51
|
Healing autism spectrum disorder with cannabinoids: a neuroinflammatory story. Neurosci Biobehav Rev 2020; 121:128-143. [PMID: 33358985 DOI: 10.1016/j.neubiorev.2020.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/28/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with a multifactorial etiology. Latest researches are raising the hypothesis of a link between the onset of the main behavioral symptoms of ASD and the chronic neuroinflammatory condition of the autistic brain; increasing evidence of this connection is shedding light on new possible players in the pathogenesis of ASD. The endocannabinoid system (ECS) has a key role in neurodevelopment as well as in normal inflammatory responses and it is not surprising that many preclinical and clinical studies account for alterations of the endocannabinoid signaling in ASD. These findings lay the foundation for a better understanding of the neurochemical mechanisms underlying ASD and for new therapeutic attempts aimed at exploiting the renowned anti-inflammatory properties of cannabinoids to treat pathologies encompassed in the autistic spectrum. This review discusses the current preclinical and clinical evidence supporting a key role of the ECS in the neuroinflammatory state that characterizes ASD, providing hints to identify new biomarkers in ASD and promising therapies for the future.
Collapse
|
52
|
Pandina G, Ring RH, Bangerter A, Ness S. Current Approaches to the Pharmacologic Treatment of Core Symptoms Across the Lifespan of Autism Spectrum Disorder. Psychiatr Clin North Am 2020; 43:629-645. [PMID: 33126999 DOI: 10.1016/j.psc.2020.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There are no approved medications for autism spectrum disorder (ASD) core symptoms. However, given the significant clinical need, children and adults with ASD are prescribed medication off label for core or associated conditions, sometimes based on limited evidence for effectiveness. Recent developments in the understanding of biologic basis of ASD have led to novel targets with potential to impact core symptoms, and several clinical trials are underway. Heterogeneity in course of development, co-occurring conditions, and age-related treatment response variability hampers study outcomes. Novel measures and approaches to ASD clinical trial design will help in development of effective pharmacologic treatments.
Collapse
Affiliation(s)
- Gahan Pandina
- Janssen Research & Development, LLC, 1125 Trenton Harbouron Road, Titusville, NJ 08560, USA.
| | | | - Abigail Bangerter
- Janssen Research & Development, LLC, 1125 Trenton Harbouron Road, Titusville, NJ 08560, USA
| | - Seth Ness
- Janssen Research & Development, LLC, 1125 Trenton Harbouron Road, Titusville, NJ 08560, USA
| |
Collapse
|
53
|
Ponton JA, Smyth K, Soumbasis E, Llanos SA, Lewis M, Meerholz WA, Tanguay RL. A pediatric patient with autism spectrum disorder and epilepsy using cannabinoid extracts as complementary therapy: a case report. J Med Case Rep 2020; 14:162. [PMID: 32958062 PMCID: PMC7507278 DOI: 10.1186/s13256-020-02478-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The pharmacological treatment for autism spectrum disorders is often poorly tolerated and has traditionally targeted associated conditions, with limited benefit for the core social deficits. We describe the novel use of a cannabidiol-based extract that incidentally improved core social deficits and overall functioning in a patient with autism spectrum disorder, at a lower dose than has been previously reported in autism spectrum disorder. CASE PRESENTATION The parents of a 15-year-old boy, of South African descent, with autism spectrum disorder, selective mutism, anxiety, and controlled epilepsy, consulted a medical cannabis physician to trial cannabis extract to replace seizure medications. Incidentally, at a very low cannabidiol-based extract dose, he experienced unanticipated positive effects on behavioral symptoms and core social deficits. CONCLUSION This case report provides evidence that a lower than previously reported dose of a phytocannabinoid in the form of a cannabidiol-based extract may be capable of aiding in autism spectrum disorder-related behavioral symptoms, core social communication abilities, and comorbid anxiety, sleep difficulties, and weight control. Further research is needed to elucidate the clinical role and underlying biological mechanisms of action of cannabidiol-based extract in patients with autism spectrum disorder.
Collapse
Affiliation(s)
| | - Kim Smyth
- Alberta Children's Hospital, 2888 Shaganappi Trail N.W., Calgary, AB, Canada
| | - Elias Soumbasis
- Caleo Health, Suite 200, 1402 8th Ave N.W., Calgary, AB, T2N 1B9, Canada
| | | | - Mark Lewis
- Caleo Health, Suite 200, 1402 8th Ave N.W., Calgary, AB, T2N 1B9, Canada
| | | | | |
Collapse
|
54
|
Di Marzo V. The endocannabinoidome as a substrate for noneuphoric phytocannabinoid action and gut microbiome dysfunction in neuropsychiatric disorders
. DIALOGUES IN CLINICAL NEUROSCIENCE 2020; 22:259-269. [PMID: 33162769 PMCID: PMC7605024 DOI: 10.31887/dcns.2020.22.3/vdimarzo] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The endocannabinoid (eCB) system encompasses the eCBs anandamide and 2-arachidonoylglycerol, their anabolic/catabolic enzymes, and the cannabinoid CB1 and CB2 receptors. Its expansion to include several eCB-like lipid mediators, their metabolic enzymes, and their molecular targets, forms the endocannabinoidome (eCBome). This complex signaling system is deeply involved in the onset, progress, and symptoms of major neuropsychiatric disorders and provides a substrate for future therapeutic drugs against these diseases. Such drugs may include not only THC, the major psychotropic component of cannabis, but also other, noneuphoric plant cannabinoids. These compounds, unlike THC, possess a wide therapeutic window, possibly due to their capability of hitting several eCBome and non-eCBome receptors. This is particularly true for cannabidiol, which is one of the most studied cannabinoids and shows promise for the treatment of a wide range of mental and mood disorders. The eCBome plays a role also in the microbiota-gut-brain axis, which is emerging as an important actor in the control of affective and cognitive functions and in their pathological alterations.
