51
|
Khan S, Iqbal M, Tariq M, Baig SM, Abbas W. Epigenetic regulation of HIV-1 latency: focus on polycomb group (PcG) proteins. Clin Epigenetics 2018; 10:14. [PMID: 29441145 PMCID: PMC5800276 DOI: 10.1186/s13148-018-0441-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/05/2018] [Indexed: 01/10/2023] Open
Abstract
HIV-1 latency allows the virus to persist until reactivation, in a transcriptionally silent form in its cellular reservoirs despite the presence of effective cART. Such viral persistence represents a major barrier to HIV eradication since treatment interruption leads to rebound plasma viremia. Polycomb group (PcG) proteins have recently got a considerable attention in regulating HIV-1 post-integration latency as they are involved in the repression of proviral gene expression through the methylation of histones. This epigenetic regulation plays an important role in the establishment and maintenance of HIV-1 latency. In fact, PcG proteins act in complexes and modulate the epigenetic signatures of integrated HIV-1 promoter. Key role played by PcG proteins in the molecular control of HIV-1 latency has led to hypothesize that PcG proteins may represent a valuable target for future HIV-1 therapy in purging HIV-1 reservoirs. In this regard, various small molecules have been synthesized or explored to specifically block the epigenetic activity of PcG. In this review, we will highlight the possible therapeutic approaches to achieve either a functional or sterilizing cure of HIV-1 infection with special focus on histone methylation by PcG proteins together with current and novel pharmacological approaches to reactivate HIV-1 from latency that could ultimately lead towards a better clearance of viral latent reservoirs.
Collapse
Affiliation(s)
- Sheraz Khan
- Health Biotechnology Division (HBD), National Institute for Biotechnology and Genetic Engineering (NIBGE), PO Box 577, Jhang road, Faisalabad, 38000 Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| | - Mazhar Iqbal
- Health Biotechnology Division (HBD), National Institute for Biotechnology and Genetic Engineering (NIBGE), PO Box 577, Jhang road, Faisalabad, 38000 Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| | - Muhammad Tariq
- Department of Biology (Epigenetics group), SBA School of Science and Engineering, LUMS, Lahore, 54792 Pakistan
| | - Shahid M. Baig
- Health Biotechnology Division (HBD), National Institute for Biotechnology and Genetic Engineering (NIBGE), PO Box 577, Jhang road, Faisalabad, 38000 Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| | - Wasim Abbas
- Health Biotechnology Division (HBD), National Institute for Biotechnology and Genetic Engineering (NIBGE), PO Box 577, Jhang road, Faisalabad, 38000 Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| |
Collapse
|
52
|
Wang X, Xu H. Potential Epigenetic Regulation in the Germinal Center Reaction of Lymphoid Tissues in HIV/SIV Infection. Front Immunol 2018; 9:159. [PMID: 29449847 PMCID: PMC5799247 DOI: 10.3389/fimmu.2018.00159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/18/2018] [Indexed: 01/08/2023] Open
Abstract
The production of high-affinity and broadly neutralizing antibodies plays a key role in the defense against pathogens. These antibody responses require effective germinal center (GC) reaction within anatomical niches of GCs, where follicular helper T (Tfh) cells provide cognate help to B cells for T cell-dependent antibody responses. Emerging evidences indicate that GC reaction in normal state and perhaps establishment of latent Tfh cell reservoir in HIV/SIV infection are tightly regulated by epigenetic histone modifications, which are responsible for activating or silencing chromatin. A better understanding of the mechanisms behind GC responses at cellular and molecular levels thus provides necessary knowledge for vaccination and immunotherapy. In this review, we discussed the epigenetic regulation of GC responses, especially for GC B and Tfh cell under normal state or HIV/SIV infection.
Collapse
Affiliation(s)
- Xiaolei Wang
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, United States
| | - Huanbin Xu
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, United States
| |
Collapse
|
53
|
Ne E, Palstra RJ, Mahmoudi T. Transcription: Insights From the HIV-1 Promoter. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 335:191-243. [DOI: 10.1016/bs.ircmb.2017.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
54
|
Hong X, Kim ES, Guo H. Epigenetic regulation of hepatitis B virus covalently closed circular DNA: Implications for epigenetic therapy against chronic hepatitis B. Hepatology 2017; 66:2066-2077. [PMID: 28833361 PMCID: PMC5696023 DOI: 10.1002/hep.29479] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/24/2017] [Accepted: 08/15/2017] [Indexed: 12/12/2022]
Abstract
Hepatitis B virus (HBV) infection represents a significant public health burden worldwide. Although current therapeutics manage to control the disease progression, lifelong treatment and surveillance are required because drug resistance develops during treatment and reactivations frequently occur following medication cessation. Thus, the occurrence of hepatocellular carcinoma is decreased, but not eliminated. One major reason for failure of HBV treatment is the inability to eradicate or inactivate the viral covalently closed circular DNA (cccDNA), which is a stable episomal form of the viral genome decorated with host histones and nonhistone proteins. Accumulating evidence suggests that epigenetic modifications of cccDNA contribute to viral replication and the outcome of chronic HBV infection. Here, we summarize current progress on HBV epigenetics research and the therapeutic implications for chronic HBV infection by learning from the epigenetic therapies for cancer and other viral diseases, which may open a new venue to cure chronic hepatitis B. (Hepatology 2017;66:2066-2077).
Collapse
Affiliation(s)
- Xupeng Hong
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20057, USA,Corresponding author: Haitao Guo, ; Xupeng Hong,
| | - Elena S. Kim
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Haitao Guo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA,Corresponding author: Haitao Guo, ; Xupeng Hong,
| |
Collapse
|
55
|
Changes in the cellular microRNA profile by the intracellular expression of HIV-1 Tat regulator: A potential mechanism for resistance to apoptosis and impaired proliferation in HIV-1 infected CD4+ T cells. PLoS One 2017; 12:e0185677. [PMID: 28968466 PMCID: PMC5624617 DOI: 10.1371/journal.pone.0185677] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 08/28/2017] [Indexed: 12/13/2022] Open
Abstract
HIV-1 induces changes in the miRNA expression profile of infected CD4+ T cells that could improve viral replication. HIV-1 regulator Tat modifies the cellular gene expression and has been appointed as an RNA silencing suppressor. Tat is a 101-residue protein codified by two exons that regulates the elongation of viral transcripts. The first exon of Tat (amino acids 1–72) forms the transcriptionally active protein Tat72, but the presence of the second exon (amino acids 73–101) results in a more competent regulatory protein (Tat101) with additional functions. Intracellular, full-length Tat101 induces functional and morphological changes in CD4+ T cells that contribute to HIV-1 pathogenesis such as delay in T-cell proliferation and protection against FasL-mediated apoptosis. But the precise mechanism by which Tat produces these changes remains unknown. We analyzed how the stable expression of intracellular Tat101 and Tat72 modified the miRNA expression profile in Jurkat cells and if this correlated with changes in apoptotic pathways and cell cycle observed in Tat-expressing cells. Specifically, the enhanced expression of hsa-miR-21 and hsa-miR-222 in Jurkat-Tat101 cells was associated with the reduced expression of target mRNAs encoding proteins related to apoptosis and cell cycle such as PTEN, PDCD4 and CDKN1B. We developed Jurkat cells with stable expression of hsa-miR-21 or hsa-miR-222 and observed a similar pattern to Jurkat-Tat101 in resistance to FasL-mediated apoptosis, cell cycle arrest in G2/M and altered cell morphology. Consequently, upregulation of hsa-miR-21 and hsa-miR-222 by Tat may contribute to protect against apoptosis and to anergy observed in HIV-infected CD4+ T cells.
