51
|
Lui K, Huang Y, Sheikh MS, Cheung KK, Tam WY, Sun KT, Cheng KM, Ng WWM, Loh AWK. The oncogenic potential of Rab-like protein 1A (RBEL1A) GTPase: The first review of RBEL1A research with future research directions and challenges. J Cancer 2023; 14:3214-3226. [PMID: 37928422 PMCID: PMC10622986 DOI: 10.7150/jca.84267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/12/2023] [Indexed: 11/07/2023] Open
Abstract
Research on Rab-like protein 1A (RBEL1A) in the past two decades highlighted the oncogenic properties of this gene. Despite the emerging evidence, its importance in cancer biology was underrated. This is the first RBEL1A critical review covering its discovery, biochemistry, physiological functions, and clinical insights. RBEL1A expression at the appropriate levels appears essential in normal cells and tissues to maintain chromosomal stability; however, its overexpression is linked to tumorigenesis. Furthermore, the upstream and downstream targets of the RBEL1A signaling pathways will be discussed. Mechanistically, RBEL1A promotes cell proliferation signals by enhancing the Erk1/2, Akt, c-Myc, and CDK pathways while blunting the apoptotic signals via inhibitions on p53, Rb, and caspase pathways. More importantly, this review covers the clinical relevance of RBEL1A in the cancer field, such as drug resistance and poor overall survival rate. Also, this review points out the bottle-necks of the RBEL1A research and its future research directions. It is becoming clear that RBEL1A could potentially serve as a valuable target of anticancer therapy. Genetic and pharmacological researches are expected to facilitate the identification and development of RBEL1A inhibitors as cancer therapeutics in the future, which could undoubtedly improve the management of human malignancy.
Collapse
Affiliation(s)
- Ki Lui
- School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong
| | - Ying Huang
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, New York, USA
| | - M. Saeed Sheikh
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, New York, USA
| | - Kwok-Kuen Cheung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | - Wing Yip Tam
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Keng-Ting Sun
- Division of Medical Sciences & Graduate Entry Medicine, School of Medicine, University of Nottingham, United Kingdom
| | - Ka Ming Cheng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | | | - Anthony Wai-Keung Loh
- Division of Science, Engineering and Health Studies (SEHS), College of Professional and Continuing Education, The Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
52
|
Berta D, Gehrke S, Nyíri K, Vértessy BG, Rosta E. Mechanism-Based Redesign of GAP to Activate Oncogenic Ras. J Am Chem Soc 2023; 145:20302-20310. [PMID: 37682266 PMCID: PMC10515638 DOI: 10.1021/jacs.3c04330] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Indexed: 09/09/2023]
Abstract
Ras GTPases play a crucial role in cell signaling pathways. Mutations of the Ras gene occur in about one third of cancerous cell lines and are often associated with detrimental clinical prognosis. Hot spot residues Gly12, Gly13, and Gln61 cover 97% of oncogenic mutations, which impair the enzymatic activity in Ras. Using QM/MM free energy calculations, we present a two-step mechanism for the GTP hydrolysis catalyzed by the wild-type Ras.GAP complex. We found that the deprotonation of the catalytic water takes place via the Gln61 as a transient Brønsted base. We also determined the reaction profiles for key oncogenic Ras mutants G12D and G12C using QM/MM minimizations, matching the experimentally observed loss of catalytic activity, thereby validating our reaction mechanism. Using the optimized reaction paths, we devised a fast and accurate procedure to design GAP mutants that activate G12D Ras. We replaced GAP residues near the active site and determined the activation barrier for 190 single mutants. We furthermore built a machine learning for ultrafast screening, by fast prediction of the barrier heights, tested both on the single and double mutations. This work demonstrates that fast and accurate screening can be accomplished via QM/MM reaction path optimizations to design protein sequences with increased catalytic activity. Several GAP mutations are predicted to re-enable catalysis in oncogenic G12D, offering a promising avenue to overcome aberrant Ras-driven signal transduction by activating enzymatic activity instead of inhibition. The outlined computational screening protocol is readily applicable for designing ligands and cofactors analogously.
Collapse
Affiliation(s)
- Dénes Berta
- Department
of Physics and Astronomy, University College
London, Gower Street, London WC1E
6BT, United Kingdom
| | - Sascha Gehrke
- Department
of Physics and Astronomy, University College
London, Gower Street, London WC1E
6BT, United Kingdom
| | - Kinga Nyíri
- Institute
of Enzymology, Research Centre for Natural Sciences, Magyar tudósok körútja
2, Budapest 1117, Hungary
- Department
of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budafoki út 6-8, Budapest 1111, Hungary
| | - Beáta G. Vértessy
- Institute
of Enzymology, Research Centre for Natural Sciences, Magyar tudósok körútja
2, Budapest 1117, Hungary
- Department
of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budafoki út 6-8, Budapest 1111, Hungary
| | - Edina Rosta
- Department
of Physics and Astronomy, University College
London, Gower Street, London WC1E
6BT, United Kingdom
| |
Collapse
|
53
|
Huo Q, Li K, Sun X, Zhuang A, Minami K, Tamari K, Ogawa K, Fishel ML, Li BY, Yokota H. The inhibition of pancreatic cancer progression by K-Ras-overexpressing mesenchymal stem cell-derived secretomes. Sci Rep 2023; 13:15036. [PMID: 37699930 PMCID: PMC10497626 DOI: 10.1038/s41598-023-41835-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/31/2023] [Indexed: 09/14/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor survival. To explore an uncharted function of K-Ras proto-oncogene, K-Ras was activated in mesenchymal stem cells (MSCs) and the effects of MSC conditioned medium (CM) on PDAC were examined. Overexpression of K-Ras elevated PI3K signaling in MSCs, and K-Ras/PI3K-activated MSC-derived CM reduced the proliferation and migration of tumor cells, as well as the growth of ex vivo freshly isolated human PDAC cultures. CM's anti-tumor capability was additive with Gemcitabine, a commonly used chemotherapeutic drug in the treatment of PDAC. The systemic administration of CM in a mouse model suppressed the colonization of PDAC in the lung. MSC CM was enriched with Moesin (MSN), which acted as an extracellular tumor-suppressing protein by interacting with CD44. Tumor-suppressive CM was also generated by PKA-activated peripheral blood mononuclear cells. Collectively, this study demonstrated that MSC CM can be engineered to act as a tumor-suppressive agent by activating K-Ras and PI3K, and the MSN-CD44 regulatory axis is in part responsible for this potential unconventional option in the treatment of PDAC.
Collapse
Affiliation(s)
- Qingji Huo
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Kexin Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Xun Sun
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Adam Zhuang
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Kazumasa Minami
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Keisuke Tamari
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Kazuhiko Ogawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Melissa L Fishel
- Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
| | - Bai-Yan Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, 46202, USA.
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA.
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
54
|
Tosic N, Marjanovic I, Lazic J. Pediatric acute myeloid leukemia: Insight into genetic landscape and novel targeted approaches. Biochem Pharmacol 2023; 215:115705. [PMID: 37532055 DOI: 10.1016/j.bcp.2023.115705] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
Acute myeloid leukemia (AML) is a very heterogeneous hematological malignancy that accounts for approximately 20% of all pediatric leukemia cases. The outcome of pediatric AML has improved over the last decades, with overall survival rates reaching up to 70%. Still, AML is among the leading types of pediatric cancers by its high mortality rate. Modulation of standard therapy, like chemotherapy intensification, hematopoietic stem cell transplantation and optimized supportive care, could only get this far, but for the significant improvement of the outcome in pediatric AML, development of novel targeted therapy approaches is necessary. In recent years the advances in genomic techniques have greatly expanded our knowledge of the AML biology, revealing molecular landscape and complexity of the disease, which in turn have led to the identification of novel therapeutic targets. This review provides a brief overview of the genetic landscape of pediatric AML, and how it's used for precise molecular characterization and risk stratification of the patients, and also for the development of effective targeted therapy. Furthermore, this review presents recent advances in molecular targeted therapy and immunotherapy with an emphasis on the therapeutic approaches with significant clinical benefits for pediatric AML.
Collapse
Affiliation(s)
- Natasa Tosic
- Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Biomedicine, University of Belgrade, Serbia.
| | - Irena Marjanovic
- Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Biomedicine, University of Belgrade, Serbia
| | - Jelena Lazic
- University Children's Hospital, Department for Hematology and Oncology, Belgrade, Serbia; Faculty of Medicine, University of Belgrade, Serbia
| |
Collapse
|
55
|
Masugi Y, Takamatsu M, Tanaka M, Hara K, Inoue Y, Hamada T, Suzuki T, Arita J, Hirose Y, Kawaguchi Y, Nakai Y, Oba A, Sasahira N, Shimane G, Takeda T, Tateishi K, Uemura S, Fujishiro M, Hasegawa K, Kitago M, Takahashi Y, Ushiku T, Takeuchi K, Sakamoto M. Post-operative mortality and recurrence patterns in pancreatic cancer according to KRAS mutation and CDKN2A, p53, and SMAD4 expression. J Pathol Clin Res 2023; 9:339-353. [PMID: 37291757 PMCID: PMC10397380 DOI: 10.1002/cjp2.323] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/18/2023] [Accepted: 03/30/2023] [Indexed: 06/10/2023]
Abstract
Alterations in KRAS, CDKN2A (p16), TP53, and SMAD4 genes have been major drivers of pancreatic carcinogenesis. The clinical course of patients with pancreatic cancer in relation to these driver alterations has not been fully characterised in large populations. We hypothesised that pancreatic carcinomas with different combinations of KRAS mutation and aberrant expression of CDKN2A, p53, and SMAD4 might show distinctive recurrence patterns and post-operative survival outcomes. To test this hypothesis, we utilised a multi-institutional cohort of 1,146 resected pancreatic carcinomas and assessed KRAS mutations by droplet digital polymerase chain reaction and CDKN2A, p53, and SMAD4 expression by immunohistochemistry. Multivariable hazard ratios (HRs) and 95% confidence intervals (CIs) for disease-free survival (DFS) and overall survival (OS) were computed according to each molecular alteration and the number of altered genes using the Cox regression models. Multivariable competing risks regression analyses were conducted to assess the associations of the number of altered genes with specific patterns of recurrence. Loss of SMAD4 expression was associated with short DFS (multivariable HR, 1.24; 95% CI, 1.09-1.43) and OS times (multivariable HR, 1.27; 95% CI, 1.10-1.46). Compared to cases with 0-2 altered genes, cases with three and four altered genes had multivariable HRs for OS of 1.28 (95% CI, 1.09-1.51) and 1.47 (95% CI, 1.22-1.78), respectively (ptrend < 0.001). Patients with an increasing number of altered genes were more likely to have short DFS time (ptrend = 0.003) and to develop liver metastasis (ptrend = 0.006) rather than recurrence at local or other distant sites. In conclusion, loss of SMAD4 expression and an increasing number of altered genes were associated with unfavourable outcomes in pancreatic cancer patients. This study suggests that the accumulation of the four major driver alterations can confer a high metastatic potential to the liver, thereby impairing post-operative survival among patients with pancreatic cancer.