.
Collapse
Affiliation(s)
- Vincenzo Di Marzo
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Canada; Joint International Unit between Université Laval and Consiglio Nazionale delle Ricerche of Italy on Chemical and Biomolecular Research on the Microbiome and its Impact on Metabolic Health and Nutrition, Istituto di Chimica Biomolecolare, CNR, Pozzuoli (NA), Italy
| |
Collapse
|
55
|
Cannabinoids for People with ASD: A Systematic Review of Published and Ongoing Studies. Brain Sci 2020; 10:brainsci10090572. [PMID: 32825313 PMCID: PMC7563787 DOI: 10.3390/brainsci10090572] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/22/2022] Open
Abstract
The etiopathogenesis of autism spectrum disorder (ASD) remains largely unclear. Among other biological hypotheses, researchers have evidenced an imbalance in the endocannabinoid (eCB) system, which regulates some functions typically impaired in ASD, such as emotional responses and social interaction. Additionally, cannabidiol (CBD), the non-intoxicating component of Cannabis sativa, was recently approved for treatment-resistant epilepsy. Epilepsy represents a common medical condition in people with ASD. Additionally, the two conditions share some neuropathological mechanisms, particularly GABAergic dysfunctions. Hence, it was hypothesized that cannabinoids could be useful in improving ASD symptoms. Our systematic review was conducted according to the PRISMA guidelines and aimed to summarize the literature regarding the use of cannabinoids in ASD. After searching in Web of KnowledgeTM, PsycINFO, and Embase, we included ten studies (eight papers and two abstracts). Four ongoing trials were retrieved in ClinicalTrials.gov. The findings were promising, as cannabinoids appeared to improve some ASD-associated symptoms, such as problem behaviors, sleep problems, and hyperactivity, with limited cardiac and metabolic side effects. Conversely, the knowledge of their effects on ASD core symptoms is scarce. Interestingly, cannabinoids generally allowed to reduce the number of prescribed medications and decreased the frequency of seizures in patients with comorbid epilepsy. Mechanisms of action could be linked to the excitatory/inhibitory imbalance found in people with ASD. However, further trials with better characterization and homogenization of samples, and well-defined outcomes should be implemented.
Collapse
|
56
|
Fernández-Ruiz J, Galve-Roperh I, Sagredo O, Guzmán M. Possible therapeutic applications of cannabis in the neuropsychopharmacology field. Eur Neuropsychopharmacol 2020; 36:217-234. [PMID: 32057592 DOI: 10.1016/j.euroneuro.2020.01.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/08/2020] [Accepted: 01/22/2020] [Indexed: 12/18/2022]
Abstract
Cannabis use induces a plethora of actions on the CNS via its active chemical ingredients, the so-called phytocannabinoids. These compounds have been frequently associated with the intoxicating properties of cannabis preparations. However, not all phytocannabinoids are psychotropic, and, irrespective of whether they are psychotropic or not, they have also shown numerous therapeutic properties. These properties are mostly associated with their ability to modulate the activity of an intercellular communication system, the so-called endocannabinoid system, which is highly active in the CNS and has been found altered in many neurological disorders. Specifically, this includes the neuropsychopharmacology field, with diseases such as schizophrenia and related psychoses, anxiety-related disorders, mood disorders, addiction, sleep disorders, post-traumatic stress disorder, anorexia nervosa and other feeding-related disorders, dementia, epileptic syndromes, as well as autism, fragile X syndrome and other neurodevelopment-related disorders. Here, we gather, from a pharmacological and biochemical standpoint, the recent advances in the study of the therapeutic relevance of the endocannabinoid system in the CNS, with especial emphasis on the neuropsychopharmacology field. We also illustrate the efforts that are currently being made to investigate at the clinical level the potential therapeutic benefits derived from elevating or inhibiting endocannabinoid signaling in animal models of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Javier Fernández-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Ciudad Universitaria s/n, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| | - Ismael Galve-Roperh
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Ciudad Universitaria s/n, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Onintza Sagredo
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Ciudad Universitaria s/n, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Manuel Guzmán
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Ciudad Universitaria s/n, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| |
Collapse
|
57
|
Almogi-Hazan O, Or R. Cannabis, the Endocannabinoid System and Immunity-the Journey from the Bedside to the Bench and Back. Int J Mol Sci 2020; 21:ijms21124448. [PMID: 32585801 PMCID: PMC7352399 DOI: 10.3390/ijms21124448] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
The Cannabis plant contains numerous components, including cannabinoids and other active molecules. The phyto-cannabinoid activity is mediated by the endocannabinoid system. Cannabinoids affect the nervous system and play significant roles in the regulation of the immune system. While Cannabis is not yet registered as a drug, the potential of cannabinoid-based medicines for the treatment of various conditions has led many countries to authorize their clinical use. However, the data from basic and medical research dedicated to medical Cannabis is currently limited. A variety of pathological conditions involve dysregulation of the immune system. For example, in cancer, immune surveillance and cancer immuno-editing result in immune tolerance. On the other hand, in autoimmune diseases increased immune activity causes tissue damage. Immuno-modulating therapies can regulate the immune system and therefore the immune-regulatory properties of cannabinoids, suggest their use in the therapy of immune related disorders. In this contemporary review, we discuss the roles of the endocannabinoid system in immunity and explore the emerging data about the effects of cannabinoids on the immune response in different pathologies. In addition, we discuss the complexities of using cannabinoid-based treatments in each of these conditions.