Collapse
|
56
|
Datta PK, Kaminski R, Hu W, Pirrone V, Sullivan NT, Nonnemacher MR, Dampier W, Wigdahl B, Khalili K. HIV-1 Latency and Eradication: Past, Present and Future. Curr HIV Res 2017; 14:431-441. [PMID: 27009094 DOI: 10.2174/1570162x14666160324125536] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/04/2015] [Accepted: 01/16/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND It is well established that antiretroviral therapy (ART), while highly effective in controlling HIV replication, cannot eliminate virus from the body. Therefore, the majority of HIV-1-infected individuals remain at risk for developing AIDS due to persistence of infected reservoir cells serving as a source of virus re-emergence. Several reservoirs containing replication competent HIV-1 have been identified, most notably CD4+ T cells. Cells of the myeloid lineage, which are the first line of defense against pathogens and participate in HIV dissemination into sanctuary organs, also serve as cellular reservoirs of HIV-1. In latently infected resting CD4+ T cells, the integrated copies of proviral DNA remain in a dormant state, yet possess the ability to produce replication competent virus after cellular activation. Studies have demonstrated that modification of chromatin structure plays a role in establishing persistence, in part suggesting that latency is, controlled epigenetically. CONCLUSION Current efforts to eradicate HIV-1 from this cell population focus primarily on a "shock and kill" approach through cellular reactivation to trigger elimination of virus producing cells by cytolysis or host immune responses. However, studies revealed several limitations to this approach that require more investigation to assess its clinical application. Recent advances in gene editing technology prompted use of this approach for inactivating integrated proviral DNA in the genome of latently infected cells. This technology, which requires a detailed understanding of the viral genetics and robust delivery, may serve as a powerful strategy to eliminate the latent reservoir in the host leading to a sterile cure of AIDS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology and Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, 7th Floor, Philadelphia, PA 19140, USA.
| |
Collapse
|
57
|
Wang J, Holmes MC. Engineering hematopoietic stem cells toward a functional cure of human immunodeficiency virus infection. Cytotherapy 2017; 18:1370-1381. [PMID: 27745602 DOI: 10.1016/j.jcyt.2016.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 07/05/2016] [Accepted: 07/21/2016] [Indexed: 12/23/2022]
Abstract
The battle with human immunodeficiency virus (HIV) has been ongoing for more than 30 years, and although progress has been made, there are still significant challenges remaining. A few unique features render HIV to be one of the toughest viruses to conquer in the modern medicine era, such as the ability to target the host immune system, persist by integrating into the host genome and adapt to a hostile environment such as a single anti-HIV medication by continuously evolving. The finding of combination anti-retroviral therapy (cART) about 2 decades ago has transformed the treatment options for HIV-infected patients and significantly improved patient outcomes. However, finding an HIV cure has proven to be extremely challenging with the only known exception being the so-called "Berlin patient," whose immune system was replaced by stem cell transplants from a donor missing one of HIV's key co-receptors (CCR5). The broad application of this approach is limited by the requirement of an HLA-matched donor who is also homozygous for the rare CCR5 delta32 deletion. On the other hand, the Berlin patient provided the proof of concept of a potential cure for HIV using HIV-resistant hematopoietic stem cells (HSCs), revitalizing the hope to find an HIV cure that is broadly applicable. Here we will review strategies and recent attempts to engineer HIV-resistant HSCs as a path to an HIV cure.
Collapse
Affiliation(s)
- Jianbin Wang
- Sangamo BioSciences Inc., Richmond, California, USA.
| | | |
Collapse
|
58
|
Deshiere A, Joly-Beauparlant C, Breton Y, Ouellet M, Raymond F, Lodge R, Barat C, Roy MA, Corbeil J, Tremblay MJ. Global Mapping of the Macrophage-HIV-1 Transcriptome Reveals that Productive Infection Induces Remodeling of Host Cell DNA and Chromatin. Sci Rep 2017; 7:5238. [PMID: 28701698 PMCID: PMC5507862 DOI: 10.1038/s41598-017-05566-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/30/2017] [Indexed: 12/23/2022] Open
Abstract
It has been proposed that macrophages could serve as long-lived compartments for HIV-1 infection under in vivo situations because these cells are resistant to the virus-mediated cytopathic effect, produce progeny virus over extended periods of time and are localized in tissues that are often less accessible by treatment. Comprehensive experimental studies are thus needed to characterize the HIV-1-induced modulation of host genes in these myeloid lineage cells. To shed light on this important issue, we performed comparative analyses of mRNA expression levels of host genes in uninfected bystander and HIV-1-infected human macrophages using an infectious reporter virus construct coupled with a large-scale RNA sequencing approach. We observed a rapid differential expression of several host factors in the productively infected macrophage population including genes regulating DNA replication factors and chromatin remodeling. A siRNA-mediated screening study to functionally identify host determinants involved in HIV-1 biology has provided new information on the virus molecular regulation in macrophages.
Collapse
Affiliation(s)
- Alexandre Deshiere
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, Canada
| | - Charles Joly-Beauparlant
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, Canada
| | - Yann Breton
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, Canada
| | - Michel Ouellet
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, Canada
| | - Frédéric Raymond
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, Canada
| | - Robert Lodge
- Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
| | - Corinne Barat
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, Canada
| | - Marc-André Roy
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, Canada
| | - Jacques Corbeil
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, Canada.,Département de médecine moléculaire, Faculté de médecine, Université Laval, Québec, Canada
| | - Michel J Tremblay
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, Canada. .,Département de microbiologie-infectiologie et immunologie, Faculté de médecine, Université Laval, Québec, Canada.
| |
Collapse
|
59
|
Schwartz C, Bouchat S, Marban C, Gautier V, Van Lint C, Rohr O, Le Douce V. On the way to find a cure: Purging latent HIV-1 reservoirs. Biochem Pharmacol 2017; 146:10-22. [PMID: 28687465 DOI: 10.1016/j.bcp.2017.07.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/03/2017] [Indexed: 12/29/2022]
Abstract
Introduction of cART in 1996 has drastically increased the life expectancy of people living with HIV-1. However, this treatment has not allowed cure as cessation of cART is associated with a rapid viral rebound. The main barrier to the eradication of the virus is related to the persistence of latent HIV reservoirs. Evidence is now accumulating that purging the HIV-1 reservoir might lead to a cure or a remission. The most studied strategy is the so called "shock and kill" therapy. This strategy is based on reactivation of dormant viruses from the latently-infected reservoirs (the shock) followed by the eradication of the reservoirs (the kill). This review focuses mainly on the recent advances made in the "shock and kill" therapy. We believe that a cure or a remission will come from combinatorial approaches i.e. combination of drugs to reactivate the dormant virus from all the reservoirs including the one located in sanctuaries, and combination of strategies boosting the immune system. Alternative strategies based on cell and gene therapy or based in inducing deep latency, which are evoked in this review reinforce the idea that at least a remission is attainable.
Collapse
Affiliation(s)
- Christian Schwartz
- University of Strasbourg, EA7292, DHPI, Institute of Parasitology and Tropical Pathology, Strasbourg, France; University of Strasbourg, IUT Louis Pasteur, Schiltigheim, France.
| | - Sophie Bouchat
- Université Libre de Bruxelles (ULB), Service of Molecular Virology, Institute for Molecular Biology and Medicine (IBMM), 12 rue des Profs Jeener et Brachet, 6041 Gosselies, Belgium
| | - Céline Marban
- University of Strasbourg, Inserm UMR 1121 Faculté de Chirurgie Dentaire Pavillon Leriche 1, place de l'Hôpital Strasbourg, France
| | - Virginie Gautier
- UCD, Centre for Research in Infectious Diseases (CRID), School of Medicine University College Dublin, Belfield, Dublin 4, Ireland
| | - Carine Van Lint
- Université Libre de Bruxelles (ULB), Service of Molecular Virology, Institute for Molecular Biology and Medicine (IBMM), 12 rue des Profs Jeener et Brachet, 6041 Gosselies, Belgium
| | - Olivier Rohr
- University of Strasbourg, EA7292, DHPI, Institute of Parasitology and Tropical Pathology, Strasbourg, France; University of Strasbourg, IUT Louis Pasteur, Schiltigheim, France
| | - Valentin Le Douce
- UCD, Centre for Research in Infectious Diseases (CRID), School of Medicine University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
60
|
Unravelling HIV-1 Latency, One Cell at a Time. Trends Microbiol 2017; 25:932-941. [PMID: 28668335 DOI: 10.1016/j.tim.2017.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/22/2017] [Accepted: 06/01/2017] [Indexed: 12/14/2022]
Abstract
A single virus is capable of infecting and replicating in a single cell. Recent advances across single-cell omics technologies - genomics, epigenomics, transcriptomics, epitranscriptomics, proteomics, and metabolomics - will offer unprecedented opportunities to gain more insights into the various aspects of the life cycle of viruses and their impact on the host cell. Here, using the human immunodeficiency virus type 1 (HIV-1) as an example, we summarize the current knowledge and the future potential of single-cell omics in the investigation of an important aspect of the life cycle of HIV-1 that represents a major hurdle in achieving viral eradication, HIV-1 latency.
