51
|
Hu W, Song M, Wang C, Guo Z, Li Y, Wang D. Structural characterization of polysaccharide purified from Hericium erinaceus fermented mycelium and its pharmacological basis for application in Alzheimer's disease: Oxidative stress related calcium homeostasis. Int J Biol Macromol 2021; 193:358-369. [PMID: 34688684 DOI: 10.1016/j.ijbiomac.2021.10.117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/03/2021] [Accepted: 10/17/2021] [Indexed: 11/16/2022]
Abstract
The purified polysaccharides from Hericium erinaceus fermented mycelium entitled with PHEB was analyzed and it was mainly composed of six glycosidic bonds. It has been confirmed to show the relieving activity against Alzheimer's Disease (AD)- just as behaviors of B6C3-Tg (APPswePSEN1d E9)/Nju double transgenic [Genotype: (Appswe)T, (Psen1) T] (APP/PS1) mice. Six-week PHEB administration significantly improved the cognitive behavior of mice. Brain injury, amyloid beta deposition and tau hyperphosphorylation were alleviated in PHEB-treated AD mice without changes in other tissues. PHEB alleviated the oxidative stress in brains of AD mice via regulation the Nrf2 and its downstream kinase, which further improved the cholinergic system function. Proteomics and bioinformatics analysis showed that the therapeutic effect of PHEB is achieved by regulating calcium homeostasis mediated by oxidative stress. Furthermore, PHEB regulated the CaMK II/IV to achieve the calcium homeostasis in brains; and ultimately to show the anti-AD property.
Collapse
Affiliation(s)
- Wenji Hu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Minkai Song
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Chunyue Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Ziang Guo
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China.
| | - Di Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
52
|
Crestini A, Santilli F, Martellucci S, Carbone E, Sorice M, Piscopo P, Mattei V. Prions and Neurodegenerative Diseases: A Focus on Alzheimer's Disease. J Alzheimers Dis 2021; 85:503-518. [PMID: 34864675 DOI: 10.3233/jad-215171] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Specific protein misfolding and aggregation are mechanisms underlying various neurodegenerative diseases such as prion disease and Alzheimer's disease (AD). The misfolded proteins are involved in prions, amyloid-β (Aβ), tau, and α-synuclein disorders; they share common structural, biological, and biochemical characteristics, as well as similar mechanisms of aggregation and self-propagation. Pathological features of AD include the appearance of plaques consisting of deposition of protein Aβ and neurofibrillary tangles formed by the hyperphosphorylated tau protein. Although it is not clear how protein aggregation leads to AD, we are learning that the cellular prion protein (PrPC) plays an important role in the pathogenesis of AD. Herein, we first examined the pathogenesis of prion and AD with a focus on the contribution of PrPC to the development of AD. We analyzed the mechanisms that lead to the formation of a high affinity bond between Aβ oligomers (AβOs) and PrPC. Also, we studied the role of PrPC as an AβO receptor that initiates an AβO-induced signal cascade involving mGluR5, Fyn, Pyk2, and eEF2K linking Aβ and tau pathologies, resulting in the death of neurons in the central nervous system. Finally, we have described how the PrPC-AβOs interaction can be used as a new potential therapeutic target for the treatment of PrPC-dependent AD.
Collapse
Affiliation(s)
- Alessio Crestini
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Santilli
- Biomedicine and Advanced Technologies Rieti Center, "Sabina Universitas", Rieti, Italy.,Department of Experimental Medicine, "Sapienza" University, Rome, Italy
| | - Stefano Martellucci
- Biomedicine and Advanced Technologies Rieti Center, "Sabina Universitas", Rieti, Italy
| | - Elena Carbone
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Maurizio Sorice
- Department of Experimental Medicine, "Sapienza" University, Rome, Italy
| | - Paola Piscopo
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, "Sabina Universitas", Rieti, Italy.,Department of Experimental Medicine, "Sapienza" University, Rome, Italy
| |
Collapse
|
53
|
Matuszyk MM, Garwood CJ, Ferraiuolo L, Simpson JE, Staniforth RA, Wharton SB. Biological and methodological complexities of beta-amyloid peptide: Implications for Alzheimer's disease research. J Neurochem 2021; 160:434-453. [PMID: 34767256 DOI: 10.1111/jnc.15538] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 01/01/2023]
Abstract
Although controversial, the amyloid cascade hypothesis remains central to the Alzheimer's disease (AD) field and posits amyloid-beta (Aβ) as the central factor initiating disease onset. In recent years, there has been an increase in emphasis on studying the role of low molecular weight aggregates, such as oligomers, which are suggested to be more neurotoxic than fibrillary Aβ. Other Aβ isoforms, such as truncated Aβ, have also been implicated in disease. However, developing a clear understanding of AD pathogenesis has been hampered by the complexity of Aβ biochemistry in vitro and in vivo. This review explores factors contributing to the lack of consistency in experimental approaches taken to model Aβ aggregation and toxicity and provides an overview of the different techniques available to analyse Aβ, such as electron and atomic force microscopy, nuclear magnetic resonance spectroscopy, dye-based assays, size exclusion chromatography, mass spectrometry and SDS-PAGE. The review also explores how different types of Aβ can influence Aβ aggregation and toxicity, leading to variation in experimental outcomes, further highlighting the need for standardisation in Aβ preparations and methods used in current research.
Collapse
Affiliation(s)
- Martyna M Matuszyk
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Claire J Garwood
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Julie E Simpson
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | | | - Stephen B Wharton
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| |
Collapse
|
54
|
Torres AK, Jara C, Park-Kang HS, Polanco CM, Tapia D, Alarcón F, de la Peña A, Llanquinao J, Vargas-Mardones G, Indo JA, Inestrosa NC, Tapia-Rojas C. Synaptic Mitochondria: An Early Target of Amyloid-β and Tau in Alzheimer's Disease. J Alzheimers Dis 2021; 84:1391-1414. [PMID: 34719499 DOI: 10.3233/jad-215139] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is characterized by cognitive impairment and the presence of neurofibrillary tangles and senile plaques in the brain. Neurofibrillary tangles are composed of hyperphosphorylated tau, while senile plaques are formed by amyloid-β (Aβ) peptide. The amyloid hypothesis proposes that Aβ accumulation is primarily responsible for the neurotoxicity in AD. Multiple Aβ-mediated toxicity mechanisms have been proposed including mitochondrial dysfunction. However, it is unclear if it precedes Aβ accumulation or if is a consequence of it. Aβ promotes mitochondrial failure. However, amyloid β precursor protein (AβPP) could be cleaved in the mitochondria producing Aβ peptide. Mitochondrial-produced Aβ could interact with newly formed ones or with Aβ that enter the mitochondria, which may induce its oligomerization and contribute to further mitochondrial alterations, resulting in a vicious cycle. Another explanation for AD is the tau hypothesis, in which modified tau trigger toxic effects in neurons. Tau induces mitochondrial dysfunction by indirect and apparently by direct mechanisms. In neurons mitochondria are classified as non-synaptic or synaptic according to their localization, where synaptic mitochondrial function is fundamental supporting neurotransmission and hippocampal memory formation. Here, we focus on synaptic mitochondria as a primary target for Aβ toxicity and/or formation, generating toxicity at the synapse and contributing to synaptic and memory impairment in AD. We also hypothesize that phospho-tau accumulates in mitochondria and triggers dysfunction. Finally, we discuss that synaptic mitochondrial dysfunction occur in aging and correlates with age-related memory loss. Therefore, synaptic mitochondrial dysfunction could be a predisposing factor for AD or an early marker of its onset.
Collapse
Affiliation(s)
- Angie K Torres
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Jara
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Han S Park-Kang
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Catalina M Polanco
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Diego Tapia
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Fabián Alarcón
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Adely de la Peña
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Jesus Llanquinao
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Gabriela Vargas-Mardones
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Javiera A Indo
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Cheril Tapia-Rojas
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| |
Collapse
|
55
|
Robbins M, Clayton E, Kaminski Schierle GS. Synaptic tau: A pathological or physiological phenomenon? Acta Neuropathol Commun 2021; 9:149. [PMID: 34503576 PMCID: PMC8428049 DOI: 10.1186/s40478-021-01246-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022] Open
Abstract
In this review, we discuss the synaptic aspects of Tau pathology occurring during Alzheimer's disease (AD) and how this may relate to memory impairment, a major hallmark of AD. Whilst the clinical diagnosis of AD patients is a loss of working memory and long-term declarative memory, the histological diagnosis is the presence of neurofibrillary tangles of hyperphosphorylated Tau and Amyloid-beta plaques. Tau pathology spreads through synaptically connected neurons to impair synaptic function preceding the formation of neurofibrillary tangles, synaptic loss, axonal retraction and cell death. Alongside synaptic pathology, recent data suggest that Tau has physiological roles in the pre- or post- synaptic compartments. Thus, we have seen a shift in the research focus from Tau as a microtubule-stabilising protein in axons, to Tau as a synaptic protein with roles in accelerating spine formation, dendritic elongation, and in synaptic plasticity coordinating memory pathways. We collate here the myriad of emerging interactions and physiological roles of synaptic Tau, and discuss the current evidence that synaptic Tau contributes to pathology in AD.
Collapse
|
56
|
Gadhave K, Kumar D, Uversky VN, Giri R. A multitude of signaling pathways associated with Alzheimer's disease and their roles in AD pathogenesis and therapy. Med Res Rev 2021; 41:2689-2745. [PMID: 32783388 PMCID: PMC7876169 DOI: 10.1002/med.21719] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/13/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
The exact molecular mechanisms associated with Alzheimer's disease (AD) pathology continue to represent a mystery. In the past decades, comprehensive data were generated on the involvement of different signaling pathways in the AD pathogenesis. However, the utilization of signaling pathways as potential targets for the development of drugs against AD is rather limited due to the immense complexity of the brain and intricate molecular links between these pathways. Therefore, finding a correlation and cross-talk between these signaling pathways and establishing different therapeutic targets within and between those pathways are needed for better understanding of the biological events responsible for the AD-related neurodegeneration. For example, autophagy is a conservative cellular process that shows link with many other AD-related pathways and is crucial for maintenance of the correct cellular balance by degrading AD-associated pathogenic proteins. Considering the central role of autophagy in AD and its interplay with many other pathways, the finest therapeutic strategy to fight against AD is the use of autophagy as a target. As an essential step in this direction, this comprehensive review represents recent findings on the individual AD-related signaling pathways, describes key features of these pathways and their cross-talk with autophagy, represents current drug development, and introduces some of the multitarget beneficial approaches and strategies for the therapeutic intervention of AD.
Collapse
Affiliation(s)
- Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Deepak Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Vladimir N. Uversky
- Department of Molecular Medicine and Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| |
Collapse
|
57
|
Shardlow E, Khan B, Exley C. Monitoring the early aggregatory behaviour and size of Aβ 1-42 in the absence & presence of metal ions using dynamic light scattering. J Trace Elem Med Biol 2021; 67:126766. [PMID: 33964808 DOI: 10.1016/j.jtemb.2021.126766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND AIM Aβ1-42 is an amyloidogenic peptide found within senile plaques extracted from those who died with a diagnosis of Alzheimer's disease. The potent neurotoxicity of this peptide is related to its propensity to form aggregated conformations in vivo, a process that is influenced by the species and concentration of metal ions present within the local environment. This study examines the impact of different metals upon the early aggregatory behaviour and size of Aβ1-42 under simulated physiological conditions. METHODS The size and aggregatory behaviour of Aβ1-42 in the presence and absence of metal ions was monitored during the initial 30 min of fibril formation in real-time using dynamic light scattering. RESULTS Intensity scattering measurements showed a clear tendency towards aggregation with regards to Aβ1-42 only solutions (10 μM). Both equimolar Al3+ & Cu2+ lowered and stabilised the dimensions of Aβ1-42 aggregates; however, a diminutive but significant increase in size was still observed over a 30-min period. While excess Al3+ continued to supress the size of Aβ1-42, a 10-fold increase in the concentration of Cu2+ accelerated peptide aggregation relative to that observed for equimolar metal but not compared to Aβ1-42 alone. CONCLUSION These results infer that Al3+ ions stabilise and aid in the maintenance of smaller, toxic intermediates while excess Cu2+ facilitates the formation of larger, more inert, amorphous species exceeding 1 μm in size. Furthermore, we propose that metal-induced toxicity of Aβ1-42 is reflective of their ability to preserve smaller oligomeric species in vitro.
