51
|
Absence of Cryptosporidium hominis and dominance of zoonotic Cryptosporidium species in patients after Covid-19 restrictions in Auckland, New Zealand. Parasitology 2021; 148:1288-1292. [PMID: 34120663 PMCID: PMC8383192 DOI: 10.1017/s0031182021000974] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Coronavirus disease-2019 (Covid-19) nonpharmaceutical interventions have proven effective control measures for a range of respiratory illnesses throughout the world. These measures, which include isolation, stringent border controls, physical distancing and improved hygiene also have effects on other human pathogens, including parasitic enteric diseases such as cryptosporidiosis. Cryptosporidium infections in humans are almost entirely caused by two species: C. hominis, which is primarily transmitted from human to human, and Cryptosporidium parvum, which is mainly zoonotic. By monitoring Cryptosporidium species and subtype families in human cases of cryptosporidiosis before and after the introduction of Covid-19 control measures in New Zealand, we found C. hominis was completely absent after the first months of 2020 and has remained so until the beginning of 2021. Nevertheless, C. parvum has followed its typical transmission pattern and continues to be widely reported. We conclude that ~7 weeks of isolation during level 3 and 4 lockdown period interrupted the human to human transmission of C. hominis leaving only the primarily zoonotic transmission pathway used by C. parvum. Secondary anthroponotic transmission of C. parvum remains possible among close contacts of zoonotic cases. Ongoing 14-day quarantine measures for new arrivals to New Zealand have likely suppressed new incursions of C. hominis from overseas. Our findings suggest that C. hominis may be controlled or even eradicated through nonpharmaceutical interventions.
Collapse
|
52
|
O' Leary JK, Blake L, Corcoran GD, Sleator RD, Lucey B. A novel genotyping method for Cryptosporidium hominis. Exp Parasitol 2021; 225:108113. [PMID: 33992605 DOI: 10.1016/j.exppara.2021.108113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/04/2021] [Accepted: 05/06/2021] [Indexed: 12/27/2022]
Abstract
Cryptosporidiosis remains the leading protozoan induced cause of diarrhoea-associated mortality worldwide. Cryptosporidium hominis, the anthroponotically transmitted species within the Cryptosporidium genus, contributes significantly to the global burden of infection, accounting for the majority of clinical cases in many countries. This study applied high resolution melting analysis, a post-real-time PCR application, to the differentiation of six globally prevalent C. hominisgp60-subtypes. This novel method targeted three microsatellite, tandem repeat containing genetic markers, gp60, the genetic marker upon which current Cryptosporidium subtype nomenclature is based, MSB, and MSE, by which to differentiate between C. hominis isolates. This multi-locus approach successfully differentiated between all six C. hominisgp60-subtypes studied, some of which, such as IbA10G2, are known to exhibit global ubiquity. Thus, this method has the potential to be universally employed as a sensitive, cost effective and highly reproducible means to rapidly differentiate between C. hominisgp60-subtypes. Such a method would be of particular utility in epidemiological studies and outbreak scenarios, providing cost effective, clinically accessible alternative to DNA sequencing. The success of this preliminary study also supports further analysis of an expanded C. hominisgp60-subtype range and the potential expansion of the multi-locus panel in order to improve the discriminatory power of this approach.
Collapse
Affiliation(s)
- Jennifer K O' Leary
- Department of Biological Sciences, Munster Technological University, Bishopstown Campus, Cork, Ireland
| | - Liam Blake
- Department of Clinical Microbiology, Cork University Hospital, Wilton, Cork, Ireland
| | - Gerard D Corcoran
- Department of Clinical Microbiology, Cork University Hospital, Wilton, Cork, Ireland
| | - Roy D Sleator
- Department of Biological Sciences, Munster Technological University, Bishopstown Campus, Cork, Ireland.
| | - Brigid Lucey
- Department of Biological Sciences, Munster Technological University, Bishopstown Campus, Cork, Ireland
| |
Collapse
|
53
|
Lebbad M, Winiecka-Krusnell J, Stensvold CR, Beser J. High Diversity of Cryptosporidium Species and Subtypes Identified in Cryptosporidiosis Acquired in Sweden and Abroad. Pathogens 2021; 10:pathogens10050523. [PMID: 33926039 PMCID: PMC8147002 DOI: 10.3390/pathogens10050523] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 11/16/2022] Open
Abstract
The intestinal protozoan parasite Cryptosporidium is an important cause of diarrheal disease worldwide. The aim of this study was to expand the knowledge on the molecular epidemiology of human cryptosporidiosis in Sweden to better understand transmission patterns and potential zoonotic sources. Cryptosporidium-positive fecal samples were collected between January 2013 and December 2014 from 12 regional clinical microbiology laboratories in Sweden. Species and subtype determination was achieved using small subunit ribosomal RNA and 60 kDa glycoprotein gene analysis. Samples were available for 398 patients, of whom 250 (63%) and 138 (35%) had acquired the infection in Sweden and abroad, respectively. Species identification was successful for 95% (379/398) of the samples, revealing 12 species/genotypes: Cryptosporidium parvum (n = 299), C. hominis (n = 49), C. meleagridis (n = 8), C. cuniculus (n = 5), Cryptosporidium chipmunk genotype I (n = 5), C. felis (n = 4), C. erinacei (n = 2), C. ubiquitum (n = 2), and one each of C. suis, C. viatorum, C. ditrichi, and Cryptosporidium horse genotype. One patient was co-infected with C. parvum and C. hominis. Subtyping was successful for all species/genotypes, except for C. ditrichi, and revealed large diversity, with 29 subtype families (including 4 novel ones: C. parvum IIr, IIs, IIt, and Cryptosporidium horse genotype Vic) and 81 different subtypes. The most common subtype families were IIa (n = 164) and IId (n = 118) for C. parvum and Ib (n = 26) and Ia (n = 12) for C. hominis. Infections caused by the zoonotic C. parvum subtype families IIa and IId dominated both in patients infected in Sweden and abroad, while most C. hominis cases were travel-related. Infections caused by non-hominis and non-parvum species were quite common (8%) and equally represented in cases infected in Sweden and abroad.
Collapse
Affiliation(s)
- Marianne Lebbad
- Department of Microbiology, Public Health Agency of Sweden, 171 82 Solna, Sweden; (M.L.); (J.W.-K.)
| | | | - Christen Rune Stensvold
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, DK-2300 Copenhagen S, Denmark;
| | - Jessica Beser
- Department of Microbiology, Public Health Agency of Sweden, 171 82 Solna, Sweden; (M.L.); (J.W.-K.)
- Correspondence:
| |
Collapse
|
54
|
Smith RP, Newton K, Rimdap E, Wight A, Robinson G, Chalmers RM. Review of investigations of premises housing animals that were linked to human outbreaks of cryptosporidiosis in England and Wales between 2009 and 2019. Vet Rec 2021; 189:e246. [PMID: 33870515 DOI: 10.1002/vetr.246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 02/12/2021] [Accepted: 02/21/2021] [Indexed: 11/11/2022]
Abstract
BACKGROUND Cryptosporidium can be an important human health risk, predominantly causing gastroenteritis. With increased public attendance at commercial and open farms, there is a need to improve the understanding of Cryptosporidium risk on premises that are visited by the public. METHODS This study was designed to explore the animal premises-related and animal sampling-related data routinely collected, during 2009-2019, from human outbreak sampling investigations where animal contact was suggested as a source of Cryptosporidium. RESULTS The results from the 23 eligible investigations indicated a diverse population of animals on the premises and that sheep and cattle, including bottle feeding, were frequently identified as contacts made by the human cases on these premises. Faecal samples from cattle and sheep were found to have a relatively high proportion of positive results and frequently matched the Cryptosporidium species and strain identified in the outbreak cases. Generally, investigations where no positive samples were detected had fewer samples collected. CONCLUSION The findings support the advice to prioritise sampling of groups of animals which have been identified as being contacted by the human cases, and to use statistically valid sample size calculations for the number of samples to collect at each investigation.
Collapse
Affiliation(s)
- Richard P Smith
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Addlestone, Surrey, UK
| | - Katharine Newton
- Bacteriology Department, Animal and Plant Health Agency, Addlestone, Surrey, UK
| | - Emily Rimdap
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Addlestone, Surrey, UK
| | - Alan Wight
- Animal and Plant Health Agency - Starcross, Exeter, Devon, UK
| | - Guy Robinson
- Cryptosporidium Reference Unit, Public Health Wales, Microbiology and Health Protection, Singleton Hospital, Swansea, UK.,Swansea University Medical School, Swansea University, Swansea, UK
| | - Rachel M Chalmers
- Cryptosporidium Reference Unit, Public Health Wales, Microbiology and Health Protection, Singleton Hospital, Swansea, UK.,Swansea University Medical School, Swansea University, Swansea, UK
| |
Collapse
|
55
|
Braima K, Zahedi A, Egan S, Austen J, Xiao L, Feng Y, Witham B, Pingault N, Perera S, Oskam C, Reid S, Ryan U. Molecular analysis of cryptosporidiosis cases in Western Australia in 2019 and 2020 supports the occurrence of two swimming pool associated outbreaks and reveals the emergence of a rare C. hominis IbA12G3 subtype. INFECTION GENETICS AND EVOLUTION 2021; 92:104859. [PMID: 33848684 DOI: 10.1016/j.meegid.2021.104859] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/03/2021] [Accepted: 04/08/2021] [Indexed: 12/24/2022]
Abstract
Cryptosporidium is an important protozoan parasite and due to its resistance to chlorine is a major cause of swimming pool-associated gastroenteritis outbreaks. The present study combined contact tracing and molecular techniques to analyse cryptosporidiosis cases and outbreaks in Western Australia in 2019 and 2020. In the 2019 outbreak, subtyping at the 60 kDa glycoprotein (gp60) gene identified 89.0% (16/18) of samples were caused by the C. hominis IdA15G1 subtype. Amplicon next generation sequencing (NGS) at the gp60 locus identified five C. hominis IdA15G1 subtype samples that also had C. hominis IdA14 subtype DNA, while multi locus sequence typing (MLST) analysis on a subset (n = 14) of C. hominis samples identified three IdA15G1 samples with a 6 bp insertion at the end of the trinucleotide repeat region of the cp47 gene. In 2020, 88.0% (73/83) of samples typed were caused by the relatively rare C. hominis subtype IbA12G3. Four mixed infections were observed by NGS with three IdA15G1/ IdA14 mixtures and one C. parvum IIaA18G3R1 sample mixed with IIaA16G3R1. No genetic diversity using MLST was detected. Epidemiological and molecular data indicates that the outbreaks in 2019 and 2020 were each potentially from swimming pool point sources and a new C. hominis subtype IbA12G3 is emerging in Australia. The findings of the present study are important for understanding the introduction and transmission of rare Cryptosporidium subtypes to vulnerable populations.