Collapse
|
61
|
Kumar A, Abbas W, Bouchat S, Gatot JS, Pasquereau S, Kabeya K, Clumeck N, De Wit S, Van Lint C, Herbein G. Limited HIV-1 Reactivation in Resting CD4 + T cells from Aviremic Patients under Protease Inhibitors. Sci Rep 2016; 6:38313. [PMID: 27922055 PMCID: PMC5138822 DOI: 10.1038/srep38313] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/07/2016] [Indexed: 11/17/2022] Open
Abstract
A latent viral reservoir that resides in resting CD4+ T cells represents a major barrier for eradication of HIV infection. We test here the impact of HIV protease inhibitor (PI) based combination anti-retroviral therapy (cART) over nonnucleoside reverse transcriptase inhibitor (NNRTI)-based cART on HIV-1 reactivation and integration in resting CD4+ T cells. This is a prospective cohort study of patients with chronic HIV-1 infection treated with conventional cART with an undetectable viremia. We performed a seven-year study of 47 patients with chronic HIV-infection treated with cART regimens and with undetectable plasma HIV-1 RNA levels for at least 1 year. Of these 47 patients treated with cART, 24 were treated with a PI-based regimen and 23 with a NNRTI-based regimen as their most recent treatment for more than one year. We evaluated the HIV-1 reservoir using reactivation assay and integrated HIV-1 DNA, respectively, in resting CD4+ T cells. Resting CD4+ T cells isolated from PI-treated patients compared to NNRTI-treated patients showed a limited HIV-1 reactivation upon T-cell stimulation (p = 0·024) and a lower level of HIV-1 integration (p = 0·024). Our study indicates that PI-based cART could be more efficient than NNRTI-based cART for limiting HIV-1 reactivation in aviremic chronically infected patients.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Virology, Pathogens &Inflammation Laboratory, University of Franche-Comté, COMUE Bourgogne Franche-Comté University, UPRES EA4266, SFR FED 4234, CHRU Besançon, France
| | - Wasim Abbas
- Department of Virology, Pathogens &Inflammation Laboratory, University of Franche-Comté, COMUE Bourgogne Franche-Comté University, UPRES EA4266, SFR FED 4234, CHRU Besançon, France
| | - Sophie Bouchat
- Laboratory of Molecular Virology, IBMM, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Jean-Stéphane Gatot
- Laboratory of Molecular Virology, IBMM, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Sébastien Pasquereau
- Department of Virology, Pathogens &Inflammation Laboratory, University of Franche-Comté, COMUE Bourgogne Franche-Comté University, UPRES EA4266, SFR FED 4234, CHRU Besançon, France
| | - Kabamba Kabeya
- Department of Infectious Diseases, CHU St-Pierre, ULB, Bruxelles, Belgium
| | - Nathan Clumeck
- Department of Infectious Diseases, CHU St-Pierre, ULB, Bruxelles, Belgium
| | - Stéphane De Wit
- Department of Infectious Diseases, CHU St-Pierre, ULB, Bruxelles, Belgium
| | - Carine Van Lint
- Laboratory of Molecular Virology, IBMM, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Georges Herbein
- Department of Virology, Pathogens &Inflammation Laboratory, University of Franche-Comté, COMUE Bourgogne Franche-Comté University, UPRES EA4266, SFR FED 4234, CHRU Besançon, France
| |
Collapse
|
62
|
Ferrari G, Haynes BF, Koenig S, Nordstrom JL, Margolis DM, Tomaras GD. Envelope-specific antibodies and antibody-derived molecules for treating and curing HIV infection. Nat Rev Drug Discov 2016; 15:823-834. [PMID: 27725635 PMCID: PMC5549020 DOI: 10.1038/nrd.2016.173] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
HIV-1 is a retrovirus that integrates into host chromatin and can remain transcriptionally quiescent in a pool of immune cells. This characteristic enables HIV-1 to evade both host immune responses and antiretroviral drugs, leading to persistent infection. Upon reactivation of proviral gene expression, HIV-1 envelope (HIV-1 Env) glycoproteins are expressed on the cell surface, transforming latently infected cells into targets for HIV-1 Env-specific monoclonal antibodies (mAbs), which can engage immune effector cells to kill productively infected CD4+ T cells and thus limit the spread of progeny virus. Recent innovations in antibody engineering have resulted in novel immunotherapeutics such as bispecific dual-affinity re-targeting (DART) molecules and other bi- and trispecific antibody designs that can recognize HIV-1 Env and recruit cytotoxic effector cells to kill CD4+ T cells latently infected with HIV-1. Here, we review these immunotherapies, which are designed with the goal of curing HIV-1 infection.
Collapse
Affiliation(s)
- Guido Ferrari
- Department of Surgery, Duke University, Durham, North Carolina 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina 27710, USA
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina 27710, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina 27710, USA
- Department of Medicine, Duke University, Durham, North Carolina 27710, USA
- Department of Immunology, Duke University, Durham, North Carolina 27710, USA
| | | | | | - David M Margolis
- University of North Carolina at Chapel Hill HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Georgia D Tomaras
- Department of Surgery, Duke University, Durham, North Carolina 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina 27710, USA
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina 27710, USA
- Department of Immunology, Duke University, Durham, North Carolina 27710, USA
| |
Collapse
|
63
|
Hodel F, Patxot M, Snäkä T, Ciuffi A. HIV-1 latent reservoir: size matters. Future Virol 2016; 11:785-794. [PMID: 28757894 PMCID: PMC5480782 DOI: 10.2217/fvl-2016-0093] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 10/26/2016] [Indexed: 11/21/2022]
Abstract
More than 35 million people remain infected with HIV-1. Upon antiretroviral therapy cessation, HIV-1-positive individuals systematically fail to achieve sustained virological remission, revealing the presence of a reservoir. This reservoir takes into account anatomical sanctuaries where HIV-1 continues to replicate, and latently infected cells also known as the latent reservoir (LR). A better understanding of the nature and features of the LR and its quantification are crucial to evaluate the efficiency of therapeutic strategies aiming at purging HIV-1. Culture- and PCR-based assays have already been implemented to measure the LR, and new assays are continuously being developed. In this review, we will discuss these methods highlighting the difficulties to accurately measure the LR, one main obstacle in curing HIV-1.
Collapse
Affiliation(s)
- Flavia Hodel
- Institute of Microbiology, University Hospital Center & University of Lausanne, Lausanne, Switzerland
| | - Marion Patxot
- Institute of Microbiology, University Hospital Center & University of Lausanne, Lausanne, Switzerland
| | - Tiia Snäkä
- Institute of Microbiology, University Hospital Center & University of Lausanne, Lausanne, Switzerland
| | - Angela Ciuffi
- Institute of Microbiology, University Hospital Center & University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
64
|
Nair M, Sagar V, Pilakka-Kanthikeel S. Gene-expression reversal of lncRNAs and associated mRNAs expression in active vs latent HIV infection. Sci Rep 2016; 6:34862. [PMID: 27756902 PMCID: PMC5069461 DOI: 10.1038/srep34862] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/15/2016] [Indexed: 01/09/2023] Open
Abstract
Interplay between lncRNAs and mRNAs is rapidly emerging as a key epigenetic mechanism in controlling various cell functions. HIV can actively infect and/or can persist latently for years by manipulating host epigenetics; however, its molecular essence remains undiscovered in entirety. Here for the first time, we delineate the influence of HIV on global lncRNAs expression in monocytic cells lines. Our analysis revealed the expression modulation of nearly 1060 such lncRNAs which are associated with differentially expressed mRNAs in active and latent infection. This suggests a greater role of lncRNAs in regulating transcriptional and post-transcriptional gene expression during HIV infection. The differentially expressed mRNAs were involved in several different biological pathways where immunological networks were most enriched. Importantly, we discovered that HIV induces expression reversal of more than 150 lncRNAs between its active and latent infection. Also, hundreds of unique lncRNAs were identified in both infection conditions. The pathology specific "gene-expression reversal" and "on-and-off" switching of lncRNAs and associated mRNAs may lead to establish the relationship between active and HIV infection.
Collapse
Affiliation(s)
- Madhavan Nair
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199, USA
- Institute of Neuro-Immune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199, USA
- Center for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199, USA
| | - Vidya Sagar
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199, USA
- Institute of Neuro-Immune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199, USA
- Center for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199, USA
| | - Sudheesh Pilakka-Kanthikeel
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199, USA
- Institute of Neuro-Immune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199, USA
- Center for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199, USA
| |
Collapse
|
65
|
Le Douce V, Forouzanfar F, Eilebrecht S, Van Driessche B, Ait-Ammar A, Verdikt R, Kurashige Y, Marban C, Gautier V, Candolfi E, Benecke AG, Van Lint C, Rohr O, Schwartz C. HIC1 controls cellular- and HIV-1- gene transcription via interactions with CTIP2 and HMGA1. Sci Rep 2016; 6:34920. [PMID: 27725726 PMCID: PMC5057145 DOI: 10.1038/srep34920] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/21/2016] [Indexed: 02/06/2023] Open
Abstract
Among many cellular transcriptional regulators, Bcl11b/CTIP2 and HGMA1 have been described to control the establishment and the persistence of HIV-1 latency in microglial cells, the main viral reservoir in the brain. In this present work, we identify and characterize a transcription factor i.e. HIC1, which physically interacts with both Bcl11b/CTIP2 and HMGA1 to co-regulate specific subsets of cellular genes and the viral HIV-1 gene. Our results suggest that HIC1 represses Tat dependent HIV-1 transcription. Interestingly, this repression of Tat function is linked to HIC1 K314 acetylation status and to SIRT1 deacetylase activity. Finally, we show that HIC1 interacts and cooperates with HGMA1 to regulate Tat dependent HIV-1 transcription. Our results also suggest that HIC1 repression of Tat function happens in a TAR dependent manner and that this TAR element may serve as HIC1 reservoir at the viral promoter to facilitate HIC1/TAT interaction.
