Furthermore, OSS-Exos upregulated the expression of circ-1199 and then downregulated let-7g-5p, upregulating HMGA2, which activated p-Smad3/Smad3 and Snail. SIGNIFICANCE OSS-Exos played an important role in the EndoMT of EPCs, which was mediated by the circ-1199/let-7g-5p/HMGA2 signaling pathway. These studies would have a high probability of revealing the mechanism of EPC EndoMT.
Collapse
Affiliation(s)
- Lanlan Li
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, Shandong 261053, China; Center of Translational Medicine, Zibo Central Hospital, Zibo, Shandong 255036, China
| | - Jiao Wen
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, Shandong 261053, China
| | - Hong Li
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, Shandong 261053, China.
| | - Yanting He
- Center of Translational Medicine, Zibo Central Hospital, Zibo, Shandong 255036, China
| | - Xiaodong Cui
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, Shandong 261053, China
| | - Xiaoyun Zhang
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, Shandong 261053, China
| | - Xiumei Guan
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, Shandong 261053, China
| | - Zhenfeng Li
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, Shandong 261053, China
| | - Min Cheng
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, Shandong 261053, China.
| |
Collapse
|
92
|
Feng T, Zhang W, Li Z. Potential Mechanisms of Gut-Derived Extracellular Vesicle Participation in Glucose and Lipid Homeostasis. Genes (Basel) 2022; 13:genes13111964. [PMID: 36360201 PMCID: PMC9689624 DOI: 10.3390/genes13111964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 01/19/2023] Open
Abstract
The intestine participates in the regulation of glucose and lipid metabolism in multiple facets. It is the major site of nutrient digestion and absorption, provides the interface as well as docking locus for gut microbiota, and harbors hormone-producing cells scattered throughout the gut epithelium. Intestinal extracellular vesicles are known to influence the local immune response, whereas their roles in glucose and lipid homeostasis have barely been explored. Hence, this current review summarizes the latest knowledge of cargo substances detected in intestinal extracellular vesicles, and connects these molecules with the fine-tuning regulation of glucose and lipid metabolism in liver, muscle, pancreas, and adipose tissue.
Collapse
Affiliation(s)
- Tiange Feng
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
- Correspondence: (W.Z.); (Z.L.); Tel.: +1-734-615-0360 (W.Z.); +1-207-396-8050 (Z.L.)
| | - Ziru Li
- MaineHealth Institute for Research, MaineHealth, Scarborough, ME 04074, USA
- Correspondence: (W.Z.); (Z.L.); Tel.: +1-734-615-0360 (W.Z.); +1-207-396-8050 (Z.L.)
| |
Collapse
|
93
|
Yao J, Cai L, Chen Y, Zhang J, Zhuang W, Liang J, Li H. Exosomes: mediators regulating the phenotypic transition of vascular smooth muscle cells in atherosclerosis. Cell Commun Signal 2022; 20:153. [PMID: 36221105 PMCID: PMC9555104 DOI: 10.1186/s12964-022-00949-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/31/2022] [Indexed: 11/10/2022] Open
Abstract
Cardiovascular disease is one of the leading causes of human mortality worldwide, mainly due to atherosclerosis (AS), and the phenotypic transition of vascular smooth muscle cells (VSMCs) is a key event in the development of AS. Exosomes contain a variety of specific nucleic acids and proteins that mediate intercellular communication. The role of exosomes in AS has attracted attention. This review uses the VSMC phenotypic transition in AS as the entry point, introduces the effect of exosomes on AS from different perspectives, and discusses the status quo, deficiencies, and potential future directions in this field to provide new ideas for clinical research and treatment of AS. Video Abstract.
Collapse
Affiliation(s)
- Jiali Yao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Linqian Cai
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yingrui Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jie Zhang
- Department of Neurology, Afliated Hospital of Yangzhou University, Yangzhou, 225001, China
| | - Wenwen Zhuang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jingyan Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Experimental and Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Hongliang Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Key Laboratory of Experimental and Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
94
|
Hepatitis Viruses Control Host Immune Responses by Modifying the Exosomal Biogenesis Pathway and Cargo. Int J Mol Sci 2022; 23:ijms231810862. [PMID: 36142773 PMCID: PMC9505460 DOI: 10.3390/ijms231810862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
The development of smart immune evasion mechanisms is crucial for the establishment of acute and chronic viral hepatitis. Hepatitis is a major health problem worldwide arising from different causes, such as pathogens, metabolic disorders, and xenotoxins, with the five hepatitis viruses A, B, C, D, and E (HAV, HBV, HCV, HDV, and HEV) representing the majority of the cases. Most of the hepatitis viruses are considered enveloped. Recently, it was reported that the non-enveloped HAV and HEV are, in reality, quasi-enveloped viruses exploiting exosomal-like biogenesis mechanisms for budding. Regardless, all hepatitis viruses use exosomes to egress, regulate, and eventually escape from the host immune system, revealing another key function of exosomes apart from their recognised role in intercellular communication. This review will discuss how the hepatitis viruses exploit exosome biogenesis and transport capacity to establish successful infection and spread. Then, we will outline the contribution of exosomes in viral persistence and liver disease progression.
