51
|
Tu Y, Yao Z, Yang W, Tao S, Li B, Wang Y, Su Z, Li S. Application of Nanoparticles in Tumour Targeted Drug Delivery and Vaccine. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.948705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cancer is a major cause of death worldwide, and nearly 1 in 6 deaths each year is caused by cancer. Traditional cancer treatment strategies cannot completely solve cancer recurrence and metastasis. With the development of nanotechnology, the study of nanoparticles (NPs) has gradually become a hotspot of medical research. NPs have various advantages. NPs exploit the enhanced permeability and retention (EPR) of tumour cells to achieve targeted drug delivery and can be retained in tumours long-term. NPs can be used as a powerful design platform for vaccines as well as immunization enhancers. Liposomes, as organic nanomaterials, are widely used in the preparation of nanodrugs and vaccines. Currently, most of the anticancer drugs that have been approved and entered clinical practice are prepared from lipid materials. However, the current clinical conversion rate of NPs is still extremely low, and the transition of NPs from the laboratory to clinical practice is still a substantial challenge. In this paper, we review the in vivo targeted delivery methods, material characteristics of NPs and the application of NPs in vaccine preparation. The application of nanoliposomes is also emphasized. Furthermore, the challenges and limitations of NPs are briefly discussed.
Collapse
|
52
|
Zhu L, Mao H, Yang L. Advanced iron oxide nanotheranostics for multimodal and precision treatment of pancreatic ductal adenocarcinoma. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1793. [PMID: 35396932 PMCID: PMC9373845 DOI: 10.1002/wnan.1793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/22/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Despite current advances in new approaches for cancer detection and treatment, pancreatic cancer remains one of the most lethal cancer types. Difficult to detect early, aggressive tumor biology, and resistance to chemotherapy, radiotherapy, and immunotherapy result in a poor prognosis of pancreatic cancer patients with a 5-year survival of 10%. With advances in cancer nanotechnology, new imaging and drug delivery approaches that allow the development of multifunctional nanotheranostic agents offer opportunities for improving pancreatic cancer treatment using precision oncology. In this review, we will introduce potential applications of innovative theranostic strategies to address major challenges in the treatment of pancreatic cancer at different disease stages. Several important issues concerning targeted delivery of theranostic nanoparticles and tumor stromal barriers are discussed. We then focus on the development of a magnetic iron oxide nanoparticle platform for multimodal therapy of pancreatic cancer, including MRI monitoring targeted nanoparticle/drug delivery, therapeutic response, and tumor re-staging, activation of tumor immune response by immunoactivating nanoparticle and magnetic hyperthermia therapy, and intraoperative interventions for improving the outcome of targeted therapy. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute, Atlanta, Georgia, USA
| | - Lily Yang
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute, Atlanta, Georgia, USA
| |
Collapse
|
53
|
Shrestha S, Banstola A, Jeong JH, Seo JH, Yook S. Targeting Cancer Stem Cells: Therapeutic and diagnostic strategies by the virtue of nanoparticles. J Control Release 2022; 348:518-536. [PMID: 35709876 DOI: 10.1016/j.jconrel.2022.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 12/18/2022]
Abstract
Cancer stem cells (CSCs) are the subpopulation of cells present within a tumor with the properties of self-renewing, differentiating, and proliferating. Owing to the presence of ATP-binding cassette drug pumps and increased expression of anti-apoptotic proteins, the conventional chemotherapeutic agents have failed to eliminate CSCs resulting in relapse and resistance of cancer. Therefore, to obtain long-lasting clinical responses and avoid the recurrence of cancer, it is crucial to develop an efficient strategy targeting CSCs by either employing a differentiation therapy or specifically delivering drugs to CSCs. Several intracellular and extracellular cancer specific biomarkers are overexpressed by CSCs and are utilized as targets for the development of new approaches in the diagnosis and treatment of CSCs. Moreover, several nanostructured particles, alone or in combination with current treatment approaches, have been used to improve the detection, imaging, and targeting of CSCs, thus addressing the limitations of cancer therapies. Targeting CSC surface markers, stemness-related signaling pathways, and tumor microenvironmental signals has improved the detection and eradication of CSCs and, therefore, tumor diagnosis and treatment. This review summarizes a variety of promising nanoparticles targeting the surface biomarkers of CSCs for the detection and eradication of tumor-initiating stem cells, used in combination with other treatment regimens.
Collapse
Affiliation(s)
- Samjhana Shrestha
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, Republic of Korea
| | - Asmita Banstola
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, Republic of Korea; Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, Boston, MA 02114, USA
| | - Jee-Heon Jeong
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ji Hae Seo
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Simmyung Yook
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, Republic of Korea.
| |
Collapse
|
54
|
Nie W, Chen J, Wang B, Gao X. Nonviral vector system for cancer immunogene therapy. MEDCOMM – BIOMATERIALS AND APPLICATIONS 2022. [DOI: 10.1002/mba2.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Wen Nie
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu PR China
| | - Jing Chen
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu PR China
| | - Bilan Wang
- Department of Pharmacy West China Second University Hospital of Sichuan University Chengdu PR China
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu PR China
| |
Collapse
|
55
|
Han JH, Shin HE, Lee J, Kang JM, Park JH, Park CG, Han DK, Kim IH, Park W. Combination of Metal-Phenolic Network-Based Immunoactive Nanoparticles and Bipolar Irreversible Electroporation for Effective Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200316. [PMID: 35570584 DOI: 10.1002/smll.202200316] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/28/2022] [Indexed: 06/15/2023]
Abstract
To circumvent the limitations of conventional cancer immunotherapy, it is critical to prime antigen-presenting cells (APCs) to initiate the cancer-immune cycle. Here, the authors develop a metal-phenolic network (MPN)-based immunoactive nanoparticle in combination with irreversible electroporation (IRE) for an effective cancer immunotherapy. The MPN nanoparticles are synthesized by coordinating tannic acid with manganese (Mn) ions, and subsequent coating with CpG-oligodeoxynucleotides (CpG-ODNs) via hydrogen bonding. The CpG-ODN-coated Mn-phenolic network (CMP) nanoparticles are effectively internalized into macrophages, a type of APCs, and successfully trigger M1 polarization to promote release of proinflammatory cytokines. Notably, the CMP nanoparticles demonstrate an extended retention time period than the free CpG-ODN in the tumor. The tumor microenvironment tailored bipolar IRE, enhances the therapeutic efficacy by significantly broadening the ablation zone, which further increases immunogenic cell death (ICD). Ultimately, the simultaneous CMP nanoparticles and IRE treatment successfully inhibit tumor growth and prolong survival in a mouse tumor model. Thus, CMP nanoparticles are empowered with Mn and CpG-ODN immunomodulators and the tumor microenvironment tailored bipolar IRE will be a new tool for effective cancer immunotherapy to treat intractable malignancies.
Collapse
Affiliation(s)
- Jun-Hyeok Han
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi, 16419, Republic of Korea
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Ha Eun Shin
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Jiyoung Lee
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Jeon Min Kang
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Jung-Hoon Park
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, College of Life Sciences, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, Gyeonggi, 13488, Republic of Korea
| | - Ik-Hwan Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Wooram Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi, 16419, Republic of Korea
| |
Collapse
|
56
|
Hwang J, An EK, Kim SJ, Zhang W, Jin JO. Escherichia coli Mimetic Gold Nanorod-Mediated Photo- and Immunotherapy for Treating Cancer and Its Metastasis. ACS NANO 2022; 16:8472-8483. [PMID: 35466668 DOI: 10.1021/acsnano.2c03379] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Most cancer-related deaths are due to metastasis or recurrence. Therefore, the ultimate goal of cancer therapy will be to treat metastatic and recurrent cancers. Combination therapy for cancer will be one of trial for effective treating metastasis and recurrence. In this study, Escherichia coli-mimetic nanomaterials are synthesized using Escherichia coli membrane proteins, adhesion proteins, and gold nanorods, which are named E. coli mimetic AuNRs (ECA), for combination therapy against cancer and its recurrence. ECA treatment with 808 nm laser irradiation eliminates CT-26 or 4T1 tumors via a photothermal effect. ECA with laser irradiation induces activation of immune cells in the tumor-draining lymph nodes. The mice cured from CT-26 or 4T1 tumor by ECA are rechallenged with those cancer in the lung metastatic form, and the results showed that ECA treatment for the first CT-26 or 4T1 tumor challenge prevents cancer infiltration to the lung in the second challenge. This preventive effect of ECA against tumor growth in the second challenge is aided by cancer antigen-specific T cell immunity. Overall, these findings show that ECA is a nanomaterial with dual functions as a photothermal therapy for treating primary cancers and as immunotherapy for preventing recurrence and metastasis.
Collapse
Affiliation(s)
- Juyoung Hwang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Eun-Koung An
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - So-Jung Kim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Wei Zhang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China
| | - Jun-O Jin
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| |
Collapse
|
57
|
Kumar GS, Moustafa M, Sahoo AK, Malý P, Bharadwaj S. Computational Investigations on the Natural Small Molecule as an Inhibitor of Programmed Death Ligand 1 for Cancer Immunotherapy. Life (Basel) 2022; 12:659. [PMID: 35629327 PMCID: PMC9145275 DOI: 10.3390/life12050659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 11/24/2022] Open
Abstract
Several therapeutic monoclonal antibodies approved by the FDA are available against the PD-1/PD-L1 (programmed death 1/programmed death ligand 1) immune checkpoint axis, which has been an unprecedented success in cancer treatment. However, existing therapeutics against PD-L1, including small molecule inhibitors, have certain drawbacks such as high cost and drug resistance that challenge the currently available anti-PD-L1 therapy. Therefore, this study presents the screening of 32,552 compounds from the Natural Product Atlas database against PD-L1, including three steps of structure-based virtual screening followed by binding free energy to refine the ideal conformation of potent PD-L1 inhibitors. Subsequently, five natural compounds, i.e., Neoenactin B1, Actinofuranone I, Cosmosporin, Ganocapenoid A, and 3-[3-hydroxy-4-(3-methylbut-2-enyl)phenyl]-5-(4-hydroxybenzyl)-4-methyldihydrofuran-2(3H)-one, were collected based on the ADMET (absorption, distribution, metabolism, excretion, and toxicity) profiling and binding free energy (>−60 kcal/mol) for further computational investigation in comparison to co-crystallized ligand, i.e., JQT inhibitor. Based on interaction mapping, explicit 100 ns molecular dynamics simulation, and end-point binding free energy calculations, the selected natural compounds were marked for substantial stability with PD-L1 via intermolecular interactions (hydrogen and hydrophobic) with essential residues in comparison to the JQT inhibitor. Collectively, the calculated results advocate the selected natural compounds as the putative potent inhibitors of PD-L1 and, therefore, can be considered for further development of PD-L1 immune checkpoint inhibitors in cancer immunotherapy.