Collapse
Affiliation(s)
- Valentin Le Douce
- University of Strasbourg, EA7292, DHPI, Institut of Parasitology and tropical pathology Strasbourg, France.,University of Strasbourg, IUT Louis Pasteur, Schiltigheim, France.,Institut des Hautes Etudes Scientifiques-Centre National de la Recherche Scientifique, 35 route de Chartres, 91440 Bures sur Yvette, France
| | - Faezeh Forouzanfar
- University of Strasbourg, EA7292, DHPI, Institut of Parasitology and tropical pathology Strasbourg, France
| | - Sebastian Eilebrecht
- Institut Universitaire de France, Paris, France.,Université Libre de Bruxelles (ULB), Service of Molecular Virology, Institute for Molecular Biology and Medicine (IBMM), 12 rue des Profs Jeener et Brachet, 6041 Gosselies, Belgium
| | - Benoit Van Driessche
- Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, Heidelberg 69120, Germany
| | - Amina Ait-Ammar
- University of Strasbourg, EA7292, DHPI, Institut of Parasitology and tropical pathology Strasbourg, France
| | - Roxane Verdikt
- Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, Heidelberg 69120, Germany
| | - Yoshihito Kurashige
- CNRS UMR 7224, Université Pierre et Marie Curie, 7 quai Saint Bernard, 75005 Paris, France
| | - Céline Marban
- CNRS UMR 7224, Université Pierre et Marie Curie, 7 quai Saint Bernard, 75005 Paris, France
| | - Virginie Gautier
- Institut des Hautes Etudes Scientifiques-Centre National de la Recherche Scientifique, 35 route de Chartres, 91440 Bures sur Yvette, France
| | - Ermanno Candolfi
- University of Strasbourg, EA7292, DHPI, Institut of Parasitology and tropical pathology Strasbourg, France
| | - Arndt G Benecke
- Université Libre de Bruxelles (ULB), Service of Molecular Virology, Institute for Molecular Biology and Medicine (IBMM), 12 rue des Profs Jeener et Brachet, 6041 Gosselies, Belgium.,UCD Centre for Research in Infectious Diseases (CRID) School of Medicine and Medical Science University College Dublin, Ireland
| | - Carine Van Lint
- Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, Heidelberg 69120, Germany
| | - Olivier Rohr
- University of Strasbourg, EA7292, DHPI, Institut of Parasitology and tropical pathology Strasbourg, France.,University of Strasbourg, IUT Louis Pasteur, Schiltigheim, France.,Inserm UMR 1121 Faculté de Chirurgie Dentaire Pavillon Leriche 1, place de l'Hôpital Strasbourg, France
| | - Christian Schwartz
- University of Strasbourg, EA7292, DHPI, Institut of Parasitology and tropical pathology Strasbourg, France.,University of Strasbourg, IUT Louis Pasteur, Schiltigheim, France
| |
Collapse
|
66
|
Delagrèverie HM, Delaugerre C, Lewin SR, Deeks SG, Li JZ. Ongoing Clinical Trials of Human Immunodeficiency Virus Latency-Reversing and Immunomodulatory Agents. Open Forum Infect Dis 2016; 3:ofw189. [PMID: 27757411 PMCID: PMC5066458 DOI: 10.1093/ofid/ofw189] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/25/2016] [Indexed: 12/20/2022] Open
Abstract
In chronic human immunodeficiency virus (HIV)-1 infection, long-lived latently infected cells are the major barrier to virus eradication and functional cure. Several therapeutic strategies to perturb, eliminate, and/or control this reservoir are now being pursued in the clinic. These strategies include latency reversal agents (LRAs) designed to reactivate HIV-1 ribonucleic acid transcription and virus production and a variety of immune-modifying drugs designed to reverse latency, block homeostatic proliferation, and replenish the viral reservoir, eliminate virus-producing cells, and/or control HIV replication after cessation of antiretroviral therapy. This review provides a summary of ongoing clinical trials of HIV LRAs and immunomodulatory molecules, and it highlights challenges in the comparison and interpretation of the expected trial results.
Collapse
Affiliation(s)
- Héloïse M Delagrèverie
- INSERM U941, Université Paris Diderot, Laboratoire de Virologie, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris , France
| | - Constance Delaugerre
- INSERM U941, Université Paris Diderot, Laboratoire de Virologie, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris , France
| | - Sharon R Lewin
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Australia; Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, Victoria, Australia
| | - Steven G Deeks
- HIV/AIDS Division, Department of Medicine , San Francisco General Hospital, University of California
| | - Jonathan Z Li
- Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
67
|
The Multifaceted Contributions of Chromatin to HIV-1 Integration, Transcription, and Latency. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 328:197-252. [PMID: 28069134 DOI: 10.1016/bs.ircmb.2016.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The capacity of the human immunodeficiency virus (HIV-1) to establish latent infections constitutes a major barrier to the development of a cure for HIV-1. In latent infection, replication competent HIV-1 provirus is integrated within the host genome but remains silent, masking the infected cells from the activity of the host immune response. Despite the progress in elucidating the molecular players that regulate HIV-1 gene expression, the mechanisms driving the establishment and maintenance of latency are still not fully understood. Transcription from the HIV-1 genome occurs in the context of chromatin and is subjected to the same regulatory mechanisms that drive cellular gene expression. Much like in eukaryotic genes, the nucleosomal landscape of the HIV-1 promoter and its position within genomic chromatin are determinants of its transcriptional activity. Understanding the multilayered chromatin-mediated mechanisms that underpin HIV-1 integration and expression is of utmost importance for the development of therapeutic strategies aimed at reducing the pool of latently infected cells. In this review, we discuss the impact of chromatin structure on viral integration, transcriptional regulation and latency, and the host factors that influence HIV-1 replication by regulating chromatin organization. Finally, we describe therapeutic strategies under development to target the chromatin-HIV-1 interplay.
Collapse
|
68
|
Melkova Z, Shankaran P, Madlenakova M, Bodor J. Current views on HIV-1 latency, persistence, and cure. Folia Microbiol (Praha) 2016; 62:73-87. [PMID: 27709447 DOI: 10.1007/s12223-016-0474-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/20/2016] [Indexed: 01/01/2023]
Abstract
HIV-1 infection cannot be cured as it persists in latently infected cells that are targeted neither by the immune system nor by available therapeutic approaches. Consequently, a lifelong therapy suppressing only the actively replicating virus is necessary. The latent reservoir has been defined and characterized in various experimental models and in human patients, allowing research and development of approaches targeting individual steps critical for HIV-1 latency establishment, maintenance, and reactivation. However, additional mechanisms and processes driving the remaining low-level HIV-1 replication in the presence of the suppressive therapy still remain to be identified and targeted. Current approaches toward HIV-1 cure involve namely attempts to reactivate and purge HIV latently infected cells (so-called "shock and kill" strategy), as well as approaches involving gene therapy and/or gene editing and stem cell transplantation aiming at generation of cells resistant to HIV-1. This review summarizes current views and concepts underlying different approaches aiming at functional or sterilizing cure of HIV-1 infection.
Collapse
Affiliation(s)
- Zora Melkova
- Department of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Studnickova 7, 128 00, Prague 2, Czech Republic. .,BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Průmyslová 595, 252 50, Vestec, Czech Republic.
| | - Prakash Shankaran
- Department of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Studnickova 7, 128 00, Prague 2, Czech Republic
| | - Michaela Madlenakova
- Department of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Studnickova 7, 128 00, Prague 2, Czech Republic.,BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Josef Bodor
- BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Průmyslová 595, 252 50, Vestec, Czech Republic
| |
Collapse
|
69
|
Qu D, Li C, Sang F, Li Q, Jiang ZQ, Xu LR, Guo HJ, Zhang C, Wang JH. The variances of Sp1 and NF-κB elements correlate with the greater capacity of Chinese HIV-1 B'-LTR for driving gene expression. Sci Rep 2016; 6:34532. [PMID: 27698388 PMCID: PMC5048295 DOI: 10.1038/srep34532] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 09/15/2016] [Indexed: 12/28/2022] Open
Abstract
The 5' end of HIV-1 long terminal repeat (LTR) serves as a promoter that plays an essential role in driving viral gene transcription. Manipulation of HIV-1 LTR provides a potential therapeutic strategy for suppressing viral gene expression or excising integrated provirus. Subtype-specific genetic diversity in the LTR region has been observed. The minor variance of LTR, particularly in the transcription factor binding sites, can have a profound impact on its activity. However, the LTR profiles from major endemic Chinese subtypes are not well characterized. Here, by characterizing the sequences and functions of LTRs from endemic Chinese HIV-1 subtypes, we showed that nucleotide variances of Sp1 core promoter and NF-κB element are associated with varied LTR capacity for driving viral gene transcription. The greater responsiveness of Chinese HIV-1 B'-LTR for driving viral gene transcription upon stimulation is associated with an increased level of viral reactivation. Moreover, we demonstrated that the introduction of CRISPR/dead Cas9 targeting Sp1 or NF-κB element suppressed viral gene expression. Taken together, our study characterized LTRs from endemic HIV-1 subtypes in China and suggests a potential target for the suppression of viral gene expression and a novel strategy that facilitates the accomplishment of a functional cure.
