51
|
Wang Y, Yuan X, Yao B, Zhu S, Zhu P, Huang S. Tailoring bioinks of extrusion-based bioprinting for cutaneous wound healing. Bioact Mater 2022; 17:178-194. [PMID: 35386443 PMCID: PMC8965032 DOI: 10.1016/j.bioactmat.2022.01.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 12/11/2022] Open
Abstract
Extrusion-based bioprinting (EBB) holds potential for regenerative medicine. However, the widely-used bioinks of EBB exhibit some limitations for skin regeneration, such as unsatisfactory bio-physical (i.e., mechanical, structural, biodegradable) properties and compromised cellular compatibilities, and the EBB-based bioinks with therapeutic effects targeting cutaneous wounds still remain largely undiscussed. In this review, the printability considerations for skin bioprinting were discussed. Then, current strategies for improving the physical properties of bioinks and for reinforcing bioinks in EBB approaches were introduced, respectively. Notably, we highlighted the applications and effects of current EBB-based bioinks on wound healing, wound scar formation, vascularization and the regeneration of skin appendages (i.e., sweat glands and hair follicles) and discussed the challenges and future perspectives. This review aims to provide an overall view of the applications, challenges and promising solutions about the EBB-based bioinks for cutaneous wound healing and skin regeneration.
Collapse
Affiliation(s)
- Yuzhen Wang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, Guangdong, 510080, PR China
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, 51 Fu Cheng Road, Beijing, 100048, PR China
- Department of Burn and Plastic Surgery, Air Force Hospital of Chinese PLA Central Theater Command, 589 Yunzhong Road, Pingcheng District, Datong, Shanxi, 037006, PR China
| | - Xingyu Yuan
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, 51 Fu Cheng Road, Beijing, 100048, PR China
- School of Medicine, Nankai University, 94 Wei Jing Road, Tianjin, 300071, PR China
| | - Bin Yao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, Guangdong, 510080, PR China
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, 51 Fu Cheng Road, Beijing, 100048, PR China
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072, PR China
| | - Shuoji Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, Guangdong, 510080, PR China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, Guangdong, 510080, PR China
| | - Sha Huang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, PR China
| |
Collapse
|
52
|
Hosseini M, Koehler KR, Shafiee A. Biofabrication of Human Skin with Its Appendages. Adv Healthc Mater 2022; 11:e2201626. [PMID: 36063498 PMCID: PMC11469047 DOI: 10.1002/adhm.202201626] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/30/2022] [Indexed: 01/28/2023]
Abstract
Much effort has been made to generate human skin organ in the laboratory. Yet, the current models are limited due to the lack of many critical biological and structural features of the skin. Importantly, these in vitro models lack appendages and fail to recapitulate the whole human skin construction. Thus, engineering a human skin with the capacity to generate all components, including appendages, is a major challenge. This review intends to provide an update on the recent efforts underway to regenerate appendage-bearing skin organs based on scaffold-free and scaffold-based bioengineering approaches. Although the mouse skin equivalents containing hair follicles, sebaceous glands, and sweat glands have been established in vitro, there has been limited success in humans. A combination of biofabricated matrices and cell aggregates, such as organoids, can pave the way for generating skin substitutes with human-like biological, structural, and physical features. Accordingly, the formation of human skin organoids and reconstruction of vascularized skin equipped with immune cells prompt calls for more scientific research. The generation of appendage-bearing skin substitutes can be applied in practice for wound healing, hair restoration, and scar treatment.
Collapse
Affiliation(s)
- Motaharesadat Hosseini
- School of MechanicalMedical and Process EngineeringFaculty of EngineeringQueensland University of TechnologyBrisbaneQLD4059Australia
- ARC Industrial Transformation Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D)Queensland University of TechnologyBrisbaneQLD4059Australia
| | - Karl R. Koehler
- Department of Otolaryngology‐Head and Neck SurgeryHarvard Medical SchoolBostonMA02115USA
- Department of OtolaryngologyBoston Children's HospitalBostonMA02115USA
| | - Abbas Shafiee
- Herston Biofabrication InstituteMetro North Hospital and Health ServiceBrisbaneQLD4029Australia
- Royal Brisbane and Women's HospitalMetro North Hospital and Health ServiceBrisbaneQLD4029Australia
- The University of Queensland Diamantina InstituteTranslational Research InstituteThe University of QueenslandBrisbaneQLD4102Australia
| |
Collapse
|
53
|
Al-Masawa ME, Alshawsh MA, Ng CY, Ng AMH, Foo JB, Vijakumaran U, Subramaniam R, Ghani NAA, Witwer KW, Law JX. Efficacy and safety of small extracellular vesicle interventions in wound healing and skin regeneration: A systematic review and meta-analysis of animal studies. Theranostics 2022; 12:6455-6508. [PMID: 36185607 PMCID: PMC9516230 DOI: 10.7150/thno.73436] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/24/2022] [Indexed: 11/05/2022] Open
Abstract
Small extracellular vesicles (sEVs) have been proposed as a possible solution to the current lack of therapeutic interventions for endogenous skin regeneration. We conducted a systematic review of the available evidence to assess sEV therapeutic efficacy and safety in wound healing and skin regeneration in animal models. 68 studies were identified in Web of Science, Scopus, and PubMed that satisfied a set of prespecified inclusion criteria. We critically analyzed the quality of studies that satisfied our inclusion criteria, with an emphasis on methodology, reporting, and adherence to relevant guidelines (including MISEV2018 and ISCT criteria). Overall, our systematic review and meta-analysis indicated that sEV interventions promoted skin regeneration in diabetic and non-diabetic animal models and influenced various facets of the healing process regardless of cell source, production protocol and disease model. The EV source, isolation methods, dosing regimen, and wound size varied among the studies. Modification of sEVs was achieved mainly by manipulating source cells via preconditioning, nanoparticle loading, genetic manipulation, and biomaterial incorporation to enhance sEV therapeutic potential. Evaluation of potential adverse effects received only minimal attention, although none of the studies reported harmful events. Risk of bias as assessed by the SYRCLE's ROB tool was uncertain for most studies due to insufficient reporting, and adherence to guidelines was limited. In summary, sEV therapy has enormous potential for wound healing and skin regeneration. However, reproducibility and comprehensive evaluation of evidence are challenged by a general lack of transparency in reporting and adherence to guidelines. Methodological rigor, standardization, and risk analysis at all stages of research are needed to promote translation to clinical practice.
Collapse
Affiliation(s)
- Maimonah Eissa Al-Masawa
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000, Kuala Lumpur, Malaysia
| | | | - Chiew Yong Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000, Kuala Lumpur, Malaysia
| | - Angela Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000, Kuala Lumpur, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Ubashini Vijakumaran
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000, Kuala Lumpur, Malaysia
| | - Revatyambigai Subramaniam
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000, Kuala Lumpur, Malaysia
| | - Nur Azurah Abdul Ghani
- Department of Obstetrics and Gynaecology, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Kenneth Whitaker Witwer
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology and Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000, Kuala Lumpur, Malaysia
| |
Collapse
|
54
|
Tan SH, Chua DAC, Tang JRJ, Bonnard C, Leavesley D, Liang K. Design of Hydrogel-based Scaffolds for in vitro Three-dimensional Human Skin Model Reconstruction. Acta Biomater 2022; 153:13-37. [DOI: 10.1016/j.actbio.2022.09.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/01/2022] [Accepted: 09/26/2022] [Indexed: 11/01/2022]
|
55
|
Chen Z, Zhao J, Yan Y, Zhang L, Du L, Liu X, Cao M, Wang C, Tang Y, Li H. Differential distribution and genetic determination of eccrine sweat glands and hair follicles in the volar skin of C57BL/6 mice and SD rats. BMC Vet Res 2022; 18:316. [PMID: 35974330 PMCID: PMC9380334 DOI: 10.1186/s12917-022-03416-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 08/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Eccrine sweat glands (ESGs) and hair follicles (HFs) are the prominent skin appendages regulating human body temperature. C57BL/6 mice and Sprague-Dawley (SD) rats are the most commonly used model animals for studying ESGs and HFs. Previous studies have shown the distribution of ESGs and HFs in volar hindfeet of C57BL/6 mice, but there are few or no reports on the distribution of ESGs and HFs in volar forefeet of C57BL/6 mice and volar feet of SD rats. Here, we investigated the differential distribution and genetic determination of ESGs and HFs in the volar skin of C57BL/6 mice and SD rats through gross observation, iodine-starch sweat test, double staining with Nile Blue A and Oil Red O, hematoxylin and eosin (HE) staining, double immunofluorescence staining of LIM Homeobox 2 (LHX2)/Na+-K+-ATPase α1(NKA) or LHX2/Na+-K+-2Cl- cotransporter 1 (NKCC1), and qRT-PCR detection of ESG-related gene Engrailed 1 (En1) and HF-related gene LHX2. RESULTS The results showed ESGs but no HFs in the footpads of C57BL/6 mice and SD rats, both ESGs and HFs in the inter-footpads (IFPs) of C57BL/6 mice, and neither ESGs nor HFs in the IFPs of SD rats. The relative quantitative change in En1 was consistent with the differential distribution of ESGs, and the relative quantitative change of LHX2 was consistent with the differential distribution of HFs. CONCLUSION C57BL/6 mice and SD rats had their own characteristics in the distribution of ESGs and HFs in the volar skin, and researchers should choose mice or rats, and even forefeet or hindfeet as their research object according to different purposes. The study provides a basis for selection of optimal animal models to study development, wound healing and regeneration of skin appendages.