Collapse
Affiliation(s)
- Geethu S Kumar
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India;
- Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida 201308, Uttar Pradesh, India
| | - Mahmoud Moustafa
- Department of Biology, Faculty of Science, King Khalid University, Abha 62529, Saudi Arabia;
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Amaresh Kumar Sahoo
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad 211015, Uttar Pradesh, India
| | - Petr Malý
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, v.v.i., BIOCEV Research Center, 25250 Vestec, Czech Republic
| | - Shiv Bharadwaj
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, v.v.i., BIOCEV Research Center, 25250 Vestec, Czech Republic
| |
Collapse
|
58
|
Mundekkad D, Cho WC. Nanoparticles in Clinical Translation for Cancer Therapy. Int J Mol Sci 2022; 23:ijms23031685. [PMID: 35163607 PMCID: PMC8835852 DOI: 10.3390/ijms23031685] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
The advent of cancer therapeutics brought a paradigm shift from conventional therapy to precision medicine. The new therapeutic modalities accomplished through the properties of nanomaterials have extended their scope in cancer therapy beyond conventional drug delivery. Nanoparticles can be channeled in cancer therapy to encapsulate active pharmaceutical ingredients and deliver them to the tumor site in a more efficient manner. This review enumerates various types of nanoparticles that have entered clinical trials for cancer treatment. The obstacles in the journey of nanodrug from clinic to market are reviewed. Furthermore, the latest developments in using nanoparticles in cancer therapy are also highlighted.
Collapse
Affiliation(s)
- Deepa Mundekkad
- Centre for NanoBioTechnology (CNBT), Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India;
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China
- Correspondence: or
| |
Collapse
|
59
|
Bidar N, Darroudi M, Ebrahimzadeh A, Safdari M, de la Guardia M, Baradaran B, Goodarzi V, Oroojalian F, Mokhtarzadeh A. Simultaneous nanocarrier-mediated delivery of siRNAs and chemotherapeutic agents in cancer therapy and diagnosis: Recent advances. Eur J Pharmacol 2022; 915:174639. [PMID: 34919890 DOI: 10.1016/j.ejphar.2021.174639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/30/2021] [Accepted: 11/11/2021] [Indexed: 11/28/2022]
Abstract
Recently, investigations have revealed that RNA interference (RNAi) has a remarkable potential to decrease cancer burden by downregulating genes. Among various RNAi molecules, small interfering RNA (siRNA) has been more attractive for this goal and is able to silence a target pathological path and promote the degradation of a certain mRNA, resulting in either gain or loss of function of proteins. Moreover, therapeutic siRNAs have exhibited low side effects compared to other therapeutic molecular candidates. Nevertheless, siRNA delivery has its own limitations including quick degradation in circulation, ineffective internalization and low passive uptake by cells, possible toxicity against off-target sites, and inducing unfavorable immune responses. Therefore, delivery tools must be able to specifically direct siRNAs to their target locations without inflicting detrimental effects on other sites. To conquer the mentioned problems, nanocarrier-mediated delivery of siRNAs, using inorganic nanoparticles (NPs), polymers, and lipids, has been developed as a biocompatible delivery approach. In this review, we have discussed recent advances in the siRNA delivery methods that employ nanoparticles, lipids, and polymers, as well as the inorganic-based co-delivery systems used to deliver siRNAs and anticancer agents to target cells.
Collapse
Affiliation(s)
- Negar Bidar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ailin Ebrahimzadeh
- Department of Advanced Technologies in Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammadreza Safdari
- Department of Orthopedic Surgery, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahabodin Goodarzi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Technologies in Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
60
|
Choi Y, Kim J, Chae J, Hong J, Park J, Jeong E, Kim H, Tanaka M, Okochi M, Choi J. Surface glycan targeting for cancer nano-immunotherapy. J Control Release 2022; 342:321-336. [PMID: 34998918 DOI: 10.1016/j.jconrel.2022.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 02/07/2023]
Abstract
Cancer immunotherapy is an emerging therapeutic strategy for cancer treatment. Most of the immunotherapeutics approved by the FDA regulate the innate immune system and associated immune cell activity, with immune check inhibitors in particular having transformed the field of cancer immunotherapy due to their significant clinical potential. However, previously reported immunotherapeutics have exhibited undesirable side effects, including autoimmune toxicity and inflammation. Controlling these deleterious responses and designing therapeutics that can precisely target specific regions are thus crucial to improving the efficacy of cancer immunotherapies. Recent studies have reported that cancer cells employ glycan-immune checkpoint interactions to modulate immune cell activity. Thus, the recognition of cancer glycan moieties such as sialoglycans may improve the anticancer activity of immune cells. In this review, we discuss recent advances in cancer immunotherapies involving glycans and glycan-targeting technologies based on nanomaterial-assisted local delivery systems.
Collapse
Affiliation(s)
- Yonghyun Choi
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Jiwon Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Jayoung Chae
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Joohye Hong
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Jongjun Park
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Eunseo Jeong
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Hayoung Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Masayoshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1-S1-24, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Mina Okochi
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1-S1-24, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
61
|
Li Q, Shi Z, Zhang F, Zeng W, Zhu D, Mei L. Symphony of nanomaterials and immunotherapy based on the cancer-immunity cycle. Acta Pharm Sin B 2022; 12:107-134. [PMID: 35127375 PMCID: PMC8799879 DOI: 10.1016/j.apsb.2021.05.031] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/21/2021] [Accepted: 04/25/2021] [Indexed: 02/07/2023] Open
Abstract
The immune system is involved in the initiation and progression of cancer. Research on cancer and immunity has contributed to the development of several clinically successful immunotherapies. These immunotherapies often act on a single step of the cancer–immunity cycle. In recent years, the discovery of new nanomaterials has dramatically expanded the functions and potential applications of nanomaterials. In addition to acting as drug-delivery platforms, some nanomaterials can induce the immunogenic cell death (ICD) of cancer cells or regulate the profile and strength of the immune response as immunomodulators. Based on their versatility, nanomaterials may serve as an integrated platform for multiple drugs or therapeutic strategies, simultaneously targeting several steps of the cancer–immunity cycle to enhance the outcome of anticancer immune response. To illustrate the critical roles of nanomaterials in cancer immunotherapies based on cancer–immunity cycle, this review will comprehensively describe the crosstalk between the immune system and cancer, and the current applications of nanomaterials, including drug carriers, ICD inducers, and immunomodulators. Moreover, this review will provide a detailed discussion of the knowledge regarding developing combinational cancer immunotherapies based on the cancer–immunity cycle, hoping to maximize the efficacy of these treatments assisted by nanomaterials.
Collapse
Affiliation(s)
- Qianqian Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Zhaoqing Shi
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Fan Zhang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Weiwei Zeng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Dunwan Zhu
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
- Corresponding authors. Tel./fax: +86 20 84723750
| | - Lin Mei
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
- Corresponding authors. Tel./fax: +86 20 84723750
| |
Collapse
|
62
|
Liu L, Kshirsagar PG, Gautam SK, Gulati M, Wafa EI, Christiansen JC, White BM, Mallapragada SK, Wannemuehler MJ, Kumar S, Solheim JC, Batra SK, Salem AK, Narasimhan B, Jain M. Nanocarriers for pancreatic cancer imaging, treatments, and immunotherapies. Theranostics 2022; 12:1030-1060. [PMID: 35154473 PMCID: PMC8771545 DOI: 10.7150/thno.64805] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 12/03/2021] [Indexed: 01/28/2023] Open
Abstract
Pancreatic tumors are highly desmoplastic and immunosuppressive. Delivery and distribution of drugs within pancreatic tumors are compromised due to intrinsic physical and biochemical stresses that lead to increased interstitial fluid pressure, vascular compression, and hypoxia. Immunotherapy-based approaches, including therapeutic vaccines, immune checkpoint inhibition, CAR-T cell therapy, and adoptive T cell therapies, are challenged by an immunosuppressive tumor microenvironment. Together, extensive fibrosis and immunosuppression present major challenges to developing treatments for pancreatic cancer. In this context, nanoparticles have been extensively studied as delivery platforms and adjuvants for cancer and other disease therapies. Recent advances in nanotechnology have led to the development of multiple nanocarrier-based formulations that not only improve drug delivery but also enhance immunotherapy-based approaches for pancreatic cancer. This review discusses and critically analyzes the novel nanoscale strategies that have been used for drug delivery and immunomodulation to improve treatment efficacy, including newly emerging immunotherapy-based approaches. This review also presents important perspectives on future research directions that will guide the rational design of novel and robust nanoscale platforms to treat pancreatic tumors, particularly with respect to targeted therapies and immunotherapies. These insights will inform the next generation of clinical treatments to help patients manage this debilitating disease and enhance survival rates.
Collapse
Affiliation(s)
- Luman Liu
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA
| | - Prakash G. Kshirsagar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE
| | - Shailendra K. Gautam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE
| | - Mansi Gulati
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE
| | - Emad I. Wafa
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA
| | - John C. Christiansen
- Department of Veterinary Microbiology & Preventive Medicine, Iowa State University, Ames, IA
| | - Brianna M. White
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA
| | - Surya K. Mallapragada
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA
- Nanovaccine Institute, Iowa State University, Ames, IA
| | - Michael J. Wannemuehler
- Department of Veterinary Microbiology & Preventive Medicine, Iowa State University, Ames, IA
- Nanovaccine Institute, Iowa State University, Ames, IA
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE
| | - Joyce C. Solheim
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE
- Nanovaccine Institute, Iowa State University, Ames, IA
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha NE
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE
- Nanovaccine Institute, Iowa State University, Ames, IA
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha NE
| | - Aliasger K. Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA
- Nanovaccine Institute, Iowa State University, Ames, IA
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA
- Nanovaccine Institute, Iowa State University, Ames, IA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE
- Nanovaccine Institute, Iowa State University, Ames, IA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha NE
| |
Collapse
|
63
|
Gavas S, Quazi S, Karpiński TM. Nanoparticles for Cancer Therapy: Current Progress and Challenges. NANOSCALE RESEARCH LETTERS 2021; 16:173. [PMID: 34866166 PMCID: PMC8645667 DOI: 10.1186/s11671-021-03628-6] [Citation(s) in RCA: 277] [Impact Index Per Article: 92.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/19/2021] [Indexed: 05/04/2023]
Abstract
Cancer is one of the leading causes of death and morbidity with a complex pathophysiology. Traditional cancer therapies include chemotherapy, radiation therapy, targeted therapy, and immunotherapy. However, limitations such as lack of specificity, cytotoxicity, and multi-drug resistance pose a substantial challenge for favorable cancer treatment. The advent of nanotechnology has revolutionized the arena of cancer diagnosis and treatment. Nanoparticles (1-100 nm) can be used to treat cancer due to their specific advantages such as biocompatibility, reduced toxicity, more excellent stability, enhanced permeability and retention effect, and precise targeting. Nanoparticles are classified into several main categories. The nanoparticle drug delivery system is particular and utilizes tumor and tumor environment characteristics. Nanoparticles not only solve the limitations of conventional cancer treatment but also overcome multidrug resistance. Additionally, as new multidrug resistance mechanisms are unraveled and studied, nanoparticles are being investigated more vigorously. Various therapeutic implications of nanoformulations have created brand new perspectives for cancer treatment. However, most of the research is limited to in vivo and in vitro studies, and the number of approved nanodrugs has not much amplified over the years. This review discusses numerous types of nanoparticles, targeting mechanisms, and approved nanotherapeutics for oncological implications in cancer treatment. Further, we also summarize the current perspective, advantages, and challenges in clinical translation.