Collapse
|
58
|
Pietropaolo S, Bellocchio L, Bouzón-Arnáiz I, Yee BK. The role of the endocannabinoid system in autism spectrum disorders: Evidence from mouse studies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 173:183-208. [PMID: 32711810 DOI: 10.1016/bs.pmbts.2020.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A substantive volume of research on autism spectrum disorder (ASD) has emerged in recent years adding to our understanding of the etiopathological process. Preclinical models in mice and rats have been highly instrumental in modeling and dissecting the contributions of a multitude of known genetic and environmental risk factors. However, the translation of preclinical data into suitable drug targets must overcome three critical hurdles: (i) ASD comprises a highly heterogeneous group of conditions that can markedly differ in terms of their clinical presentation and symptoms, (ii) the plethora of genetic and environmental risk factors suggests a complex, non-unitary, etiopathology, and (iii) the lack of consensus over the myriad of preclinical models, with respect to both construct validity and face validity. Against this backdrop, this Chapter traces how the endocannabinoid system (ECS) has emerged as a promising target for intervention with predictive validity. Recent supportive preclinical evidence is summarized, especially studies in mice demonstrating the emergence of ASD-like behaviors following diverse genetic or pharmacological manipulations targeting the ECS. The critical relevance of ECS to the complex pathogenesis of ASD is underscored by its multiple roles in modulating neuronal functions and shaping brain development. Finally, we argue that important lessons have been learned from the novel mouse models of ASD, which not only stimulate game-changing innovative treatments but also foster a consensual framework to integrate the diverse approaches applied in the search of novel treatments for ASD.
Collapse
Affiliation(s)
- Susanna Pietropaolo
- University of Bordeaux, Bordeaux Cedex, France; CNRS, INCIA, UMR 5287, Bat B2, Pessac Cedex, France.
| | - Luigi Bellocchio
- CNRS, INCIA, UMR 5287, Bat B2, Pessac Cedex, France; INSERM, U1215 NeuroCentre Magendie, Bordeaux Cedex, France
| | - Inés Bouzón-Arnáiz
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
| | - Benjamin K Yee
- Department of Rehabilitation Sciences, Faculty of Health & Social Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
59
|
Abstract
PURPOSE OF REVIEW Research on the pathophysiology of syndromic autism spectrum disorder (ASD) has contributed to the uncovering of mechanisms in nonsyndromic ASD. The current review aims to compare recent progress in therapeutics development for ASD with those for fragile X syndrome (FXS), the most frequent monogenic form of ASD. RECENT FINDINGS Although candidates such as oxytocin, vasopressin, and cannabinoids are being tested as novel therapeutics, it remains difficult to focus on a specific molecular target of drug development for ASD core symptoms. As the pathophysiology of FXS has been well described as having a causal gene, fragile X mental retardation-1, development of therapeutic agents for FXS is focused on specific molecular targets, such as metabotropic glutamate receptor 5 and GABAB receptor. SUMMARY There is a large unmet medical need in ASD, a heterogeneous and clinically defined behavioral syndrome, owing to its high prevalence in the general population, lifelong cognitive and behavioral deficits, and no established treatment of ASD core symptoms, such as deficits in social communication and restrictive repetitive behaviors. The molecular pathogenesis of nonsyndromic ASD is largely undefined. Lessons from initial attempts at targeted treatment development in FXS, and new designs resulting from these lessons, will inform trials in nonsyndromic ASD for development of therapeutics for its core symptoms.
Collapse
|
60
|
Pandina G, Ring RH, Bangerter A, Ness S. Current Approaches to the Pharmacologic Treatment of Core Symptoms Across the Lifespan of Autism Spectrum Disorder. Child Adolesc Psychiatr Clin N Am 2020; 29:301-317. [PMID: 32169264 DOI: 10.1016/j.chc.2019.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There are no approved medications for autism spectrum disorder (ASD) core symptoms. However, given the significant clinical need, children and adults with ASD are prescribed medication off label for core or associated conditions, sometimes based on limited evidence for effectiveness. Recent developments in the understanding of biologic basis of ASD have led to novel targets with potential to impact core symptoms, and several clinical trials are underway. Heterogeneity in course of development, co-occurring conditions, and age-related treatment response variability hampers study outcomes. Novel measures and approaches to ASD clinical trial design will help in development of effective pharmacologic treatments.
Collapse
Affiliation(s)
- Gahan Pandina
- Janssen Research & Development, LLC, 1125 Trenton Harbouron Road, Titusville, NJ 08560, USA.
| | | | - Abigail Bangerter
- Janssen Research & Development, LLC, 1125 Trenton Harbouron Road, Titusville, NJ 08560, USA
| | - Seth Ness
- Janssen Research & Development, LLC, 1125 Trenton Harbouron Road, Titusville, NJ 08560, USA
| |
Collapse
|
61
|
Shen L, Liu X, Zhang H, Lin J, Feng C, Iqbal J. Biomarkers in autism spectrum disorders: Current progress. Clin Chim Acta 2020; 502:41-54. [DOI: 10.1016/j.cca.2019.12.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022]
|
62
|
Abstract
The use of medical cannabis in children is rapidly growing. While robust evidence currently exists only for pure cannabidiol (CBD) to treat specific types of refractory epilepsy, in most cases, artisanal strains of CBD-rich medical cannabis are being used to treat children with various types of refractory epilepsy or irritability associated with autism spectrum disorder (ASD). Other common pediatric disorders that are being considered for cannabis treatment are Tourette syndrome and spasticity. As recreational cannabis use during youth is associated with serious adverse events and medical cannabis use is believed to have a relatively high placebo effect, decisions to use medical cannabis during childhood and adolescence should be made with caution and based on evidence. This review summarizes the current evidence for safety, tolerability, and efficacy of medical cannabis in children with epilepsy and in children with ASD. The main risks associated with use of Δ9-tetrahydrocannabinol (THC) and CBD in the pediatric population are described, as well as the debate regarding the use of whole-plant extract to retain a possible "entourage effect" as opposed to pure cannabinoids that are more standardized and reproducible.