Collapse
Affiliation(s)
- Zixiu Chen
- Jinzhou Medical University Graduate Training Base, Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Junhong Zhao
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China.,Hubei Clinical Medical Research Center of Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Yongjing Yan
- Jinzhou Medical University Graduate Training Base, Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Lei Zhang
- Mental Health Center, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Lijie Du
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China.,Hubei Clinical Medical Research Center of Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Xiang Liu
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Manxiu Cao
- Jinzhou Medical University Graduate Training Base, Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Cangyu Wang
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Yue Tang
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Haihong Li
- Jinzhou Medical University Graduate Training Base, Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China. .,Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China. .,Hubei Clinical Medical Research Center of Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China. .,Department of Wound Repair; Institute of Wound Repair and Regeneration Medicine, Southern University of Science and Technology Hospital, Southern University of Science and Technology School of Medicine, Shenzhen, China.
| |
Collapse
|
56
|
Ramakrishnan R, Chouhan D, Vijayakumar Sreelatha H, Arumugam S, Mandal BB, Krishnan LK. Silk Fibroin-Based Bioengineered Scaffold for Enabling Hemostasis and Skin Regeneration of Critical-Size Full-Thickness Heat-Induced Burn Wounds. ACS Biomater Sci Eng 2022; 8:3856-3870. [PMID: 35969223 DOI: 10.1021/acsbiomaterials.2c00328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Millions of people around the globe are affected by full-thickness skin injuries. A delay in the healing of such injuries can lead to the formation of chronic wounds, posing several clinical and economic challenges. Current strategies for wound care aim for skin regeneration and not merely skin repair or faster wound closure. The present study aimed to develop a bioactive wound-healing matrix comprising natural biomaterial silk fibroin (SF), clinical-grade human fibrin (FIB), and human hyaluronic acid (HA), resulting in SFFIBHA for regeneration of full-thickness burn wounds. A porous, hemostatic, self-adhesive, moisture-retentive, and biomimetic scaffold that promotes healing was the expected outcome. The study validated a terminal sterilization method, suggesting the stability and translational potential of the novel scaffold. Also, the study demonstrated the regenerative abilities of scaffolds using in vitro cell culture experiments and in vivo full-thickness burn wounds of critical size (4 cm × 4 cm) in a rabbit model. Under in vitro conditions, the scaffold enhanced primary dermal fibroblast adhesion and cell proliferation with regulated extracellular matrix (ECM) synthesis. In vivo, the scaffolds promoted healing with mature epithelium coverage involving intact basal cells, superficial keratinocytes, multilayers of keratohyalin, dermal regeneration with angiogenesis, and deposition of remodeled ECM in 28 days. The relative gene expression of the IL6 marker indicated transitions from inflammation to proliferation stage. In addition, we observed skin appendages and rete peg development in the SFFIBHA-treated wound tissues. Although wound closure was observed, neither negative (untreated/sham) nor positive (commercially available product; NeuSkin) control wounds developed skin appendages/rete pegs or native skin architecture. After 56 days, healing with organized ECM production enabled the recovery of mechanical properties of skin with higher tissue maturity in SFFIBHA-treated wounds. Thus, in a single application, the SFFIBHA scaffold proved to be an efficient biomimetic matrix that can guide burn wound regeneration. The developed matrix is a suture-less, hemostatic, off-the-shelf product for potential wound regenerative applications.
Collapse
Affiliation(s)
- Rashmi Ramakrishnan
- Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Poojappura, Thiruvananthapuram 695012, Kerala, India
| | - Dimple Chouhan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati 781039, Assam, India
| | - Harikrishnan Vijayakumar Sreelatha
- Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Poojappura, Thiruvananthapuram 695012, Kerala, India
| | - Sabareeswaran Arumugam
- Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Poojappura, Thiruvananthapuram 695012, Kerala, India
| | - Biman B Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati 781039, Assam, India.,Centre for Nanotechnology, Indian Institute of Technology Guwahati (IITG), Guwahati 781039, Assam, India.,School of Health Sciences & Technology, Indian Institute of Technology Guwahati (IITG), Guwahati 781039, Assam, India
| | - Lissy K Krishnan
- Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Poojappura, Thiruvananthapuram 695012, Kerala, India.,Department of Research & Innovation, DM Wayanad Institute of Medical Sciences (DM WIMS), Meppadi, Wayanad 673577, Kerala, India
| |
Collapse
|
57
|
Novel 3D-Printed Cell Culture Inserts for Air-Liquid Interface Cell Culture. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081216. [PMID: 36013395 PMCID: PMC9410432 DOI: 10.3390/life12081216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/24/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022]
Abstract
In skin research, widely used in vitro 2D monolayer models do not sufficiently mimic physiological properties. To replace, reduce, and refine animal experimentation in the spirit of '3Rs', new approaches such as 3D skin equivalents (SE) are needed to close the in vitro/in vivo gap. Cell culture inserts to culture SE are commercially available, however, these inserts are expensive and of limited versatility regarding experimental settings. This study aimed to design novel cell culture inserts fabricated on commercially available 3D printers for the generation of full-thickness SE. A computer-aided design model was realized by extrusion-based 3D printing of polylactic acid filaments (PLA). Improvements in the design of the inserts for easier and more efficient handling were confirmed in cell culture experiments. Cytotoxic effects of the final product were excluded by testing the inserts in accordance with ISO-norm procedures. The final versions of the inserts were tested to generate skin-like 3D scaffolds cultured at an air-liquid interface. Stratification of the epidermal component was demonstrated by histological analyses. In conclusion, here we demonstrate a fast and cost-effective method for 3D-printed inserts suitable for the generation of 3D cell cultures. The system can be set-up with common 3D printers and allows high flexibility for generating customer-tailored cell culture plastics.
Collapse
|
58
|
Fan C, Xu Q, Hao R, Wang C, Que Y, Chen Y, Yang C, Chang J. Multi-functional wound dressings based on silicate bioactive materials. Biomaterials 2022; 287:121652. [PMID: 35785753 DOI: 10.1016/j.biomaterials.2022.121652] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 11/22/2022]
Abstract
Most traditional wound dressings passively offer a protective barrier for the wounds, which lacks the initiative in stimulating tissue regeneration. In addition, cutaneous wound healing is usually accompanied by various complicated conditions, including bacterial infection, skin cancer, and damaged skin appendages, bringing further challenges for wound management in clinic. Therefore, an ideal wound dressing should not only actively stimulate wound healing but also hold multi-functions for solving problems associated with different specific wound conditions. Recent studies have demonstrated that silicate bioceramics and bioglasses are one type of promising materials for the development of wound dressings, as they can actively accelerate wound healing by regulating endothelial cells, dermal fibroblasts, macrophages, and epidermal cells. In particular, silicate-based biomaterials can be further functionalized by specific structural design or doping with functional components, which endow materials with enhanced bioactivities or expanded physicochemical properties such as photothermal, photodynamic, chemodynamic, or imaging properties. The functionalized materials can be used to address wound healing with different demands including but not limited to antibacterial, anticancer, skin appendages regeneration, and wound monitoring. In this review, we summarized the current research on the development of silicate-based multi-functional wound dressings and prospected the development of advanced wound dressings in the future.
Collapse
Affiliation(s)
- Chen Fan
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
| | - Qing Xu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China
| | - Ruiqi Hao
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
| | - Chun Wang
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
| | - Yumei Que
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
| | - Yanxin Chen
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
| | - Chen Yang
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China.
| | - Jiang Chang
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China; State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, PR China.
| |
Collapse
|
59
|
Lukomskyj AO, Rao N, Yan L, Pye JS, Li H, Wang B, Li JJ. Stem Cell-Based Tissue Engineering for the Treatment of Burn Wounds: A Systematic Review of Preclinical Studies. Stem Cell Rev Rep 2022; 18:1926-1955. [PMID: 35150392 PMCID: PMC9391245 DOI: 10.1007/s12015-022-10341-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2022] [Indexed: 02/06/2023]
Abstract
Burn wounds are a devastating type of skin injury leading to severe impacts on both patients and the healthcare system. Current treatment methods are far from ideal, driving the need for tissue engineered solutions. Among various approaches, stem cell-based strategies are promising candidates for improving the treatment of burn wounds. A thorough search of the Embase, Medline, Scopus, and Web of Science databases was conducted to retrieve original research studies on stem cell-based tissue engineering treatments tested in preclinical models of burn wounds, published between January 2009 and June 2021. Of the 347 articles retrieved from the initial database search, 33 were eligible for inclusion in this review. The majority of studies used murine models with a xenogeneic graft, while a few used the porcine model. Thermal burn was the most commonly induced injury type, followed by surgical wound, and less commonly radiation burn. Most studies applied stem cell treatment immediately post-burn, with final endpoints ranging from 7 to 90 days. Mesenchymal stromal cells (MSCs) were the most common stem cell type used in the included studies. Stem cells from a variety of sources were used, most commonly from adipose tissue, bone marrow or umbilical cord, in conjunction with an extensive range of biomaterial scaffolds to treat the skin wounds. Overall, the studies showed favourable results of skin wound repair in animal models when stem cell-based tissue engineering treatments were applied, suggesting that such strategies hold promise as an improved therapy for burn wounds.
Collapse
Affiliation(s)
- Alissa Olga Lukomskyj
- Kolling Institute, Faculty of Medicine and Health, University of Sydney, St Leonards, NSW, 2065, Australia
| | - Nikitha Rao
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Lei Yan
- Department of Orthopedics, Shanxi Medical University Second Affiliated Hospital, Taiyuan, 030001, China
| | - Jasmine Sarah Pye
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Haiyan Li
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Bin Wang
- Department of Orthopedics, Shanxi Medical University Second Affiliated Hospital, Taiyuan, 030001, China.
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 315000, China.
| | - Jiao Jiao Li
- Kolling Institute, Faculty of Medicine and Health, University of Sydney, St Leonards, NSW, 2065, Australia.
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| |
Collapse
|
60
|
León-Sosa A, Castañeda V, Espinosa-Vallejo R, Gómez X, Díaz RF, Cabrera F, Caicedo A. Key points for translating wound regenerative agents from in vivo assays in mice to clinical validation. Cytotherapy 2022; 24:1074-1086. [DOI: 10.1016/j.jcyt.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/07/2022] [Accepted: 07/16/2022] [Indexed: 11/29/2022]
|
61
|
Shamoun F, Shamoun V, Akhavan A, Tuffaha SH. Target Receptors of Regenerating Nerves: Neuroma Formation and Current Treatment Options. Front Mol Neurosci 2022; 15:859221. [PMID: 35866159 PMCID: PMC9295905 DOI: 10.3389/fnmol.2022.859221] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022] Open
Abstract
Neuromas form as a result of disorganized sensory axonal regeneration following nerve injury. Painful neuromas lead to poor quality of life for patients and place a burden on healthcare systems. Modern surgical interventions for neuromas entail guided regeneration of sensory nerve fibers into muscle tissue leading to muscle innervation and neuroma treatment or prevention. However, it is unclear how innervating denervated muscle targets prevents painful neuroma formation, as little is known about the fate of sensory fibers, and more specifically pain fiber, as they regenerate into muscle. Golgi tendon organs and muscle spindles have been proposed as possible receptor targets for the regenerating sensory fibers; however, these receptors are not typically innervated by pain fibers, as these free nerve endings do not synapse on receptors. The mechanisms by which pain fibers are signaled to cease regeneration therefore remain unknown. In this article, we review the physiology underlying nerve regeneration, the guiding molecular signals, and the target receptor specificity of regenerating sensory axons as it pertains to the development and prevention of painful neuroma formation while highlighting gaps in literature. We discuss management options for painful neuromas and the current supporting evidence for the various interventions.