Collapse
Affiliation(s)
- Kamil Braima
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia 6150, Australia.
| | - Alireza Zahedi
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia 6150, Australia
| | - Siobhon Egan
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia 6150, Australia
| | - Jill Austen
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia 6150, Australia
| | - Lihua Xiao
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yaoyu Feng
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Benjamin Witham
- OzFoodNet Communicable Disease Control Directorate, Perth, Western Australia, Australia
| | - Nevada Pingault
- OzFoodNet Communicable Disease Control Directorate, Perth, Western Australia, Australia
| | - Shalinie Perera
- Western Diagnostic Pathology, Perth, Western Australia 6154, Australia
| | - Charlotte Oskam
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia 6150, Australia
| | - Simon Reid
- School of Public Health, Faculty of Medicine, The University of Queensland, Herston, Queensland 4006, Australia
| | - Una Ryan
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia 6150, Australia
| |
Collapse
|
56
|
Iwashita H, Takemura T, Tokizawa A, Sugamoto T, Thiem VD, Nguyen TH, Pham TD, Pham AHQ, Doan HT, Tran NL, Yamashiro T. Molecular epidemiology of Cryptosporidium spp. in an agricultural area of northern Vietnam: A community survey. Parasitol Int 2021; 83:102341. [PMID: 33819572 DOI: 10.1016/j.parint.2021.102341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 10/21/2022]
Abstract
The purpose of this study was to investigate the occurrence of Cryptosporidium infection and the potential for transmission of Cryptosporidium spp. between animals and humans in northern Vietnam. A total of 2715 samples (2120 human diarrheal samples, 471 human non-diarrheal samples, and 124 animal stool samples) were collected through our community survey in an agricultural area. All samples were tested for Cryptosporidium spp. by direct immunofluorescence assay (DFA) using a fluorescent microscope. DNA extraction, PCR amplification of three genes (COWP, SSU-rRNA, and GP60), and sequencing analysis were performed to identify Cryptosporidium spp. Of 2715 samples, 15 samples (10 diarrheal samples, 2 non-diarrheal samples, and 3 animal stool samples) tested positive by PCR for the COWP gene. Three species of Cryptosporidium spp. were identified as C. canis (from six human diarrheal samples, two human non-diarrheal samples, and one dog sample), C. hominis (from four human diarrheal samples), and C. suis (from two pig samples) by sequencing the amplified COWP and/or SSU-rRNA genes. In terms of C. hominis, the GP60 subtype IeA12G3T3 was detected in all four human diarrheal samples. Although the number of positive samples was very small, our epidemiological data showed that the emerging pattern of each of the three species (C. canis, C. hominis, and C. suis) was different at this study site. While C. hominis and C. suis were only detected in human and pig samples, respectively, C. canis was detected in samples from both dogs and humans. We suspect that C. canis infections in humans at this study site may be due to environmental contamination with animal and human feces.
Collapse
Affiliation(s)
- Hanako Iwashita
- Department of International Affairs and Tropical Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan; Vietnam Research Station, Center for Infectious Disease Research in Asia and Africa, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki-shi, Nagasaki 852-8523, Japan.
| | - Taichiro Takemura
- Vietnam Research Station, Center for Infectious Disease Research in Asia and Africa, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki-shi, Nagasaki 852-8523, Japan
| | - Asako Tokizawa
- Vietnam Research Station, Center for Infectious Disease Research in Asia and Africa, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki-shi, Nagasaki 852-8523, Japan; Research Center for Child Mental Development, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu city, Shizuoka 431-3192, Japan
| | - Tetsuhiro Sugamoto
- International Programs, Japan Anti-Tuberculosis Association, 3-1-24 Matsuyama, Kiyose-shi, Tokyo 204-8533, Japan; Graduate School of International Health Development, Nagasaki University, 1-12-4 Sakamoto, Nagasaki-shi, Nagasaki 852-8523, Japan
| | - Vu Dinh Thiem
- National Institute of Hygiene and Epidemiology, No.1 Yersin Street, Hai Ba Trung District, Hanoi 10000, Vietnam
| | - Tuan Hai Nguyen
- National Institute of Hygiene and Epidemiology, No.1 Yersin Street, Hai Ba Trung District, Hanoi 10000, Vietnam; Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto Nagasaki City, Nagasaki 852-8523, Japan
| | - Tho Duc Pham
- Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto Nagasaki City, Nagasaki 852-8523, Japan; International Hospital Vinmec Times City, 458 Minh Khai, Vinh Tuy, Hai Ba Trung, Ha Noi, Vietnam
| | - Anh Hong Quynh Pham
- Vietnam Research Station, Center for Infectious Disease Research in Asia and Africa, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki-shi, Nagasaki 852-8523, Japan; Department of Biomedical Chemistry, Graduate of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hang Thi Doan
- Vietnam Research Station, Center for Infectious Disease Research in Asia and Africa, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki-shi, Nagasaki 852-8523, Japan; VITECH DEVELOPMENT CO., LTD, No. 13 Lot 1G Trung Yen Urban Area, Trung Hoa, Cau Giay, Hanoi, Vietnam
| | - Na Ly Tran
- Vietnam Research Station, Center for Infectious Disease Research in Asia and Africa, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki-shi, Nagasaki 852-8523, Japan; Division of Bio-Medical Science & Technology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Tetsu Yamashiro
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishiharacho, Okinawa 903-0215, Japan
| |
Collapse
|
57
|
Woschke A, Faber M, Stark K, Holtfreter M, Mockenhaupt F, Richter J, Regnath T, Sobottka I, Reiter-Owona I, Diefenbach A, Gosten-Heinrich P, Friesen J, Ignatius R, Aebischer T, Klotz C. Suitability of current typing procedures to identify epidemiologically linked human Giardia duodenalis isolates. PLoS Negl Trop Dis 2021; 15:e0009277. [PMID: 33764999 PMCID: PMC8023459 DOI: 10.1371/journal.pntd.0009277] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/06/2021] [Accepted: 02/26/2021] [Indexed: 12/26/2022] Open
Abstract
Background Giardia duodenalis is a leading cause of gastroenteritis worldwide. Humans are mainly infected by two different subtypes, i.e., assemblage A and B. Genotyping is hampered by allelic sequence heterozygosity (ASH) mainly in assemblage B, and by occurrence of mixed infections. Here we assessed the suitability of current genotyping protocols of G. duodenalis for epidemiological applications such as molecular tracing of transmission chains. Methodology/Principal findings Two G. duodenalis isolate collections, from an outpatient tropical medicine clinic and from several primary care laboratories, were characterized by assemblage-specific qPCR (TIF, CATH gene loci) and a common multi locus sequence typing (MLST; TPI, BG, GDH gene loci). Assemblage A isolates were further typed at additional loci (HCMP22547, CID1, RHP26, HCMP6372, DIS3, NEK15411). Of 175/202 (86.6%) patients the G. duodenalis assemblage could be identified: Assemblages A 25/175 (14.3%), B 115/175 (65.7%) and A+B mixed 35/175 (20.0%). By incorporating allelic sequence heterozygosity in the analysis, the three marker MLST correctly identified 6/9 (66,7%) and 4/5 (80.0%) consecutive samples from chronic assemblage B infections in the two collections, respectively, and identified a cluster of five independent patients carrying assemblage B parasites of identical MLST type. Extended MLST for assemblage A altogether identified 5/6 (83,3%) consecutive samples from chronic assemblage A infections and 15 novel genotypes. Based on the observed A+B mixed infections it is estimated that only 75% and 50% of assemblage A or B only cases represent single strain infections, respectively. We demonstrate that typing results are consistent with this prediction. Conclusions/Significance Typing of assemblage A and B isolates with resolution for epidemiological applications is possible but requires separate genotyping protocols. The high frequency of multiple infections and their impact on typing results are findings with immediate consequences for result interpretation in this field. Giardia duodenalis is a leading cause of gastroenteritis worldwide. Humans are mainly infected by the two different genetic subtypes, assemblage A and B. Molecular typing tools for epidemiological applications such as tracking transmission, attribution to a source and outbreak investigations have been developed and are highly desirable. However, to what degree the tetraploid genome with allelic sequence heterogeneity (ASH), and the frequent occurrence of mixed, assemblage A and B infections hamper performance is unclear. Here, we assessed the suitability of current genotyping protocols for deciphering the molecular epidemiology of G. duodenalis. Against a common reporting bias, we incorporated ASH in the analysis and we show that typing with resolution for epidemiological applications is possible for both, assemblage A and B isolates, but requires separate protocols. We also demonstrate how the high frequency of multiple infections overall impacts on typing results, which has immediate consequences for result interpretation in this field.