Collapse
Affiliation(s)
- Shreelaxmi Gavas
- Department of Life Sciences, GenLab Biosolutions Private Limited, Bangalore, Karnataka 560043 India
| | - Sameer Quazi
- GenLab Biosolutions Private Limited, Bangalore, Karnataka 560043 India
| | - Tomasz M. Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland
| |
Collapse
|
64
|
Drozdov AS, Nikitin PI, Rozenberg JM. Systematic Review of Cancer Targeting by Nanoparticles Revealed a Global Association between Accumulation in Tumors and Spleen. Int J Mol Sci 2021; 22:13011. [PMID: 34884816 PMCID: PMC8657629 DOI: 10.3390/ijms222313011] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/13/2022] Open
Abstract
Active targeting of nanoparticles toward tumors is one of the most rapidly developing topics in nanomedicine. Typically, this strategy involves the addition of cancer-targeting biomolecules to nanoparticles, and studies on this topic have mainly focused on the localization of such formulations in tumors. Here, the analysis of the factors determining efficient nanoparticle targeting and therapy, various parameters such as types of targeting molecules, nanoparticle type, size, zeta potential, dose, and the circulation time are given. In addition, the important aspects such as how active targeting of nanoparticles alters biodistribution and how non-specific organ uptake influences tumor accumulation of the targeted nanoformulations are discussed. The analysis reveals that an increase in tumor accumulation of targeted nanoparticles is accompanied by a decrease in their uptake by the spleen. There is no association between targeting-induced changes of nanoparticle concentrations in tumors and other organs. The correlation between uptake in tumors and depletion in the spleen is significant for mice with intact immune systems in contrast to nude mice. Noticeably, modulation of splenic and tumor accumulation depends on the targeting molecules and nanoparticle type. The median survival increases with the targeting-induced nanoparticle accumulation in tumors; moreover, combinatorial targeting of nanoparticle drugs demonstrates higher treatment efficiencies. Results of the comprehensive analysis show optimal strategies to enhance the efficiency of actively targeted nanoparticle-based medicines.
Collapse
Affiliation(s)
- Andrey S. Drozdov
- Laboratory of Nanobiotechnology, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia;
| | - Petr I. Nikitin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Julian M. Rozenberg
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| |
Collapse
|
65
|
Zhang P, Meng J, Li Y, Yang C, Hou Y, Tang W, McHugh KJ, Jing L. Nanotechnology-enhanced immunotherapy for metastatic cancer. Innovation (N Y) 2021; 2:100174. [PMID: 34766099 PMCID: PMC8571799 DOI: 10.1016/j.xinn.2021.100174] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
A vast majority of cancer deaths occur as a result of metastasis. Unfortunately, effective treatments for metastases are currently lacking due to the difficulty of selectively targeting these small, delocalized tumors distributed across a variety of organs. However, nanotechnology holds tremendous promise for improving immunotherapeutic outcomes in patients with metastatic cancer. In contrast to conventional cancer immunotherapies, rationally designed nanomaterials can trigger specific tumoricidal effects, thereby improving immune cell access to major sites of metastasis such as bone, lungs, and lymph nodes, optimizing antigen presentation, and inducing a persistent immune response. This paper reviews the cutting-edge trends in nano-immunoengineering for metastatic cancers with an emphasis on different nano-immunotherapeutic strategies. Specifically, it discusses directly reversing the immunological status of the primary tumor, harnessing the potential of peripheral immune cells, preventing the formation of a pre-metastatic niche, and inhibiting the tumor recurrence through postoperative immunotherapy. Finally, we describe the challenges facing the integration of nanoscale immunomodulators and provide a forward-looking perspective on the innovative nanotechnology-based tools that may ultimately prove effective at eradicating metastatic diseases.
Collapse
Affiliation(s)
- Peisen Zhang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| | - Junli Meng
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| | - Yingying Li
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| | - Chen Yang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| | - Yi Hou
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wen Tang
- South China Advanced Institute for Soft Matter Science and Technology, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Kevin J McHugh
- Department of Bioengineering, Rice University, 6100 Main Street, MS-142, Houston, TX 77005, USA
| | - Lihong Jing
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| |
Collapse
|
66
|
Nanotechnology-based products for cancer immunotherapy. Mol Biol Rep 2021; 49:1389-1412. [PMID: 34716502 PMCID: PMC8555726 DOI: 10.1007/s11033-021-06876-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/21/2021] [Indexed: 11/24/2022]
Abstract
Abstract Currently, nanoscale materials and scaffolds carrying antitumor agents to the tumor target site are practical approaches for cancer treatment. Immunotherapy is a modern approach to cancer treatment in which the body’s immune system adjusts to deal with cancer cells. Immuno-engineering is a new branch of regenerative medicine-based therapies that uses engineering principles by using biological tools to stimulate the immune system. Therefore, this branch’s final aim is to regulate distribution, release, and simultaneous placement of several immune factors at the tumor site, so then upgrade the current treatment methods and subsequently improve the immune system’s handling. In this paper, recent research and prospects of nanotechnology-based cancer immunotherapy have been presented and discussed. Furthermore, different encouraging nanotechnology-based plans for targeting various innate and adaptive immune systems will also be discussed. Due to novel views in nanotechnology strategies, this field can address some biological obstacles, although studies are ongoing. Graphic abstract ![]()
Collapse
|
67
|
Nanomedicine for Immunotherapy Targeting Hematological Malignancies: Current Approaches and Perspective. NANOMATERIALS 2021; 11:nano11112792. [PMID: 34835555 PMCID: PMC8619332 DOI: 10.3390/nano11112792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/04/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022]
Abstract
Conventional chemotherapy has partial therapeutic effects against hematological malignancies and is correlated with serious side effects and great risk of relapse. Recently, immunotherapeutic drugs have provided encouraging results in the treatment of hematological malignancies. Several immunotherapeutic antibodies and cell therapeutics are in dynamic development such as immune checkpoint blockades and CAR-T treatment. However, numerous problems restrain the therapeutic effectiveness of tumor immunotherapy as an insufficient anti-tumor immune response, the interference of an immune-suppressive bone marrow, or tumoral milieu with the discharge of immunosuppressive components, access of myeloid-derived suppressor cells, monocyte intrusion, macrophage modifications, all factors facilitating the tumor to escape the anti-cancer immune response, finally reducing the efficiency of the immunotherapy. Nanotechnology can be employed to overcome each of these aspects, therefore having the possibility to successfully produce anti-cancer immune responses. Here, we review recent findings on the use of biomaterial-based nanoparticles in hematological malignancies immunotherapy. In the future, a deeper understanding of tumor immunology and of the implications of nanomedicine will allow nanoparticles to revolutionize tumor immunotherapy, and nanomedicine approaches will reveal their great potential for clinical translation.
Collapse
|
68
|
Marsili L, Dal Bo M, Berti F, Toffoli G. Thermoresponsive Chitosan-Grafted-Poly( N-vinylcaprolactam) Microgels via Ionotropic Gelation for Oncological Applications. Pharmaceutics 2021; 13:1654. [PMID: 34683947 PMCID: PMC8539247 DOI: 10.3390/pharmaceutics13101654] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 12/19/2022] Open
Abstract
Microgels can be considered soft, porous and deformable particles with an internal gel structure swollen by a solvent and an average size between 100 and 1000 nm. Due to their biocompatibility, colloidal stability, their unique dynamicity and the permeability of their architecture, they are emerging as important candidates for drug delivery systems, sensing and biocatalysis. In clinical applications, the research on responsive microgels is aimed at the development of "smart" delivery systems that undergo a critical change in conformation and size in reaction to a change in environmental conditions (temperature, magnetic fields, pH, concentration gradient). Recent achievements in biodegradable polymer fabrication have resulted in new appealing strategies, including the combination of synthetic and natural-origin polymers with inorganic nanoparticles, as well as the possibility of controlling drug release remotely. In this review, we provide a literature review on the use of dual and multi-responsive chitosan-grafted-poly-(N-vinylcaprolactam) (CP) microgels in drug delivery and oncological applications.
Collapse
Affiliation(s)
- Lorenzo Marsili
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy;
- Experimental and Clinical Pharmacology Unit, CRO National Cancer Institute IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy; (M.D.B.); (G.T.)
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, CRO National Cancer Institute IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy; (M.D.B.); (G.T.)
| | - Federico Berti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy;
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, CRO National Cancer Institute IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy; (M.D.B.); (G.T.)
| |
Collapse
|
69
|
Short Review on Advances in Hydrogel-Based Drug Delivery Strategies for Cancer Immunotherapy. Tissue Eng Regen Med 2021; 19:263-280. [PMID: 34596839 DOI: 10.1007/s13770-021-00369-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 12/20/2022] Open
Abstract
Cancer immunotherapy has become the new paradigm of cancer treatment. The introduction and discovery of various therapeutic agents have also accelerated the application of immunotherapy in clinical trials. However, despite the significant potency and demonstrated advantages of cancer immunotherapy, its clinical application to patients faces several safety and efficacy issues, including autoimmune reactions, cytokine release syndrome, and vascular leak syndrome-related issues. In addressing these problems, biomaterials traditionally used for tissue engineering and drug delivery are attracting attention. Among them, hydrogels can be easily injected into tumors with drugs, and they can minimize side effects by retaining immune therapeutics at the tumor site for a long time. This article reviews the status of functional hydrogels for effective cancer immunotherapy. First, we describe the basic mechanisms of cancer immunotherapy and the advantages of using hydrogels to apply these mechanisms. Next, we summarize recent advances in the development of functional hydrogels designed to locally release various immunotherapeutic agents, including cytokines, cancer immune vaccines, immune checkpoint inhibitors, and chimeric antigen receptor-T cells. Finally, we briefly discuss the current problems and possible prospects of hydrogels for effective cancer immunotherapy.
Collapse
|
70
|
Ye L, Wang L, Yang J, Hu P, Zhang C, Tong S, Liu Z, Tian D. Identification of Tumor Antigens and Immune Landscape in Glioblastoma for mRNA Vaccine Development. Front Genet 2021; 12:701065. [PMID: 34527020 PMCID: PMC8435740 DOI: 10.3389/fgene.2021.701065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/29/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Clinical benefits from standard therapies against glioblastoma (GBM) are limited in part due to the intrinsic radio- and chemo-resistance. As an essential part of tumor immunotherapy for adjunct, therapeutic tumor vaccines have been effective against multiple solid cancers, while their efficacy against GBM remains undefined. Therefore, this study aims to find the possible tumor antigens of GBM and identify the suitable population for cancer vaccination through immunophenotyping. Method: The genomic and responding clinical data of 169 GBM samples and five normal brain samples were obtained from The Cancer Genome Atlas (TCGA). The mRNA_seq data of 940 normal brain tissue were downloaded from Genotype-Tissue Expression (GTEx). Potential GBM mRNA antigens were screened out by differential expression, copy number variant (CNV), and mutation analysis. K-M survival and Cox analysis were carried out to investigate the prognostic association of potential tumor antigens. Tumor Immune Estimation Resource (TIMER) was used to explore the association between the antigens and tumor immune infiltrating cells (TIICs). Immunophenotyping of 169 samples was performed through consensus clustering based on the abundance of 22 kinds of immune cells. The characteristics of the tumor immune microenvironment (TIME) in each cluster were explored through single-sample gene set enrichment analysis based on 29 kinds of immune-related hallmarks and pathways. Weighted gene co-expression network analysis (WGCNA) was performed to cluster the genes related to immune subtypes. Finally, pathway enrichment analyses were performed to annotate the potential function of modules screened through WGCNA. Results: Two potential tumor antigens selected were significantly positively associated with the antigen-presenting immune cells (APCs) in GBM. Furthermore, the expression of antigens was verified at the protein level by Immunohistochemistry. Two robust immune subtypes, immune subtype 1 (IS1) and immune subtype 2 (IS2), representing immune status "immune inhibition" and "immune inflamed", respectively, had distinct clinical outcomes in GBM. Conclusion: ARPC1B and HK3 were potential mRNA antigens for developing GBM mRNA vaccination, and the patients in IS2 were considered the most suitable population for vaccination in GBM.