Collapse
Affiliation(s)
- Feras Shamoun
- Peripheral Nerve Lab, Department of Plastic and Reconstructive Surgery, Johns Hopkins Hospital, Johns Hopkins University, Baltimore, MD, United States
| | - Valentina Shamoun
- Department of Biological Sciences, University of Toronto at Scarborough, Scarborough, ON, Canada
| | - Arya Akhavan
- Peripheral Nerve Lab, Department of Plastic and Reconstructive Surgery, Johns Hopkins Hospital, Johns Hopkins University, Baltimore, MD, United States
| | - Sami H. Tuffaha
- Peripheral Nerve Lab, Department of Plastic and Reconstructive Surgery, Johns Hopkins Hospital, Johns Hopkins University, Baltimore, MD, United States
- *Correspondence: Sami H. Tuffaha,
| |
Collapse
|
62
|
Zhu Z, Zhang X, Hao H, Xu H, Shu J, Hou Q, Wang M. Exosomes Derived From Umbilical Cord Mesenchymal Stem Cells Treat Cutaneous Nerve Damage and Promote Wound Healing. Front Cell Neurosci 2022; 16:913009. [PMID: 35846563 PMCID: PMC9279568 DOI: 10.3389/fncel.2022.913009] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Wound repair is a key step in the treatment of skin injury caused by burn, surgery, and trauma. Various stem cells have been proven to promote wound healing and skin regeneration as candidate seed cells. Therefore, exosomes derived from stem cells are emerging as a promising method for wound repair. However, the mechanism by which exosomes promote wound repair is still unclear. In this study, we reported that exosomes derived from umbilical cord mesenchymal stem cells (UC-MSCs) promote wound healing and skin regeneration by treating cutaneous nerve damage. The results revealed that UC-MSCs exosomes (UC-MSC-Exo) promote the growth and migration of dermal fibroblast cells. In in vitro culture, dermal fibroblasts could promote to nerve cells and secrete nerve growth factors when stimulated by exosomes. During the repair process UC-MSC-Exo accelerated the recruitment of fibroblasts at the site of trauma and significantly enhanced cutaneous nerve regeneration in vivo. Interestingly, it was found that UC-MSC-Exo could promote wound healing and skin regeneration by recruiting fibroblasts, stimulating them to secrete nerve growth factors (NGFs) and promoting skin nerve regeneration. Therefore, we concluded that UC-MSC-Exo promote cutaneous nerve repair, which may play an important role in wound repair and skin regeneration.
Collapse
Affiliation(s)
- Ziying Zhu
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
- The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
- *Correspondence: Ziying Zhu,
| | - Xiaona Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
| | - Haojie Hao
- The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Heran Xu
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
| | - Jun Shu
- The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Qian Hou
- The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
- Medical Innovation Research Center, Chinese People’s Liberation Army General Hospital, Beijing, China
- Qian Hou,
| | - Min Wang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
- Min Wang,
| |
Collapse
|
63
|
Xia B, Chen G. Research progress of natural tissue-derived hydrogels for tissue repair and reconstruction. Int J Biol Macromol 2022; 214:480-491. [PMID: 35753517 DOI: 10.1016/j.ijbiomac.2022.06.137] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/05/2022] [Accepted: 06/20/2022] [Indexed: 12/26/2022]
Abstract
There are many different grafts to repair damaged tissue. Various types of biological scaffolds, including films, fibers, microspheres, and hydrogels, can be used for tissue repair. A hydrogel, which is composed a natural or synthetic polymer network with high water absorption capacity, can provide a microenvironment closely resembling the extracellular matrix (ECM) of natural tissues to stimulate cell adhesion, proliferation, and differentiation. It has been shown to have great application potential in the field of tissue repair and regeneration. Hydrogels derived from natural tissues retain a variety of proteins and growth factors in optimal proportions, which is beneficial for the regeneration of specific tissues. This article reviews the latest research advances in the field of hydrogels from a variety of natural tissue sources, including bone tissue, blood vessels, nerve tissue, adipose tissue, skin tissue, and muscle tissue, including preparation methods, advantages, and applications in tissue engineering and regenerative medicine. Finally, it summarizes and discusses the challenges faced by natural tissue-derived hydrogels used in tissue repair, as well as future research and application directions.
Collapse
Affiliation(s)
- Bin Xia
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, PR China
| | - Guobao Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China; Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, PR China.
| |
Collapse
|
64
|
Pishel I, Yankova T, Dubiley T, Shytikov D. Reciprocal blood exchange in heterochronic parabionts has a deleterious effect on the lifespan of young animals without a positive effect for old animals. Rejuvenation Res 2022; 25:191-199. [PMID: 35747947 DOI: 10.1089/rej.2022.0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Our previous study showed that the exchange of blood between heterochronic parabionts for 3 months did not rejuvenate the immune system of the old partners. Moreover, the young immune system became more aged and began to function according to the "old" principle. Does this "forced aging" affect all organism's systems in this model? We checked the levels of corticosterone, testosterone, IGF-1, insulin, thyroxine in the blood of heterochronic parabionts but did not find significant changes compared to the age-related controls. Since numerous data support the possibility of rejuvenation of the brain, muscles, and other tissues using the model of heterochronic parabiosis, as well as opposite data, we planned to assess the overall effect of this long-term blood exchange on the rate of organism aging. We measured the lifespan of animals that exchanged with blood for 3 months and then were disconnected. Median and maximum life expectancy decreased in young heterochronic parabionts compared with the isochronic control. Old heterochronic parabionts showed only a small trend towards an increase in the median lifespan but it was not statistically significant, and the maximum lifespan did not change compared to the isochronic parabionts. These data support our assumption that old blood contains factors capable of inducing aging in young animals. Finding and selective suppression of aging factor production in the organism could be the key research field for life extension.
Collapse
Affiliation(s)
- Iryna Pishel
- Institute of Gerontology NAMS of Ukraine, Pathophysiology and Immunology , 67 Vyshgorodska St, Kyiv, Ukraine, 04114.,Institute of Gerontology NAMS of Ukraine, Pathophysiology and Immunology, 67 Vyshgorodska St, Kyiv, Ukraine, 04114;
| | | | - Tatiana Dubiley
- D F Chebotarev State Institute of Gerontology NAMS of Ukraine, 119156, Kyiv, Ukraine;
| | | |
Collapse
|
65
|
Mu R, Campos de Souza S, Liao Z, Dong L, Wang C. Reprograming the immune niche for skin tissue regeneration - From cellular mechanisms to biomaterials applications. Adv Drug Deliv Rev 2022; 185:114298. [PMID: 35439569 DOI: 10.1016/j.addr.2022.114298] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023]
Abstract
Despite the rapid development of therapeutic approaches for skin repair, chronic wounds such as diabetic foot ulcers remain an unaddressed problem that affects millions of people worldwide. Increasing evidence has revealed the crucial and diverse roles of the immune cells in the development and repair of the skin tissue, prompting new research to focus on further understanding and modulating the local immune niche for comprehensive, 'perfect' regeneration. In this review, we first introduce how different immunocytes and certain stromal cells involved in innate and adaptive immunity coordinate to maintain the immune niche and tissue homeostasis, with emphasis on their specific roles in normal and pathological wound healing. We then discuss novel engineering approaches - particularly biomaterials systems and cellular therapies - to target different players of the immune niche, with three major aims to i) overcome 'under-healing', ii) avoid 'over-healing', and iii) promote functional restoration, including appendage development. Finally, we highlight how these strategies strive to manage chronic wounds and achieve full structural and functional skin recovery by creating desirable 'soil' through modulating the immune microenvironment.
Collapse
|
66
|
Qi L, Zhang C, Wang B, Yin J, Yan S. Progress in hydrogels for skin wound repair. Macromol Biosci 2022; 22:e2100475. [PMID: 35388605 DOI: 10.1002/mabi.202100475] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/21/2022] [Indexed: 11/08/2022]
Abstract
As the first defensive line between the human body and the outside world, the skin is vulnerable to damage from the external environment. Skin wounds can be divided into acute wounds (mechanical injuries, chemical injuries and surgical wounds, etc.) and chronic wounds (burns, infections, diabetes, etc.). In order to manage skin wound, a variety of wound dressings have been developed, including gauze, films, foams, nanofibers, hydrocolloids and hydrogels. Recently, hydrogels have received much attention because of their natural extracellular matrix (ECM)-mimik structure, tunable mechanical properties, and facile bioactive substance delivery capability. They show great potential application in skin wound repair. This paper first introduces the anatomy and function of the skin, the process of wound healing and conventional wound dressings, and then introduces the composition and construction methods of hydrogels. Next, this paper introduces the necessary properties of hydrogels in skin wound repair and the latest research progress of hydrogel dressings for skin wound repair. Finally, the future development goals of hydrogel materials in the field of wound healing are proposed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Liangfa Qi
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Chenlu Zhang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Bo Wang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Jingbo Yin
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Shifeng Yan
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, PR China
| |
Collapse
|
67
|
Dou Y, Cui W, Yang X, Lin Y, Ma X, Cai X. Applications of tetrahedral DNA nanostructures in wound repair and tissue regeneration. BURNS & TRAUMA 2022; 10:tkac006. [PMID: 35280457 PMCID: PMC8912983 DOI: 10.1093/burnst/tkac006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/25/2022] [Indexed: 02/05/2023]
Abstract
Tetrahedral DNA nanostructures (TDNs) are molecules with a pyramidal structure formed by folding four single strands of DNA based on the principle of base pairing. Although DNA has polyanionic properties, the special spatial structure of TDNs allows them to penetrate the cell membrane without the aid of transfection agents in a caveolin-dependent manner and enables them to participate in the regulation of cellular processes without obvious toxic side effects. Because of their stable spatial structure, TDNs resist the limitations imposed by nuclease activity and innate immune responses to DNA. In addition, TDNs have good editability and biocompatibility, giving them great advantages for biomedical applications. Previous studies have found that TDNs have a variety of biological properties, including promoting cell migration, proliferation and differentiation, as well as having anti-inflammatory, antioxidant, anti-infective and immune regulation capabilities. Moreover, we confirmed that TDNs can promote the regeneration and repair of skin, blood vessels, muscles and bone tissues. Based on these findings, we believe that TDNs have broad prospects for application in wound repair and regeneration. This article reviews recent progress in TDN research and its applications.