Collapse
Affiliation(s)
- Yohei Masugi
- Department of PathologyKeio University School of MedicineTokyoJapan
- Division of Diagnostic PathologyKeio University School of MedicineTokyoJapan
| | - Manabu Takamatsu
- Division of PathologyCancer Institute, Japanese Foundation for Cancer ResearchTokyoJapan
- Department of PathologyCancer Institute Hospital, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Mariko Tanaka
- Department of Pathology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Kensuke Hara
- Department of PathologyKeio University School of MedicineTokyoJapan
| | - Yosuke Inoue
- Department of Hepatobiliary and Pancreatic SurgeryCancer Institute Hospital, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Tsuyoshi Hamada
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoTokyoJapan
- Department of Hepato‐Biliary‐Pancreatic MedicineCancer Institute Hospital, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Tatsunori Suzuki
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Junichi Arita
- Hepato‐Biliary‐Pancreatic Surgery Division, Department of Surgery, Graduate School of MedicineThe University of TokyoTokyoJapan
- Department of Gastroenterological SurgeryAkita University Graduate School of MedicineAkitaJapan
| | - Yuki Hirose
- Department of Hepatobiliary and Pancreatic SurgeryCancer Institute Hospital, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Yoshikuni Kawaguchi
- Hepato‐Biliary‐Pancreatic Surgery Division, Department of Surgery, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Yousuke Nakai
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoTokyoJapan
- Department of Endoscopy and Endoscopic SurgeryThe University of Tokyo HospitalTokyoJapan
| | - Atsushi Oba
- Department of Hepatobiliary and Pancreatic SurgeryCancer Institute Hospital, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Naoki Sasahira
- Department of Hepato‐Biliary‐Pancreatic MedicineCancer Institute Hospital, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Gaku Shimane
- Department of SurgeryKeio University School of MedicineTokyoJapan
| | - Tsuyoshi Takeda
- Department of Hepato‐Biliary‐Pancreatic MedicineCancer Institute Hospital, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Keisuke Tateishi
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Sho Uemura
- Department of SurgeryKeio University School of MedicineTokyoJapan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Kiyoshi Hasegawa
- Hepato‐Biliary‐Pancreatic Surgery Division, Department of Surgery, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Minoru Kitago
- Department of SurgeryKeio University School of MedicineTokyoJapan
| | - Yu Takahashi
- Department of Hepatobiliary and Pancreatic SurgeryCancer Institute Hospital, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Kengo Takeuchi
- Division of PathologyCancer Institute, Japanese Foundation for Cancer ResearchTokyoJapan
- Department of PathologyCancer Institute Hospital, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Michiie Sakamoto
- Department of PathologyKeio University School of MedicineTokyoJapan
| | | |
Collapse
|
56
|
Chaturvedi S, Biswas M, Sadhukhan S, Sonawane A. Role of EGFR and FASN in breast cancer progression. J Cell Commun Signal 2023:10.1007/s12079-023-00771-w. [PMID: 37490191 DOI: 10.1007/s12079-023-00771-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/22/2023] [Indexed: 07/26/2023] Open
Abstract
Breast cancer (BC) emerged as one of the life-threatening diseases among females. Despite notable improvements made in cancer detection and treatment worldwide, according to GLOBACAN 2020, BC is the fifth leading cancer, with an estimated 1 in 6 cancer deaths, in a majority of countries. However, the exact cause that leads to BC progression still needs to be determined. Here, we reviewed the role of two novel biomarkers responsible for 50-70% of BC progression. The first one is epidermal growth factor receptor (EGFR) which belongs to the ErbB tyrosine kinases family, signalling pathways associated with it play a significant role in regulating cell proliferation and division. Another one is fatty acid synthase (FASN), a key enzyme responsible for the de novo lipid synthesis required for cancer cell development. This review presents a rationale for the EGFR-mediated pathways, their interaction with FASN, communion of these two biomarkers with BC, and improvements to overcome drug resistance caused by them.
Collapse
Affiliation(s)
- Suchi Chaturvedi
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Madhya Pradesh, 453552, India
| | - Mainak Biswas
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Sushabhan Sadhukhan
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678623, India.
- Physical & Chemical Biology Laboratory and Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678623, India.
| | - Avinash Sonawane
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Madhya Pradesh, 453552, India.
| |
Collapse
|
57
|
Tanada M, Tamiya M, Matsuo A, Chiyoda A, Takano K, Ito T, Irie M, Kotake T, Takeyama R, Kawada H, Hayashi R, Ishikawa S, Nomura K, Furuichi N, Morita Y, Kage M, Hashimoto S, Nii K, Sase H, Ohara K, Ohta A, Kuramoto S, Nishimura Y, Iikura H, Shiraishi T. Development of Orally Bioavailable Peptides Targeting an Intracellular Protein: From a Hit to a Clinical KRAS Inhibitor. J Am Chem Soc 2023. [PMID: 37463267 DOI: 10.1021/jacs.3c03886] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Cyclic peptides as a therapeutic modality are attracting a lot of attention due to their potential for oral absorption and accessibility to intracellular tough targets. Here, starting with a drug-like hit discovered using an mRNA display library, we describe a chemical optimization that led to the orally available clinical compound known as LUNA18, an 11-mer cyclic peptide inhibitor for the intracellular tough target RAS. The key findings are as follows: (i) two peptide side chains were identified that each increase RAS affinity over 10-fold; (ii) physico-chemical properties (PCP) including Clog P can be adjusted by side-chain modification to increase membrane permeability; (iii) restriction of cyclic peptide conformation works effectively to adjust PCP and improve bio-activity; (iv) cellular efficacy was observed in peptides with a permeability of around 0.4 × 10-6 cm/s or more in a Caco-2 permeability assay; and (v) while keeping the cyclic peptide's main-chain conformation, we found one example where the RAS protein structure was changed dramatically through induced-fit to our peptide side chain. This study demonstrates how the chemical optimization of bio-active peptides can be achieved without scaffold hopping, much like the processes for small molecule drug discovery that are guided by Lipinski's rule of five. Our approach provides a versatile new strategy for generating peptide drugs starting from drug-like hits.
Collapse
Affiliation(s)
- Mikimasa Tanada
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Minoru Tamiya
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Atsushi Matsuo
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Aya Chiyoda
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Koji Takano
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Toshiya Ito
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Machiko Irie
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Tomoya Kotake
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Ryuuichi Takeyama
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Hatsuo Kawada
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Ryuji Hayashi
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Shiho Ishikawa
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Kenichi Nomura
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Noriyuki Furuichi
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Yuya Morita
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Mirai Kage
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Satoshi Hashimoto
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Keiji Nii
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Hitoshi Sase
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Kazuhiro Ohara
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Atsushi Ohta
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Shino Kuramoto
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Yoshikazu Nishimura
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Hitoshi Iikura
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Takuya Shiraishi
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| |
Collapse
|
58
|
Jang G, Kweon J, Kim Y. CRISPR prime editing for unconstrained correction of oncogenic KRAS variants. Commun Biol 2023; 6:681. [PMID: 37391511 PMCID: PMC10313713 DOI: 10.1038/s42003-023-05052-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 06/16/2023] [Indexed: 07/02/2023] Open
Abstract
KRAS is the most commonly mutated RAS family gene and is a primary cause of the occurrence of several types of cancer. However, KRAS mutations have several unique and diverse molecular identities, making it difficult to find specific treatments. Here, we developed universal pegRNAs which can correct all types of G12 and G13 oncogenic KRAS mutations with CRISPR-mediated prime editors (PEs). The universal pegRNA successfully corrected 12 types of KRAS mutations, accounting for 94% of all known KRAS mutations, by up to 54.8% correction frequency in HEK293T/17 cells. We also applied the universal pegRNA to correct endogenous KRAS mutations in human cancer cells and found that G13D KRAS mutation was successfully corrected to wild-type KRAS sequences with up to 40.6% correction frequency without indel mutations. We propose prime editing with the universal pegRNA as a 'one-to-many' potential therapeutic strategy for KRAS oncogene variants.