Collapse
Affiliation(s)
- Liguo Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Long Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ji'an Yang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ping Hu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chunyu Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shi'ao Tong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhennan Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Daofeng Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
71
|
Chung S, Revia RA, Zhang M. Iron oxide nanoparticles for immune cell labeling and cancer immunotherapy. NANOSCALE HORIZONS 2021; 6:696-717. [PMID: 34286791 PMCID: PMC8496976 DOI: 10.1039/d1nh00179e] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Cancer immunotherapy is a novel approach to cancer treatment that leverages components of the immune system as opposed to chemotherapeutics or radiation. Cell migration is an integral process in a therapeutic immune response, and the ability to track and image the migration of immune cells in vivo allows for better characterization of the disease and monitoring of the therapeutic outcomes. Iron oxide nanoparticles (IONPs) are promising candidates for use in immunotherapy as they are biocompatible, have flexible surface chemistry, and display magnetic properties that may be used in contrast-enhanced magnetic resonance imaging (MRI). In this review, advances in application of IONPs in cell tracking and cancer immunotherapy are presented. Following a brief overview of the cancer immunity cycle, developments in labeling and tracking various immune cells using IONPs are highlighted. We also discuss factors that influence the effectiveness of IONPs as MRI contrast agents. Finally, we outline different approaches for cancer immunotherapy and highlight current efforts that utilize IONPs to stimulate immune cells to enhance their activity and response to cancer.
Collapse
Affiliation(s)
- Seokhwan Chung
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA.
| | | | | |
Collapse
|
72
|
Ye L, Wang L, Yang J, Hu P, Zhang C, Tong S, Liu Z, Tian D. Identification of tumor antigens and immune subtypes in lower grade gliomas for mRNA vaccine development. J Transl Med 2021; 19:352. [PMID: 34404444 PMCID: PMC8369324 DOI: 10.1186/s12967-021-03014-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND As an important part of tumor immunotherapy for adjunct, therapeutic tumor vaccines have been effective against multiple solid cancers, while their efficacy against lower grade glioma (LGG) remains undefined. Immunophenotyping of tumors is an essential tool to evaluate the immune function of patients with immunodeficiency or autoimmunity. Therefore, this study aims to find the potential tumor antigen of LGG and identify the suitable population for cancer vaccination based on the immune landscape. METHOD The genomic and clinical data of 529 patients with LGG were obtained from TCGA, the mRNA_seq data of normal brain tissue were downloaded from GTEx. Differential expression gene and mutation analysis were performed to screen out potential antigens, K-M curves were carried out to investigate the correlation between the level of potential antigens and OS and DFS of patients. TIMER dataset was used to explore the correlation between genes and immune infiltrating cells. Immunophenotyping of 529 tumor samples was based on the single-sample gene sets enrichment analysis. Cibersort and Estimate algorithm were used to explore the tumor immune microenvironment characteristics in each immune subtype. Weighted gene co-expression network analysis (WGCNA) clustered immune-related genes and screened the hub genes, and pathway enrichment analyses were performed on the hub modules related to immune subtype in the WGCNA. RESULTS Selecting for the mutated, up-regulated, prognosis- and immune-related genes, four potential tumor antigens were identified in LGG. They were also significantly positively associated with the antigen-presenting immune cells (APCs). Three robust immune subtypes, IS1, IS2 and IS3, represented immune status "desert", "immune inhibition", and "inflamed" respectively, which might serve as a predictive parameter. Subsequently, clinicopathological features, including the codeletion status of 1p19q, IDH mutation status, tumor mutation burden, tumor stemness, etc., were significantly different among subtypes. CONCLUSION FCGBP, FLNC, TLR7, and CSF2RA were potential antigens for developing cancer vaccination, and the patients in IS3 were considered the most suitable for vaccination in LGG.
Collapse
Affiliation(s)
- Liguo Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, P.R. China
| | - Long Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, P.R. China
| | - Ji'an Yang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, P.R. China
| | - Ping Hu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, P.R. China
| | - Chunyu Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, P.R. China
| | - Shi'ao Tong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, P.R. China
| | - Zhennan Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, P.R. China
| | - Daofeng Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, P.R. China.
| |
Collapse
|
73
|
Chakraborty R, Bose U, Pawaskar G, Bola Sadashiva SR, Raval R. Nanoparticles derived from insect exoskeleton modulates NLRP3 inflammasome complex activation in cervical cancer cell line model. Cancer Nanotechnol 2021. [DOI: 10.1186/s12645-021-00090-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Immune evasion is an important hallmark of cancer progression and tumourigenesis. Among the cancer types, cervical cancer has very high global prevalence, severely affecting female reproductive health. Its preponderance is also observed in the Indian health sector.
Results
The NLRP3 inflammasome, an intracellular complex regulates the innate immune activity and a variant gene of it has been significantly associated with cervical cancer development. We aimed to evaluate the potential role of our chitosan engineered nanoparticles (CSNP) and gallic acid conjugated chitosan (gCSNP), to modulate the NLRP3 inflammasome complex in cervical cancer cell lines to explore their novel physicochemical properties. The encapsulation of gallic acid (GA) with chitosan was performed using ion gelation method. The CSNP and gCSNP nanoparticles ranged between 155 and 181 nm as determined by zeta sizer. The conjugations were validated by FTIR and XRD analysis. In the cervical cell line model, CSNP suppressed NLRP3 inflammasome activation in contrast to gCSNP at higher doses.
Conclusion
In contrast to gCSNP, the CSNP not only demonstrated inhibitory effect on the expression of genes coding for the NLRP3 inflammasome complex (signal 1—priming), but also decreased relative expression of gene involved in the activation of NLRP3 inflammasome complex (signal 2—activation). Conjugation of gallic acid reversed the immunosuppressor mimicking action of CSNP in cervical cancer cell line. Future research can reveal the immunomodulatory mechanism of CSNP may have its translational significance as potential treatment strategies targeting immune evasion as an important hallmark of cancer.
Graphical abstract
Collapse
|
74
|
Hwang J, Zhang W, Park HB, Yadav D, Jeon YH, Jin JO. Escherichia coli adhesin protein-conjugated thermal responsive hybrid nanoparticles for photothermal and immunotherapy against cancer and its metastasis. J Immunother Cancer 2021; 9:jitc-2021-002666. [PMID: 34230112 PMCID: PMC8261870 DOI: 10.1136/jitc-2021-002666] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2021] [Indexed: 12/21/2022] Open
Abstract
Background Advanced cancer therapy is targeted at primary tumors and also recurrent or metastatic cancers. Combinational cancer treatment has recently shown high efficiency against recurrent and metastatic cancers. In this study, we synthesized a thermal responsive hybrid nanoparticle (TRH) containing FimH, an immune stimulatory recombinant protein, for the induction of a combination of photothermal therapy (PTT) and immunotherapy against cancer and its metastasis. Methods The hybrid nanoparticle was incorporated with a near-infrared (NIR) absorbent, indocyanine green, and decorated with FimH on its surface to form F-TRH. F-TRH was evaluated for its anticancer and antimetastatic effects against CT-26 carcinoma in mice by combining PTT and immunotherapy. Results NIR laser irradiation elicited an elevation of temperature in F-TRH, which induced apoptosis in CT-26 carcinoma cells in vitro. In addition, F-TRH and NIR laser irradiation promoted photothermal-mediated therapeutic effects against CT-26 and 4T1 tumors in mice. The release of FimH from F-TRH in response to elevated temperature and apoptotic bodies of cancer cells via PTT elicited dendritic cell-mediated cancer antigen-specific T-cell responses, which subsequently inhibited the second challenge of CT-26 and 4T1 cell growth in the lung. Conclusions These data demonstrate the potential use of F-TRH for immuno-photothermal therapy against cancer and its recurrence and metastasis.
Collapse
Affiliation(s)
- Juyoung Hwang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea.,Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea
| | - Wei Zhang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hae-Bin Park
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea.,Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Yong Hyun Jeon
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Jun-O Jin
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China .,Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea.,Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
75
|
Abdel-Mageed HM, AbuelEzz NZ, Radwan RA, Mohamed SA. Nanoparticles in nanomedicine: a comprehensive updated review on current status, challenges and emerging opportunities. J Microencapsul 2021; 38:414-436. [PMID: 34157915 DOI: 10.1080/02652048.2021.1942275] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The fast progress in nanomedicine and nanoparticles (NP) materials presents unconventional solutions which are expected to revolutionise health care with great potentials including, enhanced efficacy, bioavailability, drug targeting, and safety. This review provides a comprehensive update on widely used organic and inorganic NP with emphasis on the recent development, challenges and future prospective for bio applications where, further investigations into innovative synthesis methodologies, properties and applications of NP would possibly reveal new improved biomedical relevance. NP exhibits exceptional physical and chemical properties due to their high surface area to volume ratio and nanoscale size, which led to breakthroughs in therapeutic, diagnostic and screening techniques repeated line. Finally, an update of FDA-approved NP is explored where innovative design engineering allowed a paradigmatic shift in their market share. This review would serve as a discerning comprehensive source of information for learners who are seeking a cutting-edge review but have been astounded by the size of publications.
Collapse
Affiliation(s)
- Heidi Mohamed Abdel-Mageed
- Molecular Biology Department, Genetic Engineering and Biotechnology Division, National Research Centre, Cairo, Egypt
| | - Nermeen Zakaria AbuelEzz
- Biochemistry Department, College of Pharmaceutical Sciences & Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Rasha Ali Radwan
- Biochemistry Department Faculty of Pharmacy, Sinai University-Kantara branch, El Ismailia; Egypt
| | - Saleh Ahmed Mohamed
- Molecular Biology Department, Genetic Engineering and Biotechnology Division, National Research Centre, Cairo, Egypt
| |
Collapse
|
76
|
Abstract
This commentary article conveys the views of the board of the Nanomedicine and Nanoscale Delivery Focus Group of the Controlled Release Society regarding the decision of the United States National Cancer Institute (NCI) in halting funding for the Centers of Cancer Nanotechnology Excellence (CCNEs), and the subsequent editorial articles that broadened this discussion. Graphical abstract.