Collapse
Affiliation(s)
- Andreas Woschke
- Department of Infectious Diseases, Unit for Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
- Laboratory of Innate Immunity, Institute of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Mirko Faber
- Department for Infectious Disease Epidemiology, Gastrointestinal Infections, Zoonoses and Tropical Infections Unit, Robert Koch Institute, Berlin, Germany
| | - Klaus Stark
- Department for Infectious Disease Epidemiology, Gastrointestinal Infections, Zoonoses and Tropical Infections Unit, Robert Koch Institute, Berlin, Germany
| | - Martha Holtfreter
- Department of Gastroenterology, Hepatology and Infectiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Frank Mockenhaupt
- Institute of Tropical Medicine and International Health, Charité University Medicine and Berlin Institute of Health, Corporate member of Free University Berlin and Humboldt University Berlin, Berlin, Germany
| | - Joachim Richter
- Department of Gastroenterology, Hepatology and Infectiology, University Hospital Düsseldorf, Düsseldorf, Germany
- Institute of Tropical Medicine and International Health, Charité University Medicine and Berlin Institute of Health, Corporate member of Free University Berlin and Humboldt University Berlin, Berlin, Germany
| | | | - Ingo Sobottka
- LADR GmbH, Medizinisches Versorgungszentrum, Geesthacht, Germany
| | - Ingrid Reiter-Owona
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Clinic Bonn, Germany
| | - Andreas Diefenbach
- Laboratory of Innate Immunity, Institute of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
- Department of Microbiology and Hygiene, Labor Berlin, Charité - Vivantes GmbH, Berlin, Germany
| | - Petra Gosten-Heinrich
- Department of Infectious Diseases, Unit for Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | | | - Ralf Ignatius
- Laboratory of Innate Immunity, Institute of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
- MVZ Labor 28, Berlin, Germany
| | - Toni Aebischer
- Department of Infectious Diseases, Unit for Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Christian Klotz
- Department of Infectious Diseases, Unit for Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
- * E-mail:
| |
Collapse
|
58
|
Guo Y, Li N, Feng Y, Xiao L. Zoonotic parasites in farmed exotic animals in China: Implications to public health. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2021; 14:241-247. [PMID: 33898224 PMCID: PMC8056123 DOI: 10.1016/j.ijppaw.2021.02.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023]
Abstract
Several species of wild mammals are farmed in China as part of the rural development and poverty alleviation, including fur animals, bamboo rats, and macaque monkeys. Concerns have been raised on the potential dispersal of pathogens to humans and other farm animals brought in from native habitats. Numerous studies have been conducted on the genetic identity and public health potential of Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi in these newly farmed exotic animals. The data generated have shown a high prevalence of the pathogens in farmed wildlife, probably due to the stress from the short captivity and congregation of large numbers of susceptible animals. Host adaptation at species/genotype and subtype levels has reduced the potential for cross-species and zoonotic transmission of pathogens, but the farm environment appears to favor the transmission of some species, genotypes, and subtypes, with reduced pathogen diversity compared with their wild relatives. Most genotypes and subtypes of the pathogens detected appear to be brought in from their native habitats. A few of the subtypes have emerged as human pathogens. One Health measures should be developed to slow the dispersal of indigenous pathogens among farmed exotic animals and prevent their spillover to other farm animals and humans.
Collapse
Affiliation(s)
- Yaqiong Guo
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Na Li
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| |
Collapse
|
59
|
Small ruminants and zoonotic cryptosporidiosis. Parasitol Res 2021; 120:4189-4198. [PMID: 33712929 DOI: 10.1007/s00436-021-07116-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/04/2021] [Indexed: 12/19/2022]
Abstract
Sheep and goats are commonly infected with three Cryptosporidium species, including Cryptosporidium parvum, Cryptosporidium ubiquitum, and Cryptosporidium xiaoi, which differ from each in prevalence, geographic distribution, and public health importance. While C. parvum appears to be a dominant species in small ruminants in European countries, its occurrence in most African, Asian, and American countries appear to be limited. As a result, zoonotic infections due to contact with lambs and goat kids are common in European countries, leading to frequent reports of outbreaks of cryptosporidiosis on petting farms. In contrast, C. xiaoi is the dominant species elsewhere, and mostly does not infect humans. While C. ubiquitum is another zoonotic species, it occurs in sheep and goats at much lower frequency. Host adaptation appears to be present in both C. parvum and C. ubiquitum, consisting of several subtype families with different host preference. The host-adapted nature of C. parvum and C. ubiquitum has allowed the use of subtyping tools in tracking infection sources. This has led to the identification of geographic differences in the importance of small ruminants in epidemiology of human cryptosporidiosis. These tools have also been used effectively in linking zoonotic transmission of C. parvum between outbreak cases and the suspected animals. Further studies should be directly elucidating the reasons for differences in the distribution and public health importance of major Cryptosporidium species in sheep and goats.
Collapse
|
60
|
Betancourth S, Archaga O, Moncada W, Rodríguez V, Fontecha G. First Molecular Characterization of Cryptosporidium spp. in Patients Living with HIV in Honduras. Pathogens 2021; 10:pathogens10030336. [PMID: 33805766 PMCID: PMC8000384 DOI: 10.3390/pathogens10030336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/16/2021] [Accepted: 03/02/2021] [Indexed: 11/17/2022] Open
Abstract
Cryptosporidiosis is one of the most important causes of gastroenteritis in the world, especially in low- and middle-income countries. It is caused by the Apicomplexan parasite Cryptosporidium spp., and mainly affects children and immunocompromised people, in whom it can pose a serious threat to their health, or even be life threatening. In Honduras, there are no data on parasite species or on molecular diversity or Cryptosporidium subtypes. Therefore, a cross-sectional study was conducted between September 2019 and March 2020 for the molecular identification of Cryptosporidium spp. in 102 patients living with HIV who attended a national hospital in Tegucigalpa. Stool samples were analyzed by direct microscopy, acid-fast stained smears, and a rapid lateral flow immunochromatographic test. All samples that tested positive were molecularly analyzed to identify the species and subtype of the parasite using three different markers: gp60, cowp, and 18Sr. PCR products were also sequenced. Four out of 102 samples (3.92%) were positive for Cryptosporidiumparvum, and all were assigned to subtype IIa. These findings suggest a possible zoonotic transmission in this population.
Collapse
Affiliation(s)
- Sergio Betancourth
- Microbiology Research Institute, Universidad Nacional Autónoma de Honduras, Tegucigalpa 11101, Honduras; (S.B.); (O.A.)
| | - Osman Archaga
- Microbiology Research Institute, Universidad Nacional Autónoma de Honduras, Tegucigalpa 11101, Honduras; (S.B.); (O.A.)
| | - Wendy Moncada
- Servicio de Atención Integral para Pacientes que Viven con VIH/SIDA-Instituto Nacional Cardiopulmonar, Tegucigalpa 11101, Honduras; (W.M.); (V.R.)
| | - Vilma Rodríguez
- Servicio de Atención Integral para Pacientes que Viven con VIH/SIDA-Instituto Nacional Cardiopulmonar, Tegucigalpa 11101, Honduras; (W.M.); (V.R.)
| | - Gustavo Fontecha
- Microbiology Research Institute, Universidad Nacional Autónoma de Honduras, Tegucigalpa 11101, Honduras; (S.B.); (O.A.)
- Correspondence: ; Tel.: +504-33935443
| |
Collapse
|
61
|
Ashigbie PG, Shepherd S, Steiner KL, Amadi B, Aziz N, Manjunatha UH, Spector JM, Diagana TT, Kelly P. Use-case scenarios for an anti-Cryptosporidium therapeutic. PLoS Negl Trop Dis 2021; 15:e0009057. [PMID: 33705395 PMCID: PMC7951839 DOI: 10.1371/journal.pntd.0009057] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cryptosporidium is a widely distributed enteric parasite that has an increasingly appreciated pathogenic role, particularly in pediatric diarrhea. While cryptosporidiosis has likely affected humanity for millennia, its recent "emergence" is largely the result of discoveries made through major epidemiologic studies in the past decade. There is no vaccine, and the only approved medicine, nitazoxanide, has been shown to have efficacy limitations in several patient groups known to be at elevated risk of disease. In order to help frontline health workers, policymakers, and other stakeholders translate our current understanding of cryptosporidiosis into actionable guidance to address the disease, we sought to assess salient issues relating to clinical management of cryptosporidiosis drawing from a review of the literature and our own field-based practice. This exercise is meant to help inform health system strategies for improving access to current treatments, to highlight recent achievements and outstanding knowledge and clinical practice gaps, and to help guide research activities for new anti-Cryptosporidium therapies.
Collapse
Affiliation(s)
- Paul G. Ashigbie
- Novartis Institute for Tropical Diseases, Emeryville, California, United States of America
| | - Susan Shepherd
- Alliance for International Medical Action (ALIMA), Dakar, Senegal
| | - Kevin L. Steiner
- The Ohio State University, Columbus, Ohio, United States of America
| | - Beatrice Amadi
- Children’s Hospital, University Teaching Hospitals, Lusaka, Zambia
- Tropical Gastroenterology & Nutrition Group, University of Zambia School of Medicine, Lusaka, Zambia
| | - Natasha Aziz
- Novartis Institute for Tropical Diseases, Emeryville, California, United States of America
| | - Ujjini H. Manjunatha
- Novartis Institute for Tropical Diseases, Emeryville, California, United States of America
| | - Jonathan M. Spector
- Novartis Institute for Tropical Diseases, Emeryville, California, United States of America
| | - Thierry T. Diagana
- Novartis Institute for Tropical Diseases, Emeryville, California, United States of America
| | - Paul Kelly
- Tropical Gastroenterology & Nutrition Group, University of Zambia School of Medicine, Lusaka, Zambia
- Blizard Institute, Barts & The London School of Medicine, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
62
|
Yanta CA, Bessonov K, Robinson G, Troell K, Guy RA. CryptoGenotyper: A new bioinformatics tool for rapid Cryptosporidium identification. Food Waterborne Parasitol 2021; 23:e00115. [PMID: 33748443 PMCID: PMC7966988 DOI: 10.1016/j.fawpar.2021.e00115] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 01/09/2023] Open
Abstract
Cryptosporidium is a protozoan parasite that is transmitted to both humans and animals through zoonotic or anthroponotic means. When a host is infected with this parasite, it causes a gastrointestinal disease known as cryptosporidiosis. To understand the transmission dynamics of Cryptosporidium, the small subunit (SSU or 18S) rRNA and gp60 genes are commonly studied through PCR analysis and conventional Sanger sequencing. However, analyzing sequence chromatograms manually is both time consuming and prone to human error, especially in the presence of poorly resolved, heterozygous peaks and the absence of a validated database. For this study, we developed a Cryptosporidium genotyping tool, called CryptoGenotyper, which has the capability to read raw Sanger sequencing data for the two common Cryptosporidium gene targets (SSU rRNA and gp60) and classify the sequence data into standard nomenclature. The CryptoGenotyper has the capacity to perform quality control and properly classify sequences using a high quality, manually curated reference database, saving users' time and removing bias during data analysis. The incorporated heterozygous base calling algorithms for the SSU rRNA gene target resolves double peaks, therefore recovering data previously classified as inconclusive. The CryptoGenotyper successfully genotyped 99.3% (428/431) and 95.1% (154/162) of SSU rRNA chromatograms containing single and mixed sequences, respectively, and correctly subtyped 95.6% (947/991) of gp60 chromatograms without manual intervention. This new, user-friendly tool can provide both fast and reproducible analyses of Sanger sequencing data for the two most common Cryptosporidium gene targets.