Collapse
Affiliation(s)
- Gayoung Jang
- Department of Cell and Genetic Engineering, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jiyeon Kweon
- Department of Cell and Genetic Engineering, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yongsub Kim
- Department of Cell and Genetic Engineering, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
59
|
Ramalingam PS, Priyadharshini A, Emerson IA, Arumugam S. Potential biomarkers uncovered by bioinformatics analysis in sotorasib resistant-pancreatic ductal adenocarcinoma. Front Med (Lausanne) 2023; 10:1107128. [PMID: 37396909 PMCID: PMC10310804 DOI: 10.3389/fmed.2023.1107128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/11/2023] [Indexed: 07/04/2023] Open
Abstract
Background Mutant KRAS-induced tumorigenesis is prevalent in lung, colon, and pancreatic ductal adenocarcinomas. For the past 3 decades, KRAS mutants seem undruggable due to their high-affinity GTP-binding pocket and smooth surface. Structure-based drug design helped in the design and development of first-in-class KRAS G12C inhibitor sotorasib (AMG 510) which was then approved by the FDA. Recent reports state that AMG 510 is becoming resistant in non-small-cell lung cancer (NSCLC), pancreatic ductal adenocarcinoma (PDAC), and lung adenocarcinoma patients, and the crucial drivers involved in this resistance mechanism are unknown. Methods In recent years, RNA-sequencing (RNA-seq) data analysis has become a functional tool for profiling gene expression. The present study was designed to find the crucial biomarkers involved in the sotorasib (AMG 510) resistance in KRAS G12C-mutant MIA-PaCa2 cell pancreatic ductal adenocarcinoma cells. Initially, the GSE dataset was retrieved from NCBI GEO, pre-processed, and then subjected to differentially expressed gene (DEG) analysis using the limma package. Then the identified DEGs were subjected to protein-protein interaction (PPI) using the STRING database, followed by cluster analysis and hub gene analysis, which resulted in the identification of probable markers. Results Furthermore, the enrichment and survival analysis revealed that the small unit ribosomal protein (RP) RPS3 is the crucial biomarker of the AMG 510 resistance in KRAS G12C-mutant MIA-PaCa2 cell pancreatic ductal adenocarcinoma cells. Conclusion Finally, we conclude that RPS3 is a crucial biomarker in sotorasib resistance which evades apoptosis by MDM2/4 interaction. We also suggest that the combinatorial treatment of sotorasib and RNA polymerase I machinery inhibitors could be a possible strategy to overcome resistance and should be studied in in vitro and in vivo settings in near future.
Collapse
Affiliation(s)
| | - Annadurai Priyadharshini
- Bioinformatics Programming Laboratory, Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Isaac Arnold Emerson
- Bioinformatics Programming Laboratory, Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Sivakumar Arumugam
- Protein Engineering Lab, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
60
|
Gray JE, Hsu H, Younan D, Suri G, Chia V, Spira A, Johnson M. Real-world outcomes in patients with KRAS G12C-mutated advanced non-small cell lung cancer treated with docetaxel in second-line or beyond. Lung Cancer 2023; 181:107260. [PMID: 37285629 DOI: 10.1016/j.lungcan.2023.107260] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/09/2023]
Abstract
INTRODUCTION The KRAS G12C mutation has recently become a druggable target in non-small cell lung cancer (NSCLC). In this observational study, we present real-world clinicopathological characteristics, treatment patterns, and survival outcomes data in patients with KRAS mutation-positive advanced NSCLC (aNSCLC), including those with KRAS G12C and KRAS non-G12C mutations, who received docetaxel as standard-of-care treatment in the second-line and beyond (2L+). METHODS US-based electronic health record-derived de-identified databases were used to assess clinicopathological characteristics and outcomes in adult aNSCLC patients with KRAS mutations treated with 2L+ docetaxel between January 1, 2011, and March 31, 2021. The primary endpoints were median real-world overall survival OS (rwOS) and median real-world progression-free survival (rwPFS), which were estimated in 2L, third-line, fourth-line, and 2L+ analysis sets among patients who had a 6-month minimum opportunity for follow-up and were not taking a clinical trial drug. RESULTS Of the 677 patients with KRAS-mutant aNSCLC (KRAS mutant cohort) treated with 2L+ docetaxel, 295 (43.6%) had KRAS G12C mutation (KRAS G12C cohort) and 382 (56.4%) had KRAS non-G12C mutation (KRAS non-G12C cohort). Across all cohorts, approximately 47%, 35%, 14-15%, and 6-9% of patients received 2L, third-line, fourth-line, and fifth- or later-line docetaxel, respectively. In the KRAS G12C cohort, ∼68% of patients were treated with a PD-1/PD-L1 inhibitor prior to 2L+ docetaxel. Most 2L+ docetaxel regimens in the KRAS G12C cohort were combinations (59.5%), primarily with ramucirumab (45.2%). In the KRAS G12C cohort, the median rwOS and median rwPFS after 2L+ docetaxel were 6.0 (95% CI, 4.9-7.1) and 3.4 (95% CI, 2.7-4.2) months, respectively, with similar trends observed in other cohorts and lines of therapy. CONCLUSIONS Real-world outcomes were poor in patients with KRAS G12C-mutated aNSCLC treated with 2L+ docetaxel. Targeted and more efficacious treatment options in these patients are warranted.
Collapse
Affiliation(s)
- Jhanelle E Gray
- Department of Thoracic Oncology, Moffitt Cancer Center, 12902 Magnolia Dr, Tampa, FL 33612, USA.
| | - Hil Hsu
- Center for Observational Research, Amgen Inc., 1 Amgen Center Dr, Thousand Oaks, CA 91320, USA
| | - Diana Younan
- Center for Observational Research, Amgen Inc., 1 Amgen Center Dr, Thousand Oaks, CA 91320, USA
| | - Gaurav Suri
- Health Economics and Outcomes Research, Amgen Inc., 4 Uxbridge Business Park, Sanderson Road Uxbridge UB8 1DH, UK
| | - Victoria Chia
- Center for Observational Research, Amgen Inc., 1 Amgen Center Dr, Thousand Oaks, CA 91320, USA
| | - Alexander Spira
- Virginia Cancer Specialists, 8503 Arlington Blvd Suite 400, Fairfax, VA 22031, USA; US Oncology Research, The Woodlands, TX 77380, USA; Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Melissa Johnson
- Sarah Cannon Research Institute at Tennessee Oncology, Nashville, TN 37203, USA
| |
Collapse
|
61
|
Yin G, Huang J, Petela J, Jiang H, Zhang Y, Gong S, Wu J, Liu B, Shi J, Gao Y. Targeting small GTPases: emerging grasps on previously untamable targets, pioneered by KRAS. Signal Transduct Target Ther 2023; 8:212. [PMID: 37221195 DOI: 10.1038/s41392-023-01441-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/28/2023] [Accepted: 04/14/2023] [Indexed: 05/25/2023] Open
Abstract
Small GTPases including Ras, Rho, Rab, Arf, and Ran are omnipresent molecular switches in regulating key cellular functions. Their dysregulation is a therapeutic target for tumors, neurodegeneration, cardiomyopathies, and infection. However, small GTPases have been historically recognized as "undruggable". Targeting KRAS, one of the most frequently mutated oncogenes, has only come into reality in the last decade due to the development of breakthrough strategies such as fragment-based screening, covalent ligands, macromolecule inhibitors, and PROTACs. Two KRASG12C covalent inhibitors have obtained accelerated approval for treating KRASG12C mutant lung cancer, and allele-specific hotspot mutations on G12D/S/R have been demonstrated as viable targets. New methods of targeting KRAS are quickly evolving, including transcription, immunogenic neoepitopes, and combinatory targeting with immunotherapy. Nevertheless, the vast majority of small GTPases and hotspot mutations remain elusive, and clinical resistance to G12C inhibitors poses new challenges. In this article, we summarize diversified biological functions, shared structural properties, and complex regulatory mechanisms of small GTPases and their relationships with human diseases. Furthermore, we review the status of drug discovery for targeting small GTPases and the most recent strategic progress focused on targeting KRAS. The discovery of new regulatory mechanisms and development of targeting approaches will together promote drug discovery for small GTPases.
Collapse
Affiliation(s)
- Guowei Yin
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Jing Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Johnny Petela
- Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | - Hongmei Jiang
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yuetong Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Siqi Gong
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jiaxin Wu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Bei Liu
- National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing, 100871, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology, Chengdu, 610072, China.
| | - Yijun Gao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
62
|
Haley RM, Chan A, Billingsley MM, Gong N, Padilla MS, Kim EH, Wang HH, Yin D, Wangensteen KJ, Tsourkas A, Mitchell MJ. Lipid Nanoparticle Delivery of Small Proteins for Potent In Vivo RAS Inhibition. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21877-21892. [PMID: 37115558 PMCID: PMC10727849 DOI: 10.1021/acsami.3c01501] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Mutated RAS proteins are potent oncogenic drivers and have long been considered "undruggable". While RAS-targeting therapies have recently shown promise, there remains a clinical need for RAS inhibitors with more diverse targets. Small proteins represent a potential new therapeutic option, including K27, a designed ankyrin repeat protein (DARPin) engineered to inhibit RAS. However, K27 functions intracellularly and is incapable of entering the cytosol on its own, currently limiting its utility. To overcome this barrier, we have engineered a lipid nanoparticle (LNP) platform for potent delivery of functional K27-D30─a charge-modified version of the protein─intracellularly in vitro and in vivo. This system efficiently encapsulates charge-modified proteins, facilitates delivery in up to 90% of cells in vitro, and maintains potency after at least 45 days of storage. In vivo, these LNPs deliver K27-D30 to the cytosol of cancerous cells in the liver, inhibiting RAS-driven growth and ultimately reducing tumor load in an HTVI-induced mouse model of hepatocellular carcinoma. This work shows that K27 holds promise as a new cancer therapeutic when delivered using this LNP platform. Furthermore, this technology has the potential to broaden the use of LNPs to include new cargo types─beyond RNA─for diverse therapeutic applications.
Collapse
Affiliation(s)
- Rebecca M. Haley
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Alexander Chan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Ningqiang Gong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Marshall S. Padilla
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Emily H. Kim
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania
| | - Hejia Henry Wang
- Department of Biochemistry and Molecular Biophysics, University of Pennsylvania
| | - Dingzi Yin
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55902
| | - Kirk J. Wangensteen
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55902
| | - Andrew Tsourkas
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Michael J. Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
63
|
Guo MZ, Marrone KA, Spira A, Rosner S. Adagrasib: a novel inhibitor for KRASG12C-mutated non-small-cell lung cancer. Future Oncol 2023. [PMID: 37133216 DOI: 10.2217/fon-2022-1106] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
Adagrasib is a recently US FDA-approved novel KRASG12C targeted therapy with clinical efficacy in patients with advanced, pretreated KRASG12C-mutated non-small-cell lung cancer. KRYSTAL-I reported an objective response rate of 42.9% with median duration of response of 8.5 months. Treatment-related adverse events were primarily gastrointestinal and occurred in 97.4% of patients, with grade 3+ treatment-related adverse events occurring in 44.8% of patients. This review details the preclinical and clinical data for adagrasib in the treatment of non-small-cell lung cancer. We also outline practical clinical administration guidelines for this novel therapy, including management of toxicities. Finally, we discuss the implications of resistance mechanisms, summarize other KRASG12C inhibitors currently in development and outline future directions for adagrasib-based combination therapies.