Collapse
Affiliation(s)
- Yikai Dou
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, 610064, China
| | - Weitong Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiao Yang
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, 610064, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaohong Ma
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, 610064, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
68
|
Hashizume H, Nakatani E, Sato Y, Goto H, Yagi H, Miyachi Y. A new susceptibility index to predict the risk of severe herpes zoster-associated pain: A Japanese regional population-based cohort study, the Shizuoka study. J Dermatol Sci 2022; 105:170-175. [PMID: 35181196 DOI: 10.1016/j.jdermsci.2022.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/29/2021] [Accepted: 02/06/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Approximately 7-20% of patients with herpes zoster (HZ) develop zoster-associated pain (ZAP). ZAP not only impairs quality of life and psychological well-being, but also can reduce work effectiveness, which has negative economic effects. Reports of ZAP risk factors are inconsistent. OBJECTIVE To confirm risk factors for the development of severe ZAP in HZ patients in Japan using a large-scale database, the Shizuoka Kokuho Database. METHODS A population-based cohort study using the Shizuoka Kokuho Database was conducted. Of 792,647 patients, 7491 (0.95%) experienced "severe ZAP" (as defined in this study). We developed a ZAP risk prediction scoring system by identifying risk factors using logistic regression analysis of several candidate risk factors for severe ZAP: age, sex, seasonality, and presence of comorbidities (using the Charlson comorbidity index), excluding HIV/AIDS. RESULTS We identified peripheral vascular disease and the onset from October to December as novel risk factors for severe ZAP, in addition to the previously reported risk factors of age and comorbidities (cerebral vascular disease, chronic pulmonary disease, rheumatic disease, peptic ulcer, liver disease, diabetes, and malignant neoplasms with/without metastasis). In contrast, dementia was found to reduce ZAP risk. We developed a susceptibility index to predict the risk of ZAP. CONCLUSION We newly demonstrated that peripheral vascular disease and the onset from October to December are ZAP risk factors. Our comorbidity findings support previous observations. The susceptibility index proposed here provides a new approach to the prevention of ZAP using early intervention for high-risk patients.
Collapse
Affiliation(s)
- Hideo Hashizume
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka, Japan; Department of Dermatology, Iwata City Hospital, Shizuoka, Japan.
| | - Eiji Nakatani
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka, Japan; Department of Dermatology, Shizuoka General Hospital, Shizuoka, Japan
| | - Yoko Sato
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka, Japan; Department of Dermatology, Shizuoka General Hospital, Shizuoka, Japan
| | - Haruka Goto
- Department of Dermatology, Shizuoka General Hospital, Shizuoka, Japan
| | - Hiroaki Yagi
- Department of Dermatology, Shizuoka General Hospital, Shizuoka, Japan
| | - Yoshiki Miyachi
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka, Japan
| |
Collapse
|
69
|
Hwang YJ, Lee HC, Park SH, Yoon ES. A Comparative Study of Breast Sensibility and Patient Satisfaction After Breast Reconstruction: Autologous, 2-Stage Implant-Based, and Prepectoral Direct-to-Implant Reconstruction. Ann Plast Surg 2022; 88:262-270. [PMID: 35130204 DOI: 10.1097/sap.0000000000003034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Currently, a variety of treatment modalities are implemented for breast reconstruction. However, clinical prognosis regarding sensory regeneration of the breast and patient-reported satisfaction remains underexamined. In this study, we aimed to compare breast sensibility after various reconstruction. METHODS We conducted a retrospective comparative study of all patients who underwent breast reconstruction between August 2016 and October 2019 at our institution. Acellular dermal matrixes were used to cover the implant inferolaterally in a dual-plane subpectoral approach and to wrap the implant in prepectoral direct to implant (DTI). The cutaneous tactile pressure threshold and patient satisfaction outcome were tested. RESULTS A total of 105 breasts were assessed, 30 breasts reconstructed with deep inferior epigastric perforator (DIEP) flap, 40 breasts reconstructed with 2-stage subpectoral implant, and 35 breasts reconstructed with prepectoral DTI. In the specific group-to-group analysis, DIEP and implant groups showed significant differences in sensory recovery, mainly in lateral areas of the reconstructed breast. In 2-stage reconstruction and DTI groups, there were no statistically significant differences. When comparing patient groups using only patients with follow-up lengths of more than 12 months, the difference was more clearly indicated (P = 0.049). Better sensory recovery predicted high satisfaction scores in patient-reported outcomes (P = 0.007). CONCLUSIONS We found that subpectoral implant reconstruction and DTI show no statistically significant differences in sensory recovery, and autologous DIEP flap reconstruction results in a better prognosis than prosthesis implant reconstruction. Furthermore, the clarity of the differences increased when the follow-up length was longer than 12 months. Better patient-reported satisfaction was associated with good breast sensibility.
Collapse
Affiliation(s)
- Yong-Jae Hwang
- From the Department of Plastic and Reconstructive Surgery, Korea University Anam Hospital, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
70
|
Owida HA, Al-Nabulsi JI, Alnaimat F, Al-Ayyad M, Turab NM, Al Sharah A, Shakur M. Recent Applications of Electrospun Nanofibrous Scaffold in Tissue Engineering. Appl Bionics Biomech 2022; 2022:1953861. [PMID: 35186119 PMCID: PMC8849965 DOI: 10.1155/2022/1953861] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/12/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Tissue engineering is a relatively new area of research that combines medical, biological, and engineering fundamentals to create tissue-engineered constructs that regenerate, preserve, or slightly increase the functions of tissues. To create mature tissue, the extracellular matrix should be imitated by engineered structures, allow for oxygen and nutrient transmission, and release toxins during tissue repair. Numerous recent studies have been devoted to developing three-dimensional nanostructures for tissue engineering. One of the most effective of these methods is electrospinning. Numerous nanofibrous scaffolds have been constructed over the last few decades for tissue repair and restoration. The current review gives an overview of attempts to construct nanofibrous meshes as tissue-engineered scaffolds for various tissues such as bone, cartilage, cardiovascular, and skin tissues. Also, the current article addresses the recent improvements and difficulties in tissue regeneration using electrospinning.
Collapse
Affiliation(s)
- Hamza Abu Owida
- Medical Engineering Department, Faculty of Engineering, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Jamal I. Al-Nabulsi
- Medical Engineering Department, Faculty of Engineering, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Feras Alnaimat
- Medical Engineering Department, Faculty of Engineering, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Muhammad Al-Ayyad
- Medical Engineering Department, Faculty of Engineering, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Nidal M. Turab
- Department of Networks and Information Security, Faculty of Information Technology, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Ashraf Al Sharah
- Computer Engineering, Faculty of Engineering, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Murad Shakur
- Medical Engineering Department, Faculty of Engineering, Al-Ahliyya Amman University, Amman 19328, Jordan
| |
Collapse
|
71
|
Safina I, Childress LT, Myneni SR, Vang KB, Biris AS. Cell-Biomaterial Constructs for Wound Healing and Skin Regeneration. Drug Metab Rev 2022; 54:63-94. [PMID: 35129408 DOI: 10.1080/03602532.2021.2025387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Over the years, conventional skin grafts, such as full-thickness, split-thickness, and pre-sterilized grafts from human or animal sources, have been at the forefront of skin wound care. However, these conventional grafts are associated with major challenges, including supply shortage, rejection by the immune system, and disease transmission following transplantation. Due to recent progress in nanotechnology and material sciences, advanced artificial skin grafts-based on the fundamental concepts of tissue engineering-are quickly evolving for wound healing and regeneration applications, mainly because they can be uniquely tailored to meet the requirements of specific injuries. Despite tremendous progress in tissue engineering, many challenges and uncertainties still face skin grafts in vivo, such as how to effectively coordinate the interaction between engineered biomaterials and the immune system to prevent graft rejection. Furthermore, in-depth studies on skin regeneration at the molecular level are lacking; as a consequence, the development of novel biomaterial-based systems that interact with the skin at the core level has also been slow. This review will discuss 1) the biological aspects of wound healing and skin regeneration, 2) important characteristics and functions of biomaterials for skin regeneration applications, and 3) synthesis and applications of common biomaterials for skin regeneration. Finally, the current challenges and future directions of biomaterial-based skin regeneration will be addressed.