Collapse
Affiliation(s)
- Christine A Yanta
- National Microbiology Laboratory, Public Health Agency of Canada, 110 Stone Road West, Guelph, ON N1G 3W4, Canada
| | - Kyrylo Bessonov
- National Microbiology Laboratory, Public Health Agency of Canada, 110 Stone Road West, Guelph, ON N1G 3W4, Canada
| | - Guy Robinson
- Cryptosporidium Reference Unit, Public Health Wales, Microbiology and Health Protection, Singleton Hospital, Swansea SA2 8QA, UK.,Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK
| | - Karin Troell
- National Veterinary Institute, 751 89 Uppsala, Sweden.,Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden
| | - Rebecca A Guy
- National Microbiology Laboratory, Public Health Agency of Canada, 110 Stone Road West, Guelph, ON N1G 3W4, Canada
| |
Collapse
|
63
|
Molecular Epidemiology of Human Cryptosporidiosis in Low- and Middle-Income Countries. Clin Microbiol Rev 2021; 34:34/2/e00087-19. [PMID: 33627442 DOI: 10.1128/cmr.00087-19] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cryptosporidiosis is one of the most important causes of moderate to severe diarrhea and diarrhea-related mortality in children under 2 years of age in low- and middle-income countries. In recent decades, genotyping and subtyping tools have been used in epidemiological studies of human cryptosporidiosis. Results of these studies suggest that higher genetic diversity of Cryptosporidium spp. is present in humans in these countries at both species and subtype levels and that anthroponotic transmission plays a major role in human cryptosporidiosis. Cryptosporidium hominis is the most common Cryptosporidium species in humans in almost all the low- and middle-income countries examined, with five subtype families (namely, Ia, Ib, Id, Ie, and If) being commonly found in most regions. In addition, most Cryptosporidium parvum infections in these areas are caused by the anthroponotic IIc subtype family rather than the zoonotic IIa subtype family. There is geographic segregation in Cryptosporidium hominis subtypes, as revealed by multilocus subtyping. Concurrent and sequential infections with different Cryptosporidium species and subtypes are common, as immunity against reinfection and cross protection against different Cryptosporidium species are partial. Differences in clinical presentations have been observed among Cryptosporidium species and C. hominis subtypes. These observations suggest that WASH (water, sanitation, and hygiene)-based interventions should be implemented to prevent and control human cryptosporidiosis in low- and middle-income countries.
Collapse
|
64
|
Polubotho P, Denvir L, Connelly L, Anderson E, Alexander CL. The first UK report of a rare Cryptosporidium hominis genetic variant isolated during a complex Scottish swimming pool outbreak. J Med Microbiol 2021; 70. [PMID: 33507141 DOI: 10.1099/jmm.0.001289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cryptosporidium species are responsible for causing the majority of parasite-related gastrointestinal infections in the UK. This report describes an outbreak of 12 laboratory-confirmed cryptosporidiosis cases identified as part of a Scottish swimming pool investigation, with 9 primary and 3 secondary cases occurring over an 8-week period. Molecular speciation was successful for 11/12 cases, which revealed 10 Cryptosporidium hominis cases and 1 Cryptosporidium parvum case. Of the 10 C. hominis cases, further typing identified 7 as being an unusual sub-type, IbA6G3, which is the first description in the UK of this rare variant. The remaining three C. hominis cases were identified as the common IbA10G2 subtype. Following implementation of control measures on two occasions, no further cases were reported. This report highlights the importance of molecular typing to identify and characterize outbreaks, and emphasizes the need to adhere to swimming pool guidance. It also raises awareness of the potential for outbreaks to involve multiple species/sub-types, and emphasizes the importance of strong public health leadership to ensure effective multi-agency investigations and management of outbreaks.
Collapse
Affiliation(s)
| | | | - Lisa Connelly
- Scottish Microbiology Reference Laboratories, Glasgow, UK
| | | | | |
Collapse
|
65
|
Mphephu MG, Ekwanzala MD, Momba MNB. Cryptosporidium species and subtypes in river water and riverbed sediment using next-generation sequencing. Int J Parasitol 2021; 51:339-351. [PMID: 33421439 DOI: 10.1016/j.ijpara.2020.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/06/2020] [Accepted: 10/11/2020] [Indexed: 12/11/2022]
Abstract
This study uncovered the prevalence, harboured species, and subtype diversity of Cryptosporidium species in river water and its sediment from the Apies River in South Africa. Cryptosporidium spp. concentrations in freshwater and its sediment were determined using Ziehl-Neelsen staining and quantitative Polymerase Chain Reaction (qPCR) techniques. Next-generation sequencing (NGS) targeting the 60 kDa glycoprotein (gp60) gene of Cryptosporidium spp. was performed to reveal the species, subtype families and subtypes harboured in freshwater and its sediment. Although the results revealed that water samples had a higher prevalence (30%) compared with sediment (28%), the number of observable Cryptosporidium spp. oocysts in sediment samples (ranging from 4.90 to 5.81 log10 oocysts per 1 Liter) was higher than that of river water samples (ranging from 4.60 to 5.58 log10 oocysts per 1 L) using Ziehl-Neelsen staining. The 18S ribosomal ribonucleic acid (rRNA) gene copy of Cryptosporidium in riverbed sediments ranged from 6.03 to 7.65 log10, whereas in river water, it was found to be between 4.20 and 6.79 log10. Subtyping results showed that in riverbed sediments, Cryptosporidium parvum accounted for 40.72% of sequences, followed by Cryptosporidium hominis with 23.64%, Cryptosporidium cuniculus with 7.10%, Cryptosporidium meleagridis with 4.44% and the least was Cryptosporidium wrairi with 2.59%. A considerable percentage of reads in riverbed sediment (21.25%) was not assigned to any subtype. River water samples had 45.63% of sequences assigned to C. parvum, followed by 30.32% to C. hominis, 17.99% to C. meleagridis and 5.88% to C. cuniculus. The data obtained are concerning, as Cryptosporidium spp. have intrinsic resistance to water treatment processes and low infectious doses, which can pose a risk to human health due to the various uses of water (for human consumption, leisure, and reuse).
Collapse
Affiliation(s)
- Muofhe Grace Mphephu
- Department of Environmental, Water and Earth Sciences, Tshwane University of Technology, Arcadia Campus, Private BagX680, Pretoria 0001, South Africa
| | - Mutshiene Deogratias Ekwanzala
- Department of Environmental, Water and Earth Sciences, Tshwane University of Technology, Arcadia Campus, Private BagX680, Pretoria 0001, South Africa
| | - Maggy Ndombo Benteke Momba
- Department of Environmental, Water and Earth Sciences, Tshwane University of Technology, Arcadia Campus, Private BagX680, Pretoria 0001, South Africa.
| |
Collapse
|
66
|
Abstract
Cryptosporidiosis is recognized as being a significant cause of gastrointestinal illness due to its wide range of vertebrate hosts, including humans. Infection with Cryptosporidium spp. is especially common in young domestic ruminants (calves, lambs and goat kids) and has been associated with economic losses worldwide. In contrast to cattle, to date, detailed studies on Cryptosporidium infections in sheep from Europe are still limited; thus, their importance as reservoirs of Cryptosporidium species with implications on animal and public health still needs to be clarified. This study evaluates the prevalence and zoonotic potential of Cryptosporidium spp. in sheep farms in Italy. A total of 915 individual faecal samples divided into three different animal categories were collected from 61 sheep farms. Each sample was examined by microscopy of faecal smears stained by modified Ziehl-Neelsen and by biomolecular techniques. Cryptosporidium oocysts were detected in 10.1% of the animals examined and in 34.4% of the farms. The prevalence of Cryptosporidium spp. was significantly higher (χ2 = 51.854; P < 0.001) in diarrhoeic samples than in pasty or normal faeces. Genotype analyses showed the presence of two Cryptosporidium species: C. parvum and C. ubiquitum. Subtyping analysis of C. parvum isolates revealed the presence of subtypes IIa15G2R1 and IIdA20G1 and of subtype XIIa for C. ubiquitum. These findings have public health implications since both Cryptosporidium species identified are considered zoonotic, and C. parvum is the second-most common Cryptosporidium species infecting humans. Our data reveal that lambs, especially those excreting diarrhoeic faeces, may be important reservoirs of Cryptosporidium. We also highlight the need to establish adequate control and monitoring programmes for the control of this infection in sheep farms primarily through coprological monitoring.