Collapse
Affiliation(s)
- Matthew Z Guo
- Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Kristen A Marrone
- Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Alexander Spira
- Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
- Virginia Cancer Specialists Research Institute, Fairfax, VA, USA
- US Oncology Research, The Woodlands, TX, USA
- NEXT Oncology, San Antonio, TX, USA
| | - Samuel Rosner
- Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| |
Collapse
|
64
|
Harwood SJ, Smith CR, Lawson JD, Ketcham JM. Selected Approaches to Disrupting Protein-Protein Interactions within the MAPK/RAS Pathway. Int J Mol Sci 2023; 24:ijms24087373. [PMID: 37108538 PMCID: PMC10139024 DOI: 10.3390/ijms24087373] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Within the MAPK/RAS pathway, there exists a plethora of protein-protein interactions (PPIs). For many years, scientists have focused efforts on drugging KRAS and its effectors in hopes to provide much needed therapies for patients with KRAS-mutant driven cancers. In this review, we focus on recent strategies to inhibit RAS-signaling via disrupting PPIs associated with SOS1, RAF, PDEδ, Grb2, and RAS.
Collapse
Affiliation(s)
| | | | - J David Lawson
- Mirati Therapeutics, 3545 Cray Court, San Diego, CA 92121, USA
| | - John M Ketcham
- Mirati Therapeutics, 3545 Cray Court, San Diego, CA 92121, USA
| |
Collapse
|
65
|
Kung H, Yu J. Targeted therapy for pancreatic ductal adenocarcinoma: Mechanisms and clinical study. MedComm (Beijing) 2023; 4:e216. [PMID: 36814688 PMCID: PMC9939368 DOI: 10.1002/mco2.216] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 02/21/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive and lethal malignancy with a high rate of recurrence and a dismal 5-year survival rate. Contributing to the poor prognosis of PDAC is the lack of early detection, a complex network of signaling pathways and molecular mechanisms, a dense and desmoplastic stroma, and an immunosuppressive tumor microenvironment. A recent shift toward a neoadjuvant approach to treating PDAC has been sparked by the numerous benefits neoadjuvant therapy (NAT) has to offer compared with upfront surgery. However, certain aspects of NAT against PDAC, including the optimal regimen, the use of radiotherapy, and the selection of patients that would benefit from NAT, have yet to be fully elucidated. This review describes the major signaling pathways and molecular mechanisms involved in PDAC initiation and progression in addition to the immunosuppressive tumor microenvironment of PDAC. We then review current guidelines, ongoing research, and future research directions on the use of NAT based on randomized clinical trials and other studies. Finally, the current use of and research regarding targeted therapy for PDAC are examined. This review bridges the molecular understanding of PDAC with its clinical significance, development of novel therapies, and shifting directions in treatment paradigm.
Collapse
Affiliation(s)
- Heng‐Chung Kung
- Krieger School of Arts and SciencesJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Jun Yu
- Departments of Medicine and OncologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
66
|
Ibrahim R, Khoury R, Ibrahim T, Assi T, Cesne AL. KRAS G12C mutation: from black sheep to key player in pancreatic cancer treatment. Future Oncol 2023; 19:485-488. [PMID: 36946253 DOI: 10.2217/fon-2023-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Affiliation(s)
- Rebecca Ibrahim
- Division of International Patients Care, Gustave Roussy Cancer Campus, Villejuif, France
| | - Rita Khoury
- Division of International Patients Care, Gustave Roussy Cancer Campus, Villejuif, France
| | - Tony Ibrahim
- Division of International Patients Care, Gustave Roussy Cancer Campus, Villejuif, France
| | - Tarek Assi
- Division of International Patients Care, Gustave Roussy Cancer Campus, Villejuif, France
| | - Axel Le Cesne
- Division of International Patients Care, Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
67
|
Rathod LS, Dabhade PS, Mokale SN. Recent progress in targeting KRAS mutant cancers with covalent G12C-specific inhibitors. Drug Discov Today 2023; 28:103557. [PMID: 36934967 DOI: 10.1016/j.drudis.2023.103557] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/03/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
KRASG12C has been identified as a potential target in the treatment of solid tumors. One of the most often transformed proteins in human cancers is the small Kirsten rat sarcoma homolog (KRAS) subunit of GTPase, which is typically the oncogene driver. KRASG12C is altered to keep the protein in an active GTP-binding form. KRAS has long been considered an 'undrugable' target, but sustained research efforts focusing on the KRASG12C mutant cysteine have achieved promising results. For example, the US Food and Drug Administration (FDA) has passed emergency approval for sotorasib and adagrasib for the treatment of metastatic lung cancer. Such achievements have sparked several original approaches to KRASG12C. In this review, we focus on the design, development, and history of KRASG12C inhibitors.
Collapse
Affiliation(s)
- Lala S Rathod
- Y.B. Chavan College of Pharmacy, Aurangabad, Maharashtra Pin-431001, India
| | - Pratap S Dabhade
- Y.B. Chavan College of Pharmacy, Aurangabad, Maharashtra Pin-431001, India
| | - Santosh N Mokale
- Y.B. Chavan College of Pharmacy, Aurangabad, Maharashtra Pin-431001, India.
| |
Collapse
|
68
|
Watterson A, Coelho MA. Cancer immune evasion through KRAS and PD-L1 and potential therapeutic interventions. Cell Commun Signal 2023; 21:45. [PMID: 36864508 PMCID: PMC9979509 DOI: 10.1186/s12964-023-01063-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/31/2023] [Indexed: 03/04/2023] Open
Abstract
Oncogenic driver mutations have implications that extend beyond cancer cells themselves. Aberrant tumour cell signalling has various effects on the tumour microenvironment and anti-tumour immunity, with important consequences for therapy response and resistance. We provide an overview of how mutant RAS, one of the most prevalent oncogenic drivers in cancer, can instigate immune evasion programs at the tumour cell level and through remodelling interactions with the innate and adaptive immune cell compartments. Finally, we describe how immune evasion networks focused on RAS, and the immune checkpoint molecule PD-L1 can be disrupted through therapeutic intervention, and discuss potential strategies for combinatorial treatment. Video abstract.
Collapse
Affiliation(s)
- Alex Watterson
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK.,Open Targets, Cambridge, UK
| | - Matthew A Coelho
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK. .,Open Targets, Cambridge, UK.
| |
Collapse
|
69
|
Eliminating oncogenic RAS: back to the future at the drawing board. Biochem Soc Trans 2023; 51:447-456. [PMID: 36688434 PMCID: PMC9987992 DOI: 10.1042/bst20221343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/24/2023]
Abstract
RAS drug development has made enormous strides in the past ten years, with the first direct KRAS inhibitor being approved in 2021. However, despite the clinical success of covalent KRAS-G12C inhibitors, we are immediately confronted with resistances as commonly found with targeted drugs. Previously believed to be undruggable due to its lack of obvious druggable pockets, a couple of new approaches to hit this much feared oncogene have now been carved out. We here concisely review these approaches to directly target four druggable sites of RAS from various angles. Our analysis focuses on the lessons learnt during the development of allele-specific covalent and non-covalent RAS inhibitors, the potential of macromolecular binders to facilitate the discovery and validation of targetable sites on RAS and finally an outlook on a future that may engage more small molecule binders to become drugs. We foresee that the latter could happen mainly in two ways: First, non-covalent small molecule inhibitors may be derived from the development of covalent binders. Second, reversible small molecule binders could be utilized for novel targeting modalities, such as degraders of RAS. Provided that degraders eliminate RAS by recruiting differentially expressed E3-ligases, this approach could enable unprecedented tissue- or developmental stage-specific destruction of RAS with potential advantages for on-target toxicity. We conclude that novel creative ideas continue to be important to exterminate RAS in cancer and other RAS pathway-driven diseases, such as RASopathies.
Collapse
|
70
|
Zhao Z, Bohidar N, Bourne PE. Analysis of KRAS-Ligand Interaction Modes and Flexibilities Reveals the Binding Characteristics. J Chem Inf Model 2023; 63:1362-1370. [PMID: 36780612 DOI: 10.1021/acs.jcim.3c00097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
KRAS, a common human oncogene, has been recognized as a critical drug target in treating multiple cancers. After four decades of effort, one allosteric KRAS drug (Sotorasib) has been approved, inspiring more KRAS-targeted drug research. Here, we provide the features of KRAS binding pockets and ligand-binding characteristics of KRAS complexes using a structural systems pharmacology approach. Three distinct binding sites (conserved nucleotide-binding site, shallow Switch-I/II pocket, and allosteric Switch-II/α3 pocket) are characterized. Ligand-binding features are determined based on encoded KRAS-inhibitor interaction fingerprints. Finally, the flexibility of the three distinct binding sites to accommodate different potential ligands, based on MD simulation, is discussed. Collectively, these findings are intended to facilitate rational KRAS drug design.