Collapse
Affiliation(s)
- Adi Aran
- To whom correspondence should be addressed. E-mail:
| | | |
Collapse
|
63
|
Wu HF, Lu TY, Chu MC, Chen PS, Lee CW, Lin HC. Targeting the inhibition of fatty acid amide hydrolase ameliorate the endocannabinoid-mediated synaptic dysfunction in a valproic acid-induced rat model of Autism. Neuropharmacology 2020; 162:107736. [DOI: 10.1016/j.neuropharm.2019.107736] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 10/26/2022]
|
64
|
Fleury-Teixeira P, Caixeta FV, Ramires da Silva LC, Brasil-Neto JP, Malcher-Lopes R. Effects of CBD-Enriched Cannabis sativa Extract on Autism Spectrum Disorder Symptoms: An Observational Study of 18 Participants Undergoing Compassionate Use. Front Neurol 2019; 10:1145. [PMID: 31736860 PMCID: PMC6834767 DOI: 10.3389/fneur.2019.01145] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/14/2019] [Indexed: 12/17/2022] Open
Abstract
Autism Spectrum Disorders comprise conditions that may affect cognitive development, motor skills, social interaction, communication, and behavior. This set of functional deficits often results in lack of independence for the diagnosed individuals, and severe distress for patients, families, and caregivers. There is a mounting body of evidence indicating the effectiveness of pure cannabidiol (CBD) and CBD-enriched Cannabis sativa extract (CE) for the treatment of autistic symptoms in refractory epilepsy patients. There is also increasing data support for the hypothesis that non-epileptic autism shares underlying etiological mechanisms with epilepsy. Here we report an observational study with a cohort of 18 autistic patients undergoing treatment with compassionate use of standardized CBD-enriched CE (with a CBD to THC ratio of 75/1). Among the 15 patients who adhered to the treatment (10 non-epileptic and five epileptic) only one patient showed lack of improvement in autistic symptoms. Due to adverse effects, three patients discontinued CE use before 1 month. After 6-9 months of treatment, most patients, including epileptic and non-epileptic, showed some level of improvement in more than one of the eight symptom categories evaluated: Attention Deficit/Hyperactivity Disorder; Behavioral Disorders; Motor Deficits; Autonomy Deficits; Communication and Social Interaction Deficits; Cognitive Deficits; Sleep Disorders and Seizures, with very infrequent and mild adverse effects. The strongest improvements were reported for Seizures, Attention Deficit/Hyperactivity Disorder, Sleep Disorders, and Communication and Social Interaction Deficits. This was especially true for the 10 non-epileptic patients, nine of which presented improvement equal to or above 30% in at least one of the eight categories, six presented improvement of 30% or more in at least two categories and four presented improvement equal to or above 30% in at least four symptom categories. Ten out of the 15 patients were using other medicines, and nine of these were able to keep the improvements even after reducing or withdrawing other medications. The results reported here are very promising and indicate that CBD-enriched CE may ameliorate multiple ASD symptoms even in non-epileptic patients, with substantial increase in life quality for both ASD patients and caretakers.
Collapse
Affiliation(s)
| | | | - Leandro Cruz Ramires da Silva
- Clinical Hospital, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Associação Brasileira de Pacientes de Cannabis Medicinal, Belo Horizonte, Brazil
| | | | | |
Collapse
|
65
|
Calapai G, Mannucci C, Chinou I, Cardia L, Calapai F, Sorbara EE, Firenzuoli B, Ricca V, Gensini GF, Firenzuoli F. Preclinical and Clinical Evidence Supporting Use of Cannabidiol in Psychiatry. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:2509129. [PMID: 31558911 PMCID: PMC6735178 DOI: 10.1155/2019/2509129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/11/2019] [Accepted: 08/09/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Cannabidiol (CBD) is a major chemical compound present in Cannabis sativa. CBD is a nonpsychotomimetic substance, and it is considered one of the most promising candidates for the treatment of psychiatric disorders. OBJECTIVE The aim of this review is to illustrate the state of art about scientific research and the evidence of effectiveness of CBD in psychiatric patients. METHODS This review collects the main scientific findings on the potential role of CBD in the psychiatric field, and results of clinical trials carried out on psychiatric patients are commented. A research was conducted in the PUBMED, SCOPUS, and ScienceDirect databases using combinations of the words cannabidiol, psychiatry, and neuropsychiatric. RESULTS Preclinical and clinical studies on potential role of CBD in psychiatry were collected and further discussed. We found four clinical studies describing the effects of CBD in psychiatric patients: two studies about schizophrenic patients and the other two studies carried out on CBD effects in patients affected by generalized social anxiety disorder (SAD). CONCLUSION Results from these studies are promising and suggest that CBD may have a role in the development of new therapeutic strategies in mental diseases, and they justify an in-depth commitment in this field. However, clinical evidence we show for CBD in psychiatric patients is instead still poor and limited to schizophrenia and anxiety, and it needs to be implemented with further studies carried out on psychiatric patients.