Collapse
Affiliation(s)
- Emma Shardlow
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Keele, Staffordshire, ST5 5BG, UK.
| | - Bakhtbilland Khan
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Christopher Exley
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Keele, Staffordshire, ST5 5BG, UK
| |
Collapse
|
58
|
Shah H, Patel A, Parikh V, Nagani A, Bhimani B, Shah U, Bambharoliya T. The β-Secretase Enzyme BACE1: A Biochemical Enigma for Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2021; 19:184-194. [PMID: 32452328 DOI: 10.2174/1871527319666200526144141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/18/2020] [Accepted: 04/29/2020] [Indexed: 01/08/2023]
Abstract
Beta site amyloid precursor protein cleaving enzyme 1 (BACE1) is a rational target in Alzheimer's Disease (AD) drug development due to its role in amyloidogenic cleavage of Amyloid Precursor Protein (APP) in generating Amyloid β (Aβ). This β-secretase cleaves not only Amyloid Precursor Protein (APP) and its homologues, but also small series of substrates including neuregulin and β subunit of voltage-gated sodium channel that play a very important role in the development and normal function of the brain. Moreover, BACE1 is modulated at the post-translational level by several factors that are associated with both physiological and pathological functions. Since the discovery of BACE1 over a decade ago, medicinal chemistry and pharmacokinetics of BACE1 small molecule inhibitors have proven challenging for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Hirak Shah
- Department of Pharmaceutical Chemistry, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat 391760, India
| | - Ashish Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat 388421, India
| | - Vruti Parikh
- Department of Pharmaceutical Chemistry, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat 391760, India
| | - Afzal Nagani
- Department of Pharmaceutical Chemistry, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat 391760, India
| | - Bhargav Bhimani
- Piramal Discovery Solution, Pharmaceutical Special Economic Zone, Ahmedabad 382213, India
| | - Umang Shah
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat 388421, India
| | - Tushar Bambharoliya
- Pharmaceutical Polymer Technology, North Carolina State University, North Carolina, NC, United States
| |
Collapse
|
59
|
Synthesis and Biological Assessment of 4,1-Benzothiazepines with Neuroprotective Activity on the Ca 2+ Overload for the Treatment of Neurodegenerative Diseases and Stroke. Molecules 2021; 26:molecules26154473. [PMID: 34361628 PMCID: PMC8347512 DOI: 10.3390/molecules26154473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
In excitable cells, mitochondria play a key role in the regulation of the cytosolic Ca2+ levels. A dysregulation of the mitochondrial Ca2+ buffering machinery derives in serious pathologies, where neurodegenerative diseases highlight. Since the mitochondrial Na+/Ca2+ exchanger (NCLX) is the principal efflux pathway of Ca2+ to the cytosol, drugs capable of blocking NCLX have been proposed to act as neuroprotectants in neuronal damage scenarios exacerbated by Ca2+ overload. In our search of optimized NCLX blockers with augmented drug-likeness, we herein describe the synthesis and pharmacological characterization of new benzothiazepines analogues to the first-in-class NCLX blocker CGP37157 and its further derivative ITH12575, synthesized by our research group. As a result, we found two new compounds with an increased neuroprotective activity, neuronal Ca2+ regulatory activity and improved drug-likeness and pharmacokinetic properties, such as clog p or brain permeability, measured by PAMPA experiments.
Collapse
|
60
|
Wang D, Chen F, Han Z, Yin Z, Ge X, Lei P. Relationship Between Amyloid-β Deposition and Blood-Brain Barrier Dysfunction in Alzheimer's Disease. Front Cell Neurosci 2021; 15:695479. [PMID: 34349624 PMCID: PMC8326917 DOI: 10.3389/fncel.2021.695479] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022] Open
Abstract
Amyloid-β (Aβ) is the predominant pathologic protein in Alzheimer's disease (AD). The production and deposition of Aβ are important factors affecting AD progression and prognosis. The deposition of neurotoxic Aβ contributes to damage of the blood-brain barrier. However, the BBB is also crucial in maintaining the normal metabolism of Aβ, and dysfunction of the BBB aggravates Aβ deposition. This review characterizes Aβ deposition and BBB damage in AD, summarizes their interactions, and details their respective mechanisms.
Collapse
Affiliation(s)
- Dong Wang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin, China
| | | | - Zhaoli Han
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin, China
| | - Zhenyu Yin
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin, China
| | - Xintong Ge
- Tianjin Neurological Institute, Tianjin, China
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin, China
| |
Collapse
|
61
|
Wang K, Na L, Duan M. The Pathogenesis Mechanism, Structure Properties, Potential Drugs and Therapeutic Nanoparticles against the Small Oligomers of Amyloid-β. Curr Top Med Chem 2021; 21:151-167. [PMID: 32938351 DOI: 10.2174/1568026620666200916123000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/02/2020] [Accepted: 08/13/2020] [Indexed: 12/27/2022]
Abstract
Alzheimer's Disease (AD) is a devastating neurodegenerative disease that affects millions of people in the world. The abnormal aggregation of amyloid β protein (Aβ) is regarded as the key event in AD onset. Meanwhile, the Aβ oligomers are believed to be the most toxic species of Aβ. Recent studies show that the Aβ dimers, which are the smallest form of Aβ oligomers, also have the neurotoxicity in the absence of other oligomers in physiological conditions. In this review, we focus on the pathogenesis, structure and potential therapeutic molecules against small Aβ oligomers, as well as the nanoparticles (NPs) in the treatment of AD. In this review, we firstly focus on the pathogenic mechanism of Aβ oligomers, especially the Aβ dimers. The toxicity of Aβ dimer or oligomers, which attributes to the interactions with various receptors and the disruption of membrane or intracellular environments, were introduced. Then the structure properties of Aβ dimers and oligomers are summarized. Although some structural information such as the secondary structure content is characterized by experimental technologies, detailed structures are still absent. Following that, the small molecules targeting Aβ dimers or oligomers are collected; nevertheless, all of these ligands have failed to come into the market due to the rising controversy of the Aβ-related "amyloid cascade hypothesis". At last, the recent progress about the nanoparticles as the potential drugs or the drug delivery for the Aβ oligomers are present.
Collapse
Affiliation(s)
- Ke Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Liu Na
- School of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Mojie Duan
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
62
|
Knopman DS, Amieva H, Petersen RC, Chételat G, Holtzman DM, Hyman BT, Nixon RA, Jones DT. Alzheimer disease. Nat Rev Dis Primers 2021; 7:33. [PMID: 33986301 PMCID: PMC8574196 DOI: 10.1038/s41572-021-00269-y] [Citation(s) in RCA: 1011] [Impact Index Per Article: 252.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/09/2021] [Indexed: 12/21/2022]
Abstract
Alzheimer disease (AD) is biologically defined by the presence of β-amyloid-containing plaques and tau-containing neurofibrillary tangles. AD is a genetic and sporadic neurodegenerative disease that causes an amnestic cognitive impairment in its prototypical presentation and non-amnestic cognitive impairment in its less common variants. AD is a common cause of cognitive impairment acquired in midlife and late-life but its clinical impact is modified by other neurodegenerative and cerebrovascular conditions. This Primer conceives of AD biology as the brain disorder that results from a complex interplay of loss of synaptic homeostasis and dysfunction in the highly interrelated endosomal/lysosomal clearance pathways in which the precursors, aggregated species and post-translationally modified products of Aβ and tau play important roles. Therapeutic endeavours are still struggling to find targets within this framework that substantially change the clinical course in persons with AD.
Collapse
Affiliation(s)
| | - Helene Amieva
- Inserm U1219 Bordeaux Population Health Center, University of Bordeaux, Bordeaux, France
| | | | - Gäel Chételat
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - David M Holtzman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Ralph A Nixon
- Departments of Psychiatry and Cell Biology, New York University Langone Medical Center, New York University, New York, NY, USA
- NYU Neuroscience Institute, New York University Langone Medical Center, New York University, New York, NY, USA
| | - David T Jones
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
63
|
Cascella R, Cecchi C. Calcium Dyshomeostasis in Alzheimer's Disease Pathogenesis. Int J Mol Sci 2021; 22:ijms22094914. [PMID: 34066371 PMCID: PMC8124842 DOI: 10.3390/ijms22094914] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 01/12/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common age-related neurodegenerative disorder that is characterized by amyloid β-protein deposition in senile plaques, neurofibrillary tangles consisting of abnormally phosphorylated tau protein, and neuronal loss leading to cognitive decline and dementia. Despite extensive research, the exact mechanisms underlying AD remain unknown and effective treatment is not available. Many hypotheses have been proposed to explain AD pathophysiology; however, there is general consensus that the abnormal aggregation of the amyloid β peptide (Aβ) is the initial event triggering a pathogenic cascade of degenerating events in cholinergic neurons. The dysregulation of calcium homeostasis has been studied considerably to clarify the mechanisms of neurodegeneration induced by Aβ. Intracellular calcium acts as a second messenger and plays a key role in the regulation of neuronal functions, such as neural growth and differentiation, action potential, and synaptic plasticity. The calcium hypothesis of AD posits that activation of the amyloidogenic pathway affects neuronal Ca2+ homeostasis and the mechanisms responsible for learning and memory. Aβ can disrupt Ca2+ signaling through several mechanisms, by increasing the influx of Ca2+ from the extracellular space and by activating its release from intracellular stores. Here, we review the different molecular mechanisms and receptors involved in calcium dysregulation in AD and possible therapeutic strategies for improving the treatment.
Collapse
|
64
|
Xu S, Yang Z, Zhi Y, Yu S, Zhang T, Jiang J, Tang J, He H, Lu M, Wang X, Wu Q, Zhao X. The effects of antimony on Alzheimer's disease-like pathological changes in mice brain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143235. [PMID: 33183805 DOI: 10.1016/j.scitotenv.2020.143235] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/03/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
We have previously identified antimony (Sb) as a newly nerve poison which leads to neuronal apoptosis. However, the relationship between Sb exposure and Alzheimer's disease (AD) process lacks direct evidence. HE staining and Nissl staining showed significant nerve damage after Sb exposure. Therefore, we further evaluated Sb-associated AD risk by detecting accumulation of β-amyloid protein (Aβ) and neurofibrillary tangles (NFTs) in the brains of mice exposed to Sb for 4 and 8 weeks, and even 1 year. The results showed that dose of 20 mg/kg induced Aβ accumulation, but not tau hyperphosphorylation after exposure for 4 week. Eight weeks later, both 10 and 20 mg/kg dramatically triggered Aβ accumulation and increased tau phosphorylation at ser199. At the same time, 20 mg/kg could also increase tau phosphorylation at ser396 and number of NFTs. One years later, we found all of AD hallmarks detected in present study showed positive results in the brains of mice exposed to Sb at 10 and 20 mg/kg. In summary, our data provided direct evidence of Sb-associated AD risk, drawing more attention to Sb-triggered neurotoxicity.