Collapse
|
67
|
Robertson LJ, Johansen ØH, Kifleyohannes T, Efunshile AM, Terefe G. Cryptosporidium Infections in Africa-How Important Is Zoonotic Transmission? A Review of the Evidence. Front Vet Sci 2020; 7:575881. [PMID: 33195574 PMCID: PMC7580383 DOI: 10.3389/fvets.2020.575881] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/27/2020] [Indexed: 01/25/2023] Open
Abstract
Cryptosporidium, a protozoan parasite in the phylum Apicomplexa, is the etiological agent of cryptosporidiosis, an intestinal infection characterized by profuse watery diarrhea. Over 30 species of Cryptosporidium are recognized, some host specific whereas others infect a broader host range. Cryptosporidium hominis and Cryptosporidium parvum are the species most commonly associated with human infection; C. hominis is largely associated only with human infections, but C. parvum is also associated with infection in animals, especially young ruminants. In some regions, cryptosporidiosis is a serious veterinary problem, particularly for calves, and lambs. Many outbreaks of human cryptosporidiosis have been associated with zoonotic transmission following contact with infected animals. In Africa, where cryptosporidiosis is a major contributor to pediatric morbidity and mortality, evidence suggests transmission is principally anthroponotic. Given the frequent close contact between humans and animals in Africa, the apparent predominance of human-to-human transmission is both interesting and puzzling. In this article, after a brief "text book" introduction to the parasite, we consider in separate sections the different aspects of relevance to Cryptosporidium transmission in African countries, describing different aspects of the various species and subtypes in human and animal infections, considering livestock management practices in different African countries, and looking for any characteristic "hot spots" where zoonotic transmission has apparently occurred. Studies where transmission networks have been investigated are particularly relevant. Finally, in a separate section, we try to gather these different strands of evidence together in order to assess the reasons behind the apparent predominance of anthroponotic transmission in Africa. Reviewing the available evidence provides an opportunity to re-think transmission pathways, not only in Africa but also elsewhere, and also to pose questions. Does the predominance of human-to-human transmission in Africa reflect a relative absence of zoonotic C. parvum in African livestock? Are Africans less susceptible to zoonotic Cryptosporidium infection, perhaps resulting from early immunostimulation by C. hominis or due to inherent genetic traits? Is the African environment-in all its variety-simply more detrimental to oocyst survival? Will the so-called hypertransmissible subtypes, currently relatively rare in Africa, be introduced from Europe or elsewhere, and, if so, will they fade out or establish and spread? Our intention with this manuscript is not only to summarize and consolidate diverse data, thereby providing an overview of data gaps, but also to provide food for thought regarding transmission of a parasite that continues to have a considerable impact on both human and animal health.
Collapse
Affiliation(s)
- Lucy J. Robertson
- Parasitology Laboratory, Department of Paraclinical Science, Faculty of Veterinary Medicine Norwegian University of Life Sciences, Oslo, Norway
| | - Øystein Haarklau Johansen
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Microbiology, Vestfold Hospital Trust, Tønsberg, Norway
| | - Tsegabirhan Kifleyohannes
- Parasitology Laboratory, Department of Paraclinical Science, Faculty of Veterinary Medicine Norwegian University of Life Sciences, Oslo, Norway
- Department of Veterinary Basic and Diagnostic Sciences, College of Veterinary Medicine, Mekelle University, Mekelle, Ethiopia
| | - Akinwale Michael Efunshile
- Department of Medical Microbiology, Alex Ekwueme Federal University Teaching Hospital, Abakaliki, Nigeria
- Department of Medical Microbiology, Ebonyi State University, Abakaliki, Nigeria
| | - Getachew Terefe
- College of Veterinary Medicine and Agriculture, Department of Pathology and Parasitology, Addis Ababa University, Bishoftu, Ethiopia
| |
Collapse
|
68
|
Zahedi A, Ryan U. Cryptosporidium – An update with an emphasis on foodborne and waterborne transmission. Res Vet Sci 2020; 132:500-512. [DOI: 10.1016/j.rvsc.2020.08.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/24/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022]
|
69
|
Epidemiology of Cryptosporidiosis in France from 2017 to 2019. Microorganisms 2020; 8:microorganisms8091358. [PMID: 32899825 PMCID: PMC7563450 DOI: 10.3390/microorganisms8091358] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 01/28/2023] Open
Abstract
Cryptosporidiosis is currently recognized worldwide as a leading cause of moderate to severe diarrhea. In Europe, large water- and foodborne outbreaks have been reported, highlighting the widespread distribution of the parasite and its important health impact. Surveillance networks have been progressively set up and the aim of this study was to present recent epidemiological data obtained in France from 2017 to 2019 by the National Reference Center-Expert Laboratory of cryptosporidiosis (Centre National de Référence-Laboratoire Expert cryptosporidioses CNR-LE). Data were obtained from online reports of volunteer network participants and stools were sent to the CNR-LE for species identification and GP60 genotyping. During this period, data from 750 online reports were available. Cryptosporidiosis occurred predominantly in young children (<5 years old) and in young adults, especially during late summer. Most patients were immunocompetent (60%), and deaths were reported only in immunocompromised patients. Cryptosporidium parvum was largely predominant (72% of cases) over C. hominis (24%) and some other uncommon species. C. parvum GP60 subtypes IIa and IId were the most represented, which suggests frequent zoonotic transmission. For C. hominis, subtypes IbA10G2 and IaA22R2 were predominant.
Collapse
|
70
|
Carter BL, Chalmers RM, Davies AP. Health sequelae of human cryptosporidiosis in industrialised countries: a systematic review. Parasit Vectors 2020; 13:443. [PMID: 32887663 PMCID: PMC7650228 DOI: 10.1186/s13071-020-04308-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/19/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cryptosporidium is a protozoan parasite which is a common cause of gastroenteritis worldwide. In developing countries, it is one of the most important causes of moderate to severe diarrhoea in young children; in industrialised countries it is a cause of outbreaks of gastroenteritis associated with drinking water, swimming pools and other environmental sources and a particular concern in certain immunocompromised patient groups, where it can cause severe disease. However, over recent years, longer-term sequelae of infection have been recognised and a number of studies have been published on this topic. The purpose of this systematic review was to examine the literature in order to better understand the medium- to long-term impact of cryptosporidiosis. METHODS This was a systematic review of studies in PubMed, ProQuest and Web of Science databases, with no limitations on publication year or language. Studies from any country were included in qualitative synthesis, but only those in industrialised countries were included in quantitative analysis. RESULTS Fifteen studies were identified for qualitative analysis which included 3670 Cryptosporidium cases; eight studies conducted in Europe between 2004-2019 were suitable for quantitative analysis, including five case-control studies. The most common reported long-term sequelae were diarrhoea (25%), abdominal pain (25%), nausea (24%), fatigue (24%) and headache (21%). Overall, long-term sequelae were more prevalent following infection with Cryptosporidium hominis, with only weight loss and blood in stool being more prevalent following infection with Cryptosporidium parvum. Analysis of the case-control studies found that individuals were 6 times more likely to report chronic diarrhoea and weight loss up to 28 months after a Cryptosporidium infection than were controls. Long-term abdominal pain, loss of appetite, fatigue, vomiting, joint pain, headache and eye pain were also between 2-3 times more likely following a Cryptosporidium infection. CONCLUSIONS This is the first systematic review of the long-term sequelae of cryptosporidiosis. A better understanding of long-term outcomes of cryptosporidiosis is valuable to inform the expectations of clinicians and their patients, and public health policy-makers regarding the control and prevention of this infection. Systematic review registration PROSPERO Registration number CRD42019141311.
Collapse
Affiliation(s)
- Bethan L Carter
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, UK
| | - Rachel M Chalmers
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, UK.,Cryptosporidium Reference Unit, Public Health Wales Microbiology, Singleton Hospital, Sketty Lane, Swansea, Wales, UK
| | - Angharad P Davies
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, UK. .,Cryptosporidium Reference Unit, Public Health Wales Microbiology, Singleton Hospital, Sketty Lane, Swansea, Wales, UK.
| |
Collapse
|
71
|
O' Leary JK, Blake L, Corcoran GD, Sleator RD, Lucey B. Increased diversity and novel subtypes among clinical Cryptosporidium parvum and Cryptosporidium hominis isolates in Southern Ireland. Exp Parasitol 2020; 218:107967. [PMID: 32858044 DOI: 10.1016/j.exppara.2020.107967] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022]
Abstract
Reported incidence rates of cryptosporidiosis in Ireland are consistently among the highest in Europe. Despite the national prevalence of this enteric parasite and the compulsory nature of incidence surveillance and reporting, in-depth analyses seeking to genotype clinical isolates of Cryptosporidium on an intra-species level are rarely undertaken in Ireland. This molecular epidemiology study of 163 clinical Cryptosporidium isolates was conducted in Southern Ireland, from 2015 to 2018, in order to ascertain population subtype heterogeneity. Analysis was conducted via real-time PCR amplification and gp60 gene sequencing, which successfully determined the subtype designation of 149 of the 163 (91.4%) tested isolates. Overall, 12 C. parvum and five C. hominis subtypes were identified, with the incidence of the regionally predominant C. parvum species found to primarily occur during springtime months, while C. hominis incidence was largely confined to late summer and autumnal months. Additionally, one C. parvum and four C. hominis subtypes were newly reported by this study, having not been previously identified in clinical or livestock infection in Ireland. Overall, these data give insight into the diversification of the Cryptosporidium population and emergent subtypes, while also allowing comparisons to be made with clinical epidemiological profiles reported previously in Ireland and elsewhere.