Collapse
|
77
|
Miyazawa T, Itaya M, Burdeos GC, Nakagawa K, Miyazawa T. A Critical Review of the Use of Surfactant-Coated Nanoparticles in Nanomedicine and Food Nanotechnology. Int J Nanomedicine 2021; 16:3937-3999. [PMID: 34140768 PMCID: PMC8203100 DOI: 10.2147/ijn.s298606] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Surfactants, whose existence has been recognized as early as 2800 BC, have had a long history with the development of human civilization. With the rapid development of nanotechnology in the latter half of the 20th century, breakthroughs in nanomedicine and food nanotechnology using nanoparticles have been remarkable, and new applications have been developed. The technology of surfactant-coated nanoparticles, which provides new functions to nanoparticles for use in the fields of nanomedicine and food nanotechnology, is attracting a lot of attention in the fields of basic research and industry. This review systematically describes these "surfactant-coated nanoparticles" through various sections in order: 1) surfactants, 2) surfactant-coated nanoparticles, application of surfactant-coated nanoparticles to 3) nanomedicine, and 4) food nanotechnology. Furthermore, current progress and problems of the technology using surfactant-coated nanoparticles through recent research reports have been discussed.
Collapse
Affiliation(s)
- Taiki Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi, Japan
| | - Mayuko Itaya
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Gregor C Burdeos
- Institute for Animal Nutrition and Physiology, Christian Albrechts University Kiel, Kiel, Germany
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Teruo Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
78
|
Persano S, Das P, Pellegrino T. Magnetic Nanostructures as Emerging Therapeutic Tools to Boost Anti-Tumour Immunity. Cancers (Basel) 2021; 13:2735. [PMID: 34073106 PMCID: PMC8198238 DOI: 10.3390/cancers13112735] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/19/2022] Open
Abstract
Cancer immunotherapy has shown remarkable results in various cancer types through a range of immunotherapeutic approaches, including chimeric antigen receptor-T cell (CAR-T) therapy, immune checkpoint blockade (ICB), and therapeutic vaccines. Despite the enormous potential of cancer immunotherapy, its application in various clinical settings has been limited by immune evasion and immune suppressive mechanisms occurring locally or systemically, low durable response rates, and severe side effects. In the last decades, the rapid advancement of nanotechnology has been aiming at the development of novel synthetic nanocarriers enabling precise and enhanced delivery of immunotherapeutics, while improving drug stability and effectiveness. Magnetic nanostructured formulations are particularly intriguing because of their easy surface functionalization, low cost, and robust manufacturing procedures, together with their suitability for the implementation of magnetically-guided and heat-based therapeutic strategies. Here, we summarize and discuss the unique features of magnetic-based nanostructures, which can be opportunely designed to potentiate classic immunotherapies, such as therapeutic vaccines, ICB, adoptive cell therapy (ACT), and in situ vaccination. Finally, we focus on how multifunctional magnetic delivery systems can facilitate the anti-tumour therapies relying on multiple immunotherapies and/or other therapeutic modalities. Combinatorial magnetic-based therapies are indeed offering the possibility to overcome current challenges in cancer immunotherapy.
Collapse
Affiliation(s)
- Stefano Persano
- Nanomaterials for Biomedical Applications, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy;
| | | | - Teresa Pellegrino
- Nanomaterials for Biomedical Applications, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy;
| |
Collapse
|
79
|
Harvey PD, Plé J. Recent Advances in Nanoscale Metal-Organic Frameworks Towards Cancer Cell Cytotoxicity: An Overview. J Inorg Organomet Polym Mater 2021; 31:2715-2756. [PMID: 33994899 PMCID: PMC8114195 DOI: 10.1007/s10904-021-02011-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/19/2021] [Indexed: 02/03/2023]
Abstract
Abstract The fight against cancer has always been a prevalent research topic. Nanomaterials have the ability to directly penetrate cancer cells and potentially achieve minimally invasive, precise and efficient tumor annihilation. As such, nanoscale metal organic frameworks (nMOFs) are becoming increasingly attractive as potential therapeutic agents in the medical field due to their high structural variability, good biocompatibility, ease of surface functionalization as well as their porous morphologies with tunable cavity sizes. This overview addresses five different common strategies used to find cancer therapies, while summarizing the recent progress in using nMOFs as cytotoxic cancer cell agents largely through in vitro studies, although some in vivo investigations have also been reported. Chemo and targeted therapies rely on drug encapsulation and delivery inside the cell, whereas photothermal and photodynamic therapies depend on photosensitizers. Concurrently, immunotherapy actively induces the body to destroy the tumor by activating an immune response. By choosing the appropriate metal center, ligands and surface functionalization, nMOFs can be utilized in all five types of therapies. In the last section, the future prospects and challenges of nMOFs with respect to the various therapies will be presented and discussed. Graphic Abstract
Collapse
Affiliation(s)
- Pierre D. Harvey
- Département de Chimie, Université de Sherbrooke, Sherbrooke, PQ J1K 2R1 Canada
| | - Jessica Plé
- Département de Chimie, Université de Sherbrooke, Sherbrooke, PQ J1K 2R1 Canada
| |
Collapse
|
80
|
Anderluh M, Berti F, Bzducha-Wróbel A, Chiodo F, Colombo C, Compostella F, Durlik K, Ferhati X, Holmdahl R, Jovanovic D, Kaca W, Lay L, Marinovic-Cincovic M, Marradi M, Ozil M, Polito L, Reina JJ, Reis CA, Sackstein R, Silipo A, Švajger U, Vaněk O, Yamamoto F, Richichi B, van Vliet SJ. Recent advances on smart glycoconjugate vaccines in infections and cancer. FEBS J 2021; 289:4251-4303. [PMID: 33934527 PMCID: PMC9542079 DOI: 10.1111/febs.15909] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/09/2021] [Accepted: 04/30/2021] [Indexed: 01/01/2023]
Abstract
Vaccination is one of the greatest achievements in biomedical research preventing death and morbidity in many infectious diseases through the induction of pathogen-specific humoral and cellular immune responses. Currently, no effective vaccines are available for pathogens with a highly variable antigenic load, such as the human immunodeficiency virus or to induce cellular T-cell immunity in the fight against cancer. The recent SARS-CoV-2 outbreak has reinforced the relevance of designing smart therapeutic vaccine modalities to ensure public health. Indeed, academic and private companies have ongoing joint efforts to develop novel vaccine prototypes for this virus. Many pathogens are covered by a dense glycan-coat, which form an attractive target for vaccine development. Moreover, many tumor types are characterized by altered glycosylation profiles that are known as "tumor-associated carbohydrate antigens". Unfortunately, glycans do not provoke a vigorous immune response and generally serve as T-cell-independent antigens, not eliciting protective immunoglobulin G responses nor inducing immunological memory. A close and continuous crosstalk between glycochemists and glycoimmunologists is essential for the successful development of efficient immune modulators. It is clear that this is a key point for the discovery of novel approaches, which could significantly improve our understanding of the immune system. In this review, we discuss the latest advancements in development of vaccines against glycan epitopes to gain selective immune responses and to provide an overview on the role of different immunogenic constructs in improving glycovaccine efficacy.
Collapse
Affiliation(s)
- Marko Anderluh
- Faculty of Pharmacy, Faculty of Pharmacy, Chair of Pharmaceutical Chemistry, University of Ljubljana, Slovenia
| | | | - Anna Bzducha-Wróbel
- Department of Biotechnology and Food Microbiology, Warsaw University of Life Sciences-SGGW, Warszawa, Poland
| | - Fabrizio Chiodo
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands.,Institute of Biomolecular Chemistry (ICB), Italian National Research Council (CNR), Pozzuoli, Italy
| | - Cinzia Colombo
- Department of Chemistry and CRC Materiali Polimerici (LaMPo), University of Milan, Italy
| | - Federica Compostella
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milano, Italy
| | - Katarzyna Durlik
- Department of Microbiology and Parasitology, Jan Kochanowski University, Kielce, Poland
| | - Xhenti Ferhati
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino, Italy
| | - Rikard Holmdahl
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Dragana Jovanovic
- Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Serbia
| | - Wieslaw Kaca
- Department of Microbiology and Parasitology, Jan Kochanowski University, Kielce, Poland
| | - Luigi Lay
- Department of Chemistry and CRC Materiali Polimerici (LaMPo), University of Milan, Italy
| | - Milena Marinovic-Cincovic
- Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Serbia
| | - Marco Marradi
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino, Italy
| | - Musa Ozil
- Faculty of Arts and Sciences, Department of Chemistry, Recep Tayyip Erdogan University, Rize, Turkey
| | - Laura Polito
- National Research Council, CNR-SCITEC, Milan, Italy
| | - Josè Juan Reina
- Departamento de Química Orgánica, Universidad de Málaga-IBIMA, Spain.,Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Parque Tecnológico de Andalucía, Málaga, Spain
| | - Celso A Reis
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Portugal
| | - Robert Sackstein
- Department of Translational Medicine, Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Napoli, Italy
| | - Urban Švajger
- Blood Transfusion Center of Slovenia, Ljubljana, Slovenia
| | - Ondřej Vaněk
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Fumiichiro Yamamoto
- Immunohematology & Glycobiology Laboratory, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Barbara Richichi
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino, Italy
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands
| |
Collapse
|
81
|
Bagherifar R, Kiaie SH, Hatami Z, Ahmadi A, Sadeghnejad A, Baradaran B, Jafari R, Javadzadeh Y. Nanoparticle-mediated synergistic chemoimmunotherapy for tailoring cancer therapy: recent advances and perspectives. J Nanobiotechnology 2021; 19:110. [PMID: 33865432 PMCID: PMC8052859 DOI: 10.1186/s12951-021-00861-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/09/2021] [Indexed: 12/15/2022] Open
Abstract
Nowadays, a potent challenge in cancer treatment is considered the lack of efficacious strategy, which has not been able to significantly reduce mortality. Chemoimmunotherapy (CIT) as a promising approach in both for the first-line and relapsed therapy demonstrated particular benefit from two key gating strategies, including chemotherapy and immunotherapy to cancer therapy; therefore, the discernment of their participation and role of potential synergies in CIT approach is determinant. In this study, in addition to balancing the pros and cons of CIT with the challenges of each of two main strategies, the recent advances in the cancer CIT have been discussed. Additionally, immunotherapeutic strategies and the immunomodulation effect induced by chemotherapy, which boosts CIT have been brought up. Finally, harnessing and development of the nanoparticles, which mediated CIT have expatiated in detail.
Collapse
Affiliation(s)
- Rafieh Bagherifar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Hossein Kiaie
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Hatami
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Armin Ahmadi
- Department of Chemical & Materials Engineering, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Jafari
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Shafa St, Ershad Blvd., P.O. BoX: 1138, 57147, Urmia, Iran.