Collapse
Affiliation(s)
- Gioacchino Calapai
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | - Carmen Mannucci
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | - Ioanna Chinou
- Division of Pharmacognosy & Chemistry of Natural Products, Department of Pharmacy, University of Athens, Athens, Greece
| | - Luigi Cardia
- Anesthesia, Intensive Care and Pain Therapy, A.O.U. G. Martino Messina, University of Messina, Messina, Italy
| | - Fabrizio Calapai
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | - Emanuela Elisa Sorbara
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | - Bernardo Firenzuoli
- Research and Innovation Center in Phytotherapy and Integrated Medicine (CERFIT), Referring Center for Phytotherapy of Tuscany Region, Careggi University Hospital, Florence, Italy
| | - Valdo Ricca
- Psychiatry Unit, Department of Health Sciences, University of Florence, Florence, Italy
| | - Gian Franco Gensini
- Permanent Commission for Guidelines, Coordinator, Tuscany Region, Florence, Italy
| | - Fabio Firenzuoli
- Research and Innovation Center in Phytotherapy and Integrated Medicine (CERFIT), Referring Center for Phytotherapy of Tuscany Region, Careggi University Hospital, Florence, Italy
| |
Collapse
|
66
|
Crespi BJ. Comparative psychopharmacology of autism and psychotic-affective disorders suggests new targets for treatment. Evol Med Public Health 2019; 2019:149-168. [PMID: 31548888 PMCID: PMC6748779 DOI: 10.1093/emph/eoz022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/07/2019] [Indexed: 12/13/2022] Open
Abstract
The first treatments showing effectiveness for some psychiatric disorders, such as lithium for bipolar disorder and chlorpromazine for schizophrenia, were discovered by accident. Currently, psychiatric drug design is seen as a scientific enterprise, limited though it remains by the complexity of brain development and function. Relatively few novel and effective drugs have, however, been developed for many years. The purpose of this article is to demonstrate how evolutionary biology can provide a useful framework for psychiatric drug development. The framework is based on a diametrical nature of autism, compared with psychotic-affective disorders (mainly schizophrenia, bipolar disorder and depression). This paradigm follows from two inferences: (i) risks and phenotypes of human psychiatric disorders derive from phenotypes that have evolved along the human lineage and (ii) biological variation is bidirectional (e.g. higher vs lower, faster vs slower, etc.), such that dysregulation of psychological traits varies in two opposite ways. In this context, the author review the evidence salient to the hypothesis that autism and psychotic-affective disorders represent diametrical disorders in terms of current, proposed and potential psychopharmacological treatments. Studies of brain-derived neurotrophic factor, the PI3K pathway, the NMDA receptor, kynurenic acid metabolism, agmatine metabolism, levels of the endocannabinoid anandamide, antidepressants, anticonvulsants, antipsychotics, and other treatments, demonstrate evidence of diametric effects in autism spectrum disorders and phenotypes compared with psychotic-affective disorders and phenotypes. These findings yield insights into treatment mechanisms and the development of new pharmacological therapies, as well as providing an explanation for the longstanding puzzle of antagonism between epilepsy and psychosis. Lay Summary: Consideration of autism and schizophrenia as caused by opposite alterations to brain development and function leads to novel suggestions for pharmacological treatments.
Collapse
Affiliation(s)
- Bernard J Crespi
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
67
|
Zamberletti E, Gabaglio M, Woolley-Roberts M, Bingham S, Rubino T, Parolaro D. Cannabidivarin Treatment Ameliorates Autism-Like Behaviors and Restores Hippocampal Endocannabinoid System and Glia Alterations Induced by Prenatal Valproic Acid Exposure in Rats. Front Cell Neurosci 2019; 13:367. [PMID: 31447649 PMCID: PMC6696797 DOI: 10.3389/fncel.2019.00367] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 07/29/2019] [Indexed: 12/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a developmental condition whose primary features include social communication and interaction impairments with restricted or repetitive motor movements. No approved treatment for the core symptoms is available and considerable research efforts aim at identifying effective therapeutic strategies. Emerging evidence suggests that altered endocannabinoid signaling and immune dysfunction might contribute to ASD pathogenesis. In this scenario, phytocannabinoids could hold great pharmacological potential due to their combined capacities to act either directly or indirectly on components of the endocannabinoid system and to modulate immune functions. Among all plant-cannabinoids, the phytocannabinoid cannabidivarin (CBDV) was recently shown to reduce motor impairments and cognitive deficits in animal models of Rett syndrome, a condition showing some degree of overlap with autism, raising the possibility that CBDV might have therapeutic potential in ASD. Here, we investigated the ability of CBDV treatment to reverse or prevent ASD-like behaviors in male rats prenatally exposed to valproic acid (VPA; 500 mg/kg i.p.; gestation day 12.5). The offspring received CBDV according to two different protocols: symptomatic (0.2/2/20/100 mg/kg i.p.; postnatal days 34–58) and preventative (2/20 mg/kg i.p.; postnatal days 19–32). The major efficacy of CBDV was observed at the dose of 20 mg/kg for both treatment schedules. CBDV in symptomatic rats recovered social impairments, social novelty preference, short-term memory deficits, repetitive behaviors and hyperlocomotion whereas preventative treatment reduced sociability and social novelty deficits, short-term memory impairments and hyperlocomotion, without affecting stereotypies. As dysregulations in the endocannabinoid system and neuroinflammatory markers contribute to the development of some ASD phenotypes in the VPA model, neurochemical studies were performed after symptomatic treatment to investigate possible CBDV’s effects on the endocannabinoid system, inflammatory markers and microglia activation in the hippocampus and prefrontal cortex. Prenatal VPA exposure increased CB1 receptor, FAAH and MAGL levels, enhanced GFAP, CD11b, and TNFα levels and triggered microglia activation restricted to the hippocampus. All these alterations were restored after CBDV treatment. These data provide preclinical evidence in support of the ability of CBDV to ameliorate behavioral abnormalities resembling core and associated symptoms of ASD. At the neurochemical level, symptomatic CBDV restores hippocampal endocannabinoid signaling and neuroinflammation induced by prenatal VPA exposure.