Collapse
Affiliation(s)
- Shenya Xu
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Zeyun Yang
- Nantong Center for Disease Control and Prevention, Nantong 226007, China
| | - Ye Zhi
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Shali Yu
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Tao Zhang
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Junkang Jiang
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Jun Tang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Hongsen He
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Ming Lu
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China; Clinical Research Center of Shandong University, Jinan, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Xiaoke Wang
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China.
| | - Qiyun Wu
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, China.
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China.
| |
Collapse
|
65
|
Miguel JC, Perez SE, Malek-Ahmadi M, Mufson EJ. Cerebellar Calcium-Binding Protein and Neurotrophin Receptor Defects in Down Syndrome and Alzheimer's Disease. Front Aging Neurosci 2021; 13:645334. [PMID: 33776745 PMCID: PMC7994928 DOI: 10.3389/fnagi.2021.645334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/04/2021] [Indexed: 12/11/2022] Open
Abstract
Cerebellar hypoplasia is a major characteristic of the Down syndrome (DS) brain. However, the consequences of trisomy upon cerebellar Purkinje cells (PC) and interneurons in DS are unclear. The present study performed a quantitative and qualitative analysis of cerebellar neurons immunostained with antibodies against calbindin D-28k (Calb), parvalbumin (Parv), and calretinin (Calr), phosphorylated and non-phosphorylated intermediate neurofilaments (SMI-34 and SMI-32), and high (TrkA) and low (p75NTR) affinity nerve growth factor (NGF) receptors as well as tau and amyloid in DS (n = 12), Alzheimer's disease (AD) (n = 10), and healthy non-dementia control (HC) (n = 8) cases. Our findings revealed higher Aβ42 plaque load in DS compared to AD and HC but no differences in APP/Aβ plaque load between HC, AD, and DS. The cerebellar cortex neither displayed Aβ40 containing plaques nor pathologic phosphorylated tau in any of the cases examined. The number and optical density (OD) measurements of Calb immunoreactive (-ir) PC soma and dendrites were similar between groups, while the number of PCs positive for Parv and SMI-32 were significantly reduced in AD and DS compared to HC. By contrast, the number of SMI-34-ir PC dystrophic axonal swellings, termed torpedoes, was significantly greater in AD compared to DS. No differences in SMI-32- and Parv-ir PC OD measurements were observed between groups. Conversely, total number of Parv- (stellate/basket) and Calr (Lugaro, brush, and Golgi)-positive interneurons were significantly reduced in DS compared to AD and HC. A strong negative correlation was found between counts for Parv-ir interneurons, Calr-ir Golgi and brush cells, and Aβ42 plaque load. Number of TrkA and p75NTR positive PCs were reduced in AD compared to HC. These findings suggest that disturbances in calcium binding proteins play a critical role in cerebellar neuronal dysfunction in adults with DS.
Collapse
Affiliation(s)
- Jennifer C. Miguel
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Sylvia E. Perez
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Michael Malek-Ahmadi
- Department of Biomedical Informatics, Banner Alzheimer's Institute, Phoenix, AZ, United States
| | - Elliott J. Mufson
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, United States
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, United States
| |
Collapse
|
66
|
Fani G, Mannini B, Vecchi G, Cascella R, Cecchi C, Dobson CM, Vendruscolo M, Chiti F. Aβ Oligomers Dysregulate Calcium Homeostasis by Mechanosensitive Activation of AMPA and NMDA Receptors. ACS Chem Neurosci 2021; 12:766-781. [PMID: 33538575 PMCID: PMC7898266 DOI: 10.1021/acschemneuro.0c00811] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/25/2021] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease, which is the most common form of dementia, is characterized by the aggregation of the amyloid β peptide (Aβ) and by an impairment of calcium homeostasis caused by excessive activation of glutamatergic receptors (excitotoxicity). Here, we studied the effects on calcium homeostasis caused by the formation of Aβ oligomeric assemblies. We found that Aβ oligomers cause a rapid influx of calcium ions (Ca2+) across the cell membrane by rapidly activating extrasynaptic N-methyl-d-aspartate (NMDA) receptors and, to a lower extent, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. We also observed, however, that misfolded oligomers do not interact directly with these receptors. Further experiments with lysophosphatidylcholine and arachidonic acid, which cause membrane compression and stretch, respectively, indicated that these receptors are activated through a change in membrane tension induced by the oligomers and transmitted mechanically to the receptors via the lipid bilayer. Indeed, lysophosphatidylcholine is able to neutralize the oligomer-induced activation of the NMDA receptors, whereas arachidonic acid activates the receptors similarly to the oligomers with no additive effects. An increased rotational freedom observed for a fluorescent probe embedded within the membrane in the presence of the oligomers also indicates a membrane stretch. These results reveal a mechanism of toxicity of Aβ oligomers in Alzheimer's disease through the perturbation of the mechanical properties of lipid membranes sensed by NMDA and AMPA receptors.
Collapse
Affiliation(s)
- Giulia Fani
- Department
of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
- Centre
for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Benedetta Mannini
- Centre
for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Giulia Vecchi
- Centre
for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Roberta Cascella
- Department
of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Cristina Cecchi
- Department
of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Christopher M. Dobson
- Centre
for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Michele Vendruscolo
- Centre
for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Fabrizio Chiti
- Department
of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| |
Collapse
|
67
|
BACE1 and cholinesterase inhibitory activities of compounds from Cajanus cajan and Citrus reticulata: an in silico study. In Silico Pharmacol 2021; 9:14. [PMID: 33520593 DOI: 10.1007/s40203-020-00067-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 12/14/2020] [Indexed: 10/22/2022] Open
Abstract
Alzheimer's disease (AD) is one of the major neurodegenerative diseases whose underlying risk factors are yet to be fully understood. However, reduced cellular level of cholinesterase, as well as formation and deposition of amyloid plaques (Aβ) are thought to play critical roles in the pathogenesis of AD. Therefore, increases in cholinergic transmitter levels via cholinesterase (ChE) inhibitors as well as inhibition of amyloid plaques formation and aggregation via beta secretase-1 (BACE1) inhibitors have been proposed as treatment for this disease. This study was aimed at investigating the BACE1 and ChE inhibitory properties of compounds from Cajanus cajan and Citrus reticulata based on their traditional connection with the management of neurodegenerative diseases, coupled with their protective effects on chemical-induced cognitive impairment. Using in silico methods, one hundred and nineteen compounds from C. cajan and C. reticulata were docked with acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and BACE1 using Vina. Molecular interactions of the top-ranked compounds for the 3 protein targets were viewed with Discovery Studio, followed by characterization of their ADME properties using the Swiss online ADME web tool. Among the one hundred and ninety nine compounds screened, 3 compounds, genistin (76), naphthalen-2-yl-acetic acid, 6-hydroxy-6-methyl-cyclodecyl ester (94) and vitexin (119) have remarkable binding affinity for the three protein targets and passed the oral drugability test, while only naphthalen-2-yl-acetic acid, 6-hydroxy-6-methyl-cyclodecyl ester (94) exhibited BBB permeation property. Genistin and vitexin from C. cajan and naphthalen-2-yl-acetic acid, 6-hydroxy-6-methyl-cyclodecyl ester from C. reticulata possibly contributed, at least in part, to the neurotherapeutic potentials of these plants.
Collapse
|
68
|
Hopp SC. Targeting microglia L-type voltage-dependent calcium channels for the treatment of central nervous system disorders. J Neurosci Res 2021; 99:141-162. [PMID: 31997405 PMCID: PMC9394523 DOI: 10.1002/jnr.24585] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 12/14/2022]
Abstract
Calcium (Ca2+ ) is a ubiquitous mediator of a multitude of cellular functions in the central nervous system (CNS). Intracellular Ca2+ is tightly regulated by cells, including entry via plasma membrane Ca2+ permeable channels. Of specific interest for this review are L-type voltage-dependent Ca2+ channels (L-VDCCs), due to their pleiotropic role in several CNS disorders. Currently, there are numerous approved drugs that target L-VDCCs, including dihydropyridines. These drugs are safe and effective for the treatment of humans with cardiovascular disease and may also confer neuroprotection. Here, we review the potential of L-VDCCs as a target for the treatment of CNS disorders with a focus on microglia L-VDCCs. Microglia, the resident immune cells of the brain, have attracted recent attention for their emerging inflammatory role in several CNS diseases. Intracellular Ca2+ regulates microglia transition from a resting quiescent state to an "activated" immune-effector state and is thus a valuable target for manipulation of microglia phenotype. We will review the literature on L-VDCC expression and function in the CNS and on microglia in vitro and in vivo and explore the therapeutic landscape of L-VDCC-targeting agents at present and future challenges in the context of Alzheimer's disease, Parkinson's disease, Huntington's disease, neuropsychiatric diseases, and other CNS disorders.
Collapse
Affiliation(s)
- Sarah C. Hopp
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
- Department of Pharmacology, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| |
Collapse
|
69
|
Acute Effects of Two Different Species of Amyloid- β on Oscillatory Activity and Synaptic Plasticity in the Commissural CA3-CA1 Circuit of the Hippocampus. Neural Plast 2021; 2020:8869526. [PMID: 33381164 PMCID: PMC7765721 DOI: 10.1155/2020/8869526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 11/29/2022] Open
Abstract
Recent evidence indicates that soluble amyloid-β (Aβ) species induce imbalances in excitatory and inhibitory transmission, resulting in neural network functional impairment and cognitive deficits during early stages of Alzheimer's disease (AD). To evaluate the in vivo effects of two soluble Aβ species (Aβ25-35 and Aβ1-40) on commissural CA3-to-CA1 (cCA3-to-CA1) synaptic transmission and plasticity, and CA1 oscillatory activity, we used acute intrahippocampal microinjections in adult anaesthetized male Wistar rats. Soluble Aβ microinjection increased cCA3-to-CA1 synaptic variability without significant changes in synaptic efficiency. High-frequency CA3 stimulation was rendered inefficient by soluble Aβ intrahippocampal injection to induce long-term potentiation and to enhance synaptic variability in CA1, contrasting with what was observed in vehicle-injected subjects. Although soluble Aβ microinjection significantly increased the relative power of γ-band and ripple oscillations and significantly shifted the average vector of θ-to-γ phase-amplitude coupling (PAC) in CA1, it prevented θ-to-γ PAC shift induced by high-frequency CA3 stimulation, opposite to what was observed in vehicle-injected animals. These results provide further evidence that soluble Aβ species induce synaptic dysfunction causing abnormal synaptic variability, impaired long-term plasticity, and deviant oscillatory activity, leading to network activity derailment in the hippocampus.
Collapse
|
70
|
Subramanian J, Savage JC, Tremblay MÈ. Synaptic Loss in Alzheimer's Disease: Mechanistic Insights Provided by Two-Photon in vivo Imaging of Transgenic Mouse Models. Front Cell Neurosci 2020; 14:592607. [PMID: 33408613 PMCID: PMC7780885 DOI: 10.3389/fncel.2020.592607] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/25/2020] [Indexed: 01/05/2023] Open
Abstract
Synapse loss is the strongest correlate for cognitive decline in Alzheimer's disease. The mechanisms underlying synapse loss have been extensively investigated using mouse models expressing genes with human familial Alzheimer's disease mutations. In this review, we summarize how multiphoton in vivo imaging has improved our understanding of synapse loss mechanisms associated with excessive amyloid in the living animal brain. We also discuss evidence obtained from these imaging studies for the role of cell-intrinsic calcium dyshomeostasis and cell-extrinsic activities of microglia, which are the immune cells of the brain, in mediating synapse loss.