Collapse
Affiliation(s)
- Di Qu
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Chuan Li
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Feng Sang
- Key laboratory of Prevention and Treatment with Traditional Chinese Medicine on Viral Infection Disease, the First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Qiang Li
- Key laboratory of Prevention and Treatment with Traditional Chinese Medicine on Viral Infection Disease, the First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Zhi-Qiang Jiang
- Key laboratory of Prevention and Treatment with Traditional Chinese Medicine on Viral Infection Disease, the First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Li-Ran Xu
- Key laboratory of Prevention and Treatment with Traditional Chinese Medicine on Viral Infection Disease, the First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Hui-Jun Guo
- Key laboratory of Prevention and Treatment with Traditional Chinese Medicine on Viral Infection Disease, the First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Chiyu Zhang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Jian-Hua Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
70
|
Marban C, Forouzanfar F, Ait-Ammar A, Fahmi F, El Mekdad H, Daouad F, Rohr O, Schwartz C. Targeting the Brain Reservoirs: Toward an HIV Cure. Front Immunol 2016; 7:397. [PMID: 27746784 PMCID: PMC5044677 DOI: 10.3389/fimmu.2016.00397] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/20/2016] [Indexed: 12/23/2022] Open
Abstract
One of the top research priorities of the international AIDS society by the action “Towards an HIV Cure” is the purge or the decrease of the pool of all latently infected cells. This strategy is based on reactivation of latently reservoirs (the shock) followed by an intensifying combination antiretroviral therapy (cART) to kill them (the kill). The central nervous system (CNS) has potential latently infected cells, i.e., perivascular macrophages, microglial cells, and astrocytes that will need to be eliminated. However, the CNS has several characteristics that may preclude the achievement of a cure. In this review, we discuss several limitations to the eradication of brain reservoirs and how we could circumvent these limitations by making it efforts in four directions: (i) designing efficient latency-reversal agents for CNS-cell types, (ii) improving cART by targeting HIV transcription, (iii) improving delivery of HIV drugs in the CNS and in the CNS-cell types, and (iv) developing therapeutic immunization. As a prerequisite to these efforts, we also believe that a better comprehension of molecular mechanisms involved in establishment and persistence of HIV latency in brain reservoirs are essential to design new molecules for strategies aiming to achieve a cure for instance the “shock and kill” strategy.
Collapse
Affiliation(s)
- Céline Marban
- INSERM UMR 1121 Faculté de Chirurgie Dentaire, Université de Strasbourg , Strasbourg , France
| | | | - Amina Ait-Ammar
- EA7292, DHPI, Université de Strasbourg , Strasbourg , France
| | - Faiza Fahmi
- EA7292, DHPI, Université de Strasbourg , Strasbourg , France
| | - Hala El Mekdad
- EA7292, DHPI, Université de Strasbourg, Strasbourg, France; IUT Louis Pasteur de Schiltigheim, Université de Strasbourg, Schiltigheim, France
| | - Fadoua Daouad
- EA7292, DHPI, Université de Strasbourg , Strasbourg , France
| | - Olivier Rohr
- EA7292, DHPI, Université de Strasbourg, Strasbourg, France; IUT Louis Pasteur de Schiltigheim, Université de Strasbourg, Schiltigheim, France; Institut Universitaire de France, Paris, France
| | - Christian Schwartz
- EA7292, DHPI, Université de Strasbourg, Strasbourg, France; IUT Louis Pasteur de Schiltigheim, Université de Strasbourg, Schiltigheim, France
| |
Collapse
|
71
|
Wang X, Sun B, Mbondji C, Biswas S, Zhao J, Hewlett I. Differences in Activation of HIV-1 Replication by Superinfection With HIV-1 and HIV-2 in U1 Cells. J Cell Physiol 2016; 232:1746-1753. [PMID: 27662631 DOI: 10.1002/jcp.25614] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/22/2016] [Indexed: 11/09/2022]
Abstract
Macrophages contribute to HIV-1 pathogenesis by forming a viral reservoir that serve as a viral source for the infection of CD4 T cells. The relationship between HIV-1 latent infection and superinfection in macrophages has not been well studied. Using susceptible U1 cells chronically infected with HIV-1, we studied the effects of HIV superinfection on latency and differences in superinfection with HIV-1 and HIV-2 in macrophages. We found that HIV-1 (MN) superinfection displayed increased HIV-1 replication in a time-dependent manner; while cells infected with HIV-2 (Rod) initially showed increased HIV-1 replication, followed by a decrease in HIV-1 RNA production. HIV-1 superinfection upregulated/activated NF-ĸB, NFAT, AP-1, SP-1, and MAPK Erk through expression/activation of molecules, CD4, CD3, TCRβ, Zap-70, PLCγ1, and PKCΘ in T cell receptor-related signaling pathways; while HIV-2 superinfection initially increased expression/activation of these molecules followed by decreased protein expression/activation. HIV superinfection initially downregulated HDAC1 and upregulated acetyl-histone H3 and histone H3 (K4), while HIV-2 superinfection demonstrated an increase in HDAC1 and a decrease in acetyl-histone H3 and histone H3 (K4) relative to HIV-1 superinfection. U1 cells superinfected with HIV-1 or HIV-2 showed differential expression of proteins, IL-2, PARP-1, YB-1, and LysRS. These findings indicate that superinfection with HIV-1 or HIV-2 has different effects on reactivation of HIV-1 replication. HIV-1 superinfection with high load of viral replication may result in high levels of cytotoxicity relative to HIV-2 superinfection. Cells infected with HIV-2 showed lower level of HIV-1 replication, suggesting that co-infection with HIV-2 may result in slower progression toward AIDS. J. Cell. Physiol. 232: 1746-1753, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xue Wang
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Bing Sun
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Christelle Mbondji
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Santanu Biswas
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Jiangqin Zhao
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Indira Hewlett
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
72
|
Zhang X, Justice AC, Hu Y, Wang Z, Zhao H, Wang G, Johnson EO, Emu B, Sutton RE, Krystal JH, Xu K. Epigenome-wide differential DNA methylation between HIV-infected and uninfected individuals. Epigenetics 2016; 11:750-760. [PMID: 27672717 PMCID: PMC5094631 DOI: 10.1080/15592294.2016.1221569] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Epigenetic control of human immunodeficiency virus-1 (HIV-1) genes is critical for viral integration and latency. However, epigenetic changes in the HIV-1-infected host genome have not been well characterized. Here, we report the first large-scale epigenome-wide association study of DNA methylation for HIV-1 infection. We recruited HIV-infected (n = 261) and uninfected (n = 117) patients from the Veteran Aging Cohort Study (VACS) and all samples were profiled for 485,521 CpG sites in DNA extracted from the blood. After adjusting for cell type and clinical confounders, we identified 20 epigenome-wide significant CpGs for HIV-1 infection. Importantly, 2 CpGs in the promoter of the NLR family, CARD domain containing gene 5 (NLRC5), a key regulator of major histocompatibility complex class I gene expression, showed significantly lower methylation in HIV-infected subjects than in uninfected subjects (cg07839457: t = −6.03, Pnominal = 4.96 × 10−9; cg16411857: t = −7.63, Pnominal = 3.07 × 10−13). Hypomethylation of these 2 CpGs was replicated in an independent sample (GSE67705: cg07839457: t = −4.44, Pnominal = 1.61 × 10−5; cg16411857: t = −5.90; P = 1.99 × 10−8). Methylation of these 2 CpGs in NLRC5 was negatively correlated with viral load in the 2 HIV-infected samples (cg07839457: P = 1.8 × 10−4; cg16411857: P = 0.03 in the VACS; and cg07839457: P = 0.04; cg164111857: P = 0.01 in GSE53840). Our findings demonstrate that differential DNA methylation is associated with HIV infection and suggest the involvement of a novel host gene, NLRC5, in HIV pathogenesis.