Collapse
Affiliation(s)
- Jennifer K O' Leary
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland
| | - Liam Blake
- Department of Clinical Microbiology, Cork University Hospital, Wilton, Cork, Ireland
| | - Gerard D Corcoran
- Department of Clinical Microbiology, Cork University Hospital, Wilton, Cork, Ireland
| | - Roy D Sleator
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland.
| | - Brigid Lucey
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland
| |
Collapse
|
72
|
Prevalence and Molecular Genotyping of Cryptosporidium Spp. in Diarrheic Patients from Bandar Abbas City, Southern Iran. Jundishapur J Microbiol 2020. [DOI: 10.5812/jjm.102706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Cryptosporidium species are recognized as one of the most important gastrointestinal pathogens of humans and livestock. Objectives: This study aimed to determine the prevalence and sub-genotypes of Cryptosporidium spp. among diarrheic patients in Bandar Abbas City, Iran. Methods: Diarrheic fecal samples were collected from 170 patients in three hospitals of Bandar Abbas, Iran, from October 2018 to May 2019. Initial parasitological identification of Cryptosporidium spp. was performed by modified Ziehl-Neelsen (ZN) staining. For molecular analysis, the positive specimens and the suspected ones of Cryptosporidium spp. were evaluated by sequence analysis of the 60-kDa glycoprotein gene (gp60). The collected data were analyzed using SPSS software and the relationship between the variables and the presence of Cryptosporidium spp. assessed by the chi-square test. To assess the degree of agreement between PCR and ZN staining, Cohen’s kappa-index was applied. Results: Of the 170 diarrheic patients, 98 (57.6%) were male, and 72 (42.4%) were female. Prevalence of Cryptosporidium spp. by parasitological examination was 1.8% (3/170). However, using PCR, Cryptosporidium spp. was detected in 12% (6/50) of the positive microscopically samples (3 samples) and 47 suspected specimens. Sequence analysis of the gp60 gene showed that all of the positive isolates were Cryptosporidium parvum in which all subtypes belonged to allele family IId. Two distinct nucleotide sequences obtained from this study were deposited in GenBank under the accession numbers MN820453 and MN820454. Conclusions: The predominance of C. parvum (subtype family IId) in this study emphasizes the importance of zoonotic Cryptosporidium transmission in Bandar Abbas, Southern Iran.
Collapse
|
73
|
Protozoan infections are under-recognized in Swedish patients with gastrointestinal symptoms. Eur J Clin Microbiol Infect Dis 2020; 39:2153-2160. [PMID: 32638222 PMCID: PMC7561559 DOI: 10.1007/s10096-020-03974-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/29/2020] [Indexed: 11/29/2022]
Abstract
In acute gastroenteritis (GE), identification of the infectious agent is important for patient management and surveillance. The prevalence of GE caused by protozoa may be underestimated in Swedish patients. The purpose was to compare the prevalence of E. histolytica, Cryptosporidium spp., G. intestinalis, and C. cayetanensis in samples from patients where the clinician had requested testing for gastrointestinal parasites only (n = 758) to where testing for bacterial GE only (n = 803) or where both parasite and bacterial testing (n = 1259) was requested and a healthy control group (n = 197). This prospective cohort study was conducted in Region Jönköping County, Sweden (October 2018–March 2019). Fecal samples were analyzed with microscopy and real-time PCR. Cryptosporidium spp. was detected in 16 patients in the bacterial GE group and in 13 in the both bacterial and parasite group; no cases were detected in the group were only parasite infection was suspected. C. cayetanensis was detected in two patients in the bacterial GE group. One case of E. histolytica was detected in the bacterial group and one in the both bacterial and parasite group. G. intestinalis was detected in 14 patients in the parasite only group, 12 in the both parasite and bacterial group, three in the bacterial GE group, and one in the control group. Diarrhea caused by protozoa, especially Cryptosporidium was under–recognized by clinicians and is likely more common than hitherto estimated in Sweden. A more symptom-based diagnostic algorithm may increase detection and knowledge about protozoan infections.
Collapse
|
74
|
Feng S, Chang H, Wang Y, Huang C, Han S, He H. Molecular Characterization of Cryptosporidium spp. in Brandt's Vole in China. Front Vet Sci 2020; 7:300. [PMID: 32695797 PMCID: PMC7338837 DOI: 10.3389/fvets.2020.00300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/04/2020] [Indexed: 01/01/2023] Open
Abstract
Cryptosporidium spp. are important intestinal parasites that infect humans and various animals, including wildlife. Currently, few epidemiological data in wild rodents, especially in voles, are available. In the present study, a total of 678 Brandt's vole feces samples were collected from Maodeng Livestock Farm and East Ujimqin, Inner Mongolia. The overall prevalence of Cryptosporidium spp. was 18.7%. Significant differences were not found between genders but between locations and weight groups. Moreover, three known species/genotypes, C. suis, Cryptosporidium environmental sequence and muskrat genotype II, and a novel Cryptosporidium species/genotypes of Brandt's vole was identified. To the best of our knowledge, this is the first report of Cryptosporidium spp. infection in Brandt's vole worldwide. These findings imply Brandt's voles might be a potential source of human cryptosporidiosis.
Collapse
Affiliation(s)
- Shengyong Feng
- National Research Center for Wildlife Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Han Chang
- National Research Center for Wildlife Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ye Wang
- National Research Center for Wildlife Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chengmei Huang
- National Research Center for Wildlife Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuyi Han
- National Research Center for Wildlife Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hongxuan He
- National Research Center for Wildlife Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
75
|
Kabir MHB, Ceylan O, Ceylan C, Shehata AA, Bando H, Essa MI, Xuan X, Sevinc F, Kato K. Molecular detection of genotypes and subtypes of Cryptosporidium infection in diarrheic calves, lambs, and goat kids from Turkey. Parasitol Int 2020; 79:102163. [PMID: 32589940 DOI: 10.1016/j.parint.2020.102163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 12/01/2022]
Abstract
The studies on Cryptosporidium infections of animals in Turkey mostly rely on microscopic observation. Few data are available regarding the prevalence of Cryptosporidium genotypes and subtypes infection. The aim of this study is to analyse the detection of Cryptosporidium genotypes and subtypes from young ruminants. A total of 415 diarrheic fecal specimens from young ruminants were examined for the Cryptosporidium detection by use of nested PCR of the small subunit ribosomal RNA (SSU rRNA) gene and the highly polymorphic 60 kDa glycoprotein (gp60) gene followed by sequence analyses. The results of this study revealed that 25.6% (106 of 415) of the specimens were positive for Cryptosporidium spp. infection. We identified 27.4% (91/333), 19.4% (13/67), and 13.4% (2/15) of positivity in calves, lambs and goat kids, respectively. Genotyping of the SSU rRNA indicated that almost all positive specimens were of C. parvum, except for one calf which was of C. bovis. Sequence analysis of the gp60 gene revealed the most common zoonotic subtypes (IIa and IId) of C. parvum. We detected 11 subtypes (IIaA11G2R1, IIaA11G3R1, IIaA12G3R1, IIaA13G2R1, IIaA13G4R1, IIaA14G1R1, IIaA14G3R1, IIaA15G2R1, IIdA16G1, IIdA18G1, IIdA22G1); three of them (IIaA12G3R1, IIaA11G3R1 and IIaA13G4R1) was novel subtypes found in calves and lambs. Additionally, three subtypes (IIaA11G2R1, IIaA14G3R1, and IIdA16G1) were detected in young ruminants for the first time in Turkey. These results indicate the high infection of Cryptosporidium in Turkey and propose that young ruminants are likely a major reservoir of C. parvum and a potential source of zoonotic transmission.
Collapse
Affiliation(s)
- Mohammad Hazzaz Bin Kabir
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan; Department of Microbiology and Parasitology, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| | - Onur Ceylan
- Department of Parasitology, Faculty of Veterinary Medicine, Selcuk University, 42042 Konya, Turkey
| | - Ceylan Ceylan
- Department of Parasitology, Faculty of Veterinary Medicine, Selcuk University, 42042 Konya, Turkey
| | - Ayman Ahmed Shehata
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi 989-6711, Japan; Department of Animal Medicine, Infectious Diseases, Faculty of Veterinary Medicine, Zagazig University, El-Shohada, Moawwad, Qesm Awel AZ, Zagazig, 44511, Egypt
| | - Hironori Bando
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi 989-6711, Japan
| | - Mohamed Ibrahim Essa
- Department of Animal Medicine, Infectious Diseases, Faculty of Veterinary Medicine, Zagazig University, El-Shohada, Moawwad, Qesm Awel AZ, Zagazig, 44511, Egypt
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Ferda Sevinc
- Department of Parasitology, Faculty of Veterinary Medicine, Selcuk University, 42042 Konya, Turkey.
| | - Kentaro Kato
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan; Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi 989-6711, Japan.
| |
Collapse
|
76
|
Giardia and Cryptosporidium infections in Danish cats: risk factors and zoonotic potential. Parasitol Res 2020; 119:2275-2286. [PMID: 32451716 DOI: 10.1007/s00436-020-06715-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/10/2020] [Indexed: 12/17/2022]
Abstract
Giardia and Cryptosporidium infections are common in cats, but knowledge is limited about their clinical importance, risk factors, and the role of cats as a reservoir for human infections. Here, we collected faeces and questionnaire data from 284 cats from shelters and veterinary clinics in the Copenhagen Metropolitan Region (= study population). Additionally, 33 samples were analysed separately from catteries with gastrointestinal clinical signs (= cases). (Oo-)cysts were quantified by immunofluorescence microscopy. All Giardia (n = 34) and Cryptosporidium (n = 29) positive samples were analysed by sequencing of the 18S rRNA, gdh and hsp70 loci, and co-infections were detected by McMaster/inverted microscopy. In the study population, 7.0% and 6.7% were positive for Giardia and Cryptosporidium respectively; 48.5% and 36.4% of the breeder cats (cases) were infected. Increased odds of diarrhoea were demonstrated in Giardia (p = 0.0008) and Cryptosporidium (p = 0.034) positive cats. For Giardia, the odds were positively correlated with infection intensity. Co-infection with Cryptosporidium (OR 12.79; p < 0.001), parasitic co-infections other than Cryptosporidium (OR 5.22; p = 0.009), no deworming (OR 4.67; p = 0.035), and male sex (OR 3.63; p = 0.025) were risk factors for Giardia. For Cryptosporidium, co-infection with Giardia was the only risk factor (OR 11.93; p < 0.0001). Genotyping revealed G. duodenalis assemblages A and F, and C. felis, all of them previously detected in humans. In conclusion, excretion of Giardia and Cryptosporidium was associated with clinical disease. Although a public health risk is likely, studies including larger sample sizes, more discriminatory markers and samples from other animals and humans are needed to reveal the full zoonotic potential.