Collapse
Affiliation(s)
- Jaichandar Subramanian
- Department of Pharmacology & Toxicology, University of Kansas, Lawrence, KS, United States
| | - Julie C Savage
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
| | - Marie-Ève Tremblay
- Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada.,Department of Molecular Medicine, Université Laval, Québec City, QC, Canada.,Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
71
|
Zhang X, Ma X, Gan T, Shi Y, Wang Y, Liu Q. Secondary Chemical Bonding between Insoluble Calcium Oxalate and Carbonyl Oxygen Atoms of GLY and VAL Residues Triggers the Formation of Aβ Aggregates and Their Deposition in the Brain. ACS Chem Neurosci 2020; 11:4007-4011. [PMID: 33271013 DOI: 10.1021/acschemneuro.0c00662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Despite intense efforts, the cause of Alzheimer's disease is still not fully understood. A chemical and biochemical perspective could shed light on this disorder. Secondary chemical bonding between calcium and carbonyl oxygen atoms of glycine and valine might give rise to aggregates in the brain, which may later result in cell senescence. The decrease of solubility caused by amino acid substitutions in specific risk factors compounds insolubility issue and likely triggers early-onset Alzheimer's disease. Occasionally the enhancement of hydrogen bonding by amino acid replacements can reinforce the aggregates. Therefore, secondary chemical bonding to cations can generate cellular stresses in patients with Alzheimer's disease in addition to other chemical and biochemical interactions such as salt bridge. The distinction between early-onset and late-onset Alzheimer's disease risk factors may lie in the total capacity of a protein or local potency of a protein fragment to bind calcium or/and oxalate as calcium oxalate is highly insoluble and stressful.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Biomedical Engineering Research Center, Kunming Medical University, Kunming 650500, China
| | - Xiaoqian Ma
- The Third Xiang Ya Hospital of Central South University, Changsha 410006, China
| | - Tao Gan
- School of Basic Medicine, Gannan Medical University, Ganzhou 34100, Jiangxi, China
| | - Yunfan Shi
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuan Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Qiuyun Liu
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
72
|
Ca 2+ Dyshomeostasis Disrupts Neuronal and Synaptic Function in Alzheimer's Disease. Cells 2020; 9:cells9122655. [PMID: 33321866 PMCID: PMC7763805 DOI: 10.3390/cells9122655] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
Ca2+ homeostasis is essential for multiple neuronal functions and thus, Ca2+ dyshomeostasis can lead to widespread impairment of cellular and synaptic signaling, subsequently contributing to dementia and Alzheimer's disease (AD). While numerous studies implicate Ca2+ mishandling in AD, the cellular basis for loss of cognitive function remains under investigation. The process of synaptic degradation and degeneration in AD is slow, and constitutes a series of maladaptive processes each contributing to a further destabilization of the Ca2+ homeostatic machinery. Ca2+ homeostasis involves precise maintenance of cytosolic Ca2+ levels, despite extracellular influx via multiple synaptic Ca2+ channels, and intracellular release via organelles such as the endoplasmic reticulum (ER) via ryanodine receptor (RyRs) and IP3R, lysosomes via transient receptor potential mucolipin channel (TRPML) and two pore channel (TPC), and mitochondria via the permeability transition pore (PTP). Furthermore, functioning of these organelles relies upon regulated inter-organelle Ca2+ handling, with aberrant signaling resulting in synaptic dysfunction, protein mishandling, oxidative stress and defective bioenergetics, among other consequences consistent with AD. With few effective treatments currently available to mitigate AD, the past few years have seen a significant increase in the study of synaptic and cellular mechanisms as drivers of AD, including Ca2+ dyshomeostasis. Here, we detail some key findings and discuss implications for future AD treatments.
Collapse
|
73
|
Di Meco A, Vassar R. Early detection and personalized medicine: Future strategies against Alzheimer's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 177:157-173. [PMID: 33453940 PMCID: PMC8641915 DOI: 10.1016/bs.pmbts.2020.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia and sixth cause of death in elderly adults. AD poses a huge economic burden on society and constitutes an unprecedented challenge for caregivers and families affected. Aging of the population is projected to drastically aggravate the situation in the near future. To date, no therapy is available to prevent or ameliorate the disease. Moreover, several clinical trials for promising therapeutic agents have failed. Lack of supporting biomarker data for pre-symptomatic enrollment and inaccurate stratification of patients based on genetic heterogeneity appear to be contributing factors to this lack of success. Recently, the treatment of cancer has seen enormous advances based on the personalized genetics and biomarkers of the individual patient, forming the foundation of precision medicine for cancer. Likewise, technological progress in AD biomarker research promises the availability of reliable assays for pathology staging on a routine basis relatively soon. Moreover, tremendous achievements in AD genetics and high-throughput genotyping technology allow identification of predisposing risk alleles accurately and on a large scale. Finally, availability of electronic health records (EHR) promises the opportunity to integrate biomarker, genomic and clinical data efficiently. Together, these advances will form the basis of precision medicine for AD.
Collapse
Affiliation(s)
- Antonio Di Meco
- Department of Neurology, Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.
| | - Robert Vassar
- Department of Neurology, Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.
| |
Collapse
|
74
|
Therapeutic Strategies to Target Calcium Dysregulation in Alzheimer's Disease. Cells 2020; 9:cells9112513. [PMID: 33233678 PMCID: PMC7699688 DOI: 10.3390/cells9112513] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/31/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia, affecting millions of people worldwide. Unfortunately, none of the current treatments are effective at improving cognitive function in AD patients and, therefore, there is an urgent need for the development of new therapies that target the early cause(s) of AD. Intracellular calcium (Ca2+) regulation is critical for proper cellular and neuronal function. It has been suggested that Ca2+ dyshomeostasis is an upstream factor of many neurodegenerative diseases, including AD. For this reason, chemical agents or small molecules aimed at targeting or correcting this Ca2+ dysregulation might serve as therapeutic strategies to prevent the development of AD. Moreover, neurons are not alone in exhibiting Ca2+ dyshomeostasis, since Ca2+ disruption is observed in other cell types in the brain in AD. In this review, we examine the distinct Ca2+ channels and compartments involved in the disease mechanisms that could be potential targets in AD.
Collapse
|
75
|
Calvo-Rodriguez M, Bacskai BJ. Mitochondria and Calcium in Alzheimer's Disease: From Cell Signaling to Neuronal Cell Death. Trends Neurosci 2020; 44:136-151. [PMID: 33160650 DOI: 10.1016/j.tins.2020.10.004] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/03/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
Abstract
Mitochondrial dysfunction has been implicated in the pathogenesis of almost all neurological diseases, including Alzheimer's disease (AD). Historically, a primary focus in this context has been the link between mitochondrial dynamics and amyloid β toxicity. Recent evidence suggests that dysregulation of mitochondrial calcium homeostasis is also related to tau and other risk factors in AD, although an ongoing challenge in the field is that data collected from different models or experimental settings have not always been consistent. We examine recent literature on mitochondrial dysregulation in AD, with special emphasis on mitochondrial calcium. We include data from in vitro systems, genetic animal models, and AD-derived human tissue, and discuss whether mitochondrial calcium transporters should be proposed as therapeutic candidates for the development of neuroprotective drugs against AD.
Collapse
Affiliation(s)
- Maria Calvo-Rodriguez
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114 16th Street, Charlestown, MA 02129, USA
| | - Brian J Bacskai
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114 16th Street, Charlestown, MA 02129, USA.
| |
Collapse
|
76
|
Calvo-Flores Guzmán B, Elizabeth Chaffey T, Hansika Palpagama T, Waters S, Boix J, Tate WP, Peppercorn K, Dragunow M, Waldvogel HJ, Faull RLM, Kwakowsky A. The Interplay Between Beta-Amyloid 1-42 (Aβ 1-42)-Induced Hippocampal Inflammatory Response, p-tau, Vascular Pathology, and Their Synergistic Contributions to Neuronal Death and Behavioral Deficits. Front Mol Neurosci 2020; 13:522073. [PMID: 33224025 PMCID: PMC7667153 DOI: 10.3389/fnmol.2020.552073] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD), the most common chronic neurodegenerative disorder, has complex neuropathology. The principal neuropathological hallmarks of the disease are the deposition of extracellular β-amyloid (Aβ) plaques and neurofibrillary tangles (NFTs) comprised of hyperphosphorylated tau (p-tau) protein. These changes occur with neuroinflammation, a compromised blood-brain barrier (BBB) integrity, and neuronal synaptic dysfunction, all of which ultimately lead to neuronal cell loss and cognitive deficits in AD. Aβ1-42 was stereotaxically administered bilaterally into the CA1 region of the hippocampi of 18-month-old male C57BL/6 mice. This study aimed to characterize, utilizing immunohistochemistry and behavioral testing, the spatial and temporal effects of Aβ1-42 on a broad set of parameters characteristic of AD: p-tau, neuroinflammation, vascular pathology, pyramidal cell survival, and behavior. Three days after Aβ1-42 injection and before significant neuronal cell loss was detected, acute neuroinflammatory and vascular responses were observed. These responses included the up-regulation of glial fibrillary acidic protein (GFAP), cell adhesion molecule-1 (PECAM-1, also known as CD31), fibrinogen labeling, and an increased number of activated astrocytes and microglia in the CA1 region of the hippocampus. From day 7, there was significant pyramidal cell loss in the CA1 region of the hippocampus, and by 30 days, significant localized up-regulation of p-tau, GFAP, Iba-1, CD31, and alpha-smooth muscle actin (α-SMA) in the Aβ1-42-injected mice compared with controls. These molecular changes in Aβ1-42-injected mice were accompanied by cognitive deterioration, as demonstrated by long-term spatial memory impairment. This study is reporting a comprehensive examination of a complex set of parameters associated with intrahippocampal administration of Aβ1-42 in mice, their spatiotemporal interactions and combined contribution to the disease progression. We show that a single Aβ injection can reproduce aspects of the inflammatory, vascular, and p-tau induced pathology occurring in the AD human brain that lead to cognitive deficits.
Collapse
Affiliation(s)
- Beatriz Calvo-Flores Guzmán
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Tessa Elizabeth Chaffey
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Thulani Hansika Palpagama
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Sarah Waters
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jordi Boix
- Centre for Brain Research, NeuroDiscovery Behavioural Unit, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Warren Perry Tate
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Katie Peppercorn
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Michael Dragunow
- Centre for Brain Research, Department of Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Henry John Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard Lewis Maxwell Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
77
|
Mahan B, Antonelli MA, Burckel P, Turner S, Chung R, Habekost M, Jørgensen AL, Moynier F. Longitudinal biometal accumulation and Ca isotope composition of the Göttingen minipig brain. Metallomics 2020; 12:1585-1598. [PMID: 33084720 DOI: 10.1039/d0mt00134a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biometals play a critical role in both the healthy and diseased brain's functioning. They accumulate in the normal aging brain, and are inherent to neurodegenerative disorders and their associated pathologies. A prominent example of this is the brain accumulation of metals such as Ca, Fe and Cu (and more ambiguously, Zn) associated with Alzheimer's disease (AD). The natural stable isotope compositions of such metals have also shown utility in constraining biological mechanisms, and in differentiating between healthy and diseased states, sometimes prior to conventional methods. Here we have detailed the distribution of the biologically relevant elements Mg, P, K, Ca, Fe, Cu and Zn in brain regions of Göttingen minipigs ranging in age from three months to nearly six years, including control animals and both a single- and double-transgenic model of AD (PS1, APP/PS1). Moreover, we have characterized the Ca isotope composition of the brain for the first time. Concentration data track rises in brain biometals with age, namely for Fe and Cu, as observed in the normal ageing brain and in AD, and biometal data point to increased soluble amyloid beta (Aβ) load prior to AD plaque identification via brain imaging. Calcium isotope results define the brain as the isotopically lightest permanent reservoir in the body, indicating that brain Ca dyshomeostasis may induce measurable isotopic disturbances in accessible downstream reservoirs such as biofluids.