Collapse
Affiliation(s)
- Ingrid Safina
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S. University Avenue, Little Rock, AR 72204 USA
| | - Luke T Childress
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S. University Avenue, Little Rock, AR 72204 USA
| | - Srinivas R Myneni
- Department of Periodontology, Stony Brook University, Stony Brook, NY 11794 USA
| | - Kieng Bao Vang
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S. University Avenue, Little Rock, AR 72204 USA
| | - Alexandru S Biris
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S. University Avenue, Little Rock, AR 72204 USA
| |
Collapse
|
72
|
Cai M, McNamara K, Yamazaki Y, Harada N, Miyashita M, Tada H, Ishida T, Sasano H. The role of mineralocorticoids and glucocorticoids under the impact of 11β-hydroxysteroid dehydrogenase in human breast lesions. Med Mol Morphol 2022; 55:110-122. [PMID: 35103835 DOI: 10.1007/s00795-022-00312-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/09/2022] [Indexed: 12/24/2022]
Abstract
We attempted to explore the possible involvement of the in situ availability of mineralocorticoids and mineralocorticoid receptor (MR) in the pathogenesis of mammary ductal carcinoma. We also explored their individual profiles among different subtypes of invasive ductal carcinomas of no special type (IDC-NST) by evaluating the status of MR, Glucocorticoid receptor (GR), and 11β hydroxysteroid dehydrogenase (HSD) 1/2 at each stage of the putative cascade of the mammary ductal proliferative disorders. In this study, IDC-NST, ductal carcinoma in situ (DCIS), atypical ductal hyperplasia (ADH), and non-pathological breast tissues were all evaluated by immunohistochemistry. MR was significantly lower in ADH than in DCIS or IDC-NST. 11βHSD2 was significantly lower in ADH than normal breast tissue and 11βHSD1 was significantly higher in DCIS than normal, ADH, or IDC-NST. MR in progesterone receptor (PR)-positive IDC-NST cases tended to be associated with the Ki-67 labeling index. Results of the present study demonstrated that the status of MR and GR in conjunction with the 11βHSDs was correlated with the development of low-grade proliferative disorders in mammary glands. In addition, the potential crosstalk between MR and PR could also influence cell proliferation of breast carcinoma cells but further investigations are required for clarification.
Collapse
Affiliation(s)
- Mingzhen Cai
- Department of Breast and Endocrine Surgery, Tohoku University School of Medicine, Sendai, Japan
| | - Keely McNamara
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuto Yamazaki
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Narumi Harada
- Department of Breast and Endocrine Surgery, Tohoku University School of Medicine, Sendai, Japan
| | - Minoru Miyashita
- Department of Breast and Endocrine Surgery, Tohoku University School of Medicine, Sendai, Japan
| | - Hiroshi Tada
- Department of Breast and Endocrine Surgery, Tohoku University School of Medicine, Sendai, Japan
| | - Takanori Ishida
- Department of Breast and Endocrine Surgery, Tohoku University School of Medicine, Sendai, Japan
| | - Hironobu Sasano
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan. .,Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-Ku, Sendai, 980-8575, Japan.
| |
Collapse
|
73
|
Yang MY, Liu BS, Huang HY, Yang YC, Chang KB, Kuo PY, Deng YH, Tang CM, Hsieh HH, Hung HS. Engineered Pullulan-Collagen-Gold Nano Composite Improves Mesenchymal Stem Cells Neural Differentiation and Inflammatory Regulation. Cells 2021; 10:cells10123276. [PMID: 34943784 PMCID: PMC8699622 DOI: 10.3390/cells10123276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 12/15/2022] Open
Abstract
Tissue repair engineering supported by nanoparticles and stem cells has been demonstrated as being an efficient strategy for promoting the healing potential during the regeneration of damaged tissues. In the current study, we prepared various nanomaterials including pure Pul, pure Col, Pul–Col, Pul–Au, Pul–Col–Au, and Col–Au to investigate their physicochemical properties, biocompatibility, biological functions, differentiation capacities, and anti-inflammatory abilities through in vitro and in vivo assessments. The physicochemical properties were characterized by SEM, DLS assay, contact angle measurements, UV-Vis spectra, FTIR spectra, SERS, and XPS analysis. The biocompatibility results demonstrated Pul–Col–Au enhanced cell viability, promoted anti-oxidative ability for MSCs and HSFs, and inhibited monocyte and platelet activation. Pul–Col–Au also induced the lowest cell apoptosis and facilitated the MMP activities. Moreover, we evaluated the efficacy of Pul–Col–Au in the enhancement of neuronal differentiation capacities for MSCs. Our animal models elucidated better biocompatibility, as well as the promotion of endothelialization after implanting Pul–Col–Au for a period of one month. The above evidence indicates the excellent biocompatibility, enhancement of neuronal differentiation, and anti-inflammatory capacities, suggesting that the combination of pullulan, collagen, and Au nanoparticles can be potential nanocomposites for neuronal repair, as well as skin tissue regeneration in any further clinical treatments.
Collapse
Affiliation(s)
- Meng-Yin Yang
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407204, Taiwan; (M.-Y.Y.); (Y.-C.Y.)
- National Defense Medical Center, Graduate Institute of Medical Sciences, Taipei 11490, Taiwan
- College of Nursing, Central Taiwan University of Science and Technology, Taichung 406053, Taiwan
- College of Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Bai-Shuan Liu
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung 406053, Taiwan; (B.-S.L.); (P.-Y.K.); (Y.-H.D.)
| | - Hsiu-Yuan Huang
- Department of Cosmeceutics and Graduate, Institute of Cosmeceutics, China Medical University, Taichung 40402, Taiwan;
| | - Yi-Chin Yang
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407204, Taiwan; (M.-Y.Y.); (Y.-C.Y.)
| | - Kai-Bo Chang
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan;
| | - Pei-Yeh Kuo
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung 406053, Taiwan; (B.-S.L.); (P.-Y.K.); (Y.-H.D.)
| | - You-Hao Deng
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung 406053, Taiwan; (B.-S.L.); (P.-Y.K.); (Y.-H.D.)
| | - Cheng-Ming Tang
- College of Oral Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - Hsien-Hsu Hsieh
- Blood Bank, Taichung Veterans General Hospital, Taichung 407024, Taiwan;
| | - Huey-Shan Hung
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan;
- Translational Medicine Research, China Medical University Hospital, Taichung 40402, Taiwan
- Correspondence: ; Tel.: +886-4-22052121 (ext. 7827); Fax: +886-4-22333641
| |
Collapse
|
74
|
Deng J, Li M, Meng F, Liu Z, Wang S, Zhang Y, Li M, Li Z, Zhang L, Tang P. 3D spheroids of human placenta-derived mesenchymal stem cells attenuate spinal cord injury in mice. Cell Death Dis 2021; 12:1096. [PMID: 34803160 PMCID: PMC8606575 DOI: 10.1038/s41419-021-04398-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/01/2021] [Accepted: 11/10/2021] [Indexed: 12/23/2022]
Abstract
Mesenchymal stem cell (MSC) is an absorbing candidate for cell therapy in treating spinal cord injury (SCI) due to its great potential for multiple cell differentiation, mighty paracrine secretion as well as vigorous immunomodulatory effect, of which are beneficial to the improvement of functional recovery post SCI. However, the therapeutic effects of MSC on SCI have been limited because of the gradual loss of MSC stemness in the process of expanding culture. Therefore, in this study, we aimed to maintain those beneficial properties of MSC via three-dimensional spheroid cell culture and then compared them with conventionally-cultured MSCs in the treatment of SCI both in vitro and in vivo with the aid of two-photon microscope. We found that 3D human placenta-derived MSCs (3D-HPMSCs) demonstrated a significant increase in secretion of anti-inflammatory factors and trophic factors like VEGF, PDGF, FGF via QPCR and Bio-Plex assays, and showed great potentials on angiogenesis and neurite morphogenesis when co-cultured with HUVECs or DRGs in vitro. After transplantation into the injured spinal cord, 3D-HPMSCs managed to survive for the entire experiment and retained their advantageous properties in secretion, and exhibited remarkable effects on neuroprotection by minimizing the lesion cavity, inhibiting the inflammation and astrogliosis, and promoting angiogenesis. Further investigation of axonal dieback via two-photon microscope indicated that 3D-HPMSCs could effectively alleviate axonal dieback post injury. Further, mice only treated with 3D-HPMSCs obtained substantial improvement of functional recovery on electrophysiology, BMS score, and Catwalk analysis. RNA sequencing suggested that the 3D-HPMSCs structure organization-related gene was significantly changed, which was likely to potentiate the angiogenesis and inflammation regulation after SCI. These results suggest that 3D-HPMSCs may hold great potential for the treatment of SCI.
Collapse
Affiliation(s)
- Junhao Deng
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Orthopedics, The Chinese PLA General Hospital, Beijing, 100853, China
| | - Miao Li
- Key Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
- Department of Anesthesiology, Columbia University, New York, NY, 10032, USA
| | - Fanqi Meng
- Department of Spine Surgery, Peking University People's hospital, Beijing, 100044, China
| | - Zhongyang Liu
- Department of Orthopedics, The Chinese PLA General Hospital, Beijing, 100853, China
| | - Song Wang
- Department of Orthopedics, The Chinese PLA General Hospital, Beijing, 100853, China
- Medical college, Nankai University, Tianjin, 300071, China
| | - Yuan Zhang
- IBM Research-China, Beijing, 100193, China
| | - Ming Li
- Department of Orthopedics, The Chinese PLA General Hospital, Beijing, 100853, China
| | - Zhirui Li
- Department of Orthopedics, The Chinese PLA General Hospital, Beijing, 100853, China.
| | - Licheng Zhang
- Department of Orthopedics, The Chinese PLA General Hospital, Beijing, 100853, China.
| | - Peifu Tang
- Medical School of Chinese PLA, Beijing, 100853, China.
- Department of Orthopedics, The Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
75
|
Sun H, Zhang YX, Li YM. Generation of Skin Organoids: Potential Opportunities and Challenges. Front Cell Dev Biol 2021; 9:709824. [PMID: 34805138 PMCID: PMC8600117 DOI: 10.3389/fcell.2021.709824] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/21/2021] [Indexed: 12/03/2022] Open
Abstract
Although several types of human skin substitutes are currently available, they usually do not include important skin appendages such as hair follicles and sweat glands, or various skin-related cells, such as dermal adipocytes and sensory neurons. This highlights the need to improve the in vitro human skin generation model for use as a tool for investigating skin diseases and as a source of cells or tissues for skin regeneration. Skin organoids are generated from stem cells and are expected to possess the complexity and function of natural skin. Here, we summarize the current literatures relating to the "niches" of the local skin stem cell microenvironment and the formation of skin organoids, and then discuss the opportunities and challenges associated with multifunctional skin organoids.