- Department of Immunology and Genetics, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Yousef Javadzadeh
- Biotechnology Research Center, and Faculty of Pharmacy, Tabriz University of Medical Science, 5166-15731, Tabriz, Iran.
| |
Collapse
|
82
|
Muluh TA, Chen Z, Li Y, Xiong K, Jin J, Fu S, Wu J. Enhancing Cancer Immunotherapy Treatment Goals by Using Nanoparticle Delivery System. Int J Nanomedicine 2021; 16:2389-2404. [PMID: 33790556 PMCID: PMC8007559 DOI: 10.2147/ijn.s295300] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/14/2021] [Indexed: 12/14/2022] Open
Abstract
Recently, there has been an incredible increase in research about the abnormal growth of cells (neoplasm), focusing on the management, treatment and preventing reoccurrence. It has been understood that the natural defense system, composed of a variety of immune defensive cells, does not just limit its function in eliminating neoplastic cells, but also controls the growth and spread of tumor cells of different kinds to other parts of the body. Cancer immunotherapy, is a cancer treatment plan that educates the body’s defensive system to forestall, control, and eliminate tumor cells. The effectiveness of immunotherapy is achieved, to its highest efficacy, by the use of nanoparticles (NPs) for precise and timely delivery of immunotherapies to specific targeted neoplasms, with less or no harm to the healthy cells. Immunotherapies have been affirmed in clinical trials as a cancer regimen for various types of cancers, the side effects resulting from imprecise and non-targeted conveyance is well managed with the use of nanoparticles. Nonetheless, we will concentrate on enhancing cancer immunotherapy approaches by the use of nanoparticles for the productivity of antitumor immunity. Nanoparticles will be presented and utilized as an objective immunotherapy delivery system for high exactness and are thus a promising methodology for cancer treatment.
Collapse
Affiliation(s)
- Tobias Achu Muluh
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Zhuo Chen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Yi Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Kang Xiong
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jing Jin
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - ShaoZhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, People's Republic of China.,Department of Oncology, Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, 646000, People's Republic of China
| | - JingBo Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, People's Republic of China.,Department of Oncology, Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, 646000, People's Republic of China
| |
Collapse
|
83
|
G Lahori D, Varamini P. Nanotechnology-based platforms to improve immune checkpoint blockade efficacy in cancer therapy. Future Oncol 2021; 17:711-722. [DOI: 10.2217/fon-2020-0720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In recent years, cancer immunotherapy has evolved as an exciting novel strategy for researchers and clinicians worldwide. Immunotherapeutic agents such as immune checkpoint blockers have changed the standard-of-care treatment provided for many tumors. Unfortunately, only a small proportion of patients respond effectively to these checkpoint inhibitors. Moreover, the immunosuppressive pathways for cancer are probably too complicated to achieve optimal outcome with immune checkpoint inhibitors alone. Combining current therapeutic options and immunotherapy-based approaches is being explored as an effective strategy to treat cancer. The use of nanotechnology-based platforms for delivery of immunotherapeutic agents or combination therapy could offer a major advantage over conventional anticancer treatment options. This review highlights the potential role of different nanotechnology-based strategies in improving the efficacy of immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Deeksha G Lahori
- School of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
| | - Pegah Varamini
- School of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
84
|
Khan A, Dias F, Neekhra S, Singh B, Srivastava R. Designing and Immunomodulating Multiresponsive Nanomaterial for Cancer Theranostics. Front Chem 2021; 8:631351. [PMID: 33585406 PMCID: PMC7878384 DOI: 10.3389/fchem.2020.631351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/22/2020] [Indexed: 01/14/2023] Open
Abstract
Cancer has been widely investigated yet limited in its manifestation. Cancer treatment holds innovative and futuristic strategies considering high disease heterogeneity. Chemotherapy, radiotherapy and surgery are the most explored pillars; however optimal therapeutic window and patient compliance recruit constraints. Recently evolved immunotherapy demonstrates a vital role of the host immune system to prevent metastasis recurrence, still undesirable clinical response and autoimmune adverse effects remain unresolved. Overcoming these challenges, tunable biomaterials could effectively control the co-delivery of anticancer drugs and immunomodulators. Current status demands a potentially new approach for minimally invasive, synergistic, and combinatorial nano-biomaterial assisted targeted immune-based treatment including therapeutics, diagnosis and imaging. This review discusses the latest findings of engineering biomaterial with immunomodulating properties and implementing novel developments in designing versatile nanosystems for cancer theranostics. We explore the functionalization of nanoparticle for delivering antitumor therapeutic and diagnostic agents promoting immune response. Through understanding the efficacy of delivery system, we have enlightened the applicability of nanomaterials as immunomodulatory nanomedicine further advancing to preclinical and clinical trials. Future and present ongoing improvements in engineering biomaterial could result in generating better insight to deal with cancer through easily accessible immunological interventions.
Collapse
Affiliation(s)
- Amreen Khan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, India
| | - Faith Dias
- Department of Chemical Engineering, Thadomal Shahani Engineering College, Mumbai, India
| | - Suditi Neekhra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Barkha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
85
|
Mohapatra A, Uthaman S, Park IK. External and Internal Stimuli-Responsive Metallic Nanotherapeutics for Enhanced Anticancer Therapy. Front Mol Biosci 2021; 7:597634. [PMID: 33505987 PMCID: PMC7831291 DOI: 10.3389/fmolb.2020.597634] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Therapeutic, diagnostic, and imaging approaches based on nanotechnology offer distinct advantages in cancer treatment. Various nanotherapeutics have been presented as potential alternatives to traditional anticancer therapies such as chemotherapy, radiotherapy, and surgical intervention. Notably, the advantage of nanotherapeutics is mainly attributable to their accumulation and targeting ability toward cancer cells, multiple drug-carrying abilities, combined therapies, and imaging approaches. To date, numerous nanoparticle formulations have been developed for anticancer therapy and among them, metallic nanotherapeutics reportedly demonstrate promising cancer therapeutic and diagnostic efficiencies owing to their dense surface functionalization ability, uniform size distribution, and shape-dependent optical responses, easy and cost-effective synthesis procedure, and multiple anti-cancer effects. Metallic nanotherapeutics can remodel the tumor microenvironment by changing unfavorable therapeutic conditions into therapeutically accessible ones with the help of different stimuli, including light, heat, ultrasound, an alternative magnetic field, redox, and reactive oxygen species. The combination of metallic nanotherapeutics with both external and internal stimuli can be used to trigger the on-demand release of therapeutic molecules, augmenting the therapeutic efficacies of anticancer therapies such as photothermal therapy, photodynamic therapy, magnetic hyperthermia, sonodynamic therapy, chemodynamic therapy, and immunotherapy. In this review, we have summarized the role of different metallic nanotherapeutics in anti-cancer therapy, as well as their combinational effects with multiple stimuli for enhanced anticancer therapy.
Collapse
Affiliation(s)
- Adityanarayan Mohapatra
- Department of Biomedical Sciences, Chonnam National University Medical School, Jeollanam-do, South Korea
| | - Saji Uthaman
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon, South Korea
| | - In-Kyu Park
- Department of Biomedical Sciences, Chonnam National University Medical School, Jeollanam-do, South Korea
| |
Collapse
|
86
|
Kim KS, Han JH, Choi SH, Jung HY, Park JD, An HJ, Kim SE, Kim DH, Doh J, Han DK, Kim IH, Park W, Park KS. Cationic Nanoparticle-Mediated Activation of Natural Killer Cells for Effective Cancer Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56731-56740. [PMID: 33290037 DOI: 10.1021/acsami.0c16357] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Natural killer (NK) cells have been recognized as a next-generation therapy for cancer as they are less likely to trigger adverse events (e.g., cytokine storm or graft-versus-host disease) than T cell-based therapeutics. Although NK cell activation strategies through genetic engineering and cytokine treatment have been actively studied for successful cancer treatment, the approaches are inefficient, expensive, and involve complex processing. Here, we developed a facile and efficient method of activating NK cells using cationic nanoparticles (cNPs). The cytotoxic activity of cNP-treated primary NK and NK-92MI cells against triple-negative breast cancer cells was over 2-fold higher than that of control NK cells in vitro. Molecular biological analyses confirmed that cNPs altered the expression of CCR4 and CXCR4 of NK cells that function as chemokine receptors. In vitro live cell imaging showed that the NK cells treated with cNPs were better than control NK cells at interacting with cancer cells. Consistent with these in vitro results, cNP-treated NK cells effectively inhibited tumor growth in an in vivo tumor animal model of triple-negative breast cancer. Additionally, NK cells treated with cNPs were tracked effectively in vivo by magnetic resonance imaging. Thus, cNP-mediated activation of NK cells has great potential as an NK cell-based cancer immunotherapy. Most of all, activating NK cells using cNPs has a great advantage over conventional methods in that immune cells can be activated by a one-step facile process with exogenously charged nanomaterials, without the need for genetic engineering or cytokine treatment.
Collapse
Affiliation(s)
- Kwang-Soo Kim
- Department of Biomedical Science, CHA University, Seongnam 13496, Republic of Korea
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois 60611, United States
| | - Jun-Hyeok Han
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon 14662, Republic of Korea
- Department of Biological Science, Korea University, Seoul 02841, Republic of Korea
| | - Seung Hee Choi
- Department of Biomedical Science, CHA University, Seongnam 13496, Republic of Korea
| | - Hae-Yun Jung
- Department of Biomedical Science, CHA University, Seongnam 13496, Republic of Korea
| | - Joo Dong Park
- Department of Biomedical Science, CHA University, Seongnam 13496, Republic of Korea
| | - Hee-Jung An
- Department of Pathology, CHA Bundang Medical Center, CHA University, Seongnam 13496, Republic of Korea
| | - Seong-Eun Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Dong-Hyun Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois 60611, United States
- Department of Biomedical Engineering, McCormick School of Engineering, Evanston, Illinois 60208, United States
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Junsang Doh
- Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, Seongnam 13496, Republic of Korea
| | - Ik-Hwan Kim
- Department of Biological Science, Korea University, Seoul 02841, Republic of Korea
| | - Wooram Park
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Kyung-Soon Park
- Department of Biomedical Science, CHA University, Seongnam 13496, Republic of Korea
| |
Collapse
|
87
|
Thakur N, Thakur S, Chatterjee S, Das J, Sil PC. Nanoparticles as Smart Carriers for Enhanced Cancer Immunotherapy. Front Chem 2020; 8:597806. [PMID: 33409265 PMCID: PMC7779678 DOI: 10.3389/fchem.2020.597806] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/30/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer immunotherapy has emerged as a promising strategy for the treatment of many forms of cancer by stimulating body's own immune system. This therapy not only eradicates tumor cells by inducing strong anti-tumor immune response but also prevent their recurrence. The clinical cancer immunotherapy faces some insurmountable challenges including high immune-mediated toxicity, lack of effective and targeted delivery of cancer antigens to immune cells and off-target side effects. However, nanotechnology offers some solutions to overcome those limitations, and thus can potentiate the efficacy of immunotherapy. This review focuses on the advancement of nanoparticle-mediated delivery of immunostimulating agents for efficient cancer immunotherapy. Here we have outlined the use of the immunostimulatory nanoparticles as a smart carrier for effective delivery of cancer antigens and adjuvants, type of interactions between nanoparticles and the antigen/adjuvant as well as the factors controlling the interaction between nanoparticles and the receptors on antigen presenting cells. Besides, the role of nanoparticles in targeting/activating immune cells and modulating the immunosuppressive tumor microenvironment has also been discussed extensively. Finally, we have summarized some theranostic applications of the immunomodulatory nanomaterials in treating cancers based on the earlier published reports.