Collapse
Affiliation(s)
- Brandon Mahan
- Earth and Environmental Science, James Cook University, Townsville, Queensland 4811, Australia. and Thermo Fisher Isotope Development Hub, Department of Earth and Planetary Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Michael A Antonelli
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, 75238 Paris, France and Institute of Geochemistry and Petrology, Department of Earth Sciences, ETH Zürich, 8092 Zürich, Switzerland
| | - Pierre Burckel
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, 75238 Paris, France
| | - Simon Turner
- Thermo Fisher Isotope Development Hub, Department of Earth and Planetary Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Roger Chung
- Thermo Fisher Isotope Development Hub, Department of Earth and Planetary Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Mette Habekost
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Frédéric Moynier
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, 75238 Paris, France
| |
Collapse
|
78
|
Kent SA, Spires-Jones TL, Durrant CS. The physiological roles of tau and Aβ: implications for Alzheimer's disease pathology and therapeutics. Acta Neuropathol 2020; 140:417-447. [PMID: 32728795 PMCID: PMC7498448 DOI: 10.1007/s00401-020-02196-w] [Citation(s) in RCA: 247] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 01/18/2023]
Abstract
Tau and amyloid beta (Aβ) are the prime suspects for driving pathology in Alzheimer's disease (AD) and, as such, have become the focus of therapeutic development. Recent research, however, shows that these proteins have been highly conserved throughout evolution and may have crucial, physiological roles. Such functions may be lost during AD progression or be unintentionally disrupted by tau- or Aβ-targeting therapies. Tau has been revealed to be more than a simple stabiliser of microtubules, reported to play a role in a range of biological processes including myelination, glucose metabolism, axonal transport, microtubule dynamics, iron homeostasis, neurogenesis, motor function, learning and memory, neuronal excitability, and DNA protection. Aβ is similarly multifunctional, and is proposed to regulate learning and memory, angiogenesis, neurogenesis, repair leaks in the blood-brain barrier, promote recovery from injury, and act as an antimicrobial peptide and tumour suppressor. This review will discuss potential physiological roles of tau and Aβ, highlighting how changes to these functions may contribute to pathology, as well as the implications for therapeutic development. We propose that a balanced consideration of both the physiological and pathological roles of tau and Aβ will be essential for the design of safe and effective therapeutics.
Collapse
Affiliation(s)
- Sarah A. Kent
- Translational Neuroscience PhD Programme, Centre for Discovery Brain Sciences and the UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ Scotland, UK
| | - Tara L. Spires-Jones
- Centre for Discovery Brain Sciences and the UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ Scotland, UK
| | - Claire S. Durrant
- Centre for Discovery Brain Sciences and the UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ Scotland, UK
| |
Collapse
|
79
|
Kabir MT, Uddin MS, Zaman S, Begum Y, Ashraf GM, Bin-Jumah MN, Bungau SG, Mousa SA, Abdel-Daim MM. Molecular Mechanisms of Metal Toxicity in the Pathogenesis of Alzheimer’s Disease. Mol Neurobiol 2020; 58:1-20. [DOI: 10.1007/s12035-020-02096-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/25/2020] [Indexed: 12/24/2022]
|
80
|
Schnöder L, Gasparoni G, Nordström K, Schottek A, Tomic I, Christmann A, Schäfer KH, Menger MD, Walter J, Fassbender K, Liu Y. Neuronal deficiency of p38α-MAPK ameliorates symptoms and pathology of APP or Tau-transgenic Alzheimer's mouse models. FASEB J 2020; 34:9628-9649. [PMID: 32475008 DOI: 10.1096/fj.201902731rr] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/30/2020] [Accepted: 05/11/2020] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia with very limited therapeutic options. Amyloid β (Aβ) and phosphorylated Tau (p-Tau) are key pathogenic molecules in AD. P38α-MAPK is specifically activated in AD lesion sites. However, its effects on AD pathogenesis, especially on p-Tau-associated brain pathology, and the underlying molecular mechanisms remain unclear. We mated human APP-transgenic mice and human P301S Tau-transgenic mice with mapk14-floxed and neuron-specific Cre-knock-in mice. We observed that deletion of p38α-MAPK specifically in neurons improves the cognitive function of both 9-month-old APP and Tau-transgenic AD mice, which is associated with decreased Aβ and p-Tau load in the brain. We further used next-generation sequencing to analyze the gene transcription in brains of p38α-MAPK deficient and wild-type APP-transgenic mice, which indicated that deletion of p38α-MAPK regulates the transcription of calcium homeostasis-related genes, especially downregulates the expression of grin2a, a gene encoding NMDAR subunit NR2A. Cell culture experiments further verified that deletion of p38α-MAPK inhibits NMDA-triggered calcium influx and neuronal apoptosis. Our systemic studies of AD pathogenic mechanisms using both APP- and Tau-transgenic mice suggested that deletion of neuronal p38α-MAPK attenuates AD-associated brain pathology and protects neurons in AD pathogenesis. This study supports p38α-MAPK as a novel target for AD therapy.
Collapse
Affiliation(s)
- Laura Schnöder
- Department of Neurology, Saarland University, Homburg, Germany.,German Institute for Dementia Prevention (DIDP), Saarland University, Homburg, Germany
| | - Gilles Gasparoni
- Department of Genetics, Saarland University, Saarbrücken, Germany
| | - Karl Nordström
- Department of Genetics, Saarland University, Saarbrücken, Germany
| | - Andrea Schottek
- Department of Neurology, Saarland University, Homburg, Germany.,German Institute for Dementia Prevention (DIDP), Saarland University, Homburg, Germany
| | - Inge Tomic
- Department of Neurology, Saarland University, Homburg, Germany.,German Institute for Dementia Prevention (DIDP), Saarland University, Homburg, Germany
| | - Anne Christmann
- Working Group Enteric Nervous System, University of Applied Sciences, Zweibrücken, Germany
| | - Karl H Schäfer
- Working Group Enteric Nervous System, University of Applied Sciences, Zweibrücken, Germany
| | - Michael D Menger
- Department of Experimental Surgery, Saarland University, Homburg, Germany
| | - Jörn Walter
- Department of Genetics, Saarland University, Saarbrücken, Germany
| | - Klaus Fassbender
- Department of Neurology, Saarland University, Homburg, Germany.,German Institute for Dementia Prevention (DIDP), Saarland University, Homburg, Germany
| | - Yang Liu
- Department of Neurology, Saarland University, Homburg, Germany.,German Institute for Dementia Prevention (DIDP), Saarland University, Homburg, Germany
| |
Collapse
|
81
|
Calvo-Rodriguez M, Hou SS, Snyder AC, Kharitonova EK, Russ AN, Das S, Fan Z, Muzikansky A, Garcia-Alloza M, Serrano-Pozo A, Hudry E, Bacskai BJ. Increased mitochondrial calcium levels associated with neuronal death in a mouse model of Alzheimer's disease. Nat Commun 2020; 11:2146. [PMID: 32358564 PMCID: PMC7195480 DOI: 10.1038/s41467-020-16074-2] [Citation(s) in RCA: 233] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 04/08/2020] [Indexed: 01/09/2023] Open
Abstract
Mitochondria contribute to shape intraneuronal Ca2+ signals. Excessive Ca2+ taken up by mitochondria could lead to cell death. Amyloid beta (Aβ) causes cytosolic Ca2+ overload, but the effects of Aβ on mitochondrial Ca2+ levels in Alzheimer's disease (AD) remain unclear. Using a ratiometric Ca2+ indicator targeted to neuronal mitochondria and intravital multiphoton microscopy, we find increased mitochondrial Ca2+ levels associated with plaque deposition and neuronal death in a transgenic mouse model of cerebral β-amyloidosis. Naturally secreted soluble Aβ applied onto the healthy brain increases Ca2+ concentration in mitochondria, which is prevented by blockage of the mitochondrial calcium uniporter. RNA-sequencing from post-mortem AD human brains shows downregulation in the expression of mitochondrial influx Ca2+ transporter genes, but upregulation in the genes related to mitochondrial Ca2+ efflux pathways, suggesting a counteracting effect to avoid Ca2+ overload. We propose lowering neuronal mitochondrial Ca2+ by inhibiting the mitochondrial Ca2+ uniporter as a novel potential therapeutic target against AD.
Collapse
Affiliation(s)
- Maria Calvo-Rodriguez
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St, Charlestown, MA, 02129, USA
| | - Steven S Hou
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St, Charlestown, MA, 02129, USA
| | - Austin C Snyder
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St, Charlestown, MA, 02129, USA
| | - Elizabeth K Kharitonova
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St, Charlestown, MA, 02129, USA
| | - Alyssa N Russ
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St, Charlestown, MA, 02129, USA
| | - Sudeshna Das
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St, Charlestown, MA, 02129, USA
| | - Zhanyun Fan
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St, Charlestown, MA, 02129, USA
| | - Alona Muzikansky
- Department of Biostatistics, Harvard School of Public Health, 50 Staniford Street, Boston, MA, USA
| | - Monica Garcia-Alloza
- Division of Physiology, School of Medicine, Instituto de Investigacion Biomedica de Cadiz (INIBICA), Universidad de Cadiz, Cadiz, Spain
| | - Alberto Serrano-Pozo
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St, Charlestown, MA, 02129, USA
| | - Eloise Hudry
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St, Charlestown, MA, 02129, USA
| | - Brian J Bacskai
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St, Charlestown, MA, 02129, USA.
| |
Collapse
|
82
|
Pannaccione A, Piccialli I, Secondo A, Ciccone R, Molinaro P, Boscia F, Annunziato L. The Na +/Ca 2+exchanger in Alzheimer's disease. Cell Calcium 2020; 87:102190. [PMID: 32199208 DOI: 10.1016/j.ceca.2020.102190] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/26/2020] [Accepted: 03/01/2020] [Indexed: 12/19/2022]
Abstract
As a pivotal player in regulating sodium (Na+) and calcium (Ca2+) homeostasis and signalling in excitable cells, the Na+/Ca2+ exchanger (NCX) is involved in many neurodegenerative disorders in which an imbalance of intracellular Ca2+ and/or Na+ concentrations occurs, including Alzheimer's disease (AD). Although NCX has been mainly implicated in neuroprotective mechanisms counteracting Ca2+ dysregulation, several studies highlighted its role in the neuronal responses to intracellular Na+ elevation occurring in several pathophysiological conditions. Since the alteration of Na+ and Ca2+ homeostasis significantly contributes to synaptic dysfunction and neuronal loss in AD, it is of crucial importance to analyze the contribution of NCX isoforms in the homeostatic responses at neuronal and synaptic levels. Some studies found that an increase of NCX activity in brains of AD patients was correlated with neuronal survival, while other research groups found that protein levels of two NCX subtypes, NCX2 and NCX3, were modulated in parietal cortex of late stage AD brains. In particular, NCX2 positive synaptic terminals were increased in AD cohort while the number of NCX3 positive terminals were reduced. In addition, NCX1, NCX2 and NCX3 isoforms were up-regulated in those synaptic terminals accumulating amyloid-beta (Aβ), the neurotoxic peptide responsible for AD neurodegeneration. More recently, the hyperfunction of a specific NCX subtype, NCX3, has been shown to delay endoplasmic reticulum stress and apoptotic neuronal death in hippocampal neurons exposed to Aβ insult. Despite some issues about the functional role of NCX in synaptic failure and neuronal loss require further studies, these findings highlight the putative neuroprotective role of NCX in AD and open new strategies to develop new druggable targets for AD therapy.