Collapse
Affiliation(s)
- Xinyu Zhang
- a Department of Psychiatry , Yale School of Medicine , New Haven , CT , USA.,b Connecticut Veteran Health System , West Haven , CT , USA
| | - Amy C Justice
- c Yale University School of Medicine, New Haven Veterans Affairs Connecticut Healthcare System , West Haven , CT , USA
| | - Ying Hu
- d Center for Biomedical Informatics & Information Technology, National Cancer Institute , Bethesda , MD , USA
| | - Zuoheng Wang
- e Department of Internal Medicine , Division of Infectious Disease, Yale University School of Medicine , New Haven , CT , USA
| | - Hongyu Zhao
- f Department of Biostatistics , Yale School of Public Health , New Haven , CT , USA
| | - Guilin Wang
- g Yale Center of Genomic Analysis, West Campus , Orange , CT , USA
| | - Eric O Johnson
- h Fellow Program and Behavioral Health and Criminal Justice Division, RTI International , Research Triangle Park, NC , USA
| | - Brinda Emu
- e Department of Internal Medicine , Division of Infectious Disease, Yale University School of Medicine , New Haven , CT , USA
| | - Richard E Sutton
- e Department of Internal Medicine , Division of Infectious Disease, Yale University School of Medicine , New Haven , CT , USA
| | - John H Krystal
- a Department of Psychiatry , Yale School of Medicine , New Haven , CT , USA.,b Connecticut Veteran Health System , West Haven , CT , USA
| | - Ke Xu
- a Department of Psychiatry , Yale School of Medicine , New Haven , CT , USA.,b Connecticut Veteran Health System , West Haven , CT , USA
| |
Collapse
|
73
|
Zhang HS, Du GY, Liu Y, Zhang ZG, Zhou Z, Li H, Dai KQ, Yu XY, Gou XM. UTX-1 regulates Tat-induced HIV-1 transactivation via changing the methylated status of histone H3. Int J Biochem Cell Biol 2016; 80:51-56. [PMID: 27671333 DOI: 10.1016/j.biocel.2016.09.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 11/16/2022]
Abstract
Epigenetic modifications are thought to be important for gene expression changes during HIV-1 transcription and replication. The removal of histone H3 lysine27 (H3K27) trimethylation mark by UTX-1 is important for the robust induction of many specific genes during Tat-mediated HIV-1 transactvation. We found that UTX-1 enzymatic activity is needed for Tat to remove a repressive mark H3K27me3 in the HIV-1 long terminal repeat (LTR). UTX-1 converted the chromatin structure to a more transcriptionally active state by up-regulation of H3K4 methylation and down-regulation of H3K27 methylation on the specific regions of HIV-1 LTR. The increase in H3K27me3 and the decrease in H3K4me3 induced by UTX-1 knockdown was detected on the HIV-1 LTR, but not by control siRNA. Additionally, UTX-1 promotes HIV-1 gene expression by enhancing both the NF-κB p65's nuclear translocation and its p65 binding to HIV-1 LTR. And we further demonstrated that H3K27 demethylase activity was required for increased HIV-1 transactivation induced by UTX-1. Together, our data reveal key roles for UTX-1 in a timely transition from poised to active chromatin in HIV-1 LTR during HIV-1 transcription and a fundamental mechanism by which a H3K27 demethylase triggers tissue-specific chromatin changes. Our findings provide a mechanistic link between UTX-1 and enhanced HIV-1 replication, and suggest that targeting at epigenetic mechanism may have a therapeutic benefit for HIV-1 patients.
Collapse
Affiliation(s)
- Hong-Sheng Zhang
- College of Life Science & Bioengineering, Beijing University of Technology, Pingleyuan 100#, District of Chaoyang, Beijing 100124,China.
| | - Guang-Yuan Du
- College of Life Science & Bioengineering, Beijing University of Technology, Pingleyuan 100#, District of Chaoyang, Beijing 100124,China
| | - Yang Liu
- College of Life Science & Bioengineering, Beijing University of Technology, Pingleyuan 100#, District of Chaoyang, Beijing 100124,China
| | - Zhong-Guo Zhang
- College of Life Science & Bioengineering, Beijing University of Technology, Pingleyuan 100#, District of Chaoyang, Beijing 100124,China
| | - Zhen Zhou
- College of Life Science & Bioengineering, Beijing University of Technology, Pingleyuan 100#, District of Chaoyang, Beijing 100124,China
| | - Hu Li
- College of Life Science & Bioengineering, Beijing University of Technology, Pingleyuan 100#, District of Chaoyang, Beijing 100124,China
| | - Ke-Qing Dai
- College of Life Science & Bioengineering, Beijing University of Technology, Pingleyuan 100#, District of Chaoyang, Beijing 100124,China
| | - Xiao-Ying Yu
- College of Life Science & Bioengineering, Beijing University of Technology, Pingleyuan 100#, District of Chaoyang, Beijing 100124,China
| | - Xiao-Meng Gou
- College of Life Science & Bioengineering, Beijing University of Technology, Pingleyuan 100#, District of Chaoyang, Beijing 100124,China
| |
Collapse
|
74
|
Bialek JK, Dunay GA, Voges M, Schäfer C, Spohn M, Stucka R, Hauber J, Lange UC. Targeted HIV-1 Latency Reversal Using CRISPR/Cas9-Derived Transcriptional Activator Systems. PLoS One 2016; 11:e0158294. [PMID: 27341108 PMCID: PMC4920395 DOI: 10.1371/journal.pone.0158294] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/13/2016] [Indexed: 11/18/2022] Open
Abstract
CRISPR/Cas9 technology is currently considered the most advanced tool for targeted genome engineering. Its sequence-dependent specificity has been explored for locus-directed transcriptional modulation. Such modulation, in particular transcriptional activation, has been proposed as key approach to overcome silencing of dormant HIV provirus in latently infected cellular reservoirs. Currently available agents for provirus activation, so-called latency reversing agents (LRAs), act indirectly through cellular pathways to induce viral transcription. However, their clinical performance remains suboptimal, possibly because reservoirs have diverse cellular identities and/or proviral DNA is intractable to the induced pathways. We have explored two CRISPR/Cas9-derived activator systems as targeted approaches to induce dormant HIV-1 proviral DNA. These systems recruit multiple transcriptional activation domains to the HIV 5' long terminal repeat (LTR), for which we have identified an optimal target region within the LTR U3 sequence. Using this target region, we demonstrate transcriptional activation of proviral genomes via the synergistic activation mediator complex in various in culture model systems for HIV latency. Observed levels of induction are comparable or indeed higher than treatment with established LRAs. Importantly, activation is complete, leading to production of infective viral particles. Our data demonstrate that CRISPR/Cas9-derived technologies can be applied to counteract HIV latency and may therefore represent promising novel approaches in the quest for HIV elimination.
Collapse
Affiliation(s)
- Julia K. Bialek
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Gábor A. Dunay
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site, Hamburg, Germany
| | - Maike Voges
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Carola Schäfer
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site, Hamburg, Germany
| | - Michael Spohn
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Rolf Stucka
- Friedrich-Baur-Institute, Department of Neurology, Ludwig Maximilian University Munich, Munich, Germany
| | - Joachim Hauber
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site, Hamburg, Germany
| | - Ulrike C. Lange
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site, Hamburg, Germany
| |
Collapse
|
75
|
Le Douce V, Ait-Amar A, Forouzan Far F, Fahmi F, Quiel J, El Mekdad H, Daouad F, Marban C, Rohr O, Schwartz C. Improving combination antiretroviral therapy by targeting HIV-1 gene transcription. Expert Opin Ther Targets 2016; 20:1311-1324. [PMID: 27266557 DOI: 10.1080/14728222.2016.1198777] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Combination Antiretroviral Therapy (cART) has not allowed the cure of HIV. The main obstacle to HIV eradication is the existence of quiescent reservoirs. Several other limitations of cART have been described, such as strict life-long treatment and high costs, restricting it to Western countries, as well as the development of multidrug resistance. Given these limitations and the impetus to find a cure, the development of new treatments is necessary. Areas covered: In this review, we discuss the current status of several efficient molecules able to suppress HIV gene transcription, including NF-kB and Tat inhibitors. We also assess the potential of new proteins belonging to the intriguing DING family, which have been reported to have potential anti-HIV-1 activity by inhibiting HIV gene transcription. Expert opinion: Targeting HIV-1 gene transcription is an alternative approach, which could overcome cART-related issues, such as the emergence of multidrug resistance. Improving cART will rely on the identification and characterization of new actors inhibiting HIV-1 transcription. Combining such efforts with the use of new technologies, the development of new models for preclinical studies, and improvement in drug delivery will considerably reduce drug toxicity and thus increase patient adherence.