Collapse
|
95
|
Kim H, Kim D, Kim W, Lee S, Gwon Y, Park S, Kim J. Therapeutic strategies and enhanced production of stem cell-derived exosomes for tissue regeneration. TISSUE ENGINEERING PART B: REVIEWS 2022; 29:151-166. [PMID: 36047493 DOI: 10.1089/ten.teb.2022.0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Exosomes are nanovesicles surrounded by a plasma membrane and carry bioactive molecules (e.g., proteins, lipids, and nucleic acids) of the origin cell type. The bioactive molecules delivered by exosomes to the recipient cells have attracted considerable attention, as they play an important role in intercellular communication. Moreover, exosomes have unique properties, including the ability to penetrate the biological barrier with minimal immunogenicity and side effects, which can influence various physiological and pathological processes. Thus, exosomes are a promising therapeutic platform for various diseases (e.g., malignancies and allergies), as well as for the regeneration of damaged tissues. However, challenges of obtaining exosomes, such as complex extraction procedures, low yield, and difficulty in quantification are yet to be overcome, which limits the use of exosomes in clinical settings. In this review, we describe the state-of-the-art engineering techniques and strategies for highly efficient mass production of exosomes. Moreover, we discuss the functional aspects and potential therapeutic applications of stem cell-derived exosomes, and deliberate upon various engineering techniques and platform combinations for improved tissue regeneration by exosomes.
Collapse
Affiliation(s)
- Hyoseong Kim
- Chonnam National University, Department of Convergence Biosystems Engineering, Gwangju, Korea (the Republic of),
| | - Dream Kim
- Chonnam National University, Department of Convergence Biosystems Engineering, Gwangju, Korea (the Republic of),
| | - Woochan Kim
- Chonnam National University, Department of Convergence Biosystems Engineering, Gwangju, Korea (the Republic of),
| | - Shinyull Lee
- Chonnam National University, Department of Convergence Biosystems Engineering, Gwangju, Korea (the Republic of),
| | - Yonghyun Gwon
- Chonnam National University, Department of Convergence Biosystems Engineering, Gwangju, Korea (the Republic of),
| | - Sunho Park
- Chonnam National University, Department of Convergence Biosystems Engineering, Gwangju, Korea (the Republic of),
| | - Jangho Kim
- Chonnam National University, Department of Convergence Biosystems Engineering, Gwangju, Korea (the Republic of),
| |
Collapse
|
96
|
The emerging role of 27-hydroxycholesterol in cancer development and progression: An update. Int Immunopharmacol 2022; 110:109074. [PMID: 35978522 DOI: 10.1016/j.intimp.2022.109074] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/09/2022] [Accepted: 07/17/2022] [Indexed: 02/07/2023]
|
97
|
Ye C, Zheng F, Wu N, Zhu GQ, Li XZ. Extracellular vesicles in vascular remodeling. Acta Pharmacol Sin 2022; 43:2191-2201. [PMID: 35022541 PMCID: PMC9433397 DOI: 10.1038/s41401-021-00846-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022]
Abstract
Vascular remodeling contributes to the development of a variety of vascular diseases including hypertension and atherosclerosis. Phenotypic transformation of vascular cells, oxidative stress, inflammation and vascular calcification are closely associated with vascular remodeling. Extracellular vesicles (EVs) are naturally released from almost all types of cells and can be detected in nearly all body fluids including blood and urine. EVs affect vascular oxidative stress, inflammation, calcification, and lipid plaque formation; and thereby impact vascular remodeling in a variety of cardiovascular diseases. EVs may be used as biomarkers for diagnosis and prognosis, and therapeutic strategies for vascular remodeling and cardiovascular diseases. This review includes a comprehensive analysis of the roles of EVs in the vascular remodeling in vascular diseases, and the prospects of EVs in the diagnosis and treatment of vascular diseases.