Collapse
Affiliation(s)
- Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy.
| | - Ilaria Piccialli
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Roselia Ciccone
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Pasquale Molinaro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | | |
Collapse
|
83
|
Park HJ, Kwon H, Lee JH, Cho E, Lee YC, Moon M, Jun M, Kim DH, Jung JW. β-Amyrin Ameliorates Alzheimer's Disease-Like Aberrant Synaptic Plasticity in the Mouse Hippocampus. Biomol Ther (Seoul) 2020; 28:74-82. [PMID: 31357749 PMCID: PMC6939697 DOI: 10.4062/biomolther.2019.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 01/26/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive and most frequently diagnosed neurodegenerative disorder. However, there is still no drug preventing the progress of this disorder. β-Amyrin, an ingredient of the surface wax of tomato fruit and dandelion coffee, is previously reported to ameliorate memory impairment induced by cholinergic dysfunction. Therefore, we tested whether β-amyrin can prevent AD-like pathology. β-Amyrin blocked amyloid β (Aβ)-induced long-term potentiation (LTP) impairment in the hippocampal slices. Moreover, β-amyrin improved Aβ-induced suppression of phosphatidylinositol-3-kinase (PI3K)/Akt signaling. LY294002, a PI3K inhibitor, blocked the effect of β-amyrin on Aβ-induced LTP impairment. In in vivo experiments, we observed that β-amyrin ameliorated object recognition memory deficit in Aβ-injected AD mice model. Moreover, neurogenesis impairments induced by Aβ was improved by β-amyrin treatment. Taken together, β-amyrin might be a good candidate of treatment or supplement for AD patients.
Collapse
Affiliation(s)
- Hye Jin Park
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Republic of Korea
| | - Huiyoung Kwon
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Republic of Korea
| | - Ji Hye Lee
- Division of Endocrinology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Eunbi Cho
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Republic of Korea
| | - Young Choon Lee
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Republic of Korea.,Institute of Convergence Bio-Health, Dong-A University, Busan 49315, Republic of Korea
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Mira Jun
- Institute of Convergence Bio-Health, Dong-A University, Busan 49315, Republic of Korea.,Department of Food Science and Nutrition, College of Health Sciences, Dong-A University, Busan 49315, Republic of Korea
| | - Dong Hyun Kim
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Republic of Korea.,Institute of Convergence Bio-Health, Dong-A University, Busan 49315, Republic of Korea
| | - Ji Wook Jung
- Department of Herbal Medicinal Pharmacology, College of Herbal Bio-industry, Daegu Haany University, Kyungsan 38610, Republic of Korea
| |
Collapse
|
84
|
Calvo-Rodriguez M, Hou SS, Snyder AC, Dujardin S, Shirani H, Nilsson KPR, Bacskai BJ. In vivo detection of tau fibrils and amyloid β aggregates with luminescent conjugated oligothiophenes and multiphoton microscopy. Acta Neuropathol Commun 2019; 7:171. [PMID: 31703739 PMCID: PMC6839235 DOI: 10.1186/s40478-019-0832-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 10/21/2019] [Indexed: 12/17/2022] Open
Abstract
The detection of amyloid beta deposits and neurofibrillary tangles, both hallmarks of Alzheimer's disease (AD), is key to understanding the mechanisms underlying these pathologies. Luminescent conjugated oligothiophenes (LCOs) enable fluorescence imaging of these protein aggregates. Using LCOs and multiphoton microscopy, individual tangles and amyloid beta deposits were labeled in vivo and imaged longitudinally in a mouse model of tauopathy and cerebral amyloidosis, respectively. Importantly, LCO HS-84, whose emission falls in the green region of the spectrum, allowed for the first time longitudinal imaging of tangle dynamics following a single intravenous injection. In addition, LCO HS-169, whose emission falls in the red region of the spectrum, successfully labeled amyloid beta deposits, allowing multiplexing with other reporters whose emission falls in the green region of the spectrum. In conclusion, this method can provide a new approach for longitudinal in vivo imaging using multiphoton microscopy of AD pathologies as well as other neurodegenerative diseases associated with protein aggregation in mouse models.
Collapse
Affiliation(s)
- Maria Calvo-Rodriguez
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St, Charlestown, MA 02129 USA
| | - Steven S. Hou
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St, Charlestown, MA 02129 USA
| | - Austin C. Snyder
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St, Charlestown, MA 02129 USA
| | - Simon Dujardin
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St, Charlestown, MA 02129 USA
| | - Hamid Shirani
- Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - K. Peter R. Nilsson
- Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Brian J. Bacskai
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St, Charlestown, MA 02129 USA
| |
Collapse
|
85
|
Modified Huang-Lian-Jie-Du Decoction Ameliorates A β Synaptotoxicity in a Murine Model of Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8340192. [PMID: 31781354 PMCID: PMC6875425 DOI: 10.1155/2019/8340192] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/21/2019] [Indexed: 01/12/2023]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease, characterized by cognitive dysfunction; however, the therapeutic strategies are not fully understood. Huang-Lian-Jie-Du-Decoction (HLJDD) is a famous traditional Chinese herbal formula that has been widely used clinically to treat dementia. Recently, according to previous study and our clinical practice, we generate a new modification of HLJDD (named modified-HLJDD). In this study, we indicated that modified-HLJDD attenuated learning and memory deficiencies in Aβ1-42 oligomer-induced AD model, and we confirmed the exact metabolites in modified-HLJDD solution, as compared with HLJDD by UHPLC-Q-TOF-MS. Using GC-Q-TOF/MS-based metabolomics, we identified adenosine as the potential significant metabolite, responsible for modified-HLJDD regulating energy metabolism and synaptic plasticity in AD model. We also revealed that the potential underlying mechanism of modified-HLJDD in AD model may involve NMDA receptor-mediated glutamatergic transmission and adenosine/ATPase/AMPK cascade. Moreover, we also indicated the differential gut microbiota which mainly involved Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria at the phylum level upon modified-HLJDD treatment in AD model. Based on the correlation of metabolomic analysis with microbiome analysis, we clarified that Dorea is the most affected microbiota with adenosine upon modified-HLJDD treatment in AD model. Thus, our study suggests that modified-HLJDD may serve as a potential therapeutic drug in treating AD.
Collapse
|
86
|
Abstract
Animal models are indispensable tools for Alzheimer disease (AD) research. Over the course of more than two decades, an increasing number of complementary rodent models has been generated. These models have facilitated testing hypotheses about the aetiology and progression of AD, dissecting the associated pathomechanisms and validating therapeutic interventions, thereby providing guidance for the design of human clinical trials. However, the lack of success in translating rodent data into therapeutic outcomes may challenge the validity of the current models. This Review critically evaluates the genetic and non-genetic strategies used in AD modelling, discussing their strengths and limitations, as well as new opportunities for the development of better models for the disease.
Collapse
|
87
|
Frequency-dependent exacerbation of Alzheimer's disease neuropathophysiology. Sci Rep 2019; 9:8964. [PMID: 31221985 PMCID: PMC6586873 DOI: 10.1038/s41598-019-44964-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 05/24/2019] [Indexed: 11/13/2022] Open
Abstract
Neuronal activity patterns are disrupted in neurodegenerative disorders, including Alzheimer’s disease (AD). One example is disruption of corticothalamic slow oscillations responsible for sleep-dependent memory consolidation. Slow waves are periodic oscillations in neuronal activity occurring at frequencies of <1 Hz. The power, but not the frequency of slow oscillations is altered in a mouse model of AD. Optogenetic rescue of slow oscillations by increasing activity in cortical pyramidal neurons at the frequency of slow waves restores slow wave power, halts deposition of amyloid plaques and prevents neuronal calcium dysregulation. Here we determined whether driving this circuit at an increased rate would exacerbate the amyloid-dependent calcium dyshomeostasis in transgenic mice. Doubling the frequency of slow waves for one month with optogenetics resulted in increased amyloid beta - dependent disruptions in neuronal calcium homeostasis and loss of synaptic spines. Therefore, while restoration of physiological circuit dynamics is sufficient to abrogate the progression of Alzheimer’s disease pathology and should be considered an avenue for clinical treatment of AD patients with sleep disorders, pathophysiological stimulation of neuronal circuits leads to activity - dependent acceleration of amyloid production, aggregation and downstream neuronal dysfunction.
Collapse
|
88
|
Zott B, Busche MA, Sperling RA, Konnerth A. What Happens with the Circuit in Alzheimer's Disease in Mice and Humans? Annu Rev Neurosci 2019; 41:277-297. [PMID: 29986165 DOI: 10.1146/annurev-neuro-080317-061725] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A major mystery of many types of neurological and psychiatric disorders, such as Alzheimer's disease (AD), remains the underlying, disease-specific neuronal damage. Because of the strong interconnectivity of neurons in the brain, neuronal dysfunction necessarily disrupts neuronal circuits. In this article, we review evidence for the disruption of large-scale networks from imaging studies of humans and relate it to studies of cellular dysfunction in mouse models of AD. The emerging picture is that some forms of early network dysfunctions can be explained by excessively increased levels of neuronal activity. The notion of such neuronal hyperactivity receives strong support from in vivo and in vitro cellular imaging and electrophysiological recordings in the mouse, which provide mechanistic insights underlying the change in neuronal excitability. Overall, some key aspects of AD-related neuronal dysfunctions in humans and mice are strikingly similar and support the continuation of such a translational strategy.
Collapse
Affiliation(s)
- Benedikt Zott
- Institute of Neuroscience, Technical University of Munich, 80802 Munich, Germany; .,Center for Integrated Protein Sciences, Technical University of Munich, 80802 Munich, Germany.,Munich Cluster for Systems Neurology, Technical University of Munich, 80802 Munich, Germany
| | - Marc Aurel Busche
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, USA.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Reisa A Sperling
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA.,Department of Neurology and Center for Alzheimer Research and Treatment, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Arthur Konnerth
- Institute of Neuroscience, Technical University of Munich, 80802 Munich, Germany; .,Center for Integrated Protein Sciences, Technical University of Munich, 80802 Munich, Germany.,Munich Cluster for Systems Neurology, Technical University of Munich, 80802 Munich, Germany
| |
Collapse
|
89
|
Querol-Vilaseca M, Colom-Cadena M, Pegueroles J, Nuñez-Llaves R, Luque-Cabecerans J, Muñoz-Llahuna L, Andilla J, Belbin O, Spires-Jones TL, Gelpi E, Clarimon J, Loza-Alvarez P, Fortea J, Lleó A. Nanoscale structure of amyloid-β plaques in Alzheimer's disease. Sci Rep 2019; 9:5181. [PMID: 30914681 PMCID: PMC6435662 DOI: 10.1038/s41598-019-41443-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/08/2019] [Indexed: 12/15/2022] Open
Abstract
Soluble amyloid-β (Aβ) is considered to be a critical component in the pathogenesis of Alzheimer’s disease (AD). Evidence suggests that these non-fibrillar Aβ assemblies are implicated in synaptic dysfunction, neurodegeneration and cell death. However, characterization of these species comes mainly from studies in cellular or animal models, and there is little data in intact human samples due to the lack of adequate optical microscopic resolution to study these small structures. Here, to achieve super-resolution in all three dimensions, we applied Array Tomography (AT) and Stimulated Emission Depletion microscopy (STED), to characterize in postmortem human brain tissue non-fibrillar Aβ structures in amyloid plaques of cases with autosomal dominant and sporadic AD. Ultrathin sections scanned with super-resolution STED microscopy allowed the detection of small Aβ structures of the order of 100 nm. We reconstructed a whole human amyloid plaque and established that plaques are formed by a dense core of higher order Aβ species (~0.022 µm3) and a peripheral halo of smaller Aβ structures (~0.003 µm3). This work highlights the potential of AT-STED for human neuropathological studies.