Collapse
Affiliation(s)
- Neelam Thakur
- Himalayan Centre for Excellence in Nanotechnology, Shoolini University, Solan, India
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, India
| | - Saloni Thakur
- Himalayan Centre for Excellence in Nanotechnology, Shoolini University, Solan, India
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, India
| | | | - Joydeep Das
- Himalayan Centre for Excellence in Nanotechnology, Shoolini University, Solan, India
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, India
| | - Parames C. Sil
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| |
Collapse
|
88
|
Bahreyni A, Mohamud Y, Luo H. Emerging nanomedicines for effective breast cancer immunotherapy. J Nanobiotechnology 2020; 18:180. [PMID: 33298099 PMCID: PMC7727246 DOI: 10.1186/s12951-020-00741-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer continues to be the most frequently diagnosed malignancy among women, putting their life in jeopardy. Cancer immunotherapy is a novel approach with the ability to boost the host immune system to recognize and eradicate cancer cells with high selectivity. As a promising treatment, immunotherapy can not only eliminate the primary tumors, but also be proven to be effective in impeding metastasis and recurrence. However, the clinical application of cancer immunotherapy has faced some limitations including generating weak immune responses due to inadequate delivery of immunostimulants to the immune cells as well as uncontrolled modulation of immune system, which can give rise to autoimmunity and nonspecific inflammation. Growing evidence has suggested that nanotechnology may meet the needs of current cancer immunotherapy. Advanced biomaterials such as nanoparticles afford a unique opportunity to maximize the efficiency of immunotherapy and significantly diminish their toxic side-effects. Here we discuss recent advancements that have been made in nanoparticle-involving breast cancer immunotherapy, varying from direct activation of immune systems through the delivery of tumor antigens and adjuvants to immune cells to altering immunosuppression of tumor environment and combination with other conventional therapies.
Collapse
Affiliation(s)
- Amirhossein Bahreyni
- Centre for Heart Lung Innovation, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC, V6Z 1Y6, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yasir Mohamud
- Centre for Heart Lung Innovation, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC, V6Z 1Y6, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Honglin Luo
- Centre for Heart Lung Innovation, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC, V6Z 1Y6, Canada. .,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
89
|
Nasirmoghadas P, Mousakhani A, Behzad F, Beheshtkhoo N, Hassanzadeh A, Nikoo M, Mehrabi M, Kouhbanani MAJ. Nanoparticles in cancer immunotherapies: An innovative strategy. Biotechnol Prog 2020; 37:e3070. [PMID: 32829506 DOI: 10.1002/btpr.3070] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/14/2020] [Accepted: 08/20/2020] [Indexed: 12/21/2022]
Abstract
Cancer has been one of the most significant causes of mortality, worldwide. Cancer immunotherapy has recently emerged as a competent, cancer-fighting clinical strategy. Nevertheless, due to the difficulty of such treatments, costs, and off-target adverse effects, the implementation of cancer immunotherapy described by the antigen-presenting cell (APC) vaccine and chimeric antigen receptor T cell therapy ex vivo in large clinical trials have been limited. Nowadays, the nanoparticles theranostic system as a promising target-based modality provides new opportunities to improve cancer immunotherapy difficulties and reduce their adverse effects. Meanwhile, the appropriate engineering of nanoparticles taking into consideration nanoparticle characteristics, such as, size, shape, and surface features, as well as the use of these physicochemical properties for suitable biological interactions, provides new possibilities for the application of nanoparticles in cancer immunotherapy. In this review article, we focus on the latest state-of-the-art nanoparticle-based antigen/adjuvant delivery vehicle strategies to professional APCs and engineering specific T lymphocyte required for improving the efficiency of tumor-specific immunotherapy.
Collapse
Affiliation(s)
- Pourya Nasirmoghadas
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Akbar Mousakhani
- Department of Plant Sciences, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Farahnaz Behzad
- Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz, Iran
| | - Nasrin Beheshtkhoo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Hassanzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Nikoo
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Helal Iran Pharmaceutical and Clinical Complex, Tehran, Iran
| | - Mohsen Mehrabi
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohammad Amin Jadidi Kouhbanani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
90
|
Go EJ, Yang H, Chon HJ, Yang D, Ryu W, Kim DH, Han DK, Kim C, Park W. Combination of Irreversible Electroporation and STING Agonist for Effective Cancer Immunotherapy. Cancers (Basel) 2020; 12:cancers12113123. [PMID: 33114476 PMCID: PMC7693597 DOI: 10.3390/cancers12113123] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Recently, cancer immunotherapy has received attention as a viable solution for the treatment of refractory tumors. However, it still has clinical limitations in its treatment efficacy due to inter-patient tumor heterogeneity and immunosuppressive tumor microenvironment (TME). In this study, we demonstrated the triggering of anti-cancer immune responses by a combination of irreversible electroporation (IRE) and a stimulator of interferon genes (STING) agonist. Optimal electrical conditions inducing damage-associated molecular patterns (DAMPs) by immunogenic cell death (ICD) were determined through in vitro 2D and 3D cell experiments. In the in vivo syngeneic lung cancer model, the combination of IRE and STING agonists demonstrated significant tumor growth inhibition. We believe that the combination strategy of IRE and STING agonists has potential for effective cancer immunotherapy.
Collapse
Affiliation(s)
- Eun-Jin Go
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-Si, Gyeonggi-do 14662, Korea;
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Korea
| | - Hannah Yang
- Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13496, Korea; (H.Y.); (H.J.C.)
| | - Hong Jae Chon
- Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13496, Korea; (H.Y.); (H.J.C.)
| | - DaSom Yang
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, Korea; (D.Y.); (W.R.)
| | - WonHyoung Ryu
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, Korea; (D.Y.); (W.R.)
| | - Dong-Hyun Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL 60611, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Evanston, IL 60208, USA
- Department of Bioengineering, The University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Korea
- Correspondence: (D.K.H.); (C.K.); (W.P.)
| | - Chan Kim
- Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13496, Korea; (H.Y.); (H.J.C.)
- Correspondence: (D.K.H.); (C.K.); (W.P.)
| | - Wooram Park
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-Si, Gyeonggi-do 14662, Korea;
- Correspondence: (D.K.H.); (C.K.); (W.P.)
| |
Collapse
|
91
|
Siddique S, Chow JCL. Application of Nanomaterials in Biomedical Imaging and Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1700. [PMID: 32872399 PMCID: PMC7559738 DOI: 10.3390/nano10091700] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022]
Abstract
Nanomaterials, such as nanoparticles, nanorods, nanosphere, nanoshells, and nanostars, are very commonly used in biomedical imaging and cancer therapy. They make excellent drug carriers, imaging contrast agents, photothermal agents, photoacoustic agents, and radiation dose enhancers, among other applications. Recent advances in nanotechnology have led to the use of nanomaterials in many areas of functional imaging, cancer therapy, and synergistic combinational platforms. This review will systematically explore various applications of nanomaterials in biomedical imaging and cancer therapy. The medical imaging modalities include magnetic resonance imaging, computed tomography, positron emission tomography, single photon emission computerized tomography, optical imaging, ultrasound, and photoacoustic imaging. Various cancer therapeutic methods will also be included, including photothermal therapy, photodynamic therapy, chemotherapy, and immunotherapy. This review also covers theranostics, which use the same agent in diagnosis and therapy. This includes recent advances in multimodality imaging, image-guided therapy, and combination therapy. We found that the continuous advances of synthesis and design of novel nanomaterials will enhance the future development of medical imaging and cancer therapy. However, more resources should be available to examine side effects and cell toxicity when using nanomaterials in humans.
Collapse
Affiliation(s)
- Sarkar Siddique
- Department of Physics, Ryerson University, Toronto, ON M5B 2K3, Canada;
| | - James C. L. Chow
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1X6, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
92
|
Kim K, Khang D. Past, Present, and Future of Anticancer Nanomedicine. Int J Nanomedicine 2020; 15:5719-5743. [PMID: 32821098 PMCID: PMC7418170 DOI: 10.2147/ijn.s254774] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022] Open
Abstract
This review aims to summarize the methods that have been used till today, highlight methods that are currently being developed, and predict the future roadmap for anticancer therapy. In the beginning of this review, established approaches for anticancer therapy, such as conventional chemotherapy, hormonal therapy, monoclonal antibodies, and tyrosine kinase inhibitors are summarized. To counteract the side effects of conventional chemotherapy and to increase limited anticancer efficacy, nanodrug- and stem cell-based therapies have been introduced. However, current level of understanding and strategies of nanodrug and stem cell-based therapies have limitations that make them inadequate for clinical application. Subsequently, this manuscript reviews methods with fewer side effects compared to those of the methods mentioned above which are currently being investigated and are already being applied in the clinic. The newer strategies that are already being clinically applied include cancer immunotherapy, especially T cell-mediated therapy and immune checkpoint inhibitors, and strategies that are gaining attention include the manipulation of the tumor microenvironment or the activation of dendritic cells. Tumor-associated macrophage repolarization is another potential strategy for cancer immunotherapy, a method which activates macrophages to immunologically attack malignant cells. At the end of this review, we discuss combination therapies, which are the future of cancer treatment. Nanoparticle-based anticancer immunotherapies seem to be effective, in that they effectively use nanodrugs to elicit a greater immune response. The combination of these therapies with others, such as photothermal or tumor vaccine therapy, can result in a greater anticancer effect. Thus, the future of anticancer therapy aims to increase the effectiveness of therapy using various therapies in a synergistic combination rather than individually.
Collapse
Affiliation(s)
- Kyungeun Kim
- College of Medicine, Gachon University, Incheon 21999, South Korea
| | - Dongwoo Khang
- College of Medicine, Gachon University, Incheon 21999, South Korea.,Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, South Korea.,Gachon Advanced Institute for Health Science & Technology (GAIHST), Gachon University, Incheon 21999, South Korea.,Department of Physiology, School of Medicine, Gachon University, Incheon 21999, South Korea
| |
Collapse
|
93
|
Guan S, Zhang Q, Bao J, Hu R, Czech T, Tang J. Recognition Sites for Cancer-targeting Drug Delivery Systems. Curr Drug Metab 2020; 20:815-834. [PMID: 31580248 DOI: 10.2174/1389200220666191003161114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/10/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Target-homing drug delivery systems are now gaining significant attention for use as novel therapeutic approaches in antitumor targeting for cancer therapy. Numerous targeted drug delivery systems have been designed to improve the targeting effects because these systems can display a range of favorable properties, thus, providing suitable characteristics for clinical applicability of anticancer drugs, such as increasing the solubility, and improving the drug distribution at target sites. The majority of these targeting systems are designed with respect to differences between cancerous and normal tissues, for instance, the low pH of tumor tissues or overexpressed receptors on tumor cell membranes. Due to the growing number of targeting possibilities, it is important to know the tumor-specific recognition strategies for designing novel, targeted, drug delivery systems. Herein, we identify and summarize literature pertaining to various recognition sites for optimizing the design of targeted drug delivery systems to augment current chemotherapeutic approaches. OBJECTIVE This review focuses on the identification of the recognition sites for developing targeted drug delivery systems for use in cancer therapeutics. METHODS We have reviewed and compiled cancer-specific recognition sites and their abnormal characteristics within tumor tissues (low pH, high glutathione, targetable receptors, etc.), tumor cells (receptor overexpression or tumor cell membrane changes) and tumor cell organelles (nuclear and endoplasmic reticular dysregulation) utilizing existing scientific literature. Moreover, we have highlighted the design of some targeted drug delivery systems that can be used as homing tools for these recognition sites. RESULTS AND CONCLUSION Targeted drug delivery systems are a promising therapeutic approach for tumor chemotherapy. Additional research focused on finding novel recognition sites, and subsequent development of targeting moieties for use with drug delivery systems will aid in the evaluation and clinical application of new and improved chemotherapeutics.