Collapse
Affiliation(s)
- Erica Zamberletti
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Marina Gabaglio
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | | | | | - Tiziana Rubino
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Daniela Parolaro
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy.,Zardi-Gori Foundation, Milan, Italy
| |
Collapse
|
68
|
Burggren AC, Shirazi A, Ginder N, London ED. Cannabis effects on brain structure, function, and cognition: considerations for medical uses of cannabis and its derivatives. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2019; 45:563-579. [PMID: 31365275 PMCID: PMC7027431 DOI: 10.1080/00952990.2019.1634086] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/16/2022]
Abstract
Background: Cannabis is the most widely used illicit substance worldwide, and legalization for recreational and medical purposes has substantially increased its availability and use in the United States.Objectives: Decades of research have suggested that recreational cannabis use confers risk for cognitive impairment across various domains, and structural and functional differences in the brain have been linked to early and heavy cannabis use.Methods: With substantial evidence for the role of the endocannabinoid system in neural development and understanding that brain development continues into early adulthood, the rising use of cannabis in adolescents and young adults raises major concerns. Yet some formulations of cannabinoid compounds are FDA-approved for medical uses, including applications in children.Results: Potential effects on the trajectory of brain morphology and cognition, therefore, should be considered. The goal of this review is to update and consolidate relevant findings in order to inform attitudes and public policy regarding the recreational and medical use of cannabis and cannabinoid compounds.Conclusions: The findings point to considerations for age limits and guidelines for use.
Collapse
Affiliation(s)
- Alison C Burggren
- Robert and Beverly Lewis Center for Neuroimaging, University of Oregon, Eugene, OR, USA
| | - Anaheed Shirazi
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, USA
| | - Nathaniel Ginder
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, USA
| | - Edythe D. London
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, USA
- Department of Molecular and Medical Pharmacology, and the Brain Research Institute, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
69
|
Zamberletti E, Gabaglio M, Piscitelli F, Brodie JS, Woolley-Roberts M, Barbiero I, Tramarin M, Binelli G, Landsberger N, Kilstrup-Nielsen C, Rubino T, Di Marzo V, Parolaro D. Cannabidivarin completely rescues cognitive deficits and delays neurological and motor defects in male Mecp2 mutant mice. J Psychopharmacol 2019; 33:894-907. [PMID: 31084246 DOI: 10.1177/0269881119844184] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Recent evidence suggests that 2-week treatment with the non-psychotomimetic cannabinoid cannabidivarin (CBDV) could be beneficial towards neurological and social deficits in early symptomatic Mecp2 mutant mice, a model of Rett syndrome (RTT). AIM The aim of this study was to provide further insights into the efficacy of CBDV in Mecp2-null mice using a lifelong treatment schedule (from 4 to 9 weeks of age) to evaluate its effect on recognition memory and neurological defects in both early and advanced stages of the phenotype progression. METHODS CBDV 0.2, 2, 20 and 200 mg/kg/day was administered to Mecp2-null mice from 4 to 9 weeks of age. Cognitive and neurological defects were monitored during the whole treatment schedule. Biochemical analyses were carried out in brain lysates from 9-week-old wild-type and knockout mice to evaluate brain-derived neurotrophic factor (BDNF) and insulin-like growth factor-1 (IGF-1) levels as well as components of the endocannabinoid system. RESULTS CBDV rescues recognition memory deficits in Mecp2 mutant mice and delays the appearance of neurological defects. At the biochemical level, it normalizes BDNF/IGF1 levels and the defective PI3K/AKT/mTOR pathway in Mecp2 mutant mice at an advanced stage of the disease. Mecp2 deletion upregulates CB1 and CB2 receptor levels in the brain and these changes are restored after CBDV treatment. CONCLUSIONS CBDV administration exerts an enduring rescue of memory deficits in Mecp2 mutant mice, an effect that is associated with the normalization of BDNF, IGF-1 and rpS6 phosphorylation levels as well as CB1 and CB2 receptor expression. CBDV delays neurological defects but this effect is only transient.
Collapse
Affiliation(s)
- Erica Zamberletti
- 1 Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | - Marina Gabaglio
- 1 Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | - Fabiana Piscitelli
- 2 Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy
| | | | | | - Isabella Barbiero
- 1 Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | - Marco Tramarin
- 1 Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | - Giorgio Binelli
- 1 Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | - Nicoletta Landsberger
- 4 Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | | | - Tiziana Rubino
- 1 Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | - Vincenzo Di Marzo
- 2 Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy
| | - Daniela Parolaro
- 1 Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy.,5 Zardi Gori Foundation, Milan, Italy
| |
Collapse
|
70
|
Castillo MA, Urdaneta KE, Semprún-Hernández N, Brigida AL, Antonucci N, Schultz S, Siniscalco D. Speech-Stimulating Substances in Autism Spectrum Disorders. Behav Sci (Basel) 2019; 9:E60. [PMID: 31212856 PMCID: PMC6616660 DOI: 10.3390/bs9060060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/23/2022] Open
Abstract
Autism spectrum disorder (ASD) is characterized by the core domains of persistent deficits in social communication and restricted-repetitive patterns of behaviors, interests, or activities. A heterogeneous and complex set of neurodevelopmental conditions are grouped in the spectrum. Pro-inflammatory events and immune system dysfunctions are cellular and molecular events associated with ASD. Several conditions co-occur with ASD: seizures, gastro-intestinal problems, attention deficit, anxiety and depression, and sleep problems. However, language and speech issues are key components of ASD symptoms current therapies find difficult to face. Several speech-stimulating substances have been shown to be effective in increasing speech ability in ASD subjects. The need for large clinical trials to determine safety and efficacy is recommended.