Collapse
Affiliation(s)
- Valentin Le Douce
- a Institut de Parasitologie et de Pathologie Tropicale, EA7292 , Université de Strasbourg , Strasbourg , France.,b IUT de Schiltigheim , Schiltigheim , France.,c UCD Centre for Research in Infectious Diseases (CRID) School of Medicine and Medical Science , University College Dublin , Dublin 4 , Ireland
| | - Amina Ait-Amar
- a Institut de Parasitologie et de Pathologie Tropicale, EA7292 , Université de Strasbourg , Strasbourg , France
| | - Faezeh Forouzan Far
- a Institut de Parasitologie et de Pathologie Tropicale, EA7292 , Université de Strasbourg , Strasbourg , France
| | - Faiza Fahmi
- a Institut de Parasitologie et de Pathologie Tropicale, EA7292 , Université de Strasbourg , Strasbourg , France
| | - Jose Quiel
- a Institut de Parasitologie et de Pathologie Tropicale, EA7292 , Université de Strasbourg , Strasbourg , France
| | - Hala El Mekdad
- a Institut de Parasitologie et de Pathologie Tropicale, EA7292 , Université de Strasbourg , Strasbourg , France
| | - Fadoua Daouad
- a Institut de Parasitologie et de Pathologie Tropicale, EA7292 , Université de Strasbourg , Strasbourg , France
| | - Céline Marban
- d Faculté de Chirurgie Dentaire , Inserm UMR 1121 , Strasbourg , France
| | - Olivier Rohr
- a Institut de Parasitologie et de Pathologie Tropicale, EA7292 , Université de Strasbourg , Strasbourg , France.,b IUT de Schiltigheim , Schiltigheim , France.,e Institut Universitaire de France , Paris , France
| | - Christian Schwartz
- a Institut de Parasitologie et de Pathologie Tropicale, EA7292 , Université de Strasbourg , Strasbourg , France.,b IUT de Schiltigheim , Schiltigheim , France
| |
Collapse
|
76
|
Wang J, Yang J, Yang Z, Lu X, Jin C, Cheng L, Wu N. RbAp48, a novel inhibitory factor that regulates the transcription of human immunodeficiency virus type 1. Int J Mol Med 2016; 38:267-74. [PMID: 27222146 DOI: 10.3892/ijmm.2016.2598] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 05/10/2016] [Indexed: 11/06/2022] Open
Abstract
Retinoblastoma binding protein 4 (RbAp48) is a histone chaperone which has been suggested to play a role in gene silencing. However, the role of RbAp48 in human immunodeficiency virus type 1 (HIV-1) infection and gene replication has not been determined to date, to the best of our knowledge. For this purpose, we demonstrated in the present study that RbAp48 expression was upregulated by HIV-1 infection, whereas the knockdown of RbAp48 promoted HIV infection and the production of virus particles. The ectopic expression of RbAp48 inhibited HIV-1 expression, and this inhibition correlated with a marked decrease in the expression of HIV-1 genomic RNA and various RNA transcripts. Further experiments to determine the mechanism responsible for the inhibitory effects of RbAp48 revealed that the ectopic expression of RbAp48 repressed HIV-1 long terminal repeat (LTR)-mediated basal transcription as well as TNF-α- and phorbol 12-myristate 13-acetate (PMA)‑activated transcription. Furthermore, the results of the electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) analysis revealed that RbAp48 binds to the HIV-1 LTR in vitro. Taken together, these findings demonstrate that, as a transcriptional cofactor, RbAp48 is likely to act as a potent antiretroviral defense.
Collapse
Affiliation(s)
- Juan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jin Yang
- Department of Medicine, Blood Center of Zhejiang Province, Hangzhou, Zhejiang 330100, P.R. China
| | - Zongxing Yang
- Xixi Hospital of Hangzhou, Hangzhou, Zhejiang 310023, P.R. China
| | - Xiangyun Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Changzhong Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Linfang Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
77
|
HIV Provirus Stably Reproduces Parental Latent and Induced Transcription Phenotypes Regardless of the Chromosomal Integration Site. J Virol 2016; 90:5302-14. [PMID: 26984732 PMCID: PMC4934743 DOI: 10.1128/jvi.02842-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/14/2016] [Indexed: 02/06/2023] Open
Abstract
Understanding the mechanisms of HIV proviral latency is essential for development of a means to eradicate infection and achieve a cure. We have previously described an in vitro latency model that reliably identifies HIV expression phenotypes of infected cells using a dual-fluorescence reporter virus. Our results have demonstrated that ∼50% of infected cells establish latency immediately upon integration of provirus, a phenomenon termed early latency, which appears to occur by mechanisms that are distinct from epigenetic silencing observed with HIV provirus that establishes productive infections. In this study, we have used a mini-dual HIV reporter virus (mdHIV) to compare the long-term stability of provirus produced as early latent or productive infections using Jurkat-Tat T cell clones. Cloned lines bearing mdHIV provirus integrated at different chromosomal locations display unique differences in responsiveness to signaling agonists and chromatin-modifying compounds, and they also produce characteristic expression patterns from the 5′ long terminal repeat (LTR) dsRed and internal EIF1α-enhanced green fluorescent protein (EIF1α-eGFP) reporters. Furthermore, reporter expression profiles of single cell sorted subcultures faithfully reproduce expression profiles identical to that of their original parental population, following prolonged growth in culture, without shifting toward expression patterns resembling that of cell subclones at the time of sorting. Comparison of population dispersion coefficient (CV) and mean fluorescence intensity (MFI) of the subcloned lines showed that both untreated and phorbol myristate acetate (PMA)-ionomycin-stimulated cultures produce expression patterns identical to those of their parental lines. These results indicate that HIV provirus expression characteristics are strongly influenced by the epigenetic landscape at the site of chromosomal integration.
IMPORTANCE There is currently considerable interest in development of therapies to eliminate latently infected cells from HIV-infected patients on antiretroviral therapy. One proposed strategy, known as “shock and kill,” would involve treatment with therapies capable of inducing expression of latent provirus, with the expectation that the latently infected cells could be killed by a host immune response or virus-induced apoptosis. In clinical trials, histone deacetylase (HDAC) inhibitors were shown to cause reactivation of latent provirus but did not produce a significant effect toward eliminating the latently infected population. Results shown here indicate that integration of HIV provirus at different chromosomal locations produces significant effects on the responsiveness of virus expression to T cell signaling agonists and chromatin-modifying compounds. Given the variety of phenotypes produced by integrated provirus, it is unlikely that any single potential shock-and-kill therapy will be effective toward purging the latently infected population.