Collapse
Affiliation(s)
- Marta Querol-Vilaseca
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Martí Colom-Cadena
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jordi Pegueroles
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Raúl Nuñez-Llaves
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Joan Luque-Cabecerans
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Laia Muñoz-Llahuna
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jordi Andilla
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Olivia Belbin
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Tara L Spires-Jones
- The University of Edinburgh, UK Dementia Research Institute, Centre for Discovery Brain Sciences, Edinburgh, EH8 9JZ, UK
| | - Ellen Gelpi
- Neurological Tissue Bank of the Biobanc-Hospital Clinic-IDIBAPS, Barcelona, Spain.,Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Jordi Clarimon
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Pablo Loza-Alvarez
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Juan Fortea
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Alberto Lleó
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain. .,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
90
|
Abstract
Alzheimer's disease (AD), the most common cause of age-dependent dementia, is one of the most significant healthcare problems worldwide. Aggravating this situation, drugs that are currently US Food and Drug Administration (FDA)-approved for AD treatment do not prevent or delay disease progression. Therefore, developing effective therapies for AD patients is of critical urgency. Human genetic and clinical studies over the past three decades have indicated that abnormal generation or accumulation of amyloid-β (Aβ) peptides is a likely culprit in AD pathogenesis. Aβ is generated from amyloid precursor protein (APP) via proteolytic cleavage by β-site APP cleaving enzyme 1 (BACE1) (memapsin 2, β-secretase, Asp 2 protease) and γ-secretase. Mice deficient in BACE1 show abrogated production of Aβ. Therefore, pharmacological inhibition of BACE1 is being intensively pursued as a therapeutic approach to treat AD patients. Recent setbacks in clinical trials with BACE1 inhibitors have highlighted the critical importance of understanding how to properly inhibit BACE1 to treat AD patients. This review summarizes the recent studies on the role of BACE1 in synaptic functions as well as our views on BACE1 inhibition as an effective AD treatment.
Collapse
Affiliation(s)
- Brati Das
- Department of Neuroscience, Room E4032, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-3401, USA
| | - Riqiang Yan
- Department of Neuroscience, Room E4032, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-3401, USA.
| |
Collapse
|
91
|
Hajieva P, Baeken MW, Moosmann B. The role of Plasma Membrane Calcium ATPases (PMCAs) in neurodegenerative disorders. Neurosci Lett 2019; 663:29-38. [PMID: 29452613 DOI: 10.1016/j.neulet.2017.09.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/11/2017] [Accepted: 09/14/2017] [Indexed: 01/27/2023]
Abstract
Selective degeneration of differentiated neurons in the brain is the unifying feature of neurodegenerative disorders such as Parkinson's disease (PD) or Alzheimer's disease (AD). A broad spectrum of evidence indicates that initially subtle, but temporally early calcium dysregulation may be central to the selective neuronal vulnerability observed in these slowly progressing, chronic disorders. Moreover, it has long been evident that excitotoxicity and its major toxic effector mechanism, neuronal calcium overload, play a decisive role in the propagation of secondary neuronal death after acute brain injury from trauma or ischemia. Under physiological conditions, neuronal calcium homeostasis is maintained by a fine-tuned interplay between calcium influx and releasing mechanisms (Ca2+-channels), and calcium efflux mechanisms (Ca2+-pumps and -exchangers). Central functional components of the calcium efflux machinery are the Plasma Membrane Calcium ATPases (PMCAs), which represent high-affinity calcium pumps responsible for the ATP-dependent removal of calcium out of the cytosol. Beyond a growing body of experimental evidence, it is their high expression level, their independence of secondary ions or membrane potential, their profound redox regulation and autoregulation, their postsynaptic localization in close proximity to the primary mediators of pathological calcium influx, i.e. NMDA receptors, as well as evolutionary considerations which all suggest a pivotal role of the PMCAs in the etiology of neurodegeneration and make them equally challenging and alluring candidates for drug development. This review aims to summarize the recent literature on the role of PMCAs in the pathogenesis of neurodegenerative disorders.
Collapse
Affiliation(s)
- Parvana Hajieva
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | - Marius W Baeken
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Bernd Moosmann
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
92
|
Hudry E, Klickstein J, Cannavo C, Jackson R, Muzikansky A, Gandhi S, Urick D, Sargent T, Wrobleski L, Roe AD, Hou SS, Kuchibhotla KV, Betensky RA, Spires-Jones T, Hyman BT. Opposing Roles of apolipoprotein E in aging and neurodegeneration. Life Sci Alliance 2019; 2:2/1/e201900325. [PMID: 30760557 PMCID: PMC6374993 DOI: 10.26508/lsa.201900325] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 11/24/2022] Open
Abstract
Apolipoprotein E (APOE) effects on brain function remain controversial. Removal of APOE not only impairs cognitive functions but also reduces neuritic amyloid plaques in mouse models of Alzheimer's disease (AD). Can APOE simultaneously protect and impair neural circuits? Here, we dissociated the role of APOE in AD versus aging to determine its effects on neuronal function and synaptic integrity. Using two-photon calcium imaging in awake mice to record visually evoked responses, we found that genetic removal of APOE improved neuronal responses in adult APP/PSEN1 mice (8-10 mo). These animals also exhibited fewer neuritic plaques with less surrounding synapse loss, fewer neuritic dystrophies, and reactive glia. Surprisingly, the lack of APOE in aged mice (18-20 mo), even in the absence of amyloid, disrupted visually evoked responses. These results suggest a dissociation in APOE's role in AD versus aging: APOE may be neurotoxic during early stages of amyloid deposition, although being neuroprotective in latter stages of aging.
Collapse
Affiliation(s)
- Eloise Hudry
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Jacob Klickstein
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Claudia Cannavo
- Centre for Discovery Brain Sciences, UK Dementia Research Institute, and Edinburgh Neuroscience, The University of Edinburgh, Edinburgh, UK
| | - Rosemary Jackson
- Centre for Discovery Brain Sciences, UK Dementia Research Institute, and Edinburgh Neuroscience, The University of Edinburgh, Edinburgh, UK
| | - Alona Muzikansky
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sheetal Gandhi
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - David Urick
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Taylie Sargent
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Lauren Wrobleski
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Allyson D Roe
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Steven S Hou
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | | | - Rebecca A Betensky
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Tara Spires-Jones
- Centre for Discovery Brain Sciences, UK Dementia Research Institute, and Edinburgh Neuroscience, The University of Edinburgh, Edinburgh, UK
| | - Bradley T Hyman
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
93
|
Shukla M, Chinchalongporn V, Govitrapong P, Reiter RJ. The role of melatonin in targeting cell signaling pathways in neurodegeneration. Ann N Y Acad Sci 2019; 1443:75-96. [PMID: 30756405 DOI: 10.1111/nyas.14005] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/17/2018] [Accepted: 01/02/2019] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases are typified by neuronal loss associated with progressive dysfunction and clinical presentation. Neurodegenerative diseases are characterized by the intra- and extracellular conglomeration of misfolded proteins that occur because of abnormal protein dynamics and genetic manipulations; these trigger processes of cell death in these disorders. The disrupted signaling mechanisms involved are oxidative stress-mediated mitochondrial and calcium signaling deregulation, alterations in immune and inflammatory signaling, disruption of autophagic integrity, proteostasis dysfunction, and anomalies in the insulin, Notch, and Wnt/β-catenin signaling pathways. Herein, we accentuate some of the contemporary translational approaches made in characterizing the underlying mechanisms of neurodegeneration. Melatonin-induced cognitive enhancement and inhibition of oxidative signaling substantiates the efficacy of melatonin in combating neurodegenerative processes. Our review considers in detail the possible roles of melatonin in understanding the synergistic pathogenic mechanisms between aggregated proteins and in regulating, modulating, and preventing the altered signaling mechanisms discovered in cellular and animal models along with clinical evaluations pertaining to neurodegeneration. Furthermore, this review showcases the therapeutic potential of melatonin in preventing and treating neurodegenerative diseases with optimum prognosis.
Collapse
Affiliation(s)
- Mayuri Shukla
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Vorapin Chinchalongporn
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand.,Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand
| | - Piyarat Govitrapong
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand.,Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center San Antonio, San Antonio, Texas
| |
Collapse
|
94
|
Ding Y, Bao X, Lao L, Ling Y, Wang Q, Xu S. p-Hydroxybenzyl Alcohol Prevents Memory Deficits by Increasing Neurotrophic Factors and Decreasing Inflammatory Factors in a Mice Model of Alzheimer’s Disease. J Alzheimers Dis 2019; 67:1007-1019. [DOI: 10.3233/jad-180910] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yanfei Ding
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | | | - Lifeng Lao
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Yunxiang Ling
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Qinwen Wang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Shujun Xu
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
95
|
Pang C, Yang H, Hu B, Wang S, Chen M, Cohen DS, Chen HS, Jarrell JT, Carpenter KA, Rosin ER, Huang X. Identification and Analysis of Alzheimer's Candidate Genes by an Amplitude Deviation Algorithm. ACTA ACUST UNITED AC 2019; 9. [PMID: 31080696 PMCID: PMC6505709 DOI: 10.4172/2161-0460.1000460] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background: Alzheimer’s disease (AD) is the most common form of senile dementia. However, its pathological mechanisms are not fully understood. In order to comprehend AD pathological mechanisms, researchers employed AD-related DNA microarray data and diverse computational algorithms. More efficient computational algorithms are needed to process DNA microarray data for identifying AD-related candidate genes. Methods: In this paper, we propose a specific algorithm that is based on the following observation: When an acrobat walks along a steel-wire, his/her body must have some swing; if the swing can be controlled, then the acrobat can maintain the body balance. Otherwise, the acrobat will fall. Based on this simple idea, we have designed a simple, yet practical, algorithm termed as the Amplitude Deviation Algorithm (ADA). Deviation, overall deviation, deviation amplitude, and 3δ are introduced to characterize ADA. Results: 52 candidate genes for AD have been identified via ADA. The implications for some of the AD candidate genes in AD pathogenesis have been discussed. Conclusions: Through the analysis of these AD candidate genes, we believe that AD pathogenesis may be related to the abnormality of signal transduction (AGTR1 and PTAFR), the decrease in protein transport capacity (COL5A2 (221729_at), COL5A2 (221730_at), COL4A1), the impairment of axon repair (CNR1), and the intracellular calcium dyshomeostasis (CACNB2, CACNA1E). However, their potential implication for AD pathology should be further validated by wet lab experiments as they were only identified by computation using ADA.