Collapse
Affiliation(s)
| | - Kendy Eduardo Urdaneta
- Research Division, Autism Immunology Unit of Maracaibo, Maracaibo 4001, Venezuela.
- Department of Biology, Faculty of Sciences, University of Zulia, Maracaibo 4001, Venezuela.
| | - Neomar Semprún-Hernández
- Research Division, Autism Immunology Unit of Maracaibo, Maracaibo 4001, Venezuela.
- Catedra libre de Autismo, Universidad del Zulia, Maracaibo 4001, Venezuela.
| | | | - Nicola Antonucci
- Biomedical Centre for Autism Research and Treatment, 70126 Bari, Italy.
| | - Stephen Schultz
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA.
| | - Dario Siniscalco
- Department of Experimental Medicine, University of Campania, 80138 Napoli, Italy.
- Centre for Autism-La Forza del Silenzio, 81036 Caserta, Italy.
| |
Collapse
|
71
|
|
72
|
Premoli M, Aria F, Bonini SA, Maccarinelli G, Gianoncelli A, Pina SD, Tambaro S, Memo M, Mastinu A. Cannabidiol: Recent advances and new insights for neuropsychiatric disorders treatment. Life Sci 2019; 224:120-127. [DOI: 10.1016/j.lfs.2019.03.053] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/21/2019] [Accepted: 03/21/2019] [Indexed: 01/28/2023]
|
73
|
Tartaglia N, Bonn-Miller M, Hagerman R. Treatment of Fragile X Syndrome with Cannabidiol: A Case Series Study and Brief Review of the Literature. Cannabis Cannabinoid Res 2019; 4:3-9. [PMID: 30944868 PMCID: PMC6446166 DOI: 10.1089/can.2018.0053] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Fragile X syndrome (FXS) is an X-linked dominant disorder caused by a mutation in the fragile X mental retardation 1 gene. Cannabidiol (CBD) is an exogenous phytocannabinoid with therapeutic potential for individuals with anxiety, poor sleep, and cognitive deficits, as well as populations with endocannabinoid deficiencies, such as those who suffer from FXS. The objective of this study was to provide a brief narrative review of recent literature on endocannabinoids and FXS and to present a case series describing three patients with FXS who were treated with oral CBD-enriched (CBD+) solutions. We review recent animal and human studies of endocannabinoids in FXS and present the cases of one child and two adults with FXS who were treated with various oral botanical CBD+ solutions delivering doses of 32.0 to 63.9 mg daily. Multiple experimental and clinical models of FXS combine to highlight the therapeutic potential of CBD for management of FXS. All three patients described in the case series exhibited functional benefit following the use of oral CBD+ solutions, including noticeable reductions in social avoidance and anxiety, as well as improvements in sleep, feeding, motor coordination, language skills, anxiety, and sensory processing. Two of the described patients exhibited a reemergence of a number of FXS symptoms following cessation of CBD+ treatment (e.g., anxiety), which then improved again after reintroduction of CBD+ treatment. Findings highlight the importance of exploring the therapeutic potential of CBD within the context of rigorous clinical trials.
Collapse
Affiliation(s)
- Nicole Tartaglia
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | | | - Randi Hagerman
- Department of Pediatrics, MIND Institute, University of California Davis Medical Center, Sacramento, California
| |
Collapse
|
74
|
Zou M, Li D, Li L, Wu L, Sun C. Role of the endocannabinoid system in neurological disorders. Int J Dev Neurosci 2019; 76:95-102. [PMID: 30858029 DOI: 10.1016/j.ijdevneu.2019.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 01/13/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that begins in infancy. Although the etiology and pathogenesis are poorly understood, many studies have shown that ASD is closely related to structural and functional defects in the nervous system, especially synaptic transmission. The endocannabinoid (eCB) system is an important regulatory system of the central nervous system that regulates neurotransmission and synaptic plasticity and plays an important role in emotional and social responses and cognitive function. The relationship between eCB system and ASD has attracted increasing attention from scholars. In this review, we discuss the complex lipid signaling network of the eCB system, intracellular transport pathways, abnormal expression and association with various neurological diseases, and direct and indirect evidence for the link between eCB and ASD. Collectively, the findings to date indicate that the eCB system plays a key role in the pathophysiology of ASD and can provide new insights into potential interventions and rehabilitation strategies for ASD.
Collapse
Affiliation(s)
- Mingyang Zou
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Dexin Li
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Ling Li
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Lijie Wu
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Caihong Sun
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| |
Collapse
|
75
|
Mayo LM, Heilig M. In the face of stress: Interpreting individual differences in stress-induced facial expressions. Neurobiol Stress 2019; 10:100166. [PMID: 31193535 PMCID: PMC6535645 DOI: 10.1016/j.ynstr.2019.100166] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 11/22/2022] Open
Abstract
Stress is an inevitable part of life that can profoundly impact social and emotional functioning, contributing to the development of psychiatric disease. One key component of emotion and social processing is facial expressions, which humans can readily detect and react to even without conscious awareness. Facial expressions have been the focus of philosophic and scientific interest for centuries. Historically, facial expressions have been relegated to peripheral indices of fixed emotion states. More recently, affective neuroscience has undergone a conceptual revolution, resulting in novel interpretations of these muscle movements. Here, we review the role of facial expressions according to the leading affective neuroscience theories, including constructed emotion and social-motivation accounts. We specifically highlight recent data (Mayo et al, 2018) demonstrating the way in which stress shapes facial expressions and how this is influenced by individual factors. In particular, we focus on the consequence of genetic variation within the endocannabinoid system, a neuromodulatory system implicated in stress and emotion, and its impact on stress-induced facial muscle activity. In a re-analysis of this dataset, we highlight how gender may also influence these processes, conceptualized as variation in the "fight-or-flight" or "tend-and-befriend" behavioral responses to stress. We speculate on how these interpretations may contribute to a broader understanding of facial expressions, discuss the potential use of facial expressions as a trans-diagnostic marker of psychiatric disease, and suggest future work necessary to resolve outstanding questions.