Collapse
Affiliation(s)
- Hui Sun
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yi-Xuan Zhang
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yu-Mei Li
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
- School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
76
|
Ulloque‐Badaracco JR, Ivan Salas‐Tello W, Al‐kassab‐Córdova A, Alarcón‐Braga EA, Benites‐Zapata VA, Maguiña JL, Hernandez AV. Prognostic value of neutrophil-to-lymphocyte ratio in COVID-19 patients: A systematic review and meta-analysis. Int J Clin Pract 2021; 75:e14596. [PMID: 34228867 PMCID: PMC9614707 DOI: 10.1111/ijcp.14596] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 07/01/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Neutrophil-to-lymphocyte ratio (NLR) is an accessible and widely used biomarker. NLR may be used as an early marker of poor prognosis in patients with COVID-19. OBJECTIVE To evaluate the prognostic value of the NLR in patients diagnosed with COVID-19. METHODS We conducted a systematic review and meta-analysis. Observational studies that reported the association between baseline NLR values (ie, at hospital admission) and severity or all-cause mortality in COVID-19 patients were included. The quality of the studies was assessed using the Newcastle-Ottawa Scale (NOS). Random effects models and inverse variance method were used for meta-analyses. The effects were expressed as odds ratios (ORs) and their 95% confidence intervals (CIs). Small study effects were assessed with the Egger's test. RESULTS We analysed 61 studies (n = 15 522 patients), 58 cohorts, and 3 case-control studies. An increase of one unit of NLR was associated with higher odds of severity (OR 6.22; 95%CI 4.93 to 7.84; P < .001) and higher odds of all-cause mortality (OR 12.6; 95%CI 6.88 to 23.06; P < .001). In our sensitivity analysis, we found that 41 studies with low risk of bias and moderate heterogeneity (I2 = 53% and 58%) maintained strong association between NLR values and both outcomes (severity: OR 5.36; 95% CI 4.45 to 6.45; P < .001; mortality: OR 10.42 95% CI 7.73 to 14.06; P = .005). CONCLUSIONS Higher values of NLR were associated with severity and all-cause mortality in hospitalised COVID-19 patients.
Collapse
Affiliation(s)
| | | | | | | | - Vicente A. Benites‐Zapata
- Vicerrectorado de Investigación Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Vicerrectorado de InvestigaciónUniversidad San Ignacio de LoyolaLimaPeru
| | - Jorge L. Maguiña
- Escuela de MedicinaUniversidad Peruana de Ciencias AplicadasLimaPeru
- Instituto de Evaluación de Tecnologías en Salud e Investigación — IETSI, EsSaludLimaPeru
| | - Adrian V. Hernandez
- Unidad de Revisiones Sistemáticas y Meta‐análisis, Guías de Práctica Clínica y Evaluaciones de Tecnología Sanitaria, Vicerrectorado de InvestigaciónUniversidad San Ignacio de LoyolaLimaPeru
- Health OutcomesPolicy, and Evidence Synthesis (HOPES) Group, University of Connecticut School of PharmacyMansfieldCTUSA
| |
Collapse
|
77
|
Yang M, Weng T, Zhang W, Zhang M, He X, Han C, Wang X. The Roles of Non-coding RNA in the Development and Regeneration of Hair Follicles: Current Status and Further Perspectives. Front Cell Dev Biol 2021; 9:720879. [PMID: 34708037 PMCID: PMC8542792 DOI: 10.3389/fcell.2021.720879] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
Alopecia is a common problem that affects almost every age group and is considered to be an issue for cosmetic or psychiatric reasons. The loss of hair follicles (HFs) and hair caused by alopecia impairs self-esteem, thermoregulation, tactile sensation and protection from ultraviolet light. One strategy to solve this problem is HF regeneration. Many signalling pathways and molecules participate in the morphology and regeneration of HF, such as Wnt/β-catenin, Sonic hedgehog, bone morphogenetic protein and Notch. Non-coding RNAs (ncRNAs), especially microRNAs and long ncRNAs, have significant modulatory roles in HF development and regeneration via regulation of these signalling pathways. This review provides a comprehensive overview of the status and future prospects of ncRNAs in HF regeneration and could prompt novel ncRNA-based therapeutic strategies.
Collapse
Affiliation(s)
- Min Yang
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
| | - Tingting Weng
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
| | - Wei Zhang
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
| | - Manjia Zhang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaojie He
- Department of General Practice, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Chunmao Han
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
| | - Xingang Wang
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
| |
Collapse
|
78
|
Li Y, Yu Y, Xie Z, Ye X, Liu X, Xu B, Mao J. Serum-derived exosomes accelerate scald wound healing in mice by optimizing cellular functions and promoting Akt phosphorylation. Biotechnol Lett 2021; 43:1675-1684. [PMID: 34014413 DOI: 10.1007/s10529-021-03148-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/15/2021] [Indexed: 10/21/2022]
Abstract
Wound exudate holds great clinical and research potential in wound repair via paracrine signaling. In essence, exudate is modified serum that contains a high concentration of exosomes. The aim of this study was to investigate the role of serum-derived exosomes in scald wound healing of NIH mice skin and to explore the underlying mechanisms. Hence, we constructed a deep second-degree scald model in NIH mice, testing the benefits of exosomes in the scald wound healing. The scratch wound assay, apoptosis assay and MTT assay were conducted to assess the effects of serum-derived exosomes on migration, apoptosis and proliferation of HaCaT cells and fibroblasts. Our results showed that serum-derived exosomes injected subcutaneously entered cells and effectively accelerated wound healing processes in mice. Additionally, serum-derived exosomes optimized functions of cells related to skin injury repair by stimulating fibroblast proliferation, promoting HaCaT cell migration, and suppressing apoptosis of HaCaT cells induced by heat stress. Further study revealed that serum-derived exosomes enhanced phosphorylation of the serine-threonine kinase Akt in scalded skin tissue. These results suggest a potential clinical use of serum-derived exosomes for treating skin scald.
Collapse
Affiliation(s)
- Yanwen Li
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Yang Yu
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Zheng Xie
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Xiaomin Ye
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Xiaoyong Liu
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Bin Xu
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Jianwen Mao
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China.
| |
Collapse
|
79
|
Wei YT, Wu J. [Research advances on skin tissue regeneration in wound repair]. ZHONGHUA SHAO SHANG ZA ZHI = ZHONGHUA SHAOSHANG ZAZHI = CHINESE JOURNAL OF BURNS 2021; 37:670-674. [PMID: 34304409 PMCID: PMC11917230 DOI: 10.3760/cma.j.cn501120-20200604-00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Wound repair is one of the common clinical problems faced by burn, plastic, and reconstructive surgeons. Current wound repair strategies applied in clinical settings can only achieve pathological repair instead of physiological regeneration. To 'perfectly' repair the defective tissue is the long-time goal of researchers working in this field for a long time. This review introduces the research updates of skin tissue regeneration in wound repair, focusing on the new concept of tissue regeneration technique with stem cells as the core and the construction of scaffold materials for tissue-engineered skin. In summary, making cells proliferate and differentiate into functional skin organ according to the needs of wound healing, regulating the precise location of different cells in the process of wound healing, and reconstructing the normal structure of skin remain the problems needing future explorations.
Collapse
Affiliation(s)
- Y T Wei
- Department of Burn and Plastic Surgery, the First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - J Wu
- Department of Burn and Plastic Surgery, the First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| |
Collapse
|
80
|
Li KN, Tumbar T. Hair follicle stem cells as a skin-organizing signaling center during adult homeostasis. EMBO J 2021; 40:e107135. [PMID: 33880808 PMCID: PMC8167365 DOI: 10.15252/embj.2020107135] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/16/2020] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
Stem cells are the essential source of building blocks for tissue homeostasis and regeneration. Their behavior is dictated by both cell-intrinsic cues and extrinsic cues from the microenvironment, known as the stem cell niche. Interestingly, recent work began to demonstrate that hair follicle stem cells (HFSCs) are not only passive recipients of signals from the surroundings, but also actively send out signals to modulate the organization and function of their own niches. Here, we discuss recent findings, and briefly refer to the old, on the interaction of HFSCs and their niches with the emphasis on the outwards signals from HFSCs toward their niches. We also highlight recent technology advancements that further promote our understanding of HFSC niches. Taken together, the HFSCs emerge as a skin-organizing center rich in signaling output for niche remodeling during various stages of adult skin homeostasis. The intricate crosstalk between HFSCs and their niches adds important insight to skin biology that will inform clinical and bioengineering fields aiming to build complete and functional 3D organotypic cultures for skin replacement therapies.
Collapse
Affiliation(s)
- Kefei Nina Li
- Molecular Biology and GeneticsCornell UniversityIthacaNYUSA
| | | |
Collapse
|
81
|
Wu P, Liang Y, Sun G. Engineering immune-responsive biomaterials for skin regeneration. BIOMATERIALS TRANSLATIONAL 2021; 2:61-71. [PMID: 35837252 PMCID: PMC9255827 DOI: 10.3877/cma.j.issn.2096-112x.2021.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/10/2020] [Accepted: 12/29/2020] [Indexed: 01/17/2023]
Abstract
The progress of biomaterials and tissue engineering has led to significant advances in wound healing, but the clinical therapy to regenerate perfect skin remains a great challenge. The implantation of biomaterial scaffolds to heal wounds inevitably leads to a host immune response. Many recent studies revealed that the immune system plays a significant role in both the healing process and the outcome. Immunomodulation or immuno-engineering has thus become a promising approach to develop pro-regenerative scaffolds for perfect skin regeneration. In this paper, we will review recent advancements in immunomodulating biomaterials in the field of skin repair and regeneration, and discuss strategies to modulate the immune response by tailoring the chemical, physical and biological properties of the biomaterials. Understanding the important role of immune responses and manipulating the inherent properties of biomaterials to regulate the immune reaction are approaches to overcome the current bottleneck of skin repair and regeneration.