Collapse
Affiliation(s)
- Zheng Zhao
- School of Data Science, University of Virginia, Charlottesville, Virginia 22904, United States.,Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Niraja Bohidar
- School of Data Science, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Philip E Bourne
- School of Data Science, University of Virginia, Charlottesville, Virginia 22904, United States.,Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
71
|
Li Y, Zhou H, Liu H, Gan Y, Zheng Y, Sheng J, Wang R. Development of Nitroso-Based Probes for Labeling and Regulation of RAS Proteins in Cancer Cells via Sequential Ene-Ligation and Oxime Condensation. J Org Chem 2023; 88:1762-1771. [PMID: 36691112 DOI: 10.1021/acs.joc.2c02922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Prenyl functionalities have been widely discovered in natural products, nucleic acids, and proteins with significant biological roles in both healthy and diseased cells. In this work, we develop a series of new nitroso-based probes for the labeling, enrichment, and regulation of prenylated RAS protein, which is highly associated with ∼20% of human cancers and used to be regarded as an "undruggable" target via a sequential ene-ligation and oxime condensation (SELOC) process. We found that these nitroso species can rapidly react with prenyl-containing molecules through ene-ligation and install a molecular tag for functional applications under physiological conditions. We first investigated this ligation process on two peptide models and demonstrated its labeling efficiency on various proteins such as myoglobin, lysozyme, RNase A, BSA, and HSP40. We further coupled this reactive platform with proteolysis-targeting chimera technology targeting to increase its efficiency and accuracy, as well as to expand its application range. Using the prenylated RAS protein as the model, we demonstrated that RAS could be efficiently decorated with our nitroso probes, which further condensate with oxime and rapidly react with a pomalidomide-containing hydroxylamine probe for protein degradation. As a result, the RAS protein in both HeLa and A549 cell lines has been determined to be efficiently degraded both in vitro and in vivo. This is the first case targeting post-translational modification other than ligand-protein interaction to degrade and regulate RAS proteins. We envision that our SELOC strategy will have great potential in studying the fundamental structures and functions of prenylated biomolecules and developing new drugs based on these unique cellular pathways.
Collapse
Affiliation(s)
- Yuanyuan Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hongling Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Huili Liu
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Youfang Gan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yaying Zheng
- Department of Chemistry, and The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Jia Sheng
- Department of Chemistry, and The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Rui Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong 518063, China
| |
Collapse
|
72
|
Musangile FY, Matsuzaki I, Iwamoto R, Sagan K, Nishikawa M, Mikasa Y, Takahashi Y, Kojima F, Hara I, Murata SI. Targeted Next-Generation Sequencing of Flat Urothelial Lesions Reveals Putative Pathobiological Pathways, Potential Biomarkers, and Rational Therapeutic Targets. Mod Pathol 2023; 36:100120. [PMID: 36812689 DOI: 10.1016/j.modpat.2023.100120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/05/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023]
Abstract
Flat urothelial lesions are controversial diagnostic and prognostic urologic entities whose importance relies mainly on their ability to progress to muscle-invasive tumors via urothelial carcinoma in situ (CIS). However, the carcinogenetic progression of preneoplastic flat urothelial lesions is not well established. Moreover, predictive biomarkers and therapeutic targets of the highly recurrent and aggressive urothelial CIS lesion are lacking. Using a targeted next-generation sequencing (NGS) panel of 17 genes directly involved in bladder cancer pathogenesis, we investigated alterations of genes and pathways with clinical and carcinogenic implications on 119 samples of flat urothelium, including normal urothelium (n = 7), reactive atypia (n = 10), atypia of unknown significance ( n = 34), dysplasia ( n = 23), and CIS (n = 45). The majority of the flat lesions were tumor-associated but grossly/microscopically or temporally separated from the main tumor. Mutations were compared across flat lesions and concerning the concomitant urothelial tumor. Associations between genomic mutations and recurrence after intravesical bacillus Calmette-Guerin treatment were estimated with Cox regression analysis. TERT promoter mutations were highly prevalent in intraurothelial lesions but not in the normal or reactive urothelium, suggesting that it is a critical driver mutation in urothelial tumorigenesis. We found that synchronous atypia of unknown significance-dysplasia-CIS lesions without concomitant papillary urothelial carcinomas had a similar genomic profile that differed from atypia of unknown significance-dysplasia lesions associated with papillary urothelial carcinomas, which harbored significantly more FGFR3, ARID1A, and PIK3CA mutations. KRAS G12C and ERBB2 S310F/Y mutations were exclusively detected in CIS and were associated with recurrence after bacillus Calmette-Guerin treatment (P = .0006 and P = .01, respectively). This targeted NGS study revealed critical mutations involved in the carcinogenetic progression of flat lesions with putative pathobiological pathways. Importantly, KRAS G12C and ERBB2 S310F/Y mutations were identified as potential prognostic and therapeutic biomarkers for urothelial carcinoma.
Collapse
Affiliation(s)
- Fidele Y Musangile
- Department of Human Pathology, Wakayama Medical University, Wakayama, Japan
| | - Ibu Matsuzaki
- Department of Human Pathology, Wakayama Medical University, Wakayama, Japan
| | - Ryuta Iwamoto
- Department of Human Pathology, Wakayama Medical University, Wakayama, Japan
| | - Kanako Sagan
- Department of Human Pathology, Wakayama Medical University, Wakayama, Japan
| | - Mizuki Nishikawa
- Department of Human Pathology, Wakayama Medical University, Wakayama, Japan
| | - Yurina Mikasa
- Department of Human Pathology, Wakayama Medical University, Wakayama, Japan
| | - Yuichi Takahashi
- Department of Human Pathology, Wakayama Medical University, Wakayama, Japan
| | - Fumiyoshi Kojima
- Department of Human Pathology, Wakayama Medical University, Wakayama, Japan
| | - Isao Hara
- Department of Urology, Wakayama Medical University, Wakayama, Japan
| | - Shin-Ichi Murata
- Department of Human Pathology, Wakayama Medical University, Wakayama, Japan.
| |
Collapse
|
73
|
Ciardiello D, Maiorano BA, Martinelli E. Targeting KRAS G12C in colorectal cancer: the beginning of a new era. ESMO Open 2023; 8:100745. [PMID: 36549128 PMCID: PMC9800313 DOI: 10.1016/j.esmoop.2022.100745] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 12/24/2022] Open
Abstract
RAS mutation is considered one of the most relevant oncogenic drivers in human cancers. Unfortunately, for more than three decades, RAS has been considered an undruggable target. Recently, the discovery of selective and potent KRASG12C inhibitors represented a light at the end of the tunnel. Indeed, sotorasib and adagrasib proved clinical activity in patients with refractory metastatic colorectal cancer harboring KRASG12C mutation; however, responses are lower than expected, suggesting the presence of intrinsic resistance. Consequently, novel combinatory strategies to disrupt the RAS signaling pathways are under clinical investigation. This review aims to discuss the current knowledge and novel routes of KRASG12C inhibition in metastatic colorectal cancer.
Collapse
Affiliation(s)
- D Ciardiello
- Oncology Unit, IRCCS Foundation Casa Sollievo della Sofferenza, San Giovanni Rotondo; Medical Oncology Unit, Department of Precision Medicine, 'Luigi Vanvitelli' University of Campania, Naples.
| | - B A Maiorano
- Oncology Unit, IRCCS Foundation Casa Sollievo della Sofferenza, San Giovanni Rotondo; Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, Rome, Italy
| | - E Martinelli
- Medical Oncology Unit, Department of Precision Medicine, 'Luigi Vanvitelli' University of Campania, Naples
| |
Collapse
|
74
|
Cardone C, De Stefano A, Rosati G, Cassata A, Silvestro L, Borrelli M, Di Gennaro E, Romano C, Nappi A, Zanaletti N, Foschini F, Casaretti R, Tatangelo F, Lastoria S, Raddi M, Bilancia D, Granata V, Setola S, Petrillo A, Vitagliano C, Gargiulo P, Arenare L, Febbraro A, Martinelli E, Ciardiello F, Delrio P, Budillon A, Piccirillo MC, Avallone A. Regorafenib monotherapy as second-line treatment of patients with RAS-mutant advanced colorectal cancer (STREAM): an academic, multicenter, single-arm, two-stage, phase II study. ESMO Open 2023; 8:100748. [PMID: 36603521 PMCID: PMC10024144 DOI: 10.1016/j.esmoop.2022.100748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Maintaining angiogenesis inhibition and switching the chemotherapy backbone represent the current second-line therapy in patients with RAS-mutant metastatic colorectal cancer (mCRC). Regorafenib, an oral multikinase inhibitor, prolonged overall survival (OS) in the chemorefractory setting. MATERIALS AND METHODS STREAM was an academic, multicenter, single-arm phase II trial, evaluating the activity of regorafenib in RAS-mutant mCRC, in terms of the rate of patients who were progression-free after 6 months from study entry (6mo-PF). Patients were pretreated with fluoropyrimidine, oxaliplatin, and bevacizumab. According to Simon's two-stage design, ≥18 patients 6mo-PF were needed in the overall population (N = 46). Secondary endpoints were safety, objective response rate (ORR), progression-free survival (PFS), and OS. Early metabolic response by [18F]2-fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography ([18F]-FDG PET/CT) scan was an exploratory endpoint. EudraCT Number: 2015-001105-13. RESULTS The number of patients 6mo-PF was 8/22 at the first stage and 14/46 in the overall population. The ORR was 10.9%, disease control rate was 54.6%, median (m)PFS was 3.6 months [95% confidence interval (CI) 1.9-6.7 months], mOS was 18.9 months (95% CI 10.3-35.3 months), and mPFS2 (from study entry to subsequent-line progression) was 13.3 months (95% CI 8.4-19.7 months). Long benefiter patients (>6mo-PF) significantly more often had a single metastatic site and lung-limited disease. No unexpected toxicity was reported. Grade ≥3 events occurred in 39.1% of patients, with hand-foot syndrome (13%), fatigue, and hyperbilirubinemia (6.5%) occurring mostly. Baseline metabolic assessment was associated with OS in the multivariate analysis, while early metabolic response was not associated with clinical outcomes. CONCLUSIONS The study did not meet its primary endpoint. However, regorafenib was well tolerated and did not preclude subsequent treatments. Patients with good prognostic features (single metastatic site and lung-limited disease) reported clinical benefit with regorafenib. The exploratory metabolic analysis suggests that baseline [18F]-FDG PET/CT might be useful to select patients with a favorable outcome. A chemotherapy-free interval with regorafenib was associated with durable disease control in a selected group of patients with favorable clinical characteristics.