Collapse
|
77
|
Abstract
Cryptosporidium and Giardia are ubiquitous protozoan parasites that infect a broad range of vertebrate hosts, including domestic and wild animals as well as humans. Both parasites are of medical and veterinary importance. Infections with Cryptosporidium and Giardia in ruminants are associated with diarrhea outbreaks, mainly in young animals. Ruminants are potential sources of infection for humans because some species of Cryptosporidium and assemblages of Giardia duodenalis have been isolated from both ruminants and humans. Knowledge of these parasites has greatly expanded in the last 2 decades from simple microscopic observations of organisms to the knowledge acquired from molecular tools.
Collapse
Affiliation(s)
- Monica Santin
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, BARC-East, Building 173, 10300 Baltimore Avenue, Beltsville, MD 20705, USA.
| |
Collapse
|
78
|
Ayres Hutter J, Dion R, Irace-Cima A, Fiset M, Guy R, Dixon B, Aguilar JL, Trépanier J, Thivierge K. Cryptosporidium spp.: Human incidence, molecular characterization and associated exposures in Québec, Canada (2016-2017). PLoS One 2020; 15:e0228986. [PMID: 32053684 PMCID: PMC7018055 DOI: 10.1371/journal.pone.0228986] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/05/2020] [Indexed: 11/19/2022] Open
Abstract
The aim of this study was to describe the epidemiology of human cryptosporidiosis in Québec from 2016 to 2017 and to identify possible exposures associated with the disease, and the dominant Cryptosporidium species in circulation. A descriptive analysis was performed on data collected from the provincial notifiable infectious diseases registry and the epidemiological investigation. Fecal sample were sent to the Laboratoire de santé publique du Québec for molecular characterization. In Québec, from January 1, 2016 to December 31, 2017, a total of 201 confirmed cases of cryptosporidiosis were notified. A peak in the number of reported cases was observed at the end of the summer. The regional public health department with the highest adjusted incidence rate for sex and age group for both years was that of Nunavik, in the north of Québec. A higher average annual incidence rate was observed for females between the ages of 20 to 34 years compared to males. Overall, for both males and females the distribution appeared to be bimodal with a first peak in children younger than five years old and a second peak in adults from 20 to 30 years of age. Molecular characterization showed that 23% (11/47) of cases were infected with C. hominis while 74% (35/47) were infected with C. parvum. Meanwhile, subtyping results identified by gp60 sequencing, show that all C. parvum subtypes belonged to the IIa family, whereas the subtypes for C. hominis belonged to the Ia, Ib, and Id families. Finally, the epidemiological investigation showed that diarrhea was the most common reported symptom with 99% (72/73) of investigated cases having experienced it. This first brief epidemiological portrait of cryptosporidiosis in Québec has allowed for the description, both at the provincial and regional level, of the populations that could be particularly vulnerable to the disease.
Collapse
Affiliation(s)
- Juliana Ayres Hutter
- Direction des risques biologiques et de la santé au travail, Institut national de santé publique du Québec, Montréal, Québec, Canada
| | - Réjean Dion
- Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, Sainte-Anne-de-Bellevue, Québec, Canada
- Département de médecine sociale et préventive, École de santé publique de l’Université de Montréal, Montréal, Québec, Canada
| | - Alejandra Irace-Cima
- Direction des risques biologiques et de la santé au travail, Institut national de santé publique du Québec, Montréal, Québec, Canada
| | - Marc Fiset
- Direction de la vigie sanitaire, Ministère de la Santé et des Services sociaux, Québec, Québec, Canada
| | - Rebecca Guy
- National Microbiology Laboratory at Guelph, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Brent Dixon
- Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Jeannie Lisette Aguilar
- Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, Sainte-Anne-de-Bellevue, Québec, Canada
| | - Julien Trépanier
- Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, Sainte-Anne-de-Bellevue, Québec, Canada
| | - Karine Thivierge
- Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, Sainte-Anne-de-Bellevue, Québec, Canada
- Institute of Parasitology, Faculty of Agricultural and Environmental Sciences, McGill University, Macdonald Campus, Sainte-Anne-de-Bellevue, Québec, Canada
| |
Collapse
|
79
|
Wojcik GL, Korpe P, Marie C, Mentzer AJ, Carstensen T, Mychaleckyj J, Kirkpatrick BD, Rich SS, Concannon P, Faruque ASG, Haque R, Petri WA, Duggal P. Genome-Wide Association Study of Cryptosporidiosis in Infants Implicates PRKCA. mBio 2020; 11:e03343-19. [PMID: 32019797 PMCID: PMC7002356 DOI: 10.1128/mbio.03343-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 01/02/2020] [Indexed: 01/01/2023] Open
Abstract
Diarrhea is a major cause of both morbidity and mortality worldwide, especially among young children. Cryptosporidiosis is a leading cause of diarrhea in children, particularly in South Asia and sub-Saharan Africa, where it is responsible for over 200,000 deaths per year. Beyond the initial clinical presentation of diarrhea, it is associated with long-term sequelae such as malnutrition and neurocognitive developmental deficits. Risk factors include poverty and overcrowding, and yet not all children with these risk factors and exposure are infected, nor do all infected children develop symptomatic disease. One potential risk factor to explain these differences is their human genome. To identify genetic variants associated with symptomatic cryptosporidiosis, we conducted a genome-wide association study (GWAS) examining 6.5 million single nucleotide polymorphisms (SNPs) in 873 children from three independent cohorts in Dhaka, Bangladesh, namely, the Dhaka Birth Cohort (DBC), the Performance of Rotavirus and Oral Polio Vaccines in Developing Countries (PROVIDE) study, and the Cryptosporidiosis Birth Cohort (CBC). Associations were estimated separately for each cohort under an additive model, adjusting for length-for-age Z-score at 12 months of age, the first two principal components to account for population substructure, and genotyping batch. The strongest meta-analytic association was with rs58296998 (P = 3.73 × 10-8), an intronic SNP and expression quantitative trait locus (eQTL) of protein kinase C alpha (PRKCA). Each additional risk allele conferred 2.4 times the odds of Cryptosporidium-associated diarrhea in the first year of life. This genetic association suggests a role for protein kinase C alpha in pediatric cryptosporidiosis and warrants further investigation.IMPORTANCE Globally, diarrhea remains one of the major causes of pediatric morbidity and mortality. The initial symptoms of diarrhea can often lead to long-term consequences for the health of young children, such as malnutrition and neurocognitive developmental deficits. Despite many children having similar exposures to infectious causes of diarrhea, not all develop symptomatic disease, indicating a possible role for human genetic variation. Here, we conducted a genetic study of susceptibility to symptomatic disease associated with Cryptosporidium infection (a leading cause of diarrhea) in three independent cohorts of infants from Dhaka, Bangladesh. We identified a genetic variant within protein kinase C alpha (PRKCA) associated with higher risk of cryptosporidiosis in the first year of life. These results indicate a role for human genetics in susceptibility to cryptosporidiosis and warrant further research to elucidate the mechanism.
Collapse
Affiliation(s)
- Genevieve L Wojcik
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, California, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Poonum Korpe
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Chelsea Marie
- Department of Medicine, Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Alexander J Mentzer
- Wellcome Trust Sanger Institute, University of Oxford, Oxford, United Kingdom
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| | - Tommy Carstensen
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Josyf Mychaleckyj
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, USA
| | - Beth D Kirkpatrick
- University of Vermont College of Medicine and Vaccine Testing Center, Burlington, Vermont, USA
| | - Stephen S Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, USA
| | - Patrick Concannon
- Genetics Institute and Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - A S G Faruque
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Rashidul Haque
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - William A Petri
- Department of Medicine, Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Priya Duggal
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
80
|
Detection methods and prevalence of transmission stages of Toxoplasma gondii, Giardia duodenalis and Cryptosporidium spp. in fresh vegetables: a review. Parasitology 2020; 147:516-532. [PMID: 31965956 DOI: 10.1017/s0031182020000086] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
One of the ways of human parasitic infection is the accidental ingestion of vegetables contaminated with parasites, which represents a major human health hazard. This non-exhaustive review aims to evaluate studies carried out on five types of vegetables (lettuce, parsley, coriander, carrot and radish) since 2000, particularly the methods used for recovery, concentration, detection and identification of protozoan parasites such as Toxoplasma gondii, Giardia duodenalis and Cryptosporidium spp., and the results of each work. Various studies have determined the presence of pathogenic parasites in fresh vegetables with different rates; this variation in rate depends particularly on the detection method used which is related to each parasite and each vegetable type. The variation in parasitic prevalence in food could be due to different factors such as the geographical location, the size of analysed samples and the methods used for parasite detection.