Collapse
Affiliation(s)
- Pingli Wu
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei Province, China
| | - Yangyang Liang
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei Province, China
| | - Guoming Sun
- Affiliated Hospital of Hebei University, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei Province, China,Corresponding author: Guoming Sun,
| |
Collapse
|
82
|
Lin S, He X, He Y. Co-culture of ASCs/EPCs and dermal extracellular matrix hydrogel enhances the repair of full-thickness skin wound by promoting angiogenesis. Stem Cell Res Ther 2021; 12:129. [PMID: 33579369 PMCID: PMC7881476 DOI: 10.1186/s13287-021-02203-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/01/2021] [Indexed: 12/14/2022] Open
Abstract
Background The repair of large-scale full-thickness skin defects represents a challenging obstacle in skin tissue engineering. To address the most important problem in skin defect repair, namely insufficient blood supply, this study aimed to find a method that could promote the formation of vascularized skin tissue. Method The phenotypes of ASCs and EPCs were identified respectively, and ASCs/EPCs were co-cultured in vitro to detect the expression of dermal and angiogenic genes. Furthermore, the co-culture system combined with dermal extracellular matrix hydrogel was used to repair the full-scale skin defects in rats. Result The co-culture of ASCs/EPCs could increase skin- and angiogenesis-related gene expression in vitro. The results of in vivo animal experiments demonstrated that the ASCs/EPCs group could significantly accelerate the repair of skin defects by promoting the regeneration of vascularized skin. Conclusion It is feasible to replace traditional single-seed cells with the ASC/EPC co-culture system for vascularized skin regeneration. This system could ultimately enable clinicians to better repair the full-thickness skin defects and avoid donor site morbidity.
Collapse
Affiliation(s)
- Shuang Lin
- Department of Plastic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoning He
- Department of Stomatology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuanjia He
- Department of Stomatology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
83
|
Weng T, Zhang W, Xia Y, Wu P, Yang M, Jin R, Xia S, Wang J, You C, Han C, Wang X. 3D bioprinting for skin tissue engineering: Current status and perspectives. J Tissue Eng 2021; 12:20417314211028574. [PMID: 34345398 PMCID: PMC8283073 DOI: 10.1177/20417314211028574] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/10/2021] [Indexed: 12/25/2022] Open
Abstract
Skin and skin appendages are vulnerable to injury, requiring rapidly reliable regeneration methods. In recent years, 3D bioprinting has shown potential for wound repair and regeneration. 3D bioprinting can be customized for skin shape with cells and other materials distributed precisely, achieving rapid and reliable production of bionic skin substitutes, therefore, meeting clinical and industrial requirements. Additionally, it has excellent performance with high resolution, flexibility, reproducibility, and high throughput, showing great potential for the fabrication of tissue-engineered skin. This review introduces the common techniques of 3D bioprinting and their application in skin tissue engineering, focusing on the latest research progress in skin appendages (hair follicles and sweat glands) and vascularization, and summarizes current challenges and future development of 3D skin printing.
Collapse
Affiliation(s)
- Tingting Weng
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Zhang
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| | - Yilan Xia
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Pan Wu
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| | - Min Yang
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| | - Ronghua Jin
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| | - Sizhan Xia
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| | - Jialiang Wang
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| | - Chuangang You
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| | - Chunmao Han
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xingang Wang
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
84
|
Oh EJ, Gangadaran P, Rajendran RL, Kim HM, Oh JM, Choi KY, Chung HY, Ahn BC. Extracellular vesicles derived from fibroblasts promote wound healing by optimizing fibroblast and endothelial cellular functions. Stem Cells 2020; 39:266-279. [PMID: 33289943 DOI: 10.1002/stem.3310] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022]
Abstract
Extracellular vesicles (EVs) have been exhibited as promising candidates for delivering endogenous therapeutic cargos for regenerative therapies. Fibroblasts could be candidate source cells for EVs, to investigate their therapeutic effects in wound healing. Here we demonstrated the isolation and characterization of fibroblast-derived (L929 cell line) EVs (L929-EVs). Furthermore, L929-EVs treatment showed pro-wound healing effects in vitro by enhancing proliferation, migration, and scarless wound healing related genes in fibroblast cells. L929-EVs treatment also enhanced the migration and tube formation of endothelial cells. The combination of L929-EVs with fibrin glue accelerated wound healing in the mouse skin wound model by enhancing collagen formation, collagen maturation, and blood vessels in the wounded skin. The role of fibroblast-derived EVs in wound healing could be an important phenomenon, and fibroblast-derived EVs could be harnessed for wound healing therapies.
Collapse
Affiliation(s)
- Eun Jung Oh
- Department of Plastic and Reconstructive Surgery, CMRI, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hyun Mi Kim
- Department of Plastic and Reconstructive Surgery, CMRI, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Ji Min Oh
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Kang Young Choi
- Department of Plastic and Reconstructive Surgery, CMRI, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Ho Yun Chung
- Department of Plastic and Reconstructive Surgery, CMRI, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea.,BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Department of Nuclear Medicine, School of Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| |
Collapse
|
85
|
Shi Q, Sun B, Wang D, Zhu Y, Zhao X, Yang X, Zhang Y. Circ6401, a novel circular RNA, is implicated in repair of the damaged endometrium by Wharton's jelly-derived mesenchymal stem cells through regulation of the miR-29b-1-5p/RAP1B axis. Stem Cell Res Ther 2020; 11:520. [PMID: 33261656 PMCID: PMC7708228 DOI: 10.1186/s13287-020-02027-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/13/2020] [Indexed: 02/08/2023] Open
Abstract
Background Accumulating evidence indicates that mesenchymal stem cells (MSCs) exert tissue repair effects and therapeutic angiogenesis through their noncoding RNAs (ncRNAs). Our previous studies showed that MSCs derived from Wharton’s jelly (WJ-MSCs) can ameliorate damaged human endometrium by promoting angiogenesis. There is limited information on the functions and mechanism of ncRNAs in MSC-induced endometrial repair, and additional studies are needed for more insights. Methods Here, WJ-MSCs were cocultured with or without endometrial stromal cells (ESCs) damaged by mifepristone (cocultured group versus non-cocultured group). TUNEL staining assays, EdU proliferation assays, flow cytometry apoptosis assays, and western blot assays were performed to observe the reparative effect of WJ-MSCs on damaged ESCs. Subsequently, circular RNA (circRNA) and microRNA microarrays were performed between the two groups. A subset of top upregulated circRNAs was validated by qRT-PCR. The functions of circ6401 (hsa_circ_0006401) in WJ-MSCs were investigated using lentivirus-mediated circRNA overexpression assays. The subcellular localization of circ6401 and miR-29b-1-5p in WJ-MSCs was identified by double RNA fluorescence in situ hybridization. Dual-luciferase reporter assays and western blot assays were performed to elucidate the regulatory mechanisms among circ6401, miR-29b-1-5p, and RAP1B. Results WJ-MSCs significantly improved ESC proliferation and upregulated the expression of vascular angiogenesis markers. Circ6401 was upregulated in WJ-MSCs cocultured with damaged ESCs, while miR-29b-1-5p was significantly downregulated. Furthermore, circ6401 was found to bind to miR-29b-1-5p and prevent it from decreasing the level of RAP1B, a crucial protein involved in the VEGF signaling pathway, which promoted angiogenesis and stimulated the proliferation of ESCs. Conclusions Our results showed the abundance and regulation profiles of ncRNAs of WJ-MSCs during repair of damaged ESCs and, for the first time, clarified the underlying mechanism by which circ6401 promotes endometrial repair by WJ-MSCs; thus, demonstrating that circ6401 may serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Qin Shi
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, 19 Xisi Road, Nantong, Jiangsu, 226000, People's Republic of China
| | - Baolan Sun
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Di Wang
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Yi Zhu
- Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, People's Republic of China
| | - Xinxin Zhao
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, 19 Xisi Road, Nantong, Jiangsu, 226000, People's Republic of China
| | - Xiaoqing Yang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, 19 Xisi Road, Nantong, Jiangsu, 226000, People's Republic of China.
| | - Yuquan Zhang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, 19 Xisi Road, Nantong, Jiangsu, 226000, People's Republic of China.
| |
Collapse
|
86
|
Zhang Q, Wen J, Liu C, Ma C, Bai F, Leng X, Chen Z, Xie Z, Mi J, Wu X. Early-stage bilayer tissue-engineered skin substitute formed by adult skin progenitor cells produces an improved skin structure in vivo. Stem Cell Res Ther 2020; 11:407. [PMID: 32948249 PMCID: PMC7501683 DOI: 10.1186/s13287-020-01924-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/27/2020] [Accepted: 09/03/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND In recent years, significant progress has been made in developing highly complex tissue-engineered skin substitutes (TESSs) for wound healing. However, the lack of skin appendages, such as hair follicles and sweat glands, and the time required, are two major limitations that hinder its broad application in the clinic. Therefore, it is necessary to develop a competent TESS in a short time to meet the needs for clinical applications. METHODS Adult scalp dermal progenitor cells and epidermal stem cells together with type I collagen as a scaffold material were used to reconstitute bilayer TESSs in vitro. TESSs at 4 different culture times (5, 9, 14, and 21 days) were collected and then grafted onto full-thickness wounds created in the dorsal skin of athymic nude/nude mice. The skin specimens formed from grafted TESSs were collected 4 and 8 weeks later and then evaluated for their structure, cell organization, differentiation status, vascularization, and formation of appendages by histological analysis, immunohistochemistry, and immunofluorescent staining. RESULTS Early-stage bilayer TESSs after transplantation had a better efficiency of grafting. A normal structure of stratified epidermis containing multiple differentiated layers of keratinocytes was formed in all grafts from both early-stage and late-stage TESSs, but higher levels of the proliferation marker Ki-67 and the epidermal progenitor marker p63 were found in the epidermis formed from early-stage TESSs. Interestingly, the transplantation of early-stage TESSs produced a thicker dermis that contained more vimentin- and CD31-positive cells, and importantly, hair follicle formation was only observed in the skin grafted from early-stage TESSs. Finally, early-stage TESSs expressed high levels of p63 but had low expression levels of genes involved in the activation of the apoptotic pathway compared to the late-stage TESSs in vitro. CONCLUSIONS Early-stage bilayer TESSs reconstituted from skin progenitor cells contained more competent cells with less activation of the apoptotic pathway and produced a better skin structure, including hair follicles associated with sebaceous glands, after transplantation, which should potentially provide better wound healing when applied in the clinic in the future.