Collapse
Affiliation(s)
- Siyu Guan
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qianqian Zhang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jianwei Bao
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Rongfeng Hu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Anhui "115" Xin'an Medicine Research & Development Innovation Team, Hefei 230038, China
| | - Tori Czech
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH 44272, United States
| | - Jihui Tang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
94
|
Shields CW, Wang LLW, Evans MA, Mitragotri S. Materials for Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901633. [PMID: 31250498 DOI: 10.1002/adma.201901633] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/17/2019] [Indexed: 05/20/2023]
Abstract
Breakthroughs in materials engineering have accelerated the progress of immunotherapy in preclinical studies. The interplay of chemistry and materials has resulted in improved loading, targeting, and release of immunomodulatory agents. An overview of the materials that are used to enable or improve the success of immunotherapies in preclinical studies is presented, from immunosuppressive to proinflammatory strategies, with particular emphasis on technologies poised for clinical translation. The materials are organized based on their characteristic length scale, whereby the enabling feature of each technology is organized by the structure of that material. For example, the mechanisms by which i) nanoscale materials can improve targeting and infiltration of immunomodulatory payloads into tissues and cells, ii) microscale materials can facilitate cell-mediated transport and serve as artificial antigen-presenting cells, and iii) macroscale materials can form the basis of artificial microenvironments to promote cell infiltration and reprogramming are discussed. As a step toward establishing a set of design rules for future immunotherapies, materials that intrinsically activate or suppress the immune system are reviewed. Finally, a brief outlook on the trajectory of these systems and how they may be improved to address unsolved challenges in cancer, infectious diseases, and autoimmunity is presented.
Collapse
Affiliation(s)
- C Wyatt Shields
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Lily Li-Wen Wang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Michael A Evans
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
95
|
Wang P, Kim T, Harada M, Contag C, Huang X, Smith BR. Nano-immunoimaging. NANOSCALE HORIZONS 2020; 5:628-653. [PMID: 32226975 DOI: 10.1039/c9nh00514e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Immunoimaging is a rapidly growing field stoked in large part by the intriguing triumphs of immunotherapy. On the heels of immunotherapy's successes, there exists a growing need to evaluate tumor response to therapy particularly immunotherapy, stratify patients into responders vs. non-responders, identify inflammation, and better understand the fundamental roles of immune system components to improve both immunoimaging and immunotherapy. Innovative nanomaterials have begun to provide novel opportunities for immunoimaging, in part due to their sensitivity, modularity, capacity for many potentially varied ligands (high avidity), and potential for multifunctionality/multimodality imaging. This review strives to comprehensively summarize the integration of nanotechnology and immunoimaging, and the field's potential for clinical applications.
Collapse
Affiliation(s)
- Ping Wang
- Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Drive, Room #1118, East Lansing, MI 488824, USA. and Precision Health Program, Michigan State University, East Lansing, MI 488824, USA
| | - Taeho Kim
- Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Drive, Room #1118, East Lansing, MI 488824, USA. and Department of Biomedical Engineering, Michigan State University, East Lansing, MI 488824, USA
| | - Masako Harada
- Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Drive, Room #1118, East Lansing, MI 488824, USA. and Department of Biomedical Engineering, Michigan State University, East Lansing, MI 488824, USA
| | - Christopher Contag
- Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Drive, Room #1118, East Lansing, MI 488824, USA. and Precision Health Program, Michigan State University, East Lansing, MI 488824, USA and Department of Biomedical Engineering, Michigan State University, East Lansing, MI 488824, USA and Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI 488824, USA
| | - Xuefei Huang
- Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Drive, Room #1118, East Lansing, MI 488824, USA. and Department of Biomedical Engineering, Michigan State University, East Lansing, MI 488824, USA and Department of Chemistry, Michigan State University, East Lansing, MI 488824, USA
| | - Bryan Ronain Smith
- Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Drive, Room #1118, East Lansing, MI 488824, USA. and Department of Biomedical Engineering, Michigan State University, East Lansing, MI 488824, USA and Department of Radiology, Stanford University, Stanford, CA 94306, USA
| |
Collapse
|
96
|
Bhargava A, Mishra DK, Tiwari R, Lohiya NK, Goryacheva IY, Mishra PK. Immune cell engineering: opportunities in lung cancer therapeutics. Drug Deliv Transl Res 2020; 10:1203-1227. [PMID: 32172351 DOI: 10.1007/s13346-020-00719-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Engineered immune cells offer a prime therapeutic alternate for some aggressive and frequently occurring malignancies like lung cancer. These therapies were reported to result in tumor regression and overall improvement in patient survival. However, studies also suggest that the presence of cancer cell-induced immune-suppressive microenvironment, off-target toxicity, and difficulty in concurrent imaging are some prime impendent in the success of these approaches. The present article reviews the need and significance of the currently available immune cell-based strategies for lung cancer therapeutics. It also showcases the utility of incorporating nanoengineered strategies and details the available formulations of nanocarriers. In last, it briefly discussed the existing methods for nanoparticle fuctionalization and challenges in translating basic research to the clinics. Graphical Abstract.
Collapse
Affiliation(s)
- Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Kamla Nehru Hospital,, Building (Gandhi Medical College Campus), Bhopal, Madhya Pradesh, 462001, India
| | | | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Kamla Nehru Hospital,, Building (Gandhi Medical College Campus), Bhopal, Madhya Pradesh, 462001, India
| | | | - Irina Yu Goryacheva
- Department of General and Inorganic Chemistry, Saratov State University, Saratov, Russian Federation
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Kamla Nehru Hospital,, Building (Gandhi Medical College Campus), Bhopal, Madhya Pradesh, 462001, India.
| |
Collapse
|
97
|
Trac NT, Chung EJ. Peptide-based targeting of immunosuppressive cells in cancer. Bioact Mater 2020; 5:92-101. [PMID: 31956738 PMCID: PMC6962647 DOI: 10.1016/j.bioactmat.2020.01.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer progression is marked by the infiltration of immunosuppressive cells, such as tumor-associated macrophages (TAMs), regulatory T lymphocytes (Tregs), and myeloid-derived suppressor cells (MDSCs). These cells play a key role in abrogating the cytotoxic T lymphocyte-mediated (CTL) immune response, allowing tumor growth to proceed unabated. Furthermore, targeting these immunosuppressive cells through the use of peptides and peptide-based nanomedicine has shown promising results. Here we review the origins and functions of immunosuppressive cells in cancer progression, peptide-based systems used in their targeting, and explore future avenues of research regarding cancer immunotherapy. The success of these studies demonstrates the importance of the tumor immune microenvironment in the propagation of cancer and the potential of peptide-based nanomaterials as immunomodulatory agents.
Collapse
Affiliation(s)
- Noah T. Trac
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
- Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Vascular Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
98
|
Emerging Prospects for Nanoparticle-Enabled Cancer Immunotherapy. J Immunol Res 2020; 2020:9624532. [PMID: 32377541 PMCID: PMC7199570 DOI: 10.1155/2020/9624532] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 10/30/2019] [Accepted: 11/02/2019] [Indexed: 12/18/2022] Open
Abstract
One of the standards for cancer treatment is cancer immunotherapy which treats both primary and metastasized tumors. Although cancer immunotherapeutics show better outcomes as compared with conventional approaches of cancer treatment, the currently used cancer immunotherapeutics have limited application in delivering cancer antigens to immune cells. Conversely, in solid tumors, tumor microenvironment suppresses the immune system leading to the evasion of anticancer immunity. Some promising attempts have been made to overcome these drawbacks by using different approaches, for instance, the use of biomaterial-based nanoparticles. Accordingly, various studies involving the application of nanoparticles in cancer immunotherapy have been discussed in this review article. This review not only describes the modes of cancer immunotherapy to reveal the importance of nanoparticles in this modality but also narrates nanoparticle-mediated delivery of cancer antigens and therapeutic supplements. Moreover, the impact of nanoparticles on the immunosuppressive behavior of tumor environment has been discussed. The last part of this review deals with cancer immunotherapy using a combination of traditional interventional oncology approach and image-guided local immunotherapy against cancer. According to recent studies, cancer therapy can potentially be improved through nanoparticle-based immunotherapy. In addition, drawbacks associated with the currently used cancer immunotherapeutics can be fixed by using nanoparticles.
Collapse
|
99
|
Anfray C, Mainini F, Andón FT. Nanoparticles for immunotherapy. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/b978-0-08-102828-5.00011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
100
|
García-Aranda M, Redondo M. Immunotherapy: A Challenge of Breast Cancer Treatment. Cancers (Basel) 2019; 11:E1822. [PMID: 31756919 PMCID: PMC6966503 DOI: 10.3390/cancers11121822] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the most commonly diagnosed cancer in women and is a leading cause of cancer death in women worldwide. Despite the significant benefit of the use of conventional chemotherapy and monoclonal antibodies in the prognosis of breast cancer patients and although the recent approval of the anti-PD-L1 antibody atezolizumab in combination with chemotherapy has been a milestone for the treatment of patients with metastatic triple-negative breast cancer, immunologic treatment of breast tumors remains a great challenge. In this review, we summarize current breast cancer classification and standard of care, the main obstacles that hinder the success of immunotherapies in breast cancer patients, as well as different approaches that could be useful to enhance the response of breast tumors to immunotherapies.
Collapse
Affiliation(s)
- Marilina García-Aranda
- Research Unit, Hospital Costa del Sol, Autovía A-7, km 187, 29603 Marbella, Spain;
- Research Network in Health Services in Chronic Diseases (Red de Investigación en Servicios de Salud en Enfermedades Crónicas, REDISSEC), Carlos III Health Institute (Instituto de Salud Carlos III). Av. de Monforte de Lemos, 5. 28029 Madrid, Spain
- Malaga Biomedical Research Institute (Instituto de Investigación Biomédica de Málaga, IBIMA), Calle Doctor Miguel Díaz Recio, 28. 29010 Málaga, Spain
- Surgery, Biochemistry and Immunology Department, School of Medicine, University of Malaga, 29010 Málaga, Spain
| | - Maximino Redondo
- Research Unit, Hospital Costa del Sol, Autovía A-7, km 187, 29603 Marbella, Spain;
- Research Network in Health Services in Chronic Diseases (Red de Investigación en Servicios de Salud en Enfermedades Crónicas, REDISSEC), Carlos III Health Institute (Instituto de Salud Carlos III). Av. de Monforte de Lemos, 5. 28029 Madrid, Spain
- Malaga Biomedical Research Institute (Instituto de Investigación Biomédica de Málaga, IBIMA), Calle Doctor Miguel Díaz Recio, 28. 29010 Málaga, Spain
- Surgery, Biochemistry and Immunology Department, School of Medicine, University of Malaga, 29010 Málaga, Spain
| |
Collapse
|