Collapse
Affiliation(s)
- C Cardone
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy. https://twitter.com/clacardone
| | - A De Stefano
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy. https://twitter.com/alfdestefano
| | - G Rosati
- Medical Oncology Unit, S. Carlo Hospital, Potenza, Italy
| | - A Cassata
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - L Silvestro
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - M Borrelli
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - E Di Gennaro
- Experimental Pharmacology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - C Romano
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - A Nappi
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - N Zanaletti
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - F Foschini
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - R Casaretti
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - F Tatangelo
- Pathology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - S Lastoria
- Nuclear Medicine Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - M Raddi
- Nuclear Medicine Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - D Bilancia
- Medical Oncology Unit, S. Carlo Hospital, Potenza, Italy
| | - V Granata
- Radiology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - S Setola
- Radiology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - A Petrillo
- Radiology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - C Vitagliano
- Experimental Pharmacology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - P Gargiulo
- Clinical Trial Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - L Arenare
- Clinical Trial Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - A Febbraro
- Hospital Sacro Cuore di Gesu, Fatebenefratelli, Benevento, Italy
| | - E Martinelli
- Medical Oncology, Precision Medicine Department, University of Campania Luigi Vanvitelli, Naples, Italy. https://twitter.com/grikamartinelli
| | - F Ciardiello
- Medical Oncology, Precision Medicine Department, University of Campania Luigi Vanvitelli, Naples, Italy
| | - P Delrio
- Colorectal Oncological Surgery, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - A Budillon
- Experimental Pharmacology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy. https://twitter.com/AlfredoBudillon
| | - M C Piccirillo
- Clinical Trial Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - A Avallone
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy.
| |
Collapse
|
75
|
Li K, Huo Q, Li BY, Yokota H. The Double-Edged Proteins in Cancer Proteomes and the Generation of Induced Tumor-Suppressing Cells (iTSCs). Proteomes 2023; 11:5. [PMID: 36810561 PMCID: PMC9944087 DOI: 10.3390/proteomes11010005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Unlike a prevalent expectation that tumor cells secrete tumor-promoting proteins and stimulate the progression of neighboring tumor cells, accumulating evidence indicates that the role of tumor-secreted proteins is double-edged and context-dependent. Some of the oncogenic proteins in the cytoplasm and cell membranes, which are considered to promote the proliferation and migration of tumor cells, may inversely act as tumor-suppressing proteins in the extracellular domain. Furthermore, the action of tumor-secreted proteins by aggressive "super-fit" tumor cells can be different from those derived from "less-fit" tumor cells. Tumor cells that are exposed to chemotherapeutic agents could alter their secretory proteomes. Super-fit tumor cells tend to secrete tumor-suppressing proteins, while less-fit or chemotherapeutic agent-treated tumor cells may secrete tumor-promotive proteomes. Interestingly, proteomes derived from nontumor cells such as mesenchymal stem cells and peripheral blood mononuclear cells mostly share common features with tumor cell-derived proteomes in response to certain signals. This review introduces the double-sided functions of tumor-secreted proteins and describes the proposed underlying mechanism, which would possibly be based on cell competition.
Collapse
Affiliation(s)
- Kexin Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Qingji Huo
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Bai-Yan Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
| |
Collapse
|
76
|
De SK. Sotorasib: First Approved KRAS Mutation Inhibitor for the Treatment of Non-small Cell Lung Cancer. Curr Med Chem 2023; 30:1000-1002. [PMID: 36082871 DOI: 10.2174/0929867329666220907161505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 11/22/2022]
Affiliation(s)
- Surya K De
- Conju-probe, San Diego, California, USA.,Bharath University, Chennai, Tamil Nadu, 600126, India
| |
Collapse
|
77
|
Pandya PH, Jannu AJ, Bijangi-Vishehsaraei K, Dobrota E, Bailey BJ, Barghi F, Shannon HE, Riyahi N, Damayanti NP, Young C, Malko R, Justice R, Albright E, Sandusky GE, Wurtz LD, Collier CD, Marshall MS, Gallagher RI, Wulfkuhle JD, Petricoin EF, Coy K, Trowbridge M, Sinn AL, Renbarger JL, Ferguson MJ, Huang K, Zhang J, Saadatzadeh MR, Pollok KE. Integrative Multi-OMICs Identifies Therapeutic Response Biomarkers and Confirms Fidelity of Clinically Annotated, Serially Passaged Patient-Derived Xenografts Established from Primary and Metastatic Pediatric and AYA Solid Tumors. Cancers (Basel) 2022; 15:259. [PMID: 36612255 PMCID: PMC9818438 DOI: 10.3390/cancers15010259] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023] Open
Abstract
Establishment of clinically annotated, molecularly characterized, patient-derived xenografts (PDXs) from treatment-naïve and pretreated patients provides a platform to test precision genomics-guided therapies. An integrated multi-OMICS pipeline was developed to identify cancer-associated pathways and evaluate stability of molecular signatures in a panel of pediatric and AYA PDXs following serial passaging in mice. Original solid tumor samples and their corresponding PDXs were evaluated by whole-genome sequencing, RNA-seq, immunoblotting, pathway enrichment analyses, and the drug−gene interaction database to identify as well as cross-validate actionable targets in patients with sarcomas or Wilms tumors. While some divergence between original tumor and the respective PDX was evident, majority of alterations were not functionally impactful, and oncogenic pathway activation was maintained following serial passaging. CDK4/6 and BETs were prioritized as biomarkers of therapeutic response in osteosarcoma PDXs with pertinent molecular signatures. Inhibition of CDK4/6 or BETs decreased osteosarcoma PDX growth (two-way ANOVA, p < 0.05) confirming mechanistic involvement in growth. Linking patient treatment history with molecular and efficacy data in PDX will provide a strong rationale for targeted therapy and improve our understanding of which therapy is most beneficial in patients at diagnosis and in those already exposed to therapy.
Collapse
Affiliation(s)
- Pankita H. Pandya
- Department of Pediatrics, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Asha Jacob Jannu
- Department of Biostatistics & Health Data Science Indiana, University School of Medicine, Indianapolis, IN 46202, USA
| | - Khadijeh Bijangi-Vishehsaraei
- Department of Pediatrics, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Erika Dobrota
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Barbara J. Bailey
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Farinaz Barghi
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Harlan E. Shannon
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Niknam Riyahi
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nur P. Damayanti
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Courtney Young
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Rada Malko
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ryli Justice
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Eric Albright
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - George E. Sandusky
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - L. Daniel Wurtz
- Department of Orthopedics Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Christopher D. Collier
- Department of Orthopedics Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mark S. Marshall
- Department of Pediatrics, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Rosa I. Gallagher
- Center for Applied Proteomics and Molecular Medicine, Institute for Biomedical Innovation, George Mason University, Manassas, VA 20110, USA
| | - Julia D. Wulfkuhle
- Center for Applied Proteomics and Molecular Medicine, Institute for Biomedical Innovation, George Mason University, Manassas, VA 20110, USA
| | - Emanuel F. Petricoin
- Center for Applied Proteomics and Molecular Medicine, Institute for Biomedical Innovation, George Mason University, Manassas, VA 20110, USA
| | - Kathy Coy
- Preclinical Modeling and Therapeutics Core, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Melissa Trowbridge
- Preclinical Modeling and Therapeutics Core, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Anthony L. Sinn
- Preclinical Modeling and Therapeutics Core, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jamie L. Renbarger
- Department of Pediatrics, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Michael J. Ferguson
- Department of Pediatrics, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kun Huang
- Department of Biostatistics & Health Data Science Indiana, University School of Medicine, Indianapolis, IN 46202, USA
| | - Jie Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - M. Reza Saadatzadeh
- Department of Pediatrics, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Karen E. Pollok
- Department of Pediatrics, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
78
|
In Silico Study of the Acquired Resistance Caused by the Secondary Mutations of KRAS G12C Protein Using Long Time Molecular Dynamics Simulation and Markov State Model Analysis. Int J Mol Sci 2022; 23:ijms232213845. [PMID: 36430323 PMCID: PMC9694466 DOI: 10.3390/ijms232213845] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 11/12/2022] Open
Abstract
Kirsten rat sarcoma viral oncogene homolog (KRAS) is a small GTPase protein which plays an important role in the treatment of KRAS mutant cancers. The FDA-approved AMG510 and MRTX849 (phase III clinical trials) are two potent KRASG12C-selective inhibitors that target KRAS G12C. However, the drug resistance caused by the second-site mutation in KRAS has emerged, and the mechanisms of drug resistance at atom level are still unclear. To clarify the mechanisms of drug resistance, we conducted long time molecular dynamics simulations (75 μs in total) to study the structural and energetic features of KRAS G12C and its four drug resistant variants to inhibitors. The combined binding free energy calculation and protein-ligand interaction fingerprint revealed that these second-site mutations indeed caused KRAS to produce different degrees of resistance to AMG510 and MRTX849. Furthermore, Markov State Models and 2D-free energy landscapes analysis revealed the difference in conformational changes of mutated KRAS bound with and without inhibitors. Furthermore, the comparative analysis of these systems showed that there were differences in their allosteric signal pathways. These findings provide the molecular mechanism of drug resistance, which helps to guide novel KRAS G12C inhibitor design to overcome drug resistance.
Collapse
|
79
|
McAulay K, Bilsland A, Bon M. Reactivity of Covalent Fragments and Their Role in Fragment Based Drug Discovery. Pharmaceuticals (Basel) 2022; 15:1366. [PMID: 36355538 PMCID: PMC9694498 DOI: 10.3390/ph15111366] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 09/27/2023] Open
Abstract
Fragment based drug discovery has long been used for the identification of new ligands and interest in targeted covalent inhibitors has continued to grow in recent years, with high profile drugs such as osimertinib and sotorasib gaining FDA approval. It is therefore unsurprising that covalent fragment-based approaches have become popular and have recently led to the identification of novel targets and binding sites, as well as ligands for targets previously thought to be 'undruggable'. Understanding the properties of such covalent fragments is important, and characterizing and/or predicting reactivity can be highly useful. This review aims to discuss the requirements for an electrophilic fragment library and the importance of differing warhead reactivity. Successful case studies from the world of drug discovery are then be examined.