Collapse
Affiliation(s)
- Qun Zhang
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China
| | - Jie Wen
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, China
| | - Chang Liu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China
| | - Chuan Ma
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China
| | - Fuxiang Bai
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China
| | - Xue Leng
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China
| | - Zhihong Chen
- Qilu Children's Hospital of Shandong University, Jinan, China
| | - Zhiwei Xie
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China
- Department of Stomatology, Shengli Oilfield Center Hospital, Dongying, Shandong, China
| | - Jun Mi
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China
| | - Xunwei Wu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China.
| |
Collapse
|
87
|
Xu P, Wu Y, Zhou L, Yang Z, Zhang X, Hu X, Yang J, Wang M, Wang B, Luo G, He W, Cheng B. Platelet-rich plasma accelerates skin wound healing by promoting re-epithelialization. BURNS & TRAUMA 2020; 8:tkaa028. [PMID: 32821743 PMCID: PMC7427034 DOI: 10.1093/burnst/tkaa028] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/24/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Autologous platelet-rich plasma (PRP) has been suggested to be effective for wound healing. However, evidence for its use in patients with acute and chronic wounds remains insufficient. The aims of this study were to comprehensively examine the effectiveness, synergy and possible mechanism of PRP-mediated improvement of acute skin wound repair. METHODS Full-thickness wounds were made on the back of C57/BL6 mice. PRP or saline solution as a control was administered to the wound area. Wound healing rate, local inflammation, angiogenesis, re-epithelialization and collagen deposition were measured at days 3, 5, 7 and 14 after skin injury. The biological character of epidermal stem cells (ESCs), which reflect the potential for re-epithelialization, was further evaluated in vitro and in vivo. RESULTS PRP strongly improved skin wound healing, which was associated with regulation of local inflammation, enhancement of angiogenesis and re-epithelialization. PRP treatment significantly reduced the production of inflammatory cytokines interleukin-17A and interleukin-1β. An increase in the local vessel intensity and enhancement of re-epithelialization were also observed in animals with PRP administration and were associated with enhanced secretion of growth factors such as vascular endothelial growth factor and insulin-like growth factor-1. Moreover, PRP treatment ameliorated the survival and activated the migration and proliferation of primary cultured ESCs, and these effects were accompanied by the differentiation of ESCs into adult cells following the changes of CD49f and keratin 10 and keratin 14. CONCLUSION PRP improved skin wound healing by modulating inflammation and increasing angiogenesis and re-epithelialization. However, the underlying regulatory mechanism needs to be investigated in the future. Our data provide a preliminary theoretical foundation for the clinical administration of PRP in wound healing and skin regeneration.
Collapse
Affiliation(s)
- Pengcheng Xu
- Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou, China
| | - Yaguang Wu
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lina Zhou
- Department of Endocrinology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zengjun Yang
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaorong Zhang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Xiaohong Hu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Jiacai Yang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Mingying Wang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Binjie Wang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Gaoxing Luo
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Biao Cheng
- Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou, China
| |
Collapse
|
88
|
Sizeland KH, Wells HC, Kirby NM, Hawley A, Mudie ST, Ryan TM, Haverkamp RG. Bovine Meniscus Middle Zone Tissue: Measurement of Collagen Fibril Behavior During Compression. Int J Nanomedicine 2020; 15:5289-5298. [PMID: 32821095 PMCID: PMC7419642 DOI: 10.2147/ijn.s261298] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/09/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Type I collagen is the major component of the extracellular matrix of the knee's meniscus and plays a central role in that joint's biomechanical properties. Repair and reconstruction of tissue damage often requires a scaffold to assist the body to rebuild. The middle zone of bovine meniscus is a material that may be useful for the preparation of extracellular matrix scaffolds. METHODS Here, synchrotron-based small-angle X-ray scattering (SAXS) patterns of bovine meniscus were collected during unconfined compression. Collagen fibril orientation, D-spacing, compression distance and force were measured. RESULTS The collagen fibrils in middle zone meniscal fibrocartilage become more highly oriented perpendicular to the direction of compression. The D-spacing also increases, from 65.0 to 66.3 nm with compression up to 0.43 MPa, representing a 1.8% elongation of collagen fibrils perpendicular to the compression. CONCLUSION The elasticity of the collagen fibrils under tension along their length when the meniscus is compressed, therefore, contributes to the overall elastic response of the meniscus only under loads that exceed those likely to be experienced physiologically.
Collapse
Affiliation(s)
| | - Hannah C Wells
- School of Food and Advanced Technology, Massey University, Palmerston North4472, New Zealand
| | - Nigel M Kirby
- SAXS/WAXS Beamline, Australian Synchrotron, ANSTO, Clayton, Melbourne, VIC3168, Australia
| | - Adrian Hawley
- SAXS/WAXS Beamline, Australian Synchrotron, ANSTO, Clayton, Melbourne, VIC3168, Australia
| | - Stephen T Mudie
- SAXS/WAXS Beamline, Australian Synchrotron, ANSTO, Clayton, Melbourne, VIC3168, Australia
| | - Tim M Ryan
- SAXS/WAXS Beamline, Australian Synchrotron, ANSTO, Clayton, Melbourne, VIC3168, Australia
| | - Richard G Haverkamp
- School of Food and Advanced Technology, Massey University, Palmerston North4472, New Zealand
| |
Collapse
|
89
|
Lu W, Bao D, Ta F, Liu D, Zhang D, Zhang Z, Fan Z. Multifunctional Alginate Hydrogel Protects and Heals Skin Defects in Complex Clinical Situations. ACS OMEGA 2020; 5:17152-17159. [PMID: 32715200 PMCID: PMC7377546 DOI: 10.1021/acsomega.0c01108] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/23/2020] [Indexed: 05/13/2023]
Abstract
Skin defects, soft tissue damage, and fractures often occur simultaneously in severe trauma. Under current medical technology, fractures can be quickly fixed by internal or external repair techniques, and early functional exercises can be performed. However, skin defects heal over a long time and can even be difficult to heal. Functional exercise may cause cutting of fresh granulation to break and impair wound healing. Functional exercise and wound healing seem to contradict each other. In this study, an alginate hydrogel was developed. With self-healing characteristics, the hydrogel tightly adhered to the wound and could self-heal breaks in the gel caused by functional exercises. These characteristics enable this hydrogel to be used in complex clinical situations to solve sports rehabilitation and skin defect repair problems. In addition, this hydrogel can slowly release strontium ions, promote angiogenesis and collagen deposition in the wound, and quickly heal the wound.
Collapse
Affiliation(s)
- Wei Lu
- Department
of Orthopaedic Surgery, The First Affiliated
Hospital of Jinzhou Medical University, Liaoning 121001, PR China
| | - Dongyan Bao
- Basic
Medical College, Jinzhou Medical University, Liaoning 121001, PR China
| | - Fangxin Ta
- Health
Management Center, The First Affiliated
Hospital of Jinzhou Medical University, Liaoning 121001, PR China
| | - Danping Liu
- Department
of Orthopaedic Surgery, The First Affiliated
Hospital of Jinzhou Medical University, Liaoning 121001, PR China
| | - Dezhi Zhang
- Department
of Orthopaedic Surgery, The First Affiliated
Hospital of Jinzhou Medical University, Liaoning 121001, PR China
| | - Zheng Zhang
- Department
of Orthopaedic Surgery, The First Affiliated
Hospital of Jinzhou Medical University, Liaoning 121001, PR China
| | - Zhongkai Fan
- Department
of Orthopaedic Surgery, The First Affiliated
Hospital of Jinzhou Medical University, Liaoning 121001, PR China
- . Tel: +86-0416-4197673
| |
Collapse
|
90
|
Przekora A. A Concise Review on Tissue Engineered Artificial Skin Grafts for Chronic Wound Treatment: Can We Reconstruct Functional Skin Tissue In Vitro? Cells 2020; 9:cells9071622. [PMID: 32640572 PMCID: PMC7407512 DOI: 10.3390/cells9071622] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/17/2020] [Accepted: 06/21/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic wounds occur as a consequence of a prolonged inflammatory phase during the healing process, which precludes skin regeneration. Typical treatment for chronic wounds includes application of autografts, allografts collected from cadaver, and topical delivery of antioxidant, anti-inflammatory, and antibacterial agents. Nevertheless, the mentioned therapies are not sufficient for extensive or deep wounds. Moreover, application of allogeneic skin grafts carries high risk of rejection and treatment failure. Advanced therapies for chronic wounds involve application of bioengineered artificial skin substitutes to overcome graft rejection as well as topical delivery of mesenchymal stem cells to reduce inflammation and accelerate the healing process. This review focuses on the concept of skin tissue engineering, which is a modern approach to chronic wound treatment. The aim of the article is to summarize common therapies for chronic wounds and recent achievements in the development of bioengineered artificial skin constructs, including analysis of biomaterials and cells widely used for skin graft production. This review also presents attempts to reconstruct nerves, pigmentation, and skin appendages (hair follicles, sweat glands) using artificial skin grafts as well as recent trends in the engineering of biomaterials, aiming to produce nanocomposite skin substitutes (nanofilled polymer composites) with controlled antibacterial activity. Finally, the article describes the composition, advantages, and limitations of both newly developed and commercially available bioengineered skin substitutes.
Collapse
Affiliation(s)
- Agata Przekora
- Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland
| |
Collapse
|
91
|
Klimek K, Ginalska G. Proteins and Peptides as Important Modifiers of the Polymer Scaffolds for Tissue Engineering Applications-A Review. Polymers (Basel) 2020; 12:E844. [PMID: 32268607 PMCID: PMC7240665 DOI: 10.3390/polym12040844] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/21/2022] Open
Abstract
Polymer scaffolds constitute a very interesting strategy for tissue engineering. Even though they are generally non-toxic, in some cases, they may not provide suitable support for cell adhesion, proliferation, and differentiation, which decelerates tissue regeneration. To improve biological properties, scaffolds are frequently enriched with bioactive molecules, inter alia extracellular matrix proteins, adhesive peptides, growth factors, hormones, and cytokines. Although there are many papers describing synthesis and properties of polymer scaffolds enriched with proteins or peptides, few reviews comprehensively summarize these bioactive molecules. Thus, this review presents the current knowledge about the most important proteins and peptides used for modification of polymer scaffolds for tissue engineering. This paper also describes the influence of addition of proteins and peptides on physicochemical, mechanical, and biological properties of polymer scaffolds. Moreover, this article sums up the major applications of some biodegradable natural and synthetic polymer scaffolds modified with proteins and peptides, which have been developed within the past five years.
Collapse
Affiliation(s)
- Katarzyna Klimek
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland;
| | | |
Collapse
|