Collapse
Affiliation(s)
- Chao Ye
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Physiology, Nanjing Medical University, Nanjing, 210029, China
| | - Fen Zheng
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Physiology, Nanjing Medical University, Nanjing, 210029, China
| | - Nan Wu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Physiology, Nanjing Medical University, Nanjing, 210029, China
| | - Guo-Qing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Physiology, Nanjing Medical University, Nanjing, 210029, China.
| | - Xiu-Zhen Li
- Department of Cardiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
98
|
Jeong MH, Han H, Lagares D, Im H. Recent Advances in Molecular Diagnosis of Pulmonary Fibrosis for Precision Medicine. ACS Pharmacol Transl Sci 2022; 5:520-538. [PMID: 35983278 PMCID: PMC9379941 DOI: 10.1021/acsptsci.2c00028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Indexed: 12/12/2022]
Abstract
Pulmonary fibrosis is a serious, progressive lung disease characterized by scarring and stiffening lung tissues, affecting the respiratory system and leading to organ failure. It is a complex disease consisting of alveolar damage, chronic inflammation, and a varying degree of lung fibrosis. Significant challenges with pulmonary fibrosis include the lack of effective means to diagnose the disease at early stages, identify patients at higher risks of progress, and assess disease progression and treatment response. Precision medicine powered by accurate molecular profiling and phenotyping could significantly improve our understanding of the disease's heterogeneity, potential biomarkers for diagnosis and prognosis, and molecular targets for treatment development. This Review discusses various translational model systems, including organoids and lung-on-a-chip systems, biomarkers in single cells and extracellular vesicles, and functional pharmacodynamic markers. We also highlight emerging sensing technologies for molecular characterization of pulmonary fibrosis and biomarker detection.
Collapse
Affiliation(s)
- Mi Ho Jeong
- Center
for Systems Biology, Massachusetts General
Hospital, Boston, Massachusetts 02114, United States
| | - Hongwei Han
- Department
of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts
General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - David Lagares
- Department
of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts
General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Hyungsoon Im
- Center
for Systems Biology, Massachusetts General
Hospital, Boston, Massachusetts 02114, United States
- Department
of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| |
Collapse
|
99
|
Dong X, Zhu S, Liu J, Dong Z, Guan F, Xu A, Zhao J, Ge J. Ameliorating mechanism of nuciferine on high-fat diet-induced dyslipidemia and hepatic steatosis by regulating intestinal absorption and serum extracellular vesicles in rats. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
100
|
Mitchell MI, Ma J, Carter CL, Loudig O. Circulating Exosome Cargoes Contain Functionally Diverse Cancer Biomarkers: From Biogenesis and Function to Purification and Potential Translational Utility. Cancers (Basel) 2022; 14:3350. [PMID: 35884411 PMCID: PMC9318395 DOI: 10.3390/cancers14143350] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 12/12/2022] Open
Abstract
Although diagnostic and therapeutic treatments of cancer have tremendously improved over the past two decades, the indolent nature of its symptoms has made early detection challenging. Thus, inter-disciplinary (genomic, transcriptomic, proteomic, and lipidomic) research efforts have been focused on the non-invasive identification of unique "silver bullet" cancer biomarkers for the design of ultra-sensitive molecular diagnostic assays. Circulating tumor biomarkers, such as CTCs and ctDNAs, which are released by tumors in the circulation, have already demonstrated their clinical utility for the non-invasive detection of certain solid tumors. Considering that exosomes are actively produced by all cells, including tumor cells, and can be found in the circulation, they have been extensively assessed for their potential as a source of circulating cell-specific biomarkers. Exosomes are particularly appealing because they represent a stable and encapsulated reservoir of active biological compounds that may be useful for the non-invasive detection of cancer. T biogenesis of these extracellular vesicles is profoundly altered during carcinogenesis, but because they harbor unique or uniquely combined surface proteins, cancer biomarker studies have been focused on their purification from biofluids, for the analysis of their RNA, DNA, protein, and lipid cargoes. In this review, we evaluate the biogenesis of normal and cancer exosomes, provide extensive information on the state of the art, the current purification methods, and the technologies employed for genomic, transcriptomic, proteomic, and lipidomic evaluation of their cargoes. Our thorough examination of the literature highlights the current limitations and promising future of exosomes as a liquid biopsy for the identification of circulating tumor biomarkers.
Collapse
Affiliation(s)
- Megan I Mitchell
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Claire L Carter
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Olivier Loudig
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| |
Collapse
|