Collapse
Affiliation(s)
- Leah M. Mayo
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Sweden
| | | |
Collapse
|
76
|
Aran A, Eylon M, Harel M, Polianski L, Nemirovski A, Tepper S, Schnapp A, Cassuto H, Wattad N, Tam J. Lower circulating endocannabinoid levels in children with autism spectrum disorder. Mol Autism 2019; 10:2. [PMID: 30728928 PMCID: PMC6354384 DOI: 10.1186/s13229-019-0256-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/18/2019] [Indexed: 12/27/2022] Open
Abstract
Background The endocannabinoid system (ECS) is a major regulator of synaptic plasticity and neuromodulation. Alterations of the ECS have been demonstrated in several animal models of autism spectrum disorder (ASD). In some of these models, activating the ECS rescued the social deficits. Evidence for dysregulations of the ECS in human ASD are emerging, but comprehensive assessments and correlations with disease characteristics have not been reported yet. Methods Serum levels of the main endocannabinoids, N-arachidonoylethanolamine (AEA or anandamide) and 2-arachidonoylglycerol (2-AG), and their related endogenous compounds, arachidonic acid (AA), N-palmitoylethanolamine (PEA), and N-oleoylethanolamine (OEA), were analyzed by liquid chromatography/tandem mass spectrometry in 93 children with ASD (age = 13.1 ± 4.1, range 6–21; 79% boys) and 93 age- and gender-matched neurotypical children (age = 11.8 ± 4.3, range 5.5–21; 79% boys). Results were associated with gender and use of medications, and were correlated with age, BMI, and adaptive functioning of ASD participants as reflected by scores of Autism Diagnostic Observation Schedule (ADOS-2), Vineland Adaptive Behavior Scale-II (VABS-II), and Social Responsiveness Scale-II (SRS-2). Results Children with ASD had lower levels (pmol/mL, mean ± SEM) of AEA (0.722 ± 0.045 vs. 1.252 ± 0.072, P < 0.0001, effect size 0.91), OEA (17.3 ± 0.80 vs. 27.8 ± 1.44, P < 0.0001, effect size 0.94), and PEA (4.93 ± 0.32 vs. 7.15 ± 0.37, P < 0.0001, effect size 0.65), but not AA and 2-AG. Serum levels of AEA, OEA, and PEA were not significantly associated or correlated with age, gender, BMI, medications, and adaptive functioning of ASD participants. In children with ASD, but not in the control group, younger age and lower BMI tended to correlate with lower AEA levels. However, these correlations were not statistically significant after a correction for multiple comparisons. Conclusions We found lower serum levels of AEA, PEA, and OEA in children with ASD. Further studies are needed to determine whether circulating endocannabinoid levels can be used as stratification biomarkers that identify clinically significant subgroups within the autism spectrum and if they reflect lower endocannabinoid “tone” in the brain, as found in animal models of ASD. Electronic supplementary material The online version of this article (10.1186/s13229-019-0256-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adi Aran
- 1Neuropediatric Unit, Shaare Zedek Medical Center, 12 Bayit Street, 91031 Jerusalem, Israel
| | - Maya Eylon
- 2Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Moria Harel
- 1Neuropediatric Unit, Shaare Zedek Medical Center, 12 Bayit Street, 91031 Jerusalem, Israel
| | - Lola Polianski
- 1Neuropediatric Unit, Shaare Zedek Medical Center, 12 Bayit Street, 91031 Jerusalem, Israel
| | - Alina Nemirovski
- 2Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sigal Tepper
- 3Department of Nutritional Sciences, Tel Hai Academic College, Upper Galilee, 1220800 Kiryat Shmona, Israel
| | - Aviad Schnapp
- 1Neuropediatric Unit, Shaare Zedek Medical Center, 12 Bayit Street, 91031 Jerusalem, Israel
| | - Hanoch Cassuto
- 1Neuropediatric Unit, Shaare Zedek Medical Center, 12 Bayit Street, 91031 Jerusalem, Israel
| | - Nadia Wattad
- 1Neuropediatric Unit, Shaare Zedek Medical Center, 12 Bayit Street, 91031 Jerusalem, Israel
| | - Joseph Tam
- 2Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
77
|
Schultz S, Siniscalco D. Endocannabinoid system involvement in autism spectrum disorder: An overview with potential therapeutic applications. AIMS MOLECULAR SCIENCE 2019. [DOI: 10.3934/molsci.2019.1.27] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
78
|
Aran A, Cassuto H, Lubotzky A, Wattad N, Hazan E. Brief Report: Cannabidiol-Rich Cannabis in Children with Autism Spectrum Disorder and Severe Behavioral Problems—A Retrospective Feasibility Study. J Autism Dev Disord 2018; 49:1284-1288. [DOI: 10.1007/s10803-018-3808-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|