Collapse
Affiliation(s)
- Chaoyang Pang
- College of Computer Science, Sichuan Normal University, Chengdu, China
| | - Hualan Yang
- College of Mathematics and Software Science, Sichuan Normal University, Chengdu, China
| | - Benqiong Hu
- College of Management Science, Chengdu University of Technology, Chengdu, China
| | - Shipeng Wang
- College of Mathematics and Software Science, Sichuan Normal University, Chengdu, China
| | - Meixia Chen
- College of Mathematics and Software Science, Sichuan Normal University, Chengdu, China
| | - David S Cohen
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Hannah S Chen
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Juliet T Jarrell
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Kristy A Carpenter
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Eric R Rosin
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Xudong Huang
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
96
|
Li H, Liu CC, Zheng H, Huang TY. Amyloid, tau, pathogen infection and antimicrobial protection in Alzheimer's disease -conformist, nonconformist, and realistic prospects for AD pathogenesis. Transl Neurodegener 2018; 7:34. [PMID: 30603085 PMCID: PMC6306008 DOI: 10.1186/s40035-018-0139-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 12/02/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a fatal disease that threatens the quality of life of an aging population at a global scale. Various hypotheses on the etiology of AD have been developed over the years to guide efforts in search of therapeutic strategies. MAIN BODY In this review, we focus on four AD hypotheses currently relevant to AD onset: the prevailing amyloid cascade hypothesis, the well-recognized tau hypothesis, the increasingly popular pathogen (viral infection) hypothesis, and the infection-related antimicrobial protection hypothesis. In briefly reviewing the main evidence supporting each hypothesis and discussing the questions that need to be addressed, we hope to gain a better understanding of the complicated multi-layered interactions in potential causal and/or risk factors in AD pathogenesis. As a defining feature of AD, the existence of amyloid deposits is likely fundamental to AD onset but is insufficient to wholly reproduce many complexities of the disorder. A similar belief is currently also applied to hyperphosphorylated tau aggregates within neurons, where tau has been postulated to drive neurodegeneration in the presence of pre-existing Aβ plaques in the brain. Although infection of the central nerve system by pathogens such as viruses may increase AD risk, it is yet to be determined whether this phenomenon is applicable to all cases of sporadic AD and whether it is a primary trigger for AD onset. Lastly, the antimicrobial protection hypothesis provides insight into a potential physiological role for Aβ peptides, but how Aβ/microbial interactions affect AD pathogenesis during aging awaits further validation. Nevertheless, this hypothesis cautions potential adverse effects in Aβ-targeting therapies by hindering potential roles for Aβ in anti-viral protection. CONCLUSION AD is a multi-factor complex disorder, which likely requires a combinatorial therapeutic approach to successfully slow or reduce symptomatic memory decline. A better understanding of how various causal and/or risk factors affecting disease onset and progression will enhance the likelihood of conceiving effective treatment paradigms, which may involve personalized treatment strategies for individual patients at varying stages of disease progression.
Collapse
Affiliation(s)
- Hongmei Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL USA
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL USA
| | - Hui Zheng
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX USA
| | - Timothy Y. Huang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA USA
| |
Collapse
|
97
|
Almasi A, Zarei M, Raoufi S, Sarihi A, Salehi I, Komaki A, Hashemi-Firouzi N, Shahidi S. Influence of hippocampal GABA B receptor inhibition on memory in rats with acute β-amyloid toxicity. Metab Brain Dis 2018; 33:1859-1867. [PMID: 30039187 DOI: 10.1007/s11011-018-0292-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/16/2018] [Indexed: 01/28/2023]
Abstract
The neurotransmitter γ-aminobutyric acid (GABA) is involved in the process of memory. It has been reported that the inhibition of GABAB receptors has beneficial effects on cognition. The aim of this study was to investigate the role of CGP35348 (a GABAB receptor antagonist) on dentate gyrus GABAB receptor inhibition and its effects on learning and memory impairments that had been induced in adult male rats by microinjection of β-amyloid (Aβ). Seventy Wistar male rats were randomly divided into seven groups: control, sham (receiving the Aβ vehicle only), Aβ, Aβ + CGP35348 (1, 10, and 100 μg/μL), and CGP35348 alone (10 μg/μL). Memory impairment was induced by unilateral interventricular microinjection of Aβ (6 μg/6 μL). Rats were cannulated bilaterally in the dentate gyrus, and then, they were treated for 20 consecutive days. Learning and memory were assessed using the novel object recognition and passive avoidance learning tests. The discrimination index and the step-through latency were significantly increased in the Aβ + CGP35348 group in comparison to the Aβ only group (P < 0.05 and P < 0.01, respectively). Data showed that the discrimination index was decreased in the Aβ + CGP35348 group in comparison with the control group (P < 0.05) and sham group (P < 0.01). Moreover, the step-through latency was significantly decreased in the Aβ + CGP35348 group in comparison to the control and sham groups (P < 0.01). Data from this study indicated that intra-hippocampal microinjection of the GABAB receptor antagonist counteracts the learning, memory, and cognitive impairments induced by Aβ. It can be concluded that the GABAB receptor antagonist is a possible therapeutic agent against the progression of acute Aβ toxicity-induced memory impairment.
Collapse
Affiliation(s)
- Azam Almasi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Zarei
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Safoura Raoufi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolrahman Sarihi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Siamak Shahidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
98
|
Julien C, Tomberlin C, Roberts CM, Akram A, Stein GH, Silverman MA, Link CD. In vivo induction of membrane damage by β-amyloid peptide oligomers. Acta Neuropathol Commun 2018; 6:131. [PMID: 30497524 PMCID: PMC6263551 DOI: 10.1186/s40478-018-0634-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 11/13/2018] [Indexed: 01/17/2023] Open
Abstract
Exposure to the β-amyloid peptide (Aβ) is toxic to neurons and other cell types, but the mechanism(s) involved are still unresolved. Synthetic Aβ oligomers can induce ion-permeable pores in synthetic membranes, but whether this ability to damage membranes plays a role in the ability of Aβ oligomers to induce tau hyperphosphorylation, or other disease-relevant pathological changes, is unclear. To examine the cellular responses to Aβ exposure independent of possible receptor interactions, we have developed an in vivo C. elegans model that allows us to visualize these cellular responses in living animals. We find that feeding C. elegans E. coli expressing human Aβ induces a membrane repair response similar to that induced by exposure to the CRY5B, a known pore-forming toxin produced by B. thuringensis. This repair response does not occur when C. elegans is exposed to an Aβ Gly37Leu variant, which we have previously shown to be incapable of inducing tau phosphorylation in hippocampal neurons. The repair response is also blocked by loss of calpain function, and is altered by loss-of-function mutations in the C. elegans orthologs of BIN1 and PICALM, well-established risk genes for late onset Alzheimer's disease. To investigate the role of membrane repair on tau phosphorylation directly, we exposed hippocampal neurons to streptolysin O (SLO), a pore-forming toxin that induces a well-characterized membrane repair response. We find that SLO induces tau hyperphosphorylation, which is blocked by calpain inhibition. Finally, we use a novel biarsenical dye-tagging approach to show that the Gly37Leu substitution interferes with Aβ multimerization and thus the formation of potentially pore-forming oligomers. We propose that Aβ-induced tau hyperphosphorylation may be a downstream consequence of induction of a membrane repair process.
Collapse
|
99
|
Zheng H, Cheng B, Li Y, Li X, Chen X, Zhang YW. TREM2 in Alzheimer's Disease: Microglial Survival and Energy Metabolism. Front Aging Neurosci 2018; 10:395. [PMID: 30532704 PMCID: PMC6265312 DOI: 10.3389/fnagi.2018.00395] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/13/2018] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is the leading cause of age-related dementia among the elderly population. Recent genetic studies have identified rare variants of the gene encoding the triggering receptor expressed on myeloid cells-2 (TREM2) as significant genetic risk factors in late-onset AD (LOAD). TREM2 is specifically expressed in brain microglia and modulates microglial functions in response to key AD pathologies such as amyloid-β (Aβ) plaques and tau tangles. In this review article, we discuss recent research progress in our understanding on the role of TREM2 in microglia and its relevance to AD pathologies. In addition, we discuss evidence describing new TREM2 ligands and the role of TREM2 signaling in microglial survival and energy metabolism. A comprehensive understanding of TREM2 function in the pathogenesis of AD offers a unique opportunity to explore the potential of this microglial receptor as an alternative target in AD therapy.
Collapse
Affiliation(s)
- Honghua Zheng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, China.,Shenzhen Research Institute, Xiamen University, Shenzhen, China
| | - Baoying Cheng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, China
| | - Yanfang Li
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, China.,Shenzhen Research Institute, Xiamen University, Shenzhen, China
| | - Xin Li
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, China
| | - Xiaofen Chen
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, China.,Shenzhen Research Institute, Xiamen University, Shenzhen, China
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, China
| |
Collapse
|
100
|
Karthick C, Nithiyanandan S, Essa MM, Guillemin GJ, Jayachandran SK, Anusuyadevi M. Time-dependent effect of oligomeric amyloid-β (1-42)-induced hippocampal neurodegeneration in rat model of Alzheimer's disease. Neurol Res 2018; 41:139-150. [PMID: 30453864 DOI: 10.1080/01616412.2018.1544745] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Alzheimer's disease (AD) is characterized with an abnormal deposition of insoluble amyloid-beta (Aβ) peptide plaques, tangles formation and synaptic dysfunction. These result in impaired functioning of neuronal circuits and alter the behavioral response owing to activation of neurotransmitter receptors. Recently, it has been implicated that Aβ influences N-methyl d-aspartate (NMDA) receptor activation in AD; however, the molecular mechanism underlying remains unclear. Thus, emerged specific aim to study the time-course effect of oligomeric Aβ(1-42) (oAβ1-42) on the mRNA expression of genes encoding NMDA and acetylcholine receptors in the rat model of AD. METHODS Aggregated forms of synthetic Aβ peptides were injected bilaterally into the intrahippocampal region of rat brain using stereotaxic surgery. Behavioral analysis was performed using eight-arm Radial Arm Maze task at the end of experimental period. Euthanized rat brain hippocampal tissue was used to study the mRNA expression of glutamatergic and cholinergic receptor using semiquantitative reverse transcription-polymerase chain reaction. RESULTS oAβ1-42 decreased the gene expression level of α7-nicotinic acetylcholine receptor and increased the mRNA expression of NMDA receptor 2A, and -2B subunits. In particular, oAβ1-42 aggregates increased the retention time and altered the behavioral response in rats after 15 days of injection. Further, amyloid-β1-42 are highly expressed in 15 days after postinjection in hippocampus of adult rats. CONCLUSION Acute exposure of oAβ1-42 modulated differential gene expression of glutamatergic and cholinergic receptors in hippocampus of adult rats and is duration dependent reflecting changes in hippocampal circuitry system underlying learning and memory impairments. ABBREVIATIONS AD: Alzheimer's disease, Aβ: amyloid-β; oAβ1-42: oligomeric amyloid-β 1-42 full length peptide; CAM: calmodulin; CNS: central nervous system; CR: Congo red; DG: dentate gyrus; EC: entorhinal cortex; HFIP: 1,1,1,3,3,3-hexafluoro-2-propanol; IBO: ibotenic acid; NMDA: N-methyl d-aspartate; NMDAR: N-methyl d-aspartate receptor; NR2A: N-methyl d-aspartate receptor 2A; NR2B: N-methyl d-aspartate receptor 2B; ACh: acetylcholine; α7-nAChR: α7-nicotinic acetylcholine receptor; PBS: phosphate buffered saline; RAM: Radial Arm Maze; ThT: thioflavin T.
Collapse
Affiliation(s)
- Chennakesavan Karthick
- a Molecular Gerontology Laboratory, Department of Biochemistry , School of Life Sciences, Bharathidasan University , Tiruchirappalli , India
| | - Saravanan Nithiyanandan
- a Molecular Gerontology Laboratory, Department of Biochemistry , School of Life Sciences, Bharathidasan University , Tiruchirappalli , India
| | - Musthafa Mohamed Essa
- b Department of Food Science and Nutrition , College of Agriculture and Marine Sciences, Sultan Qaboos University , Muscat , Oman
| | - Gilles J Guillemin
- c Neuroinflammation group, Faculty of Medicine and Health Sciences, Deb Bailey MND Research Laboratory , Macquaire University , Sydney , Australia
| | - Swaminathan K Jayachandran
- d Molecular Cardiology and Drug Discovery Laboratory, Department of Bioinformatics , School of Life Sciences, Bharathidasan University , Tiruchirappalli , India
| | - Muthuswamy Anusuyadevi
- a Molecular Gerontology Laboratory, Department of Biochemistry , School of Life Sciences, Bharathidasan University , Tiruchirappalli , India
| |
Collapse
|