Collapse
Affiliation(s)
- Kirsten McAulay
- Cancer Research Horizons—Therapeutic Innovation, Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
- Centre for Targeted Protein Degradation, University of Dundee, Nethergate, Dundee DD1 4HN, UK
| | - Alan Bilsland
- Cancer Research Horizons—Therapeutic Innovation, Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Marta Bon
- Cancer Research Horizons—Therapeutic Innovation, Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
- Exscientia, The Schrödinger Building, Oxford Science Park, Oxford OX4 4GE, UK
| |
Collapse
|
80
|
Cascetta P, Marinello A, Lazzari C, Gregorc V, Planchard D, Bianco R, Normanno N, Morabito A. KRAS in NSCLC: State of the Art and Future Perspectives. Cancers (Basel) 2022; 14:5430. [PMID: 36358848 PMCID: PMC9656434 DOI: 10.3390/cancers14215430] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 07/30/2023] Open
Abstract
In NSCLC, KRAS mutations occur in up to 30% of all cases, most frequently at codon 12 and 13. KRAS mutations have been linked to adenocarcinoma histology, positive smoking history, and Caucasian ethnicity, although differences have been described across KRAS mutational variants subtypes. KRAS mutations often concur with other molecular alterations, notably TP53, STK11, and KEAP1, which could play an important role in treatment efficacy and patient outcomes. For many years, KRAS mutations have been considered undruggable mainly due to a high toxicity profile and low specificity of compounds. Sotorasib and adagrasib are novel KRAS inhibitors that recently gained FDA approval for pre-treated KRAS mutant NSCLC patients, and other molecules such as GDC-6036 are currently being investigated with promising results. Despite their approval, the efficacy of these drugs is lower than expected and progression among responders has been reported. Mechanisms of acquired resistance to anti-KRAS molecules typically involves either on target secondary mutations (e.g., G12, G13, Q61H, R68S, H95, Y96C, V8L) or off-target alterations. Ongoing trials are currently evaluating strategies for implementing efficacy and overcoming acquired resistance to these compounds. Finally, the efficacy of immune-checkpoint inhibitors still needs to be completely assessed and responses to anti-PD-1/PD-L1 agents may strongly depend on concomitant mutations.
Collapse
Affiliation(s)
- Priscilla Cascetta
- Department of Medical Oncology, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, 94850 Villejuif, France
| | - Arianna Marinello
- Department of Medical Oncology, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, 94850 Villejuif, France
- Department of Medical Oncology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Chiara Lazzari
- Department of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Turin, Italy
| | - Vanesa Gregorc
- Department of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Turin, Italy
| | - David Planchard
- Department of Medical Oncology, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, 94850 Villejuif, France
| | - Roberto Bianco
- Department of Clinical Medicine and Surgery, Oncology Division, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Nicola Normanno
- Cellular Biology and Biotherapy, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Via Mariano Semmola 53, 80131 Naples, Italy
| | - Alessandro Morabito
- Thoracic Medical Oncology, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Via Mariano Semmola 53, 80131 Naples, Italy
| |
Collapse
|
81
|
Zhang Z, Guiley KZ, Shokat KM. Chemical acylation of an acquired serine suppresses oncogenic signaling of K-Ras(G12S). Nat Chem Biol 2022; 18:1177-1183. [PMID: 35864332 PMCID: PMC9596369 DOI: 10.1038/s41589-022-01065-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/18/2022] [Indexed: 11/08/2022]
Abstract
Drugs that directly impede the function of driver oncogenes offer exceptional efficacy and a therapeutic window. The recently approved mutant selective small-molecule cysteine-reactive covalent inhibitor of the G12C mutant of K-Ras, sotorasib, provides a case in point. KRAS is the most frequently mutated proto-oncogene in human cancer, yet despite success targeting the G12C allele, targeted therapy for other hotspot mutants of KRAS has not been described. Here we report the discovery of small molecules that covalently target a G12S somatic mutation in K-Ras and suppress its oncogenic signaling. We show that these molecules are active in cells expressing K-Ras(G12S) but spare the wild-type protein. Our results provide a path to targeting a second somatic mutation in the oncogene KRAS by overcoming the weak nucleophilicity of an acquired serine residue. The chemistry we describe may serve as a basis for the selective targeting of other unactivated serines.
Collapse
Affiliation(s)
- Ziyang Zhang
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Keelan Z Guiley
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
| | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA, USA.
| |
Collapse
|
82
|
Bröker J, Waterson AG, Smethurst C, Kessler D, Böttcher J, Mayer M, Gmaschitz G, Phan J, Little A, Abbott JR, Sun Q, Gmachl M, Rudolph D, Arnhof H, Rumpel K, Savarese F, Gerstberger T, Mischerikow N, Treu M, Herdeis L, Wunberg T, Gollner A, Weinstabl H, Mantoulidis A, Krämer O, McConnell DB, W. Fesik S. Fragment Optimization of Reversible Binding to the Switch II Pocket on KRAS Leads to a Potent, In Vivo Active KRAS G12C Inhibitor. J Med Chem 2022; 65:14614-14629. [PMID: 36300829 PMCID: PMC9661478 DOI: 10.1021/acs.jmedchem.2c01120] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Activating mutations
in KRAS are the most frequent oncogenic alterations
in cancer. The oncogenic hotspot position 12, located at the lip of
the switch II pocket, offers a covalent attachment point for KRASG12C inhibitors. To date, KRASG12C inhibitors have
been discovered by first covalently binding to the cysteine at position
12 and then optimizing pocket binding. We report on the discovery
of the in vivo active KRASG12C inhibitor BI-0474 using
a different approach, in which small molecules that bind reversibly
to the switch II pocket were identified and then optimized for non-covalent
binding using structure-based design. Finally, the Michael acceptor
containing warhead was attached. Our approach offers not only an alternative
approach to discovering KRASG12C inhibitors but also provides
a starting point for the discovery of inhibitors against other oncogenic
KRAS mutants.
Collapse
Affiliation(s)
- Joachim Bröker
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Alex G. Waterson
- Department of Biochemistry, Vanderbilt University School of Medicine, 2215 Garland Avenue, 607 Light Hall, Nashville, Tennessee 37232-0146, United States
| | - Chris Smethurst
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Dirk Kessler
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Jark Böttcher
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Moriz Mayer
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Gerhard Gmaschitz
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Jason Phan
- Department of Biochemistry, Vanderbilt University School of Medicine, 2215 Garland Avenue, 607 Light Hall, Nashville, Tennessee 37232-0146, United States
| | - Andrew Little
- Department of Biochemistry, Vanderbilt University School of Medicine, 2215 Garland Avenue, 607 Light Hall, Nashville, Tennessee 37232-0146, United States
| | - Jason R. Abbott
- Department of Biochemistry, Vanderbilt University School of Medicine, 2215 Garland Avenue, 607 Light Hall, Nashville, Tennessee 37232-0146, United States
| | - Qi Sun
- Department of Biochemistry, Vanderbilt University School of Medicine, 2215 Garland Avenue, 607 Light Hall, Nashville, Tennessee 37232-0146, United States
| | - Michael Gmachl
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Dorothea Rudolph
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Heribert Arnhof
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Klaus Rumpel
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Fabio Savarese
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Thomas Gerstberger
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Nikolai Mischerikow
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Matthias Treu
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Lorenz Herdeis
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Tobias Wunberg
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Andreas Gollner
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Harald Weinstabl
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Andreas Mantoulidis
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Oliver Krämer
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Darryl B. McConnell
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Stephen W. Fesik
- Department of Biochemistry, Vanderbilt University School of Medicine, 2215 Garland Avenue, 607 Light Hall, Nashville, Tennessee 37232-0146, United States
| |
Collapse
|
83
|
Allison BD, Deng X, Li LS, Liang J, Mani NS, Ren P, Sales ZS. Selective Metalation of Functionalized Quinazolines to Enable Discovery and Advancement of Covalent KRAS Inhibitors. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Brett D. Allison
- Janssen Research and Development, LLC., 3210 Merryfield Row, San Diego, California 92121, United States
| | - Xiaohu Deng
- Wellspring Biosciences, 3033 Science Park Dr., Ste. 200, San Diego, California 92121, United States
| | - Lian-Sheng Li
- Wellspring Biosciences, 3033 Science Park Dr., Ste. 200, San Diego, California 92121, United States
| | - Jimmy Liang
- Janssen Research and Development, LLC., 3210 Merryfield Row, San Diego, California 92121, United States
| | - Neelakandha S. Mani
- Janssen Research and Development, LLC., 3210 Merryfield Row, San Diego, California 92121, United States
| | - Pingda Ren
- Wellspring Biosciences, 3033 Science Park Dr., Ste. 200, San Diego, California 92121, United States
| | - Zachary S. Sales
- Janssen Research and Development, LLC., 3210 Merryfield Row, San Diego, California 92121, United States
| |
Collapse
|
84
|
Cheng R, Lv X, Bu H, Xu Q, Wu J, Xie K, Tang J, Wang L, Zhuang J, Zhang Y, Zhang Y, Yan C, Lai Y. Design, synthesis, and evaluation of 4(1H)-quinolinone and urea derivatives as KRASG12C inhibitors with potent antitumor activity against KRAS-mutant non-small cell lung cancer. Eur J Med Chem 2022; 244:114808. [DOI: 10.1016/j.ejmech.2022.114808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/17/2022] [Accepted: 09/27/2022] [Indexed: 11/04/2022]
|
85
|
EREN KESKİN S, GÜZDOLU E, SERTDEMİR N, DEMİR G, SÜNNETÇİ AKKOYUNLU D, ÇİNE N, ÇABUK D, SAVLI H. Metastatik Kolorektal Kanserli Hastalarda KRAS/NRAS Gen Mutasyon Profilleri. KOCAELI ÜNIVERSITESI SAĞLIK BILIMLERI DERGISI 2022. [DOI: 10.30934/kusbed.1052876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Amaç: RAS genleri, Epidermal Büyüme Faktörü Reseptörü (EGFR) tarafından indüklenen RAS-MAPK Sinyal yolağının bir üyesidir. Bu yolaktaki genlerde meydana gelen mutasyonlar kanser gelişimini tetiklemektedir. Kolorektal kanserde (KRK), RAS genlerinde meydana gelen mutasyonlar EGFR hedefli tedaviye karşı direnç gelişimine neden olur. EGFR monoklonal antikorları, kemoterapötik ajanlar olarak metastatik kolorektal kanser tedavisinde yaygın şekilde kullanılmaktadır. KRAS mutasyonları KRK’nın 30-50%’sinde, NRAS mutasyonları ise 2-3%’ünde bulunur. Bu çalışmada, KRK’lı hastalarda KRAS/NRAS mutasyonlarını analiz etmeyi amaçladık.