Collapse
|
81
|
Morris A, Robinson G, Swain MT, Chalmers RM. Direct Sequencing of Cryptosporidium in Stool Samples for Public Health. Front Public Health 2019; 7:360. [PMID: 31921734 PMCID: PMC6917613 DOI: 10.3389/fpubh.2019.00360] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/13/2019] [Indexed: 01/24/2023] Open
Abstract
The protozoan parasite Cryptosporidium is an important cause of diarrheal disease (cryptosporidiosis) in humans and animals, with significant morbidity and mortality especially in severely immunocompromised people and in young children in low-resource settings. Due to the sexual life cycle of the parasite, transmission is complex. There are no restrictions on sexual recombination between sub-populations, meaning that large-scale genetic recombination may occur within a host, potentially confounding epidemiological analysis. To clarify the relationships between infections in different hosts, it is first necessary to correctly identify species and genotypes, but these differentiations are not made by standard diagnostic tests and more sophisticated molecular methods have been developed. For instance, multilocus genotyping has been utilized to differentiate isolates within the major human pathogens, Cryptosporidium parvum and Cryptosporidium hominis. This has allowed mixed populations with multiple alleles to be identified: recombination events are considered to be the driving force of increased variation and the emergence of new subtypes. As yet, whole genome sequencing (WGS) is having limited impact on public health investigations, due in part to insufficient numbers of oocysts and purity of DNA derived from clinical samples. Moreover, because public health agencies have not prioritized parasites, validation has not been performed on user-friendly data analysis pipelines suitable for public health practitioners. Nonetheless, since the first whole genome assembly in 2004 there are now numerous genomes of human and animal-derived cryptosporidia publically available, spanning nine species. It has also been demonstrated that WGS from very low numbers of oocysts is possible, through the use of amplification procedures. These data and approaches are providing new insights into host-adapted infectivity, the presence and frequency of multiple sub-populations of Cryptosporidium spp. within single clinical samples, and transmission of infection. Analyses show that although whole genome sequences do indeed contain many alleles, they are invariably dominated by a single highly abundant allele. These insights are helping to better understand population structures within hosts, which will be important to develop novel prevention strategies in the fight against cryptosporidiosis.
Collapse
Affiliation(s)
- Arthur Morris
- Institute of Biological, Environmental & Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Guy Robinson
- Cryptosporidium Reference Unit, Public Health Wales Microbiology, Singleton Hospital, Swansea, United Kingdom
- Swansea University Medical School, Swansea, United Kingdom
| | - Martin T. Swain
- Institute of Biological, Environmental & Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Rachel M. Chalmers
- Cryptosporidium Reference Unit, Public Health Wales Microbiology, Singleton Hospital, Swansea, United Kingdom
- Swansea University Medical School, Swansea, United Kingdom
| |
Collapse
|
82
|
Ma DW, Lee MR, Hong SH, Cho SH, Lee SE. Molecular Prevalence and Genotypes of Cryptosporidium parvum and Giardia duodenalis in Patients with Acute Diarrhea in Korea, 2013-2016. THE KOREAN JOURNAL OF PARASITOLOGY 2019; 57:531-536. [PMID: 31715696 PMCID: PMC6851252 DOI: 10.3347/kjp.2019.57.5.531] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/09/2019] [Indexed: 01/24/2023]
Abstract
Cryptosporidium parvum and Giardia duodenalis are the main diarrhea-causing parasitic pathogens; however, their prevalence in Korea is unknown. Here, we conducted a survey to determine the prevalence and genotype distribution of these 2 pathogens causing acute diarrhea in 8,571 patients hospitalized in 17 Regional Institute of Health Environment sites in Korea, during 2013–2016. C. parvum and G. duodenalis were detected and genotyped by nested PCR, and the isolate were molecularly characterized by sequencing the glycoprotein 60 (Gp60) and β-giardin genes, respectively. The overall prevalence of C. parvum and G. duodenalis was 0.37% (n=32) and 0.55% (n=47), respectively, and both pathogens were more prevalent in children under 9 years old. Molecular epidemiological analysis showed that the C. parvum isolates belonged to the IIa family and were subtyped as IIaA13G2R1, IIaA14G2R1, IIaA15G2R1, and IIaA18G3R1. Analysis of the β-giardin gene fragment from G. duodenalis showed that all positive strains belong to assemblage A. This is the first report on the molecular epidemiology and subtyping of C. parvum and G. duodenalis in such a large number of diarrheal patients in Korea. These results highlight the need for continuous monitoring of these zoonotic pathogens and provide a basis for implementing control and prevention strategies. Further, the results might be useful for epidemiological investigation of the source of outbreak.
Collapse
Affiliation(s)
- Da-Won Ma
- Division of Vectors and Parasitic Diseases, Centers for Disease Control and Prevention, Osong 28159, Korea
| | - Myoung-Ro Lee
- Division of Vectors and Parasitic Diseases, Centers for Disease Control and Prevention, Osong 28159, Korea
| | - Sung-Hee Hong
- Division of Vectors and Parasitic Diseases, Centers for Disease Control and Prevention, Osong 28159, Korea
| | - Shin-Hyeong Cho
- Division of Vectors and Parasitic Diseases, Centers for Disease Control and Prevention, Osong 28159, Korea
| | - Sang-Eun Lee
- Division of Vectors and Parasitic Diseases, Centers for Disease Control and Prevention, Osong 28159, Korea
| |
Collapse
|
83
|
Grossman T, Ken-Dror S, Pavlotzky E, Vainer J, Glazer Y, Sagi O, Peretz A, Agmon V, Marva E, Valinsky L. Molecular typing of Cryptosporidium in Israel. PLoS One 2019; 14:e0219977. [PMID: 31479457 PMCID: PMC6721021 DOI: 10.1371/journal.pone.0219977] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 07/05/2019] [Indexed: 12/28/2022] Open
Abstract
Cryptosporidium is a protozoan parasite associated with gastrointestinal illness. In immune-compromised individuals, the infection may become life-threatening. Cryptosporidiosis is a mandatory-reported disease but little was known about its prevalence and associated morbidity in Israel. Currently, laboratory diagnosis is based on microscopy or copro-antigen tests and the disease is underreported. Molecular assays, which are more sensitive and specific, are now increasingly used for identification and screening. Here, the molecular epidemiology of cryptosporidiosis is explored for the first time. Samples from 33 patients infected during an outbreak of 146 laboratory confirmed cases that occurred in Haifa and Western Galilee in 2015 were genotyped, as well as samples from 36 patients sporadically infected during 2014–2018 in different regions. The results suggest that Cryptosporidium subtypes found in Israel are more similar to those reported in the neighboring countries Jordan and Egypt than in European countries. C. hominis was the predominant species in the center and the north of Israel, implicating human-to-human transmission. C. hominis IeA11G3T3 was the most prevalent subtype contributing to morbidity.
Collapse
Affiliation(s)
- Tamar Grossman
- Public Health Central Laboratories, Jerusalem, Israel
- * E-mail:
| | - Shifra Ken-Dror
- Clalit Health Services, Haifa and Western Galilee district, Israel
| | - Elsa Pavlotzky
- Clalit Health Services, Haifa and Western Galilee district, Israel
| | - Julia Vainer
- Public Health Central Laboratories, Jerusalem, Israel
| | - Yael Glazer
- Division of Epidemiology, Ministry of Health, Jerusalem, Israel
| | - Orli Sagi
- Soroka University Medical Center, Beer-Sheva, Israel
| | - Avi Peretz
- Baruch Padeh Medical Center, Safed, Israel
- Bar-Ilan University, Ramat Gan, Israel
| | - Vered Agmon
- Public Health Central Laboratories, Jerusalem, Israel
| | - Esther Marva
- Public Health Central Laboratories, Jerusalem, Israel
| | - Lea Valinsky
- Public Health Central Laboratories, Jerusalem, Israel
| |
Collapse
|
84
|
Pignata C, Bonetta S, Bonetta S, Cacciò SM, Sannella AR, Gilli G, Carraro E. Cryptosporidium Oocyst Contamination in Drinking Water: A Case Study in Italy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E2055. [PMID: 31185673 PMCID: PMC6604028 DOI: 10.3390/ijerph16112055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 11/30/2022]
Abstract
The aim of this study was to evaluate the occurrence of Cryptosporidium oocysts in a drinking water treatment plant (DWTP) located in a rural area of northern Italy. Influent and effluent samples were collected at the DWTP over three years (2013-2016). In parallel, tap water samples from a public drinking fountain were collected as well. All samples were analyzed for the presence of Cryptosporidium spp. oocysts by a common method based on an immunomagnetic separation (IMS)/immunofluorescence assay (IFA), complemented by 4,6-diamidino-2-phenylindole (DAPI) staining. A reverse transcriptase-PCR (RT-PCR) protocol was added to evaluate oocyst viability. The results highlighted a high variability of oocyst concentrations across all samples (mean 4.3 ± 5.8/100 L) and a high variability in the percentage of DAPI-positive specimens (mean 48.2% ± 40.3%). Conversely, RT-PCR did not reveal the presence of viable C. parvum and C. hominis oocysts. A nested PCR targeting Cryptosporidium 18S ribosomal DNA, carried out in two water samples, confirmed the presence of a Cryptosporidium genotype associated with wild animals in the river and in tap water. The results obtained underline the vulnerability of the investigated surface water to Cryptosporidium spp. contamination. Although the recovered Cryptosporidium genotype is not a human pathogen, its presence demonstrates the existence of a potential pathogen Cryptosporidium spp. contamination risk. Moreover, these results underline the importance of also considering unconventional (not bacterial) biological contaminations (protozoa) in water resources in rural areas, including those of developed countries.
Collapse
Affiliation(s)
- Cristina Pignata
- Department of Public Health and Pediatrics, University of Torino, Via Santena 5bis, 10126 Torino, Italy.
| | - Silvia Bonetta
- Department of Public Health and Pediatrics, University of Torino, Via Santena 5bis, 10126 Torino, Italy.
| | - Sara Bonetta
- Department of Public Health and Pediatrics, University of Torino, Via Santena 5bis, 10126 Torino, Italy.
| | - Simone M Cacciò
- Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy.
| | - Anna R Sannella
- Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy.
| | - Giorgio Gilli
- Department of Public Health and Pediatrics, University of Torino, Via Santena 5bis, 10126 Torino, Italy.
| | - Elisabetta Carraro
- Department of Public Health and Pediatrics, University of Torino, Via Santena 5bis, 10126 Torino, Italy.
| |
Collapse
|