Collapse
|
78
|
Kumar A, Abbas W, Colin L, Khan KA, Bouchat S, Varin A, Larbi A, Gatot JS, Kabeya K, Vanhulle C, Delacourt N, Pasquereau S, Coquard L, Borch A, König R, Clumeck N, De Wit S, Rohr O, Rouzioux C, Fulop T, Van Lint C, Herbein G. Tuning of AKT-pathway by Nef and its blockade by protease inhibitors results in limited recovery in latently HIV infected T-cell line. Sci Rep 2016; 6:24090. [PMID: 27076174 PMCID: PMC4831010 DOI: 10.1038/srep24090] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 03/18/2016] [Indexed: 12/14/2022] Open
Abstract
Akt signaling plays a central role in many biological processes, which are key players in human immunodeficiency virus 1 (HIV-1) pathogenesis. We found that Akt interacts with HIV-1 Nef protein. In primary T cells treated with exogenous Nef or acutely infected with Nef-expressing HIV-1 in vitro, Akt became phosphorylated on serine473 and threonine308. In vitro, Akt activation mediated by Nef in T-cells was blocked by HIV protease inhibitors (PI), but not by reverse transcriptase inhibitors (RTI). Ex vivo, we found that the Akt pathway is hyperactivated in peripheral blood lymphocytes (PBLs) from cART naïve HIV-1-infected patients. PBLs isolated from PI-treated patients, but not from RTI-treated patients, exhibited decreased Akt activation, T-cell proliferation and IL-2 production. We found that PI but not RTI can block HIV-1 reactivation in latently infected J-Lat lymphoid cells stimulated with various stimuli. Using luciferase measurement, we further confirmed that Nef-mediated reactivation of HIV-1 from latency in 1G5 cells was blocked by PI parallel to decreased Akt activation. Our results indicate that PI-mediated blockade of Akt activation could impact the HIV-1 reservoir and support the need to further assess the therapeutic use of HIV-1 PI in order to curtail latently infected cells in HIV-1-infected patients.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Virology, Pathogens &Inflammation Laboratory, University of Franche-Comté and COMUE Bourgogne Franche-Comté University, UPRES EA4266, SFR FED 4234, CHRU Besançon, Besançon, France
| | - Wasim Abbas
- Department of Virology, Pathogens &Inflammation Laboratory, University of Franche-Comté and COMUE Bourgogne Franche-Comté University, UPRES EA4266, SFR FED 4234, CHRU Besançon, Besançon, France
| | - Laurence Colin
- Laboratory of Molecular Virology, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Kashif Aziz Khan
- Department of Virology, Pathogens &Inflammation Laboratory, University of Franche-Comté and COMUE Bourgogne Franche-Comté University, UPRES EA4266, SFR FED 4234, CHRU Besançon, Besançon, France
| | - Sophie Bouchat
- Laboratory of Molecular Virology, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Audrey Varin
- Department of Virology, Pathogens &Inflammation Laboratory, University of Franche-Comté and COMUE Bourgogne Franche-Comté University, UPRES EA4266, SFR FED 4234, CHRU Besançon, Besançon, France
| | - Anis Larbi
- Department of Medicine, University of Sherbrooke, Sherbrooke, Canada
| | - Jean-Stéphane Gatot
- Laboratory of Molecular Virology, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Kabamba Kabeya
- Department of Infectious Diseases, CHU St-Pierre, ULB, Bruxelles, Belgium
| | - Caroline Vanhulle
- Laboratory of Molecular Virology, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Nadège Delacourt
- Laboratory of Molecular Virology, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Sébastien Pasquereau
- Department of Virology, Pathogens &Inflammation Laboratory, University of Franche-Comté and COMUE Bourgogne Franche-Comté University, UPRES EA4266, SFR FED 4234, CHRU Besançon, Besançon, France
| | - Laurie Coquard
- Department of Virology, Pathogens &Inflammation Laboratory, University of Franche-Comté and COMUE Bourgogne Franche-Comté University, UPRES EA4266, SFR FED 4234, CHRU Besançon, Besançon, France
| | - Alexandra Borch
- Research Group "Host-Pathogen Interactions", Paul-Ehrlich-Institute, Langen, Germany
| | - Renate König
- Research Group "Host-Pathogen Interactions", Paul-Ehrlich-Institute, Langen, Germany.,Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Research Institute, La Jolla, CA; German Center for Infection Research (DZIF), Langen, Germany
| | - Nathan Clumeck
- Department of Infectious Diseases, CHU St-Pierre, ULB, Bruxelles, Belgium
| | - Stephane De Wit
- Department of Infectious Diseases, CHU St-Pierre, ULB, Bruxelles, Belgium
| | - Olivier Rohr
- Institut de Parasitologie et Pathologie Tropicale, University of Strasbourg, Strasbourg, France
| | - Christine Rouzioux
- Department of Virology, Paris University, EA7327 Paris Descartes, APHP Necker Hospital, Paris, France
| | - Tamas Fulop
- Department of Medicine, University of Sherbrooke, Sherbrooke, Canada
| | - Carine Van Lint
- Laboratory of Molecular Virology, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Georges Herbein
- Department of Virology, Pathogens &Inflammation Laboratory, University of Franche-Comté and COMUE Bourgogne Franche-Comté University, UPRES EA4266, SFR FED 4234, CHRU Besançon, Besançon, France
| |
Collapse
|
79
|
The BET inhibitor OTX015 reactivates latent HIV-1 through P-TEFb. Sci Rep 2016; 6:24100. [PMID: 27067814 PMCID: PMC4828723 DOI: 10.1038/srep24100] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/21/2016] [Indexed: 12/13/2022] Open
Abstract
None of the currently used anti-HIV-1 agents can effectively eliminate latent HIV-1 reservoirs, which is a major hurdle to a complete cure for AIDS. We report here that a novel oral BET inhibitor OTX015, a thienotriazolodiazepine compound that has entered phase Ib clinical development for advanced hematologic malignancies, can effectively reactivate HIV-1 in different latency models with an EC50 value 1.95-4.34 times lower than JQ1, a known BET inhibitor that can reactivate HIV-1 latency. We also found that OTX015 was more potent when used in combination with prostratin. More importantly, OTX015 treatment induced HIV-1 full-length transcripts and viral outgrowth in resting CD4(+) T cells from infected individuals receiving suppressive antiretroviral therapy (ART), while exerting minimal toxicity and effects on T cell activation. Finally, biochemical analysis showed that OTX015-mediated activation of HIV-1 involved an increase in CDK9 occupancy and RNAP II C-terminal domain (CTD) phosphorylation. Our results suggest that the BET inhibitor OTX015 may be a candidate for anti-HIV-1-latency therapies.
Collapse
|
80
|
Trejbalová K, Kovářová D, Blažková J, Machala L, Jilich D, Weber J, Kučerová D, Vencálek O, Hirsch I, Hejnar J. Development of 5' LTR DNA methylation of latent HIV-1 provirus in cell line models and in long-term-infected individuals. Clin Epigenetics 2016; 8:19. [PMID: 26900410 PMCID: PMC4759744 DOI: 10.1186/s13148-016-0185-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/10/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Human immunodeficiency virus type 1 (HIV-1) latency represents the major barrier to virus eradication in infected individuals because cells harboring latent HIV-1 provirus are not affected by current antiretroviral therapy (ART). We previously demonstrated that DNA methylation of HIV-1 long terminal repeat (5' LTR) restricts HIV-1 reactivation and, together with chromatin conformation, represents an important mechanism of HIV-1 latency maintenance. Here, we explored the new issue of temporal development of DNA methylation in latent HIV-1 5' LTR. RESULTS In the Jurkat CD4(+) T cell model of latency, we showed that the stimulation of host cells contributed to de novo DNA methylation of the latent HIV-1 5' LTR sequences. Consecutive stimulations of model CD4(+) T cell line with TNF-α and PMA or with SAHA contributed to the progressive accumulation of 5' LTR DNA methylation. Further, we showed that once established, the high DNA methylation level of the latent 5' LTR in the cell line model was a stable epigenetic mark. Finally, we explored the development of 5' LTR DNA methylation in the latent reservoir of HIV-1-infected individuals who were treated with ART. We detected low levels of 5' LTR DNA methylation in the resting CD4(+) T cells of the group of patients who were treated for up to 3 years. However, after long-term ART, we observed an accumulation of 5' LTR DNA methylation in the latent reservoir. Importantly, within the latent reservoir of some long-term-treated individuals, we uncovered populations of proviral molecules with a high density of 5' LTR CpG methylation. CONCLUSIONS Our data showed the presence of 5' LTR DNA methylation in the long-term reservoir of HIV-1-infected individuals and implied that the transient stimulation of cells harboring latent proviruses may contribute, at least in part, to the methylation of the HIV-1 promoter.
Collapse
Affiliation(s)
- Kateřina Trejbalová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Denisa Kovářová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Jana Blažková
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Ladislav Machala
- Department of Infectious Diseases, Third Faculty of Medicine, Charles University and Hospital Na Bulovce in Prague, Budínova 67/2, CZ-18081 Prague 8, Czech Republic
| | - David Jilich
- Department of Infectious, Tropical and Parasitic Diseases, First Faculty of Medicine, Charles University in Prague and Hospital Na Bulovce, Budínova 67/ 2, CZ-18081 Prague 8, Czech Republic
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| | - Dana Kučerová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Ondřej Vencálek
- Department of Mathematical Analysis and Applications of Mathematics, Faculty of Science of the Palacky University in Olomouc, Olomouc, CZ-77146 Czech Republic
| | - Ivan Hirsch
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic ; Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic ; Faculty of Science, Department of Genetics and Microbiology, Charles University in Prague, Viničná 5, CZ-12844 Prague 2, Czech Republic ; Inserm, Centre de Recherche en Cancérologie de Marseille (CRCM), F-13273 Marseille, France ; Institut Paoli-Calmettes, F-13009 Marseille, France ; Aix-Marseille Univ., F-13284 Marseille, France ; CNRS, UMR7258, CRCM, F-13009 Marseille, France
| | - Jiří Hejnar
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| |
Collapse
|
81
|
Thakker S, Verma SC. Co-infections and Pathogenesis of KSHV-Associated Malignancies. Front Microbiol 2016; 7:151. [PMID: 26913028 PMCID: PMC4753363 DOI: 10.3389/fmicb.2016.00151] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/27/2016] [Indexed: 12/25/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV), also known as human herpes virus 8 (HHV-8) is one of the several carcinogenic viruses that infect humans. KSHV infection has been implicated in the development of Kaposi’s sarcoma (KS), primary effusion lymphoma, and multicentric Castleman’s Disease. While KSHV infection is necessary for the development of KSHV associated malignancies, it is not sufficient to induce tumorigenesis. Evidently, other co-factors are essential for the progression of KSHV induced malignancies. One of the most important co-factors, necessary for the progression of KSHV induced tumors, is immune suppression that frequently arises during co-infection with HIV and also by other immune suppressants. In this mini-review, we discuss the roles of co-infection with HIV and other pathogens on KSHV infection and pathogenesis.
Collapse
|
82
|
Lopez M, Halby L, Arimondo PB. DNA Methyltransferase Inhibitors: Development and Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 945:431-473. [DOI: 10.1007/978-3-319-43624-1_16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|