Yöntem: EGFR-hedefli tedaviye direnç gösteren 100 metastatik KRK hastası, Real-Time Polimeraz Zincir Reaksiyonu yöntemi ile KRAS mutasyonu (ekzon 2, 3, 4) ve NRAS mutasyonu (ekzon 2, 3, 4) durumu için tarandı.
Bulgular: Bu çalışma sonucunda, KRAS mutasyonu oranı 48% ve NRAS mutasyonu oranı 1,92% olarak bulundu. En yaygın KRAS mutasyonları kodon 12’de saptandı. Kodon 12 mutasyonlarının dağılımı G12V (25%), G12D (23%), G12C (14,5%) olarak elde edildi.
Sonuç: Çalışmamızda saptanan KRAS ve NRAS mutasyon sıklıkları benzer raporlar ile uyumlu bulundu. Sonuçlarımız, RAS mutasyonlarının test edilmesinin EGFR-hedefli tedaviden fayda sağlayacak hastaları belirlemede hayati rolünü desteklemektedir.
Collapse
Affiliation(s)
- Seda EREN KESKİN
- KOCAELİ ÜNİVERSİTESİ, TIP FAKÜLTESİ, DAHİLİ TIP BİLİMLERİ BÖLÜMÜ, TIBBİ GENETİK ANABİLİM DALI
| | - Eda GÜZDOLU
- KOCAELİ ÜNİVERSİTESİ, SAĞLIK BİLİMLERİ ENSTİTÜSÜ
| | | | - Gülhan DEMİR
- KOCAELİ ÜNİVERSİTESİ, SAĞLIK BİLİMLERİ ENSTİTÜSÜ, TIBBİ GENETİK VE MOLEKÜLER BİYOLOJİ ANABİLİM DALI
| | | | - Naci ÇİNE
- KOCAELİ ÜNİVERSİTESİ, TIP FAKÜLTESİ, DAHİLİ TIP BİLİMLERİ BÖLÜMÜ, TIBBİ GENETİK ANABİLİM DALI
| | - Devrim ÇABUK
- KOCAELİ ÜNİVERSİTESİ, TIP FAKÜLTESİ, DAHİLİ TIP BİLİMLERİ BÖLÜMÜ, İÇ HASTALIKLARI ANABİLİM DALI, TIBBİ ONKOLOJİ BİLİM DALI
| | - Hakan SAVLI
- KOCAELİ ÜNİVERSİTESİ, SAĞLIK BİLİMLERİ ENSTİTÜSÜ, TIBBİ GENETİK VE MOLEKÜLER BİYOLOJİ ANABİLİM DALI
| |
Collapse
|
86
|
Zhang Z, Morstein J, Ecker AK, Guiley KZ, Shokat KM. Chemoselective Covalent Modification of K-Ras(G12R) with a Small Molecule Electrophile. J Am Chem Soc 2022; 144:15916-15921. [PMID: 36001446 PMCID: PMC9460778 DOI: 10.1021/jacs.2c05377] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
![]()
KRAS mutations are one of the most common
oncogenic
drivers in human cancer. While small molecule inhibitors for the G12C
mutant have been successfully developed, allele-specific inhibition
for other KRAS hotspot mutants remains challenging.
Here we report the discovery of covalent chemical ligands for the
common oncogenic mutant K-Ras(G12R). These ligands bind in the Switch
II pocket and irreversibly react with the mutant arginine residue.
An X-ray crystal structure reveals an imidazolium condensation product
formed between the α,β-diketoamide ligand and the ε-
and η-nitrogens of arginine 12. Our results show that arginine
residues can be selectively targeted with small molecule electrophiles
despite their weak nucleophilicity and provide the basis for the development
of mutant-specific therapies for K-Ras(G12R)-driven cancer.
Collapse
Affiliation(s)
- Ziyang Zhang
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California San Francisco, San Francisco, California 94158, United States.,Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Johannes Morstein
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California San Francisco, San Francisco, California 94158, United States
| | - Andrew K Ecker
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California San Francisco, San Francisco, California 94158, United States
| | - Keelan Z Guiley
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California San Francisco, San Francisco, California 94158, United States
| | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
87
|
Wood LD, Canto MI, Jaffee EM, Simeone DM. Pancreatic Cancer: Pathogenesis, Screening, Diagnosis, and Treatment. Gastroenterology 2022; 163:386-402.e1. [PMID: 35398344 PMCID: PMC9516440 DOI: 10.1053/j.gastro.2022.03.056] [Citation(s) in RCA: 296] [Impact Index Per Article: 148.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/13/2022] [Accepted: 03/25/2022] [Indexed: 12/13/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a clinically challenging cancer, due to both its late stage at diagnosis and its resistance to chemotherapy. However, recent advances in our understanding of the biology of PDAC have revealed new opportunities for early detection and targeted therapy of PDAC. In this review, we discuss the pathogenesis of PDAC, including molecular alterations in tumor cells, cellular alterations in the tumor microenvironment, and population-level risk factors. We review the current status of surveillance and early detection of PDAC, including populations at high risk and screening approaches. We outline the diagnostic approach to PDAC and highlight key treatment considerations, including how therapeutic approaches change with disease stage and targetable subtypes of PDAC. Recent years have seen significant improvements in our approaches to detect and treat PDAC, but large-scale, coordinated efforts will be needed to maximize the clinical impact for patients and improve overall survival.
Collapse
Affiliation(s)
- Laura D Wood
- Departments of Pathology and Oncology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Marcia Irene Canto
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth M Jaffee
- Sidney Kimmel Cancer Center, Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Diane M Simeone
- Departments of Surgery and Pathology, Perlmutter Cancer Center, NYU Langone Health, New York, New York
| |
Collapse
|
88
|
Wadood A, Ajmal A, Rehman AU. Strategies of targeting KRAS, challenging drug target. Curr Pharm Des 2022; 28:1897-1901. [PMID: 35524675 DOI: 10.2174/1381612828666220506144046] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/18/2022] [Indexed: 11/22/2022]
Abstract
In the developed world, cancer is the most common cause of death. Among the 36 human genes of the RAS family, KRAS, NRAS, and HRAS play a prominent role in human cancer. KRAS belongs to the Rassuperfamily of proteins and is a small GTPase signal transduction protein. Among the RAS isoform, KRAS is the dominant mutant that induced approximately 86% of the RAS mutations. The most frequently mutated KRAS isoform is KRAS4B, about 90% of pancreatic cancer, 30-40% of colon cancer, and 15 to 20% of lung cancers are caused by mutations KRAS4B isoform. Liver cancer, bladder cancer, breast cancer, and myeloid leukaemia are also caused by mutations in KRAS but are rare. Currently, no FDA-approved drugs are available for KRAS-driven cancer. As the RAS proteins lack a right pocket accessible to the chemical inhibitors, the cancer-causing mutant proteins are almost identical to their essential wild-type counterparts. Therefore, it was considered undruggable. The structure and function of new insights in RAS have changed this understanding and encouraged the development of many drug candidates. This review provides information about the different strategies of targeting KRAS, a challenging drug target that might be valuable for the scientific community.
Collapse
Affiliation(s)
- Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Amar Ajmal
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Ashfaq Ur Rehman
- Department of Pathophysiology Key Laboratory of Cell differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 20025, China
| |
Collapse
|
89
|
Ulaganathan VK. Membrane anchorage-induced (MAGIC) knock-down of non-synonymous point mutations. Chembiochem 2022; 23:e202100637. [PMID: 35352864 DOI: 10.1002/cbic.202100637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/24/2022] [Indexed: 11/08/2022]
Abstract
The promise of personalized medicine for monogenic and complex polygenic diseases depends on the availability of strategies for targeted inhibition of disease-associated polymorphic protein variants. A large majority of disease-causing genetic alterations are non-synonymous single nucleotide genetic variations (nsSNVs). Yet a general strategy for inhibiting the expression of nsSNVs without editing the human genome is currently lacking. Here, we reveal that upon intracellular delivery of lipid conjugated point mutation-specific monoclonal antibodies, a target-specific knockdown of gene expression at both mRNA and protein levels is observed. By harnessing the phenomenon of m embrane a nchorage i ndu c ed (MAGIC) knock-down of epitope-containing protein targets, we reveal a novel approach for inhibiting the expression of amino acid-altering point mutations. This approach opens up a new opportunity for the therapeutic inhibition of undruggable protein variants as well as paves the way for interrogating the nsSNVs in the human genome.
Collapse
Key Words
- membrane anchorage-induced knockdown, nsSNV, 18:0-14:0 PC, lipid-anchor, phospholipid-conjugated mAbs, SNP, SNV, genetic variants, allele varaints, rare variants, common variants, pathogenic mutations, point mutation knockdown, mRNA knockdown
Collapse
Affiliation(s)
- Vijay Kumar Ulaganathan
- University of Lorraine: Universite de Lorraine, NGERE Unit, Faculté de Médecine, Bâtiment C - 2ème étage, 54505, Nancy, FRANCE
| |
Collapse
|
90
|
Marshall CB, Ikura M. Hitting the hotspots. Nat Chem Biol 2022; 18:578-579. [DOI: 10.1038/s41589-